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Abstract

Quantum computers are devices that can solve certain problems faster than ordinary, classical
computers. The fundamental units of quantum information are qubits, superpositions of two
states |0y and |1y. There are various approaches to construct such two-level systems, among
others, using superconducting circuits, trapped ions or photons. A common feature of these
physical systems is that their coherence times are relatively short compared to the length of
useful computations. Superconducting qubits, for instance, are currently the most advanced
solid-state qubits, but they decohere after �100 µs, and any information stored in these qubits
is lost. On the other hand, useful quantum computations may require quantum information to
survive on time scales that are many orders of magnitude longer, as their runtimes can reach
several hours or even days. Topological quantum computing is an approach to construct qubits
that survive for the entire duration of such a long computation.

Topological quantum computing comes in two flavors. The condensed matter approach is to
build error-resilient qubits using exotic quasiparticles in topological materials, most prominently
Majorana zero modes in topological superconductors. Even though no such qubit has been built
to date, the hope is that their coherence times may be significantly longer than the coherence
times of currently available solid-state qubits, but are still expected to be too short for large-scale
quantum computing. The quantum information approach is to combine many error-prone qubits
to build more robust logical qubits using topological error-correcting codes, e.g., surface codes.
Even though the first approach is hardware-based and the second approach is software-based,
they are deeply related. With Majorana-based qubits, the main logical operations are Majorana
fermion parity measurements. By replacing Majorana-based qubits with surface-code patches
and parity measurements with lattice-surgery operations, schemes for quantum computation
with Majorana-based qubits or with surface codes can be identical.

In this thesis, we explore how to construct a large-scale topological fault-tolerant quantum
computer that can perform useful quantum computations. Here, topological refers to the nature
of the quantum error-correcting code, while the underlying hardware may be based on non-
topological qubits, but could also be composed of Majorana-based qubits. We provide a complete
picture of such a large-scale device, breaking down large quantum computations into logical
qubits and logical operations, describing how these logical operations are performed on the level
of physical qubits and physical gates, and finally discussing how these physical qubits can be
pieced together in a Majorana-based system using topological superconducting nanowires.
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Zusammenfassung

Quantencomputer sind Maschinen, die bestimmte Rechnungen schneller durchführen können als
herkömmliche, klassiche Computer. Die grundlegende Einheit der Quanteninformation ist das
Qubit, eine Superposition zweier Zustände |0y und |1y. Es existieren zahlreiche Herangehensweisen,
solche Zwei-Niveau-Systeme mithilfe physikalischer Komponenten zu konstruieren, wie zum
Beispiel auf Basis supraleitender Schaltkreise, Ionenfallen oder Photonen. Eine Eigenschaft
solcher realistischer Systeme ist, dass deren Kohärenzzeiten sehr kurz sind verglichen mit der
Länge einer nützlichen Quantenrechnung. So dekohärieren beispielsweise supraleitende Qubits –
die aktuell fortgeschrittensten Festkörperqubits – nach bereits �100 µs, sodass jegliche in diesen
Qubits gespeicherte Quanteninformation auf dieser Zeitskala verloren geht. Allerdings können
nützliche Quantenrechnungen mehrere Stunden oder gar Tage dauern und benötigen daher Qubits,
welche Quanteninformation deutlich länger erhalten können, als aktuell verfügbare Qubits. Eine
Methode, solche extrem langlebigen Qubits zu konstruieren ist topologisches Quantenrechnen.

Hinter dem Begriff “topologisches Quantenrechnen” verbergen sich zwei unterschiedliche
Herangehensweisen. Der Ansatz in der Festkörperphysik ist es, fehlerresistente Qubits mithilfe
exotischer Quasiteilchen in topologischen Materialien zu konstruieren, wie beispielsweise anhand
von Majorana-Nullmoden in topologischen Supraleitern. Obwohl bisherige Versuche, solche
topologischen Qubits herzustellen, ohne Erfolg geblieben sind, erhofft man sich längere Ko-
härenzzeiten verglichen mit herkömmlichen Festkörperqubits, jedoch vermutlich nicht lang genug
für nützliche Quantenrechnungen. Der Ansatz der Quanteninformationstheorie ist es, viele
fehleranfällige Qubits zu resistenteren logischen Qubits mithilfe eines topologischen fehlerkor-
rigierenden Codes zu kombinieren, wie beispielsweise mittels Surface-Codes. Obwohl der erste
Ansatz eher softwareorientiert und der zweite Ansatz eher hardwareorientiert ist, besteht ein
enger Zusammenhang zwischen beiden Herangehensweisen. So kann man in beiden Fällen genau
das gleiche Quantenrechenschema verwenden, indem man Majorana-Qubits und deren primäre
logischen Operationen – Messungen der Majorana-Fermionenparität – durch Surface-Code-Qubits
und Lattice-Surgery-Operationen ersetzt.

In dieser Dissertation untersuchen wir, wie ein vollständiger topologischer fehlertoleranter
Quantencomputer konstruiert werden kann, welcher in der Lage ist, lange, nützliche Quan-
tenrechnungen durchzuführen. Hierbei bezieht sich “topologisch” auf den fehlerkorrigierenden
Code, wohingegen die zugrendeliegende Hardware sowohl auf nicht-topologischen, als auch auf
Majorana-Qubits basieren kann. Wir formulieren eine vollständige Beschreibung des Quanten-
computers, indem wir große Quantenrechnungen auf logische Qubits und logische Operationen
herunterbrechen, diese logischen Operationen auf physikalische Qubits und physikalische Oper-
ationen zurückführen, und schließlich beschreiben, wie physikalische Qubits aus topologischen
supraleitenden Nanodrähten zu Majorana-Qubits zusammengebaut werden können.

3



4



List of Publications

This cumulative dissertation is based on the following first-author publications:

� Daniel Litinski: A Game of Surface Codes: Large-Scale Quantum Computing with Lattice
Surgery, Quantum 3, 128 (2019),
doi:10.22331/q-2019-03-05-128

� Daniel Litinski and Felix von Oppen: Lattice Surgery with a Twist: Simplifying Clifford
Gates of Surface Codes, Quantum 2, 62 (2018),
doi:10.22331/q-2018-05-04-62

� Daniel Litinski and Felix von Oppen: Quantum Computing with Majorana Fermion Codes,
Phys. Rev. B 97, 205404 (2018),
doi:10.1103/PhysRevB.97.205404

� Daniel Litinski and Felix von Oppen: Braiding by Majorana Tracking and Long-Range
CNOT Gates with Color Codes, Phys. Rev. B 96, 205413 (2017),
doi:10.1103/PhysRevB.96.205413

� Daniel Litinski, Markus S. Kesselring, Jens Eisert and Felix von Oppen: Combining
Topological Hardware and Topological Software: Color Code Quantum Computing with
Topological Superconductor Networks, Phys. Rev. X 7, 031048 (2017),
doi:10.1103/PhysRevX.7.031048

5

https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2018-05-04-62
https://doi.org/10.1103/PhysRevB.97.205404
https://doi.org/10.1103/PhysRevB.96.205413
https://doi.org/10.1103/PhysRevX.7.031048


6



Introduction

A computer is a device that takes input data and carries out a sequence of logical operations to
generate output data. Suitable sequences of operations can be used to solve various problems
like adding numbers, searching databases, or learning to drive cars autonomously. The number
of logical operations that need to be performed to generate an output is governed by the
complexity of the problem being solved. Problems that require a number of operations that
scales polynomially or even logarithmically with the size of the input (e.g., the length of the
input bit string) are considered to be efficiently solvable. On the other hand, if the number of
operations scales exponentially or super-exponentially with the size of the input, the problem is
considered intractable.

Ordinary, classical computers store information using bits, binary digits 0 or 1. They process
input data through logic gates, boolean functions that map bit strings onto other bit strings.
Using this approach, many common problems can be solved efficiently, such as basic arithmetic
or sorting lists. However, there are many problems that are expected to be intractable, including
factoring numbers and various optimization problems. That is not to say that these problems
cannot be solved by a classical computer, but the runtime of algorithms with exponential time
complexity quickly surpasses hundreds of years on realistic machines even for modest input sizes.

Quantum computers [1], just like classical computers, input bit strings and generate bit strings
as outputs. Contrary to classical computers, quantum computers store information using qubits,
quantum bits that are superpositions of a |0y state and a |1y state. They process information
by performing quantum gates, unitary operations that map the multi-qubit state stored in the
quantum computer onto a different multi-qubit state. Using this approach, some classically
intractable problems can be solved using only polynomially many quantum gates. Most notably,
this includes factoring co-primes using Shor’s algorithm and the simulation of large, correlated
quantum systems. Quantum simulation, in particular, has various industry-related applications
in quantum chemistry and material science, among others.

A quantum computation is typically expressed through a quantum circuit, see Fig. 1. Such
a circuit is a sequence of instructions that is read from left to right. Each line of the circuit
corresponds to a qubit |ψy � α |0y � β |1y, where α, β P C and |α|2 � |β|2 � 1. After initializing
all qubits in the states specified to the left of each wire, the quantum gates corresponding to the
boxes and symbols drawn on top of the wires are executed one after the other. An output is
obtained by measuring the qubits in the Pauli-Z basis, also called the computational basis, i.e.,
measuring whether the qubits are in the |0y state or the |1y state.

A quantum computer is called universal, if, by executing gates in this manner, it can approxi-
mately implement any multi-qubit unitary transformation with arbitrary precision. This requires
only a finite set of basic instructions called a universal gate set. One such set of gates is the
so-called standard set [2] consisting of the Hadamard gate H, phase gate S, the T gate, and the
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Figure 1: A random 4-qubit quantum circuit. Each line represents a qubit. The circuit is read
from left to right with each box representing a quantum gate. Circles connected to crosses are
CNOT gates, where the circle and cross indicate the control and target qubit, respectively. At
the end of the circuit, the qubits are measured in the computational basis.

controlled-NOT gate CNOT. These gates correspond to the unitary matrices
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The Hadamard gate interchanges |0y with |�y � p|0y�|1yq{?2, and |1y with |�y � p|0y�|1yq{?2.
In this sense, this gate switches between the Pauli-Z and Pauli-X basis, where X, Y and Z are
the Pauli operators

X �
�

0 1
1 0



, Y �

�
0 �i
i 0



, Z �

�
1 0
0 �1



. (2)

The S gate transforms |�y to |φ�y � p|0y � i |1yq{?2 and |�y to |φ�y � p|0y � i |1yq{?2. In
this sense, the S gate switches between the X and Y basis. The CNOT gate is a two-qubit
gate that can generate entanglement between qubits. The two qubits that it acts on are called
control qubit and target qubit. The action of the CNOT gate is to flip the target qubit, if the
control qubit is in the |1y state. Therefore, it maps |00y Ñ |00y, |01y Ñ |01y, |10y Ñ |11y, and
|11y Ñ |10y, where the notation |ijy implies an outer product |iy b |jy. The universal gate set
is completed by the T gate, which is also the square root of the S gate. Gates that map Pauli
eigenstates onto other Pauli eigenstates are called Clifford gates. Therefore, the standard set
tH,T, S,CNOTu is also referred to as Clifford+T . Any quantum circuit can be pieced together
using these four operations and measurements in the Z basis.

Useful, classically intractable quantum computations do not necessarily require many qubits.
The smallest classically intractable quantum simulations use as few as 100 qubits [3, 4]. However,
these useful computations tend to be very long, potentially consisting of billions of gates.

Overview: How to build a quantum computer

The main motivation of this thesis is to find efficient methods to translate such large-scale
quantum computations into concrete hardware instructions, i.e., into physical gate operations.
This is not a straightforward task, as physical qubits and physical gate operations are noisy and
cannot be used directly to implement a large-scale quantum computation, since the noise would
randomize the result of the computation and render it useless.

In this thesis, we discuss how to construct a large-scale quantum computer that can execute
a 100-qubit billion-gate quantum computation. While there is not necessarily one definitive
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approach to tackle this problem, the scheme discussed in this thesis is outlined in the following
paragraphs. The basis of the quantum computer is an array of physical qubits – two-level
systems – which can be assembled from different physical components. There exist various
approaches [5] to encoding qubits in physical systems. Spin qubits use the two spin states of an
electron confined to a quantum dot. Superconducting qubits use two states of a superconducting
circuit, essentially the ground state and first excited state of a quantum anharmonic oscillator.
Ion-trap qubits use two electronic states of cold trapped ions. Diamond qubits use the electron
spin of a nitrogen-vacancy center in diamond. Optical qubits use the position or polarization of
a photon. Majorana-based qubits use the fermion parity of Majorana fermion pairs. All these
approaches differ with respect to coherence times, gate execution times and challenges concerning
scalability. Moreover, all of these approaches are currently being pursued commercially, and it is
not clear yet which platform is the most promising for large-scale quantum computing.

In a quantum computer, a sufficiently large number of physical qubits needs to be, e.g.,
arranged in a two-dimensional array, with some implementation of the previously mentioned
single-qubit gates and two-qubit gates between nearest neighbors. 100 physical qubits are far
from enough to run the 100-qubit computation, because these qubits are typically noisy. For
instance, superconducting qubits have coherence times of �100 µs, implying that any quantum
information stored in these qubits is lost after hundreds of microseconds, whereas a billion-gate
computation may take hours to finish.

Topological quantum computing is an approach to remedy this problem. In fact, topological
quantum computing describes two approaches: a condensed-matter-based and a quantum-
information-based approach. The condensed matter approach is to construct more error-resilient
qubits using topological materials that are insensitive to local perturbation, most prominently
using Majorana-based qubits constructed from topological superconductors [6, 7]. While no
Majorana-based qubit has been successfully built to date, the hope is that their coherence
times may be significantly higher compared to other solid-state qubits. Still, it is not expected
that the coherence times of Majorana-based qubits will be long enough for hour-long quantum
computations [8]. The quantum information approach is to combine many physical qubits –
Majorana-based or otherwise – to more error-resilient logical qubits using a topological quantum
error-correcting code [9, 10]. Quantum error correction enables the storage of qubits for, in
principle, arbitrarily long times by periodically measuring certain check operators and using the
measurement outcomes to detect and correct errors, provided that the error rate of the physical
hardware is below a certain threshold. Topological codes, such as surface codes [9] or color
codes [11], are families of codes that only require the measurement of geometrically local check
operators, typically local in two dimensions, and feature significantly higher error thresholds
compared to non-topological schemes.

To run a 100-qubit computation, it is therefore necessary to use hundreds of logical qubits, as
opposed to physical qubits, which could amount to hundreds of thousands of physical qubits.
Furthermore, the use of an error-correcting code restricts the set of available operations. Logical
gates on logical qubits, in general, do not correspond to physical gates on physical qubits.
With topological codes in two dimensions, which are well-suited for solid-state qubits, logical
non-Clifford gates require the preparation of resource states, such as magic states [12] for the
execution of logical T gates. For this reason, one possible way to construct a full fault-tolerant
quantum computer is to partition it into blocks of logical qubits that are used to prepare these
resource states (distillation blocks), and a block of logical qubits that stores the 100 qubits of the
computation and consumes resource states to advance the computation (data block).

To reiterate, a large-scale quantum computer capable of performing classically intractable
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logical qubits physical qubits and stabilizer measurements physical components

Chapter 1 Chapter 2

Large-scale quantum computer

Chapter 3

Chapter 4

Chapter 3/4

Chapter 5

distillation block twist-based lattice surgery Majorana codes

color codes

tetrons / hexons / . . .

topological supercon-
ductor networks

Figure 2: A large-scale quantum computer consists of data blocks and distillation blocks. The
construction of these blocks in terms of logical qubits and logical operations is described in
Chapter 1. The logical operations are logical Pauli product measurements. With surface codes,
these correspond to twist-based lattice surgery, which is discussed in Chapter 2. Corresponding
implementations with Majorana fermion codes and color codes are discussed in Chapters 3 and 4.
In these chapters, we also show how to construct the required physical qubits and operations
using tetron-like [13] Majorana-based qubits. Finally, in Chapter 5, we show how a fault-tolerant
color-code-based quantum computer can be implemented in a braiding-based network [14] of
topological superconductors.

computations can be constructed by piecing together physical ingredients to physical qubits,
combining physical qubits to logical qubits using a topological error-correcting code, assembling
many logical qubits to data and distillation blocks, and connecting many such blocks to a full
quantum computer. As shown in Fig. 2, this also describes the structure of the thesis. While
the chronological order in which these problems were treated in the publications of this thesis is
one in which we zoom out from microscopic details to full error-corrected quantum computers,
the order in which these works are presented here is reversed. However, before we can properly
motivate the research performed within this thesis, we first need to introduce the central concepts
used in this thesis: surface codes, lattice surgery, color codes and Majorana-based qubits.

Surface codes and lattice surgery

The basic working principle of a quantum error-correcting code is to use multiple physical qubits
to encode a single logical qubit and to periodically measure certain operators to detect and correct
errors. These operators are called check operators, stabilizer generators, or simply stabilizers. If
not too many qubits are affected by errors between two rounds of stabilizer measurement, the
errors can be corrected and the logical information stored in the logical qubit is preserved. The
code distance d is the minimum number of errors that need to occur between two rounds of error
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Figure 3: Physical qubit (d � 1) and examples surface-code patches with distances 3, 5 and 7.

corrections, such that the logical information is corrupted and the errors remain undetected.
The higher the code distance, the more error-resilient the logical qubit, and the longer logical
information can be stored before becoming corrupted.

Surface-code patches encode a single logical qubit using d2 physical qubits, see Fig. 3. They
are defined on a d � d square lattice, where each vertex corresponds to a physical qubit, and
each face corresponds to a stabilizer operator that defines the code. Bright faces correspond
to Z-type stabilizers Zb4 or Zb2 and dark faces are X-type stabilizers Xb4 or Xb2. For the
example of d � 5, one logical qubit is encoded using 25 physical qubits. Since there are 24
mutually commuting stabilizers Oi, the subspace of the Hilbert space with Oi � �1 is spanned
by two vectors, which are the logical |0Ly and |1Ly states. In other words, 25 physical qubits are
25 degrees of freedom and 24 stabilizer Oi define 24 constraints Oi � �1, leaving one remaining
degree of freedom, which is the logical qubit. This can also be thought of as encoding the logical
qubit in the doubly degenerate ground-state space of the Hamiltonian

H � �
24̧

i�1

Oi . (3)

It should be emphasized that this Hamiltonian is not to be interpreted as the Hamiltonian of
a physical system, but rather as a measurement prescription. By projectively measuring the
operators Oi and enforcing a measurement outcome of Oi � �1, the 25-qubit state is projected
into the ground-state space of this Hamiltonian. Errors affecting the physical qubits will cause
the system to leave this ground-state space. By periodically measuring all stabilizers, the system
is projected back into the ground-state manifold. When errors occur, some stabilizers may be
flipped, causing some measurement outcomes to be Oi � �1 instead of �1. A sequence of Pauli
operations can be used to flip all stabilizers back to �1. This sequence of operations is the error
correction operation.

In the bulk of the code, each physical qubit is part of four stabilizers. At a boundary, qubits are
only part of three stabilizers. We refer to boundaries where qubits are part of two X stabilizers
and one Z stabilizer as Z boundaries. Conversely, at X boundaries, qubits are part of two X
stabilizers and one Z stabilizer. Corners are points where two boundaries meet and qubits are
part of only two stabilizers. Logical operators are operators that commute with all stabilizers,
but are not stabilizers themselves. With surface codes, logical ZL operators are strings of Z
operators that go from one X boundary to another. Logical XL operators are strings of X

11
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Figure 4: Examples of different error configurations and corresponding error syndromes on a
distance-5 surface-code patch.

operators connecting two Z boundaries. In particular, a string of X’s (Z’s) along an X boundary
(a Z boundary) is a logical XL (ZL) operator. For instance, a logical XL operator of the d � 7
patch in Fig. 3 is the product Xb7 supported on the 7 qubits of any one of the X boundaries
highlighted in orange. Storing the logical information in such a non-local string operator is what
protects the encoded information from local errors.

Error detection and correction is performed in code cycles. In each code cycle, all stabilizer
operators are measured. Consider an error model in which each physical qubit can be affected
by a random Pauli error X, Y or Z in every code cycle with a probability p. While this is not
necessarily a realistic noise model, the following considerations generalize to other local noise
models. If a qubit in the bulk is affected by a Z error, as in Fig. 4a, the measurement outcome
of the two X stabilizers that it is part of will flip from �1 to �1 in the subsequent code cycle,
which can be used to detect and correct the error. Similarly, the measurement outcomes of Z
stabilizers reveal X errors. Y errors (see Fig. 4b) correspond to simultaneous Z and X errors.
At a boundary, errors may only flip one stabilizer. X errors will flip two Z stabilizers if located
at an X boundary, but only one stabilizer at a Z boundary, as shown in Fig. 4b.

A specific configuration of errors will produce a certain pattern of stabilizer measurement
outcomes called an error syndrome. However, only the syndrome is measured, while the underlying
error configuration is unknown. In order to correct the errors, the error configuration needs to
be determined from the syndrome. This classical computation is called decoding. For surface
codes, various efficient decoding algorithms are known [15–20], even in the presence of stabilizer
measurement errors, in which case stabilizer measurements need to be repeated to account for
faulty measurement outcomes. It should be pointed out that, since the correction operations are
always physical Pauli operations, they do not actually need to be performed in hardware, but
can be classically tracked in software. Because the effect of Pauli corrections is to change the
subsequent measurement outcomes of some stabilizers from �1 to �1 and vice versa – specifically,
of those stabilizers that anticommute with the Pauli correction – one can simply reinterpret the
outcomes of subsequent syndrome measurements, instead of actually performing the correction.

The problem that ultimately leads to logical errors is that multiple error configurations can
produce identical error syndromes. For instance, the three X errors in Fig. 4c produce the same
syndrome as the two X errors in Fig. 4d. Since only the syndrome is known, but not the error
configuration, and two errors are more likely to occur than three, the correction operation in
response to this syndrome would be to perform two X flips on the red qubits of Fig. 4d. This
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Figure 5: Examples of differently shaped surface-code patches.

successfully corrects the errors in the case of Fig. 4d, but leads to a logical X error in the case of
Fig. 4c. In this sense, failure to successfully correct error strings that are longer than half the
code distance leads to logical errors with surface codes. An error string that leads to logical
errors in a surface code with odd distance d needs to affect at least pd� 1q{2 qubits. Thus, in
the regime of low p, surface codes suppress the error rate from p to �ppd�1q{2.

Surface-code patches can have shapes that are different from the square patches shown in
Fig. 3. One example with 43 physical qubits and 42 stabilizers is shown in Fig. 5a, where an X
and Z boundary are on the same side of the patch. Since there is one more qubit than there
are stabilizers, the patch encodes one logical qubit. Again, logical operators are string operators
connecting two boundaries, such as Pauli strings along any of the highlighted boundaries. A
patch with six boundaries is shown in Fig. 5b. Since it consists of 54 physical qubits and 52
stabilizers, it encodes two logical qubits instead of one. The logical operators corresponding
to the X and Z Pauli strings located at the three X and Z boundaries of the patch can be
defined as encoding the logical X1,L and Z1,L operators of the first logical qubit in the bottom
two boundaries, and the logical X2,L and Z2,L operators of the second logical qubits in the top
two boundaries. Satisfying the correct commutation relation, the left Z boundary corresponds
to the product Z1,L � Z2,L and the right X boundary to X1,L �X2,L. In general, a surface-code
patch with n corners has pn� 1q{2 more physical qubits than stabilizers, and therefore encodes
pn� 1q{2 logical qubits.

While stabilizer measurements and decoding are sufficient to fault-tolerantly store a qubit,
quantum computation requires operations to manipulate the logical information encoded by
surface codes. Surface-code qubits can be initialized in the logical |0Ly state by initializing all
physical qubits in |0y and measuring all X stabilizers. The reason why this initializes the logical
|0Ly state is that initializing all physical qubits in |0y sets all Z stabilizers to �1 and the logical
ZL operator to �1. The only requirement missing for a logical |0Ly state is for all X stabilizers
to be �1, which is why these stabilizers are measured. Since the measurement outcomes are
random, corrective Pauli flips are necessary to flip all X stabilizers that are �1. These corrections
are physical Z operations, which commute with the logical ZL operator and therefore leave the
encoded information unaffected. Similarly, a surface-code qubit can be initialized in the logical
|�Ly state by initializing all physical qubits in |�y and measuring all Z stabilizers.

One useful type of logical operation will turn out to be the measurement of logical Pauli products
Pi b Pj between neighboring logical qubits, where Pi (Pj) is a logical Pauli operator supported
on logical qubit i (qubit j). Such measurements can be used to generate entanglement between
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Figure 6: Example of a logical ZL b ZL (a) and ZL bXL (b) measurement via lattice surgery.

logical qubits, as, for instance, a ZL b ZL measurement between two logical qubits |�Ly b |�Ly
with an outcome �1 will prepare an entangled logical Bell pair p|0Ly b |0Ly � |1Ly b |1Lyq{

?
2.

Since logical operators are high-weight non-local operators, a specialized measurement protocol
called lattice surgery [21] is employed to measure these products using only local, low-weight
measurements. The simplest example is a ZL b ZL measurement, as shown in Fig. 6a. In terms
of physical qubits, the operator ZLbZL is the product of 10 Z operators Zb10 supported on the
10 qubits highlighted in red. Note that, in Figs. 6 and 7, the highlighted qubits do not signify
errors as in Fig. 4. To measure ZL b ZL using lattice surgery, the stabilizer configuration is
changed by merging the neighboring boundary X stabilizers to form orange X stabilizers, and by
introducing new Z stabilizers (blue stabilizers). In the new stabilizer configuration, the number
of stabilizers has increased by one, implying that the number of degrees of freedom has decreased
by one, and one bit of information has been measured. The measurement outcome of the orange
stabilizers is trivial, since it is the product of previously measured stabilizers. The blue stabilizers
yield non-trivial measurement outcomes. Their product corresponds to the ZL b ZL operator,
which is the measured bit of information. The reason why this is a fault-tolerant measurement of
this operator is that, in the second step, all stabilizers still commute and can therefore be used to
detect and correct errors. In the presence of measurement errors, and assuming that measurement
errors and qubit errors occur with similar error rates, the new stabilizer configuration is measured
for d code cycles. Afterwards, the two patches are split again and the stabilizer configuration is
reverted to the original configuration.

The interpretation of error syndromes during lattice surgery operations involves some subtleties.
Because the blue stabilizers are unknown and determine the outcome of the ZLbZL measurement,
error correction after the merge is performed using a syndrome graph that does not involve the
blue stabilizers, treating the punctures left behind in the lattice by disregarding these stabilizers
as internal Z boundaries [22]. After the split, the two-qubit boundary stabilizers yield random,
but correlated measurement outcomes. Their correction can lead to logical ZL b ZL “errors”,
which do not affect the state, since it is a ZL b ZL eigenstate as a consequence of the ZL b ZL
measurement.

A similar protocol can be used to measure the two-qubit operator ZL b XL, as shown in
Fig. 6b. This operator corresponds to the 10-qubit operator Zb5 bXb5, with the Z’s and X’s
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Figure 7: Example of a logical YL b ZL measurement via twist-based lattice surgery.

supported on the qubits highlighted in red and purple, respectively. Again, boundary stabilizers
are merged and new stabilizers are introduced. In this case, this yields mixed stabilizer of the
form X bX bZ bZ. The logical Pauli product is the product of the three non-trivial stabilizers.

Such a protocol can also be used to measure products involving the YL operator, as shown in
Fig. 7. Since the YL operator of the top patch is the product YL � iXLZL, it corresponds to
the 9-qubit operator Zb4 b Y bXb4, where the Z’s, Y and X’s are supported on the red, green
and purple qubits, respectively. The bottom patch has a long 9-qubit Z boundary with a logical
operator ZL � Zb9. To measure the logical Pauli product YL b ZL, lattice surgery is performed
by merging boundary stabilizers to form two orange stabilizers and two mixed stabilizers, and
introducing five non-trivial stabilizers whose product corresponds to YL b ZL. In this case, this
involves a five-qubit operator (dark blue stabilizer). Since such an operator is also referred to
as a twist defect [23], this lattice-surgery protocol is called twist-based lattice surgery, and it is
introduced in Chapter 2.

As we discuss in Chapter 1, the ability to measure logical Pauli product operators is a
computationally universal operation, if it is supplemented by the ability to prepare faulty
resource states called magic states |my � p|0y � eiπ{4 |1yq{?2. With surface codes, only logical
Z and X Pauli eigenstates can be prepared fault-tolerantly. Arbitrary logical |ψLy can be
prepared using an error-prone protocol called state injection. There are multiple variants of
state injection [24, 25]. One simple approach similar to lattice surgery is to grow patches to full
distance [21], as shown in Fig. 8. The protocol starts by initializing a distance-1 surface-code patch
in the |ψLy state, i.e., a physical qubit in the |ψy � α |0y � β |1y state. Next to it is a distance-1
four-qubit logical |�Ly state, which corresponds to a four-qubit GHZ state p|0000y � |1111yq{?2,
essentially a logical |�Ly state using a repetition code. In the second step, the operator Z b Z
between the qubit |ψy and the GHZ state is measured. This can be interpreted as a ZL b ZL
lattice surgery between two distance-1 patches. If the measurement outcome is �1, the state
|ψy b |�Ly is projected into the state α |00000y � β |11111y, which is a logical |ψLy state in
the repetition code, or, equivalently, a logical distance-1 surface-code patch in the |ψLy state.
A measurement outcome of -1 differs by a Pauli correction. Below this patch, an additional
5 � 4 patch is initialized in the logical |0Ly state. Finally, in the third step, the patches are
merged through an XL bXL measurement via lattice surgery. Similarly to the previous step,
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Figure 8: Example of a state-injection protocol to initialize a faulty |ψLy state.

this transfers the logical |ψLy state into the full distance-5 patch. Because the logical information
is stored in a distance-1 patch in the first and second step, this protocol is not fault-tolerant.
Therefore, it prepares a logical |ψLy state with an error rate proportional to the physical error
rate p.

Color codes

Another family of topological quantum error-correcting codes that are closely related to surface
codes are color codes [11]. These codes are defined on lattices whose faces can be colored in
three different colors, such that no neighboring faces share the same color. One example is the
hexagonal lattice shown in Fig. 9. Again, vertices correspond to physical qubits and the red,
green and blue faces correspond to the stabilizers of the code. Regardless of the color, each
stabilizer corresponds to an X-type and a Z-type stabilizer. Specifically, the codes shown in
Fig. 9 feature Xb6 and Zb6 stabilizers on the 6-qubit faces, and Xb4 and Zb4 stabilizers on the
4-qubit faces.

Boundaries of color-code patches are introduced in a similar way as with surface codes.
However, for color codes, we consider three different types of boundaries instead of two, namely
red, green and blue boundaries. Qubits in the bulk are part of three different-colored faces (i.e.,
six stabilizers): red, green and blue. At a red boundary, physical qubits are only part of two
faces, namely blue and green faces. Similarly, at blue (green) boundaries, qubits are part of red
and green (red and blue) faces. Finally, at corners, qubits are part of only one face.

Logical qubits correspond to triangular color-code patches with three different-colored bound-
aries. The logical operators are strings of X’s and Z’s connecting all three boundaries. In
particular, the product of all X operators Xbd along any of the three boundaries is a logical X
operator. Similarly, the product of all Z operators Zbd along any of the three boundaries is a
logical Z operator.

The special property of color codes is that, contrary to surface codes, the support of X and Z
stabilizers is identical, i.e., they overlap. Similarly, the support of X and Z logical operators is
identical. Because Y � iXZ, this implies that Y stabilizers are also valid stabilizers of the code,
and that the logical YL information corresponds to a similar string Y bd of physical Y operators
along any of the three boundaries. Furthermore, this implies that physical gates that map Paulis
onto other Paulis – Clifford gates – must be transversal, meaning that applying a specific physical
Clifford gate on all physical qubits is equivalent to the corresponding logical Clifford gate, which
is not the case for surface codes. For instance, with color codes, logical Hadamard and S gates
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(a) Color-code patches
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Figure 9: (a) Triangular color-code patches with distances d � 3, 5 and 7. Each face corresponds
to two stabilizers: an X-type and a Z-type stabilizer. (b) Example of a lattice-surgery protocol
between two color-code patches for the measurement of the ZL b ZL operator.

can be implemented by performing physical Hadamard or S gates on all physical qubits of the
color-code patch.

Lattice surgery can be performed using a similar protocol as for surface codes [24]. An example
of a ZL b ZL measurement between two triangular color-code patches with neighboring green
boundaries is shown in Fig. 9b. The red stabilizers are merged to yield the trivial stabilizers, and
new green stabilizers are introduced as non-trivial check operators. Their product corresponds to
the logical parity measurement, which is why these green stabilizers are only measured in the Z
basis for the case of a ZL b ZL measurement.

To summarize, color codes are a family of topological codes in two dimensions which feature
transversal Clifford gates. However, they also have higher-weight stabilizers compared to surface
codes.

Majorana-based qubits

Another concept that will be relevant in Chapters 3-5 of this thesis are Majorana-based qubits,
the generalization of which are Majorana fermion codes. Their building blocks are described
by Majorana fermion operators γi, which are self-adjoint operators γi � γ:i that satisfy the
fermionic anticommutation relations tγi, γju � 2δi,j . Majorana fermions are predicted to emerge
as quasiparticles in various systems exhibiting a topological phase [7, 27–33], but none have been
conclusively detected in experiments so far. For the purpose of Majorana fermion codes, the
underlying origin of the Majorana fermions is unimportant, although their implementation in
the quantum-wire-based architecture proposed in Ref. [13] will be outlined in Chapter 3.
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Figure 10: The smallest Majorana fermion codes are the four-Majorana code (tetron) and the
six-Majorana code (hexon).

Even without error correction, a Majorana fermion code is necessary to encode a qubit with
Majorana fermions. Contrary to physical qubits, single Majorana fermions have no measurable
degrees of freedom, as fermion parity conservation dictates that all physically observable quantities
must involve an even number of Majorana fermion operators. In contrast to complex fermions
described by fermionic operators ĉ and ĉ:, Majorana fermions have no fermionic occupation
number similar to ĉ:ĉ, since γ:γ � 1. Instead, the parity of Majorana fermions can be measured,
corresponding to a product of an even number of Majorana fermion operators. For two Majorana
fermions, the parity can be related to a fermionic occupation number, since any complex fermion
can be written in terms of two Majorana fermions as ĉ � pγ1 � iγ2q{2 and ĉ: � pγ1 � iγ2q{2 with
the two Majorana fermions as the real and imaginary part of a complex fermion. The fermionic
occupation number of this complex fermion is proportional to the Majorana fermion parity, since
ĉ:ĉ � piγ1γ2 � 1q{2. While the occupation number can be 0 or 1, the Majorana fermion parity
iγ1γ2 can be �1 or �1, which makes it similar to a Pauli operator.

Two Majorana fermions are insufficient to encode a qubit. One reason is that two Majorana
fermions correspond to a complex fermionic state that can be empty or occupied. While this is a
two-level system, fermion parity conservation prohibits any superposition of these two states.
Another explanation is that, since only products of even numbers of Majorana fermion operators
can be measured, the only observable with two Majorana fermions γ1 and γ2 is iγ1γ2. This
defines one Pauli operator (say, Z), but a qubit requires three Pauli operators X, Y and Z,
otherwise it is just a classical bit.

The smallest number of Majorana fermions that can be used to define a qubit is four. Since
the total Majorana fermion parity is fixed, this essentially defines the smallest Majorana fermion
code, which is referred to as a tetron [13], see Fig. 10a. Here, the qubit is encoded in the doubly
degenerate ground-state space of the Hamiltonian H � γ1γ2γ3γ4, which fixes the total Majorana
fermion parity �γ1γ2γ3γ4 � �1. In addition to Z � iγ1γ2, a second Pauli operator X � iγ2γ3
can be defined. These are valid Pauli operators, since they anticommute and each square to the
identity. The Y operator follows as Y � iγ1γ3. In addition, due to the fixed total parity, the
identities Z � iγ1γ2 � iγ3γ4 and X � iγ2γ3 � iγ1γ4 hold.

The second-smallest Majorana fermion code uses six Majorana fermions and is referred to as a
hexon [13], see Fig. 10b. Here, two qubits are encoded in the fourfold degenerate ground-state
space of the Hamiltonian H � �iγ1γ2γ3γ4γ5γ6. Again, Majorana fermion parity operators
can be used to define Pauli operators of these two qubits, satisfying the correct commutation
relations. One possibility is to use the bottom three Majorana fermions to encode the first qubit
as Z1 � iγ1γ2 and X1 � iγ2γ3, the top three Majorana fermions to encode the second qubit as
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Z2 � iγ4γ5 and X2 � iγ5γ6, which leaves the left and right Majorana fermions to correspond to
X1 �X2 � iγ1γ4 and Z1 � Z2 � iγ3γ6.

The Majorana-based qubits defined as tetrons and hexons in Fig. 10 strongly resemble the
definition of logical qubits in four-corner and six-corner surface-code patches in Figs. 3 and 5b,
where Majorana fermions are replaced with corners of surface-code patches. Moreover, the logical
operations between pairs of Majorana-based are measurements of fermion parity operators, e.g.,
measurements of ZA bZB � piγA,1γA,2qpiγB1γB2q between two tetrons A and B, which resemble
lattice surgery. In fact, through this correspondence, computational schemes for surface-code
patches and for Majorana-based qubits can be essentially identical. This correspondence is
further explored in Chapter 3.

While it remains unclear whether Majorana-based qubits can offer longer coherence times
compared to existing qubits, one defining property of Majorana-based qubits are their robust
single-qubit Clifford gates. Conventional qubits can typically only be read out in the computational
basis (say, the Z basis), whereas measurements in a different Pauli basis require the application of
a single-qubit Clifford gate before the measurement. Since this gate can be noisy, the measurement
outcome can be affected by the gate error. With Majorana-based qubits, Pauli measurements
correspond to measurements of two-Majorana fermion parity operators iγiγj . Since no Pauli
operator is distinctively different from the others, and since all Pauli operators can be read out
using such a two-Majorana measurement, no single-qubit Clifford gates are required to change the
measurement basis. Because this avoids a potentially noisy operation, the single-qubit Clifford
gates of Majorana-based qubits are considered to be robust, meaning that Majorana-based qubits
can be measured in all three Pauli bases.

Previous state of the art

The field of software-based topological quantum computing was initiated by Kitaev’s seminal
paper on the toric code [9] in 1997, which led to the development of surface codes by Bravyi
and Kitaev [34] one year later. The field of hardware-based topological quantum computing was
arguably also initiated by Kitaev in his seminal paper on unpaired Majorana fermions in quantum
wires [6] in 2000, although it is predated by Freedman’s work establishing the connection between
quantum computing and topological matter [35]. Software-based and hardware-based topological
quantum computing continued to be studied in a largely independent fashion.

Concrete quantum computing schemes with surface codes were developed by Dennis, Kitaev,
Landahl and Preskill [36], although these early schemes envisioned a surface-code-based quantum
computer as a stack of planar codes with logical operations performed via transversal gates.
This is impractical for architectures where qubits are arranged in a two-dimensional array, as
transversal two-qubit gates require non-local connections between qubits. Hole-defect-based
encodings were first described by Raussendorf, Harrington and Goyal [37, 38] in 2005. These
solved the problem of non-locality, but also implemented certain Clifford gates inefficiently,
particularly the S gate, as these hole-based encodings offered no efficient way of manipulating
the logical Y information. Color codes were developed by Bombin [11] in 2006. Bombin also
established a connection between surface codes and Majorana fermions by describing twist
defects [23] in 2010. One year later, in 2011, lattice surgery was developed by Horsman, Fowler,
Devitt and Van Meter [21].

On the hardware side, the ongoing intensive experimental effort to realize Majorana-based
qubits is largely motivated by theoretical work from 2010, when Oreg, Refael and von Oppen [39]
and Lutchyn, Sau and Das Sarma [40] described how to realize topological superconductivity
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in quantum wires based on superconductor-semiconductor heterostructures. Two years later,
first experimental signatures of Majorana zero modes in such systems were reported by Mourik
et al. [41] in 2012. Early proposals for quantum computing architectures with Majorana-based
qubits focused on networks of Majorana wires where logical operations are performed by moving
Majorana fermions for braiding. Notable proposals include architectures by Alicea et al. [42],
van Heck et al. [43] and Aasen et al. [14]. With the proposal of Majorana box qubits and
tetron/hexon qubits by Plugge et al. [44] and Karzig et al. [13] in 2016, the focus shifted towards
architectures solely based on the measurement of Majorana fermion parity operators instead of
the movement of Majorana fermions through a network of wires. In parallel, error correction
schemes for Majorana qubits based on surface codes were developed by Vijay, Hsieh and Fu [45]
and Landau et al. [46]. These schemes were based on hole-encoded surface-code qubits, and
were therefore unable to benefit from the topologically protected single-qubit Clifford gates of
Majorana-based qubits on the level of error-corrected logical qubits.

Motivation behind the publications comprising this thesis

My first contribution to the field was – together with my co-authors Markus Kesselring, Jens
Eisert and Felix von Oppen – to develop an error correction scheme for Majorana-based qubits
which manages to exploit the topologically protected single-qubit Clifford gates of Majorana-based
qubits on the level of logical qubits. As previous schemes for error correction with Majorana
qubits were based on hole-encoded surface codes, there existed no scheme that could benefit
from the robust single-qubit Clifford gates of Majorana-based qubits on the logical level. In
our work, this was achieved by combining a braiding-based network of Majorana nanowires in
the spirit of Aasen et al. with topological color codes. While Majorana-based qubits feature
robust single-qubit Clifford gates, color codes feature transversal single-qubit Clifford gates. As
described in Chapter 5, the transversal Clifford gates of color codes enable the use of physical
braiding operations for logical gates, exploiting the topological protection of Majorana fermions
on the logical level.

Since the experimental efforts shifted away from braiding-based networks and towards
measurement-based architectures in the year of the publication of this paper, I also described how
this scheme could be incorporated in tetron-based architectures in the subsequent publication,
as described in Chapter 4. Remarkably, logical single-qubit Clifford gates require no hardware
operations in this scheme, but instead are performed by purely classical tracking operations.
While the fact that this is theoretically possible had been known for decades, as this is the
content of the Gottesman-Knill theorem [47], it had so far not been exploited in the context of
error-corrected Majorana-based quantum computing.

Continuing with the philosophy of exploiting the Gottesman-Knill theorem, I developed a
lattice-surgery scheme that enables the tracking of logical Clifford gates with surface-code patches,
which is the twist-based lattice surgery scheme discussed in Chapter 2. Since tracking gates
classically is less costly than performing them in hardware, this helps further reduce the overhead
of error correction. Moreover, this work described how to measure products of arbitrary pairs of
logical operators using lattice surgery, whereas only ZL b ZL and XL bXL measurements were
described in the previous literature.

Next, I developed new variants of surface codes specifically tailored towards Majorana-based
qubits, exploring the trade-offs between different lattices of Majorana fermions, as discussed in
Chapter 3. In this work, I also further investigated the connection between Majorana-based qubits
and surface codes, concluding that there is not only a mathematical correspondence between
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(a) Tetrons and hexons

(b) Surface-code patches

Figure 11: Comparison between an operation with Majorana-based tetrons and hexons (a)
and surface-code patches (b). In this comparison, Majorana fermions correspond to corners of
surface-code patches, and Majorana fermion parity measurements correspond to lattice-surgery
operations.

twist defects and Majorana fermions, but also a pragmatic one, as computational schemes with
Majorana-based qubits and surface-code patches can be essentially identical. Take for instance a
Pauli product measurement protocol with tetrons and hexons described in Chapter 3, one step
of which is shown in Fig. 11a. With surface codes, this protocol looks almost the same as the
Majorana-based protocol, but with tetrons and hexons replaced with four-corner and six-corner
surface-code patches, and Majorana fermion parity measurements replaced with lattice-surgery
operations, as shown in Fig. 11b. In this sense, any computational protocol on Majorana-based
qubits can be straightforwardly translated into a lattice-surgery protocol on surface-code patches.

Finally, I combined the previously developed logical lattice-surgery operations into a scheme to
translate entire quantum computations into arrangements of surface-code patches and sequences
of logical lattice-surgery measurements. This tackles the so-called routing problem, which deals
with the arrangement of logical qubits in two dimensions and the scheduling of logical operations.
While there exist prescriptions to convert quantum circuits into surface-code operations that
predate my work [48–51], this conversion previously needed to be done with a computer and for
each circuit individually, which made the conversion difficult to implement for large circuits of
billions of gates acting on hundreds of qubits. The scheme presented in Chapter 1, on the other
hand, is simple enough to be understood by humans without requiring complicated computations.
By first translating circuits into a set of operations that are natural to surface codes, namely
Pauli product rotations, hardware operations for logical Clifford gates are entirely avoided and
instead tracked classically, reducing the overhead compared to previous schemes. In this sense,
this work combines the protocols for logical operations developed in the previous publications
into a scheme for large-scale quantum computation.

21



Structure of the thesis

The publications discussed in this thesis are not presented in a chronological order, but rather in
an order where we zoom into a large-scale quantum computer. We start in Chapter 1, where we
examine a large-scale quantum computer from a bird’s-eye view, in terms of logical qubits and
operations on logical qubits, disregarding the underlying physical qubits and error correction
operations. The only concepts that are required to understand such a large-scale quantum
computer are qubits and measurements, since the main operations of a quantum computer based
on topological codes, such as surface codes, can be thought of as measurements of logical Pauli
product operators. Next, in Chapter 2, we discuss how these logical Pauli product measurements
can be performed with surface codes, where they correspond to a measurement protocol called
lattice surgery. In Chapter 3, we move on to Majorana-based qubits and discuss how to design
Majorana-specific variants of surface and color codes, and how to use these codes to perform
lattice surgery. We find that, even though the condensed-matter and quantum-information
approaches to topological quantum computing are conceptually different, schemes for quantum
computing with Majorana-based qubits or with surface-code patches are almost identical, where
lattice surgery can be used in the same way as Majorana fermion parity measurements. In
Chapter 4, we discuss how the overhead of long-range communication between logical color-code
qubits can be decreased by performing lattice surgery between surface codes and color codes.
Finally, in Chapter 5, we zoom in one last time and piece together topological superconducting
nanowires to a two-dimensional nanowire network through which Majorana zero modes can be
moved. We use this to construct a braiding-based fault-tolerant quantum computer by adding
fault-tolerance through topological color codes, which can use braiding operations to implement
logical gates.
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1 | A Game of Surface Codes

As we discussed in the introduction, Pauli product measurements and the preparation of faulty
magic states can be used for fault-tolerant universal quantum computing. In the following
publication, we discuss how large-scale quantum computations can be performed this way using
lattice surgery.

23



A Game of Surface Codes:
Large-Scale Quantum Computing with Lattice Surgery

Daniel Litinski @ Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

Given a quantum gate circuit, how does one
execute it in a fault-tolerant architecture with
as little overhead as possible? In this pa-
per, we discuss strategies for surface-code quan-
tum computing on small, intermediate and large
scales. They are strategies for space-time trade-
offs, going from slow computations using few
qubits to fast computations using many qubits.
Our schemes are based on surface-code patches,
which not only feature a low space cost com-
pared to other surface-code schemes, but are
also conceptually simple – simple enough that
they can be described as a tile-based game with
a small set of rules. Therefore, no knowledge of
quantum error correction is necessary to under-
stand the schemes in this paper, but only the
concepts of qubits and measurements.

The field of quantum computing is fuelled by the
promise of fast solutions to classically intractable prob-
lems, such as simulating large quantum systems or fac-
toring large numbers. Already ∼100 qubits can be used
to solve useful problems that are out of reach for clas-
sical computers [1, 2]. Despite the exponential speed-
up, the actual time required to solve these problems
is orders of magnitude above the coherence times of
any physical qubit. In order to store and manipulate
quantum information on large time scales, it is neces-
sary to actively correct errors by combining many phys-
ical qubits into logical qubits using a quantum error-
correcting code [3–5]. Of particular interest are codes
that are compatible with the locality constraints of real-
istic devices such as superconducting qubits, which are
limited to operations that are local in two dimensions.
The most prominent such code is the surface code [6, 7].

Working with logical qubits introduces additional
overhead to the computation. Not only is the space cost
drastically increased as physical qubits are replaced by
logical qubits, but also the time cost increases due to
the restricted set of accessible logical operations. Sur-
face codes, in particular, are limited to a set of 2D-
local operations, which means that arbitrary gates in a
quantum circuit may require several time steps instead
of just one. To keep the cost of surface-code quan-
tum computing low, it is important to find schemes
that translate quantum circuits into surface-code lay-
outs with a low space-time overhead. This is also nec-
essary to benchmark how well quantum algorithms per-

form in a surface-code architecture.
There exist several encoding schemes for surface

codes, among others, defect-based [7], twist-based [8]
and patch-based [9] encodings. In this work, we focus
on the latter. Surface-code patches have a low space
overhead compared to other schemes, and offer low-
overhead Clifford gates [10, 11]. In addition, they are
conceptually less difficult to understand, as they do not
directly involve braiding of topological defects. Design-
ing computational schemes with surface-code patches
only requires the concepts of qubits and measurements.
To this end, we describe the operations of surface-code
patches as a tile-based game. This is helpful to design
protocols and determine their space-time cost. The ex-
act correspondence between this game and surface-code
patches is specified in Appendix A, but it is not crucial
for understanding this paper. Readers who are inter-
ested in the detailed surface-code operations may read
Appendix A in parallel to the following section.

Surface codes as a game. The game is played on
a board partitioned into a number of tiles. An example
of a 5 × 2 grid of tiles is shown in Fig. 1. The tiles
can be used to host patches, which are representations
of qubits. We denote the Pauli operators of each qubit
as X, Y and Z. Patches have dashed and solid edges
representing Pauli operators. We consider two types of
patches: one-qubit and two-qubit patches. One-qubit
patches represent one qubit and consist of two dashed
and two solid edges. Each of the two dashed (solid)
edges represent the qubit’s X (Z) operator. While the
square patch in Fig. 1a only occupies one tile, a one-
qubit patch can also be shaped to, e.g., occupy three
tiles (b). A two-qubit patch (c) consists of six edges and
represents two qubits. The first qubit’s Pauli operators
X1 and Z1 are represented by the two top edges, while

(a)

(b)

(c)

Figure 1: Examples of one-qubit (a/b) and two-qubit (c)
patches in a 5× 2 grid of tiles.
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the second qubit’s operators X2 and Z2 are found in the
two bottom edges. The remaining two edges represent
the operators Z1 · Z2 and X1 ·X2.

In the following, we specify the operations that can be
used to manipulate the qubits represented by patches.
Some of these operations take one time step to complete
(denoted by 1�), whereas others can be performed in-
stantly, requiring 0�. The goal is to implement quan-
tum algorithms using as few tiles and time steps as pos-
sible. There are three types of operations: qubit initial-
ization, qubit measurement and patch deformation.

I. Qubit initialization:

– One-qubit patches can be initialized in the X
and Z eigenstates |+〉 and |0〉. (Cost: 0�)

– Two-qubit patches can be initialized in the
states |+〉 ⊗ |+〉 and |0〉 ⊗ |0〉. (Cost: 0�)

– One-qubit patches can be initialized in an ar-
bitrary state. Unless this state is |+〉 or |0〉,
an undetected random Pauli error may spoil
the qubit with probability p. (Cost: 0�)

II. Qubit measurement:

– Single-patch measurements: The qubits rep-
resented by patches can be measured in the
X or Z basis. For two-qubit patches, the two
qubits must be measured simultaneously and
in the same basis. This measurement removes
the patch from the board, freeing up previ-
ously occupied tiles. (Cost: 0�)

– Two-patch measurements: If edges of two dif-
ferent patches are positioned in adjacent tiles,
the product of the operators of the two edges
can be measured. For example, the product
Z⊗Z between two neighboring square patches
can be measured, as highlighted in step 2 of
Fig. 2a by the blue rectangle. If the edge of
one patch is adjacent to multiple edges of the
other patch, the product of all involved Pauli
operators can be measured. For instance, if
qubit A’s Z edge is adjacent to both qubit
B’s X edge and Z edge, the operator ZA⊗YB
can be measured (see step 3 of Fig. 2d), since
Y = iXZ. (Cost: 1�)

– Multi-patch measurements: An arbitrarily-
shaped ancilla patch can be initialized. The
product of any number of operators adjacent
to the ancilla patch can be measured. The an-
cilla patch is discarded after the measurement.
The example of a Y|q1〉 ⊗X|q3〉 ⊗Z|q4〉 ⊗X|q5〉
measurement is shown in Fig. 2e. (Cost: 1�)

0� Step 1 1� Step 2

0� Step 1
(c) Qubit movement

1� Step 2 1� Step 3

(d) Y basis measurement
0� Step 1 1� Step 2 2� Step 3 2� Step 4

0� Step 1 1� Step 2
(b) Moving corners(a) Bell state preparation

0� Step 1 1� Step 2
(e) Y|q1〉 ⊗X|q3〉 ⊗ Z|q4〉 ⊗X|q5〉 measurement

ancilla

Figure 2: Examples of short protocols. (a) Preparation of a
two-qubit Bell state in 1�. (b) Moving corners of a four-corner
patch to change its shape in 1�. (c) Moving a square-patch
qubit over long distances in 1�. (d) Measurement of a square-
patch qubit in the Y basis using an ancilla qubit and 2�. (e) A
multi-qubit Y|q1〉 ⊗X|q3〉 ⊗ Z|q4〉 ⊗X|q5〉 measurement in 1�.

III. Patch deformation:

– Edges of a patch can be moved to deform the
patch. If the edge is moved onto a free tile
to increase the size of the patch, this takes
1� to complete. If the edge is moved inside
the patch to make the patch smaller, the ac-
tion can be performed instantly.

– Corners of a patch can be moved along the
patch boundary to change its shape, as shown
in Fig. 2b. (Cost: 1�)

To illustrate these operations, we go through three
short example protocols in Fig. 2a/c/d. The first ex-
ample (a) is the preparation of a Bell pair. Two square
patches are initialized in the |+〉 state. Next, the oper-
ator Z ⊗ Z is measured. Before the measurement, the
qubits are in the state |+〉 ⊗ |+〉 = (|00〉+ |01〉+ |10〉+
|11〉)/2. If the measurement outcome is +1, the qubits
end up in the state (|00〉 + |11〉)/

√
2. For the outcome

−1, the state is (|01〉+ |10〉)/
√

2. In both cases, the two
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qubits are in a maximally entangled Bell state. This
protocol takes 1� to complete. The second example (c)
is the movement of a square patch into a different tile.
For this, the square patch is enlarged by patch defor-
mation, which takes 1�, and then made smaller again
at no time cost. The third example (d) is the measure-
ment of a square patch in the Y basis. For this, the
patch is deformed such that the X and Z edge are on
the same side of the patch. An ancillary patch is ini-
tialized in the |0〉 state and the operator Z⊗Y between
the ancilla and the qubit is measured. The ancilla is
discarded by measuring it in the Z basis.

Translation to surface codes. As described in
Appendix A, protocols designed within this framework
can be straightforwardly translated into surface-code
operations. Essentially, patches correspond to surface-
code patches with dashed and solid edges as rough and
smooth boundaries. Thus, for surface codes with a code
distance d, each tile corresponds to d2 physical data
qubits. Each time step roughly corresponds to d code
cycles, i.e., measuring all surface-code check operators
d times. We associate a time step with all surface-code
operations which have a time cost that scales with d, but
no time step with operations whose time cost is inde-
pendent of the code distance, but may still be nonzero.
For this reason, the correspondence between 1� and d
code cycles is not exact.

Two-patch and multi-patch measurements corre-
spond to (twist-based) lattice surgery [9, 11] and multi-
qubit lattice surgery [12], respectively, which both re-
quire d code cycles to account for measurement errors.
Qubit initialization has no time cost, since, in the case
of X and Z eigenstates, it can be done simultaneously
with the subsequent lattice surgery [9, 13]. For arbi-
trary states, initialization corresponds to state injec-
tion [13, 14]. Its time cost does not scale with d. Simi-
larly, single-qubit measurements in theX or Z basis cor-
respond to the simultaneous measurement of all phys-
ical data qubits in the corresponding basis and some
classical error correction, which does not scale with d
either. Patch deformation is code deformation, which
requires d code cycles, unless the patch becomes smaller
in the process, in which case it corresponds to single-
qubit measurements. Note that not all surface-code op-
erations are covered by this framework. An extended
set of rules is discussed in Appendix B.

In essence, the framework can be used to estimate the
space-time cost of a computation. The leading-order
term of the space-time cost – the term that scales with
d3 – of a protocol that uses s tiles for t time steps is
st · d3 in terms of (physical data qubits)·(code cycles).
The space cost is s · d2 physical data qubits. Determin-
ing the exact time cost requires special care. In some
protocols, the subleading contributions due to state in-

jection and classical processing may need to be taken
into account. For these protocols, we will show how
they can be adapted to prevent such contributions from
increasing the time cost beyond t · d code cycles.

Overview
Having established the rules of the game and the corre-
spondence of our framework to surface-code operations,
our goal is to implement arbitrary quantum computa-
tions. In this work, we discuss strategies to tackle the
following problem: Given a quantum circuit, how does
one execute it as fast as possible on a surface-code-based
quantum computer of a certain size? This is an opti-
mization problem that was shown to be NP-hard [15], so
the focus is on heuristics rather than a general solution.
The content of this paper is outlined in Fig. 3.

The input to our problem is an arbitrary gate cir-
cuit corresponding to the computation. We refer to the
qubits that this circuit acts on as data qubits. As we
review in Sec. 1, the natural universal gate set for sur-
face codes is Clifford+T , where Clifford gates are cheap
and T gates are expensive. In fact, Clifford gates can
be treated entirely classically, and T gates require the
consumption of a magic state |0〉+eiπ/4 |1〉. Only faulty
(undistilled) magic states can be prepared in our frame-
work. To generate higher-fidelity magic states for large-
scale quantum computation, a lengthy protocol called
magic state distillation [16] is used.

It is therefore natural to partition a quantum com-
puter into a block of tiles that is used to distill magic
states (a distillation block) and a block of tiles that
hosts the data qubits (a data block) and consumes
magic states. The speed of a quantum computer is gov-
erned by how fast magic states can be distilled, and how
fast they can be consumed by the data block.

In Sec. 2, we discuss how to design data blocks. In
particular, we show three designs: compact, intermedi-
ate and fast blocks. The compact block uses 1.5n + 3
tiles to store n qubits, but takes up to 9� to consume
a magic state. Intermediate blocks use 2n+ 4 tiles and
require up to 5� per magic state. Finally, the fast block
uses 2n +

√
8n + 1 tiles, but requires only 1� to con-

sume a magic state. The compact block is an option for
early quantum computers with few qubits, where the
generation of a single magic state takes longer than 9�.
The fast block has a better space-time overhead, which
makes it more favorable on larger scales.

Data blocks need to be combined with distillation
blocks for universal quantum computing. In Sec. 3,
we discuss designs of distillation blocks. Since magic
state distillation is the main operation of a surface-
code-based quantum computer, it is important to min-
imize its space-time cost. We discuss distillation proto-
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Sec. 1: Clifford+T circuits Sec. 2: Data blocks Sec. 3: Distillation blocks

Sec. 4:
Trade-offs limited by T count

55,000 qubits
4 hours

310,000 qubits
7 hours

120,000 qubits
22 minutes

1,000,000 qubits
45 minutes

1500× 220,000 = 330m qubits
1 second

3000× 1,500,000 ≈ 4.5b qubits
1 second

p = 10−4

p = 10−3

d = 13

d = 27

Sec. 5:
Trade-offs limited by T depth

Sec. 6:
Trade-offs beyond Clifford+T

Example:
100 qubits
108 T gates

· · ·
· · ·

· · ·

· · ·
∼100 qubits

(Appendix C)

Figure 3: Overview of the content of this paper. To illustrate the space-time trade-offs discussed in this work, we show the number
of physical qubits and the computational time required for a circuit of 108 T gates distributed over 106 T layers. We consider
physical error rates of p = 10−4 and p = 10−3, for which we need code distances d = 13 and d = 27, respectively. We assume
that each code cycle takes 1 µs.

cols based on error-correcting codes with transversal T
gates, such as punctured Reed-Muller codes [16, 17] and
block codes [18–20]. In comparison to braiding-based
implementations of distillation protocols, we reduce the
space-time cost by up to 90%.

A data block combined with a distillation block con-
stitutes a quantum computer in which T gates are per-
formed one after the other. At this stage, the quan-
tum computer can be sped up by increasing the num-
ber of distillation blocks, effectively decreasing the time
it takes to distill a single magic state, as we discuss
in Sec. 4. In order to illustrate the resulting space-
time trade-off, we consider the example of a 100-qubit
computation with 108 T gates, which can already be
used to solve classically intractable problems [2]. As-
suming an error rate of p = 10−4 and a code-cycle time
of 1 µs, a compact data block together with a distillation
block can finish the computation in 4 hours using 55,000
physical qubits.1 Adding 10 more distillation blocks in-
creases the qubit count to 120,000 and decreases the
computational time to 22 minutes, using 1� per T gate.

For further space-time trade-offs in Sec. 5, we exploit
that the T gates of a circuit are arranged in layers of
gates that can be executed simultaneously. This en-
ables linear space-time trade-offs down to the execution

1We will assume that the total number of physical qubits is
twice the number of physical data qubits. This is consistent with
superconducting qubit platforms, where the use of measurement
ancillas doubles the qubit count. If a platform does not require
the use of ancilla qubits, the total qubit count is reduced by 50%
compared to the numbers reported in this paper.

of one T layer per qubit measurement time, effectively
implementing Fowler’s time-optimal scheme [21]. If the
108 T gates are distributed over 106 layers, and mea-
surements (and classical processing) can be performed
in 1 µs, up to 1500 units of 220,000 qubits can be run in
parallel, where each unit is responsible for the execution
of one T layer. This way, the computational time can
be brought down to 1 second using 330 million qubits.
While this is a large number, the units do not necessar-
ily need to be part of the same quantum computer, but
can be distributed over up to 1500 quantum computers
with 220,000 qubits each, and with the ability to share
Bell pairs between neighboring computers.

In Sec. 6, we discuss further space-time trade-offs that
are beyond the parallelization of Clifford+T circuits. In
particular, we discuss the use of Clifford+ϕ circuits, i.e.,
circuits containing arbitrary-angle rotations beyond T
gates. These require the use of additional resources,
but can speed up the computation. We also discuss the
possibility of hardware-based trade-offs by using higher
code distances, but in turn shorter measurements with
a decreased measurement fidelity. Ultimately, the speed
of a quantum computer is limited by classical process-
ing, which can only be improved upon by faster classical
computing.

Finally, we note that while the number of qubits re-
quired for useful quantum computing is orders of mag-
nitude above what is currently available, a proof-of-
principle two-qubit device demonstrating all necessary
operations using undistilled magic states can be built
with 48 physical data qubits, see Appendix C.
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if PP ′ = P ′P :

if PP ′ = −P ′P :

(a)

if P1P
′ = −P ′P1: if P2P

′ = −P ′P2:

if PP ′ = P ′P :

if PP ′ = −P ′P :

(c)

(b)

(a/b)

(c)

Figure 4: A generic circuit consists of π/4 rotations (orange), π/8 rotations (green) and measurements (blue). The Pauli product
in each box specifies the axis of rotation or the basis of measurement. If the Pauli operator is −P instead of P , a minus sign
is found in the corner of the box, such that, e.g., Z−π/4 corresponds to an S† gate. Using the commutation rules in (a/b), all
Clifford gates can be moved to the end of the circuit. Using (c), the Clifford gates can be absorbed by the final measurements.

1 Clifford+T quantum circuits

Our goal is to implement full quantum algorithms with
surface codes. The input to our problem is the al-
gorithm’s quantum circuit. The universal gate set
Clifford+T is well-suited for surface codes, since it sepa-
rates easy operations from difficult ones. Often, this set
is generated using the Hadamard gate H, phase gate S,
controlled-NOT (CNOT) gate, and the T gate. Instead,
we choose to write our circuits using Pauli product ro-
tations Pϕ (see Fig. 5), because it simplifies circuit ma-
nipulations. Here, Pϕ = exp(−iPϕ), where P is a Pauli
product operator (such as Z, Y ⊗X, or X⊗1⊗X) and
ϕ is an angle. In this sense, S = Zπ/4, T = Zπ/8,
and H = Zπ/4 · Xπ/4 · Zπ/4. The CNOT gate can
also be written in terms of Pauli product rotations as
CNOT = (Z⊗X)π/4 ·(1⊗X)−π/4 ·(Z⊗1)−π/4. In fact,
we can more generally define P1-controlled-P2 gates as
C(P1, P2) = (P1 ⊗ P2)π/4 · (1⊗ P2)−π/4 · (P1 ⊗ 1)−π/4.
The CNOT gate is the specific case of C(Z,X).

Getting rid of Clifford gates. Clifford gates are
considered to be easy, because, by definition, they map
Pauli operators onto other Pauli operators [22]. This
can be used to simplify the input circuit. A generic cir-
cuit is shown in Fig. 4, consisting of Clifford gates, Zπ/8
rotations and Z measurements. If all Clifford gates are

commuted to the end of the circuit, the Zπ/8 rotations
become Pauli product rotations. The rules for moving
Pπ/4 rotations past P ′ϕ gates are shown in Fig. 4a: If P
and P ′ commute, Pπ/4 can simply be moved past P ′ϕ.
If they anticommute, P ′ϕ turns into (iPP ′)ϕ when Pπ/4
is moved to the right. Since C(P1, P2) gates consist
of π/4 rotations, similar rules can be derived as shown

(a) Single-qubit rotations

(b) CNOT (c) C(P1, P2) gate

Figure 5: Clifford+T gates in terms of Pauli rotations.
(a) Single-qubit Clifford gates are π/4 rotations, and the T
gate is a π/8 rotation. (b/c) P1-controlled-P2 gates are Clif-
ford gates, where C(Z,X) is the CNOT gate.
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︸ ︷︷ ︸
layer 2

︸ ︷︷ ︸
layer 1

︸ ︷︷ ︸
layer 3

︸ ︷︷ ︸
layer 4

︸ ︷︷ ︸
layer 1

︸ ︷︷ ︸
layer 2

Figure 6: Clifford+T circuits can be written as a number of consecutive π/8 rotations. These gates are grouped into layers of
mutually commuting rotations. A simple greedy algorithm can be used to reduce the number of layers, i.e., the T depth.

in Fig. 4b: If P ′ anticommutes with P1, P ′ϕ turns into
(P ′P2)ϕ after commutation. If P ′ anticommutes with
P2, P ′ϕ turns into (P ′P1)ϕ. If P ′ anticommutes with
both P1 and P2, P ′ϕ turns into (P ′P1P2)ϕ.

After moving the Clifford gates to the right, the re-
sulting circuit consists of three parts: a set of π/8 ro-
tations, a set of π/4 rotations, and Z measurements.
Because Clifford gates map Pauli operators onto other
Pauli operators, the Clifford gates can be absorbed by
the final measurements, turning Z measurements into
Pauli product measurements. The commutation rules
of this final step are shown in Fig. 4c and are similar to
the commutation of Clifford gates past rotations.

T count and T depth. Thus, every n-qubit circuit
can be written as a number of consecutive π/8 rotations
and n final Pauli product measurements, as shown in
Fig. 6. We refer to the number of π/8 rotations as the
T count. An important part of circuit optimization is
the minimization of the T count, for which there ex-
ist various approaches [23–26]. The π/8 rotations of
a circuit can be grouped into layers. All π/8 rotations
that are part of a layer need to mutually commute. The
number of π/8 layers of a circuit is strictly speaking not
the same quantity as the T depth, but we will still refer
to it as the T depth and to π/8 layers as T layers. Note

repeat
for each layer i do

for each rotation j in layer i+ 1 do
if (rotation j commutes with all
rotations in layer i) then

Move rotation j from layer i+ 1 to
layer i;

end
end

end
until the partitioning no longer changes;
Algorithm to reduce the T count and T depth.

that, in the usual definition, only up to n T gates can
be part of a layer, whereas in our case, there is no limit.

When partitioning π/8 rotations into layers, the naive
approach often yields more layers than are necessary.
For instance, a naive partitioning of the first 6 T gates
of Fig. 6 yields 4 layers. A few commutations can bring
the number down to 2 layers. There are a number of
algorithms for the optimization of the T depth [27–29].
Here, we use the simple greedy algorithm shown below
to reduce the number of layers.

Note that when a reordering puts two equal π/8 rota-
tions into the same layer, they can be combined into a
π/4 rotation that is commuted to the end of the circuit,
thereby decreasing the T count. As we discuss in Sec. 6,
this kind of algorithm can not only be used with π/8 ro-
tations, but, in principle, with arbitrary Pauli product
rotations. The reduction of the circuit depth in terms
of non-π/8 rotations can be useful when going beyond
Clifford+T circuits.

1.1 Pauli product measurements
When implementing circuits like Fig. 6 with surface
codes, one obstacle is that π/8 rotations are not di-
rectly part of the set of available operations. Instead,
one uses magic states [16] as a resource. These states
are π/8-rotated Pauli eigenstates |m〉 = |0〉 + eiπ/4 |1〉.
They can be consumed in order to perform Pπ/8 rota-
tions. The corresponding circuit [30] is shown in Fig. 7.

Figure 7: Circuit to perform a π/8 rotation by consuming a
magic state.
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0� Step 1 1� Step 2

Figure 8: Example of a Z|q1〉⊗Y|q2〉⊗X|q4〉⊗Z|m〉 measurement
to implement a (Z ⊗ Y ⊗ 1⊗X)π/8 gate.

A Pπ/8 rotation corresponds to a P ⊗ Z measurement
involving the magic state. If the measurement outcome
is P ⊗ Z = −1, then a corrective Pπ/4 operation is
necessary. Since this is a Clifford gate, it can be sim-
ply commuted to the end of the circuit, changing the
axes of the subsequent π/8 rotations. Finally, in or-
der to discard the magic state, it is disentangled from
the rest of the system by an X measurement. Here,
an outcome X = −1 prompts a Pπ/2 correction. π/2
rotations correspond to Pauli operators, i.e., Pπ/2 = P .
The Pauli correction can also be commuted to the end
of the circuit. When Pπ/2 is moved past a P ′ rotation
or measurement, it changes the axis of rotation or mea-
surement basis to −P ′, if P and P ′ anticommute.

In essence, if magic states are available, the only
operations required for universal quantum computing
are Pauli product measurements. In our framework,
such operations can be performed in 1� via multi-
patch measurements, corresponding to multi-qubit lat-
tice surgery. An example is shown in Fig. 8, where a
(Z ⊗ Y ⊗ 1 ⊗ X)π/8 rotation on four qubits |q1〉-|q4〉
stored in four two-tile one-qubit patches is performed.
Using the circuit identity in Fig. 7, this is done by mea-
suring Z|q1〉⊗Y|q2〉⊗X|q4〉⊗Z|m〉 between the four qubits
and a magic state.

Summary. Clifford+T circuits can be written in
terms of π/8 rotations, π/4 rotations and measure-
ments. To convert input circuits into a standard form,
π/4 rotations can be commuted to the end of the cir-
cuit and absorbed by the final measurements. Thus, any
quantum computation can be written as a sequence of
π/8 rotations grouped into layers of mutually commut-
ing rotations. The number of rotations is the T count
and the number of layers is the T depth. Each rotation
can be performed by consuming a magic state via a
Pauli product measurement. These measurements can
be implemented in our framework in 1�.

2 Data blocks
Since Clifford+T circuits are a sequence of π/8 rota-
tions, each requiring the consumption of a magic state,
it is natural to partition a quantum computer into a set

ancilla region

Figure 9: A compact block stores n data qubits in 1.5n + 3
tiles. The consumption of a magic state can take up to 9�.

of tiles that are used for magic state distillation (distil-
lation blocks) and a set of tiles that host data qubits and
consume magic states via Pauli product measurements
(data blocks). In this section, we discuss designs for
the latter. In principle, the structure shown in Fig. 8
is a data block, where each qubit is stored in a two-
tile patch and magic states can be consumed every 1�.
However, this sort of design uses 3n tiles to host n data
qubits, which is a relatively large space overhead.

2.1 Compact block
The first design that we discuss uses only 1.5n+ 3 tiles.
This compact block is shown in Fig. 9, where each data
qubit is stored in a square patch. This lowers the space
cost, but restricts the operators that are accessible by
Pauli product measurements, as only the Z operator is
free to be measured. Using 3�, patches may also be ro-
tated (see Fig. 11a), such that the X operator becomes
accessible instead of the Z operator. The problematic
operators are Y operators, which are the reason why
the consumption of a magic state can take up to 9�.

The worst-case scenario is a π/8 rotation involv-
ing an even number of Y operators, such as the one
shown in Fig. 10. One possibility to replace Y oper-
ators by X or Z operators is via π/4 rotations, since

Figure 10: For compact blocks, the worst-case scenario are
Pauli product measurements involving an even number of Y
operators, e.g., the measurement required for a (Y ⊗ 1⊗ Y ⊗
Z ⊗ Y ⊗ Y )π/8 gate. Such measurements require two explicit
π/4 rotations (left), and two π/4 rotations that are commuted
to the end of the circuit (right).
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1� 2� 2� 3� 3�
(a) Patch rotation (b) π/4 rotations

(c) (Y ⊗ 1⊗ Y ⊗ Z ⊗ Y ⊗ Y )π/8 rotation in 9�
0� Step 1 1� Step 2 2� Step 4

5� Step 6 8� Step 7 9� Step 8

1� Step 3

2� Step 5

Figure 11: (a) Patches can be rotated in 3� to change whether the X or Z operator is adjacent to the compact block’s ancilla
region. (b) A Pπ/4 gate can be performed explicitly via a P ⊗ Y measurement with a |0〉 ancilla qubit. (c) Six-step protocol to
perform the rotation of Fig. 10 in a compact block. The magic state is consumed in 9�, where steps 2-5 are the two π/4 rotations
in Fig. 10, steps 6 and 7 are patch rotations, and step 8 is the Pauli product measurement consuming the magic state.

Yπ/4 = Zπ4Xπ/4Z−π/4. Rotations with an even number
of Y ’s require two π/4 rotations, while an odd num-
ber of Y ’s can be handled by one rotation. Only the
left two π/4 rotations in Fig. 10 need to be performed
explicitly. The right two rotations can be commuted
to the end of the circuit, changing the subsequent π/8
rotations. Similarly to a π/8 rotation, a Pπ/4 rotation
can be executed using a resource state |Y 〉 = |0〉+ i |1〉,
as shown in Fig. 11b. However, even though this state
is a Pauli eigenstate, it cannot be readily prepared in
our framework. Instead, we use a |0〉 state and Y mea-
surements, such that a Pπ/4 rotation is performed by
a P ⊗ Y measurement between the qubits and the |0〉
state. Afterwards, the |0〉 state is measured in X. If the
−P ⊗Y and X measurements in Fig. 11b yield different
outcomes, a Pauli correction is necessary.

In Fig. 11, we go through the steps necessary to per-
form the (Y⊗1⊗Y⊗Z⊗Y⊗Y )π/8 rotation of Fig. 10. In
step 1, we start with a 12-tile data block storing 6 qubits
in the blue region. The orange region is not part of the
data block, but is part of the adjacent distillation block,
i.e., it is the source of the magic states. In steps 2-5,
we perform the two π/4 rotations that are necessary to
replace the Y operators with X’s, i.e., the first two π/4
rotations in the circuit of Fig. 10. In step 6, we first
rotate patches in the upper row, and then, in step 7, in

the lower row. Finally, in step 8, we measure the Pauli
product involving the magic state.

This general procedure can be used for any π/8 ro-
tation. First, up to two π/4 rotations are performed in
2�. Next, patches in the upper and lower row are ro-
tated, which takes 3� per row. Finally, the Pauli prod-
uct is measured in 1�, requiring a total of 9�. While
this is very slow compared to Fig. 8, the compact block
is a valid choice for small quantum computers where the
distillation of a magic state takes longer than 9�.

2.2 Intermediate block
One possibility to speed up compact blocks is to store
all qubits in one row instead of two. This is the inter-
mediate block shown in Fig. 13a, which uses 2n+4 tiles
to store n qubits. By eliminating one row, all patch
rotations can be done simultaneously. In addition, one
can save 1� by moving all patches to the other side,
thereby eliminating the need to move patches back to
their row after the rotation. An example is shown in
Fig. 12. Suppose we have 5 qubits and need to pre-
pare them for a Z ⊗X ⊗Z ⊗Z ⊗X measurement. The
first, third and fourth qubit are moved to the other side,
which takes 1�. Simultaneously, the second and fifth
qubit are rotated, which takes 2�. Therefore, the total
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1� Step 1 2� Step 2 2� Step 3

Figure 12: Patch rotations in preparation of a Z ⊗X ⊗ Z ⊗ Z ⊗X measurement with an intermediate block.

number of time steps to consume a magic state is at
most 5�, where 2� are used for up to two π/4 rota-
tions, 2� for the patch rotations, and 1� for the Pauli
product measurement consuming the magic state.

2.3 Fast block
The disadvantage of square patches is that only one
Pauli operator is adjacent to the data block’s ancilla
region, i.e., available for Pauli product measurements
at any given time. Two-tile one-qubit patches as in
Fig. 8, on the other hand, allow for the measurement
of any Pauli operator, but use two tiles for each qubit.
In order to have both compact storage and access to
all Pauli operators, we use two-qubit patches for our
fast blocks in Fig. 13b. These patches use two tiles to
represent two qubits (see Fig. 1), where the first qubit’s

(a) Intermediate block

(b) Fast block

ancilla region

ancilla region

Figure 13: (a) Intermediate blocks store n data qubits in 2.5n+
4 tiles and require up to 5� per magic state. (b) Fast blocks
use 2n+

√
8n+ 1 tiles and require 1� per magic state.

Pauli operators are in the left two edges, and the second
qubit’s operators are in the right two edges. Therefore,
the example in Fig. 13b is a fast block that stores 18
qubits.

Since all Pauli operators are accessible, the Pauli
product measurement protocol of Fig. 8 can be used
to consume a magic state every 1�. n qubits occupy
a square arrangement of tiles with a side length of√
n/2 + 1, i.e., a total of 2n +

√
8n + 1 tiles. Even

if
√
n/2 is not integer, one should keep the block as

square-shaped as possible by picking the closest integer
as a side length and shortening the last column. While
the fast block uses more tiles compared to the compact
and intermediate blocks, it has a lower space-time cost,
making it more favorable for large quantum comput-
ers for which the distillation of a magic state takes less
than 5�.

Note that if undistilled magic states are sufficient,
then any data block can already be used as a full quan-
tum computer. A proof-of-principle two-qubit device
in the spirit of Ref. [31] that constitutes a universal
two-qubit quantum computer with undistilled magic
states and can demonstrate all the operations that are
used in our framework can be realized with six tiles,
as shown in Appendix C. This proof-of-principle device
uses (3d − 1) · 2d physical data qubits, i.e., 48, 140, or
280 data qubits for distances d = 3, 5 or 7. If ancilla
qubits are used for stabilizer measurements, the number
of physical qubits roughly doubles, but it is still within
reach of near-term devices.

Summary. Data blocks store the data qubits of
the computation and consume magic states. Compact
blocks use 1.5n+ 3 tiles for n qubits and require up to
9� to consume a magic state. Intermediate blocks use
2n + 4 tiles and take up to 5� per magic state. Fast
blocks use 2n +

√
8n + 1 tiles and take 1� per magic

state. Data blocks need to be combined with distillation
blocks for large-scale quantum computation.

3 Distillation blocks
In this section, we discuss designs of tile blocks that
are used for magic state distillation. This is necessary,
because with surface codes, the initialization of non-
Pauli eigenstates is prone to errors, which means that
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Figure 14: Encode-T -decode circuit of the 15-to-1 distillation protocol. The multi-target CNOTs (orange) can be commuted past
the T gates, such that they cancel and leave 15 Z-type Pauli product rotations.

π/8 rotations performed using these states may lead
to errors. In order to decrease the probability of such
an error, magic state distillation [16] is used to con-
vert many low-fidelity magic states into fewer higher-
fidelity states. This requires only Clifford gates (i.e.,
Pauli product measurements), so, in principle, any of
the data blocks discussed in the previous section can
be used for this purpose. However, magic state distilla-
tion is repeated extremely often for large-scale quantum
computation, so it is worth optimizing these protocols.

Here, we discuss a general procedure that can be
applied to any distillation protocol based on an error-
correcting code with transversal T gates, such as punc-
tured Reed-Muller codes [16, 17] or block codes [18–20].
To show the general structure of such a protocol, we go
through the example of 15-to-1 distillation [16], i.e., a
protocol that uses 15 faulty magic states to distill a
single higher-fidelity state.

3.1 15-to-1 distillation
The 15-to-1 protocol is based on a quantum error-
correcting code that uses 15 qubits to encode a single
logical qubit with code distance 3. The reason why this
can be used for magic state distillation is that, for this
code, a physical T gate on every physical qubit corre-
sponds to a logical T gate (actually T †) on the encoded
qubit, which is called a transversal T gate. The general
structure of a distillation circuit based on a code with
transversal T gates is shown in Fig. 14 for the example
of 15-to-1. It consists of four parts: an encoding circuit,
transversal T gates, decoding and measurement.

The circuit begins with 5 qubits initialized in the |+〉
state and 10 qubits in the |0〉 state. Qubits 1-4, 5 and 6-
15 are associated with the four X stabilizers, the logical
X operator, and the ten Z stabilizers of the code. The
first five operations are multi-target CNOTs that corre-
spond to the code’s encoding circuit. They map the X
Pauli operators of qubits 1-4 onto the code’s X stabiliz-
ers, the X Pauli of qubit 5 onto the logical X operator
and the Z operators of qubits 6-15 onto the code’s Z
stabilizers. Because we start out with +1-eigenstates of
X and Z, this circuit prepares the simultaneous stabi-
lizer eigenstate corresponding to the logical |+〉L state.
Next, a transversal T gate is applied, transforming the
logical state to TL |+〉L (actually to T †L |+〉L). Note that
the 15 Zπ/8 rotations are potentially faulty. Finally, the
encoding circuit is reverted, shifting the logical qubit in-
formation back into qubit 5, and the information about
the X and Z stabilizers into qubits 1-4 and 6-15. If
no errors occurred, qubit 5 is now a magic state T |+〉
(actually T † |+〉). In order to detect whether any of the
15 π/8 rotations were affected by an error, qubits 1-4
and 6-15 are measured in the X and Z basis, respec-
tively, effectively measuring the stabilizers of the code.
Since the code distance is 3, up to two errors can be
detected, which will yield a -1 measurement outcome
on some stabilizers. If any error is detected, all qubits
are discarded and the distillation protocol is restarted.
This way, if the error probability of each of the 15 T
gates is p, the error probability of the output state is
reduced to 35p3 to leading order. In other words, this
protocol takes 15 magic states with error probability p,
and outputs a single magic state with an error of 35p3.
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Figure 15: 15-to-1 distillation circuit that uses 5 qubits and 11 π/8 rotations.

Simplifying the circuit. Using the commutation
rules of Fig. 4b, we can commute the first set of multi-
target CNOTs to the right. This maps the Zπ/8 rota-
tions onto Z-product π/8 rotations. Since controlled-
Pauli gates satisfy C(P1, P2) = C(P1, P2)†, the multi-
target CNOTs of the encoding circuit precisely cancel
the multi-target CNOTs of the decoding circuit, leaving
a circuit of 15 Z-type π/8 rotations in Fig. 14.

Note that qubits 6-15 in this circuit are entirely re-
dundant. They are initialized in a Z eigenstate, are then
part of a Z-type rotation, and are finally measured in
the Z basis, trivially yielding the outcome +1. Since
they serve no purpose, they can simply be removed to
yield the five-qubit circuit in Fig. 15, where we have
absorbed the single-qubit π/8 rotations into the initial
|+〉 states and rearranged the remaining 11 rotations.

This kind of circuit simplification is equivalent to the
space-time trade-offs mentioned in Ref. [17] and can be
applied to any protocol that is based on a code with
transversal T gates. In general, a code with mx X sta-
bilizers that uses n qubits to encode k logical qubits
yields a circuit of n−mx π/8 rotations on mx+k qubits.
Each of the mx +k qubits are either associated with an
X stabilizer or one of the k logical qubits. For each of
the n qubits of the code, the circuit contains one π/8
rotation with an axis that has a Z on each stabilizer or
logical X operator that this qubit is part of. In order to
more easily determine the n−mx rotations, it is useful
to write down an n × (mx + k) matrix that shows the
X stabilizers and logical X operators of the code. For
15-to-1, such a matrix could look like this:

M15-to-1 =




0 0 0 1 0 0 0 0 1 1 1 1 1 1 1
0 0 1 0 0 1 1 1 0 0 0 1 1 1 1
0 1 0 0 1 0 1 1 0 1 1 0 0 1 1
1 0 0 0 1 1 0 1 1 0 1 0 1 0 1
0 0 0 0 1 1 1 0 1 1 0 1 0 0 1




(1)

Each of the first four rows describes one of the four
X stabilizers of the code, where 0 stands for 1 and 1
stands for X. For instance, the first row indicates that

the first X stabilizer of this 15-qubit code is 1⊗1⊗1⊗
X⊗1⊗1⊗1⊗1⊗X⊗X⊗X⊗X⊗X⊗X⊗X. The
rows below the horizontal bar – in this case the last
row – show the logical X operators of the code. The
circuit in Fig. 15 is then obtained by placing a |+〉 state
for each row and a π/8 rotation for each column, with
the axis of rotation determined by the indices in the
column – a 1 for each 0 and a Z for each 1. Note that,
in Fig. 15, the first four rotations (columns) of Eq. (1)
are absorbed by the initial states.

3.2 Triorthogonal codes
The aforementioned circuit translation can be applied
to any code with transversal T gates. One particu-
larly versatile and simple scheme to generate such codes
is based on triorthogonal matrices [17, 18], which we
briefly review in this section. The first step is to write
down a triorthogonal matrix G, such as

G =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



. (2)

Triorthogonality refers to three criteria: i) The number
of 1s in each row is a multiple of 8. ii) For each pair
of rows, the number of entries where both rows have
a 1 is a multiple of 4. iii) For each set of three rows,
the number of entries where all three rows have a 1 is a
multiple of 2. In other words,

∀a :
∑

i
Ga,i = 0 (mod 8)

∀a, b :
∑

i
Ga,iGb,i = 0 (mod 4)

∀a, b, c :
∑

i
Ga,iGb,iGc,i = 0 (mod 2)

(3)

A general procedure based on classical Reed-Muller
codes to obtain such matrices is described in Ref. [17].

After obtaining a triorthogonal matrix, such as the
one in Eq. (2), the second step is to put it in a row
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Figure 16: 20-to-4 distillation circuit that uses 7 qubits and 17 π/8 rotations.

echelon form by Gaussian elimination

G̃ =




0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1
0 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1
0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1
0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1
1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1



. (4)

The last step is to remove one of the columns that con-
tains a single 1, i.e., one of the first five columns, which
is also called puncturing.2 Puncturing an a × b tri-
orthogonal matrix k times yields a code encoding k log-
ical qubits with mx = b− k and n = a− k. The rows of
the matrix after puncturing that contain an even num-
ber of 1s describe X stabilizers, whereas the rows with
an odd number of 1s describe X logical operators. In
terms of distillation protocols, a code described by such
a matrix can be used for n-to-k distillation. Indeed, if
we puncture the matrix in Eq. (4) once by removing the
first column, we retrieve the 15-to-1 protocol of Eq. (1).
We can also puncture it twice by removing the first two
columns. This yields the matrix

M14-to-2 =




0 0 1 0 0 0 0 1 1 1 1 1 1 1
0 1 0 0 1 1 1 0 0 0 1 1 1 1
1 0 0 1 0 1 1 0 1 1 0 0 1 1
0 0 0 1 1 0 1 1 0 1 0 1 0 1
0 0 0 1 1 1 0 1 1 0 1 0 0 1



, (5)

which describes a 14-to-2 protocol. The corresponding
circuit can be simply read off from this matrix. It is
almost identical to the 15-to-1 protocol of Fig. 15, ex-
cept that the fourth qubit is initialized in the |+〉 state
and is not measured at the end of the circuit, but in-
stead outputs a second magic state. However, because
the code of 14-to-2 has a code distance of 2, the output
error probability is higher, namely 7p2 [18]. Punctur-
ing the matrix G̃ any further would yield codes with a

2Even though this is commonly called puncturing, it would be
perhaps more accurate to refer to this process as shortening (see,
e.g., Ref. [32]), as was pointed out to me by a referee.

distance lower than 2, precluding them from detecting
errors and improving the quality of magic states. In
fact, the minimum number of qubits in triorthogonal
codes was shown to be 14 [33].

Semi-triorthogonal codes. There are also codes
that are based on “semi-triorthogonal” matrices, where
all three conditions of Eq. (3) are only satisfied mod-
ulo 2. One example is the matrix




0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0
0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0




.

(6)
When this matrix is punctured four times, it yields a
code that can be used for a 20-to-4 protocol. A scheme
to generate such matrices for 3k+8-to-k distillation is
shown in Ref. [18]. For the case of the 20-to-4 protocol,
the matrix that describes the code

M
20-to-4

=




0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0




,

(7)
can be straightforwardly translated into the circuit in
Fig. 16. While semi-triorthogonal codes can be used
the same way for distillation as properly triorthogo-
nal codes, their caveat is that a Clifford correction
may be required. This correction can be obtained by
adding columns to the semi-triorthogonal matrix until
it becomes properly triorthogonal, e.g., by adding the
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17� Step 34 17� Step 350� Step 1 1� Step 2

0� Step 1 1� Step 2 1� Step 3 11� Step 22 11� Step 23

(a) Selective π/4 rotation (b) Auto-corrected π/8 rotation

(c) Implementation of the 15-to-1 circuit in Fig. 15

(d) Implementation of the 20-to-4 circuit in Fig. 16

Figure 17: Implementation of the 15-to-1 and 20-to-4 distillation protocols in our framework. Each time step in (c) and (d)
corresponds to an auto-corrected π/8 rotation (b), which in turn is based on selective π/4 rotations (a).

columns of the matrix

M
Clifford correction

=




0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




(8)

to the matrix of Eq. (7). Since the additional columns
come in pairs, this Clifford correction always consists of
Z-type π/4 rotations [18].

In this case, the correction consists of four π/4 rota-
tions on the first three qubits, effectively changing the
first (Z⊗Z⊗Z)π/8 rotation to a (Z⊗Z⊗Z)−π/8 rota-

tion, and the initial magic states to |m〉 = |0〉+e−iπ/4 |1〉
states. The probability of any of the four output states
being affected by an error is 22p2. When treating this
output error rate as 5.5p2 per magic state, one should
take into account that, for multiple output states, er-
rors can be correlated. Note that 3k+8-to-k protocols
can be modified to 3k+4-to-k [33–35].

3.3 Surface-code implementation
Having outlined the general structure of distillation pro-
tocols, we now discuss their implementation with sur-

face codes. Distillation protocols are particularly sim-
ple quantum circuits, since they exclusively consist of
Z-type π/8 rotations. Therefore, we can use a con-
struction similar to the compact data block, and still
only require 1� per rotation.

Because distillation circuits are relatively short, it is
useful to avoid the Clifford corrections of Fig. 7 that
may be required with 50% probability after a magic
state is consumed. These corrections slow down the pro-
tocol, because they change the final X measurements to
Pauli product measurements. Instead, we use a circuit
which consumes a magic state and automatically per-
forms the Clifford correction. It is based on the selective
π/4 rotation circuit in Fig. 17a. To perform a Pπ/4 ro-
tation according to the circuit in Fig. 11b, a |0〉 state
is initialized and P ⊗ Y is measured, which takes 1�.
However, the π/4 rotation is only performed if the |0〉
qubit is measured in X afterwards. If, instead, it is
measured in Z, the qubit is simply discarded without
performing any operation. In other words, the choice
of measurement basis determines whether a Pπ/4 or a 1
operation is performed. This can be used to construct
the circuit in Fig. 17b. Here, the first step to perform a
Pπ/8 gate is to measure P ⊗Z between the qubits and a
magic state |m〉, and Z⊗Y between |m〉 and |0〉. These
two measurements commute and can be performed si-
multaneously. If the outcome of the first measurement
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is +1, no Clifford correction is required and |0〉 is read
out in Z. If the outcome is -1, |0〉 is measured in X,
yielding the required Clifford correction.

This can be used to implement the 15-to-1 protocol
of Fig. 15 in 11� using 11 tiles, as shown in Fig. 17c.
Four qubits are initialized in |m〉, and a fifth in |+〉. A
2 × 2 block of tiles to the left is reserved for the |m〉
and |0〉 qubits of the auto-corrected π/8 rotations. Two
additional tiles are used for the ancilla of the multi-
patch measurement. In step 2, the first π/8 rotation
(1 ⊗ 1 ⊗ Z ⊗ Z ⊗ Z)π/8 is performed. Depending on
the measurement outcome of step 2, the |0〉 ancilla is
read out in the X or Z basis. This is repeated 11 times,
once for each of the 11 rotations in Fig. 15. Finally, in
step 23, qubits 1-4 are measured in X. If all four out-
comes are +1, the distillation protocol yields a distilled
magic state in tile 5. Since 11 tiles are used for 11�,
the space-time cost is 121d3 in terms of (physical data
qubits)·(code cycles) to leading order. Similarly, the
20-to-4 protocol of Fig. 16 is implemented in Fig. 17d
using 14 tiles for 17�, i..e, with a leading-order space-
time cost of 238d3.

Caveat. Even though our leading-order estimate of
the time cost of 11d code cycles for 15-to-1 or 17d code
cycles for 20-to-4 is correct, the full time cost also con-
tains contributions that do not scale with d. The two
processes that may require special care in the magic
state distillation protocol are state injection and classi-
cal processing. Every 1� requires the initialization of
a magic state and a short classical computation to de-
termine whether the |0〉 state needs to be measured in
X or Z. While neither of these processes scales with d,
they can slow down the distillation protocol, depending
on the injection scheme and the control hardware that
is used. This slowdown can be avoided by using addi-
tional 2× 2 blocks of |0〉-|m〉 pairs, as shown in Fig. 18
for 15-to-1 distillation with one additional block. Here,
the left and right block can be used in an alternating
fashion, i.e., the left block for rotations 1, 3, 5, . . . and
the right block for rotations 2, 4, 6, . . . While one block
is being used for a rotation, the other one can be used
to prepare a new magic state and to process the mea-
surement outcomes of the previous rotation.

Figure 18: Two 2 × 2 ancilla blocks can be used to prevent
state injection and classical processing from slowing down the
15-to-1 protocol.

General space-time cost. The scheme of Fig. 17
can be used to implement any protocol based on a
triorthogonal code. For an n-qubit code with k log-
ical qubits and mx X stabilizers, the protocol uses
1.5(mx + k) + 4 tiles for (n − mx) �. In this time,
it distills k magic states with a success probability of
∼(1− p)n, since any error will result in failure. There-
fore, such a protocol distills k magic state on average
every (n−mx)/(1−p)n time steps. Thus, the space-time
cost per magic state is

cost(n,mx, k, p, d) = [1.5(mx + k) + 4](n−mx)
k(1− p)n d3 .

(9)
In order to minimize the space-time cost for distillation
in our framework, one should pick a distillation protocol
that minimizes this quantity for a given input and target
error rate.

3.4 Benchmarking

We can use the previously described 15-to-1 and 20-
to-4 schemes to benchmark our implementations. In
Ref. [36], these schemes were implemented with lattice
surgery and their cost compared to implementations
based on braiding of hole defects. In addition, the 7-
to-1 scheme was considered, which is a scheme to distill
|Y 〉 states. The distillation of these states is not neces-
sary in our framework, but for benchmarking purposes
we show the 7-to-1 protocol in Appendix D. It can be
implemented using 7 tiles for 4�, i.e., with a space-time
cost of 28d3.

We summarize the leading-order space-time costs
of the three protocols in Table 1. The comparison
shows drastic reductions in space-time cost compared
to schemes based on braiding of hole defects and com-
pared to other approaches to optimizing lattice surgery.
Compared to the braiding-based scheme, the space-time
cost of 7-to-1, 15-to-1 and 20-to-4 is reduced by 60%,
84% and 90%, respectively.

7-to-1 15-to-1 20-to-4

Hole braiding [20, 37] 70d3 750d3 2344d3

Lattice surgery [36] 140d3 540d3 1134d3

Our framework 28d3 121d3 238d3

Table 1: Comparison of the leading-order space-time cost of 7-
to-1, 15-to-1 and 20-to-4 with defect-based schemes, optimized
lattice surgery in Ref. [36] and our schemes. The space-time
cost is in terms of (physical data qubits)·(code cycles).
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Figure 19: 176-tile block that can be used for 225-to-1 distillation. The qubits highlighted in red are used for the second level of
the distillation protocol. The blue ancilla is used to move level-1 magic states into the two |m〉-|0〉 blocks of the level-2 distillation.

3.5 Higher-fidelity protocols

So far, we have only explicitly discussed protocols that
reduce the input error to ∼p2 or ∼p3. There are two
strategies to obtain protocols with a higher output fi-
delity: concatenation and higher-distance codes.

Concatenation. In the 15-to-1 protocol, we use 15
undistilled magic states to obtain a distilled magic state
with an error rate of 35p3. If we perform the same pro-
tocol, but use 15 distilled magic states from previous
15-to-1 protocols as inputs, the output state will have
an error rate of 35(35p3)3 = 1500625p9. This corre-
sponds to a 225-to-1 protocol obtained from the con-
catenation of two 15-to-1 protocols. It is also possible
to concatenate protocols that are not identical. Strate-
gies to combine high-yield and low-yield protocols are
discussed in Ref. [18].

In Fig. 19, we show an unoptimized block that can
be used for 225-to-1 distillation. It consists of 11 15-
to-1 blocks that are used for the first level of distilla-
tion. Since each of these 11 blocks takes 11� to finish,
they can be operated such that exactly one of these
blocks finishes in every time step. Therefore, in ev-
ery time step, one first-level magic state can be used for
second-level distillation by moving it into one of the two
level-2 |m〉-|0〉 blocks via the blue ancilla. The qubits
that are used for the second level are highlighted in red.
Note that since, for the second level, the single-qubit
π/8 rotations require distilled magic states, the 15-to-
1 protocol of Fig. 15 requires 15 rotations instead of

just 11. Therefore, the entire protocol finishes in 15�
using 176 tiles with a total space-time cost of 2640d3.
It should be noted that, since lower-level distillation
blocks produce magic states with low fidelity, there is no
benefit in using the full code distance to produce these
states. The space-time cost of concatenated protocols
can be reduced significantly by running the lower-level
distillation blocks at a reduced code distance (see, e.g.,
Refs. [12, 38]), using smaller patches and fewer code
cycles. The exact code distance that should be used
depends on the protocol and the desired output fidelity.

Higher-distance codes. Alternatively, we can use
a code that produces higher-fidelity states. In Ref. [17],
several protocols based on punctured Reed-Muller codes
are discussed. One of these protocols is a 116-to-12
protocol based on a code with n = 116, k = 12 and
mx = 17. It yields 12 magic states which each have an
error rate of 41.25p4. According to Eq. (9), this pro-
tocol can be implemented using 44 tiles for 99� with
a space-time cost of 363d3 per output state and a suc-
cess probability of (1− p)116. For protocols with a high
space cost such as 116-to-12, the space-time cost can be
slightly reduced by introducing additional ancilla space,
such that two operations can be performed simultane-
ously. One possible configuration is shown in Fig. 20.
This increases the space cost to 81 tiles, but reduces
the time cost to 50�, with a total space-time cost of
337.5d3 per output state.

Output-to-input ratio is not everything. A pop-
ular figure of merit when comparing n-to-k distillation
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Figure 20: 81-tile block that can be used for the 116-to-12
protocol. Here, two π/8 rotations can be performed at the
same time, where one rotation uses the ancilla space denoted
as ancilla 1, and the other one uses ancilla 2.

protocols is the ratio k/n. One of the protocols in
Ref. [17] is a 912-to-112 protocol with n = 912, k = 112
and mx = 64, which yields 112 output state, each with
an error rate of 10.63p6. While the output fidelity is
not as high as for 225-to-1, the output-to-input ratio is
much higher. For p = 10−3, the output fidelity of 225-
to-1 is ∼1.5 × 10−21, while it is only ∼10−17 for 912-
to-112. Therefore, if output-to-input ratio were a good
figure of merit, we would expect the 912-to-112 proto-
col to be considerably less costly compared to 225-to-1.
If we use an implementation in the spirit of Fig. 20,
the space cost is roughly 2.5(mx + k) tiles and the pro-
tocol takes (n − mx)/2 time steps. Thus, 912-to-112
uses 440 tiles for 424�. This would put the space-time
cost per state at 1665d3, which is indeed lower than
that of 225-to-1. However, the success probability of
912-to-112 for p = 10−3 is only at ∼40%, which more
than doubles the actual space-time cost. On the other
hand, the space-time cost of 225-to-1 is barely affected
by the success probability, as each of the level-1 15-to-
1 blocks finishes with 98.5% success probability. This
means that, with 1.5% probability, a time step of 225-
to-1 is skipped, since the necessary level-1 state is miss-
ing. This only increases the space-time cost from 26403

to 2680d3. Even without further decreasing the space-
time cost of 225-to-1 by reducing the code distance of
the level-1 distillation blocks, this indicates that the
output-to-input ratio is not a good figure of merit in
our framework.

Summary. The class of magic state distillation pro-
tocols that are based on an n-qubit error-correcting
code with mx X stabilizers and k logical qubits can
be implemented using 1.5(mx + k) + 4 tiles and n−mx

time steps. Such protocols output k magic states with
a success probability of (1 − p)n. Therefore, if the in-
put fidelity and desired output fidelity are known, the
distillation protocol should minimize the cost function
given in Eq. (9).

4 Trade-offs limited by T count
Having discussed data blocks and distillation blocks in
the previous two sections, we are now ready to piece
them together to a full quantum computer. In order
to illustrate the steps that are necessary to calculate
the space and time cost of a computation and to trade
off space against time, we consider an example com-
putation with a T count of 108 and a T depth of 106.
We consider two different scenarios: an error rate of
p = 10−3 and an error rate of p = 10−4. The error rate
determines how many physical qubits are required per
logical qubit and which distillation protocol should be
used. It is only a meaningful number, if we specify an er-
ror model for the physical qubits and undistilled magic
states. We will assume circuit-level nose for the physi-
cal qubits, i.e., faulty qubits, gates and measurements.
The error model for undistilled magic states depends
on the specific state-injection protocol. We will assume
that raw magic states are affected by random Pauli er-
rors with probability p. To calculate concrete numbers,
we assume that the quantum computer can perform a
code cycle every 1 µs. We want to perform the 108-T -
gate computation in a way that the probability of any
one of the T gates being affected by an error stays be-
low 1%. In addition, we require that the probability of
an error affecting any of the logical qubits encoded in
surface-code patches stays below 1%. This results in a
2% chance that the quantum computation will yield a
wrong result. In order to exponentially increase the pre-
cision of the computation, it can be repeated multiple
times or run in parallel on multiple quantum computers.

4.1 Step 1: Determine distillation protocol
The first step is to determine which distillation protocol
is sufficient for the computation. In order to stay below
1% error probability with 108 T gates, each magic state
needs to have an error rate below 10−10. For p = 10−4,
the 15-to-1 protocol is sufficient, since it yields an out-
put error rate of 35p3 = 3.5 · 10−11. For p = 10−3,
15-to-1 is not enough. On the other hand, two levels of
15-to-1, i.e., 225-to-1, yield magic states with an error
rate of 1.5 · 10−21, which is many orders of magnitude
above what is required. A less costly protocol is 116-
to-12, which yields output states with an error rate of
41.25p4 = 4.125 · 10−11, which suffices for our purposes.

4.2 Step 2: Construct a minimal setup
In order to determine the necessary code distance, we
first construct a minimal setup, i.e., a configuration of
tiles that can be used for the computation and uses as
little space as possible. The reason why this is useful

Accepted in Quantum 2019-02-01, click title to verify 16

39



(a) Minimal setup for p = 10−4

(b) Minimal setup for p = 10−3

Figure 21: Minimal setups using compact data blocks for p =
10−4 (with 15-to-1 distillation) and p = 10−3 (with 116-to-
12 distillation). Blue tiles are data block tiles, orange tiles
are distillation block tiles, green tiles are used for magic state
storage and gray tiles are unused tiles.

to determine the code distance is that the initial space-
time trade-offs that we discuss significantly improve the
overall space-time cost. Therefore, the minimal setup
can be used to comfortably upper-bound the required
code distance.

For p = 10−4, a minimal setup consists of a compact
data block and a 15-to-1 distillation block, see Fig. 21a.
The compact block stores 100 qubits in 153 tiles and
requires up to 9� to consume a magic state. The 15-
to-1 distillation block uses 11 tiles and outputs a magic
state every 11� with 99.9% success. To ensure that the
tile of the distillation block that is occupied by qubit 5 is
not blocked during the first time step of the distillation
protocol, the first π/8 rotation of the protocol should
be chosen such that it does not involve qubit 5, e.g., the
fourth rotation of Fig. 15. In total, this minimal setup
uses 164 tiles and performs a T gate every 11�, i.e.,
finishes the computation in 11 · 108 time steps.

For p = 10−3, a minimal setup consists of a compact
data block and a 116-to-12 distillation block, as shown
in Fig. 21b. For the minimal setup, we do not use the
larger and faster distillation block shown in Fig. 20, but
instead a block in the spirit of the 15-to-1 block. This
116-to-12 distillation block uses 44 tiles and distills 12
magic states in 99� with 89% success probability, i.e.,
on average one state every 9.27�. Because this distil-
lation protocol outputs magic states in bursts, i.e., 12
at the same time, these states need to be stored before
being consumed. Therefore, we introduce additional

(a) Intermediate setup for p = 10−4

(b) Intermediate setup for p = 10−3

Figure 22: Intermediate setups using intermediate data blocks
and two 15-to-1 distillation blocks for p = 10−4 or one compact
116-to-12 distillation block for p = 10−3.

storage tiles (green tiles in Fig. 21b). Here, we choose
the 12 output states to be qubits 6, 8, 10, . . . , 26 and 27.
In the last step of the protocol these states are moved
into the green space, where they are consumed by the
data block one after the other. This minimal setup uses
153 tiles for the data block, 44 tiles for the distillation
block and 13 tiles for storage. In total, it uses 210 tiles
and finishes the computation in 9.27 · 108 time steps.

4.3 Step 3: Determine code distance
Since each tile corresponds to d×d physical data qubits
and each time step corresponds to d code cycles, 164 en-
coded logical qubits need to survive for (11 · 108)d code
cycles for the minimal setup with p = 10−4. The proba-
bility of a single logical error on any of these 164 qubits
needs to stay below 1% at the end of the computation.
The logical error rate per logical qubit per code cycle
can be approximated [12] as

pL(p, d) = 0.1(100p)(d+1)/2 (10)

for circuit-level noise. Therefore, the condition to de-
termine the required code distance is

164 · 11 · 108 · d · pL(10−4, d) < 0.01 . (11)

For distance d = 11, the final error probability is at
19.8%. Therefore, distance d = 13 is sufficient, with a
final error probability of 0.2%. The number of physi-
cal qubits used in the minimal setup can be calculated
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(a) Fast setup for p = 10−4 (b) Fast setup for p = 10−3

fast data block
distillation block storage tiles

unused tiles

Figure 23: Fast setups using fast data blocks and 11 15-to-1 distillation blocks for p = 10−4 or 5 116-to-12 distillation block for
p = 10−3.

as the number of tiles multiplied by 2d2, taking mea-
surement qubits into account. The minimal setup for
p = 10−4 uses 164 · 2 · 132 ≈ 55,400 physical qubits and
finishes the computation in 13·11·108 code cycles. With
1 µs per code cycle, this amounts to roughly 4 hours.

For p = 10−3, the condition changes to

210 · 9.27 · 108 × d · pL(10−3, d) < 0.01 , (12)

which is satisfied for d = 27 with a final error probability
of 0.5%. The final error probability for d = 25 is at
4.9%. Thus, the minimal setup uses 210 · 2 · 272 ≈
306,000 physical qubits and finishes the computation in
27 · 9.27 · 108 code cycles, which amounts to roughly
7 hours. Note that, in principle, a success probability
of less than 50% would be sufficient to reach arbitrary
precisions by repeating computations or running them
in parallel. This means that the code distances that we
consider may be higher than what is necessary.

4.4 Step 4: Add distillation blocks
Only a small fraction of the tiles of the minimal setup is
used for magic state distillation, i.e., 6.7% for p = 10−4

and 21% for p = 10−3. On the other hand, adding one
additional distillation block doubles the rate of magic
state production, potentially doubling the speed of com-
putation. Therefore, in order to speed up the computa-
tion and decrease the space-time cost, we add additional
distillation blocks to our setup.

For p = 10−4, adding one more distillation block re-
duces the time that it takes to distill a magic state
to 5.5� per state. However, the compact block can
only consume magic states at 9� per state. In order to

avoid this bottleneck, we can use the intermediate data
block instead, which occupies 204 tiles, but consumes
one magic state every 5�. With 22 tiles for distillation
(see Fig. 22), this setup uses 226 tiles and finishes the
computation after 5.5 · 108 time steps. This increases
the number of qubits to 76,400, but reduces the com-
putational time to 2 hours.

For p = 10−3, the addition of a distillation block
reduces the distillation time to 4.64�. At this point,
one should switch to the more efficient 116-to-12 block
of Fig. 20, which uses 81 tiles and distills a magic state
on average every 4.68�. The intermediate data block
cannot keep up with this distillation rate, but we can
still use it to consume one magic state every 5� instead
of 4.68�. Such a configuration uses 228 data tiles, 81
distillation tiles and 13 storage tiles, i.e., a total of 322
tiles corresponding to approximately 469,000 physical
qubits. The computational time reduces to 5 · 108 time
steps, i.e., 3.75 hours. Note that in Fig. 22b, the 12
output states of the 116-to-12 protocol should be chosen
as 1, 3, 5, . . . , 25. They can be moved into the green
storage space in the last step of the protocol, since the
space denoted as ancilla 2 in Fig. 20 is not being used
in the last step.

Trade-offs down to 1� per T gate. Adding addi-
tional distillation blocks can reduce the time per T gate
down to 1�. For p = 10−4, 11 distillation blocks pro-
duce 1 magic state every 1�. To consume these magic
states fast enough, we need to use a fast data block.
This fast block uses 231 tiles and the 11 distillation
blocks together with their storage tiles use 11∗12 = 132
tiles, as shown in Fig. 23a. With a total of 363 tiles, this
setup uses 123,000 qubits and finishes the computation
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in 108�, i.e., in 21 minutes and 40 seconds.

For p = 10−3, parallelizing 5 distillation blocks pro-
duces a magic state every 0.936�. This is faster than
the fast block can consume the states, but allows for
the execution of a T gate every 1�. With 231 tiles for
the fast block, 405 distillation tiles and 60 storage tiles,
the total space cost is 696 tiles. The setup shown in
Fig. 20b contains four unused tiles to make sure that
all storage lines are connected to the data block. Stor-
age lines need to be connected to the ancilla space of the
data block either directly, via other storage lines or via
unused tiles. In any case, this corresponds to roughly
1,020,000 physical qubits. The computation finishes af-
ter 45 minutes.

Avoiding the classical overhead. Every con-
sumption of a magic state corresponds to a Pauli prod-
uct measurement, the outcome of which determines
whether a Clifford correction is required. This correc-
tion is commuted past the subsequent rotations, po-
tentially changing the axis of rotation. Therefore, the
computation cannot continue before the measurement
outcome is determined. This involves a small classical
computation to process the physical measurements (i.e.,
decoding and feed-forward), which could slow down the
quantum computation. In order to avoid this, the magic
state consumption can be performed using the auto-
corrected π/8 rotations of Fig. 17b. Here, the classi-
cal computation merely determines, whether the ancilla
qubit – which we refer to as the correction qubit |c〉 – is
measured in the X or Z basis. While this classical com-
putation is running, the magic state for the subsequent
π/8 rotation can be consumed, as the auto-corrected
rotation involves no Clifford correction. This means
that distillation blocks should output |m〉 − |c〉 pairs,
for which we construct modified distillation blocks in
the following section. If the classical computation is,
on average, faster than 1� (i.e., d code cycles), then
classical processing does not slow down the quantum
computation in the T -count-limited schemes.

Summary. Data blocks combined with distillation
blocks can be used for large-scale quantum computing.
The first step is to determine a sufficiently high-fidelity
distillation protocol. Next, one constructs a minimal
setup from a compact data block and a single distilla-
tion block to upper-bound the required code distance.
Finally, one can trade off space against time by using
fast data blocks and adding more distillation blocks.
This can reduce the time per T gate down to 1�. In
our example, the trade-off also reduces the space-time
cost compared to the minimal setup by a factor of 5 for
p = 10−4 and by a factor of 2.8 for p = 10−3. In or-
der to fully exploit the space-time trade-offs discussed
in this section, the input circuit should be optimized for
T count.

5 Trade-offs limited by T depth
In the previous section, we parallelized distillation
blocks to finish computations in a time proportional to
the T count. In this section, we combine the previous
constructions of data and distillation blocks to what we
refer to as units. By parallelizing units, we exploit the
fact that, in our example, the 108 T gates are arranged
in 106 layers of 100 T gates to finish the computation
in a time proportional to the T depth. We first slightly
increase the space-time cost compared to the previous
section, in order to speed up the computation down to
one measurement per T layer. In this sense, we imple-
ment Fowler’s time-optimal scheme [21].

5.1 T layer parallelization
The main concept used to parallelize T layers is quan-
tum teleportation. The teleportation circuit is shown
in Fig. 24a. It starts with the generation of a Bell pair
(|00〉+|11〉)/

√
2 by the Z⊗Z measurement of |+〉⊗|+〉.

An arbitrary gate U is performed on the second half of
the Bell pair. Next, a qubit |ψ〉 and the first half of the
Bell pair are measured in the Bell basis, i.e., in X ⊗X
and Z⊗Z. After the measurement, the first two qubits
are discarded and |ψ〉 is teleported to the third qubit
through the gate U . This means that the output state
is U |ψ〉, if the teleportation is successful. However, it
is only successful, if both Bell basis measurements yield
a +1 outcome. In the other three cases, the teleported
state is UX |ψ〉, UY |ψ〉 or UZ |ψ〉. Note that the cor-
rection operation to recover the state |ψ〉 is not a Pauli
operation P , but instead UPU†, which, in general, is as
difficult to perform as U itself.

If U is a Pπ/8 rotation, as in Fig. 24b, the Pauli er-
rors change Pπ/8 to P−π/8 up to a Pauli correction.
Since it is only after the Bell basis measurement that

(a) Teleportation circuit

(b) Teleportation through a π/8 rotation

Figure 24: (a) Circuit for quantum teleportation of |ψ〉 through
a gate U . Only if both Bell basis measurement yield +1, the
teleported state is U |ψ〉. If Z ⊗Z = −1, the state is UX |ψ〉.
If X ⊗ X = −1, the state is UZ |ψ〉. If both measurements
yield -1, the state is UY |ψ〉. (b) If U is a π/8 rotation, the
corrective Paulis change Pπ/8 to P−π/8.
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︸ ︷︷ ︸
layer 1

︸ ︷︷ ︸
layer 2

︸ ︷︷ ︸
layer 3

(a) Clifford+T circuit (b) Post-corrected π/8 rotation

(c) Time-optimal Clifford+T circuit

Figure 25: Time-optimal implementation of a three-qubit quantum computation consisting of 9 T gates in 3 T layers. Post-
corrected π/8 rotations (b) can be used to decide at a later point, whether the performed operation was a Pπ/8 or a P−π/8
rotation.

we know, whether we should have performed a Pπ/8 or
a P−π/8 gate, we use post-corrected π/8 rotations in
Fig. 25b, which are similar to the auto-corrected rota-
tions of Fig. 17b. The post-corrected rotation uses a
resource state consisting of two qubits, a magic state
|m〉 and a second qubit that we refer to as a correction
qubit |c〉. The resource state is generated by initializing
|c〉 in |0〉 and measuring Z ⊗Y between |m〉 and |c〉. In
order to perform a post-corrected π/8 rotation, the re-
source state is consumed by measuring P ⊗Z involving
the magic state, and measuring |m〉 in X. The correc-
tion qubit |c〉 is stored for later use. It can be used at
a later moment to decide, whether the rotation should
have been a +π/8 or −π/8 rotation by measuring |c〉
either in the Z or X basis. Depending on the measure-
ment outcome, a Pauli correction may be required.

The time-optimal circuit. This can be used to ex-
ecute multiple T layers simultaneously. If U is a product
of mutually commuting π/8 rotations, i.e., a T layer,
the teleportation corrections replace all π/8 rotations
with post-corrected rotations. An example is shown in
Fig. 25 for a three-qubit computation of three T layers,

where all three T layers are executed simultaneously.
The reason why we can only group up T gates that are
part of the same layer is that otherwise the Pauli correc-
tions of the post-corrected rotation would not commute
with the other rotations. The time-optimal circuit con-
sists of three steps: The preparation of Bell pairs for
each T layer, the application of T gates, and a set of fi-
nal Bell measurements. At this point, the computation
is not finished, as we still need to measure the correction
qubits of the post-corrected rotations. Because these in-
volve potential Pauli corrections, the correction qubits
of the different T layers need to be measured one after
the other. Thus, every T layer is executed one after the
other, where each execution requires the time that it
takes to measure the correction qubits and perform the
classical processing to determine the next set of mea-
surements from the Pauli corrections. We refer to this
time as tm. In other words, any Clifford+T circuit con-
sisting of nL T layers can be executed in nL · tm, inde-
pendent of the code distance, which is the main feature
of the time-optimal scheme [21].

The circuit in Fig. 25c naively requires 2n ·nL qubits
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Figure 26: An example of a time-optimal circuit using four units. In this case, each unit consists of six qubits, i.e., it is a three-qubit
quantum computation, where three T layers can be executed simultaneously.

for an n-qubit computation, which scales with the
length of the computation. Since we only have a finite
number of qubits at our disposal, our goal is to imple-
ment the circuit in Fig. 26 instead. Here, the qubits
form groups of 2n qubits. We refer to each of these
groups as a unit. Using nu units, nu−1 layers of T gates
can be performed at the same time. In the circuit, the
steps of Bell state preparation (BP ), post-corrected T
layer execution (T ) and Bell basis measurement (BM)
are performed repeatedly until the end of the computa-
tion. We refer to the block of operations (BP -T -BM)
as unit preparation. Every time that unit preparation is
finished, all qubits except for the correction qubits (not
shown in Fig. 26) and half of the qubits of the last unit
are discarded. At this point, the next set of unit prepa-
rations begins. Simultaneously, the correction qubits of
the recently finished units are measured one after the
other, which has a time cost of (nu−1) ·tm. This means
that the number of units can be increased to speed up
the computation, until (nu−1)·tm reaches the time that
it takes to prepare a unit tu. At this maximum number
of units nmax = tu/tm + 1, a T layer is executed every
tm and the computation cannot be sped up any further
in the Clifford+T framework.

Note that the first and last unit differ from the other
units. While all other units need to execute nT T gates
every tu, the first and last unit need to execute nT T
gates only every 2tu, where nT is the number of T gates
per layer. Furthermore, the other blocks need to be able
to store up to 2nT correction qubits, since, after the end
of a unit preparation, nT correction qubits are stored,
and may need to remain stored until the end of the
next unit preparation. For the first and last block, on
the other hand, the required storage space is halved.

In the following, we will show how to prepare units
in our framework. We find that, for our examples, unit

preparation takes 113�. If tm = 1 µs, then nmax is
∼1500 for p = 10−4 and ∼3000 for p = 10−3. Indepen-
dently of the error rate, the computational time drops
to one second.

5.2 Units
Units differ from the fast setups in Fig. 23 in three as-
pects. First, the number of qubits stored in the data
block is doubled. Secondly, the distillation protocols are
modified to output |m〉-|c〉 pairs, instead of just magic
states |m〉. Thirdly, in order to store correction qubits
|c〉, additional space is required. Contrary to magic-
state storage tiles, correction-qubit storage tiles do not
need to be connected to the data block’s ancilla region.

Modified distillation blocks. In order to have dis-
tillation blocks output |m〉-|c〉 pairs, extra tiles and op-
erations are required. We show the necessary modifi-
cations for the example of 15-to-1 and 116-to-12 distil-
lation. A modified 15-to-1 block is shown in Fig. 27a.
Apart from the standard 11 distillation tiles (orange)
and one magic-state storage tile (green), it also contains
19 correction-qubit storage tiles (purple) and an addi-
tional tile (gray) that is used for neither distillation nor
storage. The additional steps that modify the protocol
are shown in Fig. 27c, which zooms into the highlighted
region of Fig. 27a. In step 1 of the shown protocol, the
distillation has just finished after 11�. The patch of
the output state is deformed in step 2, and an addi-
tional qubit |c〉 is initialized in the |0〉 state. The Y ⊗Z
operator between |c〉 and |m〉 is measured in step 3. In
step 4, the correction qubit is sent to storage. Finally,
in step 5, the magic state |m〉 is moved to its storage
tile. This operation blocks one of the orange tiles that is
used for the distillation protocol for 4�. Still, this does
not slow down 15-to-1 distillation, since the first 4 rota-
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12� Step 2

13� Step 3

11� Step 1

14� Step 4 15� Step 5

50� Step 1 52� Step 2 53� Step 3

(a) Modified 15-to-1 block

(b) Modified 116-to-12 block

(c) Modified 15-to-1 protocol

(d) Modified 116-to-12 protocol

Figure 27: Modified 15-to-1 distillation blocks (a) output a |m〉-|c〉 pair every 11�. After the end of the distillation protocol, four
additional steps (c) are necessary. The modified 116-to-12 distillation block (b) finishes after 53�, due to the three additional
steps in (d).

tion of the protocol in Fig. 15 can be chosen, such that
the output qubit is not needed. Therefore, the modified
distillation block outputs one |m〉-|c〉 pair every 11�.

For 116-to-12 distillation, a modified block is shown
in Fig. 27b. We arrange the qubits, such that the 12 out-
put states are found in the positions shown in step 1 of
Fig. 27d. Using 2�, correction qubits are prepared and
Y ⊗Z operators are measured. Finally, the patches are
deformed back to square patches and all magic states
are sent to the green storage, while all correction qubits
are sent to the purple storage. This adds 3� to the pro-
tocol, meaning that this block outputs 12 |m〉-|c〉 pairs
every 53� with a success probability of (1− p)116. For
p = 10−3, this corresponds to one output every 4.96�.

As mentioned in Sec. 4, modified distillation blocks
can also be used with setups, in which T gates are per-
formed one after the other, in order to deal with slow
classical processing. In this case, only one correction
qubit storage tile per magic state is required.

Units. Modified distillation blocks together with fast
data blocks are what we refer to as units. The units for
our example computation for p = 10−3 and p = 10−4

are shown in Fig. 29a-b. They both consist of a 200-
qubit fast data block, 200 correction-qubit storage tiles,
and a number of distillation blocks. Since we will show
that unit preparation takes 113� in our case, the num-

ber of distillation blocks is chosen such that at least
100 |m〉-|c〉 pairs can be distilled in 113�. A full time-
optimal quantum computer consists of a row of multiple
units, see Fig. 29c. The units shown in the figure con-
tain some unused tiles. This gives the units a rectangu-
lar profiles, even though this is not necessarily required.
In our case, the units have a footprint of 54 × 21 and
37 × 21 tiles, respectively. Note that the first and last

0� Step 1

1� Step 2 1� Step 3

2� Step 4 2� Step 5

Figure 28: Bell basis measurement (BM) in 2�.
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(a) Unit for p = 10−3

(b) Unit for p = 10−4

(c) Time-optimal setup

data
distillation

unused tiles

unit 1

|m〉 storage
|c〉 storage

unit 2

unit 3

unit 4

Figure 29: Units consist of fast data blocks, modified distillation blocks and storage tiles. (a) The unit for p = 10−3 consists of
54 × 21 = 1134 tiles. (b) For p = 10−4, the number of tiles is 37 × 21 = 777. (c) A time-optimal setup consists of a row of
multiple units, which means that the space to the bottom and top of the fast data blocks needs to remain free.

unit of a time-optimal setup are smaller, as they only
require 100 correction-qubit storage tiles and half the
number of distillation blocks.

Unit preparation. In order to implement the time-
optimal circuit of Fig. 26 with the setup of Fig. 29, we
show protocols that can be used for the BP -T -BM op-
erations. The data blocks of every unit store 2n qubits
in n two-qubit patches. We arrange the qubits in such
a way that the the final Bell measurements (BM) are
Z ⊗ Z and X ⊗ X measurements of the two qubits of
every two-qubit patch. This Bell measurement can be
done in 2�, as shown in Fig. 28.

This arrangement of qubits implies that, for every
two-qubit patch, one of the qubits needs to be part of a
Bell state preparation (BP ) with the neighboring unit

to the top, and the other with a neighboring unit to the
bottom. For an n-qubit quantum computation, this Bell
state preparation can be performed in

√
n+1 time steps,

as we show in Fig. 30 for the example of n = 9. For this,
every qubit is initialized in the |+〉 state. The Bell state
preparation requires a series of Z ⊗ Z measurements.
The protocol in Fig. 30 shows that, since an n-qubit
computation implies that the number of rows of the
data block is

√
n, these measurements require a total of√

n+ 1 time steps.

In total, the unit preparation of an n-qubit computa-
tion with nT T gates per layer requires

√
n+1 time steps

for the Bell state preparation, nT time steps for the exe-
cution of the T layer, and 2 time steps for the Bell basis
measurement, i.e., a total of nT +

√
n+3 time steps. In
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1� Step 1 2� Step 2 3� Step 3 4� Step 4

Figure 30: Bell state preparation (BP ) for a 9-qubit compu-
tation (18 qubits per unit) in 4�. All two-qubit patches are
initialized in the |+〉⊗2 state. Each measurement ancilla is used
for a Z⊗Z measurement between two qubits in different units.
For n-qubit computations, this requires √n+ 1 time steps.

our example, this amounts to 113�, which corresponds
to tu = 1469 µs for p = 10−4 and tu = 3051 µs for
p = 10−3. Thus, time optimality is reached with 1470
units for p = 10−4 and 3052 units for p = 10−3.

Space-time trade-offs. Of course, it is also possi-
ble to use fewer units than required for time optimality.
Using nu units means that nT ·(nu−1) T gates are per-
formed every tu. In our example, 100 · (nu − 1) T gates
are performed every 113�. With three units, the com-
putational time drops to 56.5% of the computational
time of the fast setup in Fig. 23. With ten units, it drops
to 11%. The number of qubits per unit is ∼260,000
for p = 10−4 and ∼1,650,000 for p = 10−3, so going
from the fast setup to parallelized units is, initially, not
a favorable space-time trade-off. Since the space-time
cost has increased compared to the fast setup, it is also
useful to check whether the code distance needs to be
readjusted. If we use three units – ignoring that the first
and last unit are, in principle, smaller – the space-time
cost is still below the space-time cost of the minimal
setup in both cases. Adding more units significantly
improves the space-time cost. It is also a prescription
to linearly speed up the quantum computer down to the
time-optimal limit.

5.3 Distributed quantum computing
Note that, apart from the initial sharing of entangled
Bell pairs, the units operate entirely independently of
each other. This implies that, if Bell pairs can be shared
between different quantum computers, each unit can be
located in a separate quantum computer. The shared
Bell pairs do not even need to have a high fidelity, as

unit
ent. dist.

ent. dist.

unit
ent. dist.

ent. dist.

unit
ent. dist.

ent. dist.

Bell pairs

Bell pairs

unit
ent. dist.

ent. dist.

Bell pairs

Bell pairs

unit
ent. dist.

ent. dist.

unit
ent. dist.

ent. dist.

(b) effective circuit

(a) Distributed quantum computing

Figure 31: Scheme for distributed quantum computing in a
circular arrangement of quantum computers with the ability
to share Bell pairs between nearest neighbors. If the Bell-pair
fidelity is low, entanglement distillation (ent. dist.) can be used
to increase the fidelity. This scheme effectively implements the
circular time-optimal circuit drawn schematically in (b).

software-based entanglement distillation [39, 40] can be
used to convert a large number of low-fidelity Bell pairs
into fewer high-fidelity Bell pairs. Recent experiments
have made progress towards generating entanglement
between different superconducting chips [41–43].

For the time-optimal scheme, quantum computers
may be arranged in a circle as shown in Fig. 31a,
with the ability to share Bell pairs between neighboring
quantum computers. This effectively implements the
circuit that is schematically drawn in Fig. 31b. Note
that in this circuit, there is no first and last unit. Here,
every unit performs nT π/8 rotations every tu. There-
fore, time optimality is reached with one fewer unit, and
each unit only needs to store nT correction qubits in-
stead of 2nT . With only 100 correction-qubit storage
tiles and ignoring the unused tiles, the qubit count of
the units in Fig. 29 drops to ∼220,000 for p = 10−4 and
∼1,470,000 for p = 10−3, which are the numbers that
we report in Fig. 3. Thus, if nearest-neighbor communi-
cation between quantum computers is feasible, already
fewer than 2 million physical qubits per quantum com-
puter can be used to implement the full time-optimal
scheme with 1500-3000 quantum computers.

Entanglement distillation increases the qubit count.
Note that it does not slow down the computation, as
Bell pairs do not need to be distilled instantly. Entan-
glement distillation can take up to tu to distill the nT
Bell pairs required per entanglement distillation block.
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Summary. In order to speed up an n-qubit quan-
tum computation beyond 1� per T gate, we parallelize
T layers using units. With an average of nT T gates per
layer, a unit consist of 4n + 4

√
n + 1 tiles for the data

block, 2nT storage tiles for the correction qubits, and
enough distillation blocks to distill nT |m〉-|c〉 pairs in
the time it takes to prepare a unit, which is nT +

√
n+3

time steps. If the unit preparation time is tu and the
time for single-qubit measurements and classical pro-
cessing is tm, a time-optimal setup consists of tu/tm+1
units, executing one T layer every tm. Using fewer units
results in a linear space-time trade-off. With nu units,
nT · (nu−1) T gates are performed in tu. A circular ar-
rangement of units can be used for distributed quantum
computing. This also reduces the number of correction-
qubit storage tiles to 1nT and the number of units in a
time-optimal setup to tu/tm. In order to fully exploit
the space-time trade-offs discussed in this section, the
input circuit should be optimized for T depth.

6 Trade-offs beyond Clifford+T

Under the assumption that measurements and feed-
forward can be done in 1 µs, we described how to per-
form a 108-T -gate computation in just 1 second. A more
conservative assumption would be a measurement and
feed-forward time of 10 µs, which increases the compu-
tation time to 10 seconds. Although this seems fast,
many quantum computations have T counts that are
significantly higher than 108. While the T count of
Hubbard model simulations [2] is indeed in this range,
quantum chemistry simulations can be more demand-
ing. In particular, the simulation of FeMoco [1], a struc-
ture that plays an important role in nitrogen fixation,
can have a T count of up to 1015. With a serial execu-
tion of one T gate every 10 µs, the computation takes
317 years to finish. Even if the gates are grouped into
100 T gates per layer, the computation still takes over
3 years.

While Clifford+T is a gate set that is very well
suited for surface codes, it is often not the gate set
which is natural to the quantum computations in ques-
tion. In particular, quantum simulation based on Trot-
terization consists of many small-angle rotations. In
the Clifford+T framework, each small-angle rotation is
translated into a series of T gates via gate synthesis. De-
pending on the desired precision, this can require ∼100
T gates for each rotation [44], which must be executed
in series. In order to speed up computations beyond
their T count or T depth, it is therefore constructive
to consider additional resources for gates other than T
gates.

︸ ︷︷ ︸
layer 1

︸ ︷︷ ︸
layer 2

Figure 32: Clifford+ϕ circuit. The first two rotation layers (ϕ
layers) with three rotations per layer are shown.

6.1 Clifford+ϕ circuits
Instead of requiring an input circuit that consists of
Clifford gates and π/8 rotations, we consider circuits
that consist of Clifford gates and arbitrary ϕ rotations,
which we call Clifford+ϕ circuits. Using the procedure
in Sec. 1, Clifford gates can be commuted to the end
of the circuit, such that we end up with a circuit like
the one in Fig. 32. Rotations that mutually commute
can be grouped up into layers. The algorithm of Sec. 1
can be used to reduce the number of layers. It can even
reduce the number of rotations, since, if two rotations
Pϕ1 and Pϕ2 with the same axis of rotation are moved
into the same layer, they can be combined into a single
rotation Pϕ1+ϕ2 . Clifford+ϕ circuits are characterized
by their rotation count (or ϕ count) and rotation depth
(or ϕ depth), rather than T count and T depth.

Each ϕ rotation can be performed using a |ϕ〉 =
|0〉 + ei(2ϕ) |1〉 resource state. When this state is con-
sumed to perform a Pϕ rotation, there is a 50% chance
that a P−ϕ rotation is performed instead. For π/8 ro-
tations, this is not very problematic, since the correc-
tion operation is a π/4 rotation, which can simply be
commuted to the end of the circuit. For general P−ϕ,
the correction is a P2ϕ rotation, which requires the use
of a |2ϕ〉 state. If this fails, the next correction is a
P4ϕ rotation requiring a |4ϕ〉 state and so on. Thus,
a wide variety of resource state is required to execute
arbitrary-angle rotations. In the case of ϕ = π/2k for
an integer k, |ϕ〉 states can be distilled using specialized
protocols [35, 45]. For other angles, |ϕ〉 states can be ap-
proximated using |π/2k〉 states, or pieced together from
ordinary magic states |m〉 via circuit synthesis. Ordi-
nary magic states can also generate states that can be
used for V gates [46–48], which are Pauli rotations with
an angle θ = arccos(3/5).

All the schemes discussed in this work can be used
with Clifford+ϕ circuits by replacing magic state dis-
tillation blocks by distillation blocks that produce re-
source states for arbitrary-angle rotations. In order to
consume these states in a systematic way similar to the
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(a) Post-corrected ϕ rotation

(b) C(P1, P2) gates via measurements

Figure 33: (a) A post-corrected ϕ rotation can be used to
decide at a later point, whether the performed operation was
a Pϕ or a P−ϕ gate. (b) A C(P1, P2) gate can be performed
explicitly using a |+〉 ancilla and Pauli product measurements.

post-corrected π/8 rotations in Fig. 25b, we can use the
post-corrected version of ϕ rotations shown in Fig. 33.
First, the n resource states are entangled with the data
qubits via a C(P,Z⊗n) gate. Just like magic state con-
sumption, this can be done every 1�, since the data
qubits are only part of one measurement in the mea-
surement circuit in Fig. 33b. Next, the |ϕ〉 state is
measured in Z. If the outcome of this measurement
is +1, then the rotation is successful and all other re-
source states are discarded by measuring them in X.
If, instead, the outcome is -1, the |2ϕ〉 state is mea-
sured in Z. If the outcome of this Z measurement is
+1, the correction is successful, and the remaining re-
source states are discarded by X measurements. For
-1, the corrections continue with a Z measurement of
|4ϕ〉. Note that, in most cases, this cascade of mea-
surements finishes in the second step. Therefore, on
average, it takes 2tm to perform these measurements.
However, sufficiently many resource state are required
in order to be prepared for the most unlikely situations,
in which many measurement steps are required. The
probability to require n measurement steps (i.e., n re-
source states down to |2nϕ〉) is exponentially low, 2−n.
Therefore, the number of resource states that need to
be generated for each ϕ rotation scales logarithmically
with the rotation count of the circuit, if one wants to
stay below a certain probability that any of these rota-
tions is slowed down by a missing resource state. If

Figure 34: C(P1, P2, P3) gate in terms of seven π/8 rotations.

|π/2k〉 states are used, the cascade of measurements
terminates after k steps. This technique of cascading
resource state measurements is also referred to as pro-
grammable ancilla rotations [49]. Note that the cascade
of measurements can also be postponed to a later point,
such that the post-corrected ϕ rotations can be used in
the time-optimal scheme.

Using the T -count-limited scheme of Sec. 4, we can
execute a ϕ rotation every 1�. For 100 T gates per ϕ
rotation, this speeds up the computation by a factor of
100. Also, the time-optimal setting of Sec. 5 can be used
with Clifford+ϕ circuits. However, the execution of a ϕ
layer can take more than 2tm, as the measurement cas-
cades for all rotations in the layer need to terminate.
For instance, for 100 rotations per layer, each layer exe-
cution takes, on average, 8tm. For 100 T gates per rota-
tion, ϕ layer parallelization reduces the computational
time by a factor of 12.5 compared to T layer paralleliza-
tion, i.e., from over 3 years to 3 months. In the specific
case of quantum chemistry simulations, their T count
can be reduced significantly by using more advanced al-
gorithms [50–52], which also profit from arbitrary-angle
rotations. Thus, if distributed quantum computing is
feasible, Clifford+ϕ circuits such as the ones used for
quantum chemistry can be executed with qubit counts
per quantum computer not far above the numbers re-
ported in Fig. 3. The only difference to Clifford+T units
is that larger distillation blocks are required to produce
and store the |ϕ〉 resource states.

Multi-controlled Pauli gates. Other gates that
are used extensively in quantum algorithms are multi-
controlled Paulis, such as Toffoli or CCZ gates. In
Fig. 5, we have shown how C(P1, P2) gates can be writ-
ten in terms of π/4 rotations. A similar decomposition
is possible for multi-controlled Pauli gates. In Fig. 34,
we show how a C(P1, P2, P3) gate is a product of 7
π/8 rotations. For instance, C(Z,Z,X) is the Toffoli
gate. From the circuit, it is evident that the T depth
of C(P1, P2, P3) gates is one [28]. In principle, these
doubly-controlled Pauli gates can be written with just
four T gates [53], but this increases the number of lay-
ers and a similar effect can be obtained by cancelling
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Figure 35: C(P1, P2, P3, P4) gate in terms of 15 π/15 rotations.

π/8 rotations from pairs of doubly-controlled gates in a
circuit. Reducing the T count by increasing the circuit
depth [54] can still be a useful circuit manipulation for
T -count-limited setups. We also note that the T count
can be reduced by combining gate synthesis and magic
state distillation (synthillation) [55, 56].

C(P1, P2, P3, P4) gates, i.e., triply-controlled Pauli
gates, can be written as 15 π/16 rotations, as shown
in Fig. 35. While the T depth of this circuit is no
longer 1, the rotation depth is. In fact, any multi-
controlled Pauli gate with n controls can be constructed
from 2n − 1 Pπ/2n rotations by following the pattern
shown in Figs. 5, 34 and 35. The rotation depth of
all these gates is 1. Multi-controlled gates can also be
pieced together from C(P1, P2, P3) rotations, but this
increases the circuit depth. By using small-angle rota-
tions, any multi-controlled Pauli gate can be executed
in one step.

6.2 Shorter measurements
If the bottleneck of slow classical processing can be over-
come, then the only hardware-based restriction to the
speed of quantum computation is the time it takes to
measure a physical qubit. In the time-optimal scheme,
the execution time of each rotation layer is governed
by the measurement time. This measurement time
only needs to be high, if the measurement fidelity is
required to be sufficiently low. In order to speed up
the computation, one can use shorter qubit measure-
ments. This exponentially decreases the measurement
fidelity. On the other hand, the measurement fidelity
of encoded surface-code qubits increases exponentially
with the number of qubits comprising the logical qubit.
Thus, by using twice as many physical qubits to encode
the measured logical qubit, the measurement time can
be decreased by a factor of two, doubling the compu-
tational speed of the quantum computer. In fact, not

all qubits need to use a higher code distance. Only
the correction qubits that are measured to execute each
rotation layer need to be larger, and only right before
they are measured. The physical qubit measurement
does not need to be a quantum non-demolition mea-
surement, but can be a desctructive measurement. Ul-
timately, however, the speed of quantum computation
is limited by the speed of classical computation. Ex-
ploring superconducting logic [57] to speed up classical
computation may be a viable route to speed up quan-
tum computers.

Summary. All the schemes discussed in this paper
can not only be used with Clifford+T circuits, but also
with Clifford+ϕ circuits. The only difference is that
more and different resource states are required. Their
distillation and storage requires more space than ordi-
nary magic state distillation, but their use can speed up
the computation by several orders of magnitude.

7 Conclusion
In this work, we described how full quantum com-
putations can be performed in surface-code-based ar-
chitectures of different sizes. Previous works on the
translation of quantum computations into surface-code
schemes [36, 58–60] attempted to optimize the logical
qubit arrangement via algorithms that take a quan-
tum circuit as an input. Here, we took a different
approach by discussing computational schemes that do
not require any prior knowledge about the input circuit.
This has the advantage that a resource count with our
schemes only requires the T count and T depth of the
input circuit, and that the schemes consist of modu-
lar blocks that can be optimized independently of each
other. In addition, the space-time cost is lower com-
pared to earlier works [20, 36].

Big quantum computers are fast. Starting from
the minimal setup in Fig. 21 that consists of a compact
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A: Compact block + 1 distillation block (Fig. 21)
B: Intermediate block + 2 distillation blocks (Fig. 22)
C-K: Fast block + 3-11 distillation block (Fig. 23)

L: 2 units (Figs. 29, 31) M: 3 units N: 10 units
O: 100 units P: 1469/1470 units (time-optimal)

Figure 36: Space-time, space, and time cost of the schemes discussed in this paper for the example of a 100-qubit quantum
computation with T count 108 and T depth 106, under the assumption of a 1 µs code cycle time, and a 1 µs measurement and
classical processing time. The solid and dashed lines in M-P are for circular (solid) and linear (dashed) arrangements of units.

data block and a single distillation block, we traded
off space versus time, increasing the size of the quan-
tum computer and, in return, decreasing the computa-
tional time. For the example of a computation with a
T count of 108 and a T depth of 106 with an error rate
of p = 10−4, the minimal setup consists of 164 tiles and
executes one T gate every 11�, corresponding to a com-
putational time of 4 hours with 55,400 physical qubits.
From here, the space-time cost is drastically reduced
by adding more distillation blocks, as shown in Fig. 36
and Tab. 2. With this strategy, the computational time
is reduced to 1� per T gate, where the computational
cost of a circuit is governed by its T count.

For further space-time trade-offs, we parallelized T
layers using units. This is an increase in space-time
cost, especially for linear arrangements of units (dashed
line in Fig. 36), but enables further space-time trade-
offs. Linearly trading off space versus time, the compu-
tational time can be reduced to one measurement per
T layer. Units are well-suited for distributed quantum
computing, as the sharing of Bell pairs between neigh-
boring units is part of the parallelization scheme.

This exhausts the space-time trade-offs that are pos-
sible within the Clifford+T framework. Switching to
Clifford+ϕ circuits can provide further trade-offs, as
additional resources are introduced for arbitrary-angle
rotations. This can be used to execute circuits in a time
proportional to their rotation depth, as opposed to their

T depth. We have not investigated how this trade-off
affects the space-time cost in our scheme.

Room for optimization. In our T -count-limited
schemes and for the preparation of units, one T gate is
performed after the other. If the input circuit is known,
it is reasonable to assume that qubits can be arranged in
a way that allows for the parallel execution of multiple
T gates in the same data block. Furthermore, there is a
strict separation between tiles used for magic state dis-
tillation and tiles used for data blocks in our schemes.
By sharing tiles between blocks, the space overhead may
be reduced. Moreover, we have only considered a hand-
ful of distillation protocols. It would be interesting to
see which distillation protocols can be used to optimize
the cost function of Eq. (9). Finally, concrete tile lay-
outs that can be used to distill and consume the addi-
tional resources necessary for Clifford+ϕ computing are
still missing.

Beyond surface codes. Even though we designed
our schemes with surface codes in mind, they can, in
principle, be applied to other toric-code-based patches,
such as Majorana surface-code patches [11] or color-
code patches [13, 61, 62]. Color codes can reduce the
number of physical qubits due to more compact encod-
ing, but require more elaborate hardware to measure
the higher-weight check operators. The space cost is
reduced by replacing all surface-code patches by color-
code patches, with the exception of Pauli product mea-
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scheme A B C-K L M N - P

physical qubits 55,400 76,400 90,200 - 123,000 447,000 679,000
(788,000)

2,230,000 - 328,000,000
(2,630,000 - 386,000,000)

computational time 4 h 2 h 79-22 min 12 min 490 sec
(734 sec)

147 sec - 1 sec
(163 sec - 1 sec)

Table 2: Space and time cost of the schemes plotted in Fig. 36. The number in parentheses are for linear arrangements of units
(dashed lines in Fig. 36).

surement ancillas. In order to keep the space cost
low, measurement ancillas should remain surface-code
patches and color-to-surface code lattice surgery [63]
should be used during the Pauli product measurement
protocol, as described in Ref. [64].

Outlook. If the number of qubits continues to dou-
ble every 8 months [65], the 60,000 - 300,000 physi-
cal qubits necessary for classically intractable Hubbard
model simulations with a T count of 108 will be avail-
able in 7-9 years, assuming qubit quality improves ac-
cordingly. If multiple quantum computers can be con-
nected in a network, time-optimal quantum computing
becomes available shortly thereafter, facilitating the im-
plementation of more difficult algorithms such as quan-
tum chemistry simulations or Shor’s algorithm. Classi-
cal processing in terms of measurements, feed-forward
and decoding is expected to be a significant roadblock
in speeding up quantum computers. Ultimately, faster
classical control hardware will be necessary to build
faster quantum computers. I hope that the schemes
discussed in this work are a useful roadmap towards
large-scale quantum computing, and that the patch-
based framework is a valuable toolbox for constructions
of surface-code-based implementations of quantum al-
gorithms.
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A Surface-code qubits and lattice-
surgery operations
To illustrate the translation of protocols in our frame-
work into surface-code patches, we show how the
patches of Fig. 1 and the rules of the game and pro-
tocols of Fig. 2 are implemented with surface codes.

Surface-code patches. Each patch corresponds to
a surface-code patch with code distance d. Therefore,
each tile corresponds to d2 physical data qubits, as
shown in Fig. 37 for d = 5. In our surface-code patches,

X X

XX

X

X

Z Z

ZZ

Z

Z

Figure 37: Surface-code implementation of the patches shown
in Fig. 1. Physical qubits are placed on vertices. Bright faces
correspond to Z stabilizers and dark faces to X stabilizers.
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Figure 38: State-injection protocol of Ref. [13].

physical qubits are placed on the vertices, bright faces
correspond to Z stabilizers and dark faces to X sta-
bilizers. Solid and dashed boundaries correspond to X
and Z boundaries (also called rough and smooth bound-
aries). For one-qubit patches, the product of all d phys-
ical X (Z) operators along any of the X (Z) boundaries
is the logical X (Z) operator of the encoded qubit. For
two-qubit patches with six boundaries, the string opera-
tors located at the boundaries correspond to the logical
operators shown in Fig. 1, i.e., going clockwise, X1, Z1,
X1 ·X2, Z2, X2, and Z1 ·Z2. Note that, in principle, the
width of two-tile patches can be 2d − 1 instead of 2d,
potentially reducing the space cost [11]. Furthermore,
the correspondence between solid and dashed, and X
and Z boundaries is interchangeable.

State initialization. We now show how the opera-
tions and protocols of Fig. 2 are implemented with sur-
face codes for d = 5, and motivate their time cost in the
framework, where the reasoning is that 1� is associated
with operations whose time cost scales with d. Surface-
code patches can be initialized in the logical |0〉 or |+〉
state by initializing all physical qubits of the patch in
|0〉 or |+〉, and then measuring all stabilizers.

Naively, one would expect that there should be a time
cost associated with this operation, since the stabiliz-
ers need to be measured for d code cycles to account for
measurement errors. However, this can be done simulta-
neously with the subsequent lattice-surgery operation,
as will become apparent in the example of the Bell state
preparation. For arbitrary states, the logical states are
prepared via state injection. This is a non-fault-tolerant
procedure with a constant time cost that does not scale
with d, which is why we do not associate a time step
with it. One such state-injection protocol is described
in Ref. [13] and is shown in Fig. 38 for the prepara-
tion of a logical magic state |m〉. In the left panel, a
physical magic state is prepared, along with a stabilizer
state by measuring the shown stabilizers for three code
cycles. Note that any single-qubit error during these
three code cycles will corrupt the logical information.
Next, the stabilizer configuration is switched to the or-

Figure 39: Twist-based lattice surgery in a square lattice of
qubits with nearest-neighbor couplings. The black dots are
physical data qubits and the white dots are physical measure-
ment qubits.

dinary surface code in the right panel. Here, the sta-
bilizers are, again, only measured for three code cycles,
independently of d, since the state-injection protocol
is, in any case, non-fault-tolerant, i.e., produces logical
states with an error rate proportional to the physical
error rate p.

Patch measurement and Bell state prepara-
tion. Surface-code patches are measured in the X or
Z basis by measuring all physical qubits in the cor-
responding basis and performing some classical error
correction, where the time cost does not scale with d.
Two-patch measurements correspond to lattice surgery
and can be demonstrated via the preparation of a Bell
state, as shown in Fig. 40a. Two surface-code patches
are initialized in the logical |+〉 state by initializing all
physical qubits in |+〉 and measuring the stabilizers. Si-
multaneously, lattice surgery between the two patches
is performed, measuring the logical Z⊗Z operator. The
measurement outcome is the product of the newly intro-
duced Z stabilizers highlighted in red, as the product
of these stabilizers corresponds to the product of the
logical Z operators encoded in the two surface-code Z
boundaries. To account for measurement errors, this
measurement is repeated for d code cycles. Finally, the
patch is split into two patches again, leaving the two
logical surface-code qubits in an entangled Bell state.

Y measurements. Two-patch measurements can be
used to measure products of two Pauli operators other

Accepted in Quantum 2019-02-01, click title to verify 32

55



(a) Bell state preparation (b) Moving corners

(c) Qubit movement

Z Z

X X

X X

Z Z

X

Z Z

ZY
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Figure 40: Surface-code implementation of the protocols in Fig. 2a-d.

than Z ⊗ Z, e.g., operators involving the Y operator,
as shown in Fig. 40d. First, a patch is deformed to
a wider patch by initializing physical qubits in the X
basis and measuring the new stabilizers, which takes d
code cycles. Below the wide patch, a rectangular an-
cilla patch is initialized in the |0〉 state. A column of
physical qubits in the center is missing, so that, in the
next step, the ancilla can be used for twist-based lattice
surgery [11], measuring the Y operator. The product of
the operators highlighted in red in the third step corre-
sponds to the logical Y ⊗ Z operator between the two
logical qubits. The lattice surgery in the third step
involves dislocation operators and a five-qubit twist de-
fect. Even though these stabilizers are irregular, they
can still be measured in a square lattice of physical
qubits with nearest-neighbor couplings, as we show in
Fig. 39. For the measurement of twist operators and
wide X and Z stabilizers, up to three measurement an-
cillas can be used.

Multi-patch measurements. For a multi-patch
measurement in Fig. 41, all physical qubits located in
the region of the ancilla patch are initialized in the |+〉
state. Next, new check operators are introduced. The
newly introduced X-type stabilizers all yield trivial out-
comes, since they are products of physical qubits initial-
ized in an X eigenstate and previously measured check
operators. The nontrivial operators are highlighted by

a red dot in Fig. 41. Their product is equivalent to the
desired operator, i.e., Y|q1〉 ⊗X|q3〉 ⊗ Z|q4〉 ⊗X|q5〉. The
new check operators are measured for d code cycles to
account for measurement errors. This procedure corre-
sponds to the multi-body lattice surgery protocol intro-
duced in Ref. [12]. It can be used to measure any prod-
uct of surface-code-boundary Pauli operators by initial-
izing physical qubits in the |+〉 state in an ancilla region
of width d, and then measuring new check operators,
where the product of the nontrivial operators yields the
outcome of the desired multi-patch measurement. The
ancilla region of width d is required to ensure that the
code distance of the stabilizer configuration during the
multi-body lattice surgery remains d.

Moving boundaries. The protocol to move patches
is similar to lattice surgery. It is shown in Fig. 40c.
Extending the patch via its Z boundary in the second
step is the same operation as a Z ⊗ Z lattice surgery
between the patch and a rectangular |+〉 ancilla qubit
to the right. This needs to be done for d code cycles
to account for measurement errors. Finally, the patch
is shortened again by measuring the left two thirds of
physical qubits in the X basis.

Moving corners. The movement of corners of a
surface-code patch is shown in Fig. 40b. It corresponds
to a change of boundary stabilizers. In order to account
for measurement errors of the newly measured stabiliz-
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Figure 41: Surface-code implementation of the multi-patch measurement in Fig. 2e. The measurement outcome is the product of
all check operators with a red dot.

ers, this requires d code cycles. The top left physical
qubit in the second step of Fig. 40b is removed from
the patch via an X measurement.

B Extended ruleset
Some surface-code operations are not covered by the
rules discussed in the introduction. In particular, we
only consider patches with 4 or 6 corners, where we
refer to the points where two edges meet as corners.
In general, one could also consider patches with a

Four-, six- and eight-corner patches

(d) (2N + 2)-corner patches

(a)

(b)

(c)

Figure 42: Patches with 2N + 2 corners represent N qubits.
Their 2N + 2 edges represent the shown Pauli operators.

higher number of corners. A patch with 2N + 2 cor-
ners represents N qubits, as shown in Fig. 42. The
simplest case is a four-corner patch (a/b) representing
a single qubit. Six-corner patches (c) are two-qubit
patches. The general rule that assigns the operators
of N qubits to the edges of a (2N + 2)-corner patch is
given in Fig. 42d. Going clockwise, the dashed bound-
aries correspond to X1, X1X2, X2X3, . . . , XN−1XN and
XN . Starting to the right of X1, the solid edges corre-
spond to Z1, Z2, . . . , ZN and the product Z1Z2 · · ·ZN .

One can also consider patches with shortened edges,
such that they occupy fewer tiles. The drawback of this
is that in every time step, an error corresponding to
the Pauli operator represented by the shortened edge
will occur with a certain probability perr. An exam-
ple of a six-corner patch with two shortened X edges
is shown in Fig. 43, meaning that this six-corner patch
is susceptible to X errors. In the surface-code imple-
mentation, this corresponds to a patch with boundaries
that are shorter than d physical data qubits, effectively
reducing the code distance of the logical operators en-
coded by the shortened edges. Note that patches with
shortened edges may occupy more than d2 physical data
qubits per tile.

With (2N + 2)-corner patches, the set of operations
needs to be modified. The initialization rule for such
patches is:

– Qubits can be initialized in theX and Z eigenstates
|+〉 and |0〉. All qubits that are part of one patch
must be initialized in the same state. (Cost: 0�)
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Figure 43: Surface-code implementation of a six-corner patch
with shortened boundaries

Similarly, the single-patch measurement rule is modified
to

– Qubits can be measured in the X or Z basis. All
qubits that are part of the same patch are mea-
sured simultaneously and in the same basis. This
measurement removes the patch from the board.
(Cost: 0�)

Pauli product measurements. Using multi-corner
patches with shortened boundaries, the multi-patch
measurement rule is, in principle, redundant. For in-
stance, the Pauli product measurement of Fig. 8 can be
equivalently performed in 1� via the protocol shown in
Fig. 44. An 8-corner ancilla patch is initialized in the
|+〉⊗3

state. The shape of this patch is chosen, such
that each of the four Z edges is adjacent to one of the
four operators that are part of the measurement. Note
that this means that some of the X edges are shortened,
such that the qubits are susceptible to X errors. In this
case, this is not a problem, since the qubits are initial-
ized in X eigenstates and random X errors will cause
no change to the states. Next, in step 3, we measure
the four Pauli products Z|q1〉⊗Z1, Y|q2〉⊗Z2, Z|m〉⊗Z3
and X|q4〉 ⊗ (Z1 · Z2 · Z3). Because the ancilla is ini-
tialized in an X eigenstate, the operators Z1, Z2 and
Z3 are unknown, and the outcome of each of the four
aforementioned measurements is entirely random. How-
ever, multiplying the four measurement outcomes yields
Z|q1〉 ⊗ Y|q2〉 ⊗X|q4〉 ⊗Z|m〉 ⊗ (Z1 ·Z2 ·Z3 ·Z1 ·Z2 ·Z3),
which is precisely the operator Z|q1〉⊗Y|q2〉⊗X|q4〉⊗Z|m〉
that we wanted to measure. Finally, to discard the an-
cilla patch we measure its three qubits in the X basis.
Again, X errors will have no effect, as they commute
with the measurement basis. Measurement outcomes of
Xi = −1 prompt a Pauli correction. If in the previous
step, the Zi edge was measured together with a Pauli
operator P , the correction is a Pπ/2 gate. For instance,
if in Fig. 8 the final measurements yield X2 = −1 and
X3 = −1, the corrections are a Yπ/2 rotation on |q2〉
and a Zπ/2 rotation on |m〉.

This type of protocol can be used to measure any
product of n Pauli operators. An ancilla patch needs
to be initialized in the |+〉⊗n state with Z edges adja-

(a) Measurement of Z|q1〉 ⊗ Y|q2〉 ⊗X|q4〉 ⊗ Z|m〉
0� Step 1 0� Step 2

1� Step 3 1� Step 3

(b) Ancilla patch

Figure 44: Pauli product measurement protocol. (a) Example
of a measurement of the operator Z ⊗ Y ⊗ 1⊗X ⊗ Z of the
qubits |q1〉, |q2〉, |q3〉, |q4〉 and |m〉. (b) Ancilla patch used
during the measurement.

cent to the n operators part of the measurement. The
surface-code implementation of this protocol is identi-
cal to the surface-code implementation of multi-patch
measurements in Fig. 41.

While multi-corner patches and shortened edges in-
crease the number of surface-code operations that are
covered by the framework, there are still rules that
can be added to the ruleset to account for more op-
erations, such as, e.g., the movement of corners inside
a patch [10]. Also, for the initialization of non-Pauli
eigenstates, error models other than random Pauli er-
rors can be considered.

C Proof-of-principle device
Here, we discuss how (3d− 1) · 2d physical data qubits
can be used to build a proof-of-principle device that is a
universal two-qubit error-corrected quantum computer
that uses undistilled magic states and can demonstrate
all the operations required for large-scale quantum com-
puting. We go through the example of a computation
that starts with three π/8 rotations around Z⊗Z, Y ⊗X
and Y ⊗Y in Fig. 45. For the first rotation, we need to
measure Z1 ⊗Z2 ⊗Z|m〉. A magic state is initialized in
a long patch in step 2, which is equivalent to initializing
a magic state and measuring X ⊗X between the magic
state and neighboring |0〉 ancillas. This effectively en-
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Figure 45: Proof-of-principle two-qubit device implemented with 48 physical data qubits.

codes the magic state in a three-qubit repetition code
with a logical Z operator ZL = Z⊗Z⊗Z. To consume
the magic state, Z1 ⊗ Z2 ⊗ ZL is measured in step 3.
This consumes a magic state for the Z ⊗ Z rotation.

The next rotation is a Y ⊗ X rotation. Here, we
first need to deform |q1〉, such that both the X and Z
boundaries of the qubit are accessible. Qubit |q2〉 is
rotated in steps 5-8 using the protocol in Fig. 11a. In
step 9, again, a magic state is initialized in a two-qubit
repetition code with ZL = Za1 ⊗ Za2. In step 10, the
magic state is consumed via a Y1⊗Za1 and a X1⊗Za2

measurement.

This kind of protocol consisting of patch deformations
and patch rotations can be used to perform any π/8
rotation with the exception of (Y ⊗ Y )π/8, since there
is not enough space to make both Y operators accessible
for lattice surgery. For this rotation, we first explicitly
execute a Clifford gate to change (Y⊗Y )π/8 to any other
rotation. Any Clifford gate that does not commute with
Y ⊗ Y will suffice. In our example, we choose a Zπ/4
rotation. It is performed by initializing a |0〉 state in
step 13, and measuring Z1 ⊗ Y between |q1〉 and the

ancilla, following the protocol of Fig. 11b.

This demonstrates that a proof-of-principle experi-
ment can be built with 48 physical data qubits. In gen-
eral, this requires 6d2−2d qubits, i.e., 48 for d = 3, 140
for d = 5 and 280 for d = 7. If measurement qubits are
required for syndrome readout, the number of physical
qubits roughly doubles.

D Implementation of the 7-to-1 proto-
col
Even though the distillation of |Y 〉 = |0〉 + i |1〉 states
has no use in our framework, we show how to imple-
ment the 7-to-1 distillation protocol for benchmarking
purposes in Fig. 46. The protocol is based on the 7-
qubit Steane code. Its X stabilizers are the faces shown
in Fig. 46a, and its logical X operator can be chosen
as the X ⊗X ⊗X operator with support on the three
qubits drawn in red.

Following the procedure in Sec. 3, the distillation
circuit is obtained by initializing mx + k = 4 qubits in
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(a) Steane code (b) Distillation block (c) 7-to-1 distillation circuit

Figure 46: The Steane code (a) is the basis of 7-to-1 distillation (c). In our framework, the corresponding distillation block (b)
uses 7 tiles for 4�.

the |+〉 state, where the first three qubits are associ-
ated with the three X stabilizers, and the last qubit is
associated with the logical X operator. For each qubit
of the Steane code, the circuit contains a π/4 rotation
with Z’s on each stabilizer and logical operator that
the qubit is part of. The three qubits in the corner
of the triangle are only part of a single stabilizer and
no logical operator, therefore they contribute with
single-qubit Zπ/4 rotations, which can be absorbed into

the initial state. The remaining four rotations are
shown in Fig. 46c.

A distillation block that can be used for this protocol
is shown in Fig. 46b. Since the consumption of |Y 〉
resource states requires no Clifford correction, this block
consists of only 7 tiles. With four rotations, the leading
order of the space-time cost of this protocol is 7d2 ·4d =
28d3.
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2 | Lattice Surgery with a Twist

One of the techniques used in the previous chapter for logical Pauli product measurements between
surface-code patches was twist-based lattice surgery, which can measure products involving the Y
operator. While twist-based lattice surgery was briefly outlined in the appendix of the previous
publication, it is properly introduced and analyzed in the following publication. We also show
how the required stabilizer measurements can be implemented in physical architectures using
solid-state qubits.

61



Lattice Surgery with a Twist:
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We present a planar surface-code-based
scheme for fault-tolerant quantum computation
which eliminates the time overhead of single-
qubit Clifford gates, and implements long-range
multi-target CNOT gates with a time overhead
that scales only logarithmically with the control-
target separation. This is done by replacing
hardware operations for single-qubit Clifford
gates with a classical tracking protocol. Inter-
qubit communication is added via a modified
lattice surgery protocol that employs twist de-
fects of the surface code. The long-range multi-
target CNOT gates facilitate magic state distil-
lation, which renders our scheme fault-tolerant
and universal.

1 Introduction
The performance of quantum computers is limited by
the coherence times of the underlying physical qubits.
Quantum error correction [1] offers the possibility to
enhance the qubits’ survival times by encoding quan-
tum information using logical qubits consisting of many
physical qubits. Topological quantum error-correcting
codes [2, 3] are of particular interest, as they only re-
quire the measurement of spatially local operators –
a feature that is compatible with the local opera-
tions accessible in two-dimensional solid-state qubit ar-
chitectures, such as superconducting qubits [4], spin
qubits [5], or Majorana-based qubits [6].

Quantum error-correcting codes typically operate in
cycles. In each code cycle, mutually commuting oper-
ators called stabilizers [7] are measured to reveal the
error syndrome, which is used to determine and cor-
rect errors. Surface codes [8, 9] are topological codes
that feature a high error threshold [10, 11], and only re-
quire the measurement of four-qubit stabilizer operators
for the readout of the error syndrome. The low-weight
stabilizers are an advantage over other codes such as
color codes [12, 13], which require the measurement of
six-qubit operators. This facilitates syndrome readout
in many physical architectures such as superconducting
qubits, where the measurement of higher-weight sta-

bilizers requires more potentially faulty controlled-not
(CNOT) gates.

The main drawback of surface codes in comparison
to color codes is the absence of transversal single-qubit
Clifford gates, i.e., the gates that are products of the
Hadamard gate H and the phase gate S. While the
transversal Clifford gates of color codes provide them
with fast logical H and S gates, defect-based propos-
als for surface codes [14] implement the H gate via a
multi-step measurement protocol, and the S gate via a
distilled ancilla qubit. In order to lower the overhead
of single-qubit Clifford gates, surface code qubits can
be encoded using twist defects [15], which are essen-
tially Majoranas that can be braided via code defor-
mation [16]. It was pointed out that braiding of twists
can also be implemented via a classical tracking proto-
col [17], in accordance with the Gottesman-Knill theo-
rem [18].

In this work, we present a scheme that implements
this tracking protocol for planar surface codes, as op-
posed to twist-based encodings. We refer to this pro-
tocol as edge tracking. In our scheme, Clifford com-
pleteness is achieved via a modified lattice surgery [19]

Xedge = X⊗d
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=
Z
⊗
d

X X
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X
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Z Z
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Stabilizers:

Figure 1: An example of a surface code qubit with code distance
d = 5. Physical qubits are located on the vertices, and the
faces define the two- and four-qubit Z type (bright) and X
type (dark) stabilizer operators. X strings along the X edge
(orange) are logical XL operators, whereas Z strings along Z
edges (blue) are ZL operators.
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Figure 2: An example of edge tracking with a wide surface code qubit. Starting from the default encoding Xedge = XL and
Zedge = ZL, an H gate changes it to Xedge = ZL and Zedge = XL, and a subsequent S gate modifies it to Xedge = ZL and
Zedge = YL.

protocol. Twist defects are no longer used to encode
quantum information, but reappear in lattice-surgery
protocols involving the logical YL operator, so that we
refer to the protocol as twist-based lattice surgery. Our
scheme provides long-range multi-target CNOT gates –
i.e., CNOTs with one control and arbitrarily many tar-
gets – between any set of edge-tracked surface code
qubits. These gates are particularly useful for magic
state distillation [20], which completes the universal
gate set by fault-tolerantly implementing the T gate
(or π/8 gate). Our scheme not only eliminates the need
for hardware operations for single-qubit Clifford gates,
but also conceptually simplifies the twist-defect-based
approach to surface-code quantum computing. Even
though our scheme features twist defects and disloca-
tion lines, the only concepts necessary to understand
our scheme are the encoding of logical qubits and the
measurement of two-qubit parity operators. We discuss
the implementation of the single-qubit Clifford gates,
CNOT gates, and T gates in Secs. 2, 3 and 4, respec-
tively. In a concluding section, we discuss our scheme in
the context of possible hardware implementations and
in comparison to alternative topological codes.

2 Edge Tracking
The basic framework of our scheme are physical qubits
arranged on a 2D square lattice which allow for the
measurement of local stabilizer operators. Examples of
possible physical realizations include superconducting
qubits emulating stabilizer measurements using ancilla
qubits and CNOT gates [14], or Majorana-based qubits
using direct measurements of the stabilizers via Majo-
rana fermion parity measurements [21]. A single surface
code qubit can be defined using the checkered square
shown in Fig. 1, where physical qubits are located at
the vertices. We refer to the Pauli operators of the
physical qubits as X, Y , and Z. The faces define the
X⊗n- and Z⊗n-stabilizers of the code, where n is the
number of qubits that are part of the face. The figure
shows an example of a code with code distance d = 5,
but this construction can be generalized to arbitrary

code distances.

Surface code qubits have two distinct types of bound-
aries, usually referred to as rough and smooth edges.
Here, we call them X and Z edges in analogy to the log-
ical Pauli operators XL and ZL that they encode. Sur-
face code qubits can be easily initialized in the logical
+1-eigenstates |0L〉 and |+L〉 of ZL and XL by initial-
izing all physical qubits in the corresponding physical
states |0〉 and |+〉, measuring all stabilizers, and correct-
ing the errors. Conversely, they can be read out in the
XL and ZL basis by measuring all physical qubits in the
X or Z basis, and performing classical error correction.

We define the operator Xedge (Zedge) as the string
of X operators (Z operators) on all physical qubits
along an X edge (Z edge). In the default encoding,
Xedge = XL and Zedge = ZL. The edge tracking proce-
dure that we now introduce essentially modifies which
logical operators are encoded by Xedge and Zedge. Logi-
cal single-qubit Clifford gates map the logical Pauli op-
erators XL, YL, and ZL onto other Pauli operators. In
particular, an H gate maps XL → ZL, YL → −YL, and
ZL → XL. An S gate maps XL → YL, YL → −XL, and
ZL → ZL. Thus, we can replace single-qubit Clifford
gates by a classical tracking procedure. This is essen-
tially the content of the Gottesman-Knill theorem [18],
which states that Clifford gates can be simulated effi-
ciently on a classical computer. For now, we only con-
sider tracking of single-qubit Clifford gates H and S,
whereas CNOT gates are performed explicitly.

In order to combine this tracking scheme with lat-
tice surgery, it will be convenient to use the wide
qubits shown in Fig. 2 instead of the square qubits
that were previously introduced. These qubits have
an X and Z edge on the same side, such that the
logical operators XL, YL and ZL can all be accessed
by lattice surgery from the same side of the qubit.
Compared to square qubits with the same code dis-
tance, this comes at the price of a larger number
of physical qubits for each logical qubit. The fig-
ure also shows an example of edge tracking. The de-
fault encoding is Xedge = XL and Zedge = ZL. An
H gate changes the encoding to Xedge = ZL and
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Zedge = XL. A subsequent S gate modifies it to
Xedge = ZL and Zedge = YL.

3 Lattice surgery with a twist
Edge tracking requires a suitable CNOT gate protocol
in order to be useful for universal quantum computa-
tion. This is provided by twist-based lattice surgery.
It essentially implements the circuit identity shown in
Fig. 3 for edge-tracked qubits. Here, a CNOT between a
control and target qubit corresponds to three measure-
ments: a Z ⊗ Z parity measurement between the con-
trol and an ancilla initialized in the X eigenstate |+〉, a
subsequent X ⊗X parity measurement between ancilla
and target, and a final Z basis readout of the ancilla
qubit. In order to use this protocol for logical CNOTs,
measurements of logical two-qubit parity operators are
required, e.g., operators such as ZL ⊗ ZL, which are
nonlocal operators involving 2d physical qubits.

3.1 Nearest-neighbor CNOT
Let us first discuss standard lattice surgery between two
neighboring wide qubits in the default encoding. Con-
sider the CNOT protocol in Fig. 4. Lattice surgery [19]
is a protocol for fault-tolerant logical parity measure-
ments which only requires the measurement of local sta-
bilizer operators. After initializing an ancilla qubit in
the |+〉 state, lattice surgery between the Z edges of
the control and ancilla qubit in step (2) measures their
ZL⊗ZL parity. This is done by modifying the stabilizers
along the boundaries. The boundary X stabilizers are
merged to form four-qubit stabilizers (orange), and new
Z stabilizers (blue) are introduced. While the stabiliz-
ers still mutually commute, this procedure increases the
total number of stabilizers by one. In other words, the
number of degrees of freedom is reduced by one, and
one bit of information is measured during this proto-

(1) (2) (3)

Zm2

Xm1+m3

Figure 3: A CNOT between a control |c〉 and a target |t〉 is
equivalent to a Z ⊗Z parity measurement between |c〉 and an
ancilla in the |+〉 state, followed by an X ⊗X parity measure-
ment between ancilla and |t〉, and finally a Z basis measurement
of the ancilla. The measurement outcomes determine a Pauli
correction.

col. The measurement outcome of the orange stabiliz-
ers is trivial, as they are products of previously known
boundary stabilizers. The outcome of the blue stabiliz-
ers, on the other hand, is nontrivial. They contain each
boundary qubit exactly once. Therefore, their product

is precisely the operator Z
(control)
edge ⊗Z(ancilla)

edge , which cor-
responds to the ZL⊗ZL parity in the default encoding.
Thus, lattice surgery implements a fault-tolerant par-
ity measurement between logical qubits. Similarly, in
the following lattice surgery step (3), the blue stabiliz-
ers are trivial, and the product of orange stabilizers is

(2)

(3)

Z Z

ZZ

Z

ZZ

XX

X X

X

X X

XL ZL XL ZL

control

ancilla

(1)

ZL XL

target

Figure 4: CNOT by lattice surgery corresponding to the gate
circuit in Fig. 3. (1) All qubits are in the default encoding
Xedge = XL and Zedge = ZL, and the ancilla is initialized
in the |+〉 state. (2) To measure the ZL ⊗ ZL parity be-
tween control and target, the two-qubit boundary stabilizers
are merged (orange), and new Z type stabilizers (blue) are in-
troduced, whose product is precisely the parity. (3) Similarly,
the XL ⊗XL parity between ancilla and target is measured by
the product of new X type stabilizers (orange).
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XL ZL

control target

(1)

XL ZL

ancilla 1 ancilla 2

(2)

(3)

Figure 5: Long-range CNOT between two wide qubits in the default encoding that are separated by three other qubits. After
initializing two ancillas in the |+〉 state (1), lattice surgery (2) simultaneously measures the ZL ⊗ZL parities between control and
ancilla 1, and ancilla 1 and ancilla 2. This also yields the ZL ⊗ ZL parity between control and ancilla 2, such that ancilla 2 can
be used for an XL ⊗XL parity measurement (3) with the target qubit. At the end of the CNOT protocol, ancilla 1 is read out in
the X basis with outcome m, leading to a Zm correction on the control.

X
(ancilla)
edge ⊗ X(target)

edge . A ZL basis measurement of the
ancilla qubit completes the gate circuit in Fig. 3. The
subsequent Pauli corrections are Clifford gates and can
be handled by edge tracking.

3.2 Long-range CNOT
A similar protocol can be used to perform CNOTs be-
tween logical qubits that are not nearest neighbors, but
separated by some distance. For this, we use lattice
surgery to measure the ZL ⊗ ZL parities between the
control qubits and multiple ancilla qubits simultane-
ously [19, 22, 23]. In the protocol in Fig. 5, two ancilla
qubits are initialized in the |+〉 state, one long ancilla
that spans the entire distance between the control and
target, and another that is adjacent to the X edge of
the target. In step (2), lattice surgery simultaneously
measures the ZL⊗ZL parities between control and long
ancilla, and between both ancillas. This effectively mea-
sures the ZL ⊗ZL parity between control and ancilla 2
as the product of both measurements. Thus, ancilla
2 can be used as the ancilla of the CNOT protocol of
Fig. 3. An XL ⊗ XL parity measurement between an-

cilla 2 and the target qubit, and a subsequent Z basis
readout of ancilla 2 complete the CNOT protocol. Since
ancilla 1 is still entangled with the control qubit, it can-
not be discarded right away, but needs to be measured
in the X basis with outcome m ∈ {0, 1}, which leads to
a subsequent Zm Pauli correction on the control qubit.

Vertical X error strings connecting the (orange) X
edges of the long ancilla qubit can introduce errors to
the CNOT protocol. While the number of possible error
strings increases linearly with the control-target sepa-
ration s, the probability of error strings decreases expo-
nentially with the width of the ancilla. Therefore, the
width needs to increase with O(log s) in order to main-
tain the CNOT gate fidelity, implying a space overhead
of O(s log s) for the long-range CNOT. There are two
factors that contribute to the time overhead of the pro-
tocol: decoding and syndrome readout errors. While
decoding can be done with a runtime that scales with
O(log s) [24], the correction of stabilizer measurement
errors is handled by recording multiple rounds of syn-
drome extraction for one code cycle [25]. This effec-
tively introduces a third dimension to the code. The
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XX

X Y Z

target

ZL XL

target

ZL YL

ancilla

X X

Z Z

Z Z

X X Z

Dislocations: Twist defect:

(1) (2) (3)

(1) (2) (3)

(a) Measurement of XL ⊗XL = X
(ancilla)
edge ⊗ Z(target)

edge

(b) Measurement of XL ⊗XL = X
(ancilla)
edge ⊗ iZ(target)

edge ·X(target)
edge

X

ancilla

Figure 6: XL ⊗XL parity measurements between an ancilla and an edge-tracked target qubit. In (a), edge tracking has changed
the encoding of the target to Xedge = ZL and Zedge = XL. The stabilizer configuration that measures the XL ⊗ XL parity
corresponds to a dislocation line. In (b), the encoding of the target qubit is Xedge = ZL and Zedge = YL. Here, the XL ⊗ XL

parity is measured by a stabilizer configuration that corresponds to a dislocation line that is terminated by a twist defect.

number of recorded measurement rounds for each code
cycle depends on the measurement fidelity. With higher
measurement fidelity, fewer measurement rounds are re-
quired to reach the same logical CNOT gate fidelity. As
with the width of the long ancilla, errors in the time di-
mension are suppressed exponentially with the number
of measurement rounds, i.e., with the code distance in
time, but the number of possible error strings increases
linearly with s. This implies that the number of mea-
surement rounds needs to increase with O(log s). Thus,
the total time overhead is still just O(log s), which is
essentially constant for finite-size systems.

Note that in our figures (such as Fig. 5), the widths
of the ancilla qubits, and therefore their code distances,
are chosen to be smaller than the code distances of the
wide qubits. This may be a valid choice for some com-
putations, since the ancillas only need to survive for
the duration of the CNOT, as opposed to data qubits
that may need to survive for the entire computation. In
practice, however, we expect that the space reserved for
ancilla qubits will be in use for various CNOT gates for
essentially the entire duration of the quantum compu-

tation. Therefore, for most applications, the code dis-
tances of the ancilla qubits and the data qubits should
be chosen to be equal, and the logarithmic space over-
head scaling with the control-target separation can be
ignored. In this case, all logical qubits are protected
against error strings of length (d − 1)/2 during each
code cycle. There is still a logarithmic space overhead
scaling, since the necessary code distance to reach a
certain target error probability at the end of a quan-
tum computation involving n logical qubits scales with
O(logn).

3.3 CNOT between edge-tracked qubits
The previously discussed standard lattice surgery pro-
tocols can be used to measure Zedge ⊗ Zedge and
Xedge ⊗Xedge. However, CNOTs between edge-tracked
qubits may require additional parity measurements.
This is where dislocations and twist defects come into
play.

In Fig. 6, we explore the two additional situations
that may occur for XL ⊗XL parity measurements be-
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XL ZL

control

(1)

XL ZL

target 1
ZL XL

target 2
ZL YL

ancilla 1

target 3

ancilla 2 ancilla 4 ancilla 5anc. 3
(2)

(3)

Figure 7: Long-range multi-target CNOTs with edge-tracked qubits. The control, ancillas, and target 1 are in the default encoding
Zedge = ZL and Xedge = XL, whereas target 2 and target 3 have been modified by edge tracking, such that XL ⊗ XL parity
measurements require lattice surgery between different edge types. Five ancilla qubits are initialized in the |+〉 state (1) and their
ZL⊗ZL parities with the control qubit are measured simultaneously (2). Ancillas 2 and 4 merely provide long-range communication
and are not used for CNOTs, but are instead read out in the X basis. Subsequent XL ⊗ XL parity measurements (3) use the
previously discussed lattice surgery protocols for edge-tracked qubits.

tween an ancilla and an edge-tracked target qubit dur-
ing a CNOT protocol. In the first situation (a), the XL

operator is defined by the target’s Z edge as a conse-
quence of edge tracking. Thus, lattice surgery needs to

measure the operator X
(ancilla)
edge ⊗Z(target)

edge . For this, the
boundary stabilizers are merged, and new stabilizers are
introduced. One can check that all stabilizers commute,
and that the product of the nontrivial stabilizers indeed
yields XL ⊗XL.

The remaining possibility is that, as a consequence of
edge tracking, none of the edges of the target define its
XL. In (b), the target qubit is in the encoding where
Xedge = ZL and Zedge = YL. Since XL = iZLYL, and
therefore XL = iXedgeZedge, lattice surgery now needs

to measure X
(ancilla)
edge ⊗ iX

(target)
edge · Z(target)

edge . Similar
to the previous cases, stabilizers along the boundary
in (b3) are merged yielding the trivial stabilizers. The
product of the newly introduced nontrivial stabilizers is
again the XL⊗XL parity. Note that the center qubit of
the blue five-qubit operator contributes to the stabilizer
measurement in the Y basis, since it is part of both the
X and the Z edge.

The three different lattice surgeries in panel (3) of
Fig. 5, and panels (a3) and (b3) of Fig. 6 can also be
interpreted as protocols to measure XL⊗XL, ZL⊗XL

and YL ⊗XL between a wide qubit and a square qubit
in the default encoding. The protocol involving YL is
what we refer to as twist-based lattice surgery, since the

five-qubit operator corresponds to a twist defect.
Such a parity measurement can also be used to mea-

sure the product iXedge · Zedge of a qubit, e.g., to read
out the qubit in the YL basis in the default encoding.
For this, an ancilla can be initialized in the |0〉 state,

such that a Y
(qubit)
L ⊗Z(ancilla)

L parity measurement be-
tween qubit and ancilla is equivalent to a YL measure-
ment of the qubit.

This covers all the necessary lattice surgery protocols
for CNOTs between edge-tracked qubits. The ZL ⊗ZL
parity measurements between ancilla qubits and edge-
tracked control qubits are analogous to the XL ⊗ XL

parity measurements in Fig. 6. The concrete imple-
mentation of the required stabilizer measurements de-
pends on the given architecture. While Majorana-based
implementations allow for direct measurements of the
necessary operators, non-topological setups such as su-
perconducting qubits require the use of measurement
qubits. In the latter case, the stabilizer measurement
protocol requires special care in order to avoid corre-
lated errors that lower the effective code distance, as
we show in Appendix A.

3.4 Connection to twist defects
The stabilizer configurations in these modified lattice
surgery protocols feature dislocations and twist defects.
The mixed stabilizers in (a3) correspond to a dislocation
in the surface code. The stabilizer configuration in (b3)

Accepted in Quantum 2018-16-04, click title to verify 6

67



control 1

control 2 control 3

target 1 target 3

target 2

Figure 8: Example of a two-dimensional arrangement of surface code qubits, where qubits are grouped in blocks of six. The long
ancilla qubits can be used for three simultaneous long-range CNOT gates.

corresponds to a dislocation line between the X edge
of the ancilla and the Z edge of the target which is
terminated by a five-qubit twist defect [15, 16].

Twist-based lattice surgery can also be interpreted in
a Majorana fermion picture. It was pointed out that
the corners of square surface code qubits (as in Fig. 1)
correspond to twist defects [16]. Similarly, the ends
of the X and Z edges of wide qubits can be replaced
by twist defects – i.e., Majorana fermions – such that
the logical operators XL, ZL, and YL are two-Majorana
fermion parity operators. Lattice surgery then effec-
tively implements a four-Majorana fermion parity mea-
surement [16]. In Fig. 6 (b3), these four Majorana
fermions are in the bottom left and right corners of the
target, and in the top left and right corners of the an-
cilla. The twist defect corresponds to the remaining
Majorana fermion residing between the X and Z edge
of the target qubit, which is not part of the parity mea-
surement.

3.5 Long-range multi-target CNOT
The simultaneous ZL⊗ZL parity measurements of long-
range CNOTs can be used for multi-target CNOTs, i.e.,
for multiple CNOTs with the same control, but different
target qubits. An example is shown in Fig. 7, where five
ancillas are used to perform three CNOTs with three
edge-tracked targets simultaneously. Step (2) shows the
simultaneous measurement of ZL ⊗ ZL parities of six

neighboring qubits, which correspond to one control and
five ancilla qubit. This protocol effectively measures the
ZL⊗ZL parities of all pairs of qubits, and in particular
of the control and each ancilla qubit. Thus, each of
the five ancilla qubits can be used for XL ⊗XL parity
measurements with target qubits. While ancillas 1, 3,
and 5 are used for CNOTs with targets 1, 2, and 3,
ancillas 2 and 4 merely bridge distances between distant
qubits.

Thus, by simultaneously initializing multiple ancillas,
lattice surgery provides long-range multi-target CNOTs
with edge-tracked qubits with the same time overhead
as single CNOTs. At the end of the protocol, ancillas
that are used for XL ⊗ XL parity measurements with
target qubits are read out in the Z basis, whereas an-
cillas used to bridge long distances are read out in the

XL ZL

XL ZL

XL ZL

XL ZL

(a) (b)

Figure 9: Double-sided qubits encode two logical qubits using
(a) 2d2 + d − 1 or (b) 2d2 − d physical qubits. The left and
right edges correspond to the logical operators ZL ⊗ ZL and
XL ⊗XL of both encoded qubits, respectively.
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Figure 10: Example of the 15-to-1 magic state distillation protocol using long-range multi-target CNOTs via lattice surgery. By
appropriately partitioning the long ancilla qubit, it can be used for each of the five multi-target CNOTs of the protocol.

X basis. Multi-target CNOTs are particularly useful
for logical T gates, as magic state distillation schemes
typically consist of many multi-target CNOTs. These
complete the universal gate set of our scheme, as we
discuss in the following section.

4 2D arrangement of logical qubits
So far, we have considered logical qubits arranged on
a line. The lattice-surgery-based CNOT gates can also
provide long-range connectivity in two dimensions. For
this, it will be convenient to use the space of wide qubits
to encode two logical qubits instead of just one. The
double-sided qubits shown in Fig. 9 reduce the space
overhead from ∼ 2d2 physical qubits for each logical
(wide) qubit back to ∼ d2 physical qubits, similar to
the square qubits in Fig. 1. The downside of double-
sided qubits is that state initialization and readout is
more complicated, as the two encoded qubits cannot be
measured independently. However, one can use lattice
surgery to initialize and read out in any Pauli basis. For
instance, a qubit can be initialized in the |0〉 state by
initializing a standard ancilla encoding a single qubit in
the |0〉 state and performing lattice surgery via the Z
edges of both qubits. Readout is done the same way,
using the appropriate edge of the qubit. Should one
require fast initialization and readout, it is still possible
to use wide qubits instead of double-sided qubits.

An example of a 2D arrangement of double-sided
qubits is shown in Fig. 8, where they form blocks of
six logical qubits. The space between blocks is used for
ancilla qubits for long-range CNOT gates. The separa-
tion between blocks not only sets the maximum width
of the ancilla qubits, but also influences the number

of multi-target CNOTs that can be performed simul-
taneously. The larger the separation, the more ancilla
qubits can fit between the qubit blocks. The example
in Fig. 8 shows three simultaneous CNOT gates, where
the space between qubit blocks allows for two parallel
“lanes” of CNOT ancillas. Thus, a larger separation be-
tween qubit blocks increases the connectivity, but also
the space overhead.

4.1 Example: Magic state distillation
Having discussed the implementation of the logical Clif-
ford gates in our scheme, the remaining gate for univer-
sal quantum computation is the logical T gate. One
possibility to implement the logical T gate using physi-
cal T gates and logical Clifford gates is magic state dis-
tillation [20]. The aim of this scheme is to generate an
encoded magic state |m〉 = (|0〉 + eiπ/4 |1〉)/

√
2, which

corresponds to a |+〉-state on which a T gate has been
performed. A CNOT gate between |m〉 and a target
qubit, followed by the measurement of |m〉 corresponds
to a logical T gate on the target qubit, up to a Clifford
correction.

However, it is only possible to prepare physical magic
states, which are moreover faulty states |m̃〉, i.e., gener-
ated using an imprecise physical T gate. These physical
states can be converted into logical faulty magic states
|m̃〉 via state injection [19]. Magic state distillation pro-
tocols take many faulty magic states and convert them
to fewer, but more precise magic states. These protocols
typically consist of many multi-target CNOT gates.

One example of a magic state distillation protocol
is shown in Fig. 10 for the example of 15-to-1 conver-
sion [20], which converts 15 faulty magic states into
one better magic state. It consists of 34 CNOT gates
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color code wide surface code double-sided surface code
space overhead + low (≈ 3

4d
2 or 1

2d
2) – high (≈ 2d2) ∼ moderate (≈ d2)

initialization & readout + fast X,Y, Z ∼ fast X,Z; slow Y – slow X,Y, Z
stabilizer weight – high (six or eight) + low (four) + low (four)

Table 1: Comparison between color-code-based [13, 23] and surface-code-based schemes.

grouped into five multi-target CNOTs. The figure also
shows an arrangement of qubits that can be used to
implement the protocol. By appropriately partition-
ing the long ancilla qubit, each of the five multi-target
CNOTs can be performed using the protocol in Fig. 7.
We provide the detailed stabilizer configurations for this
15-to-1 conversion in Appendix B. The space overhead
of the 15-to-1 conversion depends on the code distances
of the magic states and the width of the ancilla. The
time overhead is mostly determined by the five multi-
target CNOTs, which require two code cycles (includ-
ing repetitions accounting for stabilizer measurement
errors) for their parity measurements by lattice surgery.

5 Conclusion
We have demonstrated that edge tracking can be used
to eliminate the time overhead of logical single-qubit
Clifford gates in surface codes, as should be expected
considering the Gottesman-Knill theorem. Twist-based
lattice surgery provides long-range multi-target CNOTs
with a time overhead that only scales with O(log s) of
the control-target separation s, and a space overhead
that scales with O(s log s). Compared to color code
qubits, the surface code qubits used in our scheme re-
quire more physical qubits (∼ d2) for each logical qubit
with code distance d, but – with the exception of twist
defects – only require the measurement of weight-four
stabilizers. Our scheme can provide full 2D connectivity
between logical qubits, where the degree of connectiv-
ity is governed by the separation of qubit blocks, and
therefore by the space overhead. Together with magic
state distillation, our scheme allows for fault-tolerant
universal quantum computation.

One may be wondering whether there is still any ad-

Figure 11: Example of a Clifford circuit that is reduced to Pauli
product measurements.

vantage offered by the transversal single-qubit Clifford
gates of color codes and the color-code-based lattice-
surgery scheme presented in Ref. [23]. A comparison
of these codes is shown in Tab. 1. While color codes
require the measurement of higher-weight stabilizers,
they offer fast qubit readout in all Pauli bases, and
a lower space overhead of ∼ 3

4d
2 physical qubits per

logical qubit for 6.6.6 color codes, or even ∼ 1
2d

2 for
4.8.8 color codes. So if the measurement of higher-
weight stabilizers is not substantially more difficult in
a given physical implementation, as might be the case
for Majorana-based qubits, it is advantageous to use
the color-code-based scheme. In other implementations,
such as superconducting qubits, the difficulty of higher-
weight stabilizer measurements shifts the preference to-
wards surface-code-based architectures.

An important point is that the Gottesman-Knill the-
orem allows for the classical tracking of all Clifford
gates, including CNOT gates. As CNOT gates map
X⊗1→ X⊗X and 1⊗Z → Z⊗Z, tracking of CNOTs
does not preserve the locality of the logical operators, in

Figure 12: Circuit identity for the measurement of the Pauli
product operator Z ⊗Y ⊗Z ⊗X using an ancilla and a multi-
target CNOT gate. The circuit identity exploits the fact that
the roles of control and target can be reversed by the application
of Hadamard gates before and after a CNOT gate. Any product
of Pauli operators can be measured this way.
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semiconductor topological superconductor
superconductor dot-mediated tunnel coupling

Z = iγ1γ2

X = iγ2γ3
Y = iγ1γ3

Figure 13: Tunnel coupling configurations for the measurement of various check operators using a square network of Majorana-based
tetron qubits, as introduced in Ref. [21].

contrast to single-qubit Clifford gates. By tracking all
Clifford gates, any layer of Clifford gates followed by n
single-qubit measurements can always be compressed to
n measurements of nonlocal products of Pauli operators
without any preceding gate operations (see Fig. 11 for
an example). With distilled magic states as a resource,
any non-Clifford gate corresponds to trackable Clifford
gates and a measurement of the magic state. In this
case, Pauli product measurements are the only hard-
ware operations that need to be performed explicitly.
The fault-tolerant measurement of any nonlocal Pauli
product can be implemented using an ancilla qubit and
a multi-target CNOT gate on edge-tracked qubits. An
example of such a protocol is shown in Fig. 12 for the
measurement of the Pauli product ZL⊗ YL⊗ZL⊗XL.
Thus, any quantum computation can be performed us-
ing only two types of hardware operations: distillation
of resource states and Pauli product measurements via
multi-target CNOT gates on edge-tracked qubits.

A crucial problem of quantum information theory is
the optimization of quantum circuits in order to mini-
mize the space-time overhead of any quantum computa-
tion. However, any circuit optimization depends on the
constraints set by the quantum computer hardware and
the code used for error correction. Based on the existing
schemes for surface-code and color-code quantum com-
putation, the following minimal assumptions concern-
ing the underlying hardware and the logical operations
accessible by the code appear reasonable: (i) The un-
derlying hardware can measure local products of phys-
ical Pauli operators. (ii) The quantum error-correcting
code allows for the measurement of nonlocal products
of logical Pauli operators. (iii) Resource states can be

generated for the implementation of logical non-Clifford
gates. Based on these constraints, an important circuit
optimization problem is to find heuristics that minimize
the number of required resource states and the number
of layers of Pauli product measurements, as these are
the only operations that cannot be relegated to a clas-
sical computer.

Open questions related to our surface-code scheme
include the efficient decoding of wide, long and double-
sided qubits, estimations of their survival times, and
implementations of our scheme in a concrete phys-
ical system. Our scheme may also be adapted to
surface-code quantum computing with twist-based tri-
angle codes [26], in order to avoid the reorientation of
triangles, and to further reduce the space overhead of
surface codes. We hope that our lattice-surgery-based
approach can contribute to ongoing efforts to realize a
surface-code quantum computer.
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A Stabilizer measurements in concrete
implementations
Our twist-based surgery scheme requires the measure-
ment of certain operators that are products of Pauli op-

Accepted in Quantum 2018-16-04, click title to verify 10

71



Figure 14: Circuits for the stabilizer readout using an ancillary
measurement qubit placed in the center of the stabilizer.

erators on up to 5 qubits. How these operators are mea-
sured in practice depends on the concrete hardware used
for quantum computing. In this appendix, we show how
these measurements could in principle be implemented
with Majorana-based qubits, and with non-topological
qubits such as superconducting qubits that require the
use of ancillary measurement qubits for stabilizer read-
out.

A.1 Majorana-based qubits
The primary operation of Majorana-based qubits is the
measurement of local products of Majorana operators,
which correspond to local products of Pauli operators.
Thus, they can be straightforwardly used to measure

the stabilizers in our twist-based surgery scheme. In
Fig. 13, we show how this can be done in a network
of tetron qubits introduced in Ref. [21]. In a nutshell,
these are qubits that are encoded in the doubly degen-
erate ground-state space of four Majorana zero modes
γ1 . . . γ4 that are localized at the ends of two topological
superconducting nanowires which are put into a fixed
parity sector (γ1γ2γ3γ4 = −1) by a non-topological su-
perconductor bridging the two wires. The Majorana
operators are self-conjugate γ = γ† and mutually anti-
commute {γi, γj} = 2δi,j . Therefore, the Pauli opera-
tors of each tetron qubit can be chosen as Z = iγ1γ2
and X = iγ2γ3.

In a square lattice of tetrons, each tetron qubit is
connected to a network of semiconductors. Local prod-
ucts of Majorana operators are measured by open-
ing tunnel couplings between tetrons and the semicon-
ductor network, such that the tunnel couplings form
closed paths. The semiconducting wire segments be-
tween tetrons form quantum dots whose energy levels
are shifted by virtual processes that tunnel electrons
around the closed path. Since these processes involve
each Majorana operator along the path exactly once,
spectroscopy on any of the dots can be used to measure
the product of the Majorana operators along the path.
In Fig. 13, we show tunnel coupling configurations that
can be used to measure X and Z stabilizers, dislocation
operators, and twist operators. For the twist operator,
in particular, additional Majoranas γa and γb in a fixed
parity sector iγaγb = 1 are used as so-called coherent
links in order to form the closed path. More details on
operator measurements in tetron networks are found in
Refs. [21, 23].

A.2 Non-topological qubits
For non-topological qubits such as superconducting
qubits, Pauli products cannot be measured directly, but
are usually read out using ancilla qubits (measurements
qubits) that are located in the center of each stabilizer
operator, such as in the scheme of Ref. [14]. These
measurement qubits are entangled via two-qubit gates
with each data qubit that is part of the stabilizer. Af-
terwards, they are read out to yield the corresponding
Pauli product. The readout can be done using the cir-
cuits shown in Fig. 14. Depending on the elementary
operations accessible in a given hardware, a different
(but equivalent) circuit may be used, but in any case
the readout of each stabilizer requires up to 5 two-qubit
gates which need to be performed in succession.

One practical problem of this approach to stabilizer
measurements is that due to the use of two-qubit gates,
single errors on measurement qubits can spread to mul-
tiple data qubits. This can lead to correlated errors
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which are referred to as hook errors [25]. In particular,
Z errors on measurement qubits of Z stabilizers can lead
to correlated Z errors on the surrounding data qubits.
Similarly, X errors on X measurement qubits lead to
correlated X errors. Since three errors are equivalent to
just one error (up to a multiplication with a stabilizer),
the worst case is the case of one error on a measurement
qubit leading to two errors on data qubits. Since these
errors will occur on the first two (or last two) qubits
that were part of entangling two-qubit gates, the or-
der of the two-qubit gates in the circuits of Fig. 14 is
important.

The aim is to avoid these correlated errors from low-
ering the effective code distance. That is, we need to
find an ordering of the two-qubit gates, such that a logi-
cal operator of a distance d qubit can only be formed by
no fewer than d errors. For square surface code patches
(as in Fig. 1), this is done by orienting the ordering of
CNOT gates for X stabilizers in an N shape (or in a N
shape), and for Z stabilizers in a Z shape (or Zshape),
as was shown in Ref. [27]. This guarantees that cor-
related Z errors only form in the horizontal direction,
while logical Z strings are all oriented vertically. Simi-
larly, correlated X errors form horizontally, which does
not contribute towards a vertical logical X string.

However, in our scheme, we use the double-sided
qubits of Fig. 9, which have Z and X operators in both
the horizontal and vertical direction. Thus, it is not suf-
ficient to assign one orientation to the Z stabilizers and
the other to X stabilizers. In fact, the left half of the
double-sided qubit looks like the square qubit in Fig. 1,
i.e., Z stabilizers should be oriented in a Z shape, and X
stabilizers in an N shape. In contrast, the right half of
the double-sided qubit looks like a rotated square qubit,
i.e., Z stabilizer should be oriented in an N shape, and
X stabilizers in a Z shape. In the crossover region in
the center, both logical X and Z operators are vertical
strings, such that both Z and X stabilizers should be
oriented in a Z shape. This motivates the first condition
for a valid ordering shown in Fig. 15a. Z stabilizers in
the blue region should be oriented in a Z shape, and in
an N shape outside of the blue region. X stabilizers in
the red region should be oriented in a Z shape, and in
an N shape outside of the red region. One can verify
that with this choice of orientations, no logical operator
string can be formed with fewer than d physical errors.

The only remaining problem is the scheduling of the
two-qubit gates. Since the largest check operator is the
5-qubit twist defect, each two-qubit gate needs to be
assigned to one of 5 time steps. This implies two other
conditions on the ordering of the two-qubit gates. Since
each data qubit can only be part of one two-qubit gate
in a given time step, the four time steps assigned to
the two-qubit gates that a given data qubit is part of

a
b
c
d

a 6= b 6= c 6= d

a

c

b

d

(a < b) ∧ (c < d)

(a > b) ∧ (c > d)
or

(a) Condition 1

(b) Condition 2 (c) Condition 3

Figure 15: Three conditions for a valid ordering of two-qubit
gates during stabilizer readout. (a) In the blue region, the
Z stabilizers are oriented in a Z shape, and outside of this
region in an N shape. In the red region, the X stabilizers are
oriented in a Z shape, and outside of this region in an N shape.
This ensures that hook errors do not lower the effective code
distance. (b) The time steps a, b, c, and d, that are assigned to
the (up to) four two-qubit gates of one data qubits need to be
all different. (c) For all edges between neighboring stabilizers,
the condition shown in the figure needs to be fulfilled to ensure
that the sequence of two-qubit measurements reproduces the
desired stabilizer measurements.

need to be all different, which is the second condition
in Fig. 15b.

Finally, one needs to ensure that the sequence of
two-qubit measurements reproduces the desired stabi-
lizer measurements. For this, consider the action of the
CNOT gates of the readout circuit for a Z stabilizer in
the Heisenberg picture (or see Appendix B of Ref. [14]).
The aim of the readout circuit is to map the Z opera-
tor of the measurement qubit onto the operator Z⊗5 on
the measurement qubit and all four data qubits. Since
a CNOT maps 1⊗Z onto Z ⊗Z (where the first qubit
is the control and the second is the target), the circuit
in Fig. 14 achieves exactly that. However, notice that
two CNOT gates of the readout circuit of a neighbor-
ing X stabilizer also act on the Z operators of the data
qubits. These may map the operator onto an operator
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Figure 16: Possible ordering of two-qubit gates that fulfills the three conditions shown in Fig. 15. This stabilizer configuration is
the most general, as it involves bulk stabilizers, a dislocation line, and a twist defect. It corresponds to a twist-based lattice surgery
between a double-sided qubit and a standard rectangular qubit.
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that involves the Z operator of the wrong measurement
qubit, i.e., the measurement qubit of the neighboring
stabilizer. This needs to be avoided, as this neighbor-
ing measurement qubit is measured in X, which anti-
commutes with the aforementioned operator, leading to
random measurement outcomes. For concreteness, let
us refer to the time steps assigned to the two CNOTs
of the Z stabilizer in question as a and c, and to the
CNOTs of the X stabilizer as b and d, as in Fig. 15c.
There are only two choices of time steps that map the
Z operators of the measurement qubit to the correct
Z⊗5 operator. The first possibility is that a > b and
c > d, such that the two CNOTs of the neighboring
X stabilizer have already been performed, which pre-
cludes them from acting on the Z operator of the data
qubit. The second possibility is that a < b and c < d,
such that the mapping is performed twice: The first
CNOT maps 1 ⊗ Z to Z ⊗ Z, and the second CNOT
maps Z ⊗ Z back to 1⊗ Z. This is the third condition
shown in Fig. 15c. It needs to hold for all edges between
neighboring stabilizers.

It is possible to find an ordering of two-qubit gates in
5 time steps (due to the 5-qubit twist operators) that
fulfills all three conditions. Such a possibility is shown
in Fig. 16. The figure shows the most generic situa-
tion which involves the bulk stabilizers of standard and
double-sided qubits, as well as a dislocation line and a
twist defect.

B Magic state distillation protocol
Here, we explicitly show the lattice surgery protocols for
the multi-target CNOTs part of the 15-to-1 magic state
distillation scheme in Fig. 10. Figures 17 and 18 show
the five multi-target CNOTs of the distillation proto-
col, where the control and target qubits are highlighted
in blue and orange, respectively. Note that the default
encodings of the X and Z edges of qubits 5, 9 and 11
are inverted in this protocol. The figures only show
the ZL ⊗ ZL parity measurements. The subsequent
XL ⊗ XL parity measurements are done via lattices
surgeries between the highlighted orange edges and the
adjacent ancilla qubits.
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Figure 17: First and second multi-target CNOT of the distillation protocol in Fig. 10.
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Figure 18: Third, fourth and fifth multi-target CNOT of the distillation protocol in Fig. 10.
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3 | Quantum Computing with Majo-
rana Fermion Codes

The previous chapter explained how to perform twist-based lattice surgery with qubit-based
surface codes. It is worth pointing out that the 15-to-1 distillation circuit of Fig. 26 in Ref. [26]
shown in Fig. 10 of the previous publication is incorrect, since the T gates need to be applied
after the multi-target CNOTs, rather than before.

Qubit-based surface codes can be used in any quantum computing architecture. One of
the implementations shown in the appendix of the previous chapter was for Majorana-based
qubits. For error correction, these qubits are not only capable of using codes whose fundamental
building blocks are physical qubits, but can also employ fermionic codes which use Majorana
fermions as building blocks. In the following publication, we explore the correspondence between
Majorana-based qubits and surface codes, and explain how Majorana fermion surface and color
codes can be constructed and used for twist-based lattice surgery.
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We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana
surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead.
This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only
requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting,
where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced
by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist
defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic
codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by
concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes
can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.

DOI: 10.1103/PhysRevB.97.205404

I. INTRODUCTION

In an effort to construct robust qubits for quantum com-
putation, Majorana zero modes (Majoranas) in topological
superconductors [1–6] are currently being explored as potential
building blocks of topological qubits. Even though no such
topological qubit has been built to date, a range of precursor
experiments exist [7–10], providing various signatures of
Majorana zero modes. While it remains uncertain whether
Majorana-based qubits will offer higher coherence times com-
pared to other solid-state qubits, Majorana-based qubits have
one distinct feature that sets them apart from nontopological
qubits. Due to the non-Abelian statistics of Majoranas, these
qubits can be measured in all three Pauli bases X, Y , and
Z, and not just in a single computational basis as is the case
with conventional qubits. As a consequence, Majorana-based
qubits implement robust single-qubit Clifford gates with zero-
time overhead. These gates are products of Hadamard gates
H and phase gates S, and are equivalent to the operations
implemented by braiding Majoranas.

The coherence times of Majorana-based qubits are pre-
dicted to be long, but still limited [11,12]. Thus, a quantum
error-correcting code is necessary for large-scale quantum
computation with arbitrarily long qubit survival times. Quan-
tum error correction combines many physical qubits into
more error-resilient logical qubits [13]. Errors are detected
and corrected by measuring certain stabilizer operators. Two-
dimensional (2D) topological codes are of particular interest
since their local stabilizers are compatible with the constraints
of solid-state architectures.

Topological codes come as bosonic or fermionic codes.
Bosonic codes are defined on a 2D lattice where vertices
correspond to qubits and faces define stabilizers, products of
Pauli operators with support on all qubits of the face. Fermionic
codes are defined on a lattice where vertices correspond to Ma-
joranas and stabilizers are products of all Majorana operators of

a face. A bosonic code maps onto a fermionic code by replacing
each qubit with four Majoranas in a fixed-parity sector [14], but
not all fermionic codes can be straightforwardly mapped back
onto a bosonic code. This implies that Majorana-based qubits
admit a wider range of topological codes than conventional
qubits.

One practical problem is that fault-tolerant quantum com-
puting requires logical operations on encoded qubits, which
may be entirely different from operations on physical qubits.
Indeed, various recent proposals for Majorana-based imple-
mentations of codes exist, based on, e.g., bosonic surface codes
[15–18], bosonic color codes [19,20], fermionic surface codes
[14,21,22], and small Majorana fermion codes [23,24], each
featuring individual protocols for a universal set of logical
gates. Moreover, except for twist-based encodings in surface
codes [25–27] and transversal gates of bosonic color codes
[19,20,28], logical single-qubit Clifford gates require a series
of code operations in all aforementioned proposals, and the
Majoranas’ advantage of zero-overhead single-qubit Clifford
gates is lost.

According to the Gottesman-Knill theorem [29], not only
single-qubit Clifford gates, but all Clifford gates including the
two-qubit controlled-NOT (CNOT) gate can be tracked using a
classical computer. Therefore, all Clifford gates can, in princi-
ple, be implemented with zero-time overhead. Operations on
logical qubits need to be appropriately designed in order to
take full advantage of the Gottesman-Knill theorem.

Overview and main results

In this work, we establish a unified framework for
Majorana-based quantum computation with bosonic and
fermionic surface and color codes, in all of which logical
Clifford gates, including CNOT gates, are implemented with
zero-time overhead. To this end, we first discuss the construc-
tion of Majorana surface code patches in Sec. II. These surface
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TABLE I. Comparison of different two-dimensional topological codes with respect to the following characteristics: number of Majoranas
necessary to encode a logical qubit with code distance d , proposed number of Majoranas in a fixed-parity sector used as a building block
(tetrons/hexons/octons/decons/dodecons refer to 4/6/8/10/12 Majoranas in a fixed-parity sector), maximum Majorana weight of the stabilizers
that need to be measured, stabilizer weights in the bulk of the code (excluding the boundaries), and the maximum stabilizer weight for lattice
surgery operations. For Majorana color codes, the [[nm,k,dm]] code in parentheses is the code that is concatenated with the corresponding
surface code in order to obtain the color code. The order of each code indicates how many layers of Majorana surface codes it corresponds to.
All codes listed in the table implement logical Clifford gates with zero-time overhead.

Code family (with Majorana overhead Maximum Bulk Max. stabilizer wt.
Order

minimal-overhead Clifford gates) for code distance d Building blocks stabilizer weight weights for lattice surgery

Surface codes
(nonoverlapping 2D local topological codes)

4.6.12 Majorana surface code 12d2 + O(d) dodecons 6 4, 6 6
Bosonic subsystem surface codea 12d2 + O(d) qubits/tetrons 6 6 10

1 6.6.6 Majorana surface codeb 6d2 + O(d) hexons/octons 6 6 6
4.8.8 Majorana surface codec 4d2 + O(d) tetrons/hexons 8 8 8

Bosonic surface coded 4d2 + O(d) qubits/tetrons 8 8 10

Color codes
(multiple layers of surface codes obtained by concatenation)

4.8.8 ([[6,2,2]]m) Majorana color code 3d2 + O(d) hexons 8 8 8
Bosonic 6.6.6 color codee 3d2 + O(d) qubits/tetrons 12 12 12

2
6.6.6 ([[20,4,4]]m)f Majorana color code 2.5d2 + O(d) decons 12 10, 12 12

Bosonic 4.8.8 color codee 2d2 + O(d) qubits/tetrons 16 8, 16 12

4.8.8 ([[8,3,2]]m) Majorana color code 8
3 d2 + O(d) octons 10 8, 10 10

3
4.8.8 ([[16,3,4]]m)f Majorana color code 4

3 d2 + O(d) octons 16 8, 16 12

4 4.8.8 ([[20,4,4]]m)f Majorana color code 1.25d2 + O(d) decons 16 10, 16 12

4.8.8 Majorana surface code 4nm

kd2
m
d2 + O(d) at least 4dm

k Concatenated with [[nm,k,dm]]m
Bosonic surface code 4n

kd2
b

d2 + O(d) qubits/tetrons at least 8db

Concatenated with [[n,k,db]]

First mentioned in: aRef. [30]; bRef. [21]; cRef. [16]; dRef. [31]; eRef. [28]; fRef. [24].

code patches are essentially fault-tolerant versions of tetrons
and hexons which can correct a certain number of errors.
While tetrons and hexons were introduced in Refs. [32,33]
as quantum-wire-based [34,35] constructions, we use these
terms for any physical system with four or six Majoranas in
a fixed-parity sector. Next, in Sec. III, we describe a protocol
to implement minimal-overhead Clifford gates with physical
tetrons and hexons by measuring arbitrarily nonlocal Pauli
product operators using only local operations. This is not
fault tolerant in the sense that the protocol assumes perfect
measurements and error-free qubits. However, it is entirely
analogous to the fault-tolerant protocol discussed in Sec. IV,
where we extend the protocol for minimal-overhead Clifford
gates to logical tetrons and hexons, i.e., surface code patches.
This is done by describing twist defects in Majorana surface
codes and adapting twist-based lattice surgery [27] to fermionic
codes. Finally, in Sec. V, we propose a construction proce-
dure for Majorana color codes, i.e., the fermionic equivalent
of bosonic color codes. Since bosonic color codes can be
obtained by concatenating bosonic surface codes with small
nontopological codes [36], we describe code concatenation
for fermionic codes and construct Majorana color codes by

concatenating Majorana surface codes with small Majorana
fermion codes.

With fermionic and bosonic versions of surface and color
codes, a plethora of topological codes are available, all of which
can implement logical Clifford gates with zero-time overhead.
To decide which code to use for Majorana-based quantum
computation, we show a comparison of 2D topological codes
in Table I. The main differences between these codes lie in their
Majorana overhead, i.e., the number of Majoranas required to
encode a qubit with code distance d, and in their stabilizer
weight, i.e., the number of Majorana operators contained in
the stabilizers that need to be measured for error correction.
It is desirable to keep both of these figures low, as a lower
Majorana overhead implies a higher encoding rate and more
efficient space usage, and a lower stabilizer weight implies
easier implementation due to lower hardware requirements.
However, the general trend seen in bosonic surface and color
codes indicates that codes featuring lower-weight stabilizers
tend to have a higher space overhead (or Majorana overhead
in the case of Majorana-based qubits).

Out of all known bosonic 2D topological codes, surface
codes have the lowest stabilizer weight of four qubits. Topo-
logical subsystem codes [37] can further reduce the weight
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FIG. 1. Tetrons and hexons as the two smallest Majorana fermion codes, and their correspondence to 4 or 6 Majoranas in a fixed-parity
sector, e.g., via the quantum-wire construction in Ref. [33].

of the operators that need to be measured, with a subsystem
variant of the surface code [30] reducing the weight to three
qubits. With Majorana-based hardware, this corresponds to
8-Majorana and 6-Majorana stabilizers. In order to implement
minimal-overhead Clifford gates, twist-based lattice surgery
requires the measurement of higher-weight five-qubit op-
erators corresponding to twist defects, which corresponds
to 10-Majorana operators. Majorana surface codes decrease
the stabilizer weight below the weight of bosonic surface
codes, such that only 4- and 6-Majorana operators need to
be measured. This might be useful if higher-weight stabilizers
turn out to be difficult to measure in a given implementation.
Majorana color codes, on the other hand, can encode quantum
information with a lower-space overhead compared to bosonic
color codes with the same stabilizer weight.

In general, bosonic surface codes can be concatenated
with any [[n,k,d]] code, where n is the number of physical
qubits, k is the number of encoded logical qubits, and d

is the code distance, i.e., the minimum qubit weight of all
logical operators. Similarly, Majorana surface codes can be
concatenated with any [[nm,k,dm]]m Majorana fermion code,
where nm is the number of Majoranas, and dm is the Majorana
distance, i.e., the minimum Majorana weight of all logical
operators. Concatenating surface codes with high-distance
codes can be used to obtain topological codes with arbitrarily
low space overhead. As one uses higher-distance codes for
concatenation, one increasingly sacrifices stabilizer weight and
locality in favor of lower Majorana overhead. From a pragmatic
point of view, if a given Majorana-based quantum computer has
a maximum stabilizer weight that it can measure, a comparison
in the spirit of Table I can be used to determine a suitable
encoding, even though we note that our collection of codes
is not exhaustive. In particular, it does not include Majorana
surface codes based on nonuniform tilings.

II. MAJORANA SURFACE CODES

A Majorana fermion code [14] encodes logical information
in a set of Majorana zero modes placed on the vertices of 2D
lattices, which are described by self-adjoint operators γi = γ

†
i ,

and fulfill the fermionic anticommutation relations {γi,γj } =
2δi,j . The code is defined by its stabilizers, more precisely,
by its mutually commuting stabilizer generators, which are
products of all Majorana operators

Oface =
∏

j∈face

i1/2γj (1)

associated with a face and have eigenvalues ±1. A code with
n Majoranas and m stabilizers encodes n/2 − m logical qubits
in the degenerate ground-state manifold of the Hamiltonian

Hcode = −
m∑

i=1

Oi . (2)

Due to fermion parity superselection, the product of all n

Majoranas is always a stabilizer, such that n Majoranas can
at most encode n/2 − 1 qubits.

A. Smallest Majorana fermion codes

The smallest fermion code is the 4-Majorana tetron code
shown in Fig. 1(a), which involves a single stabilizer Otetron =
−γ1γ2γ3γ4. The qubit is encoded in the doubly degenerate
ground-state space of the Hamiltonian

Htetron = γ1γ2γ3γ4. (3)

While it is possible to define a qubit in the Schrödinger
picture by defining two computational states |0〉 and |1〉, it
is more convenient to use the Heisenberg picture. Since any
single-qubit unitary operator can be written using the X and
Z Pauli operators via the Euler decomposition, a qubit can be
defined through these two operators. The X and Z operators
need to square to the identity, X2 = Z2 = 1, anticommute,
XZ = −ZX, and commute with all stabilizers of the code. For
a tetron, one choice is Z = iγ1γ2 = iγ3γ4 and X = iγ2γ3 =
iγ1γ4. The remaining Pauli operator follows as the product
Y = iXZ.

There are two ways to implement stabilizer terms such as
Otetron. One way is to interpret stabilizers as physical parity-
fixing constraints realized in the laboratory, e.g., via the charg-
ing energy of two topological superconducting nanowires.
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(a) Uniform three-colorable tilings (b) Examples of non-uniform tilings

4.8.8 6.6.6 4.6.12 [4.6.8, 6.8.8] [4.6.8, 4.8.12] random tiling

FIG. 2. The three uniform three-colorable tilings of the 2D plane (a), and three examples of nonuniform tilings (b).

Alternatively, they can be interpreted as measurement pre-
scriptions. Measuring all stabilizers of the code projects the
system into the ground-state space as long as the measurement
outcome is +1 for all stabilizers. For tetrons, it is easy to see
that both approaches are susceptible to errors. In particular, an
error process described by the operator iγiγj involving two
Majorana fermion operators will lead to errors that neither
violate the parity-fixing constraint nor change the measurement
outcome of the parity measurement. The fact that stabilizers
can be interpreted either as physical constraints or measure-
ment prescriptions will become important when we discuss
larger codes with more than one stabilizer.

The second smallest Majorana fermion code is the 6-
Majorana hexon code shown in Fig. 1(b). It encodes two logical
qubits in the ground-state space of the Hamiltonian

Hhexon = −iγ1γ2γ3γ4γ5γ6. (4)

The logical Pauli operators of the two qubits can be chosen as
Z1 = iγ1γ2, X1 = iγ2γ3, Z2 = iγ4γ5, X2 = iγ5γ6.

B. Logical tetrons and hexons

Tetrons and hexons encode qubits, but cannot correct any
errors. We now describe a procedure to obtain logical tetrons
and hexons based on 2D Majorana surface codes.

We define Majorana surface codes as fermionic topological
codes with nonoverlapping stabilizers. Thus, they can be
defined by a tiling of the 2D plane with vertices corresponding
to Majoranas and faces (or tiles) corresponding to stabilizers.
Since stabilizers need to commute, neighboring faces should
share two vertices (or, in fact, any even number). This implies
that any valid tiling needs to be three-colorable [14], in the
sense that faces can be colored in three colors with neighboring
faces having different colors. Moreover, each stabilizer needs
to contain an even number of Majoranas. Remarkably, these
requirements are identical to the restrictions of bosonic color
codes, such that all valid color code tilings with vertices as
qubits are also valid Majorana surface code tilings with vertices
as Majoranas.

There exist three uniform three-colorable tilings that can be
used to define a Majorana surface code: 4.8.8 [16,17,21,22],
6.6.6 [15], and 4.6.12, as shown in Fig. 2(a). The numbers refer
to the three polygons that meet at each vertex, e.g., for the
4.6.12 tiling, a square, a hexagon, and a dodecagon. Uniform
means that the same types of polygons meet at each vertex.
There exist also nonuniform three-colorable tilings, which
have at least two different vertex types. Examples are shown

in Fig. 2(b), such as the [4.6.8, 6.8.8] tiling [14] which has
two types of vertices, namely, 4.6.8 and 6.8.8. In this work, we
restrict ourselves to the three uniform tilings shown in Fig. 2(a),
although our constructions can be straightforwardly extended
to nonuniform tilings. We stress that the colors bear no physical
meaning, but are merely a useful bookkeeping tool.

A logical tetron encodes one logical qubit in n Majoranas
with n/2 − 1 stabilizers. It is constructed by appropriately
introducing boundaries to a three-colorable tiling, as shown
in Fig. 3. At a boundary, Majoranas are no longer part of
three differently colored stabilizers, but only two. We then
assign the remaining color to the boundary, e.g., on a red
boundary, Majoranas are part of blue and green stabilizers.
Two differently colored boundaries meet at a corner, where
a Majorana is part of only one stabilizer. A logical tetron is
obtained by terminating the tiling by four boundaries, a pair
of opposing red and blue boundaries each (or any other pair of
colors). This procedure always yields a code with n Majoranas
and n/2 − 1 stabilizers.

One can also assign colors to the edges of faces, i.e., to the 2-
Majorana operators that lie between two faces. The color of an
edge is then the third remaining color. For instance, an edge that
lies between a red and a blue face is referred to as a green edge.
The logical X (Z) operators of a logical tetron are strings of red
(blue) edges that connect the red (blue) boundaries, as shown
in Fig. 3(b). In particular, the product of all Majoranas along
a blue boundary is a string of red edges, i.e., an X operator.
Similarly, the product of all Majoranas along a red boundary
is a Z operator. Logical Z and X operators anticommute since
they always share an odd number of Majoranas. The red and
blue boundary operators, specifically, share one Majorana in
the corner where the boundaries meet.

The four-corner surface codes depicted in Fig. 3 are in-
deed the higher-distance equivalents of 4-Majorana tetrons. In
Ref. [38], it was pointed out that the corners of surface code
qubits correspond to twist defects, which feature the same non-
Abelian statistics as Majoranas [25]. This can be understood
from the observation that since one type of surface code
boundary can absorb e anyons, and the other type of boundary
can absorb m anyons, corners can absorb ε anyons. Therefore,
according to Ref. [25], corners are twist defects. Alternatively,
in Ref. [39], edges of surface codes are identified as flat bands
of uncoupled Majoranas. The boundary stabilizers gap out the
edge Majoranas, leaving unpaired Majoranas in the corners.
Thus, the identification of four boundary Majorana surface
codes with tetrons is indeed justified, as their corners can be
interpreted as logical Majoranas, i.e., twist defects.
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FIG. 3. Logical tetrons of the 4.8.8 (a), 6.6.6 (b), and 4.6.12 (c) Majorana surface code with code distances d = 1, 3, and 5. The 6.6.6
Majorana surface code with d = 5 shows an example of strings of red and blue edges through the bulk of the code. Products of Majoranas along
the red and blue strings are equivalent to logical X and Z operators, respectively.

Similarly, six boundary Majorana surface codes can be
identified as logical hexons, as shown in Fig. 4. Logical
hexons encode two logical qubits on n Majoranas with n/2 − 2
stabilizers. This can be achieved by introducing three red and
blue boundaries each in an alternating fashion. Logical hexons
require approximately twice as many Majoranas as logical
tetrons for a given code distance, but also encode twice as
many qubits, one qubit at the two bottom and one qubit at the
two top boundaries.

The error processes considered in this work correspond
to quasiparticle poisoning and are described by the action
of single Majorana operators γi . We refer to these errors as
Majorana errors. A Majorana error flips the measurement
outcome of the stabilizers that the affected Majorana is part
of, which allows for detection of errors and their subsequent
correction. Corrections do not need to be applied explicitly, but
merely tracked by a classical computer. We define the Majorana
code distance dm as the minimum number of Majorana errors
necessary to introduce a logical error that will go undetected,
i.e., dm is the number of Majorana operators contained in the
shortest logical operator. Codes with Majorana distance dm

tolerate dm/2 − 1 Majorana errors, as the syndrome of error
strings that cover more than half the Majorana distance will be
misinterpreted and lead to a correction that introduces a logical
Pauli error. Since only even-number products of Majoranas are
physically measurable, dm is always even. For this reason, dm is
not the same quantity as the code distance d of bosonic codes.
For a fair comparison between fermionic and bosonic codes, we
label fermionic codes by their bosonic code distanced = dm/2.
This is justified because Pauli operators of physical Majorana-
based qubits, such as tetrons or hexons, correspond to products
of two Majorana operators, and therefore single-qubit Pauli
errors always correspond to two Majorana errors. Thus, the

Majorana surface code tetrons shown in Fig. 3 have Majorana
distances dm = 2, 6, and 10, but code distances d = 1, 3,
and 5.

To minimize the number of operators that need to be
measured, we implement stabilizers of one color as parity-
fixing constraints, while the other two colors are interpreted as
measurement prescriptions. The parity-fixed color should be
the one color that is not a boundary. For instance, the green
4-Majorana stabilizers of the 4.8.8 Majorana surface codes in
Fig. 3(a) could be interpreted as physical tetrons, whereas the
red and blue stabilizers are operators that need to be measured
in order to actively detect and correct errors. This can be done
with any three-colorable tiling, such that, say, red and blue
stabilizers need to be measured, while green stabilizers are
interpreted as Majoranas in a fixed-parity sector. We then refer
to the green stabilizers as the building blocks of the code. Note
that Majorana errors that respect the parity-fixing constraints
set by the green stabilizers always come in pairs.

If green stabilizers are not measured, but implemented as
parity-fixing constraints, then single-Majorana errors violating
these constraints are leakage errors, i.e., errors that take the
qubit out of the computational subspace and may go undetected
by the measurement of red and blue stabilizers. For quantum-
wire-based architectures, the timescales of dephasing and
depolarizing errors that are detectable by red and blue stabilizer
measurements were calculated to range from hundreds of
nanoseconds to several minutes for achievable experimental
parameters [12]. On the other hand, leakage errors caused
by single-Majorana errors are suppressed exponentially with
exp(−EC/T ), where EC is the charging energy fixing the par-
ity, and T is the temperature. Already for EC ∼ 100 μeV and
T ∼ 10 mK, EC/T ≈ 100, which suggests that leakage may
be negligible [12]. In implementations where leakage errors
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FIG. 4. Logical hexons of the 4.8.8 (a), 6.6.6 (b), and 4.6.12 (c) Majorana surface code with code distances d = 1, 3, and 5.

cannot be neglected, they can be treated by also measuring the
green stabilizers.

4.8.8 Majorana surface codes can be defined on a square
lattice of tetrons in the spirit of Ref. [16], such that the 8-
Majorana stabilizers need to be measured. One qubit with code
distance d requires 4d2 Majoranas. Similarly, 6.6.6 Majorana
surface codes can be defined on a square lattice of hexons.
While they require more Majoranas per qubit (6d2 − 4d + 2),
the weight of the operators that needs to be measured reduces to
6 Majoranas. We note that even though the codes in Fig. 3(b)
display green tetrons at the top and right boundaries, these
codes can indeed be defined on a square lattice of hexons, as
we show in Appendix A 1. Finally, 4.6.12 Majorana surface
codes can be defined on a square lattice of dodecons, i.e.,
12 Majoranas in a fixed-parity sector. In the context of color
codes, 4.6.12 codes are often ignored since they feature both
a high-space overhead and high-weight stabilizers. However,
by interpreting the 12-Majorana operators as building blocks
that satisfy parity-fixing constraints, only 4- and 6-Majorana
operators need to be measured. Thus, the stabilizer weight has
decreased to an average of 5 Majoranas, albeit at the price of
an increased space overhead of 12d2 − 12d + 4 Majoranas per
qubit.

An important part of error correction is decoding. While the
error syndrome is known from the stabilizer measurements,
the most likely error configuration that causes this syndrome
needs to be determined by a classical program called a decoder.
Since Majorana surface codes are indeed surface codes, they

can be decoded by any bosonic surface code decoder,1 either by
interpreting blue and red stabilizers as two types of anyons that
need to be matched (analogous to e and m anyons in bosonic
surface codes), or by first mapping the Majorana code onto
a bosonic code and then decoding the bosonic surface code.
As we show in Appendix A 2, Majorana surface codes can be
mapped onto bosonic codes, but the mapping is not unique. In
the case of 4.8.8 codes, replacing each tetron with a qubit yields
exactly the bosonic surface code on a square lattice. Replacing
each hexon of the 6.6.6 code with two qubits also yields a
bosonic code on a square lattice, but the lattice is rotated. With
a 4.6.12 code, replacing each of the 4-Majorana operators with
a qubit yields a bosonic surface code on a trihexagonal lattice.

III. MINIMAL-OVERHEAD CLIFFORD GATES
WITH TETRONS AND HEXONS

In this section, we show how to perform universal quantum
computation with physical tetrons and hexons. This is not fault
tolerant since the protocols assume perfect measurements and
error-free qubits. Closely analogous fault-tolerant protocols

1We note that this is only true if building blocks are interpreted as
parity fixed, such that, say, green stabilizers cannot be violated. If
this is not the case, then the decoder needs to match all three colors,
similar to the decoding of bosonic color codes.
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(a) T gates via magic state injection (b) Tracking of Clifford gates

FIG. 5. (a) Applying a T gate to a qubit |ψ〉 is equivalent to a CNOT between the qubit and a magic state |m〉 = 1√
2
(|0〉 + eiπ/4|1〉), a

measurement of the magic state with outcome m ∈ {0,1}, and a corrective operation Sm on the qubit. (b) Example of a circuit of Clifford gates
and four Z measurements that is compressed into four Pauli product measurements.

based on logical tetrons and hexons will be discussed in
Sec. IV.

We start with general considerations concerning the classi-
cal tracking of Clifford gates. These gates map Pauli operators
onto other Pauli operators and are products of Hadamard gates
H , phase gates S, and controlled-NOT gates CNOT. Any
quantum circuit can be expressed in terms of Clifford gates,
T gates (where T = √

S), and single-qubit measurements in
the Z basis [40]. If magic states |m〉 = (|0〉 + eiπ/4|1〉)/√2 are
available as a resource, T gates can be rewritten as a CNOT
gate and a measurement of the magic-state qubit [see Fig. 5(a)].
In realistic architectures, only faulty magic states are available.
Using magic-state distillation [41], multiple faulty magic states
can be converted into fewer low-error magic states. This is yet
another circuit of Clifford gates and measurements. Thus, any
quantum computation can be expressed as a quantum circuit
consisting only of Clifford gates and measurements.

According to the Gottesman-Knill theorem, gate operations
for Clifford gates need not be performed, as they can be
tracked classically. Mapping Pauli operators onto other Pauli
operators, they merely change the basis of theZ measurements:
H gates map Z → X and X → Z, S gates map Z → Z

and X → Y , and CNOTs map 1 ⊗ Z → Z ⊗ Z, Z ⊗ 1 →
Z ⊗ 1, X ⊗ 1 → X ⊗ X, and 1 ⊗ X → 1 ⊗ X. The action of
Clifford gates on all other Pauli operators can be inferred from
these rules. Consequently, any circuit of Clifford gates and n

measurements can be contracted to n measurements of Pauli
product operators. Thus, apart from the generation of (faulty)
magic states, a quantum computer merely needs to be able to
fault tolerantly measure nonlocal products of Pauli operators.
An example of such a contraction is shown in Fig. 5(b). In this
sense, a quantum computer that can measure arbitrary Pauli
products implements Clifford gates with zero-time overhead,
as these gates can be tracked classically and do not require any
quantum operations.

The state-injection circuit in Fig. 5(a) then corresponds to a
Z ⊗ Z measurement between the qubit |ψ〉 and the magic state,
and a tracked S-gate correction. In order to discard the magic-
state qubit, it needs to be disentangled via an X measurement
and a subsequent Z correction on the qubit |ψ〉, as we discuss in
Appendix A 3. We note that if one prefers to explicitly perform
CNOT operations, this can also be done using Pauli product
measurements via the circuit identity shown in Appendix A 3.

Pauli product measurements with tetrons and hexons

We now describe a protocol for Pauli product measurements
with tetrons and hexons using only local two-qubit operations.

Our scheme uses hexons to encode qubits used for quantum
computation (referred to as data qubits), and tetrons to encode
ancilla qubits that enable long-range communication. The
hexons form blocks of data qubits in a 2D array, with tetrons
as ancillas between blocks. A possible arrangement of 24 data
qubits is shown in Fig. 6. We describe the protocol using the
example in Fig. 7.

The goal is to measure the nonlocal n-qubit Pauli product
Z1 ⊗ X3 ⊗ Z8 ⊗ Y9 without measuring any of the n individual
Pauli operators Z1, X3, Z8, or Y9. The first step is to initialize
an n + m-ancilla Greenberger-Horne-Zeilinger (GHZ) state
|0〉⊗n+m + |1〉⊗n+m, where m ancillas are used to bridge long
distances. In our example, we use n + m = 4 + 2 ancilla
qubits. Each ancilla is measured in theX basis by measuring the
corresponding 2-Majorana operator (labeled Xa1 . . . Xa6) and
thereby prepared in the X eigenstate |+〉 = (|0〉 + |1〉)/√2.
For measurement outcomes −1, a corrective Z operation is
necessary, which can also be tracked. Measuring Z ⊗ Z of
neighboring pairs of |+〉 ancillas (corresponding to the red
4-Majorana operators shown in step 2 of Fig. 7) prepares the
ancillas in the desired GHZ state, assuming that all Z ⊗ Z

measurements yield +1. Again, measurement outcomes −1
require corrective Pauli X operations.

The GHZ state is an entangled state with known global prop-
erties, but unknown local properties. It is a +1 eigenstate of
X̃ = X⊗n+m, but the measurement outcome of each individual
X operator is entirely random. Thus, we can use the GHZ
state to measure the desired Pauli product X̃ ⊗ Z1 ⊗ X3 ⊗
Z8 ⊗ Y9 without measuring any of the individual operators.
By measuring the six operators shown in step 3 of Fig. 7,
the desired operator is obtained as the product of the six
measurements.

FIG. 6. Array of tetrons and hexons, where hexons are used to
encode data qubits, and tetrons are used as ancillas for Pauli product
measurements.
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FIG. 7. Protocol for the measurement of the Pauli product opera-
tor Z1 ⊗ X3 ⊗ Z8 ⊗ Y9.

In the general case of the measurement of a Pauli product
P1 ⊗ · · · ⊗ Pn, the n ancilla qubits adjacent to the correspond-
ing data qubits are used to measure Pn ⊗ Xa,n, while the
remaining m ancilla qubits are read out in the X basis. The
product of all n + m measurements is X̃ ⊗ P1 ⊗ · · · ⊗ Pn.
Because X̃ = 1, but each individual Xa,n is random, this

measures the Pauli product without measuring any of the
individual Pauli operators.

The n ancilla qubits adjacent to data qubits still need to be
disentangled from the data qubits in step 4 of the protocol,
before they can be discarded. This is done by measuring the
ancilla qubits in the Z basis with outcome m ∈ {0,1}, leading
to a P m Pauli correction on the adjacent data qubit, where P is
the Pauli operator that was part of the two-qubit measurement
in step 3, e.g., Z1 for qubit 1 in Fig. 7.

When combined with the preparation of (faulty) magic
states, this is sufficient to implement universal quantum com-
putation. Specifically, this protocol can be straightforwardly
used with the quantum-wire constructions of Ref. [33]. In
Appendix B 1, we explicitly show the tunnel-coupling con-
figurations to implement Fig. 7 in a network of topological
superconducting nanowires.

To summarize, the following operations are necessary to
implement a Majorana-based universal quantum computer
with minimal-overhead Clifford gates:

(Op1) measurements of tetrons in the bases X and Z;
(Op2) measurements of Z ⊗ Z between adjacent tetrons;
(Op3) measurements of X ⊗ X, Y ⊗ X, and Z ⊗ X be-

tween adjacent hexons and tetrons;
(Op4) application of (potentially faulty) T gates on tetron

qubits.
In the following section, we show how to implement

these four operations fault tolerantly with logical tetrons and
hexons.

IV. TWISTS IN MAJORANA SURFACE CODES

Remarkably, a completely analogous scheme can be im-
plemented with logical tetrons and hexons, allowing for
fault-tolerant quantum computing with tracked Clifford gates.
Specifically, we implement the four operations (Op1)–(Op4)
with the logical tetrons and hexons from Figs. 3 and 4. The first
operation is the measurement of logical tetrons in the X and Z

bases. With bosonic surface codes, logical qubits are read out
in the X or Z basis by measuring all physical qubits in the X or
Z basis, and performing classical error correction. Similarly,
Majorana surface code tetrons are read out in the X or Z

basis by measuring all 2-Majorana operators corresponding
to red or blue edges, and performing classical error correction.
The measurement outcome corresponds to the product of all
Majoranas along the corresponding boundary of the tetron.
In analogy to bosonic surface codes, Majorana surface code
tetrons can be initialized in the |+〉 state by measuring all red
edges, and then measuring the stabilizers and correcting the
errors.

The second and third operations require measurements of
two-qubit Pauli products. For logical tetrons with code distance
d, this corresponds to products of 4d Majoranas, which are
highly nonlocal operators. In order to measure these operators
using only measurements of low-weight local operators, we
adapt the technique of lattice surgery [42], and in particular
twist-based lattice surgery [27], to fermionic codes. While
we only explicitly show lattice surgery protocols for the three
uniform Majorana surface codes, similar constructions can also
be used for nonuniform tilings.
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FIG. 8. Lattice surgery between two 4.8.8 Majorana surface code
tetrons with code distance d = 5 measuring Z ⊗ Z. The box in the
bottom left corner shows the corresponding measurement with d = 1,
where Z ⊗ Z is the red 4-Majorana operator.

A. 4.8.8 Majorana surface codes

We start with 4.8.8 Majorana surface codes. The second
operation (Op2) requires the measurement of Z ⊗ Z between
two tetrons, such as the two d = 5 tetrons in Fig. 8. In
this example, the operator Z ⊗ Z is the product of the 20
Majorana fermions along the two neighboring red boundaries.
Lattice surgery is a protocol that temporarily changes the
stabilizer configuration in order to measure this operator fault
tolerantly using only local measurements. Pairs of blue 4-
Majorana stabilizers are merged to form 8-Majorana stabilizers
(light blue in step 2). The measurement outcome of these
8-Majorana stabilizers is trivial, as it is simply the product of
previously known stabilizers. In addition, new stabilizers are
introduced along the boundary (light red). In this new stabilizer
configuration in step 2, all stabilizers commute, but the number
of stabilizers is increased by one compared to step 1. Thus, the
number of degrees of freedom is reduced by one, and one bit
of information is measured. Since the light blue stabilizers
are trivial, this bit of information is given by the product
of the light red stabilizers. Because the stabilizers involve
each red-boundary Majorana exactly once, their product is
exactly Z ⊗ Z. This is the fault-tolerant generalization of the
4-Majorana parity measurement between two physical tetrons
(with d = 1) that is shown in the inset in Fig. 8. Not only is
this protocol fault tolerant in the sense that it can correct qubit
errors such as quasiparticle poisoning, but by repeating rounds

of syndrome measurement, erroneous stabilizer measurements
can also be corrected.

A very similar protocol can be used for the third operation
to measure X ⊗ X, Y ⊗ X, and Z ⊗ X between a tetron and a
hexon. In Fig. 9(a), an X ⊗ X measurement is shown for d = 5.
Here, X ⊗ X is the product of the 20 Majoranas along the two
adjacent blue boundaries. Again, the 4-Majorana operators are
merged to 8-Majorana operators (light red), and the product
of the new light blue operators yields precisely X ⊗ X. The
protocol for the Z ⊗ X measurement in Fig. 9(b) measures the
product of 20 Majoranas that are located on a red boundary
on the hexon, but on a blue boundary on the tetron. While
again stabilizers are merged and new stabilizers are introduced
to yield Z ⊗ X, the stabilizer configuration is different from
the situation in Fig. 9(a). Because the two boundaries have
different colors, the stabilizers in step 2 form what is called
a dislocation line. If flipped red and blue stabilizers are
interpreted as anyons in analogy to e and m anyons of bosonic
surface codes, then anyons passing this dislocation line will
change color.

The measurement of Y ⊗ X is shown in Fig. 9(c). Because
Y = iXZ, the Y operator of the (bottom) hexon qubit is the
product of 18 Majoranas on both the red and blue bottom
boundaries, excluding the center Majorana where the two
boundaries meet (since it is part of both boundaries and
γ 2 = 1). Thus, Y ⊗ X is the product of 36 Majoranas on the
long blue boundary of the tetron, and the adjacent red and blue
boundaries of the hexon. The product is again measured by
merging stabilizers and introducing new ones whose product
is precisely the product of the 36 Majoranas. The stabilizer
configuration in step 2 corresponds to a dislocation line that
is terminated by a 10-Majorana stabilizer (orange). This 10-
Majorana stabilizer is what is called a twist defect [25]. Twists
are found at the ends of dislocation lines. Incidentally, corners
of surface code qubits, i.e., the meeting points of two different
boundaries, can also be interpreted as ends of dislocation
lines, and therefore as twists [38]. The protocols in Figs. 8
and 9 further illustrate the equivalence between twists and
Majoranas: What for d = 1 is a measurement of a product of 4
Majoranas, for higher code distances becomes a measurement
of the four twists in the corners that are part of the lattice
surgery protocols. Twist defects become visible when the twist
is not located in a corner during lattice surgery. This is what
happens in Fig. 9(c) for the Y ⊗ Z measurement, where the
10-Majorana twist defect is revealed as it is in the center of
the qubit corresponding to the 1 Majorana that is not part of
the parity measurement in the d = 1 case.

The 10-Majorana twist defect of the 4.8.8 Majorana surface
code corresponds to the five-qubit twist defect of bosonic
surface codes. What is more, all of the aforementioned lattice
surgery protocols with 4.8.8 Majorana surface codes are
exactly equivalent to the protocols with bosonic surface codes
[27]. In fact, no Majorana fermion code that is purely based
on tetron building blocks (such as 4.8.8 codes) can display any
features that are different from bosonic codes, as any bosonic
code can be mapped onto a fermionic code by replacing each
qubit with a tetron [14]. However, by replacing only a few of
the tetrons with hexons, the 4.8.8 Majorana surface code can
display some Majorana-specific characteristics. In particular,
the maximum stabilizer weight necessary for lattice surgery
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FIG. 9. Lattice surgery protocols for the measurements of the
operators X ⊗ X (a), Z ⊗ X (b), and Y ⊗ X (c) between a 4.8.8 Ma-
jorana surface code hexon and tetron. The insets show the equivalent
operation with d = 1.

can be reduced from 10 Majoranas (corresponding to five
qubits in the bosonic case) to 8 Majoranas.

Consider the modified d = 5 hexons shown in Fig. 10. The
tetrons along the bottom and top red boundaries have been

replaced by hexons. Since two of the Majoranas of the hexons
are in a fixed-parity sector due to the 2-Majorana plaquettes,
they are equivalent to tetrons. In order to measure Y ⊗ X

between the hexon and a tetron via lattice surgery, stabilizers
are merged and new stabilizers are introduced to yield the
desired operator. The stabilizer configuration again features
a dislocation line that is terminated by a twist defect, but the
weight of the twist defect has decreased to just 8 Majoranas.
Due to the three-colorability of Majorana surface code lattices,
their twist defects closely resemble the so-called color twists
of bosonic color codes [43].

Thus, 4.8.8 Majorana surface codes feature the same Ma-
jorana overhead as bosonic surface codes of ∼4d2 Majoranas
per qubit, but a lower stabilizer weight for twist-based lattice
surgery. As we show in the remainder of the section, 6.6.6
and 4.6.12 Majorana surface codes can be used to reduce the
stabilizer weight even further, albeit at the cost of a higher
Majorana overhead.

Note that, in contrast to the Pauli product measurement pro-
tocol for physical tetrons, the fault-tolerant protocol features
tetrons of different lengths. Specifically, the tetrons used for
Y ⊗ X measurements are almost twice as long as tetrons used
for X ⊗ X or Z ⊗ X measurements. The protocol of Fig. 7
can still be used in the fault-tolerant setting, but additional
tetrons may be required to bridge distances between ancillas.
For concreteness, we show an implementation of the protocol
of Fig. 7 using 4.8.8 Majorana surface codes with d = 3 in
Appendix A 4.

B. 6.6.6 and 4.6.12 Majorana surface codes

6.6.6 codes only require the measurement of 6-Majorana
operators in the bulk of the code, as opposed to 8-Majorana
operators for 4.8.8 codes. In Fig. 11(a), we show the protocol
to measure Y ⊗ X between a 6.6.6 hexon and tetron. This case
is the most instructive, as it features standard lattice surgery, a
dislocation line, and a twist defect. The measurement protocols
for the other operators are shown in Appendix A 5. Even
though 6.6.6 codes reduce the stabilizer weight to 6 Majoranas
for most stabilizers, twist-based lattice surgery requires the
measurement of some 8-Majorana operators that are part of
dislocation lines. However, we can use the same trick as for
4.8.8 Majorana surface codes to reduce the weight of the
lattice surgery operators. As we show in Appendix A 6, the
weight of the dislocation line operators can be reduced to 6
Majoranas by replacing some of the boundary hexons with
octons (8 Majoranas in a fixed-parity sector), such that at most
6-Majorana parity measurements are required for quantum
computing with 6.6.6 Majorana surface codes.

Figure 11(b) shows the same scenario for 4.6.12 codes.
Here, both the dislocation line and the twist defect consist
of operators that have a weight of six Majoranas. While the
green building blocks along the dislocation line are drawn as
decons (10-Majorana building blocks) in Fig. 11(b), as opposed
to dodecons, this protocol can in fact be realized in a square
lattice of dodecons. This is shown in Appendix A 5, where we
also present the remaining lattice surgery protocols with 4.6.12
codes.

Thus, 4.6.12 Majorana surface codes require at most 6-
Majorana parity measurements for quantum computation.
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Step 2Step 1

Y ⊗ X =

FIG. 10. Lattice surgery protocol for the measurement of Y ⊗ X between a 4.8.8 Majorana surface code hexon and tetron. The hexon is
modified to feature hexons instead of tetrons at the bottom and top red boundaries. As a consequence, the weight of the twist defect (orange)
reduces to 8 Majoranas.

Compared to bosonic surface codes, this comes at the price of
a threefold increased space overhead of ∼12d2 Majoranas per
qubit. This is reminiscent of bosonic subsystem surface codes
[30], which only require three-qubit operator measurements
(corresponding to 6 Majoranas), and also feature an increased
space overhead of ∼4d2 physical qubits (corresponding to
∼12d2 Majoranas) per logical qubit. However, since these are
bosonic codes, twist-based lattice surgery features a five-qubit
twist defect, corresponding to 10-Majorana operators. Since
there exists no work on lattice surgery with these codes, we
show the twist-based lattice surgery protocol with subsystem
surface codes in Appendix A 7, even though it is exactly the
same as with standard bosonic surface codes.

While all of our Majorana surface code constructions can
be applied to any Majorana platform, they can in particular
be implemented using the quantum-wire constructions of
Ref. [33]. We show nanowire implementation of the three
uniform Majorana surface codes in Appendix B 2.

C. State injection

So far, we have shown how to implement the operations
(Op1), (Op2), and (Op3) with 4.8.8, 6.6.6, and 4.6.12 Majorana
surface codes, which allow tracking of Clifford gates, thus
implementing them with zero-time overhead. The remaining
operation required for universality is the generation of (faulty)
magic states that are encoded in tetrons. Unfortunately, even
under the assumption of error-free d = 1 tetrons, there is no
robust way to initialize a magic state. One possibility to prepare

a faulty magic state is to initialize a |+〉 = 1√
2
(|0〉 + |1〉) state

by measuring iγ2γ3, and to split the degeneracy between the
two states |0〉 and |1〉 by �E for a time τ = π/4 · h̄/�E. The
dynamical phase difference between the states |0〉 and |1〉 will
yield a magic state |m〉 = 1√

2
(|0〉 + eiπ/4|1〉). The degeneracy

splitting can be implemented by coupling the two Majoranas
γ1 and γ2, as is done for the measurement of Z = iγ1γ2. This
protocol is obviously not robust against perturbations, as it
requires precise control of the coupling parameters to generate
an exact phase difference of π/4. While there exist more
sophisticated protocols for π/8 rotations in Majorana-based
architectures [44–46], magic-state distillation is still required
to obtain a low-error magic state.

Majorana magic gates or the coupling of two Majoranas
can be used to obtain a noisy magic state encoded in a
(d = 1) tetron. Fault-tolerant quantum computing requires us
to convert this magic state into a magic state encoded in a
logical tetron with a higher code distance. This is done via a
protocol called state injection. There exist several protocols
to inject an arbitrary state into a surface code [42,47,48].
In particular, Ref. [47] describes a two-step protocol that
minimizes the time that the magic state spends with code
distance d = 1. Here, we adapt this protocol to fermionic
codes.

Consider the stabilizer configuration shown in the top panel
of Fig. 12(a). The number of stabilizers is the same as in a 4.8.8
Majorana surface code with d = 5, i.e., exactly one qubit is
encoded. Even though the four segments in the corners look
like small surface codes, they do not encode any qubits since
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Step 2Step 1

Y ⊗ X =

(b)

Step 2Step 1

Y ⊗ X =

(a)

FIG. 11. Lattice surgery protocol for the measurement of Y ⊗ X between 6.6.6 (a) and 4.6.12 (b) Majorana surface code hexons and tetrons.
The maximum weight of the operators during lattice surgery is 8 Majoranas for 6.6.6 codes and 6 Majoranas for 4.6.12 codes.

they only have two different boundaries each and therefore only
two corners. The encoded qubit is in fact the physical tetron in
the center. Notice that the product of the Majoranas highlighted
in red would correspond to a logical X operator in an actual
d = 5 code since it is a string connecting the two red bound-
aries that commutes with all stabilizers. In the stabilizer con-
figuration in the top panel, this string also commutes with all
stabilizers. Since the product of the Majoranas that are not lo-
cated at the center tetron is fixed to be +1 by the stabilizers, the
product of red Majoranas is equal to the X information encoded
in the center tetron. Similarly, the product of blue Majoranas
is equivalent to the Z information encoded in the center tetron,
and would correspond to a blue-to-blue string of Majoranas
in a d = 5 code. By switching the stabilizer configuration
from the top configuration to the bottom configuration, the

state encoded in the physical tetron is converted into a logical
tetron. As the highlighted logical operators commute with the
stabilizers in both cases, they remain unchanged in the process.
However, the measurement outcomes of the new stabilizers
straddling the corner segments are random. The errors need
to be corrected in such a way that the correction operation
commutes with the highlighted logical operators. Note that
since we start out with a d = 1 qubit, state injection is not fault
tolerant, which further emphasizes the need for magic-state
distillation.

The injection procedures for 6.6.6 and 4.6.12 Majorana
surface codes are very similar. In the 6.6.6 case in Fig. 12(b), the
logical information is initially encoded in 4 of the 6 Majoranas
of the center hexon. Again, the highlighted Majorana strings
commute with both stabilizer configurations and correspond
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FIG. 12. State injection protocols to convert a state encoded in a physical tetron into a logical 4.8.8 (a), 6.6.6 (b), or 4.6.12 (c) tetron for the
example of d = 5.

to the logical operators. For the 4.6.12 code in Fig. 12(c), the
logical information is initially encoded in 4 of the 12 Majoranas
of the center dodecon.

Thus, we have implemented all four operations necessary
for universal quantum computation with tetrons and hexons
with minimal-overhead Clifford gates. The Pauli product mea-
surement protocol of Fig. 7 can be implemented with logical
tetrons and hexons exactly the same way as was described
in Sec. III by replacing the measurements of 4 Majoranas by
(twist-based) lattice surgery.

V. MAJORANA COLOR CODES

In the previous section, we have shown that Majorana
surface codes can be used to decrease the weight of the
operators that need to be measured for fault-tolerant quantum
computing. However, they come with a higher space overhead
compared to bosonic surface codes. What about the opposite
direction? How does one design topological codes with higher
stabilizer weights but, in turn, lower space overhead?

The answer lies in color codes. Bosonic color codes [28,49]
are known to feature higher stabilizer weights compared to
bosonic surface codes, but they can encode qubits more com-
pactly, using fewer physical qubits per logical qubit of a given
code distance. Color codes are closely related to surface codes,
as they can be obtained by concatenating surface codes with
small nontopological codes [36]. In an alternative construction,
color codes are obtained by folding surface codes in half [50].
Here, we adapt the concatenation scheme to Majorana surface
codes, in order to obtain Majorana color codes.2

2Note that in Ref. [14], the term Majorana color code was used to
refer to Majorana surface codes.

For bosonic codes, concatenation means that each physical
qubit of a code is replaced by another logical qubit. For
instance, a 4.8.8 bosonic color code can be obtained by
concatenating a bosonic surface code with a [[4,2,2]] code
[36]. This means that two bosonic surface codes are stacked on
top of each other, and pairs of stacked qubits are replaced by
[[4,2,2]] codes, as shown in Figs. 13(a) and 13(b). Similarly,
we propose that Majorana color codes can be obtained by con-
catenating Majorana surface codes with [[nm,k,dm]]m codes,
where [[nm,k,dm]]m labels Majorana fermion codes that use n

Majoranas to encode k qubits with Majorana distance dm.
We suggest to concatenate fermionic codes by stacking

Majorana surface codes on top of each other and replacing
stacked building blocks of the code by [[nm,k,dm]]m codes. The
simplest example of a Majorana color code is a 4.8.8 Majorana
surface code concatenated with a [[6,2,2]]m code, which is
shown in Fig. 14. The [[6,2,2]]m code uses 6 Majoranas to
encode two qubits with Majorana distance dm = 2, which
means that it is a hexon. In the concatenation procedure shown
in Fig. 14 for a small segment of a 4.8.8 surface code, two
Majorana surface codes are placed on top of each other. Next,
each stack of two tetrons is replaced by a single hexon. Hexons
encode twice as many qubits as tetrons, but use only 1.5 times
as many Majoranas to do so. Thus, a logical tetron built from
the Majorana color codes shown in Fig. 14 encodes two qubits
as two layers of surface codes on top of each other, but uses only
3d2 Majoranas per qubit with distance d, while the stabilizer
weight remains the same. Note that even though we draw
Majorana color codes as three-dimensional stacks, they can
also be implemented in 2D architectures. In particular, the
4.8.8 ([[6,2,2]]m) Majorana color code can be implemented in
a square lattice of hexons, but, in contrast to Majorana surface
codes, the stabilizers now overlap, as we show in Appendix C 1.

More generally, we define Majorana color codes as
any number of Majorana surface code layers obtained by
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(a) Bosonic surface code (b) Bosonic 4.8.8 color code (c) 4.8.8 ([[16, 2, 4]]m) Majorana color code (d) 4.8.8 Majorana surface code

qubit
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Z
1 /X

2 X
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Z⊗8/X⊗8

Z

X
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(e) [[16, 3, 4]]m (8.8.4)f(edoc [[16, 3, 4]]m) Majorana color code
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logical operators

Z⊗4
1 /X⊗4

1 /Z⊗4
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1 /X⊗2

1 /Z⊗2
2 /X⊗2

2 Z⊗4
3Z⊗2

3 X⊗4
3X⊗2

3

FIG. 13. A bosonic surface code (a) concatenated with a [[4,2,2]] code yields a bosonic 4.8.8 code (b). This can also be drawn as a Majorana
fermion code (c) by replacing each qubit with a tetron (yellow lines). This Majorana color code can also be obtained by replacing each tetron
of the 4.8.8 Majorana surface code with a [[16,2,4]]m code. (e) Stabilizers and logical operators of the [[16,3,4]]m code presented in Ref. [24].
(f) Order-3 Majorana color code obtained by concatenating a 4.8.8 Majorana surface code with the [[16,3,4]]m code. Each yellow 16-Majorana
box corresponds to a [[16,3,4]]m code. Since the stabilizers overlap, they are shown in two separate figures.

concatenating Majorana surface codes with any other code.
We refer to a code corresponding to n layers of surface codes
as an order-n code. Stacking k 4.8.8 Majorana surface codes

X1 Z1

X2

Z2

Z2
X2

X1

Z1

Z1
X1

X2 Z2

FIG. 14. Scheme to obtain a 4.8.8 ([[6,2,2]]m) Majorana color
code by concatenating the 4.8.8 Majorana surface code with a
[[6,2,2]]m code, i.e., by stacking two surface codes and replacing
each pair of tetrons with a hexon.

and replacing each stack of k tetrons with an [[nm,k,dm]]m
code yields an order-k Majorana color code. For instance, the
previously discussed 4.8.8 ([[6,2,2]]m) Majorana color code is
an order-2 Majorana color code. Majorana surface codes are
order-1 codes. One way to obtain an order-3 code is to place
three 4.8.8 Majorana surface codes on top of each other, and
replace each stack of three tetrons with an octon (an [[8,3,2]]m
code). Since one of the logical operators of the octon is a
4-Majorana operator, the maximum stabilizer weight increases
to 10 Majoranas, as we discuss in Appendix C 2.

Bosonic color codes in their usual definition [28] are order-2
codes, as they correspond to two surface code layers. One
such code is the previously mentioned bosonic 4.8.8 color
code, which is obtained by replacing each qubit of a bosonic
surface code [Fig. 13(a)] with a [[4,2,2]] code. This is a code
that uses four qubits and has two stabilizers Z ⊗ Z ⊗ Z ⊗ Z

and X ⊗ X ⊗ X ⊗ X. It encodes two logical qubits with
logical operators Z1 = Z ⊗ Z ⊗ 1 ⊗ 1, X1 = 1 ⊗ X ⊗ X ⊗ 1
and Z2 = 1 ⊗ Z ⊗ Z ⊗ 1, X2 = X ⊗ X ⊗ 1 ⊗ 1. Thus, a
bosonic 4.8.8 color code tetron [see Fig. 13(b)] is equivalent to
two surface codes on top of each other. It can be converted
to a Majorana fermion code by replacing each qubit with
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data qubits
require n magic states per code cycle

magic state factory
supplies n magic states per code cycle

FIG. 15. Scheme for quantum computation in an array of tetrons and hexons, where the hexons are used to encode qubits, and tetrons are
used as ancillas for Pauli product measurements. One part of the array is used to encode the data qubits for quantum computation, whereas the
rest of the quantum computer is used to distill magic states.

a tetron. In Fig. 13(c), these tetron building blocks are the
yellow strings of 4 Majoranas. Another way of obtaining this
Majorana fermion code is by stacking two 4.8.8 Majorana
surface codes and replacing pairs of tetrons with [[16,2,4]]m
codes, which is the Majorana representation of the bosonic
[[4,2,2]] code. The bosonic 4.8.8 color code uses four times
as many physical qubits (or Majoranas) to encode twice as
many logical qubits with twice the code distance. Thus, the
Majorana overhead of bosonic 4.8.8 color codes is 2d2 per
qubit, which is half the overhead of bosonic surface codes.
However, the stabilizer weight doubles from 8 Majoranas to 16
Majoranas.

The [[16,2,4]]m code used to obtain the bosonic 4.8.8 color
code by concatenation is a bosonic code in the sense that its
building blocks are tetrons. With Majoranas, there is also the
possibility to use Majorana fermion codes for concatenation.
These codes can encode information more compactly. In
Ref. [24], a collection of small Majorana fermion codes is
presented. The smallest dm = 4 Majorana fermion code is
the [[16,3,4]]m code shown in Fig. 13(e), which uses 16
Majoranas to encode three instead of just two logical qubits
with a Majorana distance of dm = 4. It is based on two octons
with three additional 8-Majorana operators as stabilizers. All
of its logical operators are weight-4-Majorana operators. The
order-3 Majorana color code obtained by concatenating the
4.8.8 surface code with the [[16,3,4]]m code is shown in
Fig. 13(f). It essentially corresponds to three layers of Majorana
surface codes and has a reduced Majorana overhead of 4

3d2

with octons as building blocks, while still featuring a maximum
stabilizer weight of 16 Majoranas.

In general, concatenating a bosonic surface code with an
[[n,k,db]] bosonic code increases the number of physical
qubits by a factor of n, the number of logical qubits by a
factor of k, and the code distance by a factor of db. Thus,
the number of physical qubits per logical qubit goes from d2

to n

kd2
b

d2. The maximum stabilizer weight of the code may
increase from 4 to 4wmax, where wmax is the maximum weight
of the logical operators of the [[n,k,db]] code. Similarly, a 4.8.8
Majorana surface code concatenated with an [[nm,k,dm]]m
code decreases the Majorana overhead from 4d2 to 4nm

kd2
m
d2

Majoranas for a logical qubit with code distance d.

The second smallest dm = 4 Majorana fermion code is
the [[20,4,4]]m code. Its stabilizers and logical operators are
shown in Appendix C 3. The code is based on two decons
(10 Majoranas in a fixed-parity sector) and four 10-Majorana
stabilizers, and encodes four qubits whose logical operators
all have a weight of 4 Majoranas. Thus, the order-4 Majorana
color code obtained by concatenating a 4.8.8 surface code with
a [[20,4,4]]m has a Majorana overhead of 1.25d2 while still
only featuring a maximum stabilizer weight of 16 Majoranas.
Since some of the logical operators of the third-smallestdm = 4
code, the [[24,6,4]]m code, have a weight of 6 Majoranas, the
stabilizer weight of a Majorana code obtained by concatenating
this code with a 4.8.8 Majorana surface code would exceed
16 Majoranas. In general, Majorana surface codes can be
concatenated with arbitrary Majorana fermion codes to obtain
codes with a smaller Majorana overhead, while increasingly
sacrificing stabilizer weight and locality of the code.

Majorana color codes can be used for quantum computation
the same way as Majorana surface codes, i.e., by encoding
tetrons and hexons, and performing lattice surgery. In fact,
the stabilizer weight and space overhead of the lattice surgery
protocol can be reduced by using surface-to-color code lattice
surgery [20], such that the ancilla tetron is not a color code,
but a surface code. For the previously discussed codes with
16-Majorana stabilizers, surface-to-color code lattice surgery
has a maximum stabilizer weight of 12 Majoranas. We show
an example of this in Appendix C 4.

In summary, we have described Majorana color codes,
which are multiple layers of Majorana surface codes obtained
by concatenation. The advantage of Majorana color codes
compared to bosonic color codes is that they can encode logical
qubits more compactly with the same stabilizer weight. In
particular, the Majorana color code obtained by concatenating
the 4.8.8 Majorana surface code with the [[20,4,4]]m code has
a Majorana overhead of 1.25d2, compared to the Majorana
overhead of 2d2 of the bosonic 4.8.8 color code.

VI. CONCLUSION

We have described a unified framework for fault-tolerant
quantum computation with Majorana-based qubits. A full
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=

=

FIG. 16. 6.6.6 and 4.6.12 surface code tetrons in a square lattice
of hexons and dodecons, respectively.

quantum computer could look like the array of tetrons and
hexons shown in Fig. 15. Hexons are used to encode qubits,
while tetrons are ancillas that are used during the Pauli product
measurement protocol. One part of the quantum computer

(a) 4.8.8 Majorana surface code

(b) 6.6.6 Majorana surface code

(c) 4.6.12 Majorana surface code

FIG. 17. One choice of mapping of 4.8.8, 6.6.6, and 4.6.12
Majorana surface codes onto bosonic surface codes. For bosonic
surface codes, the dark plaquettes are products of X operators, and
the light plaquettes are products of Z operators.

1

Sm1 Zm2

m2

FIG. 18. A T gate on a qubit |ψ〉 is equivalent to a Z ⊗ Z

measurement between |ψ〉 and a magic state |m〉 with outcome
m1, which results in a corrective Sm1 operation on |ψ〉. In order
to disentangle |m〉 from the qubit, it is measured in the X basis,
prompting a Zm2 Pauli correction on |ψ〉.

consists of the data qubits that are used for quantum com-
putation, which requires a certain number of magic states n

per code cycle as a resource for T gates, where n depends
on the given quantum computation. In order for magic-state
distillation not to be a bottleneck of the quantum computer, the
resources devoted to magic-state distillation need to be large
enough to supply n magic states per code cycle. The main
operation in addition to the preparation of faulty magic states
is the measurement of Pauli product operators according to
the protocol in Fig. 7. Taking full advantage of the Gottesman-
Knill theorem, this enables the classical tracking of all Clifford
gates, which means that these gates require zero-time overhead.

In principle, the scheme with d = 1 tetrons and hexons
shown in Fig. 15 can be implemented in a nanowire array in
the spirit of Ref. [33], as shown in Appendix B 1. However,
this only allows for quantum computation on timescales of
the order of the coherence times of the physical tetrons and
hexons. For fault-tolerant quantum computation, each tetron
and hexon needs to be replaced by a logical tetron and hexon
with an appropriate code distance, and 4-Majorana parity
measurements need to be replaced by lattice surgery.

There are a wide variety of codes that one can choose for
this purpose, a collection of which is shown in Table I. Surface
codes only require the measurement of low-weight stabilizers,
but feature a high-space overhead. Majorana surface codes
feature lower-weight stabilizers compared to bosonic surface
codes. In particular, 4.8.8 Majorana surface codes have the
same bulk stabilizer weights as bosonic surface codes, but
a lower stabilizer weight for lattice surgery of 8 Majoranas
compared to 10 Majoranas. 6.6.6 and 4.6.12 Majorana sur-
face codes reduce the bulk stabilizer weights to an average

FIG. 19. A multitarget CNOT gate between a control qubit |c〉
and multiple target qubits |ti〉 is equivalent to a Z ⊗ Z measurement
between |c〉 and an ancilla initialized in the |+〉 state, followed by
a X⊗n+1 measurement between the ancilla and the n target qubits.
Finally, the ancilla is measured in the Z basis. The final Pauli
corrections depend on the measurement results.
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FIG. 20. Pauli product measurement protocol from Fig. 7 realized with d = 3 4.8.8 Majorana surface codes. Only steps 1, 2, and 3 are
shown.

of 6 and 5 Majoranas, respectively, but at the same time
increase the Majorana overhead by a factor of 1.5 and 3,
respectively.

Color codes can reduce the space overhead at the price
of higher-weight stabilizers. Majorana color codes encode
qubits more compactly compared to bosonic color codes.
The 4.8.8 ([[6,2,2]]m) Majorana color code has the same
stabilizer weights as a bosonic surface code, but features a
lower Majorana overhead. Similarly, the 4.8.8 ([[20,4,4]]m)
Majorana color code has the same stabilizer weights as the
bosonic 4.8.8 color code, but a lower Majorana overhead by a
factor of 5

8 .
Our entire scheme can also be realized with nontopological

(e.g., superconducting) qubits, but is then limited to the use
of bosonic codes. From the perspective of Majorana fermion
codes, nontopological qubits can only implement logical
tetrons and hexons with physical tetrons as building blocks,

whereas Majorana-based qubits can also implement codes with
other building blocks such as physical hexons, octons, decons,
or dodecons.

There are many questions that remain unanswered. Even
though our protocols allow the classical tracking of CNOT
gates, it remains uncertain whether tracking is always advan-
tageous compared to actually executing theses gates. After all,
if a layer of Clifford gates is followed by a layer of T gates, all
of these T gates can be executed simultaneously. However, if
CNOTs are tracked, these T gates require spatially overlapping
Pauli product measurements. While our measurement protocol
shows how arbitrary Pauli products can be measured, it is
unclear how multiple (commuting) Pauli products can be read
out simultaneously. If it turns out that it is more advantageous to
execute CNOT gates explicitly, our Pauli product measurement
protocol can be straightforwardly used for multitarget CNOT
gates using the protocol in Appendix A 3.
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Step 2Step 1

Z ⊗ Z =

Step 2Step 1

X ⊗ X =

Step 2Step 1

Z ⊗ X =

FIG. 21. Stabilizer configuration for Z ⊗ Z measurements between two 6.6.6 Majorana surface code tetrons, and for X ⊗ X and Z ⊗ X

measurements between a 6.6.6 hexon and a 6.6.6 tetron.

Moreover, while bosonic surface code decoders can be
used to decode Majorana surface codes, one could also devise
decoding schemes that are tailored towards Majorana fermion
codes. In particular, in a setting where parity-fixing constraints
can be violated and stabilizers of all colors are measured, a
decoder needs to be able to match three types of anyons, as
opposed to just two. Furthermore, one could adapt the scheme
of Majorana-based fermionic quantum computation [51] to the
fault-tolerant setting by replacing arrays of Majoranas with
arrays of twist defects in Majorana surface codes. Based on

twists in Majorana surface codes, it would also be interesting
to see whether it is possible to come up with a Majorana
version of the twist-based triangle code presented in Ref. [52].
Also, we did not investigate the performance of Majorana
fermion codes, i.e., the logical error rate under the assumption
of a realistic error model. While it is known that the bit-flip
error thresholds of bosonic surface and color codes without
measurement errors are the same [53,54], the error thresholds
of codes corresponding to an arbitrary number of surface code
layers are unknown. We hope that the framework presented
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Step 2Step 1

Z ⊗ Z =

X ⊗ X =

Z ⊗ X =

Step 2Step 1

Step 2Step 1

FIG. 22. Stabilizer configuration for Z ⊗ Z measurements between two 4.6.12 Majorana surface code tetrons, and for X ⊗ X and Z ⊗ X

measurements between a 4.6.12 hexon and a 4.6.12 tetron.

in this work will prove useful for Majorana-based quantum
computation.
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APPENDIX A: MAJORANA SURFACE CODES

1. 6.6.6 and 4.6.12 Majorana surface codes in square
lattices of hexons and dodecons

Some of the logical surface code tetrons and hexons in
Figs. 3 and 4 feature smaller building blocks (green stabilizers)
at the boundary compared to the building blocks in the bulk. In
particular, some of the green stabilizers of 6.6.6 surface codes
are tetrons at the boundary, whereas they are hexons in the bulk.
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Y ⊗ X =

Step 2Step 1

FIG. 23. Stabilizer configuration for Y ⊗ Z measurements between a 4.6.12 Majorana hexon and tetron.

Similarly, 4.6.12 surface codes feature hexons, octons, and de-
cons at the boundary, as opposed to dodecons. Still, all of these
codes can be implemented on a square lattice of building blocks
(green stabilizers), where each building block is the same. The
equivalence in Fig. 16 shows that 6.6.6 Majorana surface codes
can be implemented on a square lattice of hexons, and 4.6.12
codes can be implemented on a square lattice of dodecons. The
two-qubit plaquettes at the boundary fix the parity of some
of the Majoranas of the hexons and dodecons, such that they
effectively become tetrons, hexons, octons, or decons.

2. Mapping Majorana surface codes onto bosonic
surface codes

While every bosonic code can be uniquely mapped onto a
Majorana fermion code by replacing each qubit with a tetron,
the reverse mapping is not unique. For Majorana surface codes,
one prescription to map them onto a bosonic code is to interpret
each stabilizer of a certain color of the three-colorable tiling as
a number of qubits. For instance, for the 4.8.8 tiling, one has the
choice of either interpreting the 8-Majorana stabilizers of one
color as three qubits encoded in an octon, or of interpreting all

Step 2Step 1

Y ⊗ X =

FIG. 24. Stabilizer configuration for Y ⊗ Z measurements between a 6.6.6 Majorana hexon and tetron. Some of the physical hexons located
at the boundary have been replaced by octons. As a consequence, the maximum stabilizer weight reduces to 6 Majoranas.
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Y ⊗ X =

=

FIG. 25. Twist-based lattice surgery between a logical hexon and a logical tetron encoded in a d = 3 bosonic subsystem surface code in
order to measure Y ⊗ Z. The Majorana fermion code obtained by replacing each qubit of a bosonic subsystem surface code tetron with 4
Majoranas in a fixed-parity sector resembles a 4.6.12 Majorana surface code.

4-Majorana stabilizers as tetrons. The latter mapping precisely
yields the bosonic surface code on a square lattice, as shown
in Fig. 17(a). Note that in this mapping, neighboring tetrons
have different orientations.

For the 6.6.6 Majorana surface code in Fig. 17(b), we
interpret each green stabilizer as a hexon, where one qubit is
encoded in the bottom left three Majoranas, and the other qubit
in the top right three Majoranas. Thus, we replace each green
hexon with two qubits, and obtain a bosonic surface code on
a rotated square lattice. For the 4.6.12 Majorana surface codes
there are again several possibilities. In Fig. 17(c), we show
a mapping where each 4-Majorana stabilizer is replaced by a
tetron, which yields a bosonic surface code on a kagome lattice.

3. State injection and CNOT gates with Pauli
product measurements

In a quantum computing architecture where all Clifford
gates are tracked and only Pauli product measurements are
explicitly performed, the state injection circuit from Fig. 5(a)
is replaced by Fig. 18. In particular, the tracked CNOT gate
maps the Z measurement of the magic state onto a Z ⊗ Z

measurement of |ψ〉 ⊗ |m〉. However, this leaves the qubits
|ψ〉 and |m〉 in an entangled state, which means that |m〉
cannot be discarded right away after the state injection. With
|ψ〉 = α|0〉 + β|1〉 and |m〉 = 1√

2
(|0〉 + eiπ/4|1〉), the initial

state before any measurement is

|�〉 = 1√
2

(α|00〉 + αeiπ/4|01〉 + β|10〉 + βeiπ/4|11〉). (A1)

After the Z ⊗ Z measurement, there are two possible out-
comes:

|�0〉 = α|00〉 + βeiπ/4|11〉 (A2)

for outcome m1 = 0, and

|�1〉 = αeiπ/4|01〉 + β|10〉 ≈ α|01〉 + βe−iπ/4|10〉 (A3)

for outcome m1 = 1, where “≈” is an equality up to a global
phase. After an Sm1 correction, |�0〉 remains unchanged,
whereas |�1〉 is transformed to

S|�1〉 = α|01〉 + βeiπ/4|10〉. (A4)

Both |�0〉 and S|�1〉 are entangled states. If one wants to
discard the second qubit in order to continue to use it for
magic-state distillation, it first needs to be disentangled from
the rest of the system. This can be done by measuring the magic
state in the X basis with outcome m2, followed by a Zm2 Pauli
correction on the qubit |ψ〉. For |�0〉, an X measurement leaves
the state in

|�0,0〉 = (α|0〉 + βeiπ/4|1〉) ⊗ |+〉 (A5)

for outcome m2 = 0, and

|�0,1〉 = (α|0〉 − βeiπ/4|1〉) ⊗ |−〉 (A6)

for outcome m2 = 1. A Zm2 correction leaves |�0,0〉 un-
changed and maps |�0,1〉 to

Z|�0,1〉 = (α|0〉 + βeiπ/4|1〉) ⊗ |−〉. (A7)

Similarly, S|�1〉 after an X measurement becomes |�0,0〉 for
outcome m2 = 0, and −|�0,1〉 ≈ |�0,1〉 for outcome m2 = 1,
which after a Z correction becomes Z|�0,1〉. For both |�0,0〉
and Z|�0,1〉, the two qubits are disentangled, and the first
qubit is in the state T |ψ〉 = |0〉 + eiπ/4|1〉, which is the desired
outcome for state injection. We stress that neither the Sm1 nor
the Zm2 correction need to be performed explicitly, but can be
tracked by a classical computer.

We also note that in a quantum computer that only im-
plements Pauli product measurements, CNOT gates can still
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semiconductor
topological superconductor
superconductor
dot-mediated tunnel coupling

FIG. 26. Tunnel-coupling configurations for the Pauli product measurements protocol from Fig. 7 realized with the wire-based tetrons and
hexons proposed in Ref. [33].

be performed explicitly. To this end, one can use the circuit
identity for multitarget CNOT gates [19,55] shown in Fig. 19.
Here, a CNOT gate between a control qubit |c〉 and n tar-
get qubit |ti〉 is equivalent to three Pauli product measure-
ments with Pauli corrections that depend on the measurement
results.

4. Pauli product measurement protocol
with 4.8.8 Majorana surface codes

In Fig. 20, we show how the example of a Pauli product
measurement in Fig. 7 could be realized using 4.8.8 Majorana
surface codes with d = 3. While the lattice surgery steps
are shown, the X and Z measurements of logical tetrons
are done via the measurement of all 2-Majorana operators
corresponding to red and blue edges, respectively.

5. Lattice surgery protocols for 6.6.6 and 4.6.12
Majorana surface codes

In Fig. 21, we show the stabilizer configurations for the
lattice surgery operations to measure Z ⊗ Z between two
6.6.6 Majorana surface code tetrons, and X ⊗ X and Z ⊗ X

between hexons and tetrons. The same lattice surgery opera-
tions are shown for 4.6.12 Majorana surface codes in Fig. 22.
Since Fig. 11(b) shows the Y ⊗ Z lattice surgery for 4.6.12
codes with decons along the boundary, we show the same
protocol in Fig. 23, but on a square lattice of dodecons.

6. Weight-6 lattice surgery protocol for 6.6.6 Majorana
surface codes

Figure 24 shows the lattice surgery protocol for a Y ⊗ X

measurement between a 6.6.6 Majorana surface code hexon
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(a) Lattice of tetrons

(b) Lattice of hexons

(c) Lattice of dodecons

(d) Lattices with coherent links

FIG. 27. Nanowire-based implementations of 4.8.8 (a), 6.6.6 (b), and 4.6.12 (c), with examples of tunnel-coupling configurations for red
and blue stabilizer measurements. Coherent links (d) may be necessary for the measurement of other operators.

and tetron. Some of the physical hexons along the boundaries
of the logical hexon and tetron have been replaced by physical
octons. As a consequence, the dislocation line between the
X boundary of the tetron and the Z boundary of the hexon no
longer features any 8-Majorana operators, but only 6-Majorana
operators. This reduces the maximum Majorana weight of

quantum computing with 6.6.6 Majorana surface codes to 6
Majoranas.

7. Twist-based lattice surgery with subsystem surface codes

In Fig. 25, we show the twist-based lattice surgery protocol
[27] for a d = 3 subsystem surface code [30]. While all the

205404-23102



DANIEL LITINSKI AND FELIX VON OPPEN PHYSICAL REVIEW B 97, 205404 (2018)

FIG. 28. 4.8.8 ([[6,2,2]]m) Majorana color code in a 2D array of
hexons.

check operators in the bulk of the code are weight-3, the mea-
surement of the twist defect requires a five-qubit measurement.
By replacing each qubit of the subsystem surface code with a
tetron, one can see that the subsystem surface code resembles
a 4.6.12 Majorana surface code, as is shown in Fig. 25.

APPENDIX B: QUANTUM-WIRE-BASED
IMPLEMENTATIONS

1. Pauli product measurement protocol in a nanowire array

The Pauli product measurement protocol in Fig. 7 can be
straightforwardly used to implement minimal-overhead Clif-
ford gates in the wire-based architectures proposed in Ref. [33].
Essentially, hexons can be implemented as three topological
superconducting nanowires in a parity sector that is fixed
by a nontopological superconductor bridging the three wires.
Moreover, in Fig. 26, tetrons correspond to two topological
superconducting nanowires in a fixed-parity sector with an
additional topological nanowire serving as a coherent link that
is used for certain parity measurements. Products of Majorana
operators are measured by opening tunnel couplings between
topological superconductors and segments of a semiconduct-
ing nanowire network, such that the tunnel couplings form

O1 O2 O3 O4

Z1 X1 Z2 X2

Z3 X3 Z4 X4

FIG. 30. Stabilizers O1-O4 and logical operators of the
[[20,4,4]]m code presented in Ref. [24].

closed paths. These semiconducting nanowire segments can
be interpreted as quantum dots whose energy levels are shifted
by the virtual process of an electron tunneling around the path,
picking up all Majorana operators along the way. Therefore,
suitable spectroscopy on the dots can be used to measure the
product of these Majorana operators, as detailed in Ref. [33].
In Fig. 26, we show the tunnel-coupling configurations that
implement the measurements that are part of the Pauli product
measurement protocol. Note that some of the measurements
require the use of coherent links, such that the Majorana
weight of some measurements is increased. In particular, some
of the 4-Majorana measurements in the second step become
6-Majorana measurements in this particular implementation.

X Z

Z X

Z X

X Z

Z X

X Z

X Z

Z X

X1/Z1 X2/Z2 X3/Z3

X1/Z1 X2/Z2 X3/Z3

X1/Z1 X2/Z2 X3/Z3

X1/Z1 X2/Z2 X3/Z3

Z⊗4

Z⊗4
1

Z⊗4
2

Z⊗4
3

FIG. 29. Procedure to obtain a 4.8.8 ([[8,3,2]]m) Majorana color code. In order to prevent stabilizer weights from increasing beyond 10
Majoranas, the tetrons of a 4.8.8 Majorana surface code are periodically labeled A, B, C, and D. Each tetron is replaced by a single octon,
but the definition of the octon’s logical operators depends on the label of the corresponding tetron. In the figure, the octon’s Z (X) operators
correspond to products of blue (red) Majoranas. The resulting stabilizers have a maximum weight of 10 Majoranas, as shown for the three
overlapping blue Z type stabilizers.

205404-24103



QUANTUM COMPUTING WITH MAJORANA FERMION CODES PHYSICAL REVIEW B 97, 205404 (2018)

Z1 ⊗ Z =

Step 1

edocroloc8.8.4cinosob

4.8.8 Majorana surface code

Step 2

merged 12-Majorana stabilizer

FIG. 31. Lattice surgery protocol for the measurement of the operator Z1 ⊗ Z between a bosonic 4.8.8 color code tetron and a 4.8.8 Majorana
surface code tetron. Z1 is the Z operator of the first qubit encoded in the bosonic 4.8.8 color code tetron.

2. Majorana surface code implementations in a nanowire array

In Fig. 27, we show wire-based implementations of square
lattices of tetrons (a), hexons (b), and dodecons (c), which can
be used to implement 4.8.8, 6.6.6, and 4.6.12 Majorana surface
codes, respectively. While we show the tunnel-coupling con-
figurations to measure red and blue stabilizers, some irregular
stabilizers, such as boundary stabilizers, dislocation lines,
twist defect, or 2-Majorana operators for initialization and
readout, may require the use of coherent links. Nanowire arrays
that include coherent links are shown in Fig. 27(d). Note
that operator measurements that require the use of coherent
links have an increased Majorana weight compared to the
optimal weight discussed in the main text. We also remark
that, in principle, all stabilizers of one color can be measured
simultaneously.

APPENDIX C: MAJORANA COLOR CODES

1. 4.8.8 ([[6,2,2]]m) Majorana color code in a 2D array of hexons

Even though the Majorana color codes in Figs. 14 and 13 are
drawn as three-dimensional codes, they can be implemented
in 2D arrays of Majorana building blocks. In Fig. 28, this is
shown for the example of a 4.8.8 ([[6,2,2]]m) Majorana color
code, which can be implemented in a 2D array of physical
hexons. Note that, in contrast to Majorana surface codes, the
red and blue check operators of Majorana color codes spatially
overlap.

2. 4.8.8 ([[8,3,2]]m) Majorana color code

A 4.8.8 ([[8,3,2]]m) Majorana color code can be obtained
by replacing each tetron of a 4.8.8 Majorana surface code with
an [[8,3,2]]m code, i.e., an octon. Even though this code has
a Majorana distance of dm = 2, one of its logical operators
is a 4-Majorana operator. In order to prevent the maximum
stabilizer weight after concatenation from increasing to 16
Majoranas, the procedure shown in Fig. 29 can be used. Here,
each surface code tetron is assigned a label A, B, C, or D.
While each tetron is still replaced by an octon, the definition

of the octon’s logical operators depends on the label. For A,
B, C, or D type octons, the 4-Majorana logical operator is
chosen to be Z3, X3, X2, or Z2, respectively. This guarantees
that the stabilizers have a maximum weight of 10 Majoranas
after concatenation. The figure shows an example of a Z⊗4

stabilizer, which is replaced by three overlapping Z⊗4
1 , Z⊗4

2 ,
and Z⊗4

3 stabilizers after concatenation. The operators Z⊗4
2 and

and Z⊗4
3 have a weight of 10 Majoranas.

3. Stabilizers and logical operators of the [[20,4,4]]m code

Figure 30 shows the stabilizers and logical operators of the
[[20,4,4]]m code presented in Ref. [24]. The building blocks
of the code are two decons, which are 10 Majoranas in a
fixed-parity sector. All logical operators have a weight of 4
Majoranas. This means that a code obtained by concatenating
a Majorana surface code with the [[20,4,4]]m code is an order-
4-Majorana color code with a maximum stabilizer weight of
16 Majoranas.

4. Surface-to-color code lattice surgery

Figure 31 shows an example of a surface-to-color code
lattice surgery in the spirit of Ref. [20]. The example shows
the measurement of the product Z1 ⊗ Z between the first
qubit encoded in a bosonic 4.8.8 color code tetron and a 4.8.8
Majorana surface code. The blue 4-Majorana operator at the
boundary of the surface code is merged with a red 8-Majorana
operator at the boundary of the color code to yield the light
blue 12-Majorana operator. New 8- and 12-Majorana operators
(light red) are introduced whose product is precisely Z1 ⊗ Z.
Such a scheme can always be used to measure the product
between a Pauli operator encoded in a color code qubit and
a Pauli operator of a surface code. By using color codes for
data qubits encoded in logical hexons and surface codes for
ancillary tetron qubits, the Pauli product measurement scheme
of Sec. III can be implemented with a lower-space overhead
compared to surface codes due to the more compact encoding
of color codes, while at the same time benefiting from the low
Majorana weight of surface-to-color code lattice surgery.
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4 | Color Codes in Tetron-Based Ar-
chitectures

One of the techniques hinted at in the previous chapter was surface-to-color code lattice surgery.
The following publication explains how bosonic color codes can be implemented in a tetron
architecture, and how surface-to-color code lattice surgery can be used to decrease the overhead
of long-range CNOT gates between color-code qubits.
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Color-code quantum computation seamlessly combines Majorana-based hardware with topological error
correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of
the Majoranas’ non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of
color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying
their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever
performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an
entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer
measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For
Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery
for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the
physical distance separating control and target qubits. With the addition of magic state distillation, our architecture
describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana
box qubits, but can also be applied to nontopological qubit platforms.

DOI: 10.1103/PhysRevB.96.205413

I. INTRODUCTION

The scalable fabrication of high-fidelity qubit platforms is
necessary for large-scale quantum computation. In topologi-
cal quantum computing [1–3], Majorana-based architectures
[4–8] have been proposed as candidates for such high-fidelity
qubits. Among the advantages that Majorana-based qubits may
offer in comparison to conventional qubits are long coherence
times, high-fidelity single-qubit Clifford gates by braiding, and
ancilla-free stabilizer measurements for quantum error cor-
rection. Recent experiments have demonstrated considerable
progress towards realizing Majorana zero modes (Majoranas)
in topological superconductors [9–13], but topological qubits
are yet to be implemented and their advantages remain to be
confirmed experimentally.

As Majorana-based qubits are still expected to have a
finite lifetime [14–17], quantum error correction is necessary
for fault-tolerant quantum computation [18–25]. In a recent
work [26], we have argued that Majorana-based qubits are
particularly well suited for quantum error correction with
topological color codes [27,28]. Unlike in surface codes
[3,29,30], the Clifford gates are transversal in two-dimensional
color codes. Thus logical Clifford gates are implemented on
the code level by performing independent Clifford gates on
all (pairs of) physical qubits that make up the logical qubit(s).
Importantly, this transversal gate set enables the use of braiding
for logical gates, thereby fully exploiting the topological
protection provided by Majorana-based hardware. Moreover,
the existence of transversal gates has additional advantages.
Independent operations on the physical qubit do not spread
errors during gate operations and minimize the time overhead
by allowing parallel implementation.

We discussed a physical implementation of a Majorana
color code which relies on topological superconductor net-
works, where Majoranas are braided by moving them through
branched geometries. Moving Majoranas was also necessary
for lattice surgery [31,32] and magic state distillation [33],
which are required to complete the universal gate set. However,

current experiments where proximity-coupled quantum wires
are driven into the topological phase require an external
magnetic field in the direction of the wire. This might constitute
a significant obstacle for all braiding protocols that rely on
the movement of Majoranas in branched geometries [34–37].
Moreover, movement of Majoranas has also been shown to
be susceptible to thermal noise [38]. To overcome these
problems, recent works have proposed architectures that avoid
T junctions, and are instead based on arrays of parallel
nanowires [22,23,39–41]. In this work, we show that Majorana
color codes can be naturally implemented in such setups,
thereby entirely avoiding T junctions and explicit movement
of Majoranas.

An important aspect of the recent works on implementing
topological qubits in arrays of parallel wires is that braiding
is no longer performed by moving Majoranas or coupling
Majoranas in judicious ways, but instead by measuring a
sequence of two-Majorana parity operators [41,42]. Thus these
architectures shift the experimental challenge away from the
fabrication of branched geometries and towards the access to
measurements of various local Majorana parity operators. It
was pointed out that, in this setting, single-qubit Clifford gates
can be implemented by an entirely classical software-based
procedure [41,43,44], which we refer to as Majorana tracking.
This procedure obviates explicit hardware operations and,
similar to Pauli tracking, only requires appropriate updates
of the qubit’s reference frame. We show that the transversal
gates of color codes take Majorana tracking to the level of
logical qubits, and thereby reduce the overhead of logical
single-qubit Clifford gates to a (classical) minimum. The
only required hardware operation is the measurement of
certain local Majorana parity operators corresponding to the
stabilizers of the quantum error-correcting code.

Universal fault-tolerant quantum computation can be
achieved by implementing two more logical gates: the
controlled-NOT (CNOT) gate and the T gate. While logical
CNOTs can in principle be implemented transversally using
physical CNOTs, this requires nonlocal physical gates. Instead,
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it is more convenient to implement logical CNOTs via lattice
surgery [31], which only requires local operations. Here, we
present a scheme for logical CNOTs which combines color
codes with surface code ancillas and employs color-to-surface-
code lattice surgery [45]. This protocol implements the CNOT
gate without the need for any movement of Majoranas while
retaining the long-range communication between color-code
qubits of our earlier implementation. This also provides us
with a long-range multitarget CNOT, which is an essential
part of magic state distillation protocols, thereby completing
the universal gate set.

Here, we are mainly interested in providing a proof-
of-principle implementation of Majorana-based color-code
quantum computation in a network of tetrons [41]. However, it
should be emphasized that the combination of Majorana-based
hardware with color-code error correction transcends our
specific implementations. It seems likely that this combination
can be used to one’s advantage in many, if not all, future
implementations of fault-tolerant Majorana-based quantum
computation. In fact, our lattice-surgery-based scheme can
in principle be applied even to nontopological qubit archi-
tectures. Nevertheless, the robustness of physical single-qubit
Clifford gates and the ease of stabilizer measurements are key
advantages of Majorana-based qubit platforms.

II. MAJORANA TRACKING AND COLOR CODES

A Majorana-based qubit can be defined using three Majo-
rana fermions γ1, γ2, and γ3, with {γi,γj } = 2δi,j and γi = γ

†
i .

Since Majorana fermions in physical systems always come in
pairs, it is convenient to define the qubit using four Majoranas
with fixed total parity −γ1γ2γ3γ4 = 1, such that all two-
Majorana parity operators iγmγn of a qubit can be expressed in
terms of the first three Majoranas. In the Schrödinger picture,
a qubit is defined using two computational states |0〉 and |1〉 in
the σz basis. For our purposes, it will be instead more useful to
express the qubit in the Heisenberg picture, where we define
the qubit by its σx- and σz-Pauli operators, which in their
default state are

σz = iγ1γ2, σx = iγ2γ3. (1)

Consequently, the remaining Pauli operator is σy = iγ1γ3. One
can check that these operators square to unity and fulfill the
commutation relations of Pauli operators [σi,σj ] = 2iεijkσk .
Two Pauli operators are sufficient to define a qubit, as any
single-qubit unitary operator can be expressed in terms of σx

and σz via the Euler decomposition.
The basic framework of our architecture is nanowire

arrays, which are two-dimensional networks of Majorana-
based physical qubits. Several proposals for implementations
of such nanowire arrays can be found in Refs. [22,23,39–41].
Based on these proposals, we assume that the following basic
operations can be implemented in the nanowire array.

(i) Measurements of local 2n-Majorana fermion parity
operators in

∏2n
i=1 γi .

(ii) Some nonrobust implementation of a possibly faulty
T gate (π/8 gate) on physical qubits.

As already emphasized above, we do not require that the
Majoranas can be moved through the network.

S-gate H-gate

X/Z-stabilizers Z-stabilizers X-stabilizers

XL = σx

qubit

(a)

(b) (c)

γ2

γ1 γ3

σz σx γ2

γ1 γ3

σz

σx

γ2

γ1 γ3

σx

σz

Z
L
=

σ
z

X
L
=

σ x

Z
L
=

σ z

FIG. 1. (a) Majorana-based qubit consisting of three Majoranas
and an example for Majorana tracking. Starting from the default
encoding σz = iγ1γ2 and σx = iγ2γ3, an S gate changes the encoding
to σz = iγ1γ2 and σx = iγ1γ3. A subsequent H gate changes it to
σz = iγ1γ3 and σx = iγ1γ2. Keeping track of the current encoding
for each physical qubit via a classical computer is referred to as
Majorana tracking. (b) Triangular color-code qubits can be defined
on a hexagonal lattice, where each vertex is a Majorana-based qubit
comprised of three Majoranas (or four Majoranas with fixed total
parity). Each face corresponds to two stabilizers σ⊗m

z and σ⊗m
x .

Products of σz and σx operators along any one of the three boundaries
correspond to logical ZL and XL operators. (c) In surface code qubits,
on the other hand, the support of X and Z stabilizers does not coincide,
and the two different edges correspond to the ZL and XL operators,
respectively.

A. Physical single-qubit Clifford gates: Majorana tracking

The first operation includes the measurement of all
two-Majorana parity operators—and therefore all Pauli
operators—of a physical qubit. This enables the use of
Majorana tracking for a particularly simple implementation of
the single-qubit Clifford gates as pioneered in Refs. [41,43].
These gates map Pauli operators onto other Pauli operators
and are products of Hadamard (H ) and phase (S) gates.
Specifically, the action of these two gates on the Pauli operators
is

H : σz → σx, σx → σz,

S : σz → σz, σx → iσxσz.
(2)

Since the H and S gates can be implemented by braiding,
their application simply redefines the Majoranas involved in
the corresponding two-Majorana parity operator. Thus, instead
of physically braiding Majoranas, one can alternatively keep
track of the Majorana operators that define the σz and σx of
each physical qubit using a classical computer. In analogy to
Pauli tracking [46], we refer to this procedure as Majorana
tracking.

As a concrete example, consider the sequence of operations
shown in Fig. 1(a). Starting from the default encoding in
Eq. (1), an S gate takes the encoding to σz = iγ1γ2 and σx =
iγ1γ3. A subsequent H gate will exchange these two operators
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to σz = iγ1γ3 and σx = iγ1γ2. So instead of initializing the
qubit in a σz eigenstate, physically performing the two gates,
and then reading out the qubit in the σz basis, one can simply
initialize the qubit in a σz eigenstate and then measure the
σy = iγ1γ3 operator.

It should not be surprising that Clifford gates can be treated
entirely classically, as these gates can be efficiently simulated
on a classical computer by virtue of the Gottesman-Knill
theorem [47]. As this classical tracking of Pauli operators
can also be done with nontopological, e.g., superconducting,
qubits, it would appear that Majorana tracking does not
utilize braiding. However, conventional qubits still require a
hardware operation for the rotation of the Pauli basis during
readout. While for conventional qubits the angle of rotation
is susceptible to errors, with Majorana tracking the angle
is robust. Even though Majorana tracking eliminates any
hardware operation for single-qubit Clifford gates, it leads
to the same robust gates as braiding. In this sense, Majorana
tracking is braiding.

Therefore, Majorana tracking can also be used to probe the
non-Abelian statistics of Majorana zero modes. With Majorana
tracking, a fusion-rule detection experiment in the spirit
of Ref. [37] would correspond to alternating measurements
of σz and σx . If Majorana zero modes are present, the
measurement results will be entirely uncorrelated, whereas
repeated measurements of σz will always yield the same result.
In this way, the fusion-rule detection experiment probes the
robustness of the single-qubit Clifford gates.

B. Logical single-qubit Clifford gates: Color codes

The gates that can be implemented by Majorana track-
ing are physical gates on physical qubits. However, these
Majorana-based qubits only have a finite lifetime which is
set by processes that introduce errors, such as quasiparticle
poisoning. In order to quantum compute beyond the coherence
time of physical qubits, a quantum error-correcting code needs
to be used. This allows for fault-tolerant quantum computing,
which relies on combining many physical qubits into one
logical qubit. This not only replaces the physical error rate
by an (in principle) arbitrarily low logical error rate, but also
substitutes physical gates with logical gates.

It is desirable to use Majorana tracking for logical gates in
order to minimize the overhead of single-qubit Clifford gates.
But this can only be done if these gates are transversal gates of
the error-correcting code, i.e., if the logical H and S gates are
HL = H⊗n and SL = S⊗n, where n is the number of physical
qubits in a logical qubit. This is precisely the reason why color
codes are a natural choice for Majorana-based qubits [26], as
their set of transversal gates are the Clifford gates.

Using triangular color codes [27,28], a logical qubit is
encoded by n physical qubits located at the vertices of
the triangle with hexagonal tiling shown in Fig. 1(b). The
figure shows a specific qubit with code distance d = 5, but
this construction can be generalized to arbitrary odd code
distances. As described above, each physical qubit effectively
corresponds to three Majorana fermions. The logical qubit is
initialized in the logical |0L〉 state by initializing the n physical
qubits in the |0〉 state by measuring iγ1γ2 of all physical
qubits, and then measuring the stabilizers of the code. These

n − 1 stabilizers are defined by the faces of the hexagonally
tiled triangle, with each face defining an X-type stabilizer
OX = σ⊗m

x and a Z-type stabilizer OZ = σ⊗m
z , where m is

the number of qubits that are part of a face. In analogy to
Majorana surface codes [22,23], one can represent color codes
as Majorana fermion codes by identifying σz = iγ1γ2 and
σx = iγ2γ3. Thus the stabilizers in Fig. 1(b) are products of
8 or 12 Majorana fermions. A color-code qubit can be read
out in any Pauli basis by measuring all physical qubits in the
corresponding basis.

Quantum error-correcting codes typically operate in cycles.
In each code cycle, the stabilizers are measured to determine
the error syndrome, errors are corrected, and logical gate
operations are performed. The single-qubit logical Clifford
gates are transversal in color codes, i.e., a logical H gate
corresponds to physical H gates on all qubits, whereas a logical
S gate is a combination of physical S and S† gates. For instance,
a conventional procedure for a logical S gate would be to
measure and correct the error syndrome, transversally perform
physical S and S† gates (e.g., by braiding), and again measure
the error syndrome and correct errors. With Majorana tracking,
the physical gate operations are replaced by an update of the σz

and σx operators of all physical qubits. While the σz operators
are unaffected by the S and S† gates, the σx operators are
changed from iγ2γ3 in the default encoding to ±iγ1γ3. In other
words, Majorana tracking modifies which Majorana fermions
are part of the stabilizer measurements. In the case of an S gate,
the X-type stabilizers σ⊗6

x are replaced by Y -type stabilizers
σ⊗6

y in the following rounds of syndrome measurement, i.e.,
the X-type stabilizers are changed from products of iγ2γ3 to
products of iγ1γ3.

In this way, keeping track of the current Majorana com-
position of σz and σx for each physical qubit implements
logical single-qubit Clifford gates with Majorana color codes.
However, considering that, in the default encoding, the mea-
surement of X- and Z-type stabilizers automatically measures
the Y -type stabilizers as their product, it is not necessary to
actually change the measured stabilizers after the application
of single-qubit Clifford gates. This is due to the fact that the
support of X and Z stabilizers of color-code qubits coincides.
Instead, Majorana tracking on the level of logical qubits,
similar to the tracking procedure on physical qubits, merely
updates the Majoranas measured during qubit readout. In
the previous example of a logical S gate, tracking changes
the XL-basis readout from a measurement of iγ2γ3 to the
measurement of iγ1γ3 of all physical qubits. An appropriate
update of certain stabilizer operators will be necessary as soon
as CNOT gates are involved, because this introduces X and
Z stabilizers whose support does not coincide, as we discuss
in Sec. IV A.

Previously [26], we argued that Majorana-based qubits and
color codes are a natural fit, as transversal Clifford gates allow
for the use of braiding for logical gates. In the context of
the present work, this statement takes the equivalent form:
owing to braiding by Majorana tracking, Majorana-based
qubits can be read out in every Pauli basis without the need for
intermediate hardware operations. Similarly, due to transversal
Clifford gates, color-code qubits can be measured in every
logical Pauli basis without requiring intermediate logical gates.
Thus color codes in combination with Majorana-based qubits

205413-3110



DANIEL LITINSKI AND FELIX VON OPPEN PHYSICAL REVIEW B 96, 205413 (2017)

γ1

γ3

γa

γ2

γ4

γbiγaγb = 1

semiconductor
topological superconductor
superconductor
dot-mediated tunnel coupling

σ⊗6
z =

6∏
j=1

iγj,1γj,2 σ⊗6
x =

6∏
j=1

iγj,2γj,3 σ⊗6
y =

6∏
j=1

iγj,1γj,3

(a)

(b)
(c)

(d)

FIG. 2. (a) Single tetron [41] consists of two topological superconducting nanowires hosting four Majoranas γ1 . . . γ4. The two wires are
bridged by an ordinary superconductor which fixes the total parity sector −γ1γ2γ3γ4. In addition, a coherent link formed by a topological
superconducting nanowire hosting Majoranas γa and γb with a fixed parity is part of the basic building block. The three Majorana nanowires
are connected to a semiconducting nanowire network via gate-tunable tunnel couplings. (b) A network of tetrons forms a square lattice of
physical qubits. (c) In such a square lattice, a triangular color-code qubit can be defined in a brick wall geometry. (d) Configurations of the
tunnel couplings used to measure three different stabilizers, which are either products of γ1γ2 of each tetron, or γ2γ3, or γ1γ3. One can verify
that, in all three cases, the circular paths only contain the corresponding Majoranas of each tetron and Majoranas that belong to coherent links.

reduce the overhead of logical single-qubit Clifford gates to a
minimum.

III. IMPLEMENTATION WITH TETRONS

In this section, we present a proof-of-principle imple-
mentation of a Majorana color code in a nanowire array,
which differs from our earlier setup [26] in two essential
ways. First, the present implementation relies on recent
suggestions to realize Majorana-based topological qubits using
only parallel topological superconducting nanowires. Second,
as a consequence of implementing braiding at the code level
by Majorana tracking, Majoranas no longer need to be moved
within the network.

Specifically, we present an implementation in a network
of tetrons. A tetron [39,41] is a qubit [Fig. 2(a)] that
consists of two topological superconducting nanowires with
four Majoranas γ1 . . . γ4 with fixed total parity −γ1γ2γ3γ4.
The fixed parity sector not only protects the qubit from
quasiparticle poisoning, but also enables the use of the fourth
Majorana γ4 for quantum computation. In the even parity
sector, we can identify σz = iγ1γ2 = iγ3γ4 and σx = iγ2γ3 =
iγ1γ4. Furthermore, each tetron contains a third floating
Majorana nanowire with Majoranas γa and γb and fixed parity
iγaγb acting as a coherent link. Gate-tunable tunnel couplings
connect the three topological superconducting nanowires to
a semiconductor network. The network of tetrons shown in
Fig. 2(b) corresponds to the architecture described in Ref. [41],
but with two vertical semiconductor wires between adjacent
tetrons, instead of just one. (However, this is not a requirement,

as the implementation of a color code is also possible in the
setup described in Ref. [41]; see Appendix A.) The tetron
qubits form a square lattice which can be used to encode
color-code qubits in a brick wall geometry; see Fig. 2(c).

With tetrons, 2n-Majorana parity operators are measured by
opening tunnel couplings between tetrons such that they form
a closed path, as discussed in Ref. [41]. The semiconducting
segments that couple neighboring tetrons form quantum dots.
Their energy levels are shifted by virtual processes that tunnel
electrons around this closed path. As these processes involve
each Majorana operator along this path exactly once, the
energy shift depends on the product of the Majoranas, i.e.,
on the 2n-Majorana parity. Suitable spectroscopy on the dots
can thus be used to measure this parity. Essentially, this mea-
sures the product of all Majoranas along a closed loop formed
by the gate-tunable tunnel couplings, thereby implementing
local 2n-Majorana parity measurements.

Consider the configuration of the tunnel couplings in the
left panel of Fig. 2(d). The circular path formed by the coupled
tetrons involves the γ1 and γ2 Majoranas of each tetron, and
four Majoranas that belong to coherent links. Since the parity
of the coherent links is known, this configuration can be used to
measure the 12-Majorana operator that corresponds to σ⊗6

z in
the default encoding. The center panel shows a configuration
that measures the product of γ2 and γ3 Majoranas of each
tetron, corresponding to a σ⊗6

x operator in the default encoding.
Note that since the total parity sector of each tetron is fixed,
iγ2γ3 = iγ1γ4. It is also possible to measure σ⊗6

y stabilizers,
whose configuration is shown in the right panel of Fig. 2(d)
and does not require the use of coherent links.
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σ⊗4
z :

σ⊗4
x :

FIG. 3. Tetron tunnel coupling configurations for the measure-
ment of the four-qubit stabilizers of the surface code.

IV. UNIVERSAL QUANTUM COMPUTATION

Having discussed logical single-qubit Clifford gates, two
more gates are required for universal quantum computation: a
logical controlled-not (CNOT) gate and a logical T gate, where
T = exp(iσzπ/8). As discussed in Ref. [26] for topological
superconductor networks with branched geometries, these
operations can be implemented by lattice surgery and magic
state distillation, respectively. Here, we adapt this scheme to
architectures where Majoranas cannot be moved, such that
only the aforementioned stabilizer measurements and physical
T gates are required.

A. Long-range CNOT gates

A logical CNOT gate between two color-code qubits can
be implemented using lattice surgery with the help of an
ancilla qubit [32]. This scheme effectively realizes the circuit
identity shown in Fig. 4(a) using an ancilla qubit initialized
in the σx eigenstate |+〉. A CNOT gate corresponds to a
ZZ-parity (σz ⊗ σz) measurement between the control qubit
and the ancilla, a subsequent XX-parity measurement between
ancilla and target, and a final σz measurement of the ancilla
qubit. Note that the protocol requires parity measurements
between logical qubits. Lattice surgery is a fault-tolerant
protocol for such parity measurements requiring only the
measurement of additional stabilizer operators straddling the

adjacent boundaries of two logical qubits. Essentially, lattice
surgery measures the product of the logical operators defined
on the two boundaries.

These boundary operators depend on the kind of logical
qubit that is used. Triangular color-code qubits have three
boundaries: a red, a green, and a blue edge. Strings of σz and
σx operators along any of these edges are logical ZL and XL

operators, respectively, as illustrated in Fig. 1(b). Surface code
qubits, on the other hand, have pairs of opposing X and Z

edges, also referred to as rough and smooth edges, and are
drawn as gray and purple edges in Fig. 1(c). The logical ZL

operator is a product of σz operators along any of the two
purple boundaries, whereas XL is a string of σx operators
along a gray boundary. With tetrons, the measurement of the
four-qubit surface code stabilizer operators σ⊗4

z and σ⊗4
x is

similar to the color-code stabilizer measurements, as shown
in Fig. 3. In the following protocols, we use surface codes
instead of color codes to encode ancilla qubits, as the CNOT
protocol does not require the use of any transversal Clifford
gates on the ancillas. Apart from lattice surgery, the only
required surface code operations are the initialization in a
σx-basis eigenstate, and a σz-basis measurement, both of which
amount to σx and σz measurements of all physical qubits, and to
stabilizer measurements. The main advantage of using surface
code ancillas for CNOTs between color-code qubits is that,
compared to color-code ancillas, they require fewer qubits and
feature lower-weight stabilizers, as we discuss in Appendix B.

We first discuss logical CNOT gates between neighboring
color-code qubits; see Fig. 4(b). The shape of the surface code
qubit is chosen such that one Z boundary is adjacent to the
control qubit and an X boundary is next to the target qubit.
In the first step (b2), the X stabilizers along the boundary
with the control qubit are merged to form six-qubit stabilizers
(dark gray) and new Z stabilizers (light purple) are introduced.
While this is not evident from the figure, the boundary
Z stabilizers of the color-code qubit remain unchanged. In
the new configuration (b2), all stabilizers commute, and the
number of stabilizers has increased by one, i.e., one bit of
information is measured. As the gray boundary stabilizers
are merely the product of the previously known boundary
stabilizers, the only nontrivial measurement outcome is given
by the purple boundary stabilizers. Since they contain each
boundary qubit exactly once, their product is precisely the

control target

ancilla

(a) CNOT by parity measurement (b)Nearest-neighbor CNOT

(1) (2) (3)(1) (2) (3)

FIG. 4. (a) Quantum circuit corresponding to the logical CNOT gate between a control |c〉 and target |t〉 by lattice surgery, using an ancilla
qubit initialized in the |+〉 state. First, the ZZ parity σz ⊗ σz between control and ancilla is measured. Next, the XX parity σx ⊗ σx between
ancilla and target is measured, and the ancilla is read out in the σz basis. The three measurement outcomes are used to determine a final Pauli
correction. (b) Nearest-neighbor CNOT between color-code qubits using a surface code ancilla. Lattice surgery between the green color-code
boundary and the purple surface code boundary (b2) measures the ZZ parity, whereas surgery with the gray surface code boundary (b3)
constitutes an XX-parity measurement.
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σx σx

σzσz

σz σz

σxσx

σzσz

FIG. 5. Tetron tunnel coupling configurations to measure the
lattice surgery boundary stabilizers between control and ancilla qubit
for the case of a preceding H gate on the control qubit. The measured
operators are σ⊗2

x ⊗ σ⊗2
z (light purple) and σ⊗4

z ⊗ σ⊗2
x (dark gray).

This effectively describes a logical σx ⊗ σz measurement between
control and ancilla. This protocol can be straightforwardly adapted to
measure any other product of two logical Pauli operators.

ZZ parity between control and ancilla. Thus lattice surgery
provides a fault-tolerant logical parity measurement. Similarly,
in the next step (b3), lattice surgery merges the Z stabilizers
along the X boundary of the surface code ancilla and a
boundary of the target qubit. The product of gray boundary
X stabilizers yields the XX parity. Finally, the surface code
ancilla can be measured in the σz basis by measuring all
physical qubits and applying classical error correction, thereby
completing the protocol of Fig. 4(a).

The role of Majorana tracking in this protocol is to appropri-
ately update the composition of the stabilizers measured during
lattice surgery. The protocol introduces X and Z stabilizers
with noncoinciding support along the boundaries of the qubits.
Thus these stabilizers need to be appropriately updated by
the tracking procedure described in Sec. II B. For instance,
a preceding H gate on the control qubit in Fig. 4 would
change the light purple boundary stabilizers in (b1) from σ⊗4

z to
σ⊗2

x ⊗ σ⊗2
z . Accordingly, tracking would also change the dark

gray boundary stabilizers to σ⊗4
z ⊗ σ⊗2

x and the red four-qubit
boundary stabilizers of the control qubit to σ⊗4

x . In Fig. 5,
we show the tetron tunnel coupling configurations used to
measure these updated stabilizers for this particular example,
but the procedure straightforwardly generalizes to all other
possible cases. An update for the nonboundary color-code
stabilizers unaffected by lattice surgery can still be avoided,
as their X- and Z-stabilizer support still coincides during the
lattice surgery protocol.

Surface code ancillas are also useful for CNOT gates
between color-code qubits that are far away from each other.
Lattice surgery can be used to measure the ZZ parities between
the control qubit and multiple ancilla qubits simultaneously
[31], thereby initializing multiple ancillas at the same time.
Consider the situation in Fig. 6(a), where the distance between
two separated color-code qubits is bridged by two surface code
ancillas. Lattice surgery (a2) can simultaneously measure the

ZZ parities between control and first ancilla and between both
ancillas. This is equivalent to parity measurements between
control and both ancillas, as the the ZZ parity between
control and second ancilla is given by the product of both
measurements. Since the two Z boundaries of the long ancilla
are at opposite ends of the qubit, this lattice surgery step
prepares an ancilla qubit adjacent to the distant target qubit for
the next XX-parity measurement. Thus this protocol yields a
long-range CNOT gate between arbitrarily distant qubits with
essentially the same time overhead as the nearest-neighbor
CNOT. The unused long ancilla qubit cannot be discarded right
away, as it is still entangled with the control qubit, but needs
to be read out in the σx basis with outcome m by measuring
all physical qubits in the σx basis, leading to a σm

z correction
on the control qubit.

B. Multitarget CNOTs for magic state distillation

Clifford gates and physical T gates are sufficient for
universal quantum computing. One type of protocol using
these ingredients for logical T gates is magic state distillation,
whose precision scales with the protocol length. In such
protocols, a physical magic state is initialized by applying
a physical T gate to a physical qubit in the |+〉 state.
With tetrons [41], physical T gates can be implemented
via a measurement-based analog of the parity echo protocol
introduced in Ref. [48]. The resulting physical magic state is
converted into a (faulty) logical magic state by code injection
[26,32], which requires only stabilizer measurements. Magic
state distillation protocols convert many faulty magic states
into fewer magic states with higher fidelity. Typically, these
protocols rely on multitarget CNOT gates, i.e., CNOTs with
one control qubit but multiple target qubits. For instance,
the circuit corresponding to the 15-to-1 distillation protocol
[28,33] consists of 34 CNOT gates. But since many of these
CNOTs have the same control qubit, the protocol actually
requires only five multitarget CNOTs.

Fortunately, lattice surgery can be used to implement
multitarget CNOTs with the same time overhead as single
CNOTs, as we show in Fig. 6(b). Here, lattice surgery measures
the ZZ parities between the control and each ancilla qubit
(b2). Therefore, each of the ancillas is treated like an ancilla
qubit after step (2) of the protocol in Fig. 4(a), but for
multiple simultaneous CNOT protocols. After the XX-parity
measurements between ancillas and their targets (b3), the
ancillas that were used for CNOTs are read out in the σz basis,
whereas the ancillas that were used to bridge long distances
are read out in the σx basis.

In this way, we establish color-to-surface code lattice
surgery as a useful tool for fault-tolerant long-range multitarget
CNOT gates between color-code qubits. Importantly, for a
fixed code distance, the overhead of our protocol scales very
favorably with the control-target separation s. As to the space
overhead, strings of errors that connect the gray edges (or
X boundaries) of the long surface code qubit during the
measurement of the ZZ parities can lead to errors in the
CNOT protocol. While these error strings are suppressed
exponentially in the width of the surface code qubits, the
number of possible strings grows linearly with their length.
Thus the width needs to increase with O(ln s) in order to
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control

ancilla ancilla

target control target

ancilla

target target

ancilla ancilla ancilla

(a) Long-range CNOT (b) Multi-target CNOT

(1)

(2)

(3)

(1)

(2)

(3)

FIG. 6. (a) By simultaneously measuring the ZZ parities between the control and two ancillas (a2), one can use a long ancilla qubit for
long-range CNOTs. The unused long ancilla is read out in the σx basis. (b) The same protocol can be used for long-range multitarget CNOTs,
where multiple ZZ- and XX-parity measurements (b2),(b3) are carried out simultaneously. All protocols have a space overhead that scales
with O(s ln s) of the control-target separation s, and a time overhead that scales with O(ln s).

maintain the same CNOT accuracy. With a linearly growing
length of the surface code qubits, the space overhead of
the lattice surgery CNOT protocol is O(s ln s). For the time
overhead, one needs to take the classical overhead of decoding
and the effect of measurement errors during syndrome readout
into account. There exist surface code decoders with a runtime
of O(ln s) [49]. The correction of measurement errors requires
recording multiple rounds of syndrome extraction for one code
cycle, depending on the measurement fidelity [50], effectively
extending the code into a third time dimension. These “time
errors” are suppressed exponentially with the number of
measurement rounds, but the number of possible error strings
increases linearly with s. Thus, similar to the space overhead,
measurement errors increase the time overhead by O(ln s), and
the total time overhead is still only O(ln s).

Note that the code distances (given by the width) of the
ancilla qubits need not be as high as the code distance
of the color-code qubits, since the ancillas only need to
survive for the few code cycles of the CNOT protocol, as
opposed to data qubits that may need to survive for the entire
quantum computation. In our example, the ancilla qubits have
distances d = 3, d = 4, and d = 5 in the protocols in Figs. 4
and 6. However, we expect that for most practical quantum
computations, the entire space allocated for CNOT ancillas
will be in use for different CNOTs essentially for the entire

duration of the computation. Thus, for most practical purposes,
the width of the ancilla qubits and the code distance of the
color-code qubits can be chosen to be equal [as in Fig. 6(b)],
and the logarithmic scaling of the ancilla width can be ignored.
With this approach, all parts of the code are protected against
error strings of length (d − 1)/2 during each code cycle.
The logarithmic scaling merely implies that for a quantum
computation involving n logical qubits, the necessary code
distance to reach a target error probability at the end of the
quantum computation scales with O(ln n). Again, we point out
that by identifying two copies of surface code qubits as one
color-code qubit [51], this CNOT protocol can be done entirely
using color codes, as we show in Appendix B. However, this
uses more physical qubits than the surface code approach, and
requires the measurement of eight-qubit stabilizers.

Both surface and color codes can be implemented on the
square lattice of tetrons shown in Fig. 2, since lattice surgery
only requires the measurement of additional stabilizers, i.e., the
measurement of 4-, 8-, and 12-Majorana operators. While our
examples have illustrated logical qubits arranged on a line, this
protocol can be straightforwardly extended to two-dimensional
arrangements of logical qubits. One possible 2D arrangement
of color-code qubits is shown in Fig. 7, where qubits are
arranged in blocks of six. The figure also shows two surface
code ancilla qubits that can be used for a CNOT between
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control

target

ancilla ancilla

FIG. 7. Example of a two-dimensional arrangement of color-code qubits on a square lattice, and an example of surface code ancillas used
for a long-range CNOT between distant qubits. For the next CNOT gate, these ancillas are discarded and the space between qubit blocks can
be used to initialize different ancillas. The separation between blocks of color-code qubits dictates the maximum code distance of the surface
code ancillas and influences the number of CNOT gates that can be performed in parallel. With larger separation, multiple “lanes” of ancilla
qubits can fit between blocks, allowing for multiple overlapping multitarget CNOT gates.

distant color-code qubits. In this way, lattice surgery can
provide long-range communication between any two logical
qubits with essentially constant time overhead.

V. CONCLUSION

Current ideas for realizing a Majorana-based quantum
computer rely on nanowire arrays such as networks of
tetrons that only allow for local Majorana parity operator
measurements and physical T gates. Here, we have shown how
Majorana-based qubits can be combined with color codes for
universal fault-tolerant quantum computation without the need
for moving Majoranas. In our architecture, logical single-qubit
Clifford gates are implemented by Majorana tracking, which
minimizes their overhead. Furthermore, we combine surface
codes with color codes using surface-to-color-code lattice
surgery, which yields long-range multitarget CNOT gates with
a time overhead that scales only with O(ln s) of the distance
s between the control and target qubits and a space overhead
that scales with O(s ln s). Moreover, this approach features a

lower space overhead and lower-weight stabilizers compared
to a purely color-code-based scheme.

Logical T gates are the most expensive operation in this
scheme, as they require magic state distillation. Their overhead
can be reduced by improving the fidelity of physical T gates,
and by exploring faster distillation protocols and alternatives
to magic state distillation. As to the concrete physical imple-
mentation, there are several proposals for architectures that
implement the two operations required of nanowire arrays.
Still, none of these architectures are particularly optimized
towards error correction with color codes. Optimizing for fast
stabilizer measurement, high measurement fidelity, and low
physical error rate is crucial to ensure scalability. Exploring
efficient decoding schemes for color and surface code qubits
can further reduce the classical overhead.

What is more, our scheme can also be applied to nontopo-
logical architectures, such as superconducting qubits, albeit
without the advantages of robust physical single-qubit Clifford
gates and ancilla-free syndrome readout. For this reason,
these architectures usually favor surface codes over color
codes due to the easier four-qubit stabilizer measurements of

σ⊗6
z =

6∏
j=1

iγj,1γj,2 σ⊗6
x =

6∏
j=1

iγj,2γj,3 σ⊗6
y =

6∏
j=1

iγj,1γj,3

FIG. 8. Tunnel coupling configurations for color-code stabilizer measurements with tetrons that feature only one vertical semiconductor
wire between tetrons, as in the architecture of Ref. [41].
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surface codes compared to the weight-six stabilizers of color
codes. Even though surface codes do not feature transversal
single-qubit Clifford gates, they can still be used to implement
single-qubit Clifford gates with zero time overhead [43,52,53]
by encoding logical qubits in surface code twist defects [54].
Still, surface code qubits in this scheme suffer from a lack of
easy σy measurements, and require ∼d2 physical qubits for
each logical qubit, while the color-code approach discussed in
this work only requires ∼ 3

4d2 physical qubits to achieve the
same code distance d.

We note that the twist-based triangle codes presented in
Ref. [52] also feature a space overhead of ∼ 3

4d2 and manage
to implement easy σy measurements, but they encode the
logical σx , σy , and σz information in each of the three sides
of the triangles separately. Therefore, these qubits cannot be
packed as densely as the color-code qubits in Fig. 7, since all
three sides of each triangle need to be accessible by lattice
surgery. This either implies an increased space overhead by
requiring some free space as padding around the triangles, or
it introduces a time overhead for logical single-qubit Clifford
gates by requiring code operations for the reorientation of
triangle qubits.

The spatial overhead of the color-code scheme, on the other
hand, can be reduced even further to ∼ 1

2d2 by using 4.8.8 color
codes [28] instead of the 6.6.6 color codes discussed in this
work. However, this comes at the price of a higher-weight
stabilizer, as 4.8.8 color codes feature eight-qubit stabilizers,
instead of just six-qubit stabilizers. If higher-weight stabilizers
are not significantly more difficult to measure, which could
hold true for Majorana-based qubits, it is advantageous to use
the color-code-based scheme instead of a pure surface code
architecture in order to reduce the overhead of fault-tolerant
quantum computing.
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APPENDIX A: STABILIZER MEASUREMENTS
WITH SINGLE-WIRE TETRONS

Here, we show how the measurement of the color-code
stabilizers shown in Fig. 2 can be implemented in a network
of tetrons that features only one vertical semiconductor
wire between tetrons, which is the architecture discussed in
Ref. [41]. The corresponding tunnel coupling configurations
in this architecture are shown in Fig. 8.

In the configuration of Fig. 2 with two vertical wires, all
stabilizers of the same color can be measured simultaneously.
This is no longer the case in Fig. 8, as these measurements

control target

ancilla

long color code ancilla

Z
(1)
L , X

(2)
L

Z
(2)
L , X

(1)
L

(a)

(b)

FIG. 9. (a) Qubit arrangement for long-range CNOTs by lattice
surgery using a color-code ancilla. (b) The long color-code qubit used
in this protocol actually encodes two logical qubits, as it has two red
boundaries and two green boundaries. Red-to-red strings define the
logical operators Z

(1)
L and X

(2)
L , while green-to-green strings are the

operators Z
(2)
L and X

(1)
L .

use a vertical wire or a coherent link of a neighboring six-
qubit block. In particular, the σ⊗6

z and σ⊗6
x measurements

overlap with their left (or right) neighbors, whereas the σ⊗6
y

measurement overlaps with the upper neighbor. Therefore,
syndrome extraction requires two measurement rounds for the
measurement of each stabilizer type, as opposed to just one.

APPENDIX B: LATTICE SURGERY WITH
COLOR-CODE ANCILLAS

The long-range CNOT protocol can also be done using
color-code ancillas. Here, the long surface code qubit is
replaced by a long color-code qubit; see Fig. 9(a). This is
a color-code qubit with two red and two green boundaries, as
shown in Fig. 9(b). It is defined by n physical qubits and n − 2
stabilizers, and therefore encodes two logical qubits. However,
since the code distance of such a qubit is always even, the
support of the XL and ZL operators of the individual logical
qubits cannot coincide. Instead, strings of Pauli operators
that connect two green boundaries encode the operators X

(1)
L

and Z
(2)
L , and red-to-red strings are X

(2)
L and Z

(1)
L , where the

superscript labels the logical qubit.
In this way, long color-code qubits are equivalent to two

surface code qubits on top of each other with a relative rotation
of 90◦. Therefore, the long-range CNOT protocol is the same
as for surface code ancillas, but only uses one of the two
encoded logical qubits. This redundancy is also manifested in a
higher number of physical qubits than in surface code ancillas.
Moreover, lattice surgery between color codes requires eight-
qubit stabilizer measurements.
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5 | Color Codes in Braiding-Based
Networks

So far, our Majorana-based implementations have focused on qubits based on the tetrons and
hexons introduced by Karzig et al. in Ref. [13]. In the following publication, we implement color
codes in networks of topological superconductors inspired by the T-junction-based constructions
of Aasen et al. in Ref. [14].
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We present a scalable architecture for fault-tolerant topological quantum computation using networks of
voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color
codes have a set of transversal gates which coincides with the set of topologically protected gates in
Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a
natural setting in which advantages offered by topological hardware can be combined with those arising
from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a
complete description of our architecture, including the underlying physical ingredients. We start by
showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical
qubits for universal quantum computation, and we present protocols for realizing topologically protected
Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes
with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we
describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes,
and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by
nanowire-based networks of topological superconductors, but it could also be realized in alternative
settings such as quantum-Hall–superconductor hybrids.
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I. INTRODUCTION

Physical realizations of large-scale quantum computers
remain a paramount experimental challenge because
of the unavoidable presence of environmental decoherence.
Topological quantum computing is generally seen as
paving the way towards a solution to this problem [1–3]
in more than one sense: In the mindset of condensed-matter
physics, excitations of topological phases of matter have
been identified as candidates for physical qubits that are
robust to local perturbations and on which a certain set of
quantum gate operations can be performed largely noise-
free. In the context of quantum information theory, topo-
logical quantum error-correcting codes have been devised
as codes featuring high error tolerance which only require
the measurement of local stabilizer operators. While clearly
related, these predominantly hardware-based and software-
based approaches constitute two distinctly different read-
ings of topological quantum computing.
On the hardware side, the interplay of superconductivity,

spin-orbit coupling, and single spin-polarized conducting

channels has inspired various proposals for experimental
realizations of Majorana zero modes [4–9], subsequently
simply referred to as Majoranas. Quantum information can
be encoded using spatially separated pairs of Majoranas
[10] whose parity state is unaffected by local perturbations.
We refer to qubits encoded using this parity state as
physical qubits arising from topological hardware.
Furthermore, the exchange of pairs of Majoranas consti-
tutes a nontrivial braiding operation that can be used for the
implementation of robust quantum gates. Recent experi-
ments have provided increasing evidence for the emergence
of Majorana zero modes in semiconducting nanowires with
mesoscopic superconducting islands [11–15]. In such
setups, the state of the Majorana pair depends on the
fermion parity of the mesoscopic island. Therefore, elec-
trons tunneling onto the island can change the parity state
and thus spoil any quantum information encoded by the
Majoranas. This process is called quasiparticle poisoning.
Among other error sources, its rate defines a finite lifetime
for Majorana-based qubits.
If one aims at storing and manipulating quantum

information beyond the quasiparticle poisoning time—in
principle, for arbitrary times—errors need to be actively
corrected. This can be achieved by making use of topo-
logical error-correcting codes. The basic principle of such
codes is to fight local errors with entanglement so that local
noise cannot affect the logical information [16]. This is
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done by using multiple physical qubits to encode a single
logical qubit, which we refer to as topological software.
Recent proposals [17–21] have taken key steps in the

direction of combining topological hardware with software.
Importantly, the combination of Majorana-based qubits
with topological surface codes has been studied. However,
while the replacement of physical qubits with logical qubits
enhances resilience against noise, one must be aware that
physical gates are also substituted with logical gates.
Topological protection of gates on the physical level does
not necessarily translate to logical gates since, in general,
physical and logical gates are unrelated. Any error-cor-
recting code is, in principle, allowed to have a (nonuni-
versal [22]) set of transversal gates—i.e., logical gates that
correspond to the simultaneous application of the same
physical gate to all physical qubits [23]—but the trans-
versal gates of surface codes are limited to the CNOT and
Pauli gates.
In this work, we go a significant step further and

establish two-dimensional topological color codes as a
natural fit to enhance the fault tolerance of Majorana-based
quantum computers. They seamlessly combine the fer-
mion-parity-protected topological order of topological
superconductors [24] with the long-range topological order
of the toric code [25] in a way that allows one to exploit the
topological protection of both. Compared to surface codes,
color codes not only have a richer set of transversal gates,
but this set also coincides with the gates that are accessible
by braiding of Majoranas, namely, the Clifford gates
[26,27]. We hence further contribute to identifying the
precise advantages offered by topological protection, both
as far as the underlying condensed-matter physics is
concerned and on the level of logical encoding.
In the following sections, we describe our design for a

scalable fault-tolerant topological quantum computer from

the ground up, discussing the microscopic details of the
Majorana-based physical qubits, their encoding in topo-
logical superconductor networks, and the arrangement and
manipulation of logical qubits for quantum computing (see
Fig. 1). We begin in Sec. II by describing how networks of
topological superconducting islands can be used for uni-
versal quantum computation with topologically protected
Clifford gates. We require that topological superconductor
networks are capable of three operations: moving
Majoranas through the network by coupling neighboring
islands, measuring 2n-Majorana parity operators on con-
nected islands, and lifting the degeneracy of the parity
states on an island. We show that in such networks,
physical qubits can be arranged in hexagonal cells with
six nearest neighbors such that the qubits form a triangular
lattice [gray hexagons in Fig. 1(b)]. Here, each hexagonal
cell is associated with four Majoranas that are used for
quantum computation. Universal quantum computation
requires the implementation of a universal set of quantum
gates. One such set consists of the Clifford gates
(Hadamard, π=4, and CNOT gates) and the T gate (or
π=8 gate). We present protocols for single-qubit Clifford
gates via braiding inside a hexagonal cell and CNOT gates
between any pair of cells via braiding and parity measure-
ments. The addition of an unprotected T gate—which is not
accessible via braiding of Majoranas—by controlled split-
ting of the degeneracy completes the universal gate set.
While the Clifford gates of these Majorana-based qubits

are topologically protected, the T gate requires fine-tuning
of the device control parameters, which can easily lead to
errors in the T gate. Instead of attempting to implement a
robust T gate on the level of physical qubits [28,29], we
address this problem using magic-state distillation. This is a
common proposal for a fault-tolerant implementation of the
T gate on the level of logical qubits, the precision of which

(a) (b) (c) (d)

CNOT

Magic-state distillery

Data qubits

bypass

FIG. 1. Overview of the design for a scalable fault-tolerant topological quantum computer. The basic building block is the Majorana
Cooper pair box (a) consisting of a topological superconducting island with charging energy EC and Josephson energy EJ hosting a pair
of Majoranas γ1 and γ2. Parity measurements of the island are controlled by a gate voltage Vg. Multiple connected Majorana Cooper pair
boxes form a topological superconductor network through which Majoranas can be moved and which allows for the measurement
of 2n-Majorana parity operators. A triangular lattice of hexagonal-cell qubits (b) allows for universal quantum computation with
topologically protected Clifford gates. Fault tolerance is added by encoding hexagonal-cell qubits in diamond color codes (c) with
transversal Clifford gates. These form a square lattice of logical qubits. Arranging qubits on a line (d) with a magic-state distillery and a
CNOT bypass completes the universal gate set with a logical T gate and allows for CNOT gates between any pair of data qubits with
constant-time overhead.
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scales with the protocol length [30]. These protocols
typically include many multitarget CNOT gates (i.e., multi-
ple CNOT gates with the same control but different target
qubits). We show how parity measurements in topological
superconductor networks can be used for fast multitarget
CNOT gates, replacing multiple CNOT gates by a protocol
that is as fast as a single CNOT.
Another advantage of Majorana-based qubits is ancilla-

free syndrome read-out. Quantum error-correcting codes
typically require the measurement of stabilizer operators of
the form σ⊗n

z , where σz is a Pauli matrix and n is the
number of qubits involved in the measurement. In conven-
tional setups for quantum computing, such n-qubit parity
operators are typically not directly measurable but require a
lengthy protocol involving an ancilla qubit and n CNOT

gates. Since in topological superconductor networks the
parity of 2n Majoranas can be measured directly if the
Majoranas are moved onto a single connected supercon-
ducting island, n-qubit parity operators can be measured
without the use of ancilla qubits. In preparation for the
color code, we demonstrate how hexagonal-cell qubits can
be used to measure the required six-qubit parity operators.
The triangular lattice of physical qubits allows for a direct

implementation of triangular color codes with transversal
Clifford gates. In contrast to fermionic codes [18,31–33]
where each lattice site corresponds to a Majorana fermion,
we use a bosonic code where each lattice site is a bosonic
degree of freedom (d.o.f.) since our physical qubits are
comprised of fourMajorana fermions each and are therefore
bosonic qubits. In our encoding scheme, the logical qubits
are arranged on a square lattice, where each logical qubit has
four nearest neighbors. As this leaves some unused hex-
agonal cells, we extend the triangular color codes to
diamond-shaped color codes [see Fig. 1(c)], which have
the same code distance as their triangular counterparts but a
lower logical error rate. In Sec. III, we show that a square
arrangement of diamond color-code qubits [see Fig. 1(d)]
can be used for universal fault-tolerant quantum computing
with topologically protected Clifford gates, constant-time
CNOT gates between any pair of logical qubits, and logical T
gates with arbitrary precision. We discuss various protocols
for logical CNOT and multitarget CNOT gates, based on
transversal gates and lattice surgery [34].
In order to show a possible scalable realization of topo-

logical superconductor networks, we review Majorana
Cooper pair boxes [18,35–40] in Sec. IV as basic building
blocks of the physical architecture. In our description of
Majorana Cooper pair boxes [see Fig. 1(a)], we revisit how
topological superconducting islands combined with capaci-
tive coupling via a top gate and Josephson coupling
to a bulk superconductor can be used for parity-to-charge
conversion [35]. We demonstrate that networks of
Majorana Cooper pair boxes are capable of performing
the aforementioned required operations. These can be
implemented using proximitized semiconductor nanowires,

on which recent experiments have focused, but possibly
also in other platforms such as hybrid structures based on
quantum Hall, quantum spin Hall, or quantum anomalous
Hall edge states.
Finally, in Sec. V, we consider the main error sources in

our physical architecture and give a feasibility estimate.
There are three time scales that characterize networks of
Majorana Cooper pair boxes: the time required to move
Majoranas, the duration of parity measurements, and the
quasiparticle poisoning time. We identify constraints that
physical setups need to satisfy in order to operate below the
error threshold of color codes. Using a Monte Carlo
simulation, we study the improved performance of dia-
mond color codes over triangular color codes and give an
estimate of the space overhead—i.e., the number of
physical qubits per logical qubit—required for the logical
qubits to reach sufficiently long survival times for quantum
computation on the basis of experimental measurements of
quasiparticle poisoning times [41–43].
It should be clear that this article is aimed at both the

condensed-matter and quantum information communities.
Therefore, we have made an effort to include basic
introductions to the relevant concepts. Still, this article is
by no means a review, but it is meant to lay the groundwork
for color-code quantum computing with Majoranas in order
to fully exploit the topological protection of Majorana-
based qubits.

II. TOPOLOGICAL HARDWARE:
HEXAGONAL-CELL QUBITS

In a topological superconductor network, each super-
conducting island can host a pair of Majoranas γ1 and γ2
with degenerate even jei and odd joi eigenstates of the
fermion-parity operator iγ1γ2. We require the network to be
capable of three basic operations:
(1) Majoranas can be moved from island to island by

connecting neighboring superconducting islands
(see Fig. 2).

(2) For 2n Majoranas on a single connected island, the
total parity operator in

Q
2n
j¼1 γj of 2n Majoranas can

be measured projectively.
(3) The degeneracy between jei and joi can be split

temporarily and restored again.
We now show that such networks can be used to realize a

universal quantum computer. Even though a pair of
Majoranas is a two-level system, no superposition of jei
and joi can exist because of fermion-parity superselection,
and therefore, a pair of Majoranas cannot be used as a qubit.
Instead, qubits are encoded using two islands hosting four
Majoranas with fixed total fermion parity (see Fig. 2),
either in the even-parity sector,

j0i ¼ je; ei; j1i ¼ jo; oi; ð1Þ

or in the odd-parity sector,
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j0i ¼ je; oi; j1i ¼ jo; ei: ð2Þ

To initialize a qubit in one of these states, the two-Majorana
fermion parity of both islands is measured. Both encodings
can be used interchangeably, as in both cases, the qubit is
measured in the computational basis by measuring the
parity on the first island.
Furthermore, in both encodings, the exchange of γ1 and

γ2, and of γ2 and γ3 performs the same braiding operations
B1;2 and B2;3, respectively. Since the braiding operator [8]

Bi;j ¼
1þ γiγjffiffiffi

2
p ð3Þ

describes the clockwise exchange of Majoranas γi and γj,
the braiding operators describe the qubit operations

B1;2 ¼ e−iðπ=4Þσz ; B2;3 ¼ e−iðπ=4Þσx : ð4Þ

Here, σz and σx are Pauli operators in the computational
basis fj0i; j1ig. In terms of Majorana operators, σz ¼ iγ1γ2
and σx ¼ iγ2γ3.
Universal quantum computation requires a universal set

of quantum gates, i.e., a set of unitary operations on the
qubits, such that any n-qubit unitary operation can be
constructed as a product of unitaries from the universal set.
One such universal gate set is the standard set
fH; T; S;CNOTg [44], in which S ¼ expð−iπσz=4Þ and
T ¼ expð−iπσz=8Þ are the S and T gates (equivalently π=4
and π=8 gates), and H and CNOT are the Hadamard and
controlled-NOT gate,

H¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
; CNOT¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1
CCCA: ð5Þ

The gates generated by the nonuniversal set fH; S;CNOTg
form the set of so-called Clifford gates, which are those
gates that map multiqubit Pauli operators to Pauli operators
under conjugation.

A. Clifford gates in hexagonal-cell qubits

From Eq. (4), it is evident that the single-qubit Clifford
gates can be implemented by braiding since S ¼ B1;2 and
H ¼ iB1;2B2;3B1;2 ¼ iB2;3B1;2B2;3. A topological super-
conductor network that allows for both exchanges is the
double T junction [35,45]. In this five-island geometry, the
upper and right superconducting islands host four
Majoranas encoding a qubit. Figure 2 shows protocols
for the braiding operations B1;2 via a three-point turn in the
left T junction and for B2;3 using the right T junction.
In the remainder of this section, we show that arrays of

hexagonal-cell qubits depicted in Fig. 3 can be used for
universal quantum computation, where qubits are arranged

FIG. 2. Protocols for braiding operations in a double T junction,
where red dots denote Majoranas and red lines connect the
coupled superconducting islands (orange). Left diagrams: Braid-
ing of γ1 and γ2 is achieved via a three-point turn in the left T
junction. Right diagrams: To braid γ2 and γ3, first γ3 is moved
from the right island to the bottom right island. Then, γ2 is moved
to the right island by first connecting all three islands in the right
T junction and then disconnecting the right island. Finally, γ3 is
moved to the center island.

FIG. 3. Left diagram: Hexagonal cell hosting four Majoranas
encoding one qubit. The single-qubit Clifford gates can be
performed by braiding in the double T junction in the lower
part of the cell. In a network of such cells, each cell has up to six
neighbors. Right diagram: Such a hexagonal lattice can also be
realized with only two different wire orientations using a brick-
wall geometry of superconducting islands.
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on a triangular lattice with up to six nearest neighbors for
each qubit. Since the lower part of the hexagonal cell is a
double T junction, it can be used for single-qubit Clifford
gates by braiding. Note that if the physical implementation
only allows for two orientations of the wires, as opposed to
three, such hexagonal cells can also be embedded into a
lattice with a brick-wall geometry, where hexagonal cells
are equivalent to nine-island rectangular cells.
Braiding of Majoranas does not allow for a CNOT gate.

However, qubit parity measurements and single-qubit
Clifford gates can be used to construct a CNOT gate using
an ancilla qubit [46]. Consider the quantum circuit shown
in Fig. 4. The action of a CNOT gate is to flip the target qubit
jti if the control qubit jci is in the j1i state and to apply the
identity if it is in the j0i state. Using an ancilla qubit
initialized in the state jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

, a CNOT gate
can be implemented by a series of qubit parity measure-
ments and some corrective operations. In the first step of
the quantum circuit, the two-qubit parity operator σz ⊗ σz

between the control and ancilla qubit is measured, yielding
a measurement outcome m1 ¼ 0 for even and m1 ¼ 1 for
odd parity. Next, the rotated parity operator σx ⊗ σx
between the ancilla and target qubit is measured with
outcomem2, which is equivalent to a σz ⊗ σz measurement
with basis-rotating Hadamard gates applied before and after
the measurement. Finally, the ancilla qubit is measured in
the computational (σz) basis with outcome m3. The
three measurement outcomes are used to determine the
correctional operation on the control and target qubit
σm2
z ⊗ σm1þm3

x . This procedure can be seen as a topological
version of the nonlocal CNOT gates considered in Ref. [47].
Since the correctional operation consists of Pauli gates,

and Pauli gates can be commuted past Clifford gates
generating only other Pauli gates, it is not necessary to
physically perform the actual gate corresponding to the
correction. Therefore, as long as the gate circuit consists
only of Clifford operations, Pauli gates only need to be
tracked by a classical computer by updating the so-called
Pauli frame, using a procedure known as Pauli tracking
[48]. This is, strictly speaking, no longer the case when T
gates are involved since σxT ¼ T†σx. In this case, gate
synthesis at later steps needs to replace T by T† when
commuting σx past a T gate.
This parity-measurement-based protocol for a CNOT gate

can be readily implemented in hexagonal-cell qubits (see
Fig. 5). First, the ancilla qubit is initialized in the hexagonal
cell occupied by the control qubit. After the application of
Hadamard gates on the ancilla and target qubit (a), the two-
qubit parity operator σz ⊗ σz of the control and ancilla
qubit is measured by moving the first two Majoranas of
each qubit onto three connected superconducting islands
(b). Since the total fermion parity of the connected islands
ðic1c2Þðia1a2Þ is precisely the qubit parity operator, the

FIG. 4. Quantum circuit for a CNOT gate using parity measure-
ments and an ancilla qubit initialized in the jþi state. First, the
parity operator σz ⊗ σz of the control and ancilla is measured,
with outcome m1. Next, the parity operator σx ⊗ σx of the ancilla
and target is measured, with outcome m2. Finally, the ancilla is
measured in the computational basis σz with outcome m3. The
three outcomes determine the final correctional operation σm2

z ⊗
σm1þm3
x on the control and target, which can also be done by

updating the Pauli frame.

(a) (c)

(d) (e) (f)

(b)

FIG. 5. Protocol for a CNOT between two adjacent hexagonal-cell qubits using the quantum circuit in Fig. 4. In the cell occupied by the
control qubit (red), an ancilla (blue) is initialized in the j0i state and moved to the double T junction of the cell. (a) The ancilla and target
(green) are rotated via a Hadamard gate. (b) The first two Majoranas of the control, c1 and c2 and ancilla a1 and a2 are moved onto a
connected island, and the four-Majorana fermion parity −a1a2c1c2 is measured, corresponding to a two-qubit parity measurement
σz ⊗ σz with outcomem1. (c) The ancilla is moved back to the double T junction for anotherH gate. (d) The ancilla and target paritym2

is measured via a four-Majorana parity measurement in the right cell. (e) An H gate is applied to the ancilla and target qubits in their
respective double T junctions. (f) Finally, all qubits return to their initial positions, and the ancilla qubit is measured by measuring the
two-Majorana fermion parity ia1a2 with outcome m3.
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measurement of the four-Majorana fermion parity yields
the two-qubit parity. After another H gate (c), the same
parity measurement is repeated for the ancilla and target
qubit (d). After the final set of H gates, all Majoranas are
returned to their initial positions, and the ancilla qubit is
read out by measuring the two-Majorana parity ia1a2. The
ancilla qubit may be discarded after the protocol. This
concludes the protocol for a CNOT gate between adjacent
hexagonal-cell qubits. In Appendix A, we demonstrate that
this scheme can also be used for CNOT gates between
arbitrary hexagonal-cell qubits. Moreover, we show that
multiple CNOT gates can be applied simultaneously in a
transversal fashion.
This parity measurement-based protocol for a CNOT gate

can be extended to multitarget CNOT gates. A multitarget
CNOT gate corresponds to the application of n CNOT gates
with one control qubit jci and n different target qubits jtii.
Such multitarget CNOT gates are part of magic-state dis-
tillation protocols, which are used for the implementation
of a robust logical T gate. Using the protocol in Fig. 4, a
multitarget CNOT with n targets would require n ancilla
qubits and 3n parity measurements. A faster alternative
uses only one ancilla qubit and a parity measurement
involving the ancilla and all n target qubits (see Fig. 6).
This multitarget CNOT protocol replaces 3n measurements
for n CNOTs by just three measurements for an n-qubit
multitarget CNOT. A proof of the circuit identity in Fig. 6 is
given in Appendix B. The application of this (transversal)
multitarget CNOT gate to distillation protocols in topologi-
cal superconductor networks is discussed in Sec. III.

B. T gates and stabilizer measurements

So far, we have only shown the implementation of the
nonuniversal set of Clifford gates in topological super-
conductor networks. In fact, by virtue of the Gottesman-
Knill theorem, Clifford quantum computers are no more

powerful than classical computers [49]. Unfortunately, the
T gate, which completes the universal gate set, cannot be
done using a combination of braiding of Majoranas and
parity measurements. An unprotected, error-prone T gate
can be achieved by splitting the degeneracy of the parity
states on the island hosting the first two Majoranas, such
that the energy splitting between j0i and j1i is ΔE. After a
time τ ¼ π=4 · ℏ=ΔE, the dynamic phase accumulated by
time evolution will correspond to the T gate, and the
degeneracy is restored again. In contrast to the Clifford
gates, this protocol requires fine-tuning of the device
control parameters and does not protect the T gate against
errors. There exist more sophisticated protocols for physi-
cal T gates in Majorana-based setups [28,29], but for our
purposes, any implementation of physical T gates is
sufficient, as these gates can be used to implement T gates
with arbitrary precision using the magic-state distillation
procedure outlined in Sec. III.
In preparation for error correction using color codes, we

also demonstrate the measurement of six-qubit parity
operators σ⊗6

z without the need for ancilla qubits.
Consider the six hexagonal-cell qubits in Fig. 7 arranged
around an empty hexagonal cell. If the first two Majoranas
of each surrounding qubit are moved onto 12 connected
islands, the total parity of this island will be the 12-
Majorana operator

Q
6
j¼1 iγj;1γj;2, which is precisely the six-

qubit parity operator σ⊗6
z . This allows for the direct read-out

FIG. 6. Quantum circuit for a multitarget CNOT gate using parity
measurements and an ancilla qubit initialized in the jþi state.
First, the parity operator σz ⊗ σz of the control and ancilla is
measured, with outcome m1. Next, the parity operator σx ⊗ σ⊗n

x
of the ancilla and n targets is measured, with outcomem2. Finally,
the ancilla is measured in the computational basis σz, with
outcome m3. The three outcomes determine the final correctional
operation σm2

z ⊗ ðσm1þm3
x Þ⊗n on the control and targets, which

can also be done by updating the Pauli frame.

Meas. cell

FIG. 7. Six-qubit parity measurement in a triangular lattice of
hexagonal-cell qubits. Six hexagonal-cell qubits, Q1–Q6, are
arranged around an empty cell that is used for the measurement of
the parity operator σ⊗6

z . For clarity, the Majoranas of each qubit
are colored red and blue in an alternating fashion. The first two
Majoranas of each qubit are moved to this cell, such that 12
connected superconductors host 12 Majoranas. The total 12-
Majorana parity of this island is precisely the six-qubit parity
operator.
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of the parity, circumventing the usual procedure [50]
involving an ancilla qubit and six CNOTs between the
ancilla and each qubit. The measurement of such n-qubit
parity operators is required for quantum error correction,
where they are the stabilizers of the code.
In summary, we have shown that topological super-

conductor networks, which allow for the movement of
Majoranas, 2n-Majorana parity measurements, and tuning
of the energy splitting between parity states, constitute
universal quantum computers. In particular, triangular
lattices of hexagonal-cell qubits feature topologically
protected Clifford gates and a T gate requiring fine-tuning.
Furthermore, n-qubit parity operators σ⊗n

z can be measured
without the need for ancilla qubits, and multitarget CNOT

gates require only three parity measurements, regardless of
the number of target qubits.

III. TOPOLOGICAL SOFTWARE:
DIAMOND COLOR CODES

Unless the topological hardware is perfect, qubit errors
will occur after a certain number of gate operations. These
errors change the outcome of the quantum computation and
therefore need to be actively corrected. In quantum error
correction, multiple physical qubits are used to encode a
single error-resilient logical qubit. In so-called stabilizer
codes [3,51], the logical qubit is encoded in the degenerate
ground-state space of a Hamiltonian,

HS ¼ −
X
i

Oi; ½Oi;Oj� ¼ 0: ð6Þ

Here, Oi are operators with eigenvalues �1, which are
called stabilizers and are products of Pauli operators. Since
all stabilizers commute, the ground-state space is spanned
by the simultaneous þ1 eigenstates of all stabilizers, under
the condition that the operator −1 is not part of the
stabilizer group. Logical information can be stored in this
degenerate ground-state space, also referred to as code
space. For the logical qubits discussed in this work, the
ground-state space is doubly degenerate, where the eigen-
states define the logical qubit states j0Li and j1Li. Note that
the Hamiltonian HS does not necessarily describe the
physical system used for quantum computation. Instead,
HS merely defines the code space, into which the physical
system is projected by measuring all stabilizer operators.
Errors occurring on physical qubits will change the

eigenvalue of certain stabilizers. The so-called code dis-
tance is the minimum number of qubits that need to be
affected by errors in order to change the logical subspace,
i.e., map j0Li onto j1Li and vice versa. In order to prevent
this from happening, all stabilizer operators are measured
periodically before physical errors can affect the encoded
information. These measurements reveal the so-called error
syndrome, which is a list of all stabilizer measurement
outcomes �1. This information is used to correct the errors

that have occurred. The practical problem that has to be
overcome is that only the syndrome is available, while the
actual errors are unknown. Moreover, different error
configurations can lead to the same error syndrome. The
classical algorithm that finds a suitable error configuration
belonging to a given syndrome is called a decoder
[25,52–58].
Typically, quantum error-correcting codes operate in

code cycles. In every code cycle, logical operations are
performed, the syndrome is read out by making use of
stabilizer measurements, and the errors on physical qubits
are actively corrected. But even logical qubits only have a
finite survival time, as quantum error-correcting codes
merely replace a physical error rate by a (preferably lower)
logical error rate. The minimum number of physical qubits
that need to be affected by errors within a code cycle, such
that the errors are no longer correctable, scales with the
code distance. There are two prescriptions for how a
higher-distance code can be obtained from a low-distance
code: code concatenation [51] and topological codes. Code
concatenation has the drawback that it requires the meas-
urement of increasingly nonlocal stabilizer operators with
increasing code distance. In contrast, the stabilizers of
topological codes remain spatially local as the code
distance is increased. Moreover, in topological codes, the
encoded logical quantum information is protected from
local perturbations because virtual transitions require an
order in perturbation proportional to the system size. In the
case of surface and color codes, errors generate and
propagate anyons—excitations of the system with non-
trivial braiding statistics—that are manifested in a changed
stabilizer measurement outcome. This implies that for
surface and color codes defined on a lattice, anyons need
to propagate through the entire lattice in order to affect the
logical subspace, i.e., errors need to form along a nontrivial
line through the lattice. The locality of stabilizers and high
error resilience are the two key advantages that distinguish
topological from nontopological codes.
In fault-tolerant quantum computing, it is desirable to

perform all gate operations on the level of encoded logical
qubits without the need to decode them back to error-prone
physical qubits [16]. However, the physical operations that
constitute a logical gate UL are typically entirely different
from the known physical gates U. An exception are so-
called transversal gates, which, for our purposes, are logical
gates that are precisely the application of the corresponding
physical gate (or its Hermitian conjugate) on each qubit,
i.e., UL ¼ Uð†Þ⊗n. This has the advantage that errors due to
faulty implementations of single physical gates do not
spread to other physical qubits. Moreover, transversal gates
directly employ physical gates to implement logical gates,
enabling us to carry over the topological protection of
physical gates to the level of logical gates. However, the
Eastin-Knill theorem states that no code can have a set of
transversal gates that is also a universal gate set [22].
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One family of topological codes with transversal gates
are topological color codes [26]. Their set of transversal
gates are the Clifford gates. Since this set coincides with the
set of topologically protected operations of topological
superconductor networks, color codes are a natural fit to
Majorana-based hardware. In comparison to the closely
related [59] surface codes, which cannot implement braid-
ing transversally, color codes also feature a higher error
threshold. The error threshold is the maximum physical
error rate below which logical errors are suppressed by
increasing the code size, allowing for quantum computation
of arbitrary duration. We note that in circuit models where
Clifford gates are error prone and stabilizers are measured
using ancilla qubits and CNOT gates, surface codes indeed
feature a higher threshold than color codes [60]. However,
in the limit of topological hardware where Clifford oper-
ations have a vanishing error rate and stabilizer read-out
does not require ancilla qubits, color codes outperform
surface codes even in the presence of measurement errors
during syndrome read-out [61,62]. In addition, since the
Clifford gates are transversal for color codes, their imple-
mentation only requires one code cycle. This reduces time
overhead compared to surface codes, where their imple-
mentation requires multiple code cycles [50].

A. Triangular and diamond color codes

Color codes are stabilizer codes that are defined on
lattices with three colorable faces. Physical qubits sit on the
vertices, and the stabilizers are operators acting on all
qubits surrounding a face. Figure 8 shows a family of color
codes that is defined on a hexagonal lattice of physical
qubits, namely, the triangular 6.6.6 color codes. Here, all
stabilizers involve either four or six qubits. There are two
stabilizers per face f, an X-type stabilizer OX ¼⊗i∈f σx
and a Z-type stabilizer OZ ¼⊗i∈f σz. Thus, the logical
qubits in the color code are encoded in the ground-state
space of the Hamiltonian,

Hcolor code ¼ −
X
faces

OX −
X
faces

OZ: ð7Þ

To initialize a color-code qubit in the logical j0Li state, all
physical qubits are initialized in the j0i state, the stabilizers
are measured, and the errors are corrected.
Every physical qubit is part of up to three different-

colored X-type and Z-type stabilizers. At the boundaries,
qubits are only part of one or two stabilizers, but if one
assigns colors to the boundaries (see Fig. 8), every qubit is
part of three different-colored stabilizers or boundaries.
A σz-type Pauli error on a physical qubit will flip the
three surrounding red, green, and blue X-type stabilizers.
Conversely, a σx-type error will flip three Z-type
stabilizers. In the language of topological codes, flipped
stabilizers with eigenvalue −1 host an anyon. Thus, errors
generate and propagate strings with red, green, and blue
anyons at their endpoints. Each edge can absorb anyons of
its respective color. A logical error occurs when physical
errors propagate a red, a green, and a blue anyon to the red,
green, and blue edges, respectively. Thus, a logical ðσzÞL
operator is given by any string of physical σz operators that
propagates anyons in this way. In particular, physical σz
operators on all physical qubits sitting on any one of the
three edges propagate anyons accordingly and therefore
correspond to logical ðσzÞL operators. Similarly, logical
ðσxÞL operators correspond to strings of physical σx
operators.
Each code cycle consists of three steps. First, logical

operations are performed on the encoded qubits. Next, the
error syndrome is extracted by measuring all stabilizers.
The syndrome is then given to the decoder. Finally, the
corrections proposed by the decoder are applied. Note that
it is not necessary to physically correct the errors, as they
can be handled classically by Pauli tracking [48], under the
assumptions discussed in Sec. II.
In the triangular lattice formed by hexagonal-cell qubits,

the cell in the center of each stabilizer is not occupied by a

Physical qubit

Measurement cell

Qubit

Qubit Qubit

Qubit

QubitQubit

FIG. 8. First three topological triangular color codes with code distances 3, 5, and 7 (where the smallest one is equivalent to the Steane
code [63]). These 6.6.6 color codes are defined on a hexagonal lattice, where each vertex is a physical qubit and each face is an X-type
and a Z-type stabilizer involving the surrounding qubits. Physical errors on a qubit affect the three different-colored stabilizers and edges
surrounding the qubit. In the triangular lattice of hexagonal-cell qubits, the empty cell in the center of each face can be used for stabilizer
measurement.
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physical qubit. Instead, these cells can be used for stabilizer
measurements, as shown in Fig. 7 for Z-type stabilizers.
Note that X-type stabilizers can be measured by applying a
Hadamard gate to all qubits before and after the measure-
ment. Color codes fall into the class of CSS codes [63,64];
i.e., all stabilizers are products of only σz operators or only
σx operators. CSS codes have a transversal implementation
of the CNOT gate, where the logical CNOT gate corresponds
to the application of physical CNOTs between all corre-
sponding physical qubits of two codes [see Fig. 9(a)].
Moreover, color codes are strong CSS codes because the
support of Z-type and X-type stabilizers coincides. This
implies that Hadamard gates are transversal, and the logical
Hadamard gate HL ¼ H⊗n maps stabilizer states onto
other stabilizer states. In general, this is not true for the
application of physical S gates on all qubits. Therefore, the
transversal SL gate requires greater care, as some physical S
gates need to be replaced by S† gates. One general
prescription is to bicolor the vertices of the color-code
graph, such that neighboring qubits have different colors. In
Fig. 9(a), we color the sublattice containing the corner
qubits blue, and we color the other sublattice orange. The
logical SL gate then corresponds to physical S gates on blue
qubits and physical S† gates on orange qubits [65].
All physical operations required for single-qubit trans-

versal gates can be applied simultaneously since they only
require braiding within each hexagonal-cell qubit. As we
show in Appendix A, also for transversal CNOTs, all
physical CNOTs can be performed simultaneously in a
hexagonal-cell qubit geometry. However, this requires
the triangles encoding the control and target qubit to be
oriented the same way. Thus, the densest packing of
triangular color codes along one line is not practical.
Instead, we choose to extend the upward-pointing

triangular codes into the unused space on their right,
forming diamonds, as shown in Fig. 9(b). Since all
stabilizers of one type and color can be measured simulta-
neously, this happens at no increase in space or time
overhead. Moreover, our Monte Carlo simulation in Sec. V
shows that diamond codes even feature a lower logical error
rate compared to triangular codes with the same code
distance. Note that when extending triangles to diamonds,
only one of the edges becomes longer compared to the
triangular code. As the code distance is given by the length
of the shortest edge, the extension to diamond color codes
lowers the logical error rate despite leaving the code
distance unchanged.
Universal fault-tolerant quantum computation with log-

ical diamond color-code qubits requires the implementation
of a universal gate set fHL; SL;CNOTL; TLg. The first two
gates are implemented directly in a transversal fashion. The
CNOTL gate requires special care. Even though it can be
done transversally, CNOTs in hexagonal-cell qubits use
physical ancilla qubits, which are not protected against
noise. In the remainder of this section, we show that a one-
dimensional arrangement of data qubits with a magic-state
distillery above and a CNOT bypass below [see Fig. 9(c)]
implements the remaining two logical gates in a fault-
tolerant fashion. A magic-state distillery is an array of
qubits used for magic-state distillation, whereas data qubits
are qubits used for quantum computation but not for
distillation. We present protocols that use the CNOT bypass
to implement a fault-tolerant CNOTL gate with an overhead
that scales with neither the code distance nor the distance
between the control and target qubits. Furthermore, we
demonstrate how the magic-state distillery can be used to
produce and store magic states, which allow for a fault-
tolerant implementation of the TL gate.

(b) (c)(a)

CNOT

Magic-state

Data qubits

Transversal CNOT

Physical CNOT

Transversal

FIG. 9. (a) Color codes feature transversal Clifford gates. While the logical Hadamard gate is simply HL ¼ H⊗n, the logical S gate SL
is a mixture of physical S and S† gates. Using a bicoloration of the physical qubits, such that the sublattice involving the corner qubits is
blue and the other one is orange, SL requires physical S gates on blue qubits and an S† gate on orange qubits. The logical CNOT gate
corresponds to n physical CNOTs between pairs of qubits from two triangles. (b) Since this requires the movement of ancilla qubits from
one triangle to the other, this leaves some unused space in between, which can be used for the diamond color codes. These form a square
lattice of logical qubits. (c) Universal fault-tolerant quantum computation can be achieved on a line of data qubits with a magic-state
distillery and a CNOT bypass.
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B. Logical CNOT gates

We present three protocols for logical CNOT gates between
data qubits. In the first protocol, the control qubit is moved to
the target qubit through theCNOTbypass, and theCNOTgate is
performed transversally [see Fig. 9(a)]. However, the ancilla
qubits in this protocol are physical qubits and therefore
susceptible to errors. Moreover, since measurements are part
of the CNOT protocol, a physical CNOT gate may introduce
additional errors if measurements are not perfect. Both
factors increase the noise level for logical CNOT gates. The
noise level can be decreased by substituting physical ancilla
qubits by a logical ancilla qubit.
An implementation of the circuit in Fig. 4 with logical

qubits requires parity measurements between logical
qubits. Since the logical σz operator is a nontrivial string
of physical σz operators through the code, the two-qubit
ZZ-parity operator of two distance d codes is a product of
at least 2d σz operators. One method of fault tolerantly and
projectively measuring the two-qubit parities of logical
qubits is called lattice surgery [34]. Here, new stabilizers
are temporarily introduced on the boundary between two
logical qubits. In Fig. 10(a), we show a lattice surgery
protocol along the green boundaries of two diamond

color-code qubits, although any two boundaries can be
used regardless of color as long as they have equal lengths.
In this protocol, the red four-term X stabilizers at the
boundaries are merged to form eight-term stabilizers. The
corresponding Z stabilizers remain unchanged (see Fig. 21
in Appendix C). Green three- and four-term stabilizers are
introduced which commute with all other stabilizers and
involve each boundary qubit exactly once. Therefore, these
stabilizers are only measured in the Z basis, as the product
of all green boundary stabilizers is precisely the ZZ parity.
If these stabilizers are measured along with the other
stabilizers, qubit errors can be corrected and the parity
measurement is fault tolerant. The error due to faulty
measurements can be reduced by repeating sufficiently
many rounds of syndrome extraction. After the product of
the green boundary stabilizers is determined—and there-
fore the two-qubit parity—the stabilizers are reverted to the
initial configuration. Similarly, the XX parity can be
obtained by swapping X and Z stabilizers in the afore-
mentioned protocol. We stress that the lattice surgery
protocol projectively measures the logical two-qubit parity
without revealing any additional information, as we discuss
in greater detail in Appendix C.

(a)

(b)

(c)

CNOT

Control Data Data Data Data Target

Control

Control

Data Data Data Data Target

Target

AncillaAncilla

Ancilla

Ancilla Ancilla

Move

CNOT

For

Only Only

FIG. 10. (a) Fault-tolerant ZZ-parity (XX-parity) measurement between two diamond color-code qubits by lattice surgery [34],
denoted by black lines crossing the neighboring boundaries. First, new three- and four-qubit green stabilizers are introduced, and new
eight-qubit stabilizers are obtained by merging red plaquettes along the boundary. These stabilizers are measured along with all other
stabilizers in order to obtain the ZZ parity (XX parity), where the new green boundary stabilizers are only measured in the Z basis
(X basis) and the red eight-qubit stabilizers only in the X basis (Z basis). (All stabilizers are explicitly shown in Fig. 21 in Appendix C.)
The product of the green boundary stabilizers is precisely the two-qubit parity. Finally, the stabilizers are returned to their initial
configuration before the lattice surgery. (b) Protocol for a fault-tolerant CNOT using lattice surgery. A logical ancilla is initialized in the
jþi state. The ZZ parity between the control and ancilla is measured, and the ancilla is moved through the CNOT bypass to the target.
Finally, the XX parity between the ancilla and target is measured, and the ancilla is read out. The length of this protocol scales linearly
with the distance between the control and target. (c) Lattice-surgery-based CNOT protocol with constant-time overhead. The ZZ parities
between the control and three ancilla qubits in the jþi state are measured simultaneously using the three lattice surgeries indicated in the
figure. Next, the XX parity between ancilla 3 and the target is measured. Finally, ancilla 3 is read out in the Z basis, while ancillas 1 and 2
are measured in the X basis. In the presence of measurement errors during syndrome read-out, this protocol scales logarithmically with
the distance between the control and target.
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Thus, the second protocol is a CNOTwith a logical ancilla
shown in Fig. 10(b). A logical jþi ancilla is initialized in
the CNOT bypass next to the control qubit. The ZZ parity
between the ancilla and control is measured by lattice
surgery, and the ancilla is moved to the target qubit. Finally,
the XX parity between the ancilla and target is measured,
and the ancilla is measured in the σz basis. Although this
protocol yields a logical CNOT gate with arbitrary precision,
it still has one major drawback: The protocol length
increases linearly with the distance between the control
and target qubit.
This can be alleviated by using two additional ancilla

qubits with long edges, which replaces the movement of the
ancilla qubit by a number of simultaneous stabilizer
measurements at the long edge. The third protocol is a
CNOT with constant-time overhead [see Fig. 10(c)]. Three
jþi ancillas are arranged such that ancillas 1 and 2 both
have a short and a long edge and cover the entire distance
between the control and target qubit. Using lattice surgery,
the ZZ parities between the control and ancilla 1, between
ancillas 1 and 2, and between ancillas 2 and 3 can be
measured simultaneously. This is equivalent to measuring
the two-qubit parities between the control qubit and each of
the ancilla qubits. Therefore, ancilla 3 can be directly used
as the CNOT ancilla. Its XX parity with the target qubit is
measured, and it is read out in the σz basis. Ancillas 1 and 2
cannot be discarded right away, as they are still entangled
with the control qubit. They can be disentangled by
measuring the ancillas in the σx basis with measurement
outcomes m1 and m2, and by applying a σm1þm2

z correction
to the control qubit. An explanation of the quantum circuit
corresponding to this protocol is found in Appendix E.
In the absence of measurement errors, this protocol has a

constant-time overhead. This is no longer true if syndrome
measurements are faulty. Such a measurement can be
described by a perfect measurement, followed by the
identity map with probability p and a flipped outcome
with probability 1 − p. Since more boundary stabilizers are
involved in the parity measurement comprising ancillas 1
and 2, they need to be measured more often to achieve the
same accuracy as the other parity measurements. However,
because the measurement error probability decreases expo-
nentially with each repetition, whereas the number of
boundary stabilizers only increases linearly with the dis-
tance between the control and target, the time overhead of
this CNOTonly scales logarithmically with the control-target
distance.
We have presented three protocols for logical CNOT

gates. The transversal protocol between nearest neighbors
is fast but has a fixed accuracy and a time overhead that
scales linearly with the control-target separation. The
second protocol uses a logical ancilla and can therefore
achieve arbitrary accuracy, but it is slower than the first
protocol as it requires multiple code cycles. The third
protocol eliminates the time overhead or replaces it by a

time overhead that scales favorably as the logarithm of the
distance between the control and target. By adding rows to
the CNOT bypass, multiple spatially intertwined CNOT gates
can be performed simultaneously. Note that due to the
overhead in quantum wires in a hexagonal-cell qubit,
logical diamond color-code qubits do not block each
other’s paths when moving, as they can be moved through
one another, similar to how ancilla qubits can be moved
past other qubits in the transversal CNOT protocols of
Figs. 5 and 20.

C. Magic-state distillation

The only gate remaining for a universal fault-tolerant
quantum computer is the logical TL gate. We point out that
even if the physical hardware had a topologically protected
physical T gate, there would be no way of directly using
this for a TL gate as the T gate cannot be transversal in a
code with transversal Clifford gates due to the Eastin-Knill
theorem [22], which states that the ability of a quantum
code to detect arbitrary errors on any single physical
subsystem is incompatible with the existence of a universal,
transversal encoded gate set for the code. There exist code-
switching methods that allow us to switch the logical qubit
from one code to another code with a different set of
nonuniversal transversal gates. However, in order for this
set to include the T gate and for the stabilizers to still
remain local, the qubits need to be arranged in three
dimensions instead of two [66].
One possibility to implement a logical low-error T gate

using logical Clifford gates and a physical T gate is magic-
state distillation. Consider the state injection circuit
shown in Fig. 11, which is equivalent to a T gate on the
qubit jψi. Using an ancilla magic state jmi ¼ Tjþi ¼
ðj0i þ eiπ=4j1iÞ= ffiffiffi

2
p

, a CNOT between the qubit and one
prepared in a magic state, followed by the measurement of
the magic state with outcome mz, corresponds to a T gate
up to a correctional Smz operation. Such a procedure of
effectively generating a quantum gate by making use of
suitable quantum state resources is referred to as gate
teleportation.
In order for this state injection algorithm to yield a

logical T gate, the magic state jmi needs to be an encoded
logical qubit. However, since the physical T gate is not
topologically protected and physical qubits are not pro-
tected against errors during the encoding process, we
can only generate faulty magic states that are well

FIG. 11. State injection algorithm: A CNOT between a qubit jψi
and a magic state jmi ¼ ðj0i þ eiπ=4j1iÞ= ffiffiffi

2
p

, followed by a
measurement of jmiwith outcomemz and a correctional Smz gate,
is equivalent to a T gate on the qubit.
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approximated by j ~mi ¼ ðj0i þ eiðπ=4þεÞj1iÞ= ffiffiffi
2

p
, even

though further errors are expected and allowed for.
Magic-state distillation is an algorithm deeply related to
quantum error correction that generates low-error magic
states using many faulty magic states j ~mi with angle
deviations ε of up to 17.3% [30]. Many such algorithms
exists, such as a 15-to-1 protocol [30], a 10-to-2 protocol
[67], or, more generally for an integer k, a 3kþ 8-to-k
protocol [68,69]. These protocols only require (transversal)
Clifford gates, in particular, multitarget CNOT gates.
Combinations of these protocols [68] can be used to generate
magic states—and therefore effectively T gates—with the
desired precision.
Logical magic states can be encoded from physical

magic states using a variant of the code injection procedure
described in Ref. [34]. In Fig. 12, we depict this procedure
for a diamond color code. A detailed explanation of the
presented protocol is given in Appendix D. The protocol
can correct errors on any pair of physical qubits, but certain
errors with support on three qubits cause the injection of a
faulty state, regardless of the code distance of the diamond
code used. This further substantiates the need for magic-
state distillation.
In principle, the multitarget CNOTs in the distillation

protocols can be done using many iterations of the logical
CNOT gates that we discussed previously. However, for
logical CNOTs between data qubits, we focused on the
operations having a low error rate. Since distillation
protocols are only performed once, and afterwards
magic-state qubits are merely stored until their use, the
priority of their multitarget CNOTs should be speed over
accuracy of individual gates, such that magic states can be
distilled fast.
Majorana-based qubits offer the possibility of a fast

multitarget CNOT gate using the protocol in Fig. 6. Even
though this gate is transversal for color-code qubits, the
parity measurements involve physical qubits that are
spatially separated—i.e., every first physical qubit of each
involved logical qubit, every second physical qubit, and so
on. One method to bring them closer together is by

rearranging the physical qubits using the inflation protocol
shown in Fig. 13 for the example of four logical qubits
arranged on a 2 × 2 grid. The protocol effectively rear-
ranges the physical qubits of four logical qubits, such that
they form blocks of four physical qubits that are part of
multitarget CNOT gates. The analogous protocol with 15
qubits arranged on a 4 × 4 grid can be used for the
transversal multitarget CNOTs required for 15-to-1 distil-
lation. After sufficiently many rounds of magic-state
distillation, the magic state is ready for state injection
via a CNOT gate using any of the protocols outlined in the
previous subsection.
Clifford gates and magic-state distillation operate inde-

pendently from each other. In other words, during the
application of Clifford gates on the data qubits in the
quantum computation, magic states can be distilled in
parallel and stored for later use in the magic-state distillery.
Magic states can even be prepared offline and stored for
future quantum computations. Since magic-state distilla-
tion is the part of the quantum computation that requires the
greatest effort, magic states are resource states for quantum
computation. With predistilled magic states, any quantum
computation reduces to the application of (constant-time
overhead) logical Clifford gates.
In conclusion, we have constructed logical diamond-

shaped color-code qubits with transversal Clifford gates.
Arranged on a line with a CNOT bypass and a magic-state
distillery, they feature a robust T gate and a CNOT gate with
constant-time overhead. The single-qubit Clifford gates are
topologically protected because of the protection of the
topological superconductor network. We note that apart
from transversal CNOTs and fast multitarget CNOTs, the
remaining protocols make no use of the diamond shape. In
fact, if for data qubits one abandons the fast transversal
CNOT protocol, each diamond-shaped data qubit can be
replaced by two triangular color-code qubits with a
straightforward generalization of the lattice surgery proto-
cols. This reduces the spatial overhead for data qubits by a
factor of 2, but it also slightly increases the logical error

FIG. 12. Code injection procedure which encodes an unknown
physical state jψi (gray qubit) into a logical state jψLi. First, the
stabilizer state in the left panel is prepared by measuring all the
stabilizers shown. Finally, we cease measuring the green stabi-
lizers at the bottom boundary and start measuring the red
stabilizers.

FIG. 13. Inflation protocol for transversal multitarget CNOT

gates with four logical qubits. This protocol rearranges the
physical qubits such that the qubits involved in transversal
multitarget CNOT gates are now close to each other, i.e., every
first physical qubit of each of the four logical qubits, every
second, etc. This protocol can be used for the multitarget CNOTs
required for magic-state distillation, e.g., using inflation of 15
qubits arranged on a 4 × 4 grid for 15-to-1 distillation.
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rate. The same is not true for magic-state distillery qubits,
as the inflation protocol for fast distillation still benefits
from diamond color codes.

IV. PHYSICAL ARCHITECTURE:
MAJORANA COOPER PAIR BOXES

In the previous sections, we have demonstrated that we
can construct a fault-tolerant universal topological quantum
computer on the basis of a topological superconductor
network. Our construction requires that Majoranas can be
moved, their parities measured, and the degeneracy of their
parity states lifted. In this section, we review how this can
be achieved using Majorana Cooper pair boxes following
the scheme suggested in Ref. [35] (see also Refs. [18,
38–40]). While here we follow Ref. [35], other implemen-
tations of Majorana qubits can also be combined with a
color code as discussed in this paper, as long as these
architectures are capable of the three required operations.
For instance, this scheme can, in principle, also be realized
in Majorana box qubits [70] and related setups [71], where
Majoranas are not moved directly by coupling neighboring
islands but via braiding by measurement [72,73].
Pairs of Majorana zero modes can emerge at the ends of

one-dimensional spinless p-wave superconductors [10].
Even though there are candidates for p-wave supercon-
ductors such as Sr2RuO4 [74], ordinary superconductors
exhibit s-wave pairing. To effectively obtain the required
p-wave pairing from s-wave pairing—and thereby
Majorana zero modes—three essential ingredients are
required (see Fig. 14): an s-wave superconductor, spin-
orbit coupling, and one-dimensional spin-polarized con-
ducting channels [4–9]. Experiments have focused on
realizing this by using nanowires [11–14] or by appropriate
patterning of two-dimensional electron gases [15,75], but
in principle, this could also be achieved in edge states of
quantum Hall, quantum spin Hall, or quantum anomalous
Hall systems [4,76–79].
Unlike in ordinary s-wave superconductors, where the

minimal excitation energy is given by the pairing gapΔ, the
Majoranas have zero excitation energy. Each pair of
Majoranas combines into a complex fermion that can be
empty or occupied. Unpaired electrons can occupy these
fermionic states at zero energy cost. When the island has
one Majorana at each end, there is one complex zero-
energy fermion. The occupation of this energy level is
associated with the fermion parity of the mesoscopic island;
i.e., the level is unoccupied for even and occupied for odd
fermion parity. These statements hold true when the
Majorana wire is proximity coupled to a grounded s-wave
superconductor. If the superconductor is floating, the
combined system of wire and proximity-coupled super-
conductor has a finite charging energy, which will, in
general, lift the degeneracy between the even and odd-
parity states [80–82].

A powerful scheme to manipulate Majorana zero modes
exploits Majorana Cooper pair boxes (see Fig. 14) [35]. A
gated wire coated by a superconducting island is coupled to
a bulk superconductor through a tunable Josephson junc-
tion. Opening the Josephson junction effectively grounds
the island, which will then support a Majorana degeneracy.
This degeneracy will be progressively lifted by Coulomb
charging effects as the Josephson coupling is reduced.
The low-energy Hamiltonian of the Majorana Cooper

pair box [35] is given by the sum H ¼ HC þHJ of a
charging term

HC ¼ ECðN̂ − N0Þ2 ð8Þ

with charging energy EC, and a Josephson term

HJ ¼ −EJ cos φ̂; ð9Þ

with Josephson energy EJ. Here, N̂ is the operator that
counts the electrons on the island and N0 ¼ eVg=ð2ECÞ is

B

FIG. 14. A Majorana Cooper pair box as a basic building block
of the topological hardware. Top diagram: A pair of Majorana
zero modes γ1 and γ2 at the ends of a p-wave superconductor can
be effectively obtained by depositing an s-wave superconductor
with strong spin-orbit coupling on top of a material with a single
spin-polarized conducting channel, such as a semiconducting
nanowire in a magnetic field, a quantum anomalous Hall
insulator, or a 2DEG in a strong magnetic field. Bottom diagram:
A Majorana Cooper box requires the addition of charging energy
EC and Josephson energy EJ on the mesoscopic superconducting
island. A top gate that is capacitively coupled to the super-
conducting island imposes a certain total charge on the island
governed by the gate voltage Vg and the (fixed) charging energy.
Furthermore, a bulk superconductor is Josephson coupled to the
mesoscopic island through a gate-tunable Josephson junction,
which tunes the Josephson energy and imposes a certain phase on
the island.
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the background charge controlled by the gate voltage Vg

applied to the capacitively coupled gate. The operator
φ̂ is the phase of the superconducting island, obeying
the commutation relation ½φ̂; N̂� ¼ 2i. Even and odd-parity
states obey periodic and antiperiodic boundary conditions
when writing the wave function in the phase represen-
tation [80].
Figure 15 shows the spectrum ofH in three characteristic

regimes [35]. In the Majorana regime EC ≪ EJ, the phase
φ̂ is fixed by the bulk superconductor, and the spectrum is
almost Vg independent. In this regime, there are two nearly
degenerate ground states whose splitting ΔE is exponen-
tially small in EJ=EC. These ground states are separated
from excited states by an energy ∼

ffiffiffiffiffiffiffiffiffiffiffi
EJEC

p
. In the opposite

Coulomb regime EC ≫ EJ, the eigenstates are well-defined
charge states. The two lowest charge states with even and
odd parity are split for all values of Vg, except at the charge
degeneracy points where N0 is half integer. Depending on
whether N0 is closer to an even or odd integer, the ground
state has either even or odd fermion parity. Thus, one can
impose a desired fermion parity on the state of the
Majorana Cooper pair box by tuning it to the Coulomb
regime and relaxing to the ground state. The intermediate
regime with EC ∼ EJ can be understood starting from the
Majorana regime as the result of Coulomb charging lifting
the ground-state degeneracy or from the Coulomb regime
as a result of forming avoided crossings between states of
equal fermion parity by Cooper pair tunneling in and out of
the island.

Using these three regimes of the Majorana Cooper pair
box, all operations required for color-code quantum com-
puting with a topological superconductor network can be
implemented. In a network, islands hosting Majoranas that
encode a qubit are tuned to the Majorana regime, such that
the parity states—and therefore the encoded qubits—are
degenerate. All other (empty) islands are tuned to the
Coulomb regime. The remainder of this section is devoted
to showing how to use these two regimes to move
Majoranas through the network and how to employ the
intermediate regime for parity measurements [35]. This is
complemented by degeneracy splitting, which is straight-
forwardly implemented by decreasing EJ on an island.

A. Moving Majoranas

Neighboring Majorana Cooper pair boxes with individu-
ally controllable gate voltage and Josephson energy are
connected via tunnel coupling (see Fig. 16). The interisland
transmission probability τ can be controlled by a pincher
gate located between the islands. Following Ref. [35], this
junction can be used to move Majoranas between islands.
Starting with two decoupled islands (τ ¼ 0) in the
Majorana (left island) and Coulomb (right island) regime
(see Fig. 17), γ2 is moved to the right island by increasing
the interisland coupling and then tuning the right island to
the Majorana regime by increasing its Josephson coupling
to the bulk superconductor. This places the system into an
eigenstate of the total parity iγ1γ2 of both islands. One
should ensure that at the beginning of the protocol, the right
island is initialized into the even-parity sector by tuning Vg

FIG. 15. Parity-to-charge conversion in the Majorana Cooper pair box, as described in Ref. [35], and energy levels of the Majorana
Cooper pair box HC þHJ as a function of gate voltage Vg and for different ratios EJ=EC. In the Majorana regime EJ ≫ EC, charging
energy is negligible, and the spectrum is insensitive to Vg. The ground state is given by nearly degenerate states of opposite parity (blue
and orange), where the maximum separation ΔE vanishes exponentially in EJ=EC, whereas the distance to the first excited states
increases with

ffiffiffiffiffiffiffiffiffiffiffi
EJEC

p
. As EJ is decreased by decreasing the coupling to the bulk superconductor, the ground-state degeneracy is lifted

in the intermediate regime. Here, varying the gate voltage distinguishes the parity states through their differential capacitance
C ¼ ∂hN̂i=∂Vg, which is larger for the orange parity than for the blue parity. Finally, in the Coulomb regime EJ ≪ EC, the spectrum is
given by parabolas with well-defined charge number N. If Vg is tuned to a minimum of a charge parabola, the two lowest-energy parity
states are separated by EC, which can be used to impose a certain parity on the island. The intermediate regime can also be understood
from the emergence of avoided crossings between charge states of equal parity as EJ is increased.
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accordingly, so moving the Majorana will not flip the parity
state. Finally, γ1 can be moved to the right island by tuning
the left island into the Coulomb regime and then decou-
pling the two islands.
Majorana Cooper pair boxes arranged in a T junction

geometry with three pincher gates between three islands
(see Fig. 18) form the basic building block of our proposed
network and implement all required moving operations.
Opening any pair of pincher gates couples the respective
islands. For instance, opening the right and bottom pincher
gates in the left configuration of Fig. 18 moves γ3 from the

right island to the bottom island. Opening the remaining
pincher gate connects the left island to the other two
superconductors, such that γ2 becomes a Majorana shared
by all three islands.

B. Fermion-parity measurements

The set of required operations is completed by mea-
surements of the fermion parity of 2n Majoranas. The
fermion parity iγ1γ2 of an island can be measured by tuning
to the Coulomb regime and measuring the charge on the
island (parity-to-charge conversion). In an alternative
scheme, the superconducting island is tuned into the
intermediate regime EJ ∼ EC with the gate voltage set such
that N0 is, say, an even number. Then, the even-parity state
is at the minimum of a charge parabola, while the odd-
parity state sits at an avoided crossing between two charge
parabolas. Consequently, the charge on the island is
insensitive against variations of the gate voltage in the
even-parity state, but it is susceptible in the odd state; i.e.,
the two parity states differ in the differential capacitance

C ¼ ∂hN̂i
∂Vg

: ð10Þ

When incorporating the island into a resonant circuit,
the resonant frequency depends on the differential capaci-
tance. Thus, a measurement of the resonance frequency
constitutes a parity measurement, referred to as dispersive
read-out [83–86].
This dispersive read-out scheme can be generalized to

measuring the fermion parity of 2nMajoranas. Moving the
2n Majoranas onto one connected superconducting island
that is tuned away from the Majorana regime with suitably
chosen gate voltage, the parity can be read-out by incor-
porating this island into a resonant circuit and proceeding

P

FIG. 16. Two Majorana Cooper pair boxes connected to the
same bulk superconductor with Josephson energies EJ;1 and EJ;2,
and top gate voltages Vg;1 and Vg;2, respectively. The islands are
connected through the spin-polarized conducting channel, in
which the interisland transmission probability τ can be tuned by a
pincher gate.

FIG. 17. Two-step protocol for moving Majoranas γ1 and γ2
from the left island, initially tuned to the Majorana regime, to the
right island, initially tuned to the Coulomb regime with even
parity. First, the two islands are coupled by increasing the
transmission to τ ¼ 1 and tuning the right island to the Majorana
regime, shuttling γ2 to the right island. The two islands now form
a single connected superconducting island with Majoranas γ1 and
γ2. In order to move γ1 to the right island, the transmission is
reduced back to τ ¼ 0, and the left island is tuned to the Coulomb
regime.

FIG. 18. T-junction geometry consisting of three mesoscopic
superconducting islands coupled through a three-terminal junc-
tion involving three pincher gates. Left diagram: If all three
pincher gates are closed, the islands are decoupled and host a pair
of Majoranas each. In dispersive read-out, tuning Vg;1 and Vg;2 is
used to measure the parities iγ1γ2 and iγ3γ4, respectively. Right
diagram: Opening the right and bottom pincher gate while tuning
the bottom island into the Majorana regime moves γ3 to the
bottom island. Subsequently, opening the left pincher gate
connects all three islands, where γ2 is shared by all islands in
the three-terminal junction. Connecting any of the top gates to a
resonant circuit allows for dispersive read-out of the total
parity −γ1γ2γ3γ4.
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as before. An experimental limitation is set by the decrease
of the charging energy with increasing island size.
Typically, for nanowire networks, the charging energy
decreases linearly with the system size. Therefore, the
required precision in the gate voltage control increases
linearly with the size of the island. This scheme can, for
instance, be applied to measure the four-Majorana parity
operator −γ1γ2γ3γ4. In the right configuration of the T
junction in Fig. 18, all pincher gates are opened and the
three islands form one connected mesoscopic supercon-
ductor hosting four Majorana zero modes. The spectrum of
this effective Majorana Cooper pair box will be the same as
in Fig. 15, but with a correspondingly lower charging
energy and states differing in total parity ðiγ1γ2Þðiγ3γ4Þ.
Thus, dispersive read-out now measures this four-Majorana
parity operator.
In this manner, the 2n-Majorana parity operator of an

island hosting 2n Majoranas can be measured via dis-
persive read-out by connecting any of the top gates to a
resonant circuit and measuring the quantum capacitance
[83]. Since at least one top gate in each hexagonal cell
needs to be connected to its own read-out circuit, incor-
porating the read-out hardware in a two-dimensional
architecture is an experimental challenge. Similar to super-
conducting qubit platforms, few-qubit quantum computers
may allow for an on-chip implementation of both qubit and
read-out hardware. However, as each gate in the two-
dimensional platform needs to be addressed individually,
large-scale quantum computing will require the gates to be
contacted to the control hardware via the third dimension,
i.e., out of plane. In fact, the integration of the control and
measurement hardware in a three-dimensional architecture
is the subject of current experimental efforts [87–89] to
scale up superconducting qubit platforms.
Alternative schemes that were proposed for the parity

read-out of Majorana-based qubits [35,70,71] include
charge reflectometry, where a resonator is used to probe
the island’s energy levels as opposed to the differential
capacitance, and charge sensing, which employs the
Coulomb regime to read out the average charge on the
island. The implementation and benchmarking of different
parity read-out techniques is the subject of ongoing
experimental efforts.
Having discussed the implementation of the operations

required of topological superconductor networks, we now
investigate error sources of Majorana Cooper pair boxes
and how well they can be corrected by diamond color codes
in the following section.

V. FEASIBILITY ESTIMATE

The performance of diamond color-code qubits in
topological superconductor networks depends on the error
sources of Majorana Cooper pair boxes. Even though the
parity states are degenerate in the Majorana regime for
EJ ≫ EC, a finite overlap between Majorana wave

functions on one island will split the degeneracy. Still,
this splitting is exponentially suppressed in the island size.
Overlap between Majoranas of neighboring islands can
also lead to errors, but the overlap is proportional to the
controlled tunneling amplitude between neighboring
islands and is thus also exponentially small.
An error that is not necessarily exponentially suppressed

occurs when an outside electron tunnels onto an island.
This process is called quasiparticle poisoning, which is
presumably the dominant error source in Majorana-based
qubits. In the following, we model poisoning on any of the
two islands encoding a physical qubit by the application of
one of the four Majorana operators. This not only changes
the total parity sector of the qubit, but it also leads to a
logical Pauli error depending on the Majorana involved in
the process. The change of the parity sector is incon-
sequential to the qubit since, in the encodings of both parity
sectors in Eqs. (1) and (2), the physical qubit operators are
σz ¼ iγ1γ2 and σx ¼ iγ2γ3. Therefore, merely switching the
parity sector leaves both the logical information and the
logical braid operations B1;2 and B2;3 unchanged. However,
γ1 anticommutes with σz, γ2 anticommutes with σz and σx,
and γ3 anticommutes with σx. Therefore, poisoning of γ1
leads to a σx error, of γ2 to a σy error, of γ3 to a σz error, and
of γ4 to no error. We discuss this in further detail in
Appendix F. Moreover, we discuss more general error
sources that are not described by a single Majorana
operator.
Since σy errors correspond to both a σx and a σz error, the

quasiparticle poisoning time defines a time scale on which
σx-type and σz-type errors occur at equal rates. Current
experiments suggest that the quasiparticle poisoning time
of mesoscopic superconducting islands might be of the
order of milliseconds [41–43], although we point out that
these experiments were performed in a regime where the
superconducting islands were not floating but connected to
a pair of normal-metal leads. We note that even though the
regime of equally likely σx- and σz-type errors is the one
considered in the following discussion, this is actually the
worst-case scenario for error correction. If one error type is
known to occur more often, these errors have been shown
to be correctable with fewer resources [90], albeit by
changing the code and therefore giving up on transversal
gates. But even without abandoning color codes, a biased
error source can be taken into account by measuring the
corresponding syndrome type more frequently than the
other, thereby reducing the code cycle duration and hence
the error rate.
In nontopological architectures, random Pauli errors are

usually not a realistic error model since relaxation proc-
esses from excited states to ground states are not described
by unitary operations. For topological hardware, on the
other hand, there are no transitions between different parity
states that would allow for relaxation from one qubit state
to the other. Therefore, we believe that random Pauli errors
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should be a reasonable error model for topological physical
qubits. With this error model, the physical error threshold
for color codes is about 11% [57,62], where the physical
error rate is the probability for a physical error
on one physical qubit after one code cycle. For our
physical hardware, this physical error rate is pphys ¼
1 − e−τc=τp ≈ τc=τp, where τp is given by the quasiparticle
poisoning time and τc is the duration of a code cycle. As
moving Majoranas can be done at nanosecond time scales
[91] without introducing significant diabatic errors, the
code cycle duration is mainly determined by the time
required for parity measurement. Dispersive read-out on
superconducting qubits suggests that this can be done on
microsecond time scales [83,84] or faster. For quasiparticle
poisoning times of the order of milliseconds, the physical
error rate would be pphys ≈ 10−3, which is well below
threshold.
In order to estimate the survival time of logical qubits

and the performance gain of diamond color codes over
triangular color codes, we use a Monte Carlo simulation of
the quantum error-correcting code for the aforementioned
error model using a lookup table decoder. We note that our
decoder does not take correlations between σx and σz errors
into account, which could further enhance the correction
procedure with a suitable decoder. A detailed discussion of
the simulation is found in Appendix G. In Fig. 19, we show
the logical error rate as a function of physical error rate
for the first three lowest-distance triangular color codes and
the first two diamond color codes. The simulation repro-
duces the error threshold of about 11% and shows that the
logical error rate of diamond color codes is indeed lower
compared to a triangular color code of the same code
distance. Furthermore, we find that, already for the d ¼ 5

diamond color code of Fig. 9(b) with pphys ¼ 10−3, the
survival time of logical qubits is approximately 35 000
code cycles until the probability for a logical error reaches
1%. In order to determine the survival time for larger code
distances, a more efficient decoder needs to be used, such
as an iterative decoder [56] or a color clustering decoder
[57]. Both slightly lower the error threshold to 7.8% and
9.75%, respectively. Furthermore, a decoder may keep
track of multiple rounds of syndrome extraction in order to
take measurement errors into account. While it is not
known how read-out errors affect the logical error rate,
their effect on the error threshold has been studied [62]. As
a concrete example, a 95% read-out fidelity lowers the error
threshold from about 11% to 2.5%. A numerical study of
the corresponding logical error rate would help quantify the
performance of color codes, but it goes beyond the scope of
this work.
Still, we may extrapolate our results to at least estimate

the survival time for higher-distance codes. Details on this
are found in Appendix G. The extrapolation suggests that
for pphys ¼ 10−3, τc ¼ 1 μs, and the more stringent require-
ment that the logical error probability stays below 10−6, the
d ¼ 19 diamond color code has a survival time of several
years, implying that, with an overhead of roughly 500
physical qubits per logical qubit, quantum computations
may run for reasonably long durations. We note that
diamond color-code qubits are not resource efficient in
the number of physical qubits but only a useful construction
for transversal CNOTs and multitarget CNOTs, as discussed
in Sec. III. Since equal-distance triangular color codes do
not have a substantially higher logical error rate, the
number of physical qubits per logical qubit can be reduced
by a factor of 2, if data qubits are encoded using triangles
instead of diamonds.

VI. CONCLUSION

In this work, we have studied the interplay of topological
hardware and topological error-correcting software. Using
topological superconductor networks, we have devised a
scalable architecture for universal fault-tolerant topological
quantum computation, which can be realized with voltage-
controlled Majorana Cooper pair boxes as basic building
blocks. The underlying physical qubits are hexagonal-cell
qubits, which allow for universal quantum computing with
topologically protected Clifford gates, fast multitarget
CNOT gates, and ancilla-free syndrome read-out. For
quantum error correction, we employ topological color
codes. Their set of transversal gates coincides with the
topologically protected Clifford gates, which enables
the logical gates to retain their topological protection
due to the topological hardware. This makes color codes
a natural fit to Majorana-based hardware, as they seam-
lessly combine topological hardware with topological
software while still benefiting from the topological pro-
tection of both. Moreover, color codes also feature a
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FIG. 19. Logical error rate as a function of physical error rate
obtained from Monte Carlo simulation with a lookup table
decoder for triangular (solid line) and diamond (dashed line)
color codes with code distances d ¼ 3 and d ¼ 5, and for the
triangular color code with d ¼ 7. The sample size is between 107

and 1010 trials for data point corresponding to high and low
logical error rates, respectively. The upper line show the logical
error rate without quantum error correction. The inset zooms into
the crossover region around pphys ∼ 11%.
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reduced time overhead for gate operations and a higher
error threshold compared to surface codes, even in the
presence of measurement errors during stabilizer read-out.
In a qubit arrangement consisting of a row of data qubits, a
magic-state distillery, and a CNOT bypass, logical single-
qubit Clifford gates have a fast transversal implementation,
CNOTs between any pair of data qubits have a constant-time
overhead, and magic states can be distilled faster using
transversal multitarget CNOT gates. Our architecture is not
restricted to implementations using Majorana Cooper pair
boxes, but it can be applied to any realization of a
topological superconductor network, provided that
Majoranas can be moved, that their parities can be
measured, and that some implementation of a physical
T gate is available.
Considering the particular geometry of a Majorana-

based color-code quantum computer presented in this work,
i.e., hexagonal-cell qubits and 6.6.6 diamond color codes,
we make no claim of this geometry being optimal in terms
of space and time overhead. Studies of different network
layouts and color-code schemes may reduce the overhead.
Still, it is not clear how different code layouts and decoders
affect the logical error rate. In particular, 4.8.8 color codes
require fewer physical qubits compared to 6.6.6 codes
with the same code distance. However, as we show in
Appendix H, they also feature a higher logical error rate,
even though they have the same code distance and error
threshold. Similarly, for the comparison of triangular and
diamond codes, neither code distance nor error threshold is
a predictive figure of merit for logical error rates. We
therefore encourage studies of the logical error rate of
topological codes, in order to quantify the performance of
codes beyond the already well-studied error thresholds and
code distances. Moreover, in order to further quantify the
performance of a topological color-code quantum com-
puter, it would be interesting to estimate the number of code
cycles required for actual computational tasks in an
arrangement of data qubits and magic-state distilleries.
On the hardware side, the past years have shown

considerable experimental progress towards the realization
of Majorana zero modes through the interplay of super-
conductivity, spin-orbit coupling, and one-dimensional
spin-polarized channels. This work is expected to provide
further motivation for ongoing efforts to achieve braiding of
Majoranas in these systems. On a more general note,
aiming at merging ideas of both hardware- and software-
based topological protection, we hope that our work further
stimulates research efforts bringing the fields of condensed-
matter physics and quantum information theory closer
together.
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APPENDIX A: PROTOCOL FOR
A TRANSVERSAL CNOT GATE

In Fig. 20, we show that in hexagonal-cell qubits, CNOT
gates between control and target qubits arranged on a line can
be performed simultaneously. This is a generalization of the
protocol introduced in Fig. 5 using the quantum circuit in
Fig. 4. Since in diamond color codes, control and target
qubits are also arranged on a line, all transversal CNOT gates
in color codes can be performed simultaneously.

APPENDIX B: MULTITARGET CNOT

BY PARITY MEASUREMENT

Here, we show that a multitarget CNOT gate can be
realized using Clifford gates and qubit parity measurements
(see Fig. 6). The multitarget CNOT operator

CNOTn ¼ j0ih0j ⊗ 1⊗n þ j1ih1j ⊗ σ⊗n
x ðB1Þ

flips all n target qubits if the control qubit is in the j1i state.
An n-qubit parity measurement with outcome m ¼ 0 for
even and m ¼ 1 for odd parity is equivalent to an operation

Pz ¼
1

2
½1⊗n þ ð−1Þmσ⊗n

z �: ðB2Þ

Similarly, an n-qubit parity measurement in the σx basis is

Px ¼ H⊗nPzH⊗n ¼ 1

2
½1⊗n þ ð−1Þmσ⊗n

x �: ðB3Þ

Thus, the circuit in Fig. 6 in the basis jci ⊗ jai ⊗ jti⊗n,
where c, a, and t denote the control, ancilla, and the n target
qubits, respectively, is

U ¼
�
1 ⊗

1

2
½1þ ð−1Þm3σz� ⊗ 1⊗n

�

×

�
1 ⊗

1

2
½1⊗nþ1 þ ð−1Þm2σ⊗nþ1

x �
�

×

�
1

2
½1⊗2 þ ð−1Þm1σ⊗2

z � ⊗ 1⊗n

�

× ð1 ⊗ jþihþj ⊗ 1⊗nÞ; ðB4Þ

where the final correction is not yet applied. Tracing out the
ancilla qubit yields

U ¼ 1

2
ð1þ ð−1Þm1þm3σzÞ ⊗ 1⊗n

þ 1

2
ð−1Þm2ð1 − ð−1Þm1þm3σzÞ ⊗ σ⊗n

x : ðB5Þ
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Depending on the measurement outcomesm1 þm3 andm2,
there are four possible uncorrected operationsUm1þm3;m2

(see
Table I). Thus, after the correction σm2

z ⊗ ðσm1þm3
x Þ⊗n, the

circuit in Fig. 6 precisely yields the multitarget CNOT gate
CNOTn using only three measurements, as opposed to 3n
measurements for n individual CNOTs.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 20. Protocol for three simultaneous CNOTs between three control qubits Qc1−c3 and three target qubits Qt1−t3 using the quantum
circuit in Fig. 4. In the cell occupied by the control qubits (red), ancillas (blue) are initialized in the j0i state (a) and moved to the double
T junction of the cell for a Hadamard gate (b). The first two Majoranas of the control and ancilla qubits are moved onto a connected
island, and the four-Majorana parity is measured (c), corresponding to a two-qubit parity measurement with outcome m1. The ancillas
are moved back to the double T junction for anotherH gate (d). The third and fourth Majoranas a3 and a4 of each ancilla qubit are moved
into the lower leg of their hexagonal cell, such that the remaining ancilla Majoranas can move to the target qubit cells for a four-
Majorana parity measurement (e). The ancilla Majoranas are then moved back to the control cells for an H gate (f). Finally, all qubits
return to their initial positions (g), and the ancilla qubits are measured by measuring the two-Majorana parity m3.
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APPENDIX C: DETAILS ON LATTICE SURGERY

The stabilizers that are measured during lattice surgery
[34] are shown in Fig. 21. In the following, we describe the
protocol for ZZ-parity measurement, but this can be
straightforwardly used for XX-parity measurement by
simply swapping Z ↔ X in the protocol. As one can verify
by direct inspection, in this ZZ-parity measurement
between two distance d codes, ⌈d=2⌉ new Z stabilizers
are introduced and 2⌊d=2⌋ X stabilizers are replaced by
⌊d=2⌋ octagon stabilizers. Since d is always odd, exactly
one new stabilizer is introduced. This reduces the number
of logically encoded qubits by one, implying that in this
process, one bit of information is measured. In the
following, we would like to make the case that the
measured bit is precisely the ZZ parity.
First, notice that in the absence of errors, the extended

octagon stabilizers will not detect anyons (i.e., have a
measurement outcome þ1) since they are products of
preexisting stabilizers. In this error-free setting, the only
stabilizers that give a nontrivial measurement outcome are
the 2⌊d=2⌋ newly created Z stabilizers. The product of
these stabilizers is exactly the logical two-qubit parity
ðσzσzÞL. Another way to understand this process is in terms
of anyons. If in the error-free setting an anyon is detected

on one of the new Z stabilizers (depicted as green in
Fig. 21), this means that the number of strings from the
upper code terminating on said plaquette differs in parity
from the number of strings coming from the lower code.
Thus, the total parity of all newly created plaquettes
measures exactly the difference of strings from the upper
and lower codes, which is precisely the two-qubit parity.
Lastly, in order to convince oneself of the fault tolerance

of the above process, it is sufficient to check that strings
corresponding to logical operations in the new settings still
involve at least d physical qubits. In Fig. 21, this has to be
fulfilled for logical ðσxÞL, ðσzÞL, and ðσxσxÞL operations but
not for ðσzσzÞL since this commutes with the parity
measurement.

APPENDIX D: DETAILS OF COLOR-CODE
STATE INJECTION

Figure 12 shows the protocol for the injection of a single
qubit state jψi into a logical state jψLi encoded in a
diamond color code. This is a direct adaptation of the
protocol in Ref. [34], where this protocol was introduced
for the specific case of triangular 4.8.8 color codes. Here,
we explain how this protocol achieves the state injection
adapted to our situation.
The left panel of Fig. 12 depicts the stabilizers measured

before state injection. The number of stabilizers is exactly
the same as the number of physical qubits, and thus no
logical qubits can be encoded. Since all stabilizers are
measured and errors are corrected for, no anyonic excita-
tions are present initially. The fact that there are only two
boundaries implies that an even number of strings has to
leave each boundary. This is a consequence of errors
always creating pairs of anyons of the same color or triples
of all three colors (and combinations thereof), and of the
fact that boundaries can only host anyons of their respec-
tive color.
In the concrete example shown in Fig. 12, the Z parity of

all qubits along the blue boundary is even, σ⊗n
z ¼ þ1. The

same holds for the X parity and equivalent measurements
along the red boundary. Importantly, this statement general-
izes and holds for all color codes with two boundaries,
regardless of code distance, geometry, and tiling.
To inject the state of the single physical qubit into the

color code, the stabilizers shown in the right panel of
Fig. 12 are measured. Even if no errors on physical qubits
occur, the new red plaquettes might still host anyons.
Importantly, they are not corrected according to the most
likely error configuration producing this syndrome; instead,
they are moved over the red boundary. If errors occur, they
will manifest themselves in the syndrome read-out and can
be corrected.
The blue boundary after state injection differs only by

the addition of the new physical qubit. Thus, measurements
of the logical state along this boundary are given by the
state of the new physical qubit alone. The way in which

TABLE I. Uncorrected gate Um1þm3;m2
and necessary correc-

tion based on measurement outcomes m1, m2, and m3.

m1 þm3 m2 Um1þm3;m2
Correction

0 0 j0ih0j ⊗ 1⊗n þ j1ih1j ⊗ σ⊗n
x 1 ⊗ 1⊗n

0 1 j0ih0j ⊗ 1⊗n − j1ih1j ⊗ σ⊗n
x σz ⊗ 1⊗n

1 0 j1ih1j ⊗ 1⊗n þ j0ih0j ⊗ σ⊗n
x 1 ⊗ σ⊗n

x
1 1 j1ih1j ⊗ 1⊗n − j0ih0j ⊗ σ⊗n

x σz ⊗ σ⊗n
x

FIG. 21. Stabilizers that are measured to obtain the ZZ parity
between two logical qubits using lattice surgery. In contrast to
usual color-code stabilizer measurements, lattice surgery requires
measurements where the support of X and Z stabilizers does not
coincide. The left panel shows the required Z stabilizers, and the
right panel the X stabilizers, which differ along the shared
boundary. To obtain the XX parity between two qubits, one
simply has to swap Z ↔ X in the protocol.
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anyons on the new red plaquettes are corrected ensures that
the same holds for all other measurements of logical
operations as well. This proves that the protocol success-
fully injects the state of the single physical qubit jψi into
the logical state jψLi encoded in the color code.

APPENDIX E: CONSTANT-TIME
OVERHEAD CNOT

The quantum circuit in Fig. 22 describes the constant-
time overhead CNOT protocol in Fig. 10(c). The protocol
involves a control qubit jci, a target qubit jti, and three jþi
ancillas, where the third ancilla may be thought of as the
ancilla that is part of the CNOT protocol of Fig. 4. The ZZ
parity between this third ancilla and the control qubit is not
measured directly but as the sum of the first three parity
measurements in the circuit m1 þm2 þm3. The XX parity
between the third ancilla and the target is measured with
outcome m4, and the third ancilla is read-out with outcome
m7. This is the reason for the σm1þm2þm3þm7

x correctional
operation on the target and the σm4

z correction on the control
qubit. However, these operations alone leave the first two
ancilla qubits entangled with the control qubit in a state of
the type jψi ¼ αj0; 0; 0i þ βj1; 1; 1i. In order to safely
discard the two ancilla qubits without affecting the control
qubit, they are measured in the X basis with outcomes m5

andm6, leading to a σ
m5þm6
z correction on the control qubit.

APPENDIX F: QUASIPARTICLE POISONING

In the following, we discuss qubit errors due to quasi-
particle poisoning. We find that merely changing the parity
sector of an island pair is inconsequential to the qubit, and
we consider more general error sources that are not
described by the processes discussed in the main text.
We define the three Pauli operators in the space of even and
odd-parity states fjei; joig of a topological superconduct-
ing island,

τx ¼
�
0 1

1 0

�
; τy ¼

�
0 −i
i 0

�
; τz¼

�
1 0

0 −1

�
: ðF1Þ

The four Majorana operators γ1;…; γ4 of an island pair can
be represented in terms of these Pauli operators as

γ1 ¼ τx ⊗ 1; γ2 ¼ −τy ⊗ 1;

γ3 ¼ τz ⊗ τx; γ4 ¼ −τz ⊗ τy; ðF2Þ

upon choosing a specific order of modes and by invoking
the Jordan-Wigner transformation. These operators are
Hermitian γi ¼ γ†i and fulfill the anticommutation relations
fγi; γjg ¼ 2δi;j. Our two qubit encodings are

j0ei ¼ jei ⊗ jei; j1ei ¼ joi ⊗ joi ðF3Þ

in the even-parity sector and

j0oi ¼ jei ⊗ joi; j1oi ¼ joi ⊗ jei ðF4Þ

in the odd-parity sector. Therefore, in both parity sectors,
the logical qubit operators are σz ¼ iγ1γ2 and σx ¼ iγ2γ3.
Consider a quasiparticle poisoning event described by the
application of γ1. The operator γ1 maps j0ei ↔ j1oi and
j1ei ↔ j0oi; i.e., it switches the parity sector and applies a
logical σx operation. Similarly, Eq. (F2) implies that γ2
applies a logical σy operation and γ3 a logical σz operation.
The operator γ4 only switches the parity sector without
changing the logical information. This is not surprising
since it is the only Majorana operator that is not part of
either σz or σx. What is more, invoking the fermion-parity
superselection rule, it is clear that the specific order of
modes used in this argument is not relevant, i.e., that the
specific Jordan-Wigner string plays no role.
To further demonstrate that, in general, the information

about the parity sector is irrelevant for quantum compu-
tation, we write the state of an island pair as a product of the
qubit state and the parity state. An island pair is a four-level
system with the four basis states in Eqs. (F3) and (F4).
Instead of describing these states in terms of the fermion
parities of the first and second islands, we can transform the
basis to a product of an eigenstate fj0i; j1ig of the qubit
operator σz ¼ iγ1γ2 (qubit state) and an eigenstate
fjpei; jpoig of the total parity operator p ¼ −γ1γ2γ3γ4
(parity state). In this basis, the four states are

j0ei ¼ j0i ⊗ jpei; j1ei ¼ j1i ⊗ jpei;
j0oi ¼ j0i ⊗ jpoi; j1oi ¼ j1i ⊗ jpoi: ðF5Þ

Incidentally, the transformation matrix that maps from
Eqs. (F3) and (F4) to Eq. (F5) is a CNOT. Braiding
operations and measurements of the qubit only affect the
qubit state but not the parity state since they are comprised
of operators that are products of γ1γ2 or γ2γ3 and therefore
commute with the parity operator p. After this mapping, the
poisoning processes that we considered previously (i.e., the
application of a Majorana operator) can be written as a

FIG. 22. Quantum circuit corresponding to the constant-time
overhead CNOT gate in Fig. 10(c).
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product of operations on the qubit state and on the parity
state,

γ1 ¼ ~σx ⊗ ~τx; γ2 ¼ − ~σy ⊗ ~τx;

γ3 ¼ ~σz ⊗ ~τx; γ4 ¼ −1 ⊗ ~τy; ðF6Þ

where ~σi and ~τi are Pauli operators acting on the qubit and
parity spaces, respectively. Therefore, these operations do
not entangle the qubit with the parity d.o.f. Furthermore,
any Jordan-Wigner string τz ⊗ τz associated with the
operators in Eq. (F2) is mapped onto 1 ⊗ ~τz, which acts
trivially on the qubit state. However, a general operation
can, in principle, generate such an entangled state. Thus,
the most general description of the entire state of the system
is a sum over all 2n possible 2n-island parity sectors,

jψi ¼
X

parity sectorsp

jψpi ⊗ jpi; ðF7Þ

where jpi contains all fermion parities of the n island pairs,
and jψpi is an n-qubit state. But in our encoding, jpi carries
no information relevant to quantum computation. Tracing
out the parity state leaves the qubit state in a statistical
ensemble. Therefore, the parity d.o.f. acts like an environ-
ment to which error sources can couple. Moreover, in the
absence of logical errors, different qubit states yield
different syndromes after stabilizer read-out. Thus, meas-
uring the syndrome breaks the entanglement between the
qubit state and parity state.
Error sources that entangle the qubit with the parity state

are not described by products of Majorana operators but by
sums of products. Such errors are, in principle, allowed and
lead to a nonunitary evolution of the qubit state. These
errors are still correctable but are not necessarily described
by the error model of random Pauli errors. One example for
such an effectively nonunitary process is swapping the
parities of two islands that belong to two different qubits, as
this entangles the qubit and parity degrees of freedom.

APPENDIX G: MONTE CARLO SIMULATION
OF THE DIAMOND COLOR CODE

In order to study the performance gain of low-distance
diamond color codes over triangular color codes and
estimate the logical error rate for higher-distance codes,
we sample the logical error rate in a Monte Carlo simu-
lation. The physical error rate is the probability for at least
one error event in a code cycle,

pphys ¼ 1 − lim
N→∞

�
1 −

1

N
τc
τp

�
N
¼ 1 − e−τc=τp ; ðG1Þ

where τc is the duration of a code cycle and τp is the
characteristic time scale on which bit flips and phase flips
occur. A physical bit flip or phase flip only occurs at the

end of a code cycle if the bit is flipped an odd number of
times within a cycle. The probability of a physical bit flip or
phase flip can be calculated from the probability of an odd
number of successes in n discrete trials with success
probability p, which is

podd ¼
1 − ð1 − 2pÞn

2
: ðG2Þ

Thus, the physical bit-flip (and phase-flip) probability is

pflip ¼ lim
N→∞

1

2

�
1 −

�
1 −

2

N
τc
τp

�
N
�

¼ 1

2
ð1 − e−2τc=τpÞ ¼ pphys −

1

2
p2
phys: ðG3Þ

We define the logical error rate plog as the probability for a
logical bit flip (or phase flip). Without quantum error
correction, plog ≠ pphys since the absence of a logical error
requires the absence of both σx and σz errors. Thus, the
physical qubit needs to pass two trials, and the logical error
rate is

plog ¼ 1 − ð1 − pflipÞ2: ðG4Þ

To calculate plog with error correction, we sample through
error configurations with a bit-flip probability pflip on each
physical qubit, attempt to correct the error using a decoder,
and count the number of failure events. The logical error
rate is

plog ¼ 1 −
�
1 −

fails
trials

�
2

: ðG5Þ

Our decoder is a pregenerated lookup table, which, given
an error syndrome, returns the most likely corresponding
error configuration. Since this is not efficient for higher-
distance codes, we only simulate the triangular color codes
with distances d ¼ 3, d ¼ 5, and d ¼ 7, and diamond color
codes with distances d ¼ 3 and d ¼ 5. On a log-log plot,
the logical error rate is linear for low physical error rates
(see Fig. 19). The slopes and offsets of these linear
functions both grow approximately linearly with increasing
code distance, allowing for a rough estimate of the
low-error behavior of higher-distance codes through
extrapolation.
The survival time of a logical qubit until the probability

of a logical error perr reaches a target accuracy ptarget is

τsurvival ¼
lnð1 − ptargetÞ
lnð1 − plogÞ

; ðG6Þ

where τsurvival is the survival time as a number of code cycles.
In Fig. 23, we plot the survival time for ptarget ¼ 10−6

for triangular and diamond color codes obtained from
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numerical data and extrapolation thereof. The extrapolation
indicates that for pphys ¼ 10−3 and a code cycle duration
τc ¼ 1 μs, the survival time of a d ¼ 19 diamond color code
is of the order of several years.

APPENDIX H: 4.8.8 VS 6.6.6 COLOR CODES

Quantum error-correcting codes are usually classified
using their code distances and error thresholds. For
triangular and diamond color codes, we have seen that
two 6.6.6 color codes with equal code distances can exhibit
different logical error rates. Here, we show that neither the
code distance nor the error threshold is a predictive figure

of merit for the logical error rate, which determines the
performance of a code.
In this work, we considered color codes that are defined

on lattices with 6.6.6 tiling. A different tiling that allows for
color codes is the 4.8.8 tiling, with two types of eight-qubit
stabilizers and one type of four-qubit stabilizers. These
4.8.8 codes are considered to be more efficient since
triangular 4.8.8 codes require fewer physical qubits per
logical qubit compared to the triangular 6.6.6 code with the
same code distance.
Figure 24 shows the logical error rate of 4.8.8 and 6.6.6

codes obtained from the previously described Monte Carlo
simulation. It shows that the lower physical overhead of
4.8.8 codes comes at the price of a higher logical error rate.
Therefore, for a target logical error rate, it is difficult to
estimate which code one should use to minimize the
physical overhead. To our knowledge, even though code
distances and error thresholds of codes are well studied,
logical error rates have attracted less attention so far and
require further research.
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Conclusion

The description of fault-tolerant quantum computing with topological superconductor networks
concludes our journey from full quantum computers to logical qubits and lattice surgery, down
to the physical components that make up Majorana-based qubits. Ever since the first experi-
ments [41] demonstrated signatures of Majorana zero modes in topological superconductors in
2012, all experimental attempts to build a Majorana-based qubit have, so far, remained unsuc-
cessful. Similarly, currently available non-topological qubits lack the quality and qubit count to
construct an error-corrected surface-code qubit capable of significantly increasing the encoded
qubit’s lifetime, as qubit numbers are below 100 and physical error rates are not sufficiently far
below the error threshold.

The requirements of large-scale quantum computing can be daunting. With useful surface-
code-based computations requiring hundreds of thousands of physical qubits at a circuit-level
error rate of 10�3, several order-of-magnitude improvements are necessary with respect to gate
and measurement fidelity, noise and scalability on all qubit platforms. At the same time, there
are plenty of reasons for optimism: Not only has the performance of physical qubits steadily
improved through experimental progress, but also theoretical developments have significantly
lowered the bar for useful quantum computation, with algorithmic improvements dramatically
decreasing the number of operations required for useful computations, and improvements in fault
tolerance, such as those developed in this thesis, decreasing the overhead of error correction.

There is plenty of room for optimization to obtain further order-of-magnitude overhead
reductions on the level of logical operations, circuits, as well as error-correction operations on
physical qubits. Since quantum computing with topological codes consists of the distillation
of resource states and their consumption, more efficient distillation protocols can reduce the
space overhead, as well as the length of computations. Moreover, the distillation of resource
states for non-Clifford gates other than T gates can potentially reduce the cost of these gates
by many orders of magnitude, as, for instance, the synthesis of a single small-angle rotation by
hundreds of T gates [52] can be replaced by the consumption of a few resource states. While the
distillation of these states was considered to be very costly [53, 54], recent developments [55, 56]
have drastically decreased these costs. Still, the incorporation of small-angle-rotation resource
states in the context of a large-scale quantum computer and an estimate of the overhead reduction
for computations that rely on small-angle rotations, such as randomly compiled Trotter steps [57]
in quantum simulation, is still missing. Furthermore, the implementation and optimization of
synthillation protocols [58, 59] that generate resource states capable of performing entire blocks
of non-Clifford gates remain largely unexplored.

Apart from algorithmic improvements, the reduction of the overall gate count through circuit
optimization can have far-reaching effects, not only reducing the total time cost of a quantum
computation, but also, as a consequence, reducing the required code distance and distillation
effort, further driving down the space cost as well as the time cost. There exist approaches to
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reduce the gate count of a circuit that go beyond the commutation-based schemes discussed in
Chapter 1, such as approaches based on phase polynomials [58, 60] or random compiling [57, 61],
but these are still subject to optimization, and need to be benchmarked with respect to their
application in concrete quantum computations.

The generation of resource states can also be improved through protocols on the level of
physical qubits and stabilizer measurements, as the first step of every distillation scheme is the
initialization of faulty magic states through state injection. Only few such protocols [21, 24, 25]
have been considered. Detecting errors during state injection through post-selection [25] can
lower the error rate of undistilled magic states, thereby decreasing the distillation cost to obtain
sufficiently good magic states. Moreover, if the noise properties of a specific physical architecture
are known, encoding schemes and decoders tailored towards a specific noise model [62, 63] can
lower the logical error rate, thereby lowering the required code distance. Finally, finding a suitable
replacement for the surface code would help avoid its substantial qubit overhead. Alternative
schemes like color codes exist, but, so far, their disadvantages (e.g., higher-weight stabilizers and
lack of efficient decoders) tend to prevent them from outperforming surface codes in realistic
physical implementations.

The 1920s were the first decade of quantum mechanics, featuring the development of the
fundamentals of quantum theory such as wave-particle duality, the uncertainty principle and
the Copenhagen interpretation. A century later, the 2020s have the potential to become the
decade of quantum computing. With hundreds of quantum computing start-ups, companies
and research institutions [64] working to advance quantum computers, the field has recently
benefitted from multi-billion-dollar investments [65]. I, for one, remain optimistic that a useful,
large-scale quantum computer can be constructed in the coming decade, marking the onset of
the second quantum revolution.
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