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Summary 

Huntington’s disease (HD) is progressive neurodegenerative disorder with an autosomal 

dominant inheritance, manifesting with a triad of motor, cognitive and behavioral symptoms. HD 

is an incurable disease caused by a CAG trinucleotide repeat expansion in the HTT gene, which 

translates into an expanded polyglutamine tract in the huntingtin (HTT) protein. This expansion 

renders the conformation of the HTT protein unstable and promotes the assembly of 

amyloidogenic protein aggregates, predominantly composed of N-terminal HTT fragments. 

Amyloidogenic mutant HTT (mHTT) aggregates share common features with prion proteins, being 

able to self-propagate their corrupted conformation and to spread between adjacent cells. 

However, the role of mHTT aggregates and their prion-like features in the pathogenesis of HD 

remains elusive. 

To address this question, I developed a FRET-based aggregate HTT seeding assay (FRASE) 

for the detection of self-replicating mHTT aggregates. I optimized the assay for the sensitive 

quantification of mHTT seeding activity (HSA) in biological samples from HD patients and disease 

models. I could show that mHTT seeds are present early in the pathogenesis and increase in 

abundance with progression of disease, suggesting that HSA quantitatively tracks disease 

progression. Biochemical investigations of mouse brain homogenates demonstrated that small, 

rather than large, mHTT structures are responsible for the HSA measured in FRASE assays. Using 

the FRASE assay, I assessed HSA in an established inducible Drosophila model of HD and found a 

strong correlation between HSA and increased mortality in transgenic HD flies, suggesting that 

self-replicating mHTT seeds are disease relevant, neurotoxic structures causing severe phenotypic 

consequences in vivo. Next, I used structure-guided mutagenesis to generate protein variants of 

the N-terminal mHTT exon 1 fragment (mHTTex1), as a tool to explore the relationship between 

the structural properties of mHTTex1 aggregates and their putative proteotoxicity. Recombinant 

mHTTex1 protein variants were distinct in their aggregation properties and revealed fibrillar 

aggregates with different stabilities and morphologies. In order to relate these structural features 

to mHTTex1-induced proteotoxicity, protein variants were pan-neuronally expressed in a newly 

developed Drosophila model. Behavioral and biochemical analysis of transgenic flies confirmed 

the concurrence of mHTTex1 aggregates and toxicity and indicated that aggregate stability 

influences neurotoxicity in transgenic HD flies.  

Taken together, my studies emphasize the importance of self-replicating mHTTex1 

aggregates in HD pathogenesis and provide novel tools for basic and clinical disease research.   

  



 
 

 
 

  



 
 

 
 

Zusammenfassung 

Die Huntington-Krankheit (HK) ist eine progressive, autosomal-dominant vererbte 

neurodegenerative Erkrankung, die sich mit motorischen, kognitiven und psychiatrischen 

Symptomen manifestiert. Die HK ist bis heute unheilbar und wird durch die Expansion des CAG-

Trinukleotid-Repeats im HTT-Gen verursacht. Diese hat eine Verlängerung der Polyglutamin-

Sequenz im Huntingtin-Protein (HTT) zur Folge, wodurch die Konformation des Proteins instabil 

wird und es zur Bildung von amyloidogenen Proteinaggregaten kommt, die hauptsächlich aus N-

terminalen HTT Fragmenten bestehen. Amyloidogene Aggregate des mutierten HTT (mHTT) 

weisen gemeinsame Merkmale mit Prionen auf, da sie in der Lage sind, ihre fehlgefaltete Struktur 

auf nativ gefaltetes mHTT zu übertragen und sich zwischen benachbarten Zellen auszubreiten. Die 

Bedeutung von mHTT-Aggregaten und deren prionenähnlichen Eigenschaften für die Pathogenese 

der HK ist jedoch nur wenig erforscht. Um dieser Frage nachzugehen, habe ich einen FRET-

basierten HTT-Seeding-Assay (FRASE) zum Nachweis selbstreplizierender mHTT-Aggregate 

(„seeds“) entwickelt und ihn für den sensitiven Nachweis der Replikationsaktivität (HSA) in 

biologischen Proben von Patienten mit der HK und Modellsystemen optimiert. mHTT „seeds“ 

konnten früh im Krankheitsverlauf nachgewiesen werden und nahmen in ihrer Häufigkeit zu, was 

darauf hindeutet, dass durch die Messung der HSA das Fortschreiten der Krankheit quantitativ 

verfolgt werden kann. Biochemische Untersuchungen von Maushirnhomogenaten zeigten, dass 

eher kleine als große mHTT-Aggregatspezies für die gemessene HSA verantwortlich sind. Mit dem 

FRASE-Assay untersuchte ich HSA in einem etablierten induzierbaren Drosophila-HD-Modell und 

beobachtete eine starke Korrelation zwischen HSA und erhöhter Mortalität in transgenen Fliegen, 

was nahelegt, dass mHTT „seeds“ krankheitsrelevante neurotoxische Strukturen sind. Mittels 

strukturgestützter Mutagenese habe ich anschließend Proteinvarianten des mHTTex1 Proteins 

generiert, um die Auswirkungen der Struktur von mHTTex-Aggregaten auf deren Toxizität zu 

untersuchen. Die generierten mHTTex1-Proteinvarianten unterschieden sich in ihren 

Aggregationseigenschaften und bildeten fibrilläre Aggregate mit unterschiedlicher Stabilität und 

Morphologie. Um die Proteotoxizität von strukturell unterschiedlichen mHTTex1 Aggregaten in 

vivo zu untersuchen, wurden die Proteinvarianten in neu entwickelten Drosophila-Modellen 

panneuronal exprimiert. Die phänotypische und biochemische Charakterisierung der transgenen 

Fliegen zeigte, dass die Aggregatbildung mit der Toxizität korreliert und dass diese auch von der 

Stabilität der Aggregate beeinflusst wird. Zusammengefasst weisen meine Studien darauf hin, dass 

selbstreplizierenden mHTTex1-Aggregate bei der Pathogenese der HK eine wichtige Rolle spielen. 

Außerdem entwickelte ich eine Vielzahl neuer Methoden und Werkzeuge, die nun in der 

Krankheitsforschung angewendet werden können.  
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1. Introduction 

The human nervous system is a fascinatingly complex and highly interconnected network 

of neuronal and support cells. It comprises ~86,000,000,000 neurons and forms an incredible large 

number of connection points (~ 5 × 1014 synapsis)1-3. It receives and conducts stimuli from the 

external and internal environment, processes them and commands adequate responses to the 

ever-changing environment. This is how the nervous system directs our movements, controls our 

behavior and allows abstract thinking and creativity. Rationally, malfunctioning of this central 

switchboard implies devastating consequences.  

Neurodegenerative diseases cause dysfunction or death of neuronal cells and thereby 

trigger malfunctioning of the nervous system4,5. They manifests with a variety of symptoms 

ranging from progressive impairment of motor control to mood disorders and cognitive deficits6,7. 

Currently, neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease and 

Huntington’s disease are incurable and predicted to increase in frequency with continues growth 

and increasing life expectancy of the world population. These diseases do not only have a strong 

impact on the life of patients and their families, but will place an enormous financial burden on 

healthcare systems8-10. Investigating the underlying pathological mechanisms of these diseases is 

of major importance in order to identify molecular targets for specific and effective therapeutic 

intervention6,7. 

1.1. Huntington’s Disease 

Huntington’s disease (HD) is an autosomal dominant progressive neurodegenerative 

disorder which manifests with a triad of symptoms affecting motor, psychiatric and cognitive 

function and ultimately leads to premature death. Historical descriptions of HD cases date back to 

the 15th century11,12. Referring to the jerky involuntary movements of affected individuals, this 

obscure disease was initially termed “dancing mania”, “that disorder” or “San Vitus 

dance”, stigmatizing those who are affected as being possessed by the devil12. The first accurate 

medical description was published in 1872 by the young doctor George Huntington who became 

eponymous for the condition - today known as Huntington’s disease. In his article “On Chorea” he 

gave a clear and concise description of HD symptoms and highlighted the hereditary nature of the 

disease as one of its predominant characteristics13. Over the following century, this publication 

not only changed the societal perception of HD sufferers, but also spurred multiple attempts to 

find communities of persons at risk to develop HD with the ultimate goal to identify the genetic 

cause underlying the disease. In the 1950’s, HD was diagnosed in a large community of people 

living around Lake Maracaibo in Venezuela. Twenty years later, this location became the center 
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of interdisciplinary and cooperative research which was initiated and coordinated by Nancy 

Wexler and laid the foundation for the identification of the HD gene and many future studies of 

Huntington’s disease11,14,15. 

1.1.1. Etiology and Epidemiology 

The genetic defect leading to HD was identified in 1993 by The Huntington’s Disease 

Collaborative Research Group16. The researchers reported that HD is linked to the IT15 gene which 

is located on the short arm of chromosome 4 (4p16.3) and contains a polymorphic trinucleotide 

repeat in its first exon, consisting of C (cytosine), A (adenine) and G (guanine). Examination of this 

genetic locus in non-HD control individuals revealed a repeat size of 6 to 35, whereas individuals 

with HD had 40 or more CAG repeats16. This led to the conclusion, that HD is caused by the 

expansion of the instable CAG repeat in the IT15 gene. The IT15 gene was subsequently named 

huntingtin (HTT) gene16. Later studies refined the role of the CAG repeat length in disease onset 

and progression. It was confirmed, that individuals develop HD with full penetrance when 

exceeding a threshold of 39 CAG repeats, whereas repeat sizes lower than 27 are considered 

normal. Reduced penetrance of HD has been reported for individuals with a CAG repeat ranging 

from 36 to 3917. CAG repeats of 27 to 35 are considered as the intermediate range and do not lead 

to the development of HD. However, as the CAG repeat is meiotically instable and tends to expand 

in successive generations, a CAG repeat of intermediate size bares a greater risk of transmitting 

the disease to the next generation18. This phenomenon, known as genetic anticipation, is 

predominantly observed when the CAG repeat expansion is inherited from the father, implying 

repeat instability during spermatogenesis18-20.  

The length of the CAG repeat in the HTT gene not only destines an individual to develop 

HD, but also greatly determines the age of symptomatic onset and the rate of pathogenesis. 

Individuals with a longer CAG repeat will develop HD earlier in life and show faster disease 

progression (Figure 1)21-23. Disease manifestation as well as progression is dominantly determined 

by the allele with the longer CAG repeat24.  

Despite the strong inverse correlation, the length of the CAG repeat can only partially 

explain the variance in age of onset25-27. Disease manifestation may differ in patients even though 

the length of the CAG repeat is the same, indicating that environmental and/or genetic factors 

influence the course of the disease28,29. Supporting this hypothesis, a recent genome-wide 

association study (GWAS) suggested genes involved in DNA repair, mitochondrial fission and 

oxidoreductase activity to modify HD pathogenesis30. 
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Figure 1: Inverse correlation of age of onset and CAG repeat length 

The plot displays the CAG repeat length measured in blood DNA (x-axis) and age at neurologic onset (y-axis) 

of 1200 HD patients. Best-fit simple logarithmic regression to the data is represented by the black line. The 

CAG repeat length accounts for approximately 67% of the overall variation in age at onset (Image from 

Gusella et al., 200931). 

 

Huntington disease is endemic to all populations, but occurs with different frequencies in different 

ethnic groups. The highest prevalence has been observed in Western populations (Europe and 

North America) with 10-13.7 affected individuals per 100 00032. HD is less frequently diagnosed in 

African (0.1 per million in black people, 22 per million in white and mixed ancestry subpopulation) 

and Asian populations (1-7 individuals per million), whereby it has been observed that individuals 

with European descent exhibit a higher prevalence for HD than the native population32,33. 

Ancestry-specific prevalence rates are thought to be related to genetic differences at the 

HTT locus among different populations. Longer CAG repeats in the general population 

(18.4-18.7 repeats in European, 17.5–17.7 in East Asian and 16.9–17.4 in African populations) are 

associated with higher numbers of de novo cases and higher prevalence of HD34. This may be 

explained by the genetic instability of the CAG repeat and the increased frequency of CAG repeat 

expansions with longer CAG repeats25,34,35. 

1.1.2. Clinical Manifestation and Neuropathology 

Huntington’s disease (HD) generally manifests in adult life at an average age of 

~45 years35. In the pre-manifest or prodromal phase, subtle changes in cognition, behavior and 

movement can already be noticed. These can occur up to 15 years before HD is clinically diagnosed 

through the onset of motor disturbance as evaluated by the Unified HD Rating Scale (UHDRS) total 
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motor score (TMS)36-38. Once started, symptoms will progressively deteriorate and ultimately lead 

to premature death approximately 15-20 years after motor-onset25. The triad of HD symptoms 

comprises motoric difficulties, cognitive deficits and neuropsychiatric abnormalities35. Motor 

abnormalities usually occur biphasically in adult-onset HD patients. Initially patients show a 

hyperkinetic behavior which is characterized by involuntary and unpredictable body movements 

(Chorea). However, when HD progresses most patients enter a hypokinetic phase, which is marked 

by bradykinesia, dystonia and rigidity and worsens up to the point of complete immobility39,40. 

Cognitive abilities will also deteriorate over time41. Patients show deficits in emotion 

recognition, processing speed, visuospatial and executive function and sometimes suffer from full 

blown dementia in the end stages of the disease41,42. In addition, neuropsychiatric difficulties such 

as apathy, anxiety, irritability, depression, obsessive compulsive behavior and psychosis may 

become more prominent43-45. However, apathy is the only neuropsychiatric symptom that 

progresses with disease46. Although the most prominent clinical features of HD are CNS-

related, patients also suffer from metabolic and immune disturbances, skeletal-muscle wasting, 

weight loss, cardiac failure, testicular atrophy, and osteoporosis47-49. The cumulation of all these 

symptoms over time will first decrease the patient’s life quality, their ability to cope with daily life 

and will ultimately demand for all around care. Disease symptoms will lead to secondary 

complications, such as pneumonia and cardiovascular disease, which are the two leading courses 

of death for HD patients50-52. 

Although, HD has mainly been recognized as an adult-onset disease, juvenile cases have 

been reported for 5-10 % of all HD cases. They are characterized by a disease onset before the age 

of 20 years and have a slightly different disease pattern. Hyperkinetic chorea-like symptoms are 

less prominent and movement difficulties are predominantly hypokinetic53-55. Cognitive and 

neuropsychiatric symptoms are reported to be severe56,57. Seizures have been reported for 

30-50 % of the patients. Juvenile HD is generally associated with elongation of the CAG repeat 

beyond 6056. It progresses more rapidly and individuals affected, die within 10 – 15 year after 

onset58.  

 

Neuropathological research on post mortem brains of HD patients identified brain 

atrophy in the striatum59. The striatum, comprising the caudate nucleus and the putamen, is 

mainly composed of GABA-ergic medium spiny neurons (MSNs). These neurons receive and 

integrate multiple excitatory signals from different brain regions and are a major component of 

the motor and reward system60. Similar to the motor abnormalities, neuronal loss in the striatum 

occurs biphasically. Initially MSNs of the indirect pathway are lost. These neurons are responsible 
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for the inhibition of motor neurons, thereby preventing the initiation of movement61. Their loss 

results in the hyperkinetic phase, marked by involuntary movement. Second, MSNs of the direct 

pathway are lost. Under normal conditions these neurons indirectly activate motor neurons and 

therefore contribute to the initiation of movement. Naturally their loss will result in the 

hypokinetic symptoms25,35,62. 

Pathological changes leading to HD symptomology were long thought to be confined only 

to the striatum. Although, striatal brain regions seem to be particularly susceptible, HD is 

characterized by a wide spread brain atrophy (Figure 2), that results from neuronal loss within 

different regions of the brain59,63-65. Therefore, HD is considered a multisystem degenerative 

disease of the human brain. Aside from the striatum, degenerative changes have been described 

for the thalamus, pallidum, brainstem, cerebellum and different regions of the cerebral cortex62,66. 

 

 

Figure 2: Magnetic resonance image reveals brain atrophy in prodromal HD 

Bilateral atrophy of the caudate and putamen and subcortical white matter as well as an increase in size of 

the fluid-filled lateral ventricle is observed in gene carriers at a prodromal HD stage. (Image from Bates et 

al., 201535) 

 

1.2. The Huntingtin Protein 

1.2.1. Structure and Function 

The HTT gene spans 67 exons and is translated into the huntingtin (HTT) protein. It is 

ubiquitously expressed in all body tissues with slightly higher levels in the CNS67. Within the cell 

HTT is located in the cytoplasm and to a lesser extend in the nucleus68. In addition to the canonical 

form, the HTT gene has a second mRNA transcript containing a 3’ UTR (untranslated region) 

sequence69. Additional isoforms are generated by alternative splicing, including a variant that only 

spans the first CAG repeat containing exon70-74. 
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The canonical HTT protein is relatively large (3144 amino acids, 350 kDa) and was predicted to 

contain 36 HEAT and HEAT-like repeats dispersed over the entire length of the protein (Figure 

3)75,76. HEAT repeats were named after a group of proteins in which they were initially identified 

(HTT, Elongation factor 3, protein phosphatase 2A, and Target of rapamycin 1). They are 

composed of paired antiparallel amphiphilic alpha helices and are arranged into several clusters. 

These HEAT repeat clusters feature a flexible, superhelical, solenoid-like structure and facilitate 

protein-protein interactions. HEAT repeat domains are interspaced by several disordered regions. 

The large C-terminal part of the HTT protein encoded by exon 2 to 67 is evolutionary conserved, 

whereas the N-terminal part encoded by the HTT exon 1 has evolved more recently68,77,78. 

Although it comprises only ~ 2 % of the HTT protein, the N-terminal HTT exon 1 (HTTex1) protein 

fragment has been most extensively studied, as it contains the gene product of the disease-

causing CAG repeat - an expandable polyglutamine (polyQ) stretch. Within the HTTex1 the polyQ 

stretch is preceded by 17 amino acids (N17) and followed by a proline rich domain (PRD). The N17 

domain forms an amphipathic α-helix and is important for membrane interaction and functions 

as a nuclear export signal (NES)79,80. The polyQ stretch itself is conformationally flexible and can 

adopt different structures81,82. The PRD has also been observed to be flexible, but can adapt a 

relatively rigid poly-L-proline type II (PPII) helix81,83,84.  

 

 

Figure 3: Schematic illustration of the huntingtin protein 

This cartoon illustrates confirmed sites of phosphorylation (orange) and other post-translational 

modifications (black) as well as protease cleavage sites (blue). Orange and black stars indicate 

phosphorylation and acetylation sites identified by mass spectrometry with no further confirmations. HEAT 

(orange barrels, H: number of predicted HEAT repeats), PEST, and highly disordered regions are indicated 

with their respective amino acid range. Ubi, ubiquitin; Sumo, sumoyl; Acet, acetyl; Palm, palmitoyl; MMP10, 

metalloproteinase 10; Calp, calpain; Casp3/2/6, caspase 3/2/6. (Image adapted from Saudou and Humbert 

et al., 201668) 
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Due to the flexibility of the HTT protein, attempts to resolve the 3-dimensional structure 

were hampered in the past85. However, using the stabilizing effect of the HTT-HAP40 

(HTT associated protein 40) interaction, Gou and colleagues recently determined a high-resolution 

structure of the full-length HTT protein in complex with HAP40 using cry-electron microscopy86. 

In this complex the HTT protein consists of three distinct domains. The N-HEAT domain 

(residues 91 - 1684, 21 HEAT repeats) forms an α-solenoid structure and harbors two putative 

membrane binding domains. The C-HEAT domain (residues 2092 - 3098) consists of 12 HEAT 

repeats and features a ring-like structure. Both domains are linked by a smaller flexible bridge 

domain (residues 1685 - 2091). In addition to these major structural features, several disordered 

regions have been identified, including the N-terminal HTTex1, which could not be resolved in this 

study. The 3D orientation of the domains to each other is mainly stabilized by the HAP40 

interaction. Otherwise the N-HEAT and C-HEAT domains are only weakly connected via loop 

interactions, indicating high structural flexibility of the HTT protein in the absence of an interaction 

partner. It also highlights the possibility of alternative HTT conformations in the presence of other 

inter- and intramolecular interactions85,86. 

HTT is subject to proteolytic cleavage by multiple proteases, including caspases, calpains 

cathepsins and the metalloproteinase MMP1087-91. Cleavage sites are found in so called PEST 

domains (proline (P); aspartic acid (E) or glutamic acid (D); serine (S); threonine (T)) which are 

mainly located in disordered regions of the protein11,68. Wild-type HTT is subject of proteolytic 

cleavage, which may modify its cellular functions92,93. In HD, proteolysis is increased which results 

in the generation of toxic N-terminal fragments containing the expanded polyQ stretch88,94,95. 

In addition, HTT is post-translationally modified (phosphorylation, acetylation, palmitoylation, 

ubiquitylation, sumoylation). These modifications are critical for its intracellular localization and 

influence HTT structure and its interactions with other proteins96,97.  

  

The large size of the HTT protein, its structural flexibility and the high number of 

interaction partners supports the idea that HTT acts as molecular scaffold that facilitates protein 

complex formation and coordinates molecular functions. Previous studies indicate the 

involvement of the HTT protein in multiple cellular processes, such as cellular trafficking, protein 

turnover, gene expression and cellular stress response68,77,98. 

HTT has been shown to participate in vesicle transport. It complexes with motor proteins 

(HAP1, dynactin) and controls transport of synaptic precursor vesicles, BDNF containing vesicles, 

autophagosomes, endosomes and lysosomes along microtubules99-104. In addition, HTT interacts 

with the glycolysis enzyme GAPDH, thereby coupling motor proteins with the required energy 
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supply and enhancing transport velocity105. Furthermore, HTT’s phosphorylation status at S241 

determines whether retrograde or anterograde transport is facilitated106.  

Apart from vesicle transport, HTT participates in endocytosis and autophagy on a different 

level. The role of HTT in endocytosis may be explained via its interaction with HIP1 and 

HIP1R, which are involved in membrane invagination and clathrin coating, the initial steps of 

clathrin-mediated endocytosis107-109. In addition, HTT was found in a complex with 

endophilin, amphiphysin and dynamin and might therefore be involved in vesicle fission110,111.  

Evidence for HTT’s involvement in autophagy comes directly from its secondary structure. 

Domains of the HTT protein show high similarity to yeast autophagy proteins Atg23, Vac8 and 

Atg11, suggesting that it is an autophagy-related protein112. HTT contains 11 LC3-interacting 

repeats (LIRs), which are essential motives in autophagy receptor proteins for linking cargos to 

LC3, thereby mediating selective autophagy. Furthermore, HTT binds to the ULK1 protein and 

thereby decreases its interaction with the protein mTOR, which in turn promotes phagophore 

formation112,113.  

Several lines of evidence point to the fact that HTT plays a role in gene expression. HTT 

has been shown to regulate the polycomb repressive complex 2 (PRC2) and to facilitate histone 

methylation114. In this way HTT influences the chromatin structure and regulates gene expression 

by transcriptional silencing. In addition, the polyQ domain in HTT enables the direct interaction 

with multiple transcription factors (cAMP-response element binding protein (CBP), specific 

protein-1 (SP1), nuclear factor-kB (NF-kB)) and transcriptional regulators (co-activator 

TAFII130, the repressor element-1 transcription factor/neuron restrictive silencer factor 

(REST/NRSF))75,115-117. HTT might act as a scaffold for transcriptional complexes and thereby either 

stimulate or repress gene transcription. More recently, HTT has also been shown to regulate gene 

expression on a post-transcriptional level by influencing P-body formation and RNA transport118. 

Furthermore, HTT was shown to be involved in the cellular stress response119-124. In this 

line the N17 domain was recently found to act as a sensor for reactive oxygen species (ROS), which 

trigger nuclear translocation of the protein, where it forms a complex with the 

ataxia-telangiectasia mutated protein (ATM) and participates in base excision repair119,120. HTT 

also regulates the activity of pro- and anti-apoptotic proteins (Bc-L2, Caspase 3/9, HIP-1, HIPPI) 

and modulates cell death and survival in response to cellular stress121-124. 

  

HTT function has been shown to be essential for embryogenesis and CNS development77. 

However, although many molecular functions have been assigned to the protein its precise 

physiological role in the adult brain remains elusive. 
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1.2.2.  Protein Aggregation of Mutant HTTex1 

Several N-terminal fragments of HTT, including HTTex1, emerge from proteolytic cleavage and 

alternative splicing events73,74,88,125,126. In case of HD, these fragments contain an expanded polyQ 

stretch that facilitates misfolding of the HTT protein fragments and triggers the formation of 

aggregates127-132. Intracellular deposition of mutant HTT aggregates into large, SDS-insoluble 

inclusion bodies counts as a pathological hallmark of HD. It has been shown that these 

supramolecular structures merely consist of mutant HTT fragments but also contain other cellular 

proteins such as ubiquitin, autophagy and UPS proteins and transcription factors115,133,134. 

 

 

Figure 4: Amyloid fiber organization 

Schematic illustration of a typical x-ray diffraction pattern of amyloid fibrils (left). Amyloid fibers have a 

cross-β-core structure consisting of multiple β-sheets forming along the fibrillar axis (middle, grey columns). 

β-sheets are composed of multiple molecules that are arrange perpendicular to the fibril axis (right). The 

acquired x-ray diffraction pattern provides information about the inter-strand and inter-sheet distance 

within the amyloid fiber. (Image adapted from Wen-Hui et al., 2016135) 

 

Looking more closely, these inclusions are composed of amyloid fibrils, which are highly 

organized crystal-like protein structures (Figure 4). Typically, the cross-β sheet core of an amyloid 

fiber is formed by several interacting β-sheets running in parallel to the axis of the fibril. Within 

these β-sheets, protein monomers in β-strand conformation are arranged perpendicular to the 

fibril axis and are stacked atop each other along the fibril axis. However, different types of amyloid 

fibers have been reported, whereby the precise molecular architecture as well as the forces 

stabilizing inter- and intramolecular interactions are determined by the protein that forms the 

amyloid fiber136-138. Within the last years significant advances have been made to understand the 

fibrillar structure of HTTex1 aggregates. Using solid state nuclear magnetic resonance (ssNMR) 

analysis, the expanded polyQ stretch within the HTTex1 has been shown to form an intramolecular 

β-hairpin, in which two β-strands of the same molecule are linked by a β-turn structure139. Multiple 

molecules with a β-hairpin conformation are stacked atop each other, stabilized by intra- and 

intermolecular hydrogen bonds between atoms of the protein backbones, thereby forming a 

tightly interconnected β-sheet. At the interface of adjacent β-sheets, side chains are believed to 



Introduction  
 

10 
 

intermesh and form steric zipper structures, that allow hydrogen bonding between stacked side 

chains and thereby facilitates a tight connection. As described before, within the HTTex1 fragment 

the polyQ stretch is flanked by N17 and PRD domains. These domains do not participate in the 

formation of the amyloid core structure140. Instead, they are immobilized and tightly clustered 

around the core structure, but distal parts of the N17 and PRD retain a certain degree of flexibility 

and solvent interaction (Figure 5). Within the mature fibril the PRD features a poly-L-proline type 

II helix which extends to the last glutamine residue of the amyloid core structure. The N17 domains 

form amphipathic α-helices that interact but remain flexible and loosely packed and help to 

stabilize the fibrils via molten-globule-like assemblies140. 

 

 

Figure 5: Proposed model of HTTex1 fibrils 

The N17 α-helices (dark blue) and PRD poly-L-proline type II (PPII) helices (light blue) are immobilized and 

tightly clustered around the rigid amyloid core (green β-strands). An individual HTTex1 monomer with its 

β-hairpin-based polyQ core is shown in yellow. C-terminal tails of the PRD show higher structural flexibility. 

(Image was adapted from Lin et al., 2017141) 

 

The formation of amyloid fibers, starting from the HTTex1 monomer, is a complex and 

extensively debated process. As described before the HTTex1 molecule is highly flexible, 81,142,143. 

It is considered as an intrinsically disordered protein (IDP) and switches rapidly between different 

conformations. At the beginning of the aggregation process occurs a conformational change of 

the polyQ domain from its flexible state to a β-sheet conformation of higher structural stability. 

This β-sheet formation is the initial creation of the amyloid architecture. It is also described as a 

primary nucleation event98,138,144-146. The rate of primary nucleation depends on the protein 

concentration and the length of the polyQ stretch130,147. It is more likely to occur with higher 

protein concentration and with longer glutamine tracts. Furthermore, this process is influenced 

by both the N17 and the PRD domain which exert opposing effects on the aggregation propensity 

of the HTTex1 molecule. Whereas the N17 domain has been reported to facilitate aggregation, 

the PRD was shown to counteract this process148-150. The PRD folds into a poly-L-proline type II 

(PPII) helix. It has been demonstrated that this conformation is propagated into the upstream 
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polyQ stretch, potentially increasing the energy barrier for the transition of the polyQ domain into 

the β-sheet conformation83,84. In contrast, the N17 domain has been reported to adopt an 

amphipathic α-helical conformation, possibly facilitating the docking of multiple HTTex1 

molecules via coiled-coil interactions151-153. In accordance with Wetzel’s proximity model this 

association brings polyQ stretches of different molecules into close proximity, consequently 

enhancing the polyQ-polyQ interaction and facilitating a coil-to-β-sheet transition (Figure 6)154-157. 

The initial formation of semi-stable oligomers involves conformational changes that are slow and 

unlikely to occur and therefore manifest in a lag phase when looking at the aggregation process 

from a kinetic point of view. After the formation of the primary nucleus, new monomers are 

recruited. They hydrogen-bond to the exposed beta-strands of the fibril ends and adapt the 

structure pre-specified by the amyloid core98,138. Fibril elongation is a rapid process as the 

conformational change occurring within newly recruited monomers is templated by the existing 

fibril158,159.  

 

 

Figure 6: Schematic model of the N17-initiated HTTex1 aggregation process and its kinetic phases 

Soluble HTTex1 monomers are considered intrinsically disordered and lack a well-defined structure. 

Spontaneous aggregation of HTTex1 is believed to be initiated through coiled-coil interactions of N17 

domains. The N17 domain (red barrel) can adapt an amphipathic α-helical conformation which enables 

multiple molecules to interact. This brings polyQ domains (grey structure) of multiple molecules into close 

proximity and facilitates the transition to a β-sheet conformation within the polyQ domain (primary 

nucleation). The time-consuming conformational changes occur during the lag phase, when energetically 

very unstable nuclei are spontaneously formed. Thereafter, the fibrils mature through the template-

mediated addition of monomers (growth phase). The N17 domain persist in an α-helical conformation 

outside the amyloid core. The PRD is not shown in this illustration. Once all monomers are integrated into 

amyloid fibrils the aggregation process reaches a plateau phase. The addition of preformed aggregates 

(Seeds) accelerates the aggregation of HTTex1 monomers. (Images in part from Sivanandam et al., 2011160) 
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In addition to the elongation of the fibril ends, fibril breakage, branching and secondary nucleation 

on the surface of the fibrils have been reported to influence the aggregation process of HTTex1 

and other amylogenic proteins144,159. When looking at the aggregation in a closed 

system, containing a finite number of HTTex1 monomers, the aggregation process will eventually 

reach a plateau phase in which all monomers are consumed and integrated into fibrillar 

assemblies. Therefore, the aggregation kinetics measured in vitro comprise a lag phase, a growth 

phase and a plateau phase and follow a typical sigmoidal curve which is indicative of the 

nucleation-dependent aggregation mechanism of HTTex1 (Figure 6)144. 

1.2.3. The Prion Hypothesis – Seeding and Spreading of HTTex1 Aggregates 

As HTTex1 aggregation follows a nucleation dependent mechanism, it is hardly surprising 

that soluble HTTex1 monomers aggregate faster in the presence of pre-formed HTTex1 aggregates 

or oligomeric nuclei. This phenomenon, known as template-mediated aggregation or seeding, is 

accomplished through self-propagation of the administered seed hence bypassing the initial 

rate-limiting step of primary nucleation (Figure 6)137,138,144. The initiation of protein aggregation by 

templated conformational changes has been shown to be the cause of transmissible spongiform 

encephalopathies (TSEs) or prion diseases161-163. Originally, prions were defined as ‘proteinaceous 

infectious particles’ lacking nucleic acid and causing neurodegenerative diseases in humans and 

other mammals163. Aggregated prion proteins convert their natively folded counterpart into the 

amylogenic conformation (molecule-to-molecule transmission). They are transmitted from 

cell-to-cell via multiple mechanisms164-167. In addition, prion proteins are infectious in the 

microbiological sense of the term. Which means they are able to transmit the conformational 

change and the accompanied biological consequences from one organism to another 

(host-to-host transmission)168,169. 

Brain pathology in many neurodegenerative disorders follows a stereotypic pattern and is 

accompanied by the presence of protein aggregates170-172. This suggests that protein aggregates 

could act as the causative agent that spreads from one brain region to another causing 

pathological changes in a prion-like fashion. Therefore, the resemblance of HTT aggregates and 

prions gained increasing attention. HTT aggregates have been shown to accelerate the 

aggregation of purified HTTex1 protein or polyQ peptides in cell-free experiments130,173. In 

addition, HTTex1 and polyQ aggregates are able to penetrate cellular membranes and promote 

intracellular aggregation of fluorescently labeled HTTex1 molecules with a pathogenic or a 

non-pathogenic polyQ stretch174-176. Similar effects have been observed when HTT aggregates, 

derived from HD models or patients, were used as seeds173,177. This indicates that HTT aggregates, 

similar to prion aggregates, can transmit there conformations to another soluble HTT molecules 
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and trigger aggregation. In addition, cell-to-cell spreading has been observed for HTT 

aggregates178-181. Several mechanisms have been suggested to contribute to this process. Neurons, 

differentiated from human embryonic stem cells or induced pluripotent stem cells, were 

transplanted into organotypic brain slices of an HD mouse model and showed uptake of mutant 

HTT into grafted neurons followed by degeneration of the recipient cells. The transneuronal 

spread could be reduced by the admission of botulinum toxin, implying a transsynaptic 

mechanism179. Other studies proposed that transfer of mutant HTT aggregates might occur 

through tunneling nanotubes, extracellular vesicles or direct penetration of the plasma 

membrane175,178,182,183. 

There is increasing evidence that HTTex1 aggregates can initiate the misfolding of soluble 

HTT proteins and can propagate this conformational change to neighboring and remotely 

connected cells175,178,182,183. However, HTT aggregates differ from classical prion aggregates as they 

have not been shown to be transmitted between different hosts and are therefore not considered 

to be infectious. Nevertheless, the potential pathological role of HTT aggregates and their 

intercellular spread is intensively debated and an ongoing field of research.  

1.3. Potential Mechanisms in Huntington’s Disease 

Huntington’s disease is caused by the expansion of the CAG repeat in the coding region of 

the HTT gene. Although the genetic origin of HD has been identified long ago, the underlying 

pathological mechanisms are not fully understood16.  

As described before, HD is autosomal dominantly inherited, which implies that just one 

copy of the mutant gene is sufficient to cause the disease24. In addition, HD shares a similar disease 

pattern with the other nine polyglutamine diseases (dentatorubral pallidoluysian atrophy 

(DRPLA), spinobulbar muscular atrophy (SBMA) and spinocerebellar ataxia (SCA) type 1-3, 6, 7, 12 

and 17) and expression of the expanded polyglutamine alone can cause toxicity in different 

disease models184,185. This supports the hypothesis that HD pathology is caused by a 

gain-of-function mechanism. However, many unique molecular functions have been assigned to 

the wild-type HTT protein and brain-specific knockout of HTT in adulthood leads to a 

neurodegenerative phenotype in mice, which argues that a loss-of-function mechanism could 

contribute to HD pathogenesis68,103,186. 

Understanding the course of events that lead to neurodegeneration would require to pin 

point the molecular species at the root of cellular dysfunction (Figure 7). In HD several possible 

culprits need to be taken into consideration: the HTT RNA, the monomeric HTT protein and the 

protein aggregates consisting of misfolded HTT proteins. Support that RNA-mediated effects 

might play a role in HD comes from studies on triplet repeat disorders in which neurodegeneration 
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is caused by elongated CAG repeat motifs in untranslated regions (UTRs)187. Hence, the presence 

of a CAG repeat-containing RNA, without translation into an expanded polyQ stretch, seems to be 

sufficient to cause toxicity187,188. It has been shown that HTT transcripts containing expanded CAG 

repeats can form hairpin conformations that bind and sequester different proteins into nuclear 

RNA foci leading to aberrant transcription and splicing189-191. The second potential cause of the 

disease is the monomeric mutant HTT protein. Expansion of the polyQ stretch and the associated 

alterations in proteolytic cleavage and post-translational modifications might change the protein’s 

conformation, localization and interactions with other proteins92,97,192. Hence, HD could originate 

from the loss, gain or modulation of protein-protein interactions that perturb signaling pathways 

and lead to cellular dysfunction. The third candidate that could initiate the pathological cascade 

are misfolded protein assemblies of various size and stability. The hypothesis that mutant HTT 

aggregates potentially drive disease pathology arises from the correlation of CAG repeat length 

with aggregation propensity of the resulting polyQ stretch and disease onset24,130. This is further 

supported by studies in which HTT aggregation was enhanced through suppression of the 

proteostasis network, which leads to increased toxicity193,194. HTT aggregates sequester other 

cellular proteins as reported for several transcription factors, autophagy and UPS related 

proteins195,196. This might deplete aforementioned proteins from the cellular environment and 

disturb the processes they are essential for115,197. In addition, protein aggregation might cause an 

imbalance of proteostasis, as the quality control system is overwhelmed with constantly occurring 

misfolding events198,199. The formation of large inclusions might block intracellular routes of 

transportation11,200. Previously, large intracellular inclusions have been thought to be the main 

pathological species among the broad spectrum of misfolded HTT assemblies. However, an 

increasing number of studies brought the attention to submicroscopic soluble aggregates as 

potential major players in disease pathology and hypothesized that large inclusion bodies might 

have a protective role through sequestration of small highly reactive species201,202. Yet another 

layer of complexity was added with the discovery of repeat-associated non-ATG (RAN) translation 

in HD203. Due to the formation of secondary RNA structures, translation can be initiated 

independently of the start codon and can occur in sense and antisense direction in all three 

reading frames. In the HTT context, this leads to the expression of four additional 

repeat-containing proteins (polyAla, polySer, polyLeu, and polyCys) which also have been shown 

to form aggregates and to cause toxic effects in cells203. 
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Figure 7: Potential toxic entities in the pathogenesis of Huntington’s diseases 

HD is caused by the CAG repeat expansion in the HTT gene. The main products of the mutant gene are the 

mutant transcript containing the expanded CAG repeats and the mutant protein containing the expanded 

polyQ tract. The mutant transcript shows an aberrant interaction with RNA binding proteins and is partially 

retained in the nucleus in the form of RNA/CAG foci. Alternative splicing of the mutant transcript and the 

translation of these splice products leads to the production of shorter N-terminal HTT fragments. 

Furthermore, the mutant transcript is subject to repeat-associated non-ATG (RAN) translation, leading to 

the formation of alternative repeat-containing proteins (polyA, polyS, polyL). The expanded polyQ stretch in 

mutant HTT might disturb protein-protein interactions. Furthermore, proteolytic cleavage of mutant HTT 

generates shorter polyQ-containing fragments that have the potential to form nuclear and cytoplasmic 

inclusions. (Image was adapted from Fiszer et al., 2014204) 

 

Although the pathological mechanism of HD has not been fully elucidated, several disease 

relevant changes were observed in HD models and patients. These include increased levels of 

oxidative stress, mitochondrial impairment, transcriptional dysregulation, disruption of protein 

homeostasis and disturbance of intracellular trafficking205,206. Future studies will need to 

distinguish cause and consequences in order to delineate the pathological mechanisms and to 

identify a causative treatment.  

1.4. Biomarkers and Therapeutic Strategies 

Down to the present day, there are no available disease-modifying drugs against 

Huntington’s disease. Instead, treatment is symptomatic and involves a combination of 

pharmacological and non-pharmacological interventions25,206-208. On the non-pharmacological 

side, HD management involves physicians, nurses, speech therapists, dieticians and 

physiotherapists. Pharmacologically, the treatment options are limited. Tetrabenazine is the only 
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licensed drug to treat chorea symptoms209. Psychiatric symptoms, such as depression and 

irritability, are often treated as in non-HD patients210,211. With regard to the cognitive 

symptoms, there is currently no pharmacological treatment available212,213. 

 In search of causal treatment options, several different strategies are pursued. This 

includes reduction of aggregate load214, inhibition of caspases215, upregulation of autophagy216,217, 

and reduction of oxidative stress206,208,218. In each case initial results in mice were promising, but 

subsequent experiments or clinical trials in HD patients have not been successful215,216,219-221. 

Transplantation of neuronal tissue was considered as an approach to correct deficits once 

symptoms are manifest. However, a recent study following up on early human graft 

transplantations showed mutant HTT protein in the transplanted tissue222. A promising new 

strategy aims to lower the levels of mutant HTT by priming its RNA for degradation through the 

use of antisense oligonucleotides (ASOs), RNA interference (RNAi) or small molecule splicing 

modifiers223-225. Moreover, targeting the HTT gene directly has been considered as a treatment 

option226. As HD is a monogenic disorder, it would be a prime candidate for genetic correction 

using the rapidly developing gene editing approaches (CRISPR/Cas9 or Zinc finger nucleases). All 

these approaches have been successfully tested in rodent models and ASOs are currently under 

investigation in phase I clinical trials224,227.  

In order to test the efficacy of newly developed therapeutic candidates, sensitive 

biomarkers are needed that detect pathological changes early and track them over time. These 

markers need to be objectively measurable, predict a clinically meaningful endpoint, have an 

association with known disease mechanisms and respond to therapy207. Clinical markers have 

been established, but the assessment of motor, cognitive and psychiatric parameters shows only 

little changes in the pre-manifest phase of the disease and their assessment remains subjective228. 

Image based techniques, such as magnetic resonance imaging (MRI), have revealed atrophy of 

specific brain regions years before symptomatic onset 229. Several biofluidic parameters are 

currently evaluated for their use as biomarkers. Levels of neurofilament light chain (NFL) in 

cerebrospinal fluid (CSF) and blood or the levels of mutant HTT in CSF are promising candidates 

and correlate with disease progression230-232. The development and validation of new biomarkers 

is an important ongoing endeavor, that might support future clinical trials and empower the 

search for a cure of Huntington’s disease. 
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2. Aim of the study 

Aggregation of the mutant HTT (mHTT) protein is a major hallmark of HD pathology. The 

deposition of misfolded mHTT proteins has been proposed to be either the cause of disease or a 

byproduct in the pathogenic cascade (Chapter 1.3). It is essential to better understand the role of 

prion-like mHTT aggregates in HD in order to develop effective therapeutic strategies. 

Therefore, one aim of this study was to establish a sensitive assay for the detection of 

seeding-competent mHTT aggregates in biological samples prepared from HD patients and model 

organisms. Seeding-competent aggregates should be characterized regarding their size and 

morphology. Furthermore, it should be analyzed whether the abundance of these structures 

correlates with disease-associated phenotypes in model systems and whether seeding-competent 

mHTT aggregates could be used as a biomarker to monitor progression or onset in HD. In the 

second part of this study the established mHTT seeding assay should be used to address the 

question whether seeding-competent mHTT aggregates drive HD pathology. For this purpose, 

structure-guided mutagenesis was utilized in order to change the aggregation properties of 

mHTTex1 proteins. The effects of targeted amino acid exchanges on aggregation and 

proteotoxicity should be analyzed in vitro and in newly generated Drosophila models using a 

combination of biochemical and behavioral assays. These experiments were intended to assess 

the relationship between aggregate properties, seeding activity and aggregate-induced toxicity in 

an HD in vivo model. 

  



Aim of the study  
 

18 
 

  



  Results 
 

19 
 

3. Results 

3.1. Mutant HTT seeding activity: a marker of disease progression and 

neurotoxicity in models of Huntington's disease* 

Self-propagating protein aggregates are a pathological hallmark of a large number of 

neurodegenerative diseases (NDs) including Huntington’s disease (HD)137,171. To understand the 

involvement of such structures in disease development and progression, it is critical to monitor 

the activity of self-propagating protein aggregates in complex biosamples. Until now a few 

cell-free and cell-based assays have been established that facilitate the quantification of seeding 

activity of amylogenic aggregates by taking advantage of the phenomenon that ordered protein 

aggregates accelerate spontaneous aggregation of the monomeric protein177,233-236. In cell-free 

assays seed-mediated amyloid polymerization is indirectly monitored through the reporter dye 

Thioflavin T (ThT), which changes its fluorescence emission upon binding to ordered amyloid 

fibrils173. Cell-based seeding assays rely on ectopically expressed aggregation-prone reporter 

proteins with fluorescent tags as biosensors for detecting amyloidogenic aggregates177,234. Both 

strategies exhibit weaknesses when monitoring seed-mediated aggregation. Binding of ThT is 

decreased when competing proteins are present237, which demands additional sample 

preparation else reduces the sensitivity of the assay when biosamples such as brain homogenates 

are analyzed. Cell-based assays are more laborious and typically measure only a specific endpoint 

of the seed-mediated aggregation instead of monitoring the kinetic process, thereby loosing 

relevant information.  

To overcome these limitations, in the first part of my studies I focused on the development 

and optimization of a dye- and cell-free seeding assay that facilitates the detection and 

quantification of seeding-competent mHTT aggregates based on the physical principle of 

fluorescence resonance energy transfer (FRET). I further describe the application of this assays 

with the aim to quantify seeding activity in biological samples and to elucidate the role of 

seeding-competent mHTT aggregates in HD. 

3.1.1. Development of a FRET-based mutant HTT aggregate seeding (FRASE) assay 

To monitor mHTT seeding activity, a cell-free aggregation assay with recombinant 

fluorescent reporter proteins was developed (Figure 8A). An aggregation-prone N-terminal HTT 

exon 1 protein fragment with 48 glutamines (Ex1Q48) was fused N-terminally to 

                                                           
* The text and figures in chapter 3.1 have been reused with modifications from the published version: Ast, A. et al. mHTT Seeding 

Activity: A Marker of Disease Progression and Neurotoxicity in Models of Huntington's Disease. Mol Cell 71, 675-688 e676, 
doi:10.1016/j.molcel.2018.07.032 (2018) - https://doi.org/10.1016/j.molcel.2018.07.032. 

https://doi.org/10.1016/j.molcel.2018.07.032
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glutathione S-transferase (GST) and C-terminally to CyPet or YPet (GST-Ex1Q48-CyPet or -YPet). 

The N-terminal GST tag enables purification of the fusion proteins via glutathione sepharose 

chromatography and prevents spontaneous aggregation of Ex1Q48.  

 

 

Figure 8: Development and characterization of GST-Ex1Q48-CyPet and -YPet reporter proteins  

(A) Schematic representation of the applied GST-tagged HTTex1 fusion proteins with pathogenic polyQ 

tracts. P, proline-rich regions. (B) The recombinant GST-Ex1Q48-CyPet and -YPet and GST-Ex1Q48 fusion 

proteins were affinity purified using glutathione-coated sepharose beads. Purity was assessed by SDS-PAGE 

and subsequent Coomassie blue staining. (C) Analysis of the aggregation propensity of proteolytically 

cleaved GST-Ex1Q48-CyPet and -YPet and GST-Ex1Q48 fusion proteins. Proteins (3 µM) were individually 

incubated at 25 °C with PreScission protease (PSP); time-dependent formation of SDS-resistant aggregates 

was analyzed by FRA (500 ng protein per dot). Spontaneously formed aggregates of fluorescently tagged 

and untagged Ex1Q48 proteins were visualized by an anti-GFP (ab290) antibody and an anti-HTT (CAG35b) 

antibody respectively. (D) Atomic force microscopy (AFM) analysis of spontaneously formed Ex1Q48-CyPet, 

Ex1Q48-YPet and Ex1Q48 aggregates (3 µM) after 24 h. Scale bar: 1 µm; color gradient represents 0-20 nm 

height. 
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Reporter proteins were produced in E. coli and purified to ~90% homogeneity (Figure 8B). First, I 

performed aggregation assays with both reporter proteins and untagged GST-Ex1Q48 protein 

(Figure 8A and B), in order to assess whether the fluorescent tags change the aggregation behavior 

of the reporter proteins or the morphology of the resulting aggregates. Recombinant proteins 

were cleaved with PreScission protease (PSP) to release GST and to initiate the spontaneous 

aggregation of the fusion proteins. The assembly of the tagged and untagged Ex1Q48 proteins into 

insoluble aggregates over time was monitored using an established filter retardation assay (FRA), 

which specifically detects large SDS-stable mHTT aggregates238. I found that Ex1Q48-CyPet 

and -YPet proteins rapidly self-assemble into SDS-stable aggregates, similar to untagged Ex1Q48 

(Figure 8C). To investigate the morphology of spontaneously formed Ex1Q48-CyPet and -YPet 

aggregates, aggregation reactions were analyzed with atomic force microscopy (AFM). Tagged 

Ex1Q48 fusion proteins, similar to the untagged Ex1Q48 protein159, form large fibrillar protein 

aggregates (Figure 8D). These results suggest that C-terminal fusion of the fluorescent proteins 

CyPet or YPet does not significantly change the aggregation behavior of Ex1Q48. Hence, 

Ex1Q48-CyPet and -YPet fusion proteins can be used to monitor mHTTex1 aggregation in vitro. 

 

I hypothesized that co-aggregation of CyPet- and YPet-tagged HTTex1 fragments should 

lead to a time-dependent increase of FRET as the fluorescent tags are brought in close proximity 

when fibrillar aggregates are formed (Figure 9A). Mixtures of fusion proteins (1:1 molar ratio; 

1 - 3 µM concentrations) were treated with PSP and the spontaneous formation of Ex1Q48-

CyPet/-YPet co-aggregates was quantified by repeated FRET measurements. I observed a 

time- and concentration-dependent increase of FRET efficiency (Figure 9B), indicating that FRET 

measurements are suitable to quantify HTTex1 co-aggregation. In contrast, no time-dependent 

increase of FRET efficiency was observed in samples that were not treated with PSP, underlining 

that the removal of the GST tag from CyPet- and YPet-tagged Ex1Q48 fragments is critical for the 

self-assembly of co-aggregates. AFM analysis confirmed that the samples indeed contain typical 

fibrillar HTTex1 aggregates (Figure 9C). 
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Figure 9: Monitoring spontaneous Ex1Q48-CyPet/-YPet co-aggregation by FRET 

(A) Schematic model of the spontaneous FRET-inducing Ex1Q48-CyPet/-YPet co-aggregation reaction in 

cell-free assays. Initially, the N-terminal GST-tag keeps the fusion proteins in a soluble state and prevents 

spontaneous aggregation. After PSP-mediated cleavage of the fusion proteins, Ex1Q48-CyPet and -YPet 

fragments are released and spontaneously co-aggregate over time. FRET signal is detected when fluorescent 

tags come into close proximity in ordered protein aggregates. (B) Investigation of spontaneous 

co-aggregation of sensor proteins by time-dependent quantification of FRET. Indicated concentrations of the 

GST-tagged sensor proteins Ex1Q48-CyPet and -YPet (1:1 mixture) were incubated at 25 °C in the presence 

and absence of PSP. The initial FRET signal of ~6% is due to oligomerization of uncleaved GST fusion proteins 

under non-denaturating conditions. FRET efficiency is displayed as mean ± SD of technical triplicates. (C) AFM 

analysis of the co-aggregated sensor proteins Ex1Q48-CyPet/-YPet (3 µM). Scale bar: 1 µm; color gradient 

represents 0-20 nm height. 

  

In order to assess whether preformed Ex1Q48 fibrils can seed the co-aggregation of 

Ex1Q48-CyPet/-YPet, a 1:1 mixture of the GST fusion proteins was incubated with PSP and 

different amounts of preformed Ex1Q48 fibrils as seeds (prepared by site-specific cleavage of the 

GST tag and spontaneous self-assembly for 24 hours) (Figure 8D). I observed that addition of fibrils 

shortens the lag phase of Ex1Q48-CyPet/-YPet polymerization in a concentration-dependent 

manner (Figure 10A), suggesting that they possess seeding activity. Next, I asked whether 

shortening of the lag phase indeed results from the templating effect of mHTTex1 aggregates or 

merely from an increase in mHTTex1 protein concentration when untagged Ex1Q48 protein is 

added. In order to address this question, I prepared Ex1Q48 protein samples from different 

aggregation states (soluble, partially aggregated and fully aggregated) by treating GST-Ex1Q48 

with PSP and collecting samples at different time points (0, 1, 2, 3, 4, 24 h). Equal amounts of these 

samples were added to Ex1Q48-CyPet/-YPet polymerization reactions and co-aggregation of the 

reporter proteins was monitored by FRET measurements (Figure 10B). In parallel, these samples 
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were analyzed for the formation of mHTTex1 aggregates using the FRA (Figure 10C). Protein 

samples taken directly (0 h) or 1 h after the addition of PSP did not contain fibrillar aggregates, as 

confirmed by FRA. This indicates that theses samples predominantly contain soluble GST-Ex1Q48 

and Ex1Q48 protein fragments. The addition of these samples to Ex1Q48-CyPet/-YPet reporter 

proteins did not accelerate their co-aggregation. In contrast, the addition of samples with partially 

aggregated Ex1Q48 protein (taken 2 - 3 hours after PSP addition) shortened the lag phase of 

reporter protein assembly. This effect was even more pronounced when fully aggregated Ex1Q48 

protein samples (taken 4 and 24h after addition of PSP) were analyzed for their propensity to seed 

the polymerization of Ex1Q48-CyPet/-YPet (Figure 10B-C). This indicates that the observed 

shortening of the lag phase cannot be ascribed to an increase in mHTTex1 protein 

concentration, but indeed results from the templating effect of Ex1Q48 aggregates. 

 

 

Figure 10: Recombinant Ex1Q48 aggregates are seeding-competent structures 

(A) Preformed, fibrillar Ex1Q48 aggregates (seeds) induce a concentration-dependent acceleration of 

Ex1Q48-CyPet/-YPet (2 µM) polymerization in cell-free assays. Co-aggregation of the fluorescence sensor 

proteins was monitored by quantification of FRET. Indicated seed concentrations are equivalent to initially 

applied monomer concentrations. FRET efficiency is displayed as mean ± SD of technical triplicates. 

(B) Analysis of reporter protein (2 µM) aggregation in the presence of 100 nM Ex1Q48 protein at different 

aggregation states. FRET efficiency is displayed as mean ± SD of technical triplicates. (C) Detection of large 

SDS-stable aggregates by filter retardation assay (FRA) in Ex1Q48 (2.5 µM) protein preparations 

(500 ng/dot) assessed in B. Aggregates were immuno-detected using the anti-HTT antibody CAG53b.  

 

In order to substantiate these results, I performed independent control experiments with 

GST-HTTex1 fusion proteins containing 23, 48 and 75 glutamines (Figure 11A). Fusion proteins 

were treated with PSP to release Ex1 protein fragments. The formation of large SDS-stable 

aggregates was assessed by FRA after 24 h. As expected, HTTex1 protein fragments containing a 

glutamine stretch in the pathogenic range (Ex1Q48 and Ex1Q75) assembled into SDS-stable 

aggregates as indicated by the presence of immunoreactive dots 24 hours after PSP-mediated 

cleavage of the GST tag. In comparison, Ex1Q23 contains a glutamine stretch in the 

non-pathogenic range and does not form SDS-stable aggregates under the conditions applied in 
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this experiment (Figure 11B). AFM analysis was performed and confirmed that Ex1Q48 as well as 

Ex1Q75 proteins form fibrillar HTTex1 aggregates after incubation for 24h (Figure 11C). 

Finally, these protein samples were analyzed for their potential to seed the co-aggregation of 

Ex1Q48-CyPet/-YPet reporter proteins. I found that Ex1Q48 and Ex1Q75 aggregates were both 

capable of accelerating the co-aggregation of sensor proteins, whereas the addition of 

proteolytically cleaved GST-Ex1Q23 did not shorten the lag phase of Ex1Q48-CyPet/-YPet 

polymerization (Figure 11D). 

 

 

Figure 11: HTTex1 proteins with pathogenic polyQ tracts form seeding-competent aggregates 

(A) Schematic representation of GST-tagged HTTex1 fusion proteins with pathogenic and non-pathogenic 

polyQ tracts. P, proline-rich regions. (B) Analysis of spontaneously formed aggregates from HTTex1 proteins 

(2 µM) with pathogenic and non-pathogenic polyQ tracts using FRA. Immunodetection was performed using 

an anti-HTT (CAG53b) antibody. (C) AFM analysis of samples analyzed in B. Scale bar: 1 µm; color gradient 

represents 0-20 nm height. (D) FRET-based assessment of Ex1Q48-CyPet/-YPet (2 µM) co-aggregation in the 

presence of 100 nM HTTex1 proteins with pathogenic and non-pathogenic polyQ tracts. FRET efficiency is 

displayed as mean ± SD of technical triplicates.  

 

In order to compare seeding effects of different samples it is necessary to precisely 

quantify to which extend reporter protein aggregation was accelerated. For this purpose, FRET 

efficiencies measured over time (Figure 12A) were curve fitted by Richard’s five-parameter 

dose-response curve using GraphPad Prism to obtain t50 values (time at half-maximal FRET 

efficiency) for each of the analyzed curves (Figure 12B). Subsequently, the temporal shifts (∆t50), 

resulting from the addition of seeds, were quantified by subtracting the t50 values of the respective 
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sample from t50 value of the negative control (Figure 12C). The established method, which permits 

the detection of mHTT seeding activity (∆t50, HSA) in samples of interest, was termed FRET-based 

HTT aggregate seeding (FRASE) assay.  

 

 

Figure 12: Quantification of mHTT seeding activity (HSA) 

(A) Exemplified FRET efficiency measurements over time of seeded (red) and spontaneous (black) reporter 

protein polymerization. (B) Curve fitted aggregation profile of A as an example to calculate mHTT seeding 

activity (HSA; ∆t50) by subtracting the t50 value of the seeded Ex1Q48-CyPet/-YPet aggregation reaction from 

the t50 value of the spontaneous aggregation reaction. (C) Depiction of HSA quantified from B.   

 

3.1.2. Optimization of mHTTex1 seed detection 

 The FRASE assay is intended to measure seeding activity in biological samples. For this 

purpose, the assay needs to reliably detect seeding-competent mHTT aggregates with high 

sensitivity. The following chapter will describe the optimization of the FRASE assay regarding its 

sensitivity.  

Initial experiments indicate that large bundles of Ex1Q48 or Ex1Q75 fibrils (~1-2 µm in 

length; Figure 11C) possess mHTT seeding activity (HSA)(Figure 10 and Figure 11). I reasoned that 

fragmentation of these large aggregates will naturally increase the number misfolded mHTT 

assemblies and consequently enlarges the area of exposed surface, which functions as initiation 

point of template-mediated mHTTex1 aggregation. Hence, fragmentation of mHTTex1 fibrils prior 

to FRASE analysis could increase assay sensitivity. In order to test this hypothesis, large preformed 

Ex1Q48 fibrils were sonicated for different periods of time and subsequently analyzed by FRASE 

assays (Figure 13A). I observed that the longer preformed Ex1Q48 fibrils were sonicated the higher 

was the detected seeding activity (Figure 13A and B). To confirm that indeed small fibrils are 

produced, I analyzed the generated samples by FRA238. Large Ex1Q48 aggregates were detected 

in non-sonicated samples (Figure 13C), while they were not observed in sonicated samples 

(>30 sec). This indicates that sonication (>30 sec) leads to fibril breakage and the formation of 

small mHTTex1 structures that are no longer retained on filter membranes (0.2 µm pore size). 
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Next, the samples were analyzed by dot blot (DB) assays, which allow the identification of protein 

assemblies on filter membranes independent of their size239. These experiments revealed Ex1Q48 

immunoreactivity in both sonicated and non-sonicated samples (Figure 13C), confirming the 

presence of Ex1Q48 protein in all samples. Finally, I analyzed the generated samples with AFM, 

demonstrating that small fibrillar Ex1Q48 structures are produced by sonication (Figure 13D). 

These results suggest that sonication of samples prior to FRASE analysis can increase the sensitivity 

of the measurement and facilitate the detection of low amounts of seeding-competent 

aggregates. Furthermore, my analysis demonstrates that FRASE assays detect both large and small  

 

 

Figure 13: Fragmentation of recombinant Ex1Q48 aggregates enhances seeding activity 

(A) Sonication of preformed, fibrillar Ex1Q48 aggregates enhances HSA detected by FRASE. Fibrillar Ex1Q48 

aggregates were produced by incubating GST-Ex1Q48 fusion protein (2 µM) for 24 h at 25 °C. Preformed 

Ex1Q48 aggregates (1 nM) were added to the Ex1Q48-CyPet/-YPet (2 µM) aggregation reactions. Data are 

shown as means ± SD of 3 technical replicates. (B) Calculated ∆t50 values from Ex1Q48-CyPet/-YPet 

aggregation profiles in A. Individual ∆t50 values of each triplicate are displayed as black dots (●) and mean 

± SD of technical triplicates. (C) Analysis of sonicated and non-sonicated Ex1Q48 seeds by denaturing filter 

retardation (FRA, left panel) and dot blot (DB, right panel) assays using an anti-HTT (HD1) antibody. 

Fragmentation of large fibrillar Ex1Q48 aggregates by sonication prevents their detection in FRAs. (D) 

Preformed Ex1Q48 fibrils were sonicated for the indicated times and visualized by AFM. Sonication reduces 

the size of preformed fibrillar Ex1Q48 aggregates. Scale bar: 1 µm; color gradient represents 0-20 nm height. 
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mHTTex1 aggregates which is an advancement over state-of the-art aggregate detection methods 

such as the FRA, which is limited to the detection of large SDS-stable aggregates. 

Besides pre-treatment of sample material prior to FRASE analysis, the reporter system 

itself was optimized. Seeding activity is defined as shortening of the lag phase in comparison to an 

unseeded aggregation reaction of the reporter proteins. This implies that the length of the lag 

phase of an unseeded reaction influences the sensitivity of the assay and the resolution that can 

be reached to distinguish samples of different seed concentrations. Hence, extending the lag 

phase of Ex1Q48-CyPet/-YPet polymerization, might improve assay sensitivity and resolution. 

In accordance with the standard aggregation protocol of the Wanker lab, reporter 

proteins are ultracentrifuged prior to each FRASE assay in order to remove small preformed 

protein assemblies that could act as seeds in the aggregation reaction. Under the assumption that 

active seeds may be protein assemblies with extremely low sizes, it is unlikely that 

ultracentrifugation will completely remove them from the applied fluorescent GST-tagged 

reporter proteins. Nevertheless, increasing the speed of ultracentrifugation would clear the 

protein solution of even smaller assemblies resulting in a reporter protein solution containing less 

seeding-competent material. Hence, unseeded polymerizations of reporter proteins should have 

a longer lag phase which offers the opportunity to detect even lower amounts of mHTTex1 seeds. 

In order to experimentally address these questions, GST-Ex1Q48-CyPet and -Ex1Q48-YPet fusion 

proteins were ultracentrifuged under standard conditions (163,348 x g, Figure 14A) or at even 

higher speed (187,972 x g, Figure 14B) prior to their use as seeding sensors in the presence of 

sonicated Ex1Q48 seeds. As expected, stronger centrifugation increased the duration of the lag 

phase of spontaneous reporter protein polymerization (represented by t50 values in Figure 14C). 

In addition, low concentrations of sonicated Ex1Q48 seeds, which were undetectable when 

reporter proteins were centrifuged under standard conditions (0.05 and 0.01 nM), can now be 

quantified with the FRASE assay (Figure 14D). Together these studies indicate that assay sensitivity 

was improved by increasing the centrifugation speed in the preparation of sensor proteins for 

FRASE measurements.  
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Figure 14: Increasing the centrifugation speed during sensor protein preparation improves seed detection 

(A) FRASE analysis of different concentrations of sonicated Ex1Q48 seeds using Ex1Q48-CyPet/-YPet proteins 

(2 µM) centrifuged for 40 min at 163,348 x g (low centrifugation) or (B) at 187,972 x g (high centrifugation) 

prior to their application as reporter proteins. (C) Analysis of t50 values calculated from A and B indicates a 

longer lag phase for the spontaneous aggregation of reporter proteins when they were centrifuged at higher 

speed. Lag phase of seeded reactions are shortened in a concentration dependent manner. (D) Calculation 

of HSA from A and B illustrates that lower concentrations of preformed Ex1Q48 seeds can be detected when 

the reporter proteins are centrifuged at a higher speed prior to their use in FRASE assays. Data are mean ± 

SD of technical triplicates. 

 

As described previously, mHTTex1 aggregation is a nucleation-dependent process159. The 

rate of primary nucleation, which is the initial conformational conversion of soluble mHTTex1 

monomers to a stable β-sheet structure, largely depends on the protein concentration and the 

length of the polyQ stretch. Therefore, reducing the concentration of sensor proteins or 

shortening the length of the polyQ stretch in the sensor proteins is expected to decrease the 

propensity of primary nucleation. This is supposed to extend the lag phase and might therefore 

improve the sensitivity of the assay.  

First, I assessed whether seed detection can be improved by reducing the concentration 

of sensor proteins. Ex1Q48-CyPet/-YPet polymerization was monitored at different 
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concentrations in the absence or presence of 1 nM preformed Ex1Q48 seeds (Figure 15A). For 

spontaneous aggregation reactions I observed a clear extension of the lag phase, when lower 

concentrations of the reporter proteins (Ex1Q48-CyPet/-YPet) were applied. Upon the addition of 

Ex1Q48 seeds, HSA was detectable in all cases regardless of the sensor protein concentration. 

Quantitative analysis revealed the largest temporal shift for the lowest sensor protein 

concentration, indicating that a reduction of sensor protein concentration can improve the 

sensitivity of the assay (Figure 15B). In order to validate this finding, the Ex1Q48-CyPet/-YPet 

reporter proteins, at a concentration of 1.2 µM, were incubated with different amounts of 

sonicated ExQ48 seeds and HSAs were quantified (Figure 15C and D). 

 

 

Figure 15: Lowering the sensor protein concentration improves the sensitivity of the FRASE assay 

(A) Monitoring mHTTex1 co-aggregation at indicated concentrations of the reporter proteins 

Ex1Q48-CyPet/-YPet in the absence or presence of 1 nM sonicated Ex1Q48 seeds. (B) Calculation of HSA from 

seeded and spontaneous aggregation reactions in A reveals higher ∆t50 values for lower reporter protein 

concentrations. (C) FRASE analysis of indicated concentrations of preformed sonicated Ex1Q48 seeds 

(equivalent to monomers) using a low concentration of the reporter proteins Ex1Q48-CyPet/-YPet (1.2 µM). 

(D) Quantification of HSA from aggregation profiles in C. Seeds are already detectable at a concentration of 

0.005 nM. All data are mean ± SD of technical triplicates. 
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Previous experiments revealed that seed concentrations of 0.01 nM are detectable when sensor 

protein concentrations of 2 µM are applied (Figure 14D). Using a sensor protein concentration of 

1.2 µM, however, HSA was already detectable with a seed concentration of 0.005 nM, confirming 

that lowering the sensor protein concentration improves the detection of mHTTex1 seeds. 

Next, I investigated whether a shortening of the polyQ tracts in the reporter proteins 

influences the sensitivity of seed detection with FRASE assays.  

 

 

 

Figure 16: Shorter polyQ tracts in sensor proteins do not improve the sensitivity of FRASE assays 

(A) Schematic representation of GST-tagged HTTex1 fusion proteins containing polyQ tracts of 23 (left) and 

35 (right) glutamines. P, proline-rich regions. (B) The recombinant GST-Ex1Q23-CyPet and -YPet and 

GST-Ex1Q35-CyPet and -YPet fusion proteins were affinity purified using glutathione-coated sepharose 

beads. Purity was assessed by SDS-PAGE and subsequent Coomassie blue staining.  (C) FRET measurements 

displaying the aggregation behavior of Ex1Q23-CyPet/-YPet reporter proteins (1.2 µM) in the absence or 

presence of sonicated Ex1Q48 seeds. (D) Aggregation profiles obtained of spontaneous and seeded 

Ex1Q35-CyPet/-YPet (1.2 µM) co-polymerization reactions monitored by FRET measurements. All data are 

mean ± SD of technical triplicates. 
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For this purpose, I produced and purified two sets of additional fusion proteins, 

GST-Ex1Q35-CyPet/-YPet and GST-Ex1Q23-CyPet/-YPet (Figure 16A and B). They were incubated 

with PSP and different amounts of preformed sonicated Ex1Q48 seeds. Aggregation profiles were 

recorded by FRET measurements. For the protein pair Ex1Q23-CyPet/-YPet no increase in FRET 

efficiency was observed in the absence of Ex1Q48 seeds, indicating that the HTTEx1 fusion 

proteins with a polyQ stretch in the non-pathogenic range do not co-polymerize spontaneously 

into large fibrillar aggregates under the tested conditions (Figure 16C). Similarly, the addition of 

seeds also did not induce the aggregation of these reporter proteins. Interestingly, I observed a 

slight time-dependent increase in FRET efficiency when very high amounts of seeds were added 

to reactions. This indicates that FRET-positive Ex1Q23-CyPet/-YPet assemblies are formed in vitro. 

However, these results strongly differ from the typical sigmoidal shaped aggregation profiles that 

are observed with mutant HTTex1 reporter proteins, indicating that the assembly process differs 

in its kinetic properties. In conclusion, the recombinant proteins Ex1Q23-CyPet/-YPet are not well 

suitable as reporters to detect seeding-competent mHTTex1 aggregates with FRASE assays.  

In contrast, the fusion proteins Ex1Q35-CyPet/-YPet did spontaneously aggregate after a lag phase 

of ~40 hours and addition of sonicated Ex1Q48 seeds accelerated their aggregation in a 

concentration dependent manner (Figure 16D). Despite the fourfold extension of the lag phase, 

in comparison to the spontaneous aggregation of Ex1Q48-CyPet/-YPet, the lowest detectable seed 

concentration was likewise 0.005 nM. As the application of Ex1Q35-CyPet/-YPet as sensor proteins 

did not result in any significant improvement in sensitivity, the Ex1Q48-CyPet/-YPet reporter 

proteins were used in all subsequent experiments 

3.1.3. FRASE assays detect HSA with high sensitivity and specificity 

Following the optimization of the assay conditions, I investigated the sensitivity, 

robustness and specificity of the FRASE assay for the detection of recombinant seeds. As described 

before, recombinant Ex1Q48 seeds were generated by sonication (Figure 13). Seeds were 

analyzed by blue native PAGE and immunoblotting. Sonication for 60 sec led to the formation of 

Ex1Q48 structures with an average molecular weight of ~1,250 kDa (~90mers) (Figure 17A), 

whereas aggregates with a much larger size were detected in the gel pocket in non-sonicated 

samples. 

Next, a large range of concentrations of sonicated Ex1Q48 aggregates were analyzed for 

their seeding activity in FRASE assays. As expected, a dose-dependent shortening of the lag phase 

was observed when sonicated Ex1Q48 structures were added to polymerization reactions (Figure 

17B and C). Considering the molecular weight of the applied seeds, a threshold of ~60 fM for 

detecting Ex1Q48 seeds was determined. Furthermore, FRASE assays responded quantitatively to  
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Figure 17: The FRASE assay detects sonicated Ex1Q48 aggregates with high robustness and sensitivity 

(A) Analysis of sonicated (1 min) and non-sonicated preformed fibrillar Ex1Q48 aggregates by blue native 

(BN) PAGE and immunoblotting using the anti-HTT antibody (HD1). (B) Defining the detection limit of FRASE 

assays. A dilution series of sonicated Ex1Q48 seeds was systematically analyzed; seed concentrations were 

calculated using an average aggregate size of 1,250 kDa. Ex1Q48-CyPet/-YPet (1.2 µM). Data are mean ± 

SEM (n = 5). (C) Calculation of ∆t50 values from aggregation profiles in B results in a detection threshold for 

sonicated Ex1Q48 seeds of 56 fM. The assay responds quantitatively to added seeds over more than four 

orders of magnitude (r2 = 0.988). Above a seed concentration of 556 fM the Z’ factor exceeds 0.5. Data are 

mean ± SEM (n = 5). 

 

seeds over a dynamic range of 4 orders of magnitude (Figure 17C). At a concentration of ~560 fM 

the Z’ factor240 exceeds 0.5 (Figure 17C), demonstrating the robustness of this assay at very low 

concentrations and its suitability for high throughput applications. 

 

 

Figure 18: The FRASE assay specifically responds to preformed Ex1Q48 aggregates 

(A) Fibrillar aggregates prepared of amyloidogenic non-polyQ polypeptides do not accelerate the 

co-aggregation of the reporter proteins Ex1Q48-CyPet/-YPet (1.2 µM). Data are mean ± SD of triplicates. (B) 

Analysis of preformed amyloidogenic α-synuclein (α-Syn), amyloid-β42 (Aβ), islet amyloid polypeptide (IAPP) 

and Tau (Tau40) protein aggregates by AFM. Scale bars: 1 µm; color gradients represent the following 

heights: 0-10 nm (α-Syn), 0-5 nm (Aβ), 0-30 nm (IAPP) and 0-10 nm (Tau40). 
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Finally, I investigated the specificity of the FRASE assay for detecting mHTTex1 aggregates. 

Fibrillar α-synuclein, tau, amyloid-β and IAPP aggregates were produced in vitro and subsequently 

analyzed in FRASE assays. The unrelated fibrillar aggregates did not significantly influence 

Ex1Q48-CyPet/-YPet polymerization (Figure 18A), indicating that the FRASE assay specifically 

detects amyloidogenic polyQ aggregates. AFM analysis confirmed that fibrillar α-synuclein, tau, 

amyloid-β and IAPP aggregates were added to reactions (Figure 18B). 

3.1.4. HSA is detectable in brains of HD mice and patients  

After the establishment of standardized conditions for the reliable and sensitive detection 

of recombinantly produced mHTTex1 seeds, I investigated whether FRASE assays can detect HSA 

in complex biological samples. Figure 19A displays a schematic representation of the FRASE assay  

 

 

Figure 19: HSA is detectable in brain homogenates of R6/2Q212 mice 

(A) Schematic representation of the FRASE assay workflow for detecting HSA in tissue homogenates. Icons 

used in this figure were taken from Freepik (https://de.freepik.com/) (B) FRASE analysis of brain 

homogenates prepared from a HD R6/2Q212 transgenic mouse and a wild-type littermate control. The 

concentration of the sensor proteins GST-Ex1Q48-CyPet/-YPet was 3 µM. Data is presented as mean ± SD of 

technical triplicates. (C) Calculation of ∆t50 values from aggregation profiles in B. ∆t50 is displayed as 

individual values (black ●) and as mean ± SD of technical triplicates. Comparable results were obtained in 

two independent experiments. 
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workflow. Tissues of interest are homogenized in detergent-free buffer and cleared from cell 

debris by low-speed centrifugation. Ex1Q48-CyPet/-YPet sensor proteins are supplemented with 

defined amounts of the prepared crude protein extracts. Subsequently, co-aggregation of the 

sensor proteins is monitored in 384-well plates by quantification of FRET. The presence of mutant 

HTT seeds in the analyzed biosamples shortens the lag phase of Ex1Q48-CyPet/-YPet 

co-aggregation. HSA (Δt50) in tissue samples is calculated from Ex1Q48-CyPet/-YPet aggregation 

profiles of seeded and non-seeded reactions as described before.  

Following this strategy, I first assessed brain homogenates prepared from 12-week-old 

R6/2Q212 transgenic mice (carrying ~212 CAGs) and age-matched controls. R6/2Q212 mice 

express low levels of the human HTTex1Q212 protein73, show motor abnormalities from 8 weeks 

of age241 and typical mHTTex1 inclusion bodies from 3-4 weeks onwards242. Strikingly, I measured 

high levels of HSA in brain homogenates of R6/2Q212 mice but not in those of age-matched 

littermate controls (Figure 19B and C). 

In order to investigate whether HSA in R6/2Q212 brain homogenates indeed originates 

from mutant HTT aggregates, immunodepletion experiments were performed. Brain extracts from 

symptomatic 12-week-old R6/2Q212 mice and littermate controls were prepared and potential 

seeding-competent mHTTex1 aggregates were immunodepleted using the monoclonal anti-HTT 

antibody MW8243. The parental lysate (input) as well as the post-IP supernatant were analyzed 

using FRASE assays. I observed a dramatic decrease of HSA in MW8-immunodepleted R6/2Q212 

brain homogenates (Figure 20A) but not in homogenates treated with an isotype control antibody 

(Figure 20B). As expected, HSA was not detected in crude brain extracts of age-matched wild-type 

control mice. SDS-PAGE and immunoblotting confirmed the depletion of mHTTex1 protein 

aggregates from brain homogenates by MW8 antibody treatment (Figure 20C), whereas mHTTex1 

protein aggregates remained in the supernatant fraction when brain homogenates were treated 

with the isotype control antibody (Figure 20D). This demonstrates that removal of mHTTex1 

aggregates from R6/2Q212 brain lysates decreases the detectable seeding activity which in turn 

indicates that HSA indeed originates from mutant HTTex1 aggregates. 

Thus far, I demonstrated HSA in brain homogenates of R6/2Q212 mice. This model is 

based on the expression of an aggregation-prone N-terminal fragment of the HTT protein with an 

extremely long polyQ stretch and is widely used to study mHTTex1 aggregation and HD 

pathology244-246. Since the creation of the R6/2 mouse, several other murine models have been 

developed, which express longer mHTT fragments or the full length HTT protein. In order to show 

that HSA is not a unique feature of a particular HD mouse model, but a universal phenomenon  
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Figure 20: Immunodepletion of HTTex1 aggregates from mouse brain homogenates decreases HSA 

(A) Immunodepletion of mutant HTTex1 aggregates from R6/2Q212 mouse brain homogenates decreases 

their seeding activity in FRASE assays. Brain homogenates prepared from transgenic mice and littermate 

controls (12 weeks) were incubated with MW8 antibody-coated protein G beads; supernatant (post-IP) and 

input samples were applied to FRASE analysis using 3 µM of sensor proteins. FRET efficiency is plotted as 

mean ± SD of technical triplicates. (B) Same procedure as in A but with an IgG isotype control antibody. 

(C and D) Immunoblots of samples analyzed in A and B. HTTex1 aggregates appear as a smear at the upper 

edge of the blot (red rectangles). Input, brain extract before immunodepletion; Sup, supernatant after 

immunodepletion; Beads, antibody-coated protein G beads after immunodepletion. HTTex1 aggregates are 

depleted from mouse brain homogenates with the anti-HTT antibody MW8 but not with an IgG isotype 

control antibody. 

 

detectable in various HD models and patients, I also quantified HSA in brain tissues of additional 

four HD mouse models and HD patients. 

First, I assessed whether HSA is detectable in brain extracts of 12-week-old R6/2Q51247 

mice, which express a HTTex1Q51 fragment. In comparison to the R6/2Q212 model, these mice 

have a much shorter polyQ stretch of 51 glutamines, which corresponds more closely to the 

average repeat length observed in HD patients (44 glutamines)248. At 12 weeks of age these mice 

do not show a disease-related phenotype, suggesting that HSA should be lower. FRASE analysis 

revealed that brain homogenates of prodromal 12-week-old R6/2Q51 mice do not possess 
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significant HSA (Figure 21A), while seeding activity was detectable in extracts of very old mice 

(104-105 weeks). 

Next, brain tissue of N171-82Q HD mice was analyzed. This mouse model expresses a 

longer N-terminal fragment comprised of the first 171 amino acids of human HTT with 82 CAG 

repeats. Its expression is controlled by the mouse prion protein promoter and is therefore 

restricted to neurons249. These mice show an overall brain atrophy and the formation of neuronal 

inclusions249,250. Previous studies demonstrated motoric and cognitive deficits with 15 weeks of 

age. Compared to the R6/2Q212 model, N171-82Q mice display a milder phenotype with the 

appearance of symptoms at 10 weeks of age and a survival of 10 – 24 weeks11,249. I analyzed brain 

tissue homogenates of symptomatic N171-82Q and corresponding WT littermates using FRASE 

assays. Significantly higher HSA was observed in N171-82Q mice compared to age-matched 

control mice (Figure 21B). 

 

  

 

Figure 21: HSA is detectable in various HD mouse models at symptomatic stage 

(A) Analysis of brain extracts prepared from R6/2Q51 transgenic mice and controls using FRASE assays 

(1.2 µM Ex1Q48-CyPet/-YPet). HSA measured for each mouse is displayed as black dots (●). Bars are mean 

± SEM. Statistical significance was assessed by One-Way ANOVA followed by Dunnett's multiple comparisons 

test (n = 2). (B) Quantification of HSA in brain homogenates of 12 weeks-old N171-82Q mice and 

corresponding littermates using FRASE analysis (3 µM Ex1Q48-CyPet/-YPet). Data is presented as mean ± SD 

of technical triplicates (n = 1). Comparable results were obtained in independent experiments. 

(C) Quantification of HSA in hypothalamic brain homogenates of FVB/N mice expressing the proteins 

HTT853Q18 or HTT853Q79. The concentration of sensor proteins was 3 µM. Data are mean ± SEM (n = 3). 

Individual measurements are displayed as black dots (●). Statistical significance was assessed by One-Way 

ANOVA followed by Dunnett's multiple comparisons test. (D) Investigation of brain extracts prepared from 

cortex of 8-month-old HdhQ150 heterozygous knock-in and corresponding WT mice (1.2 µM Ex1Q48-CyPet/-

YPet). HSA is presented as mean ± SEM (n = 3). Individual ∆t50 for each mouse are displayed as black dots 

(●). Statistical significance was assessed by Student’s t test. 
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I also investigated whether HSA is detectable in the hypothalamus of mouse brains, in which the 

proteins HTT853-Q79 or HTT853-Q18 were overexpressed for 8 weeks using viral vectors. Previous 

studies have demonstrated that hypothalamic expression of HTT853-Q79 leads to a gain of body 

weight and the formation of insoluble mHTT protein aggregates251. FRASE analysis revealed HSA 

in hypothalamic tissue homogenates of HTT853-Q79 compared to HTT853-Q18 and controls mice 

(Figure 21C). 

 Subsequently, I analyzed HdhQ150 knock-in mice that express a full-length mHTT protein 

with a pathogenic polyQ tract of 150 glutamines252. These mice show onset of depressive-like 

symptoms by 12 months of age253 and impairment of motor function at ~18 months of age. 

Widespread deposition of mHTT aggregates throughout the brain is observed by 8 months of 

age254. FRASE analysis of tissue homogenates prepared from cortex of 8 month-old heterozygous 

HdhQ150 mice and littermate controls demonstrated high seeding activity in HdhQ150 mice 

(Figure 21D). 

Finally, HSA was examined in different brain regions of HD patients. Protein extracts 

prepared from postmortem tissue (cerebral cortex, caudate nucleus and cerebellum) from HD 

patients and control individuals were systematically analyzed using the FRASE assay. HSA was 

invariably detected in HD but not in control samples (Figure 22), indicating that the method is 

suitable to discriminate between patients and healthy individuals. Interestingly, HSA was 

detectable in the cerebral cortex and the caudate nucleus, which are severely affected in HD 

patients11, while it was not observed in the cerebellum, which is less affected in disease. 

 

 

 

Figure 22: Detection of HSA in post mortem human brain tissue 

Quantification of HSA in brain homogenates prepared from cerebellum, caudate nucleus and cerebral cortex 

of HD patients and controls with FRASE assays. For clarity, the average ∆t50 values obtained from 3 healthy 

control samples are depicted (Average Ctrl). Individual values of ∆t50 (black ●) and mean ± SD of triplicates 

are displayed. 
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Equivalently to the in vitro studies (Figure 18) I performed control experiments to assess 

whether the FRASE assay specifically detects seeding activity of mutant HTT aggregates. 

I previously established that unrelated amylogenic aggregates composed of α-synuclein, tau, 

amyloid-β and IAPP were unable to accelerate the co-aggregation of Ex1Q48-CyPet/-YPet reporter 

proteins. In order to substantiate these results, I analyzed cortex samples of APPPS1 mice, a 

commonly used Alzheimer’s disease (AD) mouse model and corresponding littermates at 9 month 

of age. These mice contain the human transgenes for APP and PSEN1 and harbor two familial 

mutations known to cause AD (APP: Swedish KM670/671NL; PSEN1: L166P). The deposition of 

amyloid-β plaques has been observed at 6 weeks of age in the neocortex and at 3-4 month of age 

in the hippocampus255. Learning and memory deficits were reported at ~7 month of age255,256. 

Brain tissue homogenates were prepared and assessed for their potential seeding activity. 

As expected, seeding activity was undetectable in both APPPS1 and WT control mice (Figure 23A). 

Similarly, no HSA was detectable in homogenates of cortex tissue from AD patients (Figure 23B), 

indicating that unrelated aggregates, such as amyloid-β plaques, do not seed the aggregation of 

Ex1Q48-CyPet/-YPet reporter proteins. 

 

 

 

Figure 23: FRASE assays detect mutant ataxin-3 seeding activity in brains of SCA3 transgenic mice 

(A) Detection of HSA in brain homogenates of 9-month-old APPPS1 and age-matched control mice assessed 

by FRASE assays; 1.2 µM Ex1Q48-CyPet/-YPet; Data are mean ± SEM (n = 2); (●) = ∆t50 values of individual 

mice. (B) Brain homogenates prepared from temporal cortex of AD patients were analyzed by FRASE assays 

and compared to corresponding brain tissue of control individuals. HSA values are plotted individually as 

black dots (●) and as mean ± SEM (n = 3); cortical tissues from AD patients (Braak 6, Age 73.3 ± 4.6), cortical 

tissues from controls (Braak 0, Age 66.3 ± 7). Statistical significance was assessed by unpaired t test. 

(C) FRASE analysis of brain homogenates prepared from cortex, brainstem and cerebellum of 19-month-old 

SCA3/ataxin-3/CamKII mice in comparison to age-matched littermates reveals HSA of non-HTT polyQ 

aggregates; 1.2 µM Ex1Q48-CyPet/-YPet; Data are mean ± SEM (n = 3); (●) = ∆t50 values of individual mice. 
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Next, I addressed the question whether a different type of polyQ aggregate could 

accelerate the aggregation of the reporter proteins. As described before, HD is one of nine 

diseases resulting from a CAG repeat expansion in the respective disease-associated gene. 

Although, it is common to all these diseases that a protein with an elongated polyQ stretch is 

deposited in inclusion bodies, the protein sequences flanking the polyQ stretch are different in 

each disease protein184,185. However, as the expansion of the polyQ stretch leads to protein 

aggregation in all these diseases a common mechanism of protein aggregation and a similar 

aggregate architecture can be suspected. Hence, the FRASE assay might also be able to detect the 

seeding activity of other polyQ-containing protein aggregates. In order to test this hypothesis, 

I investigated whether I can detect seeding activity in brains of SCA3 (spinocerebellar ataxia type 

3) transgenic mice using the FRASE assay . In this model, the full-length human ataxin-3 protein 

with 77 glutamines is produced under the control of the CamKII promoter, which targets 

transgene expression primarily to the cortex and only to a lesser extend to other brain 

regions257,258. I analyzed tissue homogenates prepared from cortex, brainstem and cerebellum 

from 19-month-old SCA3 mice and corresponding littermates. Using the FRASE assay, which was 

established for HD, I observed seeding activity in all three brain regions, with the highest activity 

detected in the cortex and lower activities in brainstem and cerebellum (Figure 23C). This indicates 

that the FRASE assay not only detects mutant HTT aggregates in biosamples but also responds to 

other pathogenic polyQ aggregates that are formed in related disease models such as SCA3. 

3.1.5. HSA is detected early in pathogenesis and increases with disease progression  

Using the FRASE assay, HSA was detectable in brain tissues of various HD mice at 

symptomatic stage, regardless whether an N-terminal fragment of mutant HTT or the full-length 

protein was expressed. In addition, HSA was detectable in severely affected brain regions of HD 

patients but not in control individuals. This suggests that the presence of seeding-competent 

mHTT aggregates is a general phenomenon in HD models and patients and further implies a 

potential role of these structures in disease development or progression. However, to be regarded 

as disease relevant and capable of promoting pathogenesis, such structures would need to be 

present early in disease development or even prior to the appearance of a disease phenotype. 

Also, their abundance in affected tissues should increase with the severity of disease symptoms.  

To address whether HSA is detectable in brains of presymptomatic HD mice, I first 

analyzed non-sonicated brain homogenates of young R6/2Q212 mice and age-matched controls 

using the FRASE assay. HSA was detected in brain extracts of 2-week-old R6/2Q212 mice (Figure 

24A) and increased progressively over time. A similar result was also obtained with sonicated brain 

extracts (Figure 24B). With sonication, significant HSA was already detectable in brains of 



Results  
 

40 
 

1-day-old R6/2Q212 transgenic mice, indicating that seeding-competent mHTTex1 structures are 

present in brains of R6/2Q212 mice long before inclusion bodies can be detected11,127. 

Next, I investigated whether HSA is detectable in presymptomatic HdhQ150 knock-in mice 

that express full-length mHTT protein and show a milder and slower progressing disease 

phenotype in comparison to R6/2Q212 mice252-254. I systematically analyzed tissue homogenates 

prepared from cortex, striatum and hippocampus of 2-, 5- and 8-month-old heterozygous 

HdhQ150 mice and littermate controls using the FRASE assay. I observed progressively increasing 

HSA in protein extracts from all three brain regions of HdhQ150 but not from control mice (Figure 

24C). This confirms that mHTT seeds are detectable in HD mouse brains long before the 

appearance of inclusion bodies and motor abnormalities and increase in abundance with the 

development of disease pathology254. 

 

 

Figure 24: FRASE assay detects HSA in brains of presymptomatic HD mice 

(A) Quantification of mutant HSA in brain extracts prepared from R6/2Q212 transgenic mice. Mice were 

sacrificed at the indicated age; brain extracts were analyzed using the FRASE assay. Corresponding extracts 

from wild-type (WT) littermate controls were analyzed for all ages; an average WT ∆t50 value was depicted 

for clarity. (B) Analysis of sonicated brain extracts prepared from young R6/2Q212 transgenic mice using the 

FRASE assay. Results from corresponding littermates are shown as an average ∆t50 value. (C) Investigation 

of brain extracts prepared from indicated brain regions of HdhQ150 heterozygous knock-in mice. 

Corresponding extracts from 2-, 5- and 8-month-old WT mice were also analyzed and average ∆t50 values 

are depicted for clarity. All data are mean ± SEM (n = 3). The concentration of the sensor proteins 

GST-Ex1Q48-CyPet/-YPet was 1.2 µM. HSA measured for each mouse is displayed as black dots (●). Bars are 

mean ± SEM. Statistical significance was assessed by One-Way ANOVA followed by Dunnett's multiple 

comparisons test. 

 

Subsequently, I asked whether similar results can be obtained with brain tissues prepared 

from HD patients. Based on the temporospatial pattern of degeneration in the striatum, Vonsattel 

et al. developed a grading system to classify the severity of neuropathological changes into five 

distinct grades (0 – 5)259. Longitudinal examination of HD patients prior to death showed 
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significant correlation between clinical features and the neuropathological grade assigned 

postmortem260. Here, I analyzed brain homogenates prepared from the putamen of HD patients 

and control individuals. Neuropathological changes of HD patients had been classified and ranged 

from grade 2 to grade 4. FRASE analysis demonstrates a significant elevation of HSA in brain tissue 

with mild neuropathological changes (Figure 25, Grade 2). With the advancement of 

neuropathological changes, I observed a successive increase of HSA (Figure 25, Grade 3 and 4), 

indicating that HSA correlates with the severity of neuropathological changes.  

 

 

Figure 25: HSA detected in the putamen of HD patients increases with the advancement of 

neuropathological changes 

Assessment of HSA in homogenates prepared from putamen of control individuals and HD patients at 

different disease stages. ∆t50 values for each individual are plotted as red circles; Boxes show first and third 

quartiles, the central band shows the median, and the whiskers show data within 1.5 IQR of the median; 

putamen tissue from HD patients (Grade 2 (n = 4), CAG repeat length 45.8 ± 0.96, Age 60.25 ± 12.1; Grade 3 

(n = 4), CAG repeat length 47.5 ± 1.7, Age 54.5 ± 6.6; Grade 4 (n=5), CAG repeat length 52.0 ± 1.0, Age 44.6 

± 4.9), caudate tissue from controls (n = 10, Age 60.6 ± 9.1), statistical significance was assessed by One-Way 

ANOVA followed by Dunnett's multiple comparisons test. 

 

3.1.6. Small mHTT structures are predominantly responsible for the measured HSA in 

mouse brain homogenates 

Within the last chapter, I described that HSA is detectable in HD mouse models before the 

appearance of large mHTT aggregates (Figure 24). However, previous experiments also indicated 

that indeed small misfolded HTT assemblies could cause the seeding effect measured by FRASE 

assays (Figure 3B-D). To examine whether large and/or small mHTTex1 aggregates are responsible 

for the measured HSA in biosamples, I proceeded by investigating the nature of 

seeding-competent mHTT aggregates. I hypothesize that small mHTT structures, might contribute 

to the observed HSA, but remain invisible to standard aggregate detection methods such as the 

FRA or immunohistochemical analysis.  
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In order to test this hypothesis, I investigated whether HSA is detectable in protein 

fractions after depletion of large mHTT aggregates by centrifugation. Non-sonicated brain 

homogenates prepared from symptomatic 12-week-old R6/2Q212 mice were centrifuged for 

20 min at 2,700 x g (low speed) or 18,000 x g (medium speed), respectively, and the resulting 

supernatant and pellet fractions (S1Low, P1Low and S1Med, P1Med; Figure 26A) were analyzed with 

FRASE assays. Interestingly, HSA was high in the parental crude lysate and in the S1Low fraction, 

while it was relatively low in the P1Low fraction (Figure 26B), suggesting that it predominantly 

originates from soluble rather than insoluble mHTTex1 aggregates. A similar result was obtained 

when the fractions S1Med and P1Med were analyzed (Figure 26B). However, after medium speed 

centrifugation HSA in the P1Med fraction was higher than in the P1Low fraction, indicating that HTT 

seeds can be removed from supernatant fractions using a higher centrifugation speed. This trend 

was even more pronounced when the generated S1Med fraction was subjected to a high-speed 

centrifugation (190,000 x g), resulting in the supernatant and pellet fractions S2 and P2 (Figure 

26A). FRASE analysis revealed a significantly higher HSA in the P2 than in the S2 fraction, indicating 

that small seeding-competent mHTTex1 aggregates can be removed from the soluble S1Med 

fraction by high-speed centrifugation. 

To obtain a first hint about the size of the seeding-competent mHTTex1 aggregates in the 

brains of R6/2Q212 mice, the supernatant and pellet fractions were analyzed by FRA238. I found 

HTT immunoreactivity predominantly in the P1Low and P1Med fractions. In comparison, weak or no 

immunoreactivity was detected in the fractions S1Low, S1Med, P2 and S2 (Figure 26C), suggesting 

that HSA in R6/2Q212 mouse brain extracts predominately originates from small rather than large 

mHTTex1 protein assemblies. 

Finally, transmission immunoelectron microscopy was used to assess the size and 

morphology of mHTT seeds present in P2 fractions. This fraction exhibits high HSA but does not 

contain large mHTTex1 aggregates. I detected small, immunoreactive HTT fibrils with diameters 

of 10.2 ± 3.6 nm and lengths of 157.8 ± 64.1 nm exclusively in P2 fractions of R6/2Q212 but not of 

WT mice (Figure 26D). This suggests that HSA primarily originates from small rather than large 

mHTTex1 structures. Additionally, these results indicate that the FRASE assay is capable to detect 

these small assemblies which is a major advantage over previously applied aggregate detection 

methods. 
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Figure 26: Detection of small seeding-competent mHTTex1 fibrils in soluble brain fractions 

(A) Scheme of the different centrifugation steps applied to prepare soluble and insoluble fractions from brain 

homogenates of 12-weeks-old R6/2Q212 transgenic mice. (B) Quantification of HSA in soluble and insoluble 

fractions using FRASE assays. In all cases, data obtained for transgenic mice were normalized to 

age-matched wild-type control mice. Bars are mean ± SEM (n = 2). HSA measured for each mouse is displayed 

as black dots (●). (C) Analysis of soluble and insoluble fractions prepared by centrifugation from mouse brain 

homogenates using a denaturing FRA. (D) Analysis of the P2 fraction after high-speed centrifugation by 

immunoelectron microscopy. The P2 fraction was prepared from 9-week-old R6/2Q212 transgenic mice and 

age-matched wild-type (WT) controls. Fibrillar HTT aggregates were visualized with the anti-Agg53 

HTT-antibody and a gold-labeled secondary antibody. Scale bar corresponds to 100 nm. 

 

3.1.7. Seeding-competent aggregates as potential disease drivers 

Hitherto, I could demonstrate elevated HSA in brain tissue of HD patients and mouse 

models. Seeding activity, which seems to primarily originate from small fibrillar mHTT structures, 

was detectable very early in disease development and increased with disease progression. This 

suggests that seeding-competent aggregates might not just be a byproduct in HD pathogenesis, 

but might potentially drive or promote disease development in a prion-like fashion. If this 

hypothesis is true the following prerequisites should be fulfilled. First, mHTT aggregates would 

need to be able to seed aggregation in a cellular context, not just in the test tube as demonstrated 

before. Second, their presence should disturb cellular functions and lead to a disease-like 

phenotype. 
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I first assessed whether preformed mHTTex1 seeds are able to promote the intracellular 

aggregation of initially soluble reporter proteins. For this purpose I used an inducible stable 

Chinese Hamster Ovary (CHO) cell line expressing Ex1Q68-CFP and Ex1Q68-YFP under the control 

of a tetracycline response element261. In this model system the expression of the fluorescently 

labeled HTTex1 proteins is induced through the removal of doxycycline from the cell culture 

medium. The expressed HTTex1 fragment contains a polyQ stretch in the pathogenic range and 

was previously reported to spontaneously assemble into intracellular inclusions261. However, the 

addition of mHTTex1 seeds to the media should accelerate this process, if these structures were 

able to enter the cells and promote intracellular aggregation (Figure 27A). In order to discriminate 

seeds from seeded intracellular aggregates, I used unlabeled non-fluorescent Ex1Q48 aggregates 

as seeds and specifically quantified the amount of newly formed fluorescently labeled aggregates 

in cells. Cells expressing Ex1Q68-CFP/YFP were cultured for 72 h in the absence or presence of 

different concentrations of preformed recombinant Ex1Q48 seeds or Ex1Q23 protein as a control. 

Fluorescently labeled aggregates were assessed using high content fluorescence microscopy. 

I observed a few large spots of high fluorescence intensity in cells that were exposed to 

Ex1Q23 protein or buffer. These spots represent spontaneously formed Ex1Q68-CFP/YFP 

aggregates in CHO cells (Figure 27B, lower panel). In comparison, many additional small 

CFP-positive spots were observed in cells, which were treated with preformed Ex1Q48 seeds 

(Figure 27B, upper panel). Quantification revealed a concentration-dependent increase in the 

number of fluorescent spots per cell with increasing seed concentration (Figure 27C). This 

indicates that preformed Ex1Q48 aggregates are taken up into cells and can seed the intracellular 

aggregation of the reporter proteins Ex1Q68-CFP/YFP. In order to confirm this result and to 

validate that in fact SDS-stable mHTTex1 aggregates are formed upon seed addition, I performed 

additional experiments. Cells were treated as described above, lysed and analyzed by filter 

retardation assays (FRA) using an anti-GFP antibody for the detection of seed-induced aggregates 

(Figure 27D). Similar to the microscopic analysis low amounts of spontaneously formed aggregates 

were observed in cells treated with Ex1Q23 control protein or buffer. Strikingly, the aggregate 

load was significantly increased in a concentration-dependent manner upon the addition of 

preformed Ex1Q48 seeds (Figure 27E), confirming that recombinant Ex1Q48 seeds are in fact able 

to promote the intracellular aggregation of Ex1Q68-CFP/YFP. 
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Figure 27: Recombinant Ex1Q48 seeds promote intracellular Ex1Q68-CFP/YFP aggregation 

(A) Schematic illustration of the established cell-based seeding assay. CHO cell expressing the proteins 

Ex1Q68-CFP/YFP were incubated for 72 h in doxycycline free media containing the indicated concentrations 

of Ex1Q48 seeds, Ex1Q23 control protein or aggregation buffer. (B) Exemplary fluorescence microscopy 

pictures of fixed and DRAQ5TM-stained CHO cells exposed to 400 nM of Ex1Q48 seeds (top) or Ex1Q23 control 

protein (bottom). CFP positive puncta represent Ex1Q68-CFP aggregates. Scale bar: 100 µm 

(C) Quantification of CFP fluorescent puncta (spot count) by high content fluorescent microscopy. Individual 

measurements are normalized to the average spot count of all conditions and displayed as black dots (●). 

Bars are mean ± SEM (n = 3). (D) FRA analysis of lysates from CHO cells treated as described above. 

Ex1Q68-CFP/YFP aggregates were detected using the anti-GFP antibody ab290. (E) Quantification of 

SDS-stable Ex1Q68-CFP/YFP aggregates detected by FRAs. Individual measurements are normalized to the 

average dot intensity of all conditions and displayed as black dots (●). Bars are mean ± SEM (n = 3). Statistical 

significance in C and E was assessed by One-Way ANOVA followed by Dunnett's multiple comparisons test. 

 

To further elucidate the biological relevance of small seeding-competent HTTex1 

aggregates, it is necessary to investigate their phenotypic consequences in vivo in the absence of 

large insoluble aggregates and without continuous overproduction of mutant HTT protein. 

I hypothesized that expression of mHTTex1 for a short time should lead to the formation of small 
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amounts of mHTTex1 seeds. These structures might be sufficient to cause proteotoxicity and 

induce phenotypic changes even though expression of the disease protein is not continued. 

To address this question an inducible transgenic HD fly model was used. This fly model 

was generated and phenotypically characterized in the Wanker Lab by Franziska Schindler as part 

of her PhD thesis262. In brief, cDNAs encoding HTTex1 proteins with normal and pathogenic 

polyQ tracts (HTTex1Q17 and HTTex1Q97) were integrated into a predetermined intergenic locus 

using the bacteriophage ΦC31 integration system263. HTTex1 protein expression in adult neurons 

was induced pan-neuronally using the Elav-GeneSwitch (elavGS) system264 which was applied 

previously to create adult-onset Drosophila models for spinocerebellar ataxia 7265 and Alzheimer’s 

disease266. Transgene expression in neurons of transgenic elavGS flies is induced when they are 

supplied with food containing the hormonal inducer RU486. Transgene expression can be 

switched off again, when flies are transferred back to food lacking the inducer267,268. Survival of 

transgenic elavGS;HTTex1Q17 and GS;HTTex1Q97 flies was analyzed when flies were treated 

either continuously or only for a short time of 3 or 6 days with the expression activating hormone 

RU486 (Suppl. Figure 1A and B). Lifespan of chronically RU486 treated elavGS;HTTex1Q97 flies was 

strongly reduced in comparison to untreated flies and elavGS;HTTex1Q17 control flies, indicating 

that the neuronal expression of HTTex1Q97 but not of HTTex1Q17 promotes mortality. Strikingly, 

short-time RU486 treatment also dramatically shortened the lifespan of elavGS;HTTex1Q97 flies, 

suggesting that both short and long-time expression of HTTex1Q97 in adult neurons induces 

dysfunction and neurotoxicity with similar phenotypic consequences262,268.  

To investigate whether reduced survival of long- and short-time RU486-treated 

elavGS;HTTex1Q97 flies is associated with increased deposition of large, SDS-stable HTTex1 

aggregates, head lysates were analyzed by FRAs238. The abundance of HTTex1Q97 aggregates was 

much higher in heads of chronically RU486-treated elavGS;HTTex1Q97 flies than in heads of 

short-time treated flies (Suppl. Figure 1C). This indicates that the formation of high amounts of 

large, SDS-stable HTTex1Q97 aggregates in neurons cannot explain the observed mortality of HD 

transgenic flies, which is similar for short- and long-time RU486-treated flies (Suppl. Figure 

1B)262,268.  

In addition, aggregate structures in fly brains were quantified using an 

immunohistochemical (IHC) approach, detecting large HTTex1 aggregates regardless of their 

stability. As expected, high amounts of HTTex1 aggregates were detected in long-time and lower 

amounts in short-time (3 and 6 days) hormone-treated HD flies (Suppl. Figure 1D), confirming the 

results obtained with FRAs. Interestingly, IHC analysis revealed very low amounts of HTTex1Q97 

aggregates in brains of 27-day-old non-induced elavGS;HTTex1Q97 flies, indicating that low levels 
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of mutant HTTex1 protein are expressed despite the absence of RU486-treated. However, this low 

expression of HTTex1Q97 was not sufficient to significantly shorten the lifespan of HD transgenic 

flies (Suppl. Figure 1B)262,268. 

Using the FRASE assay I quantified HSA in head lysates prepared from long- and short-time 

RU486-treated elavGS;HTTex1Q97 flies to determine whether seeding activity better predicts the 

survival phenotype than the detection of large aggregates by FRA and IHC. Strikingly, I measured 

high HSA in head lysates of both short- and long-time RU486-treated flies (Figure 28A and B). 

In comparison, HSA was undetectable in head lysates of elav;HTTex1Q17 control flies. As seeding 

activity in neurons of short-time treated elavGS;HTTex1Q97 flies cannot result from large fibrillar 

aggregates, it must originate from smaller structures that are not retained by the filter membrane. 

This demonstrates that the FRASE assay provides information that is fundamentally different from 

that obtained with standard aggregate detection techniques (FRA and IHC).  

In contrast to the FRA and IHC results (Suppl. Figure 1C and D), HSA levels measured with 

the FRASE assay (Figure 28A and B) correlate significantly better with the increased mortality of 

RU486-treated elavGS;HTTex1Q97 flies (Figure 28C). Together, these experiments suggest that 

the formation of small seeding-competent HTTex1Q97 structures might trigger neuronal 

dysfunction and lead to reduced survival of elavGS;HTTex1Q97 flies. 

 

 

Figure 28: Formation of small seeding-competent HTTex1 aggregates in fly neurons is associated with 

reduced survival 

(A) FRASE analysis of head lysates from flies expressing HTTex1Q97 either continuously or only for a short 

time of 3 or 6 days; see treatment scheme Suppl. Figure 1A. Values are plotted as means ± SEM of three 

biological replicates each performed in triplicates. (B) HSA calculated from aggregation kinetics in A. Results 

are displayed as mean ± SEM; Individual measurements are presented as black dots (●); One-way ANOVA 

Dunnett’s post hoc test compared to GS;HTTex1Q97OFF flies. (C) Pearson correlation analysis shows a 

significant linear relationship between Drosophila lifespan and HSA assessed by FRASE assays (p = 0.020), 

whereas Drosophila lifespan does not correlate with the aggregate load detected by FRAs or IHC analysis 

p = 0.368 (FRA, MW8), p = 0.081 (IHC, MAB5492). All data are presented as mean ± SEM of the three 

individual experiments. 
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3.1.8. mHTT seeding activity as potential prognostic marker in HD 

I established the FRASE assay as a sensitive tool to quantify HSA in biological samples. 

Using this tool, I was able to detect HSA at early disease stages and showed its increase with 

disease progression in model systems as well as HD patients. In addition, I demonstrated that the 

FRASE assay detects the activity of large HTTex1 aggregates in insoluble inclusions as well as of 

small seeding-competent aggregates, whereby especially the detection of small HTT fibrils in 

biosamples constitutes a major advantage over state-of-the-art aggregate detection methods. 

I found that HSA strongly correlates with mHTT-induced live span reduction in a Drosophila model, 

which indicates that HTT seeds might play an important role in HD pathogenesis. However, this 

also suggests that HSA measured by FRASE assays might serve as a valuable prognostic marker for 

HD-induced toxicity and HD-related phenotypes. 

I speculated that influencing the disease phenotype in model systems through genetic 

manipulation or chemical compounds should also alter HSA levels measured by FRASE assays. 

To address this question, RNAi knockdown experiments were performed in transgenic worms that 

overproduce the aggregation-prone protein Q35-YFP in body wall muscle cells. Previous studies 

have demonstrated that Q35-YFP aggregation in these cells leads to motor impairment. This 

phenotype gets even more severe when the expression of the hsp-1 gene (encoding the molecular 

chaperone Hsc70) is knocked down by RNAi194,269. Worms expressing Q35-YFP were treated with 

hsp-1 RNAi and their motility was assessed at day five. I observed a significant reduction of motility 

in RNAi-treated in comparison to untreated worms (Figure 29A), confirming previously published 

results194.  This phenotypic change was associated with a significant increase in Q35-YFP seeding 

 

 

Figure 29: Depletion of Hsc70 increases both toxicity and Q35-YFP seeding activity in a C. elegans model 

(A) Motility phenotype (% motility) of RNAi-treated and untreated Q35-YFP expressing transgenic worms at 

day 5. Data were normalized to age-matched control worms. Data are mean ± SEM (n = 20). Significance 

assessment with unpaired t test. (B) FRASE analysis of Q35-YFP seeding activity in RNAi-treated and 

untreated worms after 5 days. FRET efficiency is displayed as mean ± SD. (C) Quantification of results shown 

in B. HSA values are plotted individually as dots (●) and as mean ± SD. 
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activity measured by FRASE assays (Figure 29B and C), supporting the hypothesis that HSA could 

be used as marker of dysfunction and toxicity in model systems. 

To further substantiate this finding, I used the afore mentioned Drosophila model. Within 

her PhD Thesis F. Schindler performed a concise screen to identify compounds that reduce 

mHTTex1 aggregation in Drosophila. In brief, elavGS;HTTex1Q97 flies were treated with the 

respective compounds starting 3 days after hatching (Figure 30A). In addition, flies were treated 

with the mHTTex1 expression-inducing hormone RU486 for 6 days starting 7 days after hatching. 

Thereby flies were exposed to the aggregation-inhibiting compounds already 4 days prior to 

HTTex1Q97 expression, which was intended for compounds to act efficiently even in the very early 

steps of the aggregation process. Head lysates were analyzed for the amount of mHTT aggregates 

by FRA and DB assays. It was found that the FDA approved drug Quinidine (Figure 30B) is a potent 

aggregate reducing agent (Suppl. Figure 2A). However, unexpectedly the survival of Quinidine 

treated elavGS;HTTex1Q97 flies was shorter than of untreated flies (Suppl. Figure 2B), suggesting 

that the compound promotes the formation of small mHTTex1 aggregates with high seeding 

activity.  

Assuming that HSA is associated with reduced survival of HD transgenic flies and can in 

fact be used as a predictive marker, levels of HSA are expected to be higher in Quinidine treated 

flies, despite the fact that the amount of large SDS-stable aggregates detected by FRA is greatly 

reduced (Suppl. Figure 2). In order to test this hypothesis, I quantified the HSA in neurons of 

Quinidine-treated and untreated elavGS;HTTex1Q17 and elavGS;HTTex1Q97 flies. In both cases 

the expression of the recombinant HTTex1 proteins was induced in adult flies with RU486 for 

6 days (see Figure 30A). First, I performed a small-scale survival experiment. 

ElavGS;HTTex1Q97 flies expressing the transgene for 6 days in the absence of Quinidine showed 

high mortality in comparison to HTTex1Q17 expressing control flies (Figure 30C). 

However, mortality further increased when the elavGS;HTTex1Q97 flies were exposed to 

Quinidine, whereas Quinidine treatment of ElavGS;HTTex1Q17 flies did not change their survival, 

confirming previous observations262. Next, head lysates prepared from elavGS;HTTex1Q17 and 

elavGS;HTTex1Q97 flies, treated as described above (Figure 30A) were analyzed by FRASE assays. 

Strikingly, Quinidine treatment significantly increased HSA in brains of elavGS;HTTex1Q97 flies, 

whereas HSA was not detectable in elavGS;HTTex1Q17 control flies irrespectively whether they 

were treated with the compound or not (Figure 30D and E). 



Results  
 

50 
 

These results support the initial hypothesis that HSA can be used to monitor genetically 

or chemically induced phenotypic changes in HD model systems and suggest that it might be a 

valuable marker for mHTT- induced toxicity. 

 

 

Figure 30: Quinidine-induced exacerbation of mortality correlates with increased HSA in transgenic flies 

(A) Schematic illustration of the RU486 and Quinidine treatment protocol. (B) Chemical structure of 

Quinidine. (C) Life span analysis of elavGS;HTTex1Q97 and elavGS;HTTex1Q17 flies expressing the respective 

transgene for 6d in the absence or presence of 1 mM Quinidine (+/- Qui). Life span was plotted as the 

percentage of surviving flies ( ~40 flies were analyzed per condition). (D) FRASE analysis of head lysates from 

elavGS;HTTex1Q97 and elavGS;HTTex1Q17 flies that were treated with and without 1 mM Quinidine. Values 

are plotted as means ± SEM of two biological replicates each performed in triplicates. (E) HSA calculated 

from aggregation kinetics in D. Results are displayed as mean ± SEM; Individual measurements are presented 

as black dots (●); Two-way ANOVA Bonferroni’s multiple comparison test. 

 

In the long run, HSA measurements might be of high value to monitor disease onset and 

progression in HD patients. Through the quantification of HSA as part of longitudinal studies, the 

optimal time point for the initiation of clinical trials could be determined and the efficacy of 

therapeutic interventions could be monitored. In order to be applied for this purpose, the FRASE 

assay needs to be optimized for the detection of HSA in biological samples whose collection is 

technically and ethically possible, like cerebrospinal fluid, blood or muscle tissue. 

As a first step, I asked whether seeding competent aggregates are present in non-CSF 

tissue. Previous studies have demonstrated that inclusion bodies with mHTTex1 aggregates are 
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found in a wide-range of non-CNS tissues in R6/2 mice270,271, suggesting that such tissues might 

also possess HSA. I assessed homogenates of skeletal muscle prepared from R6/2Q212 mice. 

FRASE analysis revealed seeding-component mHTTex1 aggregates in the quadriceps and the 

tibialis anterior of 4-, 8- and 12-week-old R6/2Q212 mice but not in respective control tissues 

(Figure 31A), indicating that mHTT seeds are also present in non-CNS tissues. Similar as in brain 

tissue, HSA in muscle tissue was detected prior to the appearance of symptoms. In addition, it 

increased with disease progression, indicating that the measured HSA in muscle tissue might 

reflect the changes seen in brain tissue. 

Muscle tissues can be obtained from HD patients via muscle biopsies49,272. They could 

therefore be analyzed in longitudinal studies. In order to investigate whether HSA can also be 

detected in HD patients, FRASE assays were performed with muscle tissue homogenates prepared 

from two HD patients at an early disease stage and two control individuals. Quantitative data 

analysis did not reveal a significantly higher HSA in HD patients in comparison to control 

individuals (Figure 31B). However, additional studies with samples from patients with a more 

severe disease manifestation need to performed to validate this preliminary result.  

 

 

Figure 31: Analysis of HSA in peripheral tissues and biofluids 

(A) Investigation of protein extracts prepared from skeletal muscle tissues of R6/2Q212 mice using FRASE 

assays shows significant elevation of HSA compared to controls. Extracts from corresponding WT mice were 

also analyzed and displayed as average Δt50 values for clarity. Tissues were collected at the indicated age. 

Data are mean ± SEM (n = 3), HSA measured for each mouse is displayed as black dots (●), One-Way ANOVA 

followed by Dunnett's multiple comparisons test. (B) FRASE analysis of skeletal muscle tissue form two HD 

patients (early disease stage) and two control individuals. Data are mean ± SEM (n = 3), Individual 

measurements are presented as black dots (●). (C) Assessment of HSA in human CSF samples from patients 

with early and moderate HD and control individuals. ∆t50 values for each individual are plotted as red circles; 

Boxes show first and third quartiles, the central band shows the median, and the whiskers show data within 

1.5 IQR of the median. 

 



Results  
 

52 
 

Due to their accessibility via minimal invasive procedures, biofluids such as saliva, blood 

and cerebrospinal fluid (CSF) are the ideal sample types to monitor specific biomarkers in chronic 

diseases over time230,231,273,274. In the case of neurodegenerative diseases, CSF carries the 

additional advantage of being in direct contact and in continues molecule exchange with the 

cerebral tissue. For this reason, it seems reasonable to speculate that seeding-competent mHTT 

aggregates could be detected in the CSF of HD patients. Previous studies indicate that CSF derived 

from BACHD transgenic rats and human HD subjects can seed the aggregation of a GFP-tagged 

mutant HTT fragment in a cell-based assay177. Therefore, I also investigate whether the FRASE 

assay is suitable to detect HSA in CSF samples obtained from HD patients and healthy controls. 

I found that under standard conditions, which were optimized for the detection of mHTT seeds in 

mouse and human brains, HSA could not be detected in the CSF of HD patients (Figure 31C). 

However, additional optimization of the assay, regarding sample preparation and sensitivity, may 

pave the way for the detection of HSA in biofluids in the future.  

 

In summary, in the first part of my thesis I have developed and optimized a FRET-based 

HTT aggregate seeding (FRASE) assay that enables the quantification of mutant HTT seeding 

activity (HSA) in biological samples from HD patients and various disease models. Application of 

the FRASE assay revealed HSA in brain homogenates of presymptomatic HD transgenic and 

knock-in mice and its progressive increase with phenotypic changes in mouse models as well as 

HD patients, suggesting that HSA quantitatively tracks disease progression. Biochemical 

investigations of mouse brain homogenates demonstrated that HSA is high in fractions that 

contain small HTT fibrils but is low in fractions with large, insoluble mHTT aggregates. This 

indicates that small rather than large mutant HTT structures are responsible for the HSA measured 

in FRASE assays. Furthermore, my investigations show that FRASE assays detect misfolded mHTT 

assemblies that are invisible to standard detection methods and thereby expands the range of 

mHTT structures that can be detected with biochemical methods. In order to elucidate their 

biological relevance, the neurotoxicity of mutant HTT seeds was assessed in an inducible 

Drosophila model transgenic for HTTex1. I found a strong correlation between HSA measured in 

adult neurons and the increased mortality of transgenic HD flies, indicating that FRASE assays 

detect disease-relevant, neurotoxic, mutant HTT structures with severe phenotypic 

consequences. In addition, I found that HSA responds to phenotypic changes in HD models when 

they are manipulated genetically or treated with chemical compounds, suggesting that HSA could 

be used as a biomarker in the future. The detection of HSA in peripheral tissues or biofluids of 

HD patients needs further research and optimization. 
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3.2. Modulation of aggregate formation and HSA by targeted amino acid 

exchange 

My previous results show a strong correlation between seeding activity and 

disease-related phenotypic changes and suggest that seeding-competent mHTTex1 aggregates 

are stable, potentially proteotoxic structures. To explore how structural properties of mHTTex1 

aggregates are related to their seeding activity and putative proteotoxicity, I generated protein 

variants of HTTex1 by introducing specific amino acid (AA) exchanges in the N17 and the polyQ 

domains. Sequence alterations in these domains influence the formation of coiled coil and β-sheet 

structures and have the potential to change the structure, stability and polymerization rate of 

HTTex1 aggregates275. Furthermore, they might affect seeding activity as well as proteotoxicity of 

HTTex1 aggregates. 

Within this chapter I will describe the generation of six structural variants of HTTex1 and 

the biochemical characterization of their aggregation properties in vitro. In order to study the 

relationship between aggregate properties, seeding activity and aggregate-induced toxicity, 

I generated transgenic Drosophila strains and performed a comprehensive phenotypic 

characterization of these strains. Finally, I assessed the formation of mHTTex1 aggregates in vivo.  

3.2.1. Design of HTTex1 protein variants 

The current knowledge of the HTTex1 aggregation mechanism supports the idea that 

HTTex1 monomers oligomerize via coiled-coil mediated interactions between N17 domains in 

order to undergo primary nucleation. Coiled coils (CCs) are α-helical supersecondary structures in 

which two or more α-helices are wound around each other276.  

CCs are formed by proteins that contain a repetitive pattern (heptad repeat: a-b-c-d-e-f-

g) of hydrophobic (a and d), charged (e and g) and polar (b, c and f) amino acids that facilitate the 

formation of an amphipathic α-helix. In some cases hydrophobic residues in positions a/d can be 

replaced with certain nonhydrophobic amino acids, such as glutamine, which are considered as 

ambivalent hydrophobes277. Within the hydrophilic environment of the cytoplasm, hydrophobic 

surfaces of multiple helices interact via Van der Waals forces and form a tight-fitting hydrophobic 

core. Charged amino acids adjacent to the core can stabilize the interaction via ionic bonds. Polar 

residues are exposed on the surface of the intertwined assembly. This type of interaction is 

thought to bring the polyQ domains of several mHTTex1 molecules in close proximity and thereby 

facilitates a coil-to-β-sheet transition. Once the primary nucleus is formed, surrounding 

monomers are added to the emerging fibrillar structure undergoing a template-mediated 

conformational change. Within the amylogenic fibril, the polyQ domain exists a β-hairpin 
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conformation139. Intra- and intermolecular hydrogen bond form tight connections of molecules 

within one β-sheets and between adjacent β-sheets. 

In order to elucidate the potential connection between mHTTex1 aggregates and 

proteotoxicity, I attempted to alter the aggregation properties of mHTTex1 and to investigate the 

biological consequences. On the basis of a previously published study275, I designed six protein 

variants of mutant Ex1Q48 by targeted amino acid (AA) exchange in the N17 and the polyQ 

domains (Figure 32A). The AA exchanges should either facilitate or hinder the formation of CCs or 

β-sheets. Structural-guided mutagenesis was assisted by in silico prediction of CC (Figure 32B) and 

amyloid formation (Figure 32C) using the algorithms Coils278 and Waltz279,280, respectively. 

Figure 32A displays the primary AA sequence of Ex1Q48 and the six protein variants. In 

the first protein variant, Ex1Q48M1, the amino acids leucine (L) and phenylalanine (F) in the 

N17 domain are replaced by tryptophan (W). Leucine and phenylalanine are hydrophobic amino 

acids in a/d position of the coiled-coil heptad repeat. Their substitution with the bulky, however 

hydrophobic amino acid tryptophan mildly destabilizes the formation of coiled-coils281 (Figure 

32B), but slightly enhances β-sheet propensity282 (Figure 32C). Thus, one would expect 

coiled-coil-mediated nucleus formation to be slightly hindered but β-sheet-mediated aggregation 

and the stable amyloid architecture to be preserved.  

In the second protein variant, Ex1Q48M2, leucine and phenylalanine in the N17 domain 

are substituted with proline residues. Proline is unique among the 21 proteinogenic amino acid as 

its side chain cyclizes with the amino group of the backbone, forming a ring structure. Proline is 

considered as hydrophobic amino acid and might therefore be suitable to replace leucine and 

phenylalanine in a/d position. However, due to the cyclic structure of proline's side chain, it 

contributes to various bends and kinks in the shape of the protein and is therefore known to 

disturb the formation of α-helices and β-strands. In silico predictions for Ex1Q48M2 support the 

thought that this protein variant is less likely to form CCs and very unlikely to form amyloid 

structures (Figure 32B and C). Hence, insertion of proline residues in the N17 domain is assumed 

to hinder the aggregation process. 

To further disrupt the formation of aggregation prone secondary structures, prolines were 

used to substitute amino acids in the N17 and the polyQ domain in Ex1Q48M3. As discussed 

before, proline residues introduce kinks into the polypeptide chain which leads to impaired 

formation of α-helix and β-strand conformation by changing the orientation of AA to each other. 

The addition of prolines in the polyQ domain might hinder the formation of amyloid structures 

through a different mechanism. The amyloid core structure is believed to be stabilized by multiple 

hydrogen bonds between amino acid side chains and the protein backbone. Whereas the polar 
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amino acid glutamine can act as hydrogen donor as well as hydrogen acceptor and thereby 

facilitates the formation of hydrogen bonds, proline with its hydrophobic side chain is unable to 

form hydrogen bonds, which would destabilize the β-sheet core structure. In silico predictions 

indicate that CC and well as amyloid formation are strongly reduced (Figure 32B and C), suggesting 

that aggregation of Ex1Q48M3 is severely impaired or not possible at all.  

 

 

Figure 32: Protein variants of mutant Ex1Q48 

(A) Amino acid (AA) sequence of Ex1Q48 (top) and its protein variants. AA exchanges introduced in the 

sequence are highlighted in red. (B) In silico analysis of protein variants using the COILS algorithm278 

predicted differences in coiled-coil domain formation. CC probability is displayed as 1 minus the P-score 

assigned to each amino acid using a window size of 14 (dashed black line), 21 (black line) and 28 (red line) 

residues. (C) Protein variants were predicted to have different propensities to form amyloid structures using 

the Waltz algorithm279,280 (low specificity threshold of 63 and neutral pH 7). (D) Model of Ex1Q48 and its 

protein variants illustrating predicted structural changes in amyloid and coiled-coil domain formation. 
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In the fourth protein variant, Ex1Q48M4, glutamine residues were replaced with the 

hydrophobic amino acids leucine and phenylalanine in a/d position of the CC heptad repeat. These 

AA substitutions are intended to improve CC formation and to promote coiled-coil mediated 

nucleus formation. The formation of CC is predicted to be enhanced (Figure 32B), whereas the 

propensity for the formation amyloid structures is predicted remain unchanged (Figure 32C). 

Next, I replaced several glutamine residues in the polyQ tract by glutamic acid, lysine and 

asparagine to generate protein variant Ex1Q48M5. Charged amino acids (glutamic acid and lysine) 

are believed to break β-sheets283,284. In contrast to glutamine residues which are polar and can 

function both as hydrogen donor and acceptor glutamic acid and lysine can only act as hydrogen 

acceptor or hydrogen donor respectively, which potentially decreases the formation of hydrogen 

bond-mediated interactions in the amyloid core. Asparagine is a polar amino acid and can, similar 

to glutamine, act as a hydrogen donor and acceptor. However, in contrast to glutamine, 

asparagine misses one methyl group in its side chain. In the amyloid core glutamine residues are 

believed to be arranged as a steric zipper with glutamine side chains arranged directly atop each 

other as a glutamine ladder. This architecture facilitates the formation of multiple hydrogen bonds 

and a high degree of stability in the amyloid core. Due to the missing methyl group in its side chain, 

asparagine cannot align in this structure to the same extend as glutamine, which might also 

weaken the interacting forces in the amyloid core. The computational predictions revealed a slight 

increase of CC propensity and a mild decrease of the amyloid forming propensity for Ex1Q48M5 

(Figure 32B and C). 

In the last protein variant, Ex1Q48M6, several glutamine residues in the polyQ domain 

were substituted by the AA proline, whereas the N17 domain remains completely unchanged. As 

described before, proline is a hydrophobic residue imposing a kinked structure onto the 

polypeptide chain. It is therefore an unfavorable amino acid in the context of β-sheet structures. 

Formation of CCs and amyloid structures is predicted to be disturbed (Figure 32B and C). 

A graphical overview of the Ex1Q48 fragment and its six protein variants is given in Figure 

32D and summarizes the predicted structural changes in each molecule. 

 

3.2.2. Biochemical and biophysical characterization of recombinant HTTex1 protein 

variants and their aggregates 

In order to study the aggregation properties of Ex1Q48 and its protein variants in vitro, 

I first generated recombinant proteins. cDNAs encoding for the six variants of Ex1Q48 were 

generated via gene synthesis (GeneArt® Gene Synthesis). Protein fragments of Ex1Q23, Ex1Q48 

and of the protein variants were fused N-terminally to glutathione S-transferase (GST) in order to 
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increase solubility of the proteins and enable purification of the fusion proteins. The exchange of 

amino acids in the Ex1Q48 sequence might influence the reactivity of anti-HTT antibodies towards 

the protein variants and might therefore impede immunodetection which is essential for several 

biochemical assays. Hence, proteins were C-terminally fused to a V5 tag. This small epitope tag 

was chosen to guaranty minimal interference with the protein’s secondary structure and the 

aggregation process and simultaneously enable proper protein detection.  

Fusion proteins were produced in E.coli BL21-RP by IPTG-induced expression and purified 

via glutathione sepharose chromatography. Purity and integrity of the generated proteins were 

analyzed by SDS-PAGE followed by Coomassie staining (Figure 33A). GST-Ex1Q23 and GST-Ex1Q48 

fusion proteins were purified to ~ 90 % homogeneity. In contrast, GST fusion proteins of Ex1Q48 

variants showed a main band (marked with *) and a minor secondary band, which might be a 

product of protein degradation or incomplete protein synthesis. Interestingly, all proteins show a 

reduced electrophoretic mobility and therefore run at higher molecular weights than calculated. 

In addition, GST-Ex1Q48M3, GST-Ex1Q48M4 and GST-Ex1Q48M5 show different migration 

patterns in comparison to GST-Ex1Q48, although they are expected to have the same molecular 

weight. Previous studies have shown that polyQ proteins have a decreased electrophoretic 

mobility in SDS gels, supposedly due to an atypical intrinsic structure285. Amino acid exchanges in 

Ex1Q48 might alter its structure and therefore influence the migration behavior.  

 

 

Figure 33: Generation of recombinant Ex1Q48 and its structural variants 

(A) The recombinant GST-tagged HTTex1 fusion proteins were affinity purified using glutathione-coated 

sepharose beads. Purity was assessed by SDS-PAGE and subsequent Coomassie blue staining. Structural 

variants showed minor degradation bands. Analysis of recombinant HTTex1 fusion proteins by SDS-PAGE 

and immunoblotting using the (B) anti-GST or (C) anti-V5 antibody. (* represents full length protein.) 
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Next, fusion proteins were immunoblotted to evaluate whether they are detectable by anti-GST 

(Figure 33B) and anti-V5 antibodies (Figure 33C). The anti-GST antibody recognizes the major band 

(marked with *), as well the minor band, which migrates faster. The anti-V5 antibody exclusively 

recognizes the main protein band. This suggests that the minor bands, observed by SDS-PAGE and 

immunoblotting correspond to N-terminal fragments that no longer contain the V5 tag. Detection 

of the main band by both the anti-GST and the anti-V5 antibody confirmed that in all cases the 

expected full-length fusion proteins were successfully purified. 

 

Next, I assessed whether targeted amino acid exchanges in protein variants of Ex1Q48 

(Figure 34A) influence the aggregation behavior. 

Recombinant proteins at a concentration of 4 µM were cleaved with PreScission protease 

(PSP) to release GST and to initiate the spontaneous aggregation of V5-tagged proteins. Their 

assembly was monitored over 168 hours. First, I analyzed the formation of large SDS- and 

heat-stable aggregates over time using the established filter retardation assay (FRA)(Figure 34B). 

As expected, Ex1Q48 quickly assembled into SDS-stable aggregates, indicating that the V5 tag does 

not significantly change the aggregation properties of the protein. Likewise, the protein variants 

Ex1Q48M1, Ex1Q48M2, Ex1Q48M4 and Ex1Q48M6 formed SDS-stable aggregates, even though 

their assembly proceeded at very different rates. Ex1Q48M1 assembles quickly and shows high 

amounts of aggregates already 6 h after the addition of PSP. In contrast, SDS-stable Ex1Q48M6 

aggregates are detectable after 48 h and further increased in their abundance over time. For the 

protein variants Ex1Q48M2 and Ex1Q48M4, I detected faint immunoreactive dots after 168 h, 

suggesting that aggregation proceeds much slower in comparison to Ex1Q48. FRA analysis 

revealed that Ex1Q23, Ex1Q48M3 and Ex1Q48M5 do not form SDS-stable aggregates under the 

applied conditions.  

The substitution of amino acids in the Ex1Q48 sequence might not only change the rate 

of aggregate formation, but might also influence the stability of the resulting aggregate structures. 

If protein variants formed aggregate structures of lower stability, the traditional FRA would not 

be able to detect them, as SDS-instable assemblies would be denatured and could therefore not 

be retained on the filter membrane. Using the dot blot assay, protein assemblies, independent of 

their size and stability, are immobilized on filter membranes and immunodetected by specific 

antibodies239. Previous studies have demonstrated that epitope specific antibodies preferentially 

detect monomeric or aggregated HTTex1 proteins as certain epitopes are either exposed or buried 

depending on the protein’s conformation during the aggregation process159. The MW8 antibody, 

which binds to the C-terminus of the HTTex1 protein fragment, was shown to preferentially detect
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Figure 34: Protein variants of Ex1Q48 show differential aggregation properties 

(A) Schematic illustration of HTTex1 protein variants. (B) GST fusion proteins of HTTex1 protein variants 

(4 µM) were individually incubated at 25°C with PreScission protease (PSP). Time-dependent formation of 

SDS-stable aggregates was analyzed by FRA (500 ng protein per dot). Spontaneously formed aggregates of 

V5-tagged proteins were visualized by an anti-V5 antibody. (C) Investigation of protein aggregation under 

non-denaturing conditions using DB assays (250 ng protein per dot). Samples from B were spotted onto a 

nitrocellulose membrane. Immobilized protein was detected using the anti-V5 antibody. (D) Analysis of 

samples from B by DB assays followed by Ponceau S staining confirmed that similar amounts of proteins 

were loaded. *marks empty slots as negative control. (E) Time resolved analysis of spontaneously formed 

aggregates after 0, 1, 2, 3, 4, 5, 6, 7, 24, 48 and 96 h of incubation with PSP. High and low molecular weight 

species were fractionated by centrifugation (186,000 x g). Pellet (top) and supernatant (bottom) fractions 

were analyzed individually by SDS-PAGE and immunoblotting using the anti-V5 antibody. (F) Atomic force 

microscopy (AFM) analysis of spontaneously formed aggregates of HTTex1 protein variants (4 µM) after 

168 h. Scale bars: 1 µm; color gradient represents 0-20 nm height. 

 

HTTex1 aggregates. As the V5 tag is likewise located at the C-terminal end of the fusion proteins, 

the anti-V5 antibody might as well identify HTTex1 aggregates. In order to investigate whether 

Ex1Q48 protein variants form aggregates of lower stability, I performed dot blot assays (DB) 

followed by immunodetection with an anti-V5 antibody (Figure 34C). For all proteins elevated 

antibody signal was observed at time point 0 h, indicating that the anti-V5 antibody detects 

uncleaved fusion proteins in BD assays. Comparable to the analysis by FRA, Ex1Q48 and 

Ex1Q48M1 showed immunoreactive dots for all other time points analyzed. The protein variants 

Ex1Q48M6, Ex1Q48M2 and Ex1Q48M4 first showed a decrease of antibody signal, corresponding 

with the cleavage of GST from the fusion proteins. Starting with the formation of SDS-stable 

aggregates after 48 h respectively 168 h (Figure 34B) an increase in immunoreactivity was also 

detected in DB assays (Figure 34C), suggesting that the anti-V5 antibody detects HTTex1 protein 

and its protein variants in an aggregated conformation. Interestingly, V5 positive dots were 

detectable for the protein variant Ex1Q48M5 and for Ex1Q23 after 168 h of incubation. As FRA 

analysis of these proteins demonstrated the absence of SDS-stable aggregates, this observation 

indicates, that Ex1Q48M5 as well as Ex1Q23 form aggregate structures of lower stability. In 

contrast, Ex1Q48M3 does not form aggregates under the tested conditions. As a control 

experiment, I performed DB assays followed by Ponceau S staining. Dots of similar intensities were 

detectable for all proteins at each time point, demonstrating that equal amounts of proteins were 

loaded to the DB membranes (Figure 34D). This confirms that the changes in signal intensities, 

observed when proteins were detected with the anti-V5 antibody, result from a conformational 

change in the protein and do not result from different amounts of proteins that were loaded onto 

the membrane.  

In order to confirm that protein variants assemble into high molecular weight structures 

of different stability, I next studied the aggregation process using an experimental approach that 
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combines ultracentrifugation, SDS-PAGE and Western blot (WB) analysis. After incubation with 

PSP for 0 – 96 h, protein samples were subjected to ultracentrifugation (186,000 x g) in order to 

separate high molecular weight aggregates from small soluble protein species. Large protein 

assemblies regardless of their stability, are expected to concentrate in the pellet, whereas low 

molecular weight species should remain in the supernatant. Subsequently, pellet and supernatant 

fractions were examined by SDS-PAGE and WB using the anti-V5 antibody for immunodetection 

(Figure 34E). Small soluble protein species are expected to appear as a monomer band after 

immunoblotting of the supernatant fraction. When analyzing the pellet fraction, large SDS-stable 

aggregates are assumed to remain in the gel pockets as their size and stability permits them to 

enter the acrylamide gel. In contrast, large SDS-sensitive assemblies, contained in the pellet 

fraction, will be denatured and are expected to appear as a discrete band at the size of the 

monomeric protein. When analyzing Ex1Q48 and Ex1Q48M1, I detected that all proteins were 

cleared from the supernatant fraction already after 3 h of incubation (Figure 34E, bottom). When 

the corresponding pellet fractions were analyzed, proteins were found in the gel pockets (Figure 

34E, top), confirming that Ex1Q48 as well as Ex1Q48M1 quickly assemble into large SDS-stable 

aggregates. Next, I examined the protein variant Ex1Q48M6. I found that proteins disappeared 

from the supernatant fraction and appeared in the pellet fraction after 48 h of incubation. 

Interestingly, proteins in the pellet fractions were partially detectable in the gel pockets but also 

appeared as a distinct band at the size of the monomeric protein. This indicates that Ex1Q48M6 

assembles into aggregates which are less SDS-stable and partially disassemble upon SDS 

treatment. Similarly, Ex1Q48M5 protein is reduced in the supernatant fraction after 48 h and 

accumulates in the pellet fraction. Strikingly, all protein detected in the pellet fraction migrates in 

the gel with the size of the monomer, confirming the initial hypothesis that protein variant 

Ex1Q48M5 forms large, but SDS instable aggregates. The proteins Ex1Q48M2, Ex1Q48M3, 

Ex1Q48M4 and Ex1Q23 were detected exclusively in the supernatant fractions, confirming that 

these proteins do not form SDS stable aggregates within 96 h under these experimental 

conditions. 

Next, I characterized the aggregate morphologies of the HTTex1 protein assemblies. 

Proteins were incubated with PSP for 168 h and analyzed by atomic force microscopy (AFM)(Figure 

34F). Multiple large bundles of fibrillar structures were formed by the proteins Ex1Q48, 

Ex1Q48M1 and Ex1Q48M6. AFM analysis of Ex1Q23, Ex1Q48M2 and Ex1Q48M4 revealed a few 

small fibrillar structures, which appear morphologically similar to the structures observed for 

Ex1Q48 but less mature as they were smaller and less branched. Interestingly, Ex1Q48M5 forms 

morphologically distinct fibrillar structures. Fibrils were thinner and less branched, but seemed to 
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be longer and more curvated in comparison to the rather rigid Ex1Q48 fibrils. As expected, no 

aggregates were observed for the protein Ex1Q48M3. 

 Finally, I performed FRASE assays to analyze whether preformed aggregates of the 

different protein variants are able to seed the co-aggregation of Ex1Q48-CyPet/-YPet reporter 

proteins. Protein variants were incubated with PSP for 168 h and used as seeds at a concentration 

of 100 nM. Seeding activity was detectable for Ex1Q48 and for the protein variants Ex1Q48M1, 

Ex1Q48M4, Ex1Q48M5 and Ex1Q48M6 (Figure 35A and B).  

 

 

 

Figure 35: Protein variants of Ex1Q48 form seeding-competent aggregates 

(A) FRET-based assessment of Ex1Q48-CyPet/-YPet (1.2 µM) co-aggregation in the presence of 100 nM 

HTTex1 protein variants as seeds. The GST-tagged HTTex1 protein variants (4 µM) were incubated with PSP 

for 168 h prior to FRASE analysis. FRET efficiency is displayed as mean ± SD of technical triplicates. 

(B) Calculated ∆t50 values from Ex1Q48-CyPet/-YPet co-aggregation profiles in A. Individual ∆t50 values of 

each triplicate are displayed as black dots (●) and mean ± SD of technical triplicates. (C) FRASE analysis of 

HTTex1 protein variants as described in A after sonication. (D) Calculated seeding activity from aggregation 

profiles in C. Individual ∆t50 values of each triplicate are displayed as black dots (●) and mean ± SD of 

technical triplicates. 
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In order to detect seeding competent HTTex1 aggregates with the highest possible sensitivity, 

preformed aggregates were sonicated prior to FRASE analysis. Seeding activity was detectable for 

all investigated HTTex1 proteins under these conditions, except for the structural variant 

Ex1Q48M3, which does not form detectable fibrillar aggregates in vitro (Figure 34F) and therefore 

cannot accelerate the co-aggregation of Ex1Q48-CyPet/-YPet reporter proteins.  

 In summary, biochemical and biophysical analysis of Ex1Q48 variants revealed remarkable 

differences in their aggregation behavior. In comparison to the aggregation-prone Ex1Q48 

protein, all variants, except Ex1Q48M1, aggregate with lower efficiency or did not form aggregates 

at all (Ex1Q48M3) (Figure 34B-E). Strikingly, all aggregation-prone Ex1Q48 variants self-assemble 

into structures with a fibrillar morphology, although with very different size and complexity 

(Figure 34F). A exceptional change in aggregate morphology was observed for Ex1Q48M5, 

indicating that the substitution of AA in the polyQ tract alters the structure of spontaneously 

formed HTTex1 protein aggregates. Fractionation experiments revealed that AA exchanges in the 

polyQ domain do not prevent aggregation, but strongly change the stability of HTTex1 protein 

aggregates. Certain Ex1Q48 variants assemble into aggregates which lack SDS-stability either 

partially (Ex1Q48M6) or completely (Ex1Q48M5) (Figure 34E). In addition, I observed that all 

protein variants that form fibrillar aggregates possess seeding activity (Figure 35). 

3.2.3. Creating Drosophila models of mutant HTTex1 protein variants 

The protein variants of Ex1Q48 showed strong differences in their aggregation behavior 

which makes them a valuable tool to study the relationship between aggregate formation, seeding 

activity and proteotoxicity. For this purpose, I aimed to generate Drosophila models expressing 

mutant HTTex1 protein variants and the respective pathogenic and wild type HTTex1 control 

proteins. Previous experiments indicate that pan-neuronal expression of Ex1Q48 in Drosophila 

causes a very mild disease-related phenotype, whereas expression of Ex1Q97 was shown to cause 

very severe behavioral changes262. AA exchanges might either increase or decrease mHTTex1 

induced toxicity. To be able to detect exacerbation as well as amelioration of disease-related 

phenotypes with sufficient resolution, it was desirable to create the new fly models on the basis 

of a transgenic HD strain, which shows behavioral changes of intermediate strength. Therefore, 

I adjusted the length of the polyQ domain to 75 residues and adapted the AA exchanges 

accordingly (Suppl. Figure 3A). In silico analysis demonstrated that the protein variants’ individual 

propensities to form coiled-coil and amyloid structures were preserved after expansion of the 

polyQ stretch (Suppl. Figure 3B-D and Figure 32). All HTTex1 proteins were equipped with a 

C-terminal V5 tag to facilitate the detection of the transgenic proteins in vivo.  
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In order to generate the described fly models, cDNAs encoding Ex1Q17, Ex1Q75 and six 

variants of Ex1Q75 were generated via gene synthesis (GeneArt® Gene Synthesis) and cloned into 

the pUAST-attB-rfA vector263. Plasmid DNA containing the gene of interest and an eye-specific 

marker gene (mini-white) was injected into the posterior end of white- Drosophila embryos by 

Rainbow Transgenic Flies, Inc. (Figure 36A). The Drosophila strain (genotype: y1 M[vas-int.Dm]ZH-

2A w*; M[3xP3-RFP.attP']ZH-68E) contains a phage attachment site (attP) on the third 

chromosome (2A3, 68E), which is complementary to the bacteriophage attachment site (attB) of 

the pUAST-attB-rfA vector. At the time of injection, the Drosophila embryo exists as one 

multinucleated cell (syncytium). During the cellularization process, plasmid DNA is taken up by 

germ cell precursors (pole cells) and is integrated at the attP site on the third chromosome via 

ΦC31 integrase mediated recombination.  

 

 

Figure 36: Generation of transgenic Drosophila models of HTTex1 protein variants 

(A) Schematic illustration of Drosophila transgenesis using the ΦC31 integrase system. Transgene DNA 

containing a mini-white marker (orange) is micro-injected into white- Drosophila embryos. During early 

developmental stages Drosophila embryos undergo rapid nuclear divisions that occur without accompanying 

cell divisions, creating a syncytium. Prior to cellularization, germ cell precursors (pole cells, black) bud off at 

the posterior end. These cells need to take up the transgenic DNA for germ line transmission to occur. Within 

the pole cells the transgene is integrated into the pre-determined genetic locus through 

ΦC31 integrase-mediated recombination of the bacteriophage attachment site (attB, light blue) in the 

transgene DNA and the phage attachment site (attP, dark blue) in the Drosophila genome. If the transgene 

is integrated into germ cells, it can be passed on to the next generation. Successful integration can be 

identified by the orange eye color as a result of the mini-white marker. (B) PCR analysis of genomic DNA 

from newly generated Drosophila models followed by Sanger sequencing confirmed the integration of the 

correct transgene. PCR products of 621 bp (Ex1Q48, Ex1Q48M1-6) and 502 bp (Ex1Q17) were as expected. 
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Though site-specific integration of transgenic DNA at the pre-selected locus, chromosomal 

position effects are avoided and fly strains expressing different transgenes can be directly 

compared. Embryos that have successfully integrated transgenic cDNA develop into mature flies 

containing the new genetic information in their germline. Cross-breeding of the transformant to 

the white- background strain produces offspring that contains the transgenic cDNA in all cells. 

Transgene integration can be easily identified as the presence of the mini-white marker gene 

results in an orange eye color in an otherwise white-eyed fly strain. Transformants were selected 

and crossed with the balancer stain 
𝐶𝑦𝑂

𝑆𝑝
;

𝑇𝑀6

𝑀𝐾𝑅𝑆
  262 in order to generate a stable fly strain  

𝐶𝑦𝑂

𝑆𝑝
;

𝑇𝑀6

𝑯𝑻𝑻 𝒕𝒓𝒂𝒏𝒔𝒈𝒆𝒏𝒆
 . 

To confirm the genetic identity of the newly generated fly strains, genomic DNA was 

isolated and used as template for PCR amplification of the HTTex1 sequence. PCR products of the 

expected size were identified by agarose gel electrophoresis (Figure 36B). Sanger sequencing of 

PCR products confirmed the correct genetic identity of the novel fly models.  

 

3.2.4. Drosophila models expressing protein variants show distinct behavioral 

phenotypes 

Within the following chapter, I will describe the phenotypic consequences that result from 

the expression of HTTex1 protein variants in Drosophila melanogaster. These experiments might 

provide valuable insights into the relationship between aggregate formation and proteotoxicity.  

In order to express the protein variants of HTTex1, I made use of the GAL4/UAS 

system264,286,287 (Figure 37A). The GAL4 protein, originally derived from yeast, is a transcriptional 

activator that specifically binds to the upstream activation sequence (UAS) and activates 

transcription. To control gene expression in Drosophila, the GAL4/UAS system is used as a bipartite 

approach. A driver strain expresses the GAL4 protein under the control of a tissue-specific 

promotor. A responder strain contains the gene of interest downstream of the UAS. However, 

transgene expression is inactive due to the absence of GAL4 protein in the responder strain. Cross-

breeding of driver and responder strains results in progenies which combine both elements of the 

GAL4/UAS system. In the final HD strains (progeny) the GAL4 protein will bind to the UAS and 

activate transgene expression in a tissue-specific manner (Figure 37A).  

Responder strains, containing the genetic information of the HTTex1 protein variants 

downstream of the UAS, were cross-bred with the Elav-GAL4 driver strain. Elav-GAL4 induces 

pan-neuronal expression of the transgenes at all developmental stages288. To analyze protein 

expression, head lysates were prepared from 10 day-old flies and examined by SDS-PAGE and 
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Western blotting using the anti-V5 antibody for immunodetection. Protein expression was 

detected in all Drosophila strains (Figure 37B). To validate antibody specificity I analyzed flies that 

expressed the GAL4 protein, but do not contain transgene cDNA (Elav;Bkg). Except for a very faint 

unspecific signal in the upper part of the immunoblot, no protein band was detectable, indicating 

that the anti-V5 antibody specifically recognizes V5-tagged transgenic proteins. Comparing the 

two control proteins Ex1Q75 and Ex1Q17, I observed a clear difference in size ( ~42 kDa and 

~20 KDa), resulting from the longer polyQ domain in the pathogenic HTTex1 fragment. As already 

observed for the recombinant proteins, all proteins show reduced electrophoretic mobility and 

appear to have a higher molecular weight than calculated in SDS gels (calculated molecular weight 

of Ex1Q75 and its protein variants:  ~18 kDa, calculated molecular weight of Ex1Q17 10 kDa; see 

Figure 37B). Likewise, similar to the purified recombinant proteins Ex1Q48M4 and Ex1Q48M5 

(Figure 33),the proteins Ex1Q75M4 and Ex1Q75M5 migrate faster than Ex1Q75. Surprisingly, 

Ex1Q75M2 and Ex1Q75M3, both carrying proline substitutions in their N17 domains, show two 

bands that migrate slower than Ex1Q75. This is potentially due to an altered post-translational 

modification of the protein variants. In addition, high molecular weight protein aggregates  were 

 

 

Figure 37: Pan-neuronal expression of Ex1Q75 protein variants in transgenic Drosophila models 

(A) Graphical illustration of the GAL4/UAS expression system264,286,287. It is a bipartite system which is used 

to control transgene expression in a tissue-specific manner. A driver strain expresses the GAL4 protein, a 

yeast-derived transcriptional activator, under the control of a tissue-specific promotor. A responder strain 

contains the gene of interest downstream of the upstream activation sequence (UAS). Cross-breeding of both 

strains combines both elements of the GAL4/UAS system in the progeny. The GAL4 protein will bind to the 

UAS promoter and activate transgene expression in a tissue-specific manner. (B) Western blot analysis of 

the HTTex1 protein variants expressed in neurons of HD transgenic flies using anti-V5 antibody. 

Immunodetection using an anti-Tubulin antibody confirmed that similar amounts of protein lysate were 

loaded. 
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detectable in the gel pockets for Ex1Q75, Ex1Q75M1, Ex1Q75M2, Ex1Q75M3, Ex1Q75M4 and 

Ex1Q75M6. It needs to be noted that the steady state protein levels differ from strain to strain, 

suggesting that the proteins are produced or degraded at different rates in fly neurons. In general, 

protein levels seem to be higher for HTTex1 proteins that form SDS-stable aggregates in vivo.  

 

Elav-GAL4 driven pan-neuronal transgene expression occurs in all developmental stages 

of the Drosophila life cycle288. In order to investigate whether the expression of HTTex1 protein 

variants influences fly development, I analyzed the hatching behavior. 

Expression of HTTex1 protein variants was induced through cross-breeding of HD 

responder strains with Elav-GAL4 flies. First, I observed the development of the generated flies. 

All strains passed from oviposition through the first, second and third instar larval stages. Likewise, 

flies of all strains pupated and developed from white prepupae to mature pupae (Figure 38A, 

9-11 days post oviposition). Eye pigmentation and the development of black wings gives mature 

pupae a dark appearance which indicatives the imminent eclosion of the adult fly. Flies started to 

hatch ~13 days post oviposition leaving behind the transparent pupal skin. For the majority of fly 

strains, hatching was completed within 16-18 days after oviposition, as indicated by the 

predominant presence of transparent, empty pupae (Figure 38A, 16 – 18 days post oviposition). 

In contrast, I observed multiple dark pupae for the Elav;Ex1Q75M2 strain, indicating  that the 

majority of flies did not emerge from the pupae.  

In order to confirm this finding, hatching flies were counted. The average number of flies 

that hatched per day are displayed in Figure 38B. On average ~ 80 flies/day emerged from the 

pupae when no transgene (Elav;Bkg) or a non-pathogenic Ex1Q17 protein was expressed. Eclosion 

behavior was similar to controls when flies expressed the proteins Ex1Q75, Ex1Q75M3, 

Ex1Q75M4, Ex1Q75M5 or Ex1Q75M6. In contrast, expression of the proteins Ex1Q75M1 and 

Ex1Q75M2 drastically reduced the number of hatching flies.  

In addition, I assessed the sex ratio of the progeny by counting the number of male and 

female flies. For the control strains, expressing no transgene or non-pathogenic Ex1Q17, the 

sex ratio was close to 50 %, indicating that similar numbers of male and female flies emerged 

(Figure 38C). Likewise, the sex ratio remained close to 50 % when the protein variants Ex1Q75M3, 

Ex1Q75M5 or Ex1Q75M6 were pan-neuronally expressed. However, a lower proportion of male 

progeny was observed for Elav;Ex1Q75 and Elav;Ex1Q75M4 flies, indicating a developmental bias 

towards female flies. This maldistribution became even more obvious for Elav;Ex1Q75M1 and 

Elav;Ex1Q75M2 flies, for which the percentage of male flies was reduced to 25 % and 10 %, 

respectively. 
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Figure 38: Drosophila models expressing mHTTex1 protein variants show a perturbed eclosion behavior 

(A) Representative photographs documenting the pupal development (9 – 18 days post oviposition) of flies 

expressing HTTex1 protein variants. (B) Average number of hatching flies per day and crossing vial. (C) 

Average percentage of male progeny. Fly count/percentage of male flies for an individual experiment (●). 

Bars are mean ± SEM. Statistical significance was assessed by One-Way ANOVA followed by Dunnett's 

multiple comparisons test; data were compared to Elav;Ex1Q75 transgenic flies.  
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Taken together these results suggest that pan-neuronal expression of Ex1Q75, 

Ex1Q75M1, Ex1Q75M2 and Ex1Q75M4 causes adverse effects in vivo that are manifested already 

early during fly development. 

 

Following the assessment of fly development, I investigated whether pan-neuronal 

expression of HTTex1 protein variants influences behavioral phenotypes of adult flies.  

At first, I analyzed the survival of HD transgenic flies. Flies were raised from cross-breeding 

of Elav/GAL4 and the newly generated HTTex1 responder strains. As an additional control ZH-68E 

flies, which have the same genetic background as the responder strains, but do not contain a 

transgene to express, were cross-bred with Elav/GAL4 flies (Elav;Bkg). Survival was measured over 

time by counting dead flies (Figure 39A). Based on the survival curves, I calculated the median life 

span, representing the age at which half of the analyzed fly population died (Figure 39B). Flies that 

express non-pathogenic Ex1Q17 have a median lifespan of ~90 days and show no adverse survival 

effects compared to control flies that do not express a transgene (Elav;Bkg). In comparison, pan-

neuronal expression of Ex1Q75 causes a strong reduction in survival (median lifespan of ~26 days), 

indicating that Drosophila is a suitable system to model HTTex1 induced toxicity. The median 

lifespans of Elav;Ex1Q75M3 (~24 days) and Elav;Ex1Q75M4 (~23 days) flies were very similar to 

Elav;Ex1Q75 flies. In contrast, fly survival was even further reduced in Elav;Ex1Q75M1 (~18 days) 

and Elav;Ex1Q75M2 (~14 days) flies, which both already showed strong impairments in their 

eclosion behavior. In contrast, I observed extended survival in Elav;Ex1Q75M5 (~80 days) and 

Elav;Ex1Q75M6 (~37 days) flies in comparison to Elav;Ex1Q75 flies (~26 days). 

As an additional control, I investigated whether the newly generated fly strains are 

comparable regarding their survival in the absence of transgene expression. Through 

cross-breeding of the responder strains with w1118 flies, I generated flies that carry the 

UAS-transgenes but lack the GAL4 protein and therefore should not produce the HTTex1 protein 

variants. Measuring the survival over time (Figure 39C), I found that all fly strains behave similarly 

(median life span ~85 days, Figure 39D), indicating that the integration of transgenes does not 

significantly influence fly survival. Hence, differences in survival described above result from the 

expression of Ex1Q75 protein and its variants. 
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Figure 39: Amino acid exchanges modify the pathological effect of Ex1Q75 on Drosophila survival 

(A) Lifespan analysis of flies expressing HTTex1 protein variants in neurons. Life span is plotted as the 

percentage of surviving flies of 3 biological replicates (nElav;Ex1Q75 = 86, 94, 88; nElav;Ex1Q75M1 = 81, 94, 62; 

nElav;Ex1Q75M2 = 50, 48, 8; nElav;Ex1Q75M3 = 94, 98, 100; nElav;Ex1Q75M4 = 101, 98, 94; nElav;Ex1Q75M5 = 88, 83, 86; 

nElav;Ex1Q75M6 = 98, 95, 85; nElav;Ex1Q17 = 93, 86, 90; nElav;Bkg = 100, 87, 89). (B) Median life span calculated from 

survival curves in A. Average survival of each experiment (n = ~100 flies) is presented as black dots (●). Bars 

are mean ± SEM from 3 independent replicates; statistical significance was assessed by One-way ANOVA 

Dunnett’s post-hoc test; data were compared to Elav;Ex1Q75 transgenic flies. (C) Lifespan analysis of 

generated Drosophila models in the absence of transgene expression. Life span is plotted as the percentage 

of surviving flies of 2 biological replicates (nw1118;Ex1Q75 = 97, 92; nw1118;Ex1Q75M1 = 85, 93; nw1118;Ex1Q75M2 = 97, 

88; nw1118;Ex1Q75M3 = 89, 86; nw1118;Ex1Q75M4 = 96, 93; nw1118;Ex1Q75M5 = 96, 92; nw1118;Ex1Q75M6 = 89, 84; nw1118;Ex1Q17 

= 89, 92; nw1118;Bkg = 94, 85). (D) Median life span calculated from survival curves in C. Average survival of 

each experiment (n = ~100 flies) is presented as black dots (●). Bars are mean ± SEM from 2 independent 

replicates; statistical significance was assessed by One-way ANOVA Dunnett’s post-hoc test; data were 

compared to w1118;Ex1Q75 transgenic flies. 

 

As a behavioral measure of neuronal dysfunction, locomotor activity was assessed using 

a negative geotaxis (climbing) assay289 which has been extensively applied to characterize fly 

models of neurodegenerative diseases265,266. With this assay, the proportion of flies that is able to 

climb a height of 8 cm within 15 seconds is recorded. Flies of the control group (Elav;Bkg) show a 

progressive decline in locomotor activity over time (Figure 40A). Previous studies demonstrated 

that decline in locomotor activity is a normal age-related behavior of wild-type flies290. As 

expected, flies expressing Ex1Q17 performed comparable to control flies. In contrast, 
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pan-neuronal expression of Ex1Q75 and its protein variants reduces locomotor activity. In order 

to compare the locomotor activity of different strains, I used the recorded climbing curves and 

calculated the area under the curves as an average measure of motor performance for each strain 

(Figure 40B). In comparison to Elav;Ex1Q75 flies, Elav;Ex1Q75M5 show a significantly better motor 

performance. The expression of the other protein variants did not significantly change the overall 

motor performance compared to Elav;Ex1Q75 flies. However, in depth analysis showed that 

locomotor activity is significantly different compared to Elav;Ex1Q75 flies during a certain period 

in the flies’ lifespan. I observed significantly reduced locomotor activity in Elav;Ex1Q75M1 

(10 - 17 days), Elav;Ex1Q75M2 (7 - 14 days) and Elav;Ex1Q75M4 (14 - 17 days) flies, whereas 

Elav;Ex1Q75M6 flies (21 - 28 days) showed improved locomotor activity (Figure 40A). 

 

 

Figure 40: Pathological effects of Ex1Q75 on motor performance are influenced by amino acid exchanges 

(A) Analysis of motor performance of flies expressing HTTex1 protein variants in neurons. Motor 

performance was assessed over time as the percentage of flies able to climb a height of 8 cm within 15 sec. 

Results are presented as mean of 3 independent replicates starting with nElav;Ex1Q75 = 100, 98, 98; nElav;Ex1Q75M1 

= 98, 95, 99; nElav;Ex1Q75M2 = 5, 63, 19; nElav;Ex1Q75M3 = 100, 101, 100; nElav;Ex1Q75M4 = 99, 98, 99; nElav;Ex1Q75M5 = 99, 

98, 101; nElav;Ex1Q75M6 = 95, 100, 98; nElav;Ex1Q17 = 100, 100, 92; nElav;Bkg = 100, 100, 100 flies. (B) Relative motor 

performance was analyzed by calculating the area under the curve from climbing curves in A. Results are 

expressed as percentage of control (Elav;Bkg). Average motor performance of each experiment 

(n = ~100 flies) is presented as black dots (●). Bars are mean ± SEM from 3 independent replicates; statistical 

significance was assessed by One-way ANOVA Dunnett’s post-hoc test; data were compared to Elav;Ex1Q75 

transgenic flies. 

 

Next, I investigated whether expression of Ex1Q75 protein and its variants changes 

circadian locomotor behavior. Male flies raised from cross-breeding of Elav/GAL4 and HTTex1 

responder strains, were analyzed using the Drosophila Activity Monitor (DAM) system291. Flies are 

maintained individually in sealed glass tubes which are placed into the activity monitor. Three 

infrared beams are directed at each glass tube. Beam breaks resulting from flies crossing the 

beam, are interpreted as activity events. Events detected within a 5 min sampling interval are 
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summed and recorded over 30 days. All fly strains show crepuscular behavior with activity peaks 

in the dawn and dusk periods (Figure 41A). However, peak activities were remarkably different 

among different strains. In order to depict the changes in peak activities over time for each fly 

strain, beam breaks detected in the period between 7.00 – 7.30 am were summed and displayed 

as dawn locomotor activity for each consecutive day (Figure 41B). Similar as for the climbing 

assays, control flies (Elav;Bgk) showed an age-dependent decrease in locomotor activity290.  

 

 

Figure 41: Expression of HTTex1 protein variants influence circadian locomotor behavior of transgenic flies  

(A) Circadian locomotor activity of five days old male flies under 12:12 light-dark cycle with lights on at 

7:00 am. Transgenes were expressed pan-neuronally using the Elav-GAL4 gene driver. Due to the low number 

of male Elav;Ex1Q75M2 progeny (ntotal = 3), results were exclude from statistical analysis and depicted in 

grey color. (B) Dawn locomotor activity over time was quantified as sum of beam breaks between 7:00 and 

7:30 am for each day. (C) Relative dawn activity was analyzed by calculating the area under the curve from 

locomotor activity curves in B. Results are expressed as percentage of control (Elav;Bkg). Relative dawn 

activity of each experiment (n = ~14 flies) is presented as black dots (●). Bars are mean ± SEM from 

2 independent replicates; statistical significance was assessed by One-way ANOVA Dunnett’s post-hoc test; 

data were compared to Elav;Ex1Q75 transgenic flies. (D) Dusk locomotor activity (between 6:30 and 

7:00 pm) and (E) relative dusk activity were quantified accordingly. 
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Flies expressing Ex1Q17 and Ex1Q75M5 performed comparable to control flies, whereas the 

expression of Ex1Q75 and of the remaining protein variants caused a rapid decline of the 

locomotor activity. I quantified the area under the activity curves in order to assess and compare 

the overall dawn activity of different strains (Figure 41C). Expression of Ex1Q75 reduced dawn 

activity to ~30 % relative to control flies. In comparison to Elav;Ex1Q75 flies, dawn activity was 

significantly higher for Elav;Ex1Q75M5 and Elav;Ex1Q75M6 flies and significantly lower in 

Elav;Ex1Q75M1 flies. Expression of Ex1Q75M3 and Ex1Q75M4 did not significantly change the 

overall dawn activity in comparison to Elav;Ex1Q75 flies. However, a more detailed analysis 

revealed that flies expressing Ex1Q75M4 show a decrease in locomotor activity in 5 to 9-day-old 

flies. Expression of Ex1Q75M2 also seems to cause a reduction of dawn activity in comparison to 

Elav;Ex1Q75 flies. However, statistical analysis of Elav;Ex1Q75M2 flies could not be performed 

due to the extremely low number of male flies that were available for this assay (Figure 38). 

Quantification of dusk activity (6.30 – 7.00 pm) confirmed the observation described above (Figure 

41D and E).  

 

In summary, behavioral analysis of flies expressing HTTex1 protein variants revealed 

remarkable differences in fly development, survival and locomotor activity. Whereas the 

expression of wild-type Ex1Q17 did not change fly behavior, the expression of pathogenic Ex1Q75 

clearly reduced Drosophila survival and locomotor activity, suggesting that Ex1Q75 induces 

dysfunction and neurotoxicity with severe phenotypic consequences. In addition, the phenotypic 

characterization of flies expressing Ex1Q75 protein variants suggests that amino acid exchanges 

in the HTTex1 sequence influence HTT induced toxicity. Whereas amino acid exchanges in 

Ex1Q75M1, Ex1Q75M2 and Ex1Q75M4 exacerbated the pathogenic effects of the Ex1Q75 

protein, the amino acid exchanges in Ex1Q75M5 and Ex1Q75M6 had the opposite effect. 

3.2.5. Biochemical assessment of aggregates of HTTex1 protein variants formed in 

vivo 

In order to investigate whether there is a correlation between mHTTex1 aggregation and 

proteotoxicity, I quantified aggregate amounts and seeding activity in fly head lysates using FRAs 

and FRASE assays. 

First, I assessed the formation of large SDS-stable HTTex1 aggregates in a time-resolved 

manner. Flies were raised through cross-breeding of HTTex1 responder strains with Elav/GAL4 

flies, triggering pan-neuronal expression of Ex1Q75 and its protein variants. Similarly, I generated 

control flies, expressing no transgene or wild-type Ex1Q17 protein. Head lysates were prepared at 

an age of 5, 10, 15 and 20 days and analyzed by FRA)(Figure 42A). I detected large SDS-stable 
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aggregates in Elav;Ex1Q75 flies which increased in their abundance over time. As expected, no 

aggregates were detected in control flies (Elav;Bkg) and Ex1Q17 expressing flies. In head lysates 

of Elav;Ex1Q75M3 and Elav;Ex1Q75M4 flies the abundance of SDS-stable HTTex1 aggregates was 

similar to Elav;Ex1Q75 flies. Strikingly, higher amounts of SDS-stable aggregates were detected in 

Elav;Ex1Q75M1 and Elav;Ex1Q75M2 flies, which showed the most severe behavioral changes 

(Figure 38 - Figure 41), suggesting that aggregation drives the pathogenic process in flies. In 

contrast, lower amounts of SDS-stable aggregates were found in head lysates of Elav;Ex1Q75M5 

and Elav;Ex1Q75M6 flies, substantiating the hypothesis that mHTTex1 aggregates play a critical 

role in disease.  

Finally, I applied the FRASE assay to investigate whether the mHTTex1 aggregates formed 

in HD flies are seeding-competent structures. Head lysates of flies were analyzed at an age of 

5 days. Whereas no seeding activity was detectable in head lysates of Elav;Ex1Q17 flies, it was 

significantly increased in protein lysates prepared of transgenic flies expressing 

Ex1Q75, Ex1Q75M1, Ex1Q75M2, Ex1Q75M3 or Ex1Q75M4 (Figure 42B). In comparison to 

Elav;Ex1Q17 flies, Elav;Ex1Q75M5 and Elav;Ex1Q75M6 flies showed a slight, but not significant 

increase in HSA.  

Together these results illustrate the concurrence of aggregate formation and 

neurotoxicity in HD transgenic flies, supporting the hypothesis that misfolded protein assemblies 

play a major role in HD pathology. 

 

 

 

Figure 42: Analysis of aggregate formation in flies expressing HTTex1 protein variants 

(A) Detection of large SDS-stable HTTex1 aggregates in fly heads by FRAs immunodetected with the anti-V5 

antibody. (B) Quantification of mHTTex1 seeding activity in heads of 5-day-old flies by FRASE assays. Values 

are plotted as means ± SEM of three biological replicates each performed in triplicates. Individual 

measurements are presented as black dots (●); One-way ANOVA Dunnett’s post hoc test compared to 

Elav;Ex1Q17 flies.  
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In summary, in the second part of this thesis I designed six protein variants of mutant 

HTTex1 through targeted amino acid exchanges and studied their aggregation properties in vitro. 

The generated recombinant mHTTex1 protein variants were distinct in their aggregation 

properties and revealed fibrillar aggregate species with different stabilities and morphologies. 

Thus, they are a valuable tool to study the relationship between HTTex1 aggregate formation and 

toxicity in vivo. For this purpose, I generated various new Drosophila strains expressing the HTTex1 

protein variants pan-neuronally. Behavioral analysis of these flies revealed remarkable differences 

in fly development, survival and locomotor activity. Finally, I investigated the formation of HTTex1 

aggregates in HD transgenic flies Although HTTex1 protein variants show a different aggregation 

behavior in vitro and in vivo, the initial biochemical analysis of fly head lysates revealed a 

correlation between  aggregate formation and the observed behavioral phenotypes. This supports 

the hypothesis that mHTTex1 aggregation may drive pathogenesis in flies. 
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4. Discussion 

In his article “On Chorea”, George Huntington described that HD patients are aware of 

their terrible fate. He wrote: “it is spoken of by those in whose veins the seeds of the disease are 

known to exist, with a kind of horror […] when it is mentioned as “that disorder””13. In the way he 

phrased this statement he might have possibly captured a fact that modern research is just about 

to discover. 

Huntington’s disease (HD) is a devastating neurodegenerative disorder severely affecting 

the life quality of patients and care givers. Since the discovery of the disease-causing mutation in 

the HTT gene in 199316, biomedical research made substantial progress in understanding the 

molecular basis of the disease. Yet, the precise pathogenic mechanism of HD remains elusive and 

disease-modifying treatments are unavailable. One of the earliest discoveries in modern HD 

research was the formation of mutant huntingtin (mHTT) aggregates127,128. However, their role in 

HD pathogenesis has been discussed controversially – being either friends or foes. Within recent 

years, there is increasing experimental evidence that self-propagating mHTT aggregates, or seeds, 

play an important role in the development of disease in HD model organisms170,179,180. Whether 

they are indeed critical or even responsible for the appearance and progression of disease, 

however, is still unclear. 

To address this question, I developed a FRET-based biosensor (FRASE) assay that enables 

the sensitive quantification of mHTT seeding activity (HSA) in complex biosamples. With this assay 

in hand, I assessed the potential correlation between HSA in affected tissues and the appearance 

of disease phenotypes in HD patients and transgenic mice. I detected robust HSA in crude brain 

extracts of mice weeks before manifestation of disease. Furthermore, I observed an increase of 

mutant HSA in HD patient and mouse brain extracts concomitantly with the appearance of 

symptoms, suggesting that it quantitatively tracks disease progression. Finally, quantification of 

HSA in an established inducible Drosophila HD model262 indicates that the formation of small, 

seeding-competent HTTex1Q97 structures in adult neurons are necessary and sufficient to 

significantly shorten the lifespan of HD flies, supporting our hypothesis that mHTT seeding is a 

disease-relevant process causing dysfunction and neurotoxicity. Taken together, these studies 

indicate that HSA is a valuable early disease marker that can predict severe downstream 

phenotypic changes in various HD models (Chapter 3.1). In the second part of my thesis, I utilized 

structure-guided mutagenesis to design protein variants of mHTTex1. Protein variants showed 

striking differences in their aggregation kinetic, stability and morphology when analyzed in vitro, 

suggesting that they are a valuable tool to analyze the relationship between aggregate formation 

and toxicity in greater detail. For this purpose, I generated Drosophila models expressing mHTTex1 
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protein variants pan-neuronally. The combination of biochemical and behavioral analysis of the 

newly developed fly models showed that the highest amounts of mHTTex1 aggregates are 

detectable in fly strains with the strongest adverse behavioral effects and vice versa, further 

strengthening the hypothesis that neurotoxicity is tightly connected to the formation of mHTTex1 

aggregates. In addition, these results allow first speculations about how aggregate properties 

influence seeding activity and aggregate-induced toxicity (Chapter 3.2).  

In the following chapter, I will discuss the benefits and limitation of the FRASE assay and 

its potential future applications. Quantification of HSA as a potential biomarker to monitor 

progression or onset in HD shall be examined. I will elaborate on the potential toxicity of small 

seeding-competent mHTT aggregates and resulting implications for the development of 

therapeutic strategies for HD. Finally, I will discuss the impact of amino acids exchanges on the 

aggregation behavior of mHTTex1 and their putative effects on the proteotoxicity of mHTTex1 

protein variants.   

4.1. The FRASE assay is a versatile tool with many applications† 

The fluorescent dye Thioflavin T (ThT) is a reporter molecule, which is currently utilized in 

a large number of cell-free assays to monitor the seeding activity of amyloidogenic protein 

aggregates173,292. ThT exhibits enhanced fluorescence when it is bound to β-sheet-rich amyloid 

structures293. However, its binding to such structures is significantly decreased, when competing 

proteins are present in complex amyloid polymerization reactions237,293. Therefore, previously 

established ThT-based seeding assays are relatively insensitive when complex biosamples such as 

brain homogenates are analyzed. 

To overcome these limitations, I have established a FRET-based biosensor assay, which 

does not require ThT reporter molecules for the quantification of HSA in biosamples. Two 

fluorescently tagged aggregation-prone HTT exon-1 fusion proteins with 48 glutamines 

(Ex1Q48-CyPet/-YPet, Figure 9A) are used as reporter molecules to monitor seeding activity 

(Figure 10A). In contrast to the frequently used synthetic polyQ-peptides K2Q44K2
173, HTTex1 is a 

naturally occurring N-terminal fragment of mHTT that is produced by alternative splicing in HD 

brains74,126. C-terminal fusion of the fluorescent proteins CyPet or YPet does not significantly 

change the aggregation behavior of Ex1Q48 (Figure 8). Hence, Ex1Q48-CyPet and -YPet fusion 

proteins can be used to monitor mHTTex1 aggregation in vitro. They have been shown to 

self-assemble into stable fibrillar co-aggregates under both seeded and non-seeded conditions 

                                                           
† The discussion about the FRASE assay and its applications in chapter 4.1 has been reused with modifications from the published 

version: Ast, A. et al. mHTT Seeding Activity: A Marker of Disease Progression and Neurotoxicity in Models of Huntington's Disease. Mol 
Cell 71, 675-688 e676, doi:10.1016/j.molcel.2018.07.032 (2018) - https://doi.org/10.1016/j.molcel.2018.07.032. 

https://doi.org/10.1016/j.molcel.2018.07.032
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and yield FRET-based aggregation profiles from which HSA in biosamples is quantified (Figure 12). 

This process is highly robust and affected by contaminating proteins in complex biosamples only 

to a very small extent. Therefore, the FRASE assay can be employed without the need for upstream 

purification of mHTT seeds, which would complicate the protocol and decrease accuracy of 

quantification. In comparison to other seeding assays, which were recently developed in the 

context of HD and other neurodegenerative disorders173,177,234,292, the FRASE assay has several 

advantages. It is a one-step assay which is robust and easy to perform. Furthermore, it is highly 

sensitive and specific (Figure 17 and Figure 18), indicating that it is a suitable tool for high-

throughput application in research and development. Considering the molecular weight of 

sonicated recombinant HTTex1Q48 aggregates the detection limit of the FRASE assays was 

determined to be 56 fM (1.7 amol per reaction) (Figure 17), which is equivalent to a monomer 

concentration of 5 pM. In comparison, a seeding assay described by Gupta et al. was tested for its 

sensitivity using preformed aggregates of the synthetic K2Q44K2 protein173. This assay detects 

recombinant polyQ seeds in a similar concentration range (detection limit: 3.25 pM)173. However, 

the FRASE assay displayed superior sensitivity for the detection of mHTT aggregates in biosamples. 

I found that it detects seeding-competent mHTT aggregates in ≤ 2.5 µg crude protein extract of 

12-week-old symptomatic R6/2 HD transgenic mice (Figure 20) without upstream purification 

steps, whereas ~40 µg of repeatedly purified brain extract was needed to detect mHTT seeds using 

the ThT-based seeding assay described by Gupta et al. 173. The FRASE assay may be more sensitive 

because it measures mHTT seeding directly (via fluorescent reporter proteins) rather than 

indirectly through the binding of ThT molecules to mHTT aggregates. As described above, it is very 

likely that other proteins in complex biosamples interfere with the interaction between ThT and 

mHTT fibrils, which decreases the detection limit. In a more recent publication, Tan et al. applied 

preformed K2Q40K2 aggregates to lysates derived from HTTex1Q103-EGFP expressing Htt14A2.6 

PC12 cells and detected the seeding effect by quantifying GFP positive aggregates using FRA 

analysis177. In comparison to the FRASE assay a much higher seed concentration was needed to 

show a significant seeding effect (detection limit: 1 nM), demonstrating the superior sensitivity of 

the FRASE assay. Also, in comparison to a cell-based tau-seeding assay, established by Holmes et 

al., which detects seeds at a concentrations of 300 fM (56 fM in FRASE assays)234
 and a seeding-

assay by Salvadores et al. that detects 3 fmol of Aβ oligomers/reaction (the FRASE assay detects 

1.7 amol/reaction)292, the FRASE assay provides higher sensitivity. Furthermore, the FRASE assay 

allows time-resolved assessment of seeded and unseeded HTTex1 aggregation, whereas the 

seeding assays developed by Tan and Holmes solely provide end-point measurements177,234. 
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Despite the advantages of the FRASE assay discussed above, there are also limitations that 

need to be considered. As the FRASE assay relies on fluorescence measurements to track mHTTex1 

aggregation, fluorescent molecules can interfere with the assay. For example, the addition of 

blood plasma from 12 week-old R6/2 and aged matched wild-type mice disturbed the FRET 

measurement (data not shown). Due to several endogenous fluorophores (riboflavoproteins, 

vitamins and precursors, bilirubin and lipoproteins), blood plasma shows an intrinsic 

fluorescence294, which overlaps with the emission spectrum of the YPet fluorophore and therefore 

perturbs the detected fluorescence signal. Hence, for the detection of seeding-competent mHTT 

aggregates in blood, upstream purification steps are required. Moreover, pilot tests to optimize 

the homogenization conditions revealed that detergents, even at low concentrations, influence 

the aggregation kinetics of the Ex1Q48-CyPet/-YPet reporter proteins295. In order to gain reliable 

results, detergents should not be used in the lysis buffer, or otherwise removed from the lysate 

prior to FRASE analysis. Hence, although the detection of seeding-competent mHTT aggregates in 

brain tissue of mice and patients was demonstrated to be highly robust and sensitive even without 

additional purification steps, the detection of seeds in biosamples such a blood, which likely 

contain very  low amounts of mHTT seeds as well as other fluorescent components, might benefit 

from upstream purification steps or specific seed enrichment procedures.  

Upstream sample processing therefore is likely a necessary optimization step to enable 

the detection of mHTT seeds in human biofluids or peripheral tissue with FRASE assays (Figure 

31). Recently, Tan and colleagues detected mHTT seeding activity in cerebrospinal fluid (CSF) 

prepared from HD transgenic rats and patients. While the FRASE assay readily detects mHTT seeds 

in disease-relevant brain regions of HD patients (Figure 21 and Figure 22), HSA was undetectable 

in HD patient CSF (Figure 31C). This was surprising, as the detection limit of the FRASE method 

(5 pM, based on the monomer concentration) is ~200-fold below that of the seeding assay 

developed by Tan and colleagues (1 nM K2Q40K2 aggregates)177. Additional upstream processing 

steps such as proteinase K treatment may be required to unmask the surface of mHTT seeds for 

their detection in CSF235. Otherwise, seed enrichment by ultracentrifugation or 

immunoprecipitation might be conceivable steps to further improve the detection of mHTT seeds. 

Alternatively, the FRASE assay could be further optimized regarding its sensitivity. I showed that 

an extension of the lag phase of reporter protein aggregation increases the sensitivity of the FRASE 

assay (Figure 14 and Figure 15). Hence, impeding primary nucleation and thereby delaying 

spontaneous self-assembly of the reporter proteins might further improve the detection limit. As 

described before, primary nucleation of mHTTex1 depends on the concentration of the protein 

and the length of the polyQ tract130,147. In addition, primary nucleation is greatly influenced by the 
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amino acid sequences flanking the polyQ domain (N17 and PRD domain). Whereas the 

N17 domain has been reported to facilitate aggregation, the PRD was shown to counteract this 

process148-150. Therefore, the deletion of the N17 region on the one hand or the expansion of the 

PRD on the other hand, might be strategies to generate sensor proteins of even higher sensitivity. 

The FRASE assay was successfully used to detect seeding-competent mHTT aggregates in 

affected brain regions in HD patients (Figure 22 and Figure 25), supporting the correlation 

between mHTT seeding and pathology179,182,296. Whether the FRASE method can be translated to 

more accessible biosamples (such as blood and CSF) remains to be demonstrated. Nevertheless, 

this assay has considerable potential to be developed into an aggregate-specific prognostic tool. 

In addition, the assay could also be applied to screen for novel small molecules or proteins that 

interfere with seeded mHTT aggregation. As the assay can monitor mutant HSA in protein extracts 

prepared from postmortem patient brain and transgenic animals, it is also feasible to examine the 

effects of aggregate-targeting therapeutic candidate molecules in the presence of 

disease-relevant seeds. Finally, it is important to note that the general approach can be adapted 

to develop similar seeding assays for many other aggregation-prone proteins relevant to protein 

misfolding diseases. 

4.2. Small seeding-competent fibrillar aggregates potentially drive 

Huntington’s disease progression‡ 

Using the FRASE assay, I obtained comprehensive evidence that mHTT seeds are present 

in brain tissues of multiple HD mouse models and patients. I observed robust mHTT seeding 

activity (HSA) in HD transgenic mice long before the onset of symptoms (Figure 24). Furthermore, 

significant HSA was detectable in post mortem brain tissue of HD patients with grade 2 

neuropathological changes259 (Figure 25), supporting the hypothesis that mHTT seeding is an early 

event in pathogenesis170,182. With disease progression, the presence of seeding-competent 

aggregates increased in brain tissue from HD patients and mice. This is consistent with the 

assumption that seeding is a causal process and drives disease progression170,182.  

I observed high HSA in soluble fractions of transgenic HD mouse brain extracts (Figure 26), 

suggesting that greater seeding activity is associated with smaller particles. However, inclusions 

with insoluble fibrillar HTTex1 aggregates also possess seeding activity. On the one hand, high 

seeding activity in the soluble fraction might simply be attributed to the high surface to mass ratio 

of small fibrillar assemblies. I could show that sonication of large bundles of HTTex1Q48 fibrils 

                                                           
‡ The discussion about the role of mHTT seeds as potential disease driver in chapter 4.2 has been reused with modifications from the 

published version: Ast, A. et al. mHTT Seeding Activity: A Marker of Disease Progression and Neurotoxicity in Models of Huntington's 
Disease. Mol Cell 71, 675-688 e676, doi:10.1016/j.molcel.2018.07.032 (2018) - https://doi.org/10.1016/j.molcel.2018.07.032. 

https://doi.org/10.1016/j.molcel.2018.07.032
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leads to an increase in HSA (Figure 13), indicating that fragmentation greatly enlarges the overall 

surface area of mHTTex1 seeds, where templated aggregation of soluble mHTTex1 molecules can 

take place. On the other hand, small mHTTex1 assemblies might possess a higher seeding activity 

due to potential differences in their aggregate structure. It has been shown that protein 

aggregates can have distinct structural conformations, known as strains297-299. For human prion 

diseases it has been demonstrated that the conformation of pathogenic prion aggregates 

influences the rate of propagation as well as the resulting disease phenotypes299. With the 

appearance of the “prion hypothesis” and the advancement in biophysical tools, researchers 

focused on the structural characterization of protein aggregates related to other 

neurodegenerative diseases. Distinct aggregate strains were identified for the polypeptides tau 

and amyloid-β (both related to Alzheimer’s disease297,298). Moreover, it was demonstrated that 

these strains have different propagation rates as well as different abilities to spread from cell-to-

cell, suggesting that protein aggregates involved in neurodegenerative diseases might behave as 

distinct prion-like strains, potentially encoding diverse disease phenotypes297,298. More recently, 

structural polymorphisms have also been shown for HTTex1 aggregates that are formed in vitro. 

Using biochemical methods distinct mHTTex1 aggregates were generated, which showed 

differences in aggregate morphology, epitope exposure, stability and toxicity141,300. Whether 

mHTT aggregates form distinct strains in vivo remains to be investigated. Further studies will be 

necessary to purify fibrillar mHTT structures from mouse and patient brains in order to study their 

structural properties and to assess whether they possess specific seeding activities (i.e., seeding 

activity per unit of protein). I assume that there is a continuum of mutant HTT species in disease 

brains that all have some seeding activity. However, similar to previously published results for 

infectious prion species301, my experiments provide initial evidence that the specific activity may 

be higher for smaller mutant HTTex1 structures than for larger aggregates.  

My results are in agreement with previous investigations indicating that small, fibrillar 

polyQ-containing mHTT assemblies are detectable in the cytoplasm of cells besides large 

inclusions with fibrillar aggregates116,133,201. They are also consistent with experimental studies 

demonstrating that proteotoxicity in mammalian cells is associated with small, diffusible mHTT 

oligomers rather than large inclusions133,302,303. However, the present study advances beyond the 

state-of-the-art, providing experimental evidence that small HTTex1Q97 seeds are associated with 

dysfunction and neurotoxicity in neurons of HD transgenic flies in the absence of detectable 

large, insoluble mHTT aggregates (Figure 28 and Suppl. Figure 1).  

It remains an open question how fibrillar mHTT aggregates cause cellular dysfunction and 

toxicity. Several mechanisms are worth considering and involve either a direct or an indirect action 
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of mHTT seeds. The presence of mHTT protein aggregates might indirectly cause cellular 

dysfunction, by over taxing the protein quality control systems198,199. mHTT aggregates might 

exhaust the protein folding capacity of the proteostasis network, causing newly synthesized 

proteins to fold less efficiently and metastable proteins to lose their functional conformation304. 

Consequently, the presence of mHTT aggregates might indirectly induce misfolding and functional 

loss of diverse cellular proteins198,304-306. On the other hand, mHTT seeds might directly cause 

cellular dysfunction by interacting with cellular membranes or proteins. It has been shown that 

fibrillar mHTT aggregates are able to interact and even penetrate cellular membranes175,176. In this 

context, fibrils present in polyQ inclusions were found to interact with the endoplasmic reticulum 

and to perturb membrane organization and dynamics307. As several important biological processes 

take place at the membranes of cellular organelles (e.g. oxidative phosphorylation in mitochondria 

membranes or protein translation at the membrane of the rough endoplasmic reticulum), 

aberrant interactions with membranes of different cellular organelles might perturb physiological 

functions, such as protein synthesis or energy production. In addition seeding-competent 

structures might directly interact with essential cellular proteins potentially corrupting their native 

conformation. In this context I would like to discriminate between two hypothetical processes: 

cross-polymerization and cross-seeding. I define cross-polymerization as the incorporation of 

cellular proteins into the growing mHTT fibril. A prerequisite for this process is an ongoing 

aggregation process, which enables the alternating integration of soluble mHTT molecules and 

other cellular proteins into the emerging fibrillar aggregate. On the other hand, I would like to 

define cross-seeding as the process in which preformed mHTT fibrils initiate the structural 

conversion of cellular proteins and their assembly into self-sustained aggregates. Cross-seeding of 

cellular proteins could therefore occur in the absence of soluble mHTT molecules. Cellular proteins 

including wild-type HTT have been shown to be sequestered into mHTT fibrils 195,308. In most 

studies which mechanistically analyzed protein sequestration, mHTT was continuously produced 

feeding an ongoing aggregation process308. These studies show that cellular proteins cross-

polymerize with mHTT. However, they do not provide evidence that mHTT aggregates, 

independent from an ongoing aggregation process, are capable of inducing protein misfolding. In 

this study I have shown that the addition of fibrillar Ex1Q48 aggregates to recombinant 

ExQ23-CyPet/-YPet sensor proteins induces a week increase in FRET efficiency (Figure 16), 

suggesting that Ex1Q48 seeds induce conformational changes and polymerization of wild-type 

HTTex1 independently of continuous mHTTex1 aggregation. This finding is in line with studies 

showing that fibrillar polyQ or HTTex1 aggregates promote intracellular nucleation of wild-type 

HTTex1 even in the absence of mutant HTT expression174,175,309. It further indicates that fibrillar 
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mHTTex1 structures are able to cross-seed the assembly of cellular proteins with a low intrinsic 

propensity to self-assemble spontaneously. In contrast to previous studies174,175,309, I could follow 

the seeded polymerization of wild-type HTTex1 in a time-resolved manner. In comparison to 

sigmoidal aggregation profiles obtained with seeded ExQ48-CyPet/-YPet polymerization (Figure 

17), the increase in FRET efficiency resulting from the seed-induced assembly ExQ23-CyPet/-YPet 

reporter proteins was comparably low, had a linear slope and was only observable when very high 

concentrations of Ex1Q48 seeds were added to reactions (Figure 16). This suggests that the 

assembly of ExQ23-CyPet/-YPet reporter proteins is rather inefficiently templated by preformed 

Ex1Q48 aggregates. It remains to be demonstrated, whether mHTTex1 aggregates can also 

cross-seed other cellular proteins with short polyQ tracts or high glutamine content. Besides the 

disruption of membranes and proteostasis mechanisms, both processes, cross-seeding and 

cross-polymerization, could contribute to neurotoxicity in HD transgenic flies. Although transgene 

expression was switched off, minimal background expression of HTTex1Q97 was observed in the 

absence of the expression inducing hormone (Suppl. Figure 1), which is why the proteotoxic 

effects could still be assigned to an ongoing mHTTex1 aggregation process.  

The precise mechanism by which mHTT aggregates interfere with cellular function 

remains elusive. However, this study provides comprehensive evidence that seeding-competent 

mHTTex1 aggregates might contribute to HD pathogenesis and therefore makes it necessary to 

reconsider currently pursued therapeutic strategies. A promising new strategy aims to lower the 

levels of HTT protein25,226,310,311. However, the results of this thesis indicate that lowering the 

expression of mutant HTTex1 once seeding-competent aggregates are formed only insufficiently 

reduces neurotoxicity. In addition, I would expect that small molecule compounds targeting 

primary nucleation will only exert their full effects on the disease process before 

seeding-competent mHTT aggregates are formed, as the presence of seeds would circumvent 

primary nucleation and thereby subvert the efficiency of these molecules. Considering that mHTT 

seeds might spread between adjacent cells178-181, aggregate transfer might be a conceivable 

therapeutic target.  

4.3. Mutant HTT seeding activity is a potential biomarker in HD§ 

In order to monitor disease onset and progression or to test the efficacy of newly 

developed therapeutic candidates, sensitive biomarkers are needed. As described before, 

biomarkers should fulfil certain criteria207. They should be objectively measurable. They should 

                                                           
§ The discussion about HSA as potential biomarker in chapter 4.3 has been reused with modifications from the published version: Ast, 

A. et al. mHTT Seeding Activity: A Marker of Disease Progression and Neurotoxicity in Models of Huntington's Disease. Mol Cell 71, 675-
688 e676, doi:10.1016/j.molcel.2018.07.032 (2018) - https://doi.org/10.1016/j.molcel.2018.07.032. 

https://doi.org/10.1016/j.molcel.2018.07.032
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have an association with known disease mechanisms or pathology and they should respond to 

therapy207. In this chapter, I will discuss the suitability of mHTT seeding activity (HSA) as a 

biomarker in HD patients and models. 

Mutant HTT seeds in brains of HD transgenic mice as well as in HD patients are an early 

manifestation of disease and increase in their abundance with the development of disease 

phenotypes, suggesting an association with disease pathology (see also Chapter 4.2). Previous 

studies argue that the abundance of mHTT aggregates in brains of HD mice and patients is not 

predictive for the development of symptoms312,313. However, these studies used 

immunohistological methods, which detect large neuronal inclusions with insoluble aggregates, 

but fail to identify small, seeding-competent mHTT assemblies in disease brains. The application 

of the FRASE assay overcomes this important limitation (Figure 26) associated with standard 

histological analysis and enables objective quantification of HSA. Furthermore, HSA correlates 

with genetically or chemically induced modulation of disease-associated phenotypes (Figure 29 

and Figure 30), indicating that it might also responds to therapeutic interventions. Together, this 

suggests that HSA measured by FRASE assays fulfills the outlined criteria and has therefore great 

potential to be used as a biomarker. However, independent validation experiments and further 

improvement of the FRASE assay will be needed.  

I propose that in future drug trials with transgenic HD mice HSA could be utilized as an 

outcome marker to monitor the efficacy of therapeutic molecules in vivo, before and independent 

of changes in phenotypic manifestation. I detected robust HSA in the striatum of 2-month-old 

HdhQ150 knock-in mice (Figure 24C). Drug treatment could start before that point in time and 

animals could be assessed for HSA at any age after two months. In addition, the FRASE assay might 

also be of high value for monitoring disease onset and progression in HD patients if HSA could be 

quantified in biosamples whose collection is technically and ethically possible, like cerebrospinal 

fluid, blood or muscle tissue. Through the quantification of HSA in patient samples, the optimal 

time point for the initiation of clinical trials could be determined and the efficacy of therapeutic 

interventions could be monitored. In this way, my findings may help to develop novel 

disease-modifying therapeutic strategies for HD and other polyQ diseases. 

4.4. Amino acid substitution changes the aggregation of HTTex1 in vitro 

Research on human prion proteins has revealed that the structural characteristics of 

aggregates influence their proteotoxicity299. With the intension to alter the aggregation properties 

of HTTex1 and finally the structure of the resulting aggregates, I generated six protein variants of 

mutant HTTex1 through amino acid (AA) exchange in the N17 and the polyQ domain (Figure 32 

and Suppl. Figure 3). Studying the aggregation behavior of purified protein variants in vitro, 
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revealed strong differences in stability, morphology and the rate of aggregate formation. In the 

following paragraphs, these differences shall be discussed in the context of the predicted 

structural changes (Figure 32) and in the light of the prevailing view on the HTTex1 aggregation 

mechanism (Chapter 1.2.2). 

I designed a group of protein variants by AA substitution with proline residues 

(Ex1Q48M2, Ex1Q48M3, Ex1Q48M6, Figure 25). Due to the covalent bond of the side chain to the 

amino group of the backbone, proline residues introduce kinks into amino acid sequences. They 

are therefore known as structural breaker of α-helices and β-sheet conformations283,314. Hence, it 

would be expected that proline substitution would hamper the N17 domain to form an 

amphipathic α-helical structure, which is believed to stimulate the initial interaction of mHTTex1 

monomers151-153. These associations subsequently trigger the conformational transition of the 

polyQ domain from a flexible random coil to a stable β-sheet conformation154-157. In addition, the 

introduction of proline residues into the polyQ domain would be expected to perturb β-sheet 

formation. On the one hand the, the introduction of hydrophobic proline residues in the 

polyQ domain reduces the number of possible hydrogen bonds that can form between interacting 

polypeptide chains. On the other hand, they introduce kinks into the AA sequence, which perturb 

the pleated conformation of polypeptide and hamper the ordered alignment of multiple amino 

acid side chains in a β-sheet139. In both cases the introduction of prolines into the polyQ tract 

should reduce the propensity of mHTTex1 fragments to form amylogenic β-sheets137,138. The 

introduction of proline residues in both the N17 and the polyQ domain was suggested to have the 

strongest effect on the  HTTex1 structure and was predicted to almost completely abolish the 

ability of mHTTex1 molecules to form of coiled-coil (CC) and amyloid structures (Figure 32, 

Ex1Q48M3). As expected, I found that the aggregation process was strongly disturbed by the 

introduction of proline residues in the N17 and the polyQ domains (Figure 34, Ex1Q48M3). In none 

of the performed experiments (FRA, DB, SDS-PAGE, AFM, Figure 34) I detected Ex1Q48M3 

aggregates. In comparison, the protein variant Ex1Q48M6 was generated by the introduction of 

proline residues only in the polyQ domain. In silico analysis predicted the disturbance of 

CC formation to be similar to Ex1Q48M3, but the propensity for amyloid formation to be less 

severe (Figure 32). The in vitro experiments with recombinant proteins revealed that Ex1Q48M6 

protein assembles into aggregates rather slowly, but with higher efficiency than Ex1Q48 M3 

protein (Figure 34). As the CC propensity was predicted to be similar in both Ex1Q48M3 and 

Ex1Q48M6 these results suggest that mHTTex1 aggregation is predominantly determined by the 

propensity to form amylogenic β-sheets.  
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A similar conclusion can be drawn when comparing Ex1Q48M2 and Ex1Q48M1 (Figure 

32). Introduction of proline residues in the a/d positions of the N17 domain, as in the protein 

variant Ex1Q48M2, was expected to reduce the propensity to form CCs. In silico analysis confirmed 

a slight reduction of CC propensity within the N17 region, but also indicated a drastically decreased 

propensity to form amyloid structures. The investigations with recombinant proteins revealed 

that Ex1Q48M2 aggregates are formed after an extremely long lag phase (Figure 34). The strong 

delay in aggregation supports the role of flanking regions in HTTex1 aggregation148-150. However, 

whether this delay in protein aggregation can be assigned to the disturbance of CC formation or 

rather originates from the disturbance of amyloid formation needs further clarification. In order 

to evaluate to which extend CC and β-sheet disturbances affect the formation of 

HTTex1 aggregates, I next want to draw the attention to protein variant Ex1Q48M1 (Figure 32). 

The introduction of tryptophan residues in the N17 domain, was, similarly to Ex1Q48M2, 

predicted to slightly reduce the propensity of CC formation. However, the propensity to from 

amyloid structures was maintained or slightly increased. In contrast to Ex1Q48M2, the 

introduction of tryptophan residues into the N17 domain did not change the aggregation kinetics 

of protein variant Ex1Q48M1 to a detectable degree (Figure 34). This result suggests that the slight 

perturbation of CC formation in Ex1Q48M2 and Ex1Q48M1 is insufficient to drastically delay the 

aggregation of the HTTex1 protein variants. This in turn indicates that the strong delay in 

aggregation observed with the protein variant Ex1Q48M2 results from the reduced propensity to 

form amylogenic β-sheets. Both protein variants are predicted to have a high propensity to from 

CCs within the polyQ domain. This might still be sufficient to mediate initial contacts between 

different HTTex1 molecules and could explain why the aggregation behavior of Ex1Q48M1 was 

not changed. The initial contacts between HTTex1 molecules might occur, however, as the 

introduction of proline residues in the N17 domain strongly decreases the propensity to form 

amyloid structures, the conversion of the polyQ domain from a random coil into a β-sheet 

conformation might be very inefficient, which would in turn prevent or delay the aggregation 

process138. Again, this suggests that β-sheet formation is the main driver of HTTex1 aggregation. 

This hypothesis is also supported by the observed aggregation behavior of the protein variant 

Ex1Q48M5. The introduction of charged and polar amino acids in the polyQ domain was predicted 

to increase the propensity to form CCs, but to slightly decrease the propensity to form amyloid 

structures (Figure 32). In comparison to Ex1Q48, aggregation of recombinant Ex1Q48M5 protein 

was delayed (Figure 34), indicating that the slight decrease in amyloid formation propensity has a 

stronger influence on HTTex1 aggregation than the increase in CC formation propensity.  
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Finally, I would like to compare the structural variants Ex1Q48M2 and Ex1Q48M3. For 

both proteins variants the propensity to form amyloids was predicted to be drastically reduced 

(Figure 32C). However, the protein variant Ex1Q48M2 showed a much higher likelihood to form 

CC structures (Figure 25B). Monitoring the aggregation behavior of both proteins in vitro reveals 

that the aggregation process is strongly disturbed in both cases. However, the protein variant 

Ex1Q48M2 did assemble into SDS-stable, fibrillar aggregates within the given timeframe, whereas 

Ex1Q48M3 proteins were not observed to form aggregates (Figure 34B and F). These results 

further confirm that the propensity to form amylogenic β-sheets has a strong influence on 

spontaneous HTTex1 aggregation. They also illustrate that CC structures promote the aggregation 

process to a minor degree151-153. Together these results lead to the hypothesis that both CC and 

β-sheet formation influence the HTTex1 aggregation process. My theoretical and experimental 

investigations suggest that the propensity to adapt an amylogenic β-sheet conformation 

predominantly determines the aggregation propensity of HTTex1 molecules, regardless of 

whether β-sheet destabilization originates from modifications of the N17 or the polyQ domain. 

CC formation has a weaker aggregation modulating effect. Admittedly, I observed that Ex1Q48M4, 

which was predicted to have a high propensity to form amyloids and CCs, aggregated very 

inefficiently in vitro (Figure 34B). This unexpected result does not support the proposed 

hypothesis, which is why, it requires further investigation to draw a definitive conclusion on the 

degree to which CC-mediated interactions and amylogenicity influence the aggregation of 

mHTTex1. In addition, CD spectroscopy analysis is required in order to confirm the predicted 

secondary structures of the investigated recombinant proteins. 

Apart from a change in the rate of aggregation, the resulting aggregates obtained with the 

HTTex1 protein variants displayed differences in their stability. I found that amino acid exchanges 

in the polyQ tract that decrease the amyloid formation propensity also lead to the formation of 

mHTTex1 aggregates with reduced stability (Figure 34E, Ex1Q48M5 and Ex1Q48M6). The stability 

of the Ex1Q48M5 and Ex1Q48M6 aggregates does not correlate with the predicted propensity to 

form amyloids or the rate of aggregate formation, but with the number of amino acid substitutions 

in the polyQ domain. Within the amyloid core structure, the amino acid side chains contribute to 

the formation of hydrogen bonds between adjacent β-strands within a single β-sheet137-139. In 

addition, they are predominantly responsible to mediate the interactions between adjacent 

β-sheets within the amyloid fibril137-139. Intriguingly, the protein variant Ex1Q48M5 which has 

completely lost its SDS-stability, displays a very different morphology (Figure 34E and F). 

Ex1Q48M5 fibrils in comparison to Ex1Q48 fibrils are much thinner, indicating that lateral fibril 

growth through interconnection of β-sheets might be disturbed315,316. However, a reduction in 
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fibril width was not observed with the proteins Ex1Q48M6 or Ex1Q23 which both show a 

significantly decreased SDS stability. In order to relate the stability of a HTTex1 aggregate to its 

molecular structure and morphology further experiments are needed. Electron microscopy 

analysis of preformed fibrillar aggregates from Ex1Q48 and its protein variants could provide 

images of higher magnification and might potentially reveal additional morphological variations. 

Furthermore, solid state nuclear magnetic resonance (NMR) imaging of fibrils form Ex1Q48 and 

its protein variants could be performed in order to elucidate the molecular architecture of these 

aggregates. Thereby, structural and morphological characteristics of HTTex1 aggregates could 

potentially be related to their stability. 

Independent of their aggregation behavior and stability, all HTTex1 aggregates detected 

by AFM display a fibrillar morphology (Figure 34F), indicating that in all cases ordered molecular 

structures have formed317,318. Whereas the formation of amorphous mHTTex1 aggregates has 

been demonstrated in the presence of chaperones or through AA substitution in the HTTex1 

sequence319,320, my results suggest that regular fibrillar structures are a dominant feature of 

HTTex1 aggregates. Aggregates with a fibrillar morphology were also observed for the protein 

Ex1Q23 (Figure 34F), containing a non-pathogenic polyQ tract. This is in line with other in vitro 

studies showing that HTTex1 proteins with non-pathogenic polyQ lengths can form fibrillar 

aggregates321. Similar to my results, aggregate formation of HTTex1 fragments with short polyQ 

tracts were much slower compared to the mutant HTTex1 protein321. Interestingly, all aggregates 

formed by the HTTex1 protein variants and Ex1Q23 showed seeding activity when they were 

analyzed by FRASE assays (Figure 35), suggesting that the ordered fibrillar structure qualifies an 

aggregate to be seeding-competent irrespective of its stability. Interestingly, I observed 

differences in HSA when preformed aggregates of HTTex1 protein variants were analyzed by 

FRASE assays (Figure 35). However, as HSA strongly depends on the amount of seeding-competent 

aggregates, a more detailed analysis will be needed in the future in order to assess whether AA 

exchanges indeed induce structural differences that influence the specific seeding activity 

(HSA/protein amount). 

4.5. Aggregate formation correlates with HTTex1 induced toxicity in 

protein variant Drosophila models 

In order to investigate the relationship between the structural properties of HTTex1 

aggregates and their toxicity, I generated different Drosophila strains expressing HTTex1 protein 

variants in neurons (Figure 36). Fly strains were phenotypically and biochemically characterized. 

I observed remarkable differences in fly development (Figure 38), survival (Figure 39) and 
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locomotor activity (Figure 40 and Figure 41), whose severity coincided with the formation HTTex1 

aggregates (Figure 42), supporting the hypothesis that mHTTex1 aggregates might play a causal 

role in HD pathogenesis.  

However, I found that the HTTex1 protein variants show a different aggregation behavior 

in vitro and in vivo. For example, recombinant Ex1Q48M2 proteins aggregated very inefficiently 

in vitro (Figure 34), whereas Ex1Q75M2 proteins rapidly assembled in to SDS-stable aggregates 

in vivo (Figure 42A). In order to understand these results several considerations have to be made. 

On the one hand the deviant aggregation behavior might result from the longer polyQ tract in the 

protein variants expressed in Drosophila models (compare Figure 32 and Suppl. Figure 3). 

Although the AA exchanges were adapted in order to generate Ex1Q75 protein variants with 

similar structural changes, the different length of the polyQ stretch needs to be considered as a 

possible source of deviations, especially for the structural variants containing AA substitutions in 

the N17 domain. The N17 domain likely exerts a smaller influence on the aggregation process, 

when HTTex1 proteins with very long polyQ tracts are expressed in fly neurons. In addition, in the 

cellular environment, the N17 domain strongly influences the fate of HTTex1 in other ways. It has 

been shown to act as a nuclear export signal322, to interact with membranes153,156 and is an active 

site of post-translational modifications (PTM)68. As a consequence, AA substitutions in the 

N17 domain might change the subcellular localization322 or the strength of binding to membranes 

or cellular proteins153,156,323 and ultimately might influence the aggregation behavior in a way that 

cannot recapitulate the in vitro situation. This might be an explanation for the strong differences 

in the aggregation behavior of the proteins Ex1Q75M1, Ex1Q75M2 and  Ex1Q75M3, which was 

seen in vitro and in vivo (Figure 34 and Figure 42).  

In contrast, the protein variants Ex1Q75M5 and Ex1Q75M6 show a reduced aggregation 

propensity in Drosophila neurons (Figure 42) similar to the recombinant protein variants 

Ex1Q48M5 and Ex1Q48M6 studied in vitro (Figure 34). This suggests that the change in 

aggregation behavior through AA exchanges in the polyQ tract is conserved and not significantly 

altered by the cellular environment. The introduction of proline residues into the polyQ tract 

(Suppl. Figure 3, Ex1Q75M6), slightly reduces the aggregate load in Drosophila neurons and 

alleviates mHTTex1 induced toxicity (Figure 39 and Figure 42). Comparable to the recombinant 

Ex1Q48M5 protein, no SDS-stable aggregates were detectable in transgenic flies expressing 

Ex1Q75 (Figure 42). However, a slight, yet not significant, increase in HSA might indicate the 

presence of low amounts of seeding-competent HTTex1 aggregates. The introduction of charged 

and polar residues in the polyQ tract (Suppl. Figure 3, Ex1Q75M5) resulted in a strong rescue of 

the Ex1Q75-induced phenotype in HD flies (Figure 39). Considering that both of these protein 
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variants showed a decreased aggregate stability in vitro (Figure 34E), these results might suggest 

that this biochemical property is critical for the observed proteotoxicity in HD flies. The 

manipulation of aggregate stability might be of potential therapeutic relevance as small molecule 

compounds or peptides could be engineered to destabilizes or dissociate mHTT aggregates, 

potentially giving the proteostasis system an advantage for aggregate clearance. However, as the 

biochemical analysis of transgenic flies is still preliminary, follow-up analyses are required to 

confirm this hypothesis.  

Within the framework of this study, a definitive conclusion on how structural properties 

might influence mHTTex1 aggregate-induced toxicity cannot be drawn, yet. However the 

generation of recombinant protein variants and the corresponding transgenic fly models might 

help future research to address this question.  
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5. Material 

5.1. Chemicals and consumables 

0.5, 1.5, 2 ml tubes Eppendorf 

15 ml, 50 ml tubes BD Falcon 

15 ml, 50 ml tubes BD Falcon 

384 Well Nunc™ Polystyrene Black Microplates Thermo Scientific 

96 Well Cell Culture Microplate, PS, F-Bottom, advanced, black Greiner Bio-One 

Acetic Acid 99-100 % Roth 

Agar-Agar Gewürzmühle Brecht 

Agarose Biozym 

Ampicillin sodium salt Sigma-Aldrich 

Axygen™ 8-Strip PCR Tubes Corning 

Bacto™ Tryptone BD Biosciences 

Beer yeast Gewürzmühle Brecht 

Bromophenol blue Merck Eurolab GmbH 

Cell culture dishes BD Falcon 

Cellulose acetate membrane 0.2 μm Schleicher and Schuell 

Chloramphenicol Sigma-Aldrich 

Chloroform Merck 

Complete™ protease inhibitor cocktail Roche Applied Science 

Coomassie brilliant blue G-250 Merck 

Corn flour Bauck GmbH 

Desoxyribonucleotides (dNTPs) Fermentas 

Dialysis membrane, MWCO 10 kDa SpectraPor® Dialysis 

Dimethylsulfoxide (DMSO) Sigma-Aldrich 

Dithiothreitol (DTT)  Serva 

DNA Gel Loading Dye (6X) Life Technologies 

Doxycycline monohydrate Sigma 

DRAQ5TM Fluorescent Probe (5 mM) Thermo Scientific 

Ethanol (pure) Roth 

Ethidium bromide (10 mg/ml) Sigma-Aldrich 

Ethylenediaminetetraacetic acid (EDTA) Merck Eurolab GmbH 

Fetal Bovine Serum (FBS) Life Technologies 



Material  
 

94 
 

Filter paper GB002 Schleicher and Schuell 

Fluoronunc 96-well plates Nunc 

Fly vials (plastic) 26, 49 mm diameter  K-TK 

G418, Geneticin® (50 mg/ml) Life Technologies 

Glutathione Sepharose 4B GE Healthcare 

Glutathione, reduced Sigma-Aldrich 

Glycerol Merck Eurolab GmbH 

HEPES Carl Roth 

Hygromycin B (50 mg/ml) Life Technologies 

Isopropyl alcohol Roth 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) AppliChem 

Kanamycin A monosulfate Sigma-Aldrich 

L-Glutathione, reduced Sigma-Aldrich 

Malzin Ulmer Spatz 

Methanol Merck 

Methyl 4-Hydroxybenzonate (Nipagin) AppliChem 

Mica: G250-2 Glimmer "v3" Plano 

Mifepristone (ru-486) Biomol 

Nonidet™ Ethylphenyl polyethylen glycol (NP40) Sigma-Aldrich 

NuPAGE® LDS Sample Buffer (4X) Life Technologies 

Paraformaldehyde Sigma-Aldrich  

Penicillin Streptomycin (Pen Strep), 10,000 U/ml Life Technologies 

Polyoxyethylensorbitan-Monolaureat (Tween 20)  Sigma Aldrich 

Polypropylene columns 5 ml Qiagen 

Ponceau-S solution Sigma-Aldrich 

Protein LoBind tubes 0.5, 1.5, 2.0 ml Eppendorf 

p-t-Octylphenyl-polyoxyethylen (Triton X-100) Sigma-Aldrich 

Quinidine Sigma Aldrich 

RNase-free water Ambion 

Skim milk powder Sigma Aldrich 

Sodium deoxycholate Sigma 

Sodium hydroxide Merck 

Soy flour Bauck GmbH 

Sucrose Fluka 
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Sugar beet sirup Grafschafter Krautfabrik 

TRIS Base, Tris(hydroxymethyl)aminomethane Merck 

Triton™ X-100 Sigma 

Trypsin-EDTA (0.05% ) Life Technologies 

Tube 13ml, 100x16mm (overnight cultures) Sarstedt 

Ultracentrifuge Tubes (1.5 ml) Beckman Coulter 

Whatman chromatography paper GB004 Whatman 

 

The remaining chemicals necessary for the preparation of buffers (salts, acids, etc.) were 

purchased from Roth. 

5.2. Enzymes, proteins and markers 

Antarctic Phosphatase New England Biolabs 

Benzonase® Nuclease, 100,000 U Merck Millipore 

Gateway®BP Clonase™ Enzyme Mix Thermo Scientific 

GeneRuler 1 kb DNA Ladder Life Technologies 

GeneRuler 100 bp DNA Ladder Life Technologies 

Gateway™ LR Clonase™ Enzyme mix Thermo Scientific 

Lysozyme Sigma-Aldrich 

PageRuler™ Prestained Protein Ladder Life Technologies 

PreScission Protease, 500 U GE Healthcare 

Pwo SuperYield DNA polymerase Roche 

Restriction enzymes New England Biolabs 

T4 DNA Ligase Thermo Scientific 

5.3. Kits 

BCA Protein assay reagent Pierce 

DNeasy blood and tissue kit QIAGEN 

MSB Spin PCRapace Stratec Biomedical 

NativePAGE™ Novex® Bis-Tris gel system Invitrogen 

NuPAGE MES SDS running buffer Invitrogen 

NuPAGE MES SDS transfer buffer Invitrogen 

NuPAGE™ Novex® Bis-Tris gel system Invitrogen 

QIAprep Spin Miniprep QIAGEN 

WesternBright™ Quantum™ Chemiluminescent HRP substrate Advansta 
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5.4. Buffers, solutions and media 

4 % PFA 4 g PFA dissolved in 100 ml, pH 7.4 

 

4x SDS loading buffer 200 mM Tris pH 6.8, 400 mM DTT, 8% SDS, 40% glycerol, 

bromophenol blue 

 

Aggregation buffer, 10x 0.5 M Tris-HCl, 1.5 M NaCl, 10 mM EDTA, pH7.4 

 

Blocking buffer  3 % milk powder in PBS-T 

 

Brain lysis buffer  10 mM Tris-HCl pH 7.4, 0.8 M NaCl, 1 mM EDTA, 10 % Sucrose 

(fresh), 1x protease inhibitor 

 

Buffer 1 50 mM NaH2PO4, 5 mM Tris, 150 mM NaCl, 1 mM EDTA, pH 8.0 

 

Cell lysis buffer 50 mM HEPES pH 7.4, 150 mM NaCl, 1.5 mM MgCl2, 0.1% NP-

40, 1 mM EDTA, 1x Complete™ protease inhibitors, 2u/ml 

benzonase 

 

Coomassie staining solution 30 % ethanol, 10 % acetic acid, 0.05 % Coomassie brilliant blue 

R250 

 

Denaturation buffer, 2x 4 % SDS, 100 mM DTT 

 

Dialysis buffer 50 mM Tris, 150 mM NaCl, 1 mM EDTA, 5 % Glycerol, pH 7.4 

 

Elution buffer  50 mM NaH2PO4, 5 mM Tris, 150 mM NaCl, 1 mM EDTA, 20 mM 

red. glutathione, pH 8.6 

 

HEPES lysis buffer 50 mM HEPES, 150 mM NaCl, 10 % Glycerin, 1 % NP-40, 20 mM 

NaF,       1.5 mM MgCl2, 1 mM EDTA, 1 mM DTT, 0.5 % 

Desoxycholat, 1:10.000 Benzonase, 1x Protease inhibitor 

 

LB-(Luria Bertani) agar 1 % Bacto Peptone, 0.5 % yeast-extract, 1 % NaCl, 2 % Agar 
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LB-(Luria Bertani) medium 1 % Bacto Peptone, 0.5 % yeast-extract, 1 % NaCl 

 

PBS, 10x 1.37 mM NaCl, 27 mM KCl, 100 mM Na2HPO4, 17.6 mM 

KH2PO4, pH 7.4 

 

PBS-T 1x PBS, 0.05 % Tween-20 

 

SOC medium 2 % Tryptone, 0.5 % yeast-extract, 10 mM NaCl, 2.5 mM KCl, 10 

mM MgCl2, 10 mM MgSO4, 20 mM Glucose 

 

Special fly medium (6 l) 48 g Agar-Agar, 480 g beer yeast, 120 g Bacto-peptone, 120 g 

Bacto-yeast, 420 ml sugar beet syrup, 3 g MgSO4, 3 g CaCl3, 6 g 

Nipagin, 60 ml EtOH, 36 ml propionic acid 

 

Standard fly medium (6 l) 25 g Agar-Agar, 45 g beer yeast, 50 g soy flour, 400 g corn flour, 

75 ml sugar beet syrup, 300 ml Malzin, 8 g Nipagin, 25 ml EtOH, 

32 ml propionic acid 

 

TBE buffer 89 mM Tris, 89 mM boric acid,  2 mM EDTA, pH 8.0 

 

TBS (10x) 100 mM Tris, 1.5 M NaCl 

 

TBS-T 1x TBS, 0.1 % (v/v) TWEEN® 20 

 

TE buffer 1 mM EDTA, 10 mM Tris, pH 8.0 
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5.5. Oligonucleotides  

 

Table 1: Oligonucleotides 

Name 5’ - 3’ Sequence 

HTTex1 CyPet/YPet - fw GACGACGAATTCATGGCGACCCTG 

HTTex1Q48 CyPet/YPet - rev GACGACCTCGAGTGGTCGGTGCAGCGG 

CyPet - fw ACGACCTCGAGGGTGGCGGTGGCGGTATGTCTAAAGGTGAAGAATTATTCGG 

CyPet - rev GACGACGCGGCCGCTTATTTGTACAATTCATCCATACCATG 

YPet - fw GACGACCTCGAGGGTGGCGGTGGCGGTATGTCTAAAGGTGAAGAATTATTCACTGG 

YPet - rev GACGACGCGGCCGCTTATTTGTACAATTCATTCATACCCTCG 

HTTex1Q23/Q35CyPet/YPet - fw GACGACGAATTCATGGCGACCCTG 

HTTex1Q23/Q35CyPet/YPet - rev GACGACGCGGCCGCCTCGAGTGGTCGGTGCAGCGG 

HTTex1Q23/Q75 - fw GACGACGAATTCATGGCGACCCTG 

HTTex1Q23/Q75 - rev GACGACGCGGCCGCCTCGAGTTATGGTCGGTGCAGCGG 

Phospo-V5 - fw Phos-

TCGAGGGCAGCGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGGGCTA

AGGTACCGC 

Phospo-V5 - rev Phos- 

GGCCGCGGTACCTTAGCCCGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCT

TACCGCTGCCC 

HTTex1Structural variant - fw AGGCCGCATGAATTCATGGCGACCCTGGAA 

HTTex1Structural variant - rev CACGATGCGGCCGCGGTACCTTAGCCCGTAGAATCGAGACCGAGGAGAGGGTTAGG

GATAGGCTTACCGCTGCCCTCGAGCGGACGATGCAGCGGTTCTTCTGC 

pGEX5’ GGGCTGGCAAGCCACGTTTGGTG 

pGEX3’ CCGGGAGCTGCATGTGTCAGAGG 

HTTex1 attB - fw GGGGACAAGTTTGTACAAAAAAGCAGGCTAGGCCGCATATGGCGACC 

HTTex1 attB - rev GGGGACCACTTTGTACAAGAAAGCTGGGTTTAGCCCGTAGAATCGAGACCGAGGAG

AGGGTTAGGGATAGGCTTACCGCTTGGTCGGTGCAGCGGCTCCTC 

pUAST - fw AACCAAGTAAATCAACTGC 

pUAST- rev ATCTCTGTAGGTAGTTTGTC 

HTT genotyping - fw CGTTAACAGATCTGCGGCC 

HTT genotyping - rev GGTTCCTTCACAAAGATCCTC 

 

Oligonucleotides with HPLC purification grade and were synthesized by BioTeZ Berlin-Buch GmbH 

in a quantity of 10 nM. Oligonucleotides were dissolved in TE-Buffer. 



  Material 
 

99 
 

5.6. Expression Vectors and plasmids 

pDONRTM221 A Gateway® vector containing attP sites. This vector is used for 

cloning PCR products and genes of interest flanked by attB sites 

(expression clones) to generate entry clones. It contains the 

ccdB gene for negative selection and the kanamycin resistance 

gene for selection in E.coli (Invitrogen). 

pGEX-6P1 Expression vector with the synthetic tac-promoter for the IPTG 

inducible expression of glutathione S-transferase (GST)-fusion 

proteins. The vector contains an internal lacI q repressor gene 

for the repression of expression in every strain of E. coli. Fusion 

proteins contain a restriction site for PreScission™ protease 

directly after the GST-protein sequence, which allows the 

cleavage of the GST-tag (Amersham Biotech Europe GmbH). 

pUAST-attB-rfA Expression vector for expression in transgenic flies under the 

GAL4 inducible UAS promoter; contains attB site for site-

specific integration in the fly genome by _C31 integrase 

(provided by Prof. Sigrist, FU Berlin). 

5.7. Antibodies 

 

Table 2: Primary antibodies 

Name Species Supplier 

CAG53b rabbit Own production127 

HD1 rabbit Own production129 

anti-AGG rabbit Own production  

MW8 mouse DSHB (University of Iowa) 

anti-GST goat GE Healthcare 

anti-GFP (ab290) rabbit Abcam 

anti-HTT (MAB5492) mouse Millipore 

anti-Tubulin (ab6046) rabbit Abcam 

anti-V5 (ab9116) rabbit Abcam 

N-18 goat Santa Cruz 
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Table 3: Secondary antibodies 

Name Species Supplier 

anti-rabbit-POD goat Sigma 

anti-mouse-POD goat Sigma 

anti-goat-POD mouse Sigma 

 

5.8. Biological material and experimental models 

Table 4: Biological material and experimental models 

Species Name Source 

Human Post mortem cerebellum, caudate nucleus 

and cerebral cortex tissues from HD 

patients and control individuals 

Newcastle Brain Tissue Resource 

Human Post mortem putamen tissues from HD 

patients and control individuals 

Brain tissue provided by the lab of F. Cicchetti 

(Laval University, Québec, Canada) 

Human Post mortem cortex tissues from AD 

patients and control individuals 

Newcastle Brain Tissue Resource 

Human Muscle tissue from HD patients and 

control individuals 

Muscle tissue provided by the lab of M. Orth 

(Ulm University, Ulm, Germany) 

Human Cerebrospinal fluid (CSF) from HD patients 

and control individuals 

CSF was provided by E. Wild (UCL Institute of 

Neurology, London, UK) 

Mouse R6/2Q210324 Brain and muscle tissue provided by the lab of 

G. Bates (UCL Institute of Neurology, London, 

UK) 

Mouse R6/2Q51247 Brain tissue provided by the lab of A.J. Morton 

(University of Cambridge, Cambridge, UK) 

Mouse N171-82Q249 Brain tissue was prepared by B. Tachu (Max 

Delbrueck Center for Molecular Medicine, 

Berlin, Germany) 

Mouse FVB/N with AAV-HTT853-Q79/Q18325 Brain tissue provided by the lab of Å. Petersén 

(Lund University, Lund, Sweden) 

Mouse HdhQ150252 Brain tissue provided by the lab of G. Bates 

(UCL Institute of Neurology, London, UK)  

Mouse CamKII/SCA3257,258 Brain tissue provided by the lab of Thorsten 

Schmidt (Universitätsklinikum Tübingen, 

Tübingen, Germany) 

Fly Elavc115-GAL4326 Wanker Lab fly stock 
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Species Name Source 

Fly GSelav-GAL4264 Wanker Lab fly stock 

Fly w1118 327  Wanker Lab fly stock 

Fly Balancer strain 

(CyO/Sp;MKRS,Sb/TM6,Tb) 

Generated by F. Schindler (Max Delbrueck 

Center for Molecular Medicine, Berlin, 

Germany) 

Fly HTTex1Q17268 Generated by F. Schindler (Max Delbrueck 

Center for Molecular Medicine, Berlin, 

Germany) 

Fly HTTex1Q97268 Generated by F. Schindler (Max Delbrueck 

Center for Molecular Medicine, Berlin, 

Germany) 

Fly HTTex1Q75-V5 Own production 

Fly HTTex1Q75M1-V5 Own production 

Fly HTTex1Q75M2-V5 Own production 

Fly HTTex1Q75M3-V5 Own production 

Fly HTTex1Q75M4-V5 Own production 

Fly HTTex1Q75M5-V5 Own production 

Fly HTTex1Q75M6-V5 Own production 

Fly HTTex1Q17-V5 Own production 

C.elegans Q35 AM140194 

(rmIs132 (unc-54p::Q35::YFP)) 

Provided by J. Kirstein (Leibniz-Institute for 

Molecular Pharmacology, Berlin, Germany) 

Cell line CHO AA8 cells 

expressing HttEx1Q68-CFP and –YFP in a 

Tet-Off system261  

Provided by A. Holloschi (University 

Mannheim, Mannheim, Germany) 

E.coli Mach1™ T1 Invitrogen 

E.coli BL21-CodonPlus(DE3)-RP Integrated Science (Cat#: 230255) 

5.9. Laboratory Equipment 

Biophotometer Eppendorf 

C1000TM Thermal Cycler Biorad 

CanoScan8400F Canon 

Cellomics ArrayScan® VTI HCS Reader Thermo Scientific 

Centrifuge Evolution RC Sorvall 

DAM System TriKinetics 

DNA electrophoresis chamber BioRad 

Gene Genius UV imager Bio Imaging Systems 
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GeneGenius Bio Imaging System Syngene 

HybriDot Manifold vacuum filtration unit Whatman 

Infinite M200 microplate reader TECAN 

LAS-3000 photo imager Fujifilm 

Magnetic stirrer MR3001 Heidolph 

Micro 22R centrifuge Hettich 

Micro scales Sartorius  

Multichannel pipettes Eppendorf 

Nanodrop 8000 Thermo Scientific 

Nanowizard AFM with Zeiss Axiovert 200 JPK 

Optima™ MAX Ultracentrifuge Beckman Coulter 

Power Pac 1000 BioRad 

Shaking Incubator Infors Unitron 

Sonifier 450 Branson 

Fisherbrand™ Q500 Sonicator Fisher Scientific 

Tissue Homogenizer VDI12 VWR 

Tissue Homogenizer (Pestle) FischerScientific 

Trans-blot semi-dry transfer cell BioRad 

Vacuum pump 2522C-02 Welch-Imvac 

ViiA7 Real-time PCR system Thermo Scientific 

Vortex-Genie 2 Scientific industries 

Water bath TW8 Julabo 

5.10. Software 

Adobe® Illustrator  Adobe Systems 

Adobe® Photoshop Adobe Systems 

AIDA Image Analyzer v.3.21A AIDA, Deutschland 

ArrayScan VTI software Thermo Scientific 

BioEdit Ibis Bioscience 

CanoScan Toolbox 4.8 Canon 

GraphPad Prism GraphPad software 

i-Control 11 Tecan 

JPK Data Processing JPK Instruments 

JPK SPM Desktop JPK Instruments 

Serial Cloner 2.5 Serial Basics 
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6. Methods** 

6.1. Molecular biology 

6.1.1. Cloning of expression vectors 

For the construction of plasmids encoding CyPet- and YPet-tagged HTTEx1Q48 fusion proteins, the 

coding sequence of HTTEx1Q48 was PCR-amplified from pGEX-6P1-HTTEx1Q48 using the primers 

5’-GACGACGAATTCATGGCGACCCTG-3’ and 5’- GACGACCTCGAGTGGTCGGTGCAGCGG-3’. The 

resulting PCR product was digested with the restriction enzymes EcoRI and NotI. Additionally, 

CyPet cDNA was PCR amplified from pBAD33-CyPet-His (Addgene plasmid #14030)328 with the 

primers 5’-ACGACCTCGAGGGTGGCGGTGGCGGTATGTCTAAAGGTGAAGAATTATTCGG-3’ and 5’- 

GACGACGCGGCCGCTTATTTGTACAATTCATCCATACCATG-3’. YPet cDNA was amplified from 

pBAD33-YPet-His (Addgene plasmid #14031)328 with the primers 5’-

GACGACCTCGAGGGTGGCGGTGGCGGTATGTCTAAAGGTGAAGAATTATTCACTGG-3’ and 5’- 

GACGACGCGGCCGCTTATTTGTACAATTCATTCATACCCTCG-3’. The resulting PCR fragments were 

cloned into the plasmids pGEX-6P1 using the EcoRI/XhoI/NotI restriction sites to obtain plasmids 

pGEX-6P1-HTTEx1Q48-CyPet and -YPet, respectively.  

To generate the plasmids encoding GST-Ex1Q23-CyPet and –Ypet and GST-Ex1Q35-CyPet 

and -YPet the coding sequences of HTTEx1Q23 or HTTEx1Q35 were PCR-amplified using the 

primers 5’-GACGACGAATTCATGGCGACCCTG-3’ and 5’-

GACGACGCGGCCGCCTCGAGTGGTCGGTGCAGCGG-3’. The resulting PCR product was digested 

using EcoRI and XhoI endonucleases and cloned into the plasmids pGEX-6P1-HTTEx1Q48-CyPet or 

-YPet after excision of HTTEx1Q48 fragments by EcoRI/XhoI endonucleases.  

To generate the plasmids encoding GST-Ex1Q23 and GST-Ex1Q75 the coding sequences of 

HTTEx1Q23 and HTTEx1Q75 were PCR-amplified using the primers 5’-

GACGACGAATTCATGGCGACCCTG -3’ and 5’-

GACGACGCGGCCGCCTCGAGTTATGGTCGGTGCAGCGG-3’. The resulting PCR products were 

digested using EcoRI and XhoI endonucleases and cloned into the plasmid pGEX-6P1-HTTEx1Q48 

after excision of HTTEx1Q48 fragments by EcoRI/XhoI endonucleases.  

To generate the plasmids encoding GST-Ex1Q23-V5 and GST-Ex1Q48-V5 phosphorylated 

oligonucleotides (5’-Phos-

TCGAGGGCAGCGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGGGCTAAGGTACCGC-3’, 

                                                           
** Methods have partially been reused with modifications from the published version: Ast, A. et al. mHTT Seeding Activity: A Marker of 

Disease Progression and Neurotoxicity in Models of Huntington's Disease. Mol Cell 71, 675-688 e676, doi:10.1016/j.molcel.2018.07.032 
(2018) - https://doi.org/10.1016/j.molcel.2018.07.032. 

https://doi.org/10.1016/j.molcel.2018.07.032
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5’-Phos-

GGCCGCGGTACCTTAGCCCGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACCGCTGCCC-

3’) were annealed to each other in order to generate the coding sequence of the V5-tag with single 

stranded 5’ and 3’ overhang imitating XhoI and NotI cleavage sites. Linearization of the plasmids 

pGEX-6P1-HTTEx1Q23 and pGEX-6P1-HTTEx1Q48 using XhoI and NotI and ligation of linearized 

plasmid DNA to the annealed oligonucleotides generated the plasmid pGEX-6P1-HTTEx1Q23-V5 

and pGEX-6P1-HTTEx1Q48-V5. 

In order to generate structural variants of mutant HTT, cDNA encoding HTTex1Q48 with 

the respective amino acid exchanges were produced by gene synthesis (GeneArt® Gene Synthesis 

service, Thermo Fisher). cDNAs were PCR-amplified with the primers 5’-

AGGCCGCATGAATTCATGGCGACCCTGGAA-3’ and 5’-

CACGATGCGGCCGCGGTACCTTAGCCCGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACC

GCTGCCCTCGAGCGGACGATGCAGCGGTTCTTCTGC-3’. The primer pair was designed to introduce 

a cDNA sequence encoding a C-terminal V5-tag and additional endonuclease cleavage sites 

upstream (EcoRI) and downstream (NotI) of the coding sequence. The resulting PCR products were 

digested using EcoRI and NotI endonucleases and cloned into the plasmid pGEX-6P1-HTTEx1Q48 

after excision of HTTEx1Q48 fragments by EcoRI/NotI endonucleases.  

 

The correct identity of all plasmids was confirmed by Sanger sequencing using the 

sequencing primers pGEX5’ (5’-GGGCTGGCAAGCCACGTTTGGTG-3’) and pGEX3’ (5’-

CCGGGAGCTGCATGTGTCAGAGG-3’).  

6.1.2. Cloning of fly vectors 

In order to generate structural variants of mutant HTT, cDNA encoding HTTex1Q75 with 

the respective amino acid exchanges were produced by gene synthesis (GeneArt® Gene Synthesis 

service, Thermo Fisher). cDNAs were PCR-amplified with the primers 5’- 

GGGGACAAGTTTGTACAAAAAAGCAGGCTAGGCCGCATATGGCGACC-3’ and 5’- 

GGGGACCACTTTGTACAAGAAAGCTGGGTTTAGCCCGTAGAATCGAGACCGAGGAGAGGGTTAGGGAT

AGGCTTACCGCTTGGTCGGTGCAGCGGCTCCTC-3’. The primer pair was designed to introduce a 

cDNA sequence encoding a C-terminal V5-tag and attB recombination sites upstream (attB1) and 

downstream (attB2) of the coding sequence. To generate an entry clone the resulting PCR 

products were integrated into pDONR221 (Thermo Fisher) through BP recombination reaction. LR 

recombination reactions were performed to shuttled cDNAs into the destination vector pUAST-

attB-rfA (provided by Prof. S. Sigrist, Freie Universität, Berlin). 
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The correct identity of all plasmids was confirmed by Sanger sequencing using the 

sequencing primers pUAST - fw (5’-AACCAAGTAAATCAACTGC-3’) and pUAST - rev (5’-

ATCTCTGTAGGTAGTTTGTC-3’).  

6.2. Protein biochemistry 

6.2.1. Recombinant protein expression 

The proteins GST-Ex1Q23, -Ex1Q48, -Ex1Q75, -Ex1Q23-CyPet, -Ex1Q23-YPet, -Ex1Q35-CyPet, -

Ex1Q35-YPet, -Ex1Q48-CyPet and -Ex1Q48-YPet were produced in E. coli BL21-CodonPlus-RP and 

affinity-purified on glutathione-sepharose beads. Purified proteins were dialyzed over night at 4 

°C against 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA and 5% glycerol, snap-frozen in liquid 

N2 and stored at -80 °C. Protein concentrations were determined with a NanoDrop 

spectrophotometer. Prior to use, protein solutions were ultra-centrifuged at 187,972 x g for 40 

min to remove aggregated material. α -Synuclein (α-Syn) was produced in E. coli BL21 (DE3) and 

monomeric α-Syn was purified as described elsewhere329. Expression of Tau40 protein was 

performed in E. coli BL21 using a 50 l bioreactor. After cell disruption using a French press, Tau40 

protein was purified via cation exchange chromatography and gel filtration. Expression and 

purification of Tau were performed by InVivo BioTech Services (Hennigsdorf, Germany) using 

proprietary company protocols. 

6.2.2. In vitro aggregation and seed preparation 

Spontaneous aggregation of HTTex1 proteins and all structural variants were initiated by addition 

of 14 U PreScission protease (GE Healthcare) per nmol purified GST-Ex1Q48 fusion protein at the 

protein concentration indicated for the specific experiment. The aggregation reaction was 

performed in 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA and 1 mM DTT at 25 °C and 

constant agitation (450 rpm) for up to 168 h. Ex1Q23 protein for seeding experiments was 

prepared from GST-Ex1Q23 fusion protein using the same protocol. Synthetic human IAPP was 

aggregated as described previously330. Lyophilized α-Syn was dissolved in PBS at 500 µM and 

centrifuged (4 °C, 265.000 x g) after a 5 min sonication step to remove aggregated material. The 

supernatant was incubated for 7 d at 37 °C under constant shaking in the presence of a single glass 

bead. Tau40 was aggregated for 6 d at 37 °C under constant shaking in 100 mM sodium acetate, 

pH 7.4, and 1 mM DTT in the presence of heparin. Synthetic human Aβ1-42 was dissolved in 100 

mM NaOH and diluted to 200 µM in low salt buffer (10 mM K3PO4, pH 7.4, 10 mM NaCl). 

Aggregation was performed for 6 h at 37 °C under constant agitation.     
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6.2.3. Filter retardation assays (FRAs) 

FRAs were essentially performed as described previously238. Briefly, equal volumes of 500 ng of 

protein aggregates and 4 % SDS solution with 100 mM DTT were mixed and boiled at 95 °C for 5 

min. By applying vacuum, samples were filtered through a cellulose acetate membrane with 0.2 

µm pores (Schleicher and Schuell, Germany) and washed twice with 100 µl 0.1 % SDS. For analysis 

of tissue homogenates, 60 µg of total protein for mouse brain and 75 µg of total protein for 

Drosophila heads were filtered per dot. Membranes were blocked with 5% skim milk in PBS/0.05 

% Tween20 (PBS-T) for at least 30 min. Aggregates retained on the membrane were detected using 

V5, GFP, N18, MW8, Mab5492 or HD1 antibody followed by an appropriate peroxidase-coupled 

secondary antibody. Signals were quantified using the AIDA image analysis software (Raytest, 

Germany). 

6.2.4. Dot blot assays 

To estimate total HTT protein, native dot blot (DB) assays were performed as described 

previously239. Briefly, 250 ng protein were filtered onto a nitrocellulose membrane and blocked 

with 5% skim milk in PBS-T. For detection, the membrane was incubated with HD1 antibody 

followed by an appropriate peroxidase-coupled secondary antibody. Signals were quantified using 

the AIDA image analysis software (Raytest, Germany). As a loading control for the detection of Ex1 

structural variants, 1 µg of protein was filtered onto a nitrocellulose membrane and subsequently 

detected using Ponceau Red staining. 

6.2.5. Blue native PAGE analysis 

Protein solutions were mixed with sample buffer and loaded onto a Novex NativePAGE 3-12% Bis-

Tris gradient gel (Life Technologies). NativePAGE and immunoblotting were performed according 

to manufacturer recommendations. Ex1Q48 aggregates were visualized as for SDS-PAGE.    

6.2.6. SDS-PAGE and Western blotting 

Samples of aggregation reactions were mixed with loading buffer (50 mM Tris-HCl pH 6.8, 2% SDS, 

10% glycerol and 0.1% bromophenol blue) and boiled at 95 °C for 5 min. Samples were loaded 

onto Novex NuPAGE 4-12% Bis-Tris gradient gels (Life Technologies). SDS-PAGE and 

immunoblotting were performed according to manufacturer recommendations. Immuno-

detection was performed with the antibody indicated for the respective experiment. 

6.2.7. Tissue homogenization 

Frozen brain tissue was cut on dry ice, weighed and homogenized in a 10-fold excess (w/v) of ice-

cold 10 mM Tris-HCl pH 7.4, 0.8 M NaCl, 1 mM EDTA, 10% sucrose, 0.25 U/µl benzonase and 
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complete protease inhibitor cocktail with a dounce homogenizer. The homogenate was incubated 

for 1 h at 4 °C on a rotating wheel and centrifuged for 20 min at 2,700 x g (4 °C) to remove cell 

debris. Drosophila heads were processed comparably using 10 µl of ice-cold 10 mM Tris-HCl pH 

7.4, 0.8 M NaCl, 1 mM EDTA, 10% sucrose and a complete protease inhibitor cocktail per fly head. 

Homogenates were centrifuged for 10 min at 8,000 rpm (4 °C). After centrifugation, supernatants 

were transferred to a new tube and total protein concentration was determined with a Pierce™ 

BCA assay using BSA as a standard. For FRASE analysis, 0.8-5 µg total protein per replicate were 

applied. 

6.2.8. Immunodepletion of HTTex1 aggregates from mouse brain extracts 

Protein G-coupled magnetic beads (Life Technologies) were incubated with 4 µg MW8 

(Developmental Studies Hybridoma Bank, DSHB) or IgG isotype control (Invitrogen) antibody, 

respectively, for 10 min at RT to allow antibody binding. Free binding sites were saturated with 

Pierce protein-free blocking solution according to manufacturer recommendations. 500 µg brain 

homogenate in brain lysis buffer were incubated with antibody coupled beads for 3 h at 4 °C under 

constant overhead rotation. Subsequently, aliquots from the supernatants were taken and 

analyzed with the FRASE assay. 

6.2.9. FRASE assay and quantification of mutant HTT seeding activity (HSA) 

Purified GST-Ex1Q48-CyPet and GST-Ex1Q48-YPet (or GST-Ex1Q23-CyPet and GST-Ex1Q23-YPet or 

GST-Ex1Q35-CyPet and GST-Ex1Q35-YPet) were diluted in aggregation buffer at an equimolar 

ratio to a final concentration of 1.2 µM (0.6 µM each) with 14 U PSP per nmol sensor proteins if 

not stated otherwise. The solution was then mixed with preformed aggregates of Ex1Q48 (seeds) 

at varying concentrations with or without prior sonication and transferred to a black 384-well 

plate (with a final reaction volume of 30 µl per well and a sensor protein concentration of 1.2 µM). 

For quantification of seeding-competent HTT species in tissue samples, the sensor-protein mixture 

was supplemented with up to 10% (v/v) tissue homogenate. Fluorescence signals were measured 

every 20 min following a 5 s pulse of vertical shaking with a Tecan M200 fluorescence plate reader 

at 25 °C for up to 80 h. CyPet donor fluorescence was measured at excitation (Ex): 435 

nm/emission (Em): 475 nm; YPet acceptor fluorescence at Ex: 500 nm/Em: 530 nm; the FRET 

channel (DA) was recorded at Ex: 435 nm/Em: 530 nm. Raw signals were processed by subtracting 

the background fluorescence of unlabeled Ex1Q48 in all channels. Signals in the FRET channel were 

corrected for donor bleed-through (cD) and acceptor cross excitation (cA) using donor- and 

acceptor-only samples to obtain sensitized emission. Finally, sensitized emission was normalized 

to the acceptor signals331. In brief, the FRET efficiency E (in %) was calculated as follows:  
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E = (DA-cDxDD-cAxAA)/AA with DD = donor channel signal and AA = acceptor channel signal. 

Seeding effects (∆t50 [h]) were quantified by subtracting the t50 values (time at half-maximal FRET 

efficiency) of the respective sample from the negative control. To obtain the t50 values, the 

aggregation kinetics were curve fitted by Richard’s five-parameter dose-response curve using 

GraphPad Prism.   

𝑦 = 𝑦0 + (
𝑦∞ − 𝑦0

1 + 10((𝐿𝑜𝑔𝑥𝑏−𝑥)×𝐻𝑖𝑙𝑙𝑆𝑙𝑜𝑝𝑒)𝑆) 

6.3. Cell biology 

6.3.1. Cell maintenance and seeding 

CHO AA8 cells expressing HttEx1Q68-CFP and –YFP in a Tet-Off system were provided by A. 

Holloschi (Institute of Molecular and Cell Biology, University Mannheim)261. Cells were grown and 

maintained in Ham’s F12-medium containing 10 % FBS, 100 units/ml penicillin G sodium, 100 

µg/ml streptomycin sulphate, 0.2 mg/ml Hygromycine B, 0.1 mg/ml Geneticin and 10 ng/ml 

Doxycycline at 37 °C in a humidified atmosphere containing 5 % CO2.  

For the cell seeding assay, CHO cells were plated in 96-well plates (2 x 104 cells per well, 4 

wells per condition) in Doxycycline free medium in order to induce the expression of HTTEx1Q68-

CyPet/YPet for 72 hours. During that time cells were exposed to different concentrations of 

Ex1Q48 seeds of Ex1Q23 protein or aggregation buffer as control. 

6.3.2. Preparation of cell lysates for FRA analysis 

For the detection of SDS-stable intracellular aggregates, cell medium was discarded, cells were 

washed twice with 100 µl PBS and subsequently lysed in 65 µl Tris lysis buffer for 1 hour at 4 °C 

(tumbling). Lysates of two wells of one quadruplicate were combined and used for a FRA. 

6.3.3. Fixation and staining 

Cells were fixed with 65 µl 2 % PFA in PBS at RT for 20-30 min. After discarding the PFA solution, 

fixed cells were washed twice with 100 µl PBS and stored in PBS at 4 °C. To visualize nuclear DNA, 

fixed cells were stained with 40 µl DRAQ5™ (1:1000) per well for 30 min and analyzed with 

Cellomics high content fluorescence microscope.  
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6.4. Microscopy 

6.4.1. High content fluorescence microscopy 

Images of nine fields per well were recorded with a 20 x objective. Cells were identified by 

DRAQ5™ nuclear staining using Cy5 channel and cell shape was estimated by the software. 

Aggregates per cell were counted in the CFP-channel. A threshold was set to select only small 

aggregates. 

6.4.2. Atomic force microscopy (AFM) 

Aliquots of 15 µl aggregation reactions (24 h) were spotted onto freshly cleaved mica glued to a 

microscope slide. After incubation for 30 min to allow adsorption, samples were rinsed 4 times 

with 40 µl distilled water and dried over night at RT. Samples were imaged with a digital 

multimode Nanowizard II (JPK, Germany) atomic force microscope operating in intermittent-

contact mode.   

6.4.3. Electron microscopy (EM) 

(EM analysis was performed by Severine Kunz (EM core facility, MDC, Berlin) and will be briefly 

described for the sake of completeness.) 

Total brain homogenate was centrifuged at 18,000 x g at 4 °C for 20 min; the resulting supernatant 

was pelleted by ultra-centrifugation at 190,000 x g for 40 min and resuspended in 10 mM Tris-HCl 

(pH 7.4). Immunolabeling was performed with minor modifications as described (Laue, 2010). 

Briefly, samples were incubated on formvar-coated copper grids (Plano) for 10 min before 

immunolabeling. Grids were blocked and washed in PBS supplemented with 1% BSA and 0.1% 

glycine. Labeling was performed with the anti-HTT aggregate antibody AGG and an appropriate 

12 nm colloidal gold-labeled secondary antibody (Jackson ImmunoResearch). Samples were 

stained with 2% uranyl acetate and imaged with a Zeiss EM 910 transmission electron microscope 

at 80 kV. Acquisition was performed with a CDD camera (Quemesa, Olympus Viewing System). 

6.5. Animal models 

6.5.1. Caenorhabditis elegans 

(C.elegans work was performed by Janine Kirstein (FMP, Berlin) and will be briefly described for 

the sake of completeness) 
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C. elegans strains and maintenance 

C. elegans Q35 AM140 (rmIs132 (unc-54p::Q35::YFP)) were grown on NGM plates seeded with the 

E. coli OP50 strain at 20 °C. Nematodes were transferred to fresh wells or plates every day in the 

course of the experiment to separate them from their progeny. 

RNA interference 

For synchronization, gravid adults from one 10 cm NGM plate were collected in a canonical tube 

and treated with 20% alkaline hypochlorite solution under vigorous agitation for 4 min. The eggs 

were then washed three times with cold 0.1 M NaCl solution. The eggs were allowed to hatch in 

M9 medium at 20 °C for 22 h. Animals were then placed as L1 larvae onto RNAi plates that were 

seeded with E. coli expressing dsRNAi against hsp-1 or the empty vector L4440 (control).  

Motility assay 

Nematodes were transferred from liquid culture onto a blank (unseeded) NGM plate and allowed 

to acclimate for 15 min. The movement of the animals was digitally recorded at 20 °C using a Leica 

M165FC microscope with a DFC3000G digital camera and the Leica LASX Software. Movies of 10 s 

were captured at 10 frames/s. Animals that crossed each other or those that escaped from the 

field of view were excluded from analysis. 20 animals were analyzed for each condition. Captured 

frames were merged into *.avi format, imported into Fiji332 and analyzed using the wrMTrck plugin 

(http://www.phage.dk/plugins). The average speed of each animal was calculated by dividing its 

body length by the duration of each track (body length per second). 

6.5.2. Drosophila melanogaster 

Generation and maintenance of Drosophila strains 

ElavGS-GAL4 and Elav-GAL4 lines were obtained from the Bloomington Drosophila Stock Center. 

w1118 line was provided by R.P. Zinzen (MDC, Berlin). HTTex1Q17 and HTTex1Q97 flies were 

generated by F. Schindler in the course of her PhD Thesis (MDC, Berlin). New transgenic flies were 

generated through cloning of cDNAs encoding HTTex1Q17-V5, HTTex1Q75-V5, HTTex1M1-V5, 

HTTex1M2-V5, HTTex1M3-V5, HTTex1M4-V5, HTTex1M5-V5 and HTTex1M6-V5 into pUAST-attB-

rfA (provided by Prof. S. Sigrist, Freie Universität, Berlin) and subsequent site-directed insertion 

on the third chromosome (68E) using the PhiC31 integrase Rainbow Transgenic Flies Inc. 

(Camarillo, CA, USA). Transgenic lines were crossed with the balancer strain 

(CyO/Sp;TM6,Tb/MKRS,Sb) to produce a stable fly line. All Drosophila strains were cultured on 

standard medium at 25°C and 65% humidity with a 12 h light-dark cycle. In the elavGS-GAL4 
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system, transgene expression was induced by culturing flies on standard medium containing 400 

µM RU486 (Mifepristone).  

Genotyping of Drosophila strains 

Genomic DNA was extracted using the DNeasy® Blood & Tissue Kit (Qiagen). Genomic DNA was 

PCR amplified with the genotyping primers 5`-CGTTAACAGATCTGCGGCC-3’ and 5’- 

GGTTCCTTCACAAAGATCCTC -3’ using the PWO DNA polymerase kit (Roche). PCR products were 

analyzed by agarose gel electrophoresis and DNA sequencing. 

Viability analysis of adult Drosophila melanogaster 

Viability assays were performed through quantification of lethality of female transgenic flies. Flies 

were aged at 25°C and 65% humidity with a 12 h light-dark cycle, with 10 flies per vial. Flies were 

transferred onto new media every 3-4 days. Dead flies were recorded every 2-3 days. The number 

of flies per biological replicate are specified in the figure legend of the respective experiment. 

Median lifespan (age at which half of the tested population has died) was calculated by fitting 

survival curves to the log(inhibitor) vs. normalized response (variable slope) equation using 

GraphPad Prism.  

Analysis of motor performance (climbing assay) 

Ten female flies were placed in a closed empty vial and gently tapped to the bottom of the vial. 

The percentage of flies that climbed 8 cm within 15 sec was recorded. Flies were aged at 25°C and 

65% humidity with a 12 h light-dark cycle (10 flies per vial) and were monitored and transferred 

twice a week. The number of flies per biological replicate are specified in the figure legend of the 

respective experiment. 

Analysis of circadian rhythm and activity 

Locomotor activity was monitored using the Drosophila Activity Monitoring (DAM) System as 

previously described291. Male flies were placed individually into glass locomotor-monitoring tubes 

(65 mm x 5 mm) containing standard medium. The glass tubes were sealed using cotton buds. The 

tubes were inserted into the sensor system and aged at 25°C and 65% humidity with a 12 h light-

dark cycle. Within the sensor system three infrared beams are directed through each glass tube. 

Activity of transgenic flies was assessed by recording the number of beam breaks within a 5 min 

interval. The number of flies per biological replicate are specified in the figure legend of the 

respective experiment. 
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Preparation of Drosophila head lysates for WB, FRA and FRASE analysis 

Drosophila head lysates were produced by homogenizing fly heads in Tris-HCl pH 7.4, 0.8 M NaCl, 

1 mM EDTA, 10% sucrose, 0.25 U/µl benzonase and complete protease inhibitor cocktail using a 

micro pestle. Lysates were centrifuged for 10 min at 8,000 rpm (4°C). The supernatant was 

transferred to a new tube and total protein concentration was determined with a Pierce™ BCA 

assay using BSA as a standard. 

6.6. In silico analysis of secondary protein structure 

Propensity of amyloid formation was predicted using the web-based tool Waltz using a low 

specificity threshold of 63 and assuming neutral pH (pH 7) (http://waltz.switchlab.org/279,280). 

The algorithms Coils (https://embnet.vital-it.ch/software/COILS_form.html278) was used for the 

prediction of coiled-coil (CC) domain formation. CC probability is displayed as 1 minus the P-score 

assigned to each amino acid using a window size of 14, 21 and 28 residues.   

6.7. Statistical analysis 

Statistical parameters including the exact value of n, the definition of center, dispersion and 

precision measures (mean ± SEM or mean ± SD) as well as the statistical analysis chosen and 

statistical significance are reported in the figures and figure legends. Data is judged to be 

statistically significant when p < 0.05 by the indicated statistical test. In figures, asterisks denote 

statistical significance as calculated by Student’s t test (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 

Statistical analysis was performed in GraphPad PRISM 7. 

  

http://waltz.switchlab.org/
https://embnet.vital-it.ch/software/COILS_form.html
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7. Supplementary information 

7.1. Supplementary data 

 

 

Suppl. Figure 1 (related to Figure 28): Phenotypic and biochemical characterization of a inducible HD fly 

model 

(This figure is reproduced with modifications from the PhD thesis of F. Schindler262,268) 

(A) Scheme of temporary hormone treatment. The black lines indicate time periods of hormone treatment 

(RU486 food); the grey lines indicate time periods without hormone treatment (normal food). Treatment 

started at day 3 post-eclosion. (B) Life span analysis of elavGS;HTTex1Q97 and elavGS;HTTex1Q17 flies 

expressing the respective transgene for 0d (OFF; nelavGS;HTTex1Q97 = 99, 96, 107; nelavGS;HTTex1Q17 = 107, 102, 100), 

3d (3d-ON/OFF; nelavGS;HTTex1Q97 = 107, 108, 107; nelavGS;HTTex1Q17 = 109, 96, 97), 6d (6d-ON/OFF; nelavGS;HTTex1Q97 

= 108, 105, 94; nelavGS;HTTex1Q17 = 110, 97, 100) or permanently (ON; nGS;HTTex1Q97 = 102, 98, 106; nGS;HTTex1Q17 = 

100, 109, 101). Life span is plotted as the percentage of surviving flies of 3 biological replicates.  
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Suppl. Figure 1 (continued) 

(C) Quantification of HTT aggregate load in fly heads by FRAs immunodetected with the MW8 antibody. 

Representative images for each condition are shown below the bar graph. Data are displayed as mean ± 

SEM; Individual measurements are presented as black dots (●); One-way ANOVA Dunnett’s post hoc test. 

(D) Representative confocal images of elavGS;HTTex1Q97 whole fly brains (hormone treatment as in A. The 

RBP staining is shown in magenta and the MAB5492 staining in green (Scale bars: 200 μm). Magnifications 

are shown below (Scale bars: 20 μm). 

 

 

 

 

Suppl. Figure 2 (related to Figure 30): Quinidine treatment of transgenic HD flies reduces aggregate load 

but exacerbates mHTT induced survival defect 

(This figure is reproduced with modifications from the PhD thesis of F. Schindler262) 

 (A) Assessment of aggregate load in head lysates of elavGS;HTTex1Q97 and elavGS;HTTex1Q17 flies 

expressing the respective transgene for 6d in the absence or presence of 1 mM Quinidine (+/- Qui).  using DB 

and FRA. Aggregates were detected with the MW8 antibody. (B) Life span analysis of elavGS;HTTex1Q97 

and elavGS;HTTex1Q17 flies treated as described above. Life span is plotted as the percentage of surviving 

flies (6dON/-Qui n = 86, 96, 82; 6dON/+Qui  n = 90, 102, 89; OFF/+Qui n = 95). 
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Suppl. Figure 3 (related to Figure 32): Protein  variants of mutant Ex1Q75 

(A) Amino acid (AA) sequence of Ex1Q75 (top) and its protein variants. AA exchanges introduced in the 

sequence are highlighted in red. (B) In silico analysis of protein variants using the COILS algorithm278 

predicted differences in coiled-coil domain formation. CC probability is displayed as 1 minus the P-score 

assigned to each amino acid using a window size of 14 (dashed black line), 21 (black line) and 28 (red line) 

residues. (C) Protein variants were predicted to have different propensities to form amyloid structures using 

the Waltz algorithm279,280 (low specificity threshold of 63 and neutral pH 7). (D) Simplified model of Ex1Q75 

and its protein variants illustrating predicted structural changes in amyloid and coiled-coil domain 

formation. 
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7.2. Contributions 

 Initial establishment of the FRET-based aggregation assay was performed by Konrad 

Klockmeier during his Master Thesis (HU Berlin, 2013) supervised by Dr. Alexander 

Buntru. 

 Figure 8B: SDS-PAGE and Coomassie staining were performed by Simon Berberich during 

his Master Thesis (TU Nürnberg, 2016) under my supervision. 

 Figure 8D: AFM analysis of Ex1Q48-CyPet and Ex1Q48-YPet were performed by Konrad 

Klockmeier during his Master Thesis (HU Berlin, 2013). 

 Figure 11B-D: AFM, FRA and FRASE analysis were performed by Isabelle Jansen during 

her Master Thesis (Heinrich-Heine-Universität Düsseldorf, 2015) under my supervision. 

 Figure 17A: BN-PAGE analysis was performed by Regine Hasenkopf during her Master 

Thesis (HU Berlin, 2016). 

 Figure 18B: Tau40, Aβ, IAPP and αSyn aggregates and the corresponding AFM images 

were prepared by Gerlinde Grelle. 

 Figure 20: Immunoprecipitation and subsequent WB and FRASE analysis was performed 

by Regine Hasenkopf during her Master Thesis (HU Berlin, 2016). 

 Figure 21C: FRASE analysis was performed by Regine Hasenkopf during her Master 

Thesis (HU Berlin, 2016). 

 Figure 26D: EM analysis was performed by Severine Kunz, member of the EM core 

facility at the Max-Delbrück-Center for Molecular Medicine (MDC). 

 Figure 27B: Fluorescence microscopy images were taken by Isabelle Jansen during her 

Master Thesis (Heinrich-Heine-Universität Düsseldorf, 2015) under my supervision. 

 Figure 28: All related fly work was performed by Franziska Schindler during her PhD 

Thesis. 

 Figure 29A: C.elegans work and mobility assay was performed by Janine Kirstein (FMP, 

Berlin). 

 Figure 33B-D: SDS-PAGE and WB analysis were performed by Simon Berberich during his 

Master Thesis (TU Nürnberg, 2016) under my supervision. 

 Figure 34E: Fractionation experiments were performed by Simon Berberich during his 

Master Thesis (TU Nürnberg, 2016) under my supervision. 

 Suppl. Figure 1 and  Suppl. Figure 2: Data were produced by Franziska Schindler during 

her PhD Thesis262. 
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7.3. Relevant papers 

Ast, A. et al. mHTT Seeding Activity: A Marker of Disease Progression and Neurotoxicity in Models 
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