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Human cytomegalovirus (HCMV) induces a uniquely high frequency of virus-specific

effector/memory CD8+ T-cells, a phenomenon termed “memory inflation”. Thus,

HCMV-based vaccines are particularly interesting in order to stimulate a sustained

and strong cellular immune response against cancer. Glioblastoma multiforme (GBM)

is the most aggressive primary brain tumor with high lethality and inevitable relapse.

The current standard treatment does not significantly improve the desperate situation

underlining the urgent need to develop novel approaches. Although HCMV is highly

fastidious with regard to species and cell type, GBM cell lines are susceptible

to HCMV. In order to generate HCMV-based therapeutic vaccine candidates, we

deleted all HCMV-encoded proteins (immunoevasins) that interfere with MHC class I

presentation. The aim being to use the viral vector as an adjuvant for presentation

of endogenous tumor antigens, the presentation of high levels of vector-encoded

neoantigens and finally the repurposing of bystander HCMV-specific CD8+ T cells

to fight the tumor. As neoantigen, we exemplarily used the E6 and E7 proteins of

human papillomavirus type 16 (HPV-16) as a non-transforming fusion protein (E6/E7)

that covers all relevant antigenic peptides. Surprisingly, GBM cells infected with

E6/E7-expressing HCMV-vectors failed to stimulate E6-specific T cells despite high

level expression of E6/E7 protein. Further experiments revealed that MHC class I

presentation of E6/E7 is impaired by the HCMV-vector although it lacks all known

immunoevasins. We also generated HCMV-based vectors that express E6-derived

peptide fused to HCMV proteins. GBM cells infected with these vectors efficiently
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stimulated E6-specific T cells. Thus, fusion of antigenic sequences to HCMV proteins

is required for efficient presentation via MHC class I molecules during infection. Taken

together, these results provide the preclinical basis for development of HCMV-based

vaccines and also reveal a novel HCMV-encoded block of MHC class I presentation.

Keywords: human cytomegalovirus, therapeutic cancer vaccine, glioblastoma, cancer immunotherapy, viral

immune evasion

INTRODUCTION

Glioblastoma multiforme (GBM) is one of the most frequent and
devastating brain tumors (1, 2). In fact, GBM is incurable and
has a bad prognosis even after aggressive standard treatment that
combines radiation, surgery and chemotherapy (3). Accordingly,
there is a need to develop novel therapeutic strategies to combat
this deadly disease.

Different forms of immunotherapy have been implemented or
explored in a variety of human malignancies including GBM (4).
Adoptive transfer of geneticallymodified T cells may be an option
in treatment of GBM (5–8). In recent clinical trials, checkpoint
inhibitors have failed to prolong the overall survival of patients
with recurrent GBM (9–11). As a neoadjuvant therapy, however,
PD-1monoclonal antibody blockade improves local and systemic
antitumor T cell responses (12). Therapeutic cancer vaccines
stimulating tumor-reactive CD8+ T cells represent another
form of immunotherapy that has also been tested in GBM
patients (4, 13).

Successful tumor immunotherapy requires preexisting
CD8+ T cells in the tumor microenvironment (TME) (14, 15)
and genetic mutations that generate tumor neoantigens
(16, 17). GBM, however, provides a “cold” TME with low
numbers of infiltrating immune cells (15, 18) and scarce
somatic mutations (19, 20). In situ vaccination with viral
vectors can turn “cold” TME into “warm” through the
adjuvant effect resulting from triggering multiple pattern
recognition receptors (PRRs) (21–25). This inflammatory
response may increase TME infiltration with immune cells.
A large fraction of tumor-infiltrating immune cells are in
fact memory CD8+ T lymphocytes specific for common
viruses such as human cytomegalovirus (HCMV) (26–
29). These cells are neither tolerized nor exhausted by
continuous stimulation and can be repurposed for tumor
immunosurveillance (27).

Human cytomegalovirus (HCMV) inflates memory by
intermittent reactivation from latency or reinfections (30–32).
In HCMV-infected humans, on average 10% of the circulating
T cells with an effector-memory phenotype are in fact HCMV-
specific (33, 34). Thus, HCMV-based vectors represent a very
promising novel platform for therapeutic vaccination (35,
36). HCMV persists in immunocompetent individuals without
causing disease (37). Intriguingly, HCMV infects GBM cells in
vitro (38). Moreover, HCMV is detected in GBM tumor tissue
but not in the surrounding normal brain tissue (39). Thus,
immunotherapy may leverage HCMV-encoded tumor antigens
to induce elimination of tumor cells by cytotoxic CD8+ T cells
(40–42). Several strategies to achieve this goal have been explored

including adoptive transfer of in vitro-expanded HCMV-specific
T cells and vaccination with autologous dendritic cells (DCs)
stimulating HCMV-specific T cells in vivo (39).

In this study, we designed novel HCMV-based therapeutic
viral vaccines to exploit the patient’s own immune system for
elimination of tumor cells. We increased the immunostimulatory
capacity of the HCMV-based vector by deleting important
viral immune evasion genes. Moreover, we expressed a well-
characterized epitope from human papillomavirus (HPV) that
functions as a neo-epitope after infection of GBM cells. Finally,
we tested whether genetically altered T cells specific for HCMV-
encoded epitope or neo-epitope are stimulated by GBM cells
infected with the HCMV-based vaccines.

MATERIALS AND METHODS

Ethics Statement
Buffy coat preparations were purchased from German Red
Cross (Dresden, Germany). Blood samples were taken
with the approval of the ethics committee of the Charité–
Universitätsmedizin Berlin. Written informed consent was
obtained from all donors.

Cells
The GBM cell lines U343 and LN18 were kindly provided by
the Department of Neurosurgery, Charité-Universitätsmedizin
Berlin, Berlin, Germany. The GBM cell line U251 was a kind
gift of L. Wiebusch from the Children’s Hospital, Laboratory for
Molecular Biology, Charité-Universitätsmedizin Berlin, Berlin,
Germany. Human embryonic lung fibroblasts (Fi301) and GBM
cell lines were cultured in Eagle’s minimum essential medium
(EMEM) from Lonza supplemented with 1mM sodium pyruvate,
2mM L-alanyl-L-glutamine, non-essential amino acids, 50µg/ml
gentamicin, and 10% heat inactivated FBS (hiFBS) (HyClone).
PBMCs and reporter Jurkat cell lines were cultured in RPMI 1640
medium (Gibco) supplemented with 2mM L-glutamine, 25mM
HEPES Buffer, 50µg/ml gentamicin, and 10% hiFBS.

Flow Cytometry of Surface Molecules
Cells were harvested, washed and stained as previously
described (43). Cell surface expression of HLA-A2 molecules
was detected by using PE-conjugated anti-HLA-A2 antibody
BB7.2 (BioLegend). For quantifying fluorescence of labeled
cells, a FACSCalibur R© (BD Biosciences) was used. Results
were evaluated with the software programs CellQuestPro R© (BD
Biosciences) and FlowJo V10 (Tree Star, Inc).
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Viruses
HCMV strain TB40/E and the corresponding bacterial artificial
chromosome TB40/E-BAC (clone 4) as well as RV-TB40-
BACKL7-SE-EGFP, an enhanced green fluorescent protein
(EGFP)-expressing virus derived from TB40/E (44), were
kindly provided by Christian Sinzger, University of Ulm, Ulm,
Germany. The advantages of TB40/E are high titer growth in
cell culture similar to lab strains and cell tropism resembling
recent clinical isolates (45). TB40/E and themutants derived from
TB40/E-BAC were propagated in Fi301 cells. For generation of
virus stocks, cells and medium were collected at various times
after infection, after which cells were disrupted by three freeze-
thaw cycles and cell debris was pelleted by centrifugation.

Generation of Recombinant Viruses
As a neoantigen for expression in TB40/E-BAC derived vectors,
we used human papillomavirus type 16 (HPV-16) consensus
E6/E7 fusion protein (ConE6E7, GenBank accession number:
FJ229356) (46). In addition, the HLA-A2-binding peptide
E629−38 (TIHDIILECV) derived from the E6 protein of HPV-
16 (47) was fused with an AA-linker (AATIHDIILECV) to
the C-terminus of HCMV IE1 (E6peptideIE1) or HCMV
UL83 (E6peptideUL83). The corresponding sequences were
synthesized and verified by Integrated DNA Technologies (IDT).
The synthesized E6/E7 encoding sequence was digested with
EcoRI and Kpn-I and cloned into the expression vectors
pEF6/V5-His A and pcDNATM3.1 (+). These constructs were
named pEF6E6/E7EcoRI and pcDNAE6/E7Kpn-I, respectively.
Recombinant HCMV was generated using BAC technology as
previously described (48). All recombinant BAC clones were
confirmed by PCR and DNA-sequencing of the target area.
Viruses were reconstituted from BACs by electroporation of 1
× 106 Fi301 cells using program A24 of the Nucleofector II
(Amaxa) and a basic Nucleofector kit (Lonza), according the
manufacturer’s instructions.

Virus Titration and Growth Kinetics
Virus titers of virus stocks and multi-step growth kinetics were
quantified by 50% tissue culture infectious dose (TCID50) assay
on Fi301 cells. The TCID50 values were calculated using the
method of Reed and Muench (49).

Stable Transfection of U251
U251 cells were stably transfected with pcDNAE6/E7Kpn-I by
electroporation as previously described (50). Transfected cells
were selected by G418 for neomycin resistance and different
clones were isolated and separately cultured for E6 and E7
expression assays.

Detection of HPV-16 E7 Protein
For detection of E6/E7 fusion protein, 1 × 106 cells were
trypsinized and aliquots covering a range of different cell
numbers were prepared (7 × 102 to 16 × 104 cells). In
these aliquots, the E6/E7 fusion protein was detected by
using recomWell HPV 16/18/45 ELISA Kit (Mikrogen GmbH,
Neuried, Germany) according to manufacturer’s instructions.
The optical density was measured at 450 nm in a microplate

photometer (Multiskan FC, Thermo Fisher Scientific, USA).
The absorbance detected for experimental probes was expressed
relative to the absorbance measured for the same number of
CaSki cells, an E6- and E7-expressing cervical carcinoma cells
that served as positive control.

Generation of TCR Expression Vectors
For HLA-A2-restricted HPV E629−36-specific TCR (51)
transgene cassettes were codon-optimized for human expression
and synthesized by GeneArt/Life Technologies. TCR-α/β chains
with human TCR constant regions replaced by their murine
counterparts were linked via 2A “self-cleaving” peptide sequence
from Porcine teschovirus-1 (P2A) and cloned in the configuration
TCRβ-P2A-TCRα into pMP71-PRE using NotI and EcoRI
restriction sites as described recently (52). The HCMV-specific
TCR (NLV3) detecting a HLA-A2-restricted epitope derived
from pp65 (NLVPMVATV; aa 495-503) was used in its original
configuration as described by Schub et al. (53).

TCR Gene Transfer
TCR gene transfer was carried out as described (54) with minor
modifications. In brief, HEK-293 cells stably expressing GALV-
env and MLV-gag/pol were grown to ∼80% confluence and
transfected with 3 µg of pMP71-TCR vectors in the presence
of 10 µg Lipofectamine2000 (Life Technologies). At 48 and 72 h
after transfection, 3ml of retrovirus containing supernatant were
harvested. 1 × 106 human PBMCs, that had been frozen after
isolation from healthy donors by ficoll gradient centrifugation,
were thawed and stimulated with 5µg/ml anti-CD3 (OKT3) and
1µg/ml anti-CD28 (CD28.2) (Biolegend) coated plates in the
presence of 300 U/ml recombinant human interleukin 2 (hIL-2)
(Peprotech). Transductions at 48 and 72 h after stimulation were
performed by addition of retrovirus containing supernatant and
4µg/ml protamine sulfate followed by spinoculation for 90min
at 800 g and 32◦C (1st transduction). For second transduction,
retrovirus was preloaded onto retronectin (Takara)-coated plates
followed by spinoculation for 30min at 800 g and 32◦C.
Transduced PBMCsweremaintained in the presence of 300U/ml
hIL-2 for a total of 2 weeks. At least 2 days prior to use in
experiments, transduced PBMCs were cultured in the presence
of 30 U/ml hIL-2.

Functional Assays With TCR-Transduced T
Cells
IFN-γ production was measured by ELISA after 16 h coculture
of 1 × 105 TCR-transduced T cells with 1 × 105 target cells
(HCMV-vector infected or HCMV-vector infected and pulsed
with the corresponding peptide). As a negative control, 1 × 105

TCR-transduced T cells were cocultured with 1× 105 target cells
that had been left uninfected. Stimulation with phorbol myristate
acetate and ionomycin (P+I) was used as a positive control.

Reporter Cell Lines
For detection of NFAT activation, a previously described cellular
platform for analysis of TCRs was used (55, 56). In the human
T cell lymphoma cell line Jurkat 76 (J76), the response elements
of transcription factor nuclear factor of activated T-cells (NFAT)
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drive the expression of EGFP (55). The J76 cell line is a
subline of cell line Jurkat E6.1 (JE6.1), which lacks expression
of the TCR alpha and beta chains (57). The J76 cell line was
transduced with a retroviral vector encoding HLA-A2-restricted
HPV E629−36-specific TCR (51). Moreover, J76 cells were co-
transduced to express a HLA-A2-restricted HCMV pp65-specific
TCR (NLVPMVATV; aa 495-503) and CD8 (56).

For measuring of nuclear factor ’kappa-light-chain-enhancer’
of activated B-cells (NF-κB) activation a single T cell reporter
cell line was used, in which the responsive element for NF-κB
controls EGFP expression (58). This single reporter cell line was
transduced with retroviral vector encoding HLA-A2-restricted
HPV E629−36-specific TCR (51) or with retroviral vector
encoding the HCMV-specific TCR (NLV3), which recognizes a
HLA-A2-restricted epitope derived from pp65 (NLVPMVATV;
aa 495-503) (53).

Antigen Presentation Assays Using
Reporter Cell Lines
For stimulation of reporter cell lines 5 × 104 GBM cells (LN18,
U343, or U251 cells) were infected with HCMV-based vaccines
(MOI of 5). After 2 days and 4 days, respectively, infected cells
were co-cultured with HPV E6-specific reporter cells and HCMV
pp65-specific reporter cells, respectively, for 24 h at a ratio 2:1.
Subsequently, EGFP expression of reporter cells was determined
by FACS analysis.

U251 cells stably transfected with pcDNAE6/E7Kpn-I (U251-
E6/E7 cells) were used to assess the impact of HCMV infection
on MHC class I presentation of the E6/E7 fusion protein. For
this purpose, U251 cells were left uninfected or infected with
RVTB401US11 for 3–24 h at different MOIs. RVTB401US11
lacks all known HCMV-encoded immunoevasins (US2, US3,
US6, and US11) that target MHC class I presentation and
does not downregulate MHC class I molecules. On uninfected
and infected U251-E6/E7 cells, the existing peptide-MHC class
I complexes on U251 cells were removed by acid wash as
previously described (59). Briefly, 1 × 106 cells were harvested,
washed with PBS and subsequently washed with ice-cold citric
acid buffer (pH 3) for 2–3min. Afterwards, stripped U251-
E6/E7 cells were pelleted, washed twice with EMEM, resuspended
in RPMI 1640 medium and subsequently co-cultured for 18 h
with the HPV E629−36-specific reporter cell line, in which the
responsive element for NF-κB controls EGFP expression (58).
Finally, EGFP expression of reporter cells was determined by
FACS analysis. In parallel, the maximal peptide stimulation was
always determined by pulsing a cell aliquot with the E6 peptide
(1µg/ml) during coculture with the E6-specific reporter cell line.

Peptide Synthesis
The peptides used for pulsing antigen-presenting cells
(1µg/ml) were synthesized by peptides & elephants GmbH
(Hennigsdorf, Germany).

Statistical Analysis
Statistical significance was determined by one-way ANOVA
analysis or unpaired t-test. P values below 0.05 (95% confidence)

were considered to be significant. Prism 6 software (GraphPad)
was used for statistical analysis.

RESULTS

Susceptibility of GBM Cells to HCMV
Infection
In order to construct therapeutic vaccines targeting GBM we
first investigated whether GBM cells are susceptible to HCMV
infection. For this purpose, we used RV-TB40-BACKL7-SE-EGFP.
This EGFP-expressing virus is derived from low-passage HCMV
strain TB40/E and contains an intact US-gene region encoding all
immunoevasins (US2, US3, US6, and US11) that downregulate
MHC class I presentation (44). We infected the GBM cell lines
LN18, U343, and U251 with RV-TB40-BACKL7-SE-EGFP at a
multiplicity of infection (MOI) of 0.3. At different time points
of infection, we determined the percentage of EGFP-expressing
GBM cells (Figure 1, left graphs). In addition, we analyzed the
presence of virus in the supernatant of infected GBM cell cultures
(Figure 1, right graphs). Although all GBM cell lines tested were
susceptible to HCMV, infection the virus remained mostly cell-
associated during the observation period of 12 days. Thus, LN18,
U343, and U251 cells are susceptible to HCMV infection as
previously reported for other GBM cell lines (38, 60). Taken
together, these experiments indicate that HCMV-based vectors
can be used to mark GBM cells for attack by CD8+ T cells.

Construction of HCMV-Based Therapeutic
Vaccines
Next, we generated HCMV-based vectors that lack
immunoevasins (US2, US3, US6, and US11) and efficiently
stimulate CD8+ T cells. We used a bacterial artificial
chromosome (BAC) clone of the HCMV strain TB40/E
(TB40-BAC4), which lacks the US1-US6 region due to insertion
of the BAC (45). We obtained RVTB401US11 from TB40-BAC4
by deleting US11. RVTB401US11 does not downregulate MHC
class I molecules as recently described (Figure 2A) (61).

We now pursued two strategies to equip RVTB401US11 with
neo-epitopes. Firstly, we used a consensus sequence encoding
the E6 and E7 protein of human papillomavirus type 16 (HPV-
16) as a fusion protein (E6/E7). E6/E7 covers all relevant
antigenic peptides but is non-transforming (46). Vaccination
of mice with a plasmid encoding E6/E7 induces a strong
CD8+ T cell response and prevents growth of E6/E7 tumors
(46). In accordance, we observed that E6/E7-expressing clones
derived from stably transfected U251 cells (U251 cells) stimulate
reporter T cells that recognize a HLA-A2-restricted peptide
(E629−38: TIHDIILECV) (47) (Figure 2B). Thus, we inserted the
E6/E7 sequence into the RVTB401US11 at different locations
ensuring that endogenous or exogenous promotors control
E6/E7 expression (Figure 3). The E6/E7 expression level in cells
infected with E6/E7-expressing HCMV-based vaccines was in the
same order of magnitude as observed for U251 cell transfected
with an E6/E7-expressing plasmid (Figure 2C).

Secondly, we fused a single neo-epitope flanked by an
Alanine spacer to the C-terminus of a viral protein as
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FIGURE 1 | Susceptibility of GBM cells to HCMV infection. The GBM cell lines LN18, U343, and U251 were infected with RV-TB40-BACKL7-SE-EGFP (MOI of 0.3).

At different time points cells were tested for cell-associated virus by FACS analysis of EGFP expression (Left graphs). For detection of cell-free HCMV (Right graphs)

supernatants from infected GBM cell lines were collected at different time points. Subsequently, Fi301 cells were infected with the supernatants and tested for EGFP

expression by FACS 2 days after infection. Results are derived from three technical replicates; error bars represent the mean ± SEM.

recently reported for murine cytomegalovirus (MCMV)
(62, 63) (Figure 4). We used HPV-16 E629−38 as CD8+ T
cells specific for this peptide recognize and kill HLA-A2+
tumor cells expressing E6 despite tumor-associated immune
evasion mechanisms (64). This E6 peptide was fused to
the C-Terminus of IE1 (RVTB401US11_E6peptideIE1)
or UL83 (RVTB401US11_E6peptideUL83). We also
generated a mutant virus with both the full E6/E7 sequence
inserted into UL83 and the E6 peptide linked to IE1
(RVTB401US11_E6/E7intoUL83_E6peptideIE1). All generated
HCMV-based vaccines showed growth kinetics similar to WT
TB40/E and control virus (RVTB401US11) (Figure 5A). The
relevant features of the different HCMV-based vaccines are
summarized in Figure 5B.

HCMV-Based Vaccines Expressing E6
Peptide Fused to Viral Protein but Not
E6/E7 Expressing HCMV-Based Vaccines
Stimulate E6-Specific T Cells
Now we investigated whether the different HCMV-based
therapeutic vaccines could stimulate antigen-specific T cells
after infection of GBM cells. To this end, we used a recently
developed T cell reporter platform, in which the response
elements for NFAT control EGFP expression (55, 56). These
cells were transduced either with a retroviral vector encoding
a HPV-specific TCR recognizing the HLA-A2-restricted peptide
HPV E629−36 (51) or with a retroviral vector encoding HCMV-
specific TCR detecting the HLA-A2-restricted HCMV epitope
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FIGURE 2 | Rationale for generation of HCMV-based vectors expressing

E6/E7 fusion protein. (A) Prevention of virus-induced MHC class I

downregulation in cells infected with HCMV-based vectors lacking US2, US3,

US6, and US11. Fi301 cells were infected with WT TB40/E or RVTB401US11

at MOI of 0.5. After 2 days, cells were stained with HLA-A2-specific antibody

or isotype control and analyzed by flow cytometry. The results shown are

representative of three experiments. (B) Stimulation of specific reporter T cells

by U251 cells expressing E6/E7. Clones of U251 cells stably transfected with

E6/E7 expressing plasmid were incubated with E6 peptide-specific reporter

cell line, in which EGFP expression is driven by the responsive elements of

NF-κB. Stimulation of reporter cells is given as percentage of maximal peptide

stimulation, i.e., stimulation of reporter cells incubated with peptide pulsed

cells. (C) Detection of E6/E7 in cells infected with HCMV-based vectors driving

E6/E7 expression under control of endogenous or exogenous promotors. For

quantification of the E6/E7 fusion protein expressed by different HCMV-based

vectors (blue bars) an ELISA detecting the HPV-16 E7 protein was used. For

each experimental group 6 × 104 cells were used. RVTB401US11 served as

a negative control. The absorbances detected for experimental probes were

expressed relative to the absorbance measured for 6 × 104 CaSki cells, a

well-characterized E6- and E7-expressing cervical carcinoma cell line (Positive

control, white bars). We also included U251 cells stably transfected with E6/E7

encoding plasmid in our analysis (green bar).

pp65495−503 (53) together with CD8. In addition, we used another
set of reporter cell lines with the same TCR specificities, in
which EGFP expression is driven by the responsive elements
of NF-κB (65). These reporter cell lines were incubated with
HLA-A2+ LN18, U343, and U251 cells that had been infected
with the different HCMV-based therapeutic vaccines for 2 or 4
days, respectively. Surprisingly, GBM cells infected with E6/E7-
expressing vectors stimulated neither NFAT (Figure 6, left side,
blue columns) nor NF-κB (Figure 7, left side, blue columns) in
E6-specific reporter T cell lines. In stark contrast, all GBM cells
infected with an HCMV-based vector expressing the E6 peptide

FIGURE 3 | Construction of HCMV-based vaccines expressing E6/E7 fusion

protein. The HCMV genome has a length of ∼235 kB and contains a unique

long (UL ) and a unique short (US) region each flanked by terminal (TRL and

TRS), and internal (IRL and IRS) inverted repeats. The E6/E7 encoding

sequence was inserted into (A) US11 (RVTB40_E6/E7into US11), (B) UL111A

(RVTB401US11_E6/E7intoUL111A), or (C) UL83

(RVTB401US11_E6/E7intoUL83) in such a way that endogenous promotors

control E6/E7 expression. (D) The E6/E7 consensus sequence was put under

the control of the elongation factor-1 alpha (EF-1 alpha) promotor, a strong

constitutive promotor of human origin, and inserted between TB40-BAC4

Mini-F sequence and US7 (RVTB401US11_EF-1E6/E7).

fused with an Alanine-linker to the C-terminus of HCMV IE1
(E6peptideIE1) nicely activated NFAT (Figure 6, left side, red
columns) and NF-κB (Figure 7, left side, red columns) in E6-
specific T cells. Although to a lesser extent stimulation of reporter
cell lines was also observed with all GBM cells that had been
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FIGURE 4 | Construction of HCMV-based vaccines expressing E6 peptide

fused to the C-terminus of HCMV IE1 or HCMV UL83. The HLA-A2-binding

peptide E629−38 (TIHDIILECV) derived from the E6 protein of HPV-16 was

fused with an AA-linker (AATIHDIILECV) to the C-terminus of (A) HCMV UL123

(IE1) (RVTB401US11_E6peptideIE1) or (B) HCMV UL83

(RVTB401US11_E6peptideUL83). (C) In addition, a recombinant virus

expressing both the E6/E7 fusion protein inserted into UL83 and the

E6-peptide fused to the C-terminus of HCMV IE1 was generated

(RVTB401US11_ E6/E7intoUL83_E6peptideUL83).

infected with a HCMV-based vector expressing the E6 peptide
fused with an Alanine-linker to the C-terminus of HCMV UL83
(Figures 6 and 7, left side, red columns). As expected, all HCMV-
based therapeutic vaccines with the exception of those deficient
of pp65 (UL83) could stimulate pp65-specific reporter cell lines
to a similar extent after infection of GBM cells (Figures 6
and 7, right side). Taken together, E6 peptide fused to the C-
terminus of HCMV proteins but not the complete E6/E7 fusion
protein expressed separately fromHCMV proteins stimulated E6
peptide-specific T cells.

FIGURE 5 | Features of HCMV-based therapeutic vaccines used in this study.

(A) Growth curve kinetics of E6/E7 expressing vaccines (blue) and E6

peptide-expressing vaccines (red). Fi301 cells were infected at MOI of 0.01.

Supernatant was collected at different time points after infection and titrated on

Fi301 cells to calculate the TCID50. WT TB40/E and RVTB401US11 served

as a control. Results are derived from three experiments; error bars represent

the mean ± SEM. (B) Summary of all HCMV-based vectors used in this study.

A Novel HCMV-Encoded Block of MHC
Class I Presentation
The finding that GBM cells infected with HCMV vaccines
failed to stimulate E6-specific T cells despite abundant E6/E7
protein expression was surprising. It suggested that MHC class
I presentation of E6/E7 is impaired by the HCMV-vector
although RVTB401US11 lacks all known immunoevasins (US2,
US3, US6, US11). To address this issue, aliquots of transfected
U251 cells, which stably express the E6/E7 protein, were left
uninfected or infected at different MOIs with the HCMV-vector.
Thereafter, cells were acid washed as described previously (59)
to remove all existing peptide-MHC class I complexes from the
cell surface. Subsequently, cells were co-cultured for 18 h with
HPV E629−36-specific reporter cells, which express EGFP under
the control of NF-κB responsive elements (58). Maximal peptide
stimulation was assessed in parallel by pulsing cells with E6
peptide during coculture with the reporter cells. Figure 8A shows
that U251-E6/E7 cells (Positive control) but not untransfected
U251 cells (Negative control) stimulated E6 peptide-specific
reporter cells. Strikingly, acid washed U251-E6/E7 cells that
had been infected with different MOIs of the HCMV-vector
showed a significantly reduced capacity to stimulate E6-specific
reporter cells as compared to acid washed uninfected U251-
E6/E7 cells (Figure 8A). After additional pulsing with exogenous
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FIGURE 6 | NFAT-driven EGFP expression in reporter cell lines stimulated by infected GBM cells. 5 × 104 GBM cells (LN18, U343, or U251 cells) were infected with

HCMV-based vaccines (MOI of 5). After 2 and 4 days, respectively, infected cells were co-cultured with HPV E6-specific reporter cells (left graphs) and HCMV

pp65-specific reporter cells (right graphs), respectively, for 24 h at a ratio 2:1. Subsequently, EGFP expression of reporter cells was determined by FACS analysis.

Uninfected cells (Mock) and cells infected with RVTB401US11 (Control) were also included in this type of analysis. Stimulation of reporter cells is given as percentage

of maximal peptide stimulation, i.e., stimulation of reporter cells incubated with peptide pulsed cells. Results are derived from three technical replicates; error bars

represent the mean ± SEM. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05, one-way ANOVA test.
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FIGURE 7 | NF-κB-driven EGFP expression in reporter cell lines stimulated by infected GBM cells. 5 × 104 GBM cells (LN18, U343, or U251 cells) were infected with

HCMV-based vaccines (MOI of 5). After 2 and 4 days, respectively, infected cells were co-cultured with HPV E6-specific reporter cells (left graphs) and HCMV

pp65-specific reporter cells (right graphs), respectively, for 24 h at a ratio 2:1. Subsequently, EGFP expression of reporter cells was determined by FACS analysis.

Uninfected cells (Mock) and cells infected with RVTB401US11 (Control) were also included in this type of analysis. Stimulation of reporter cells is given as percentage

of maximal peptide stimulation, i.e., stimulation of reporter cells incubated with peptide pulsed cells. Results are derived from three technical replicates; error bars

represent the mean ± SEM. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05, one-way ANOVA test.
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FIGURE 8 | Block of MHC class I presentation induced by

immunoevasin-deficient HCMV. U251 cells stably expressing the E6/E7 fusion

protein (U251-E6/E7 cells) were left uninfected or infected with

RVTB401US11, a mutant HCMV lacking all known immunoevasins, at the

indicated MOIs for 3–24 h. Subsequently, cells were harvested, washed with

ice-cold citric acid, to remove all preexisting peptide-MCH complexes and

cocultured at a ratio of 2:1 with HPV E6-specific reporter cells, in which NF-κB

drives EGFP. After 18 h EGFP expression was assessed by FACS analysis.

Unwashed U251 cells (Negative control) and unwashed U251-E6/E7 cells

(Positive control) were also cocultured with HPV E6-specific reporter cells. In

parallel, maximal peptide stimulation was determined for each experimental

group by pulsing cells additionally with E6 peptide (1µg/ml) before coculture

with HPV E6-specific reporter cells and subsequent FACs analysis. (A) The

stimulation in each experimental group is given as percentage of maximal

peptide stimulation. (B) The % of EGFP+ reporter cells after pulsing with E6

peptide (maximal peptide stimulation) is shown for washed U251-E6/E7 cells

left uninfected and washed U251-E6/E7 cells infected with mutant HCMV at

the indicated MOIs. (C) The block of MHC class I presentation after infection

with mutant HCMV at the indicated MOIs is given as a percentage. The results

shown are derived from three independent experiments. Error bars represent

the mean ± SEM (****P < 0.0001; ***P < 0.001; *P < 0.05; unpaired t-test).

E6 peptide, however, acid washed infected U251-E6/E7 cells
stimulated E6-specific reporter cells to a similar extent as acid
washed uninfected U251-E6/E7 cells (Figure 8B). In fact, the
block of MHC class I antigen presentation induced by the
HCMV-vector was more than 50% (Figure 8C). Taken together,
we discovered a previously unsuspected HCMV-encoded block
of MHC class I presentation.

Genetically Altered Human T Cells Secrete
IFN-γ in Response to E6 Peptide but Not
E6/E7 Expressing HCMV-Based Vaccines
HCMV-based vaccines enabling presentation of a neo-epitope
by tumor cells could be combined with adoptive transfer of
genetically modified T cells specific for the vectored neo-epitope.

FIGURE 9 | Release of IFN-γ by TCR transduced PBMCs after stimulation

with infected cells. 1 × 105 human PBMCs, transduced with HPV E6-specific

TCR and HCMV pp65-specific TCR), respectively, or non-transduced

(Background), were co-cultured for 16 h with 1 × 105 fibroblasts that had been

infected for 48 h with HCMV-based vaccines. PBMCs as described above

were also co-cultured with infected fibroblasts that had been additionally

pulsed with the corresponding peptide (maximal peptide stimulation).

Subsequently, IFN-γ production was measured by ELISA. Release of IFN-γ is

shown as percentage of maximal peptide stimulation after subtraction of the

background. Uninfected cells (Mock) and cells infected with RVTB401US11

(Control) were also included in this type of analysis. Results are derived from

three experiments; error bars represent the mean ± SEM; n.d., not detectable.

In order to test this option and verify our results obtained with
the reporter cell lines, we transduced human PBMCs with either
retroviral vector encoding E6-specific TCR or retroviral vector
encoding pp65-specific TCR. Subsequently, we co-cultured these
cells for 16 h with vaccine-infected fibroblasts that express HLA-
A2. Untransduced PBMCs were included as a negative control
and treated in the same way. After co-culture the release
of IFN-γ was measured as a read out of T cell function.
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Moreover, we pulsed aliquots of the vaccine-infected fibroblasts
with the corresponding E6-derived and pp65-derived peptides,
respectively. These cells were also co-cultured with transduced
PBMCs to assess the maximal peptide-stimulated IFN-γ release.
In Figure 9, the specific IFN-γ release induced by vaccine-
infected fibroblasts is given as a percentage of IFN-γ release after
stimulation with cells that had been additionally pulsed with
exogenous peptide (maximal peptide stimulation). As observed
for reporter cell lines, cells infected with HCMV-based vaccines
expressing E6/E7 protein did not stimulate PBMCs transduced
with E6 peptide-specific TCR (Figure 9, upper graph, blue
columns). In contrast, cells infected with HCMV-based vaccines
expressing the E6 peptide fused to the C-terminus of HCMV IE1
or HCMV UL83 induced IFN-γ release by E6-specific PBMCs
(Figure 9, upper graph, red columns). Moreover, all HCMV-
based vaccines with intact UL83 (pp65) were able to activate
PBMCs transduced with pp65-specific TCR (Figure 9, lower
graph). Taken together, PBMCs transduced with E6-specific TCR
could be used for adoptive transfer to detect tumor cells targeted
by E6 peptide-expressing HCMV-based therapeutic vaccines.

DISCUSSION

In this study, we generated HCMV-based therapeutic vaccines
that lack immunoevasins for in situ vaccination of GBM patients.
We pursued two different strategies to channel a defined vector-
encoded neo-epitope into the processing machinery of antigen-
presenting cells. In one set of HCMV-based vaccines, we
expressed the consensus sequence encoding an immunogenic
but non-transforming E6/E7 fusion protein under the control
of endogenous or exogenous promoters. In another set, we
fused a single E6-epitope to the C-terminus of HCMV IE1
or HCMV UL83. Surprisingly, GBM cells transfected with
an E6/E7 expression plasmid but not cells infected with the
E6/E7 expressing HCMV-vectors were recognized by E6-specific
T cells despite comparable E6/E7 expression. In contrast,
cells infected with HCMV-based vaccines expressing an E6-
epitope fused to HCMV proteins by an Alanine linker nicely
stimulated E6 peptide-specific T cells. Subsequent analysis
demonstrated a previously unnoticed HCMV-encoded block of
MHC class I presentation that could explain the failure of
E6/E7-expressing vaccines.

The central nervous system is subjected to continuous
immunosurveillance through special gateways that allow
exchange of immune cells and antigens with the periphery (66).
As outlined in a recent review (67), antigens in the CNS are
transported to cervical lymph nodes either in a soluble form or
via APCs that take up antigen in the meningeal linings. After
priming in the CNS-draining lymph nodes, antigen-specific T
cells home back to the CNS to kill their target. Thus, in situ
vaccination with a HCMV-based therapeutic vaccine in the
brain can activate specific cytotoxic T cells in the CNS-draining
lymph nodes. These in turn can migrate back to the CNS to
eliminate tumor cells. We found that LN18, U343, and U251
cells are susceptible to HCMV infection as previously reported
for other GBM cell lines (38, 60). Moreover, it has been recently

shown that HCMV targets Glioma stem–like cells (GSCs)
(60, 68). GSCs are radioresistant and chemoresistant and play
a crucial role in progression and recurrence of tumor cells.
Accordingly, they represent attractive targets for novel GBM
therapies (69). HCMV-based therapeutic vaccines expressing
E6 peptide as a neo-epitope and lacking immunoevasins could
render these tumor-driving cells vulnerable to cytotoxic attack
by E6-specific CD8+ T cells. After killing of GSCs release of
apoptotic debris containing further tumor-specific antigens
could be phagocytosed by resident microglia or brain endothelial
cells, which efficiently cross prime CD8+ T cells (70, 71). In
addition, many viruses including HCMV can trigger bystander
activation of antiviral memory CD8+ T cells as part of an early
line of antiviral defense (72–77). Thus, therapeutic HCMV-based
vaccines as described in this study could amplify the anti-tumor
response in GBM patients by several distinct mechanisms.

HCMV-based vaccines expressing the E6-epitope fused to the
C-terminus of HCMV IE1 or HCMV UL83 could easily activate
E6-specific T cells. In accordance, MCMV-vector expressing
a HPV E7-derived peptide at the C-terminus of MCMV IE2
protein could efficiently protect mice from lethal tumor challenge
(62, 78). In contrast, cells infected with HCMV-based vaccines
expressing the E6/E7 protein separately from viral proteins
did not stimulate E6-specific reporter cell lines or E6-TCR
transduced PBMCs despite strong E6/E7 expression. The fusion
protein E6/E7, however, was not per se resistant to processing.
Uninfected U251 cells stably transfected with pcDNA-E6/E7
(U251-E6/E7 cells) expressed E6/E7 at the same order of
magnitude and stimulated E6-TCR expressing reporter cells.
Thus, the E6 epitope is naturally processed and presented by
HLA-A2 in the absence of HCMV.

After infection of U251-E6/E7 cells with HCMV, however, the
MHC class I presentation of the E6 peptide derived from the
E6/E7 fusion protein was impaired. This was not due to known
HCMV-encoded immunoevasins as we used RVTB401US11 as
a vector. This mutant HCMV lacks US2, US3, US6, and US11,
the known immunoevasins. It is well-described that cytosolic and
nuclear proteasomes have to degrade viral proteins to generate
the viral peptides that are presented by MHC class I molecules
on the cell surface (79). On the other hand, viral pathogens such
as herpes simplex viruses and HCMV highjack and relocalize
the proteasomal machinery of the host cells to facilitate their
own replication (80–82). Thus, these pathogensmay diminish the
proteasomal activity for processing of antigens thereby reducing
the presentation of peptides by MHC class I molecules. The
precise mechanism underlying this novel virus-induced block of
MHC class I presentation remains to be elucidated.

We observed that GBM cells infected with HCMV-based
therapeutic vaccines stimulate IFN-γ release by pp65-sepcific
T cells. In fact, pp65 is the most abundant HCMV-encoded
protein (83) and represents a major target for the CD8+ T
cell responses in infected human individuals (84, 85). It may
be a useful target for immunotherapeutic interventions in GBM
patients as pp65-specific cytotoxic T cells lyse HCMV-infected
GBM cell lines in vitro (86, 87). Thus, PBMCs derived from
GBM patients could be transduced in vitro with retroviral
vectors encoding pp65-TCR and adoptively transferred back to
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eliminate GBM cells. Experiments with rhesus CMV in rhesus
macaques, an animalmodel forHCMV infection of humans, have
demonstrated that pp65-specific T cell responses are important
for limiting viral dissemination during primary infection (88).
This result implies that simultaneous application of pp65-specifc
T cells with in situ vaccination of HCMV-based therapeutic
vaccines prevents unwanted side effects due to virus spread.
Thus, although pp65 helps HCMV to subvert host defense (89–
93) and is not required for viral replication (94) it should not
be eliminated from a HCMV-based therapeutic vaccine. On the
other hand, it is important to use HCMV-based vectors, which
do not express cmvIL-10 (UL111A) for several reasons. Firstly,
cmvIL-10 dampens the antiviral immune response (95–100).
Secondly, cmvIL-10 produced by HCMV-infected GSCs can
induce immunosuppressive macrophages and microglia, which
subsequently support tumor growth (42, 101).

Autologous DC vaccines generated ex vivo from peripheral
blood monocytes represent another promising novel approach
in immunotherapy of GBM patients (40, 41, 102–104). They
can complement adoptive T cell transfer and in situ vaccination
and play a role in adjuvant treatment of cancer including GBM
(105). HCMV-based vectors may be useful for generation of
DC vaccines because HCMV infects DCs (43, 106). However,
cmvIL-10 confers an immunosuppressive function uponHCMV-
infected DCs (95–100, 107). Thus, HCMV-based vaccines lacking
cmvIL-10 may be suitable for generation of autologous DCs that
stimulate pp65-specific T cells and neo-epitopes expressed by the
HCMV-based vector.

Besides GBM cells HCMV also infects cells from other
malignant human tumors including colorectal carcinoma and

prostate cancer (108–110). Accordingly, patients with these
malignancies could also benefit from vaccination with HCMV-
based therapeutic vaccines expressing neo-epitopes.
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