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Abstract

The human brain is the most complex organ in the human body, which consists of
approximately 100 billion neurons. These cells effortlessly communicate over multiple
hemispheres to deliver our everyday sensorimotor and cognitive abilities.

Although the underlying principles of neuronal communication are not well under-
stood, there is evidence to suggest precise synchronisation and/or de-synchronisation
of neuronal clusters could play an important role. Furthermore, new evidence suggests
that these patterns of synchronisation could be used as an identifier for the detection
of a variety of neurological disorders including, Alzheimers (AD), Schizophrenia (SZ)
and Epilepsy (EP), where neural degradation or hyper synchronous networks have
been detected.

Over the years many different techniques have been proposed for the detection of
synchronisation patterns, in the form of spectral analysis, transform approaches and
statistical based studies. Nonetheless, most are confined to software based implementa-
tions as opposed to hardware realisations due to their complexity. Furthermore, the
few hardware implementations which do exist, suffer from a lack of scalability, in terms
of brain area coverage, throughput and power consumption.

Here we introduce the design and implementation of a hardware efficient algorithm,
named Delay Difference Analysis (DDA), for the identification of patient specific
synchronisation patterns. The design is remarkably hardware friendly when compared
with other algorithms. In fact, we can reduce hardware requirements by as much as
80% and power consumption as much as 90%, when compared with the most common
techniques. In terms of absolute sensitivity the DDA produces an average sensitivity
of more than 80% for a false positive rate of 0.75 FP/h and indeed up to a maximum
of 90% for confidence levels of 95%.



This thesis presents two integer-based digital processors for the calculation of
phase synchronisation between neural signals. It is based on the measurement of time
periods between two consecutive minima. The simplicity of the approach allows for
the use of elementary digital blocks, such as registers, counters or adders. In fact,
the first introduced processor was fabricated in a 0.18µm CMOS process and only
occupies 0.05mm2 and consumes 15nW from a 0.5V supply voltage at a signal input
rate of 1024S/s. These low-area and low-power features make the proposed circuit a
valuable computing element in closed-loop neural prosthesis for the treatment of neural
disorders, such as epilepsy, or for measuring functional connectivity maps between
different recording sites in the brain.

A second VLSI implementation was designed and integrated as a mass integrated
16-channel design. Incorporated into the design were 16 individual synchronisation
processors (15 on-line processors and 1 test processor) each with a dedicated training
and calculation module, used to build a specialised epileptic detection system based
on patient specific synchrony thresholds. Each of the main processors are capable of
calculating the phase synchrony between 9 independent electroencephalography (EEG)
signals over 8 epochs of time totalling 120 EEG combinations. Remarkably, the entire
circuit occupies a total area of only 3.64 mm2.

This design was implemented with a multi-purpose focus in mind. Firstly, as a
clinical aid to help physicians detect pathological brain states, where the small area
would allow the patient to wear the device for home trials. Moreover, the small power
consumption would allow to run from standard batteries for long periods. The trials
could produce important patient specific information which could be processed using
mathematical tools such as graph theory. Secondly, the design was focused towards the
use as an in-vivo device to detect phase synchrony in real time for patients who suffer
with such neurological disorders as EP, which need constant monitoring and feedback.
In future developments this synchronisation device would make an good contribution
to a full system on chip device for detection and stimulation.



El cerebro humano es el órgano más complejo del cuerpo humano, que consta
de aproximadamente 100 mil millones de neuronas. Estas células se comunican sin
esfuerzo a través de ambos hemisferios para favorecer nuestras habilidades sensoriales
y cognitivas diarias.

Si bien los principios subyacentes de la comunicación neuronal no se comprenden
bien, existen pruebas que sugieren que la sincronización precisa y/o la desincronización
de los grupos neuronales podrían desempeñar un papel importante. Además, nuevas
evidencias sugieren que estos patrones de sincronización podrían usarse como un iden-
tificador para la detección de una gran variedad de trastornos neurológicos incluyendo
la enfermedad de Alzheimer(AD), la esquizofrenia(SZ) y la epilepsia(EP), donde se ha
detectado la degradación neural o las redes hiper sincrónicas.

A lo largo de los años, se han propuesto muchas técnicas diferentes para la detección
de patrones de sincronización en forma de análisis espectral, enfoques de transformación
y análisis estadísticos. No obstante, la mayoría se limita a implementaciones basadas
en software en lugar de realizaciones de hardware debido a su complejidad. Además,
las pocas implementaciones de hardware que existen, sufren una falta de escalabilidad,
en términos de cobertura del área del cerebro, rendimiento y consumo de energía.

Aquí presentamos el diseño y la implementación de un algoritmo eficiente de
hardware llamado “Delay Difference Aproximation” (DDA) para la identificación
de patrones de sincronización específicos del paciente. El diseño es notablemente
compatible con el hardware en comparación con otros algoritmos. De hecho, podemos
reducir los requisitos de hardware hasta en un 80% y el consumo de energía hasta en
un 90%, en comparación con las técnicas más comunes. En términos de sensibilidad
absoluta, la DDA produce una sensibilidad promedio de más del 80% para una tasa de
falsos positivos de 0,75 PF / hr y hasta un máximo del 90% para niveles de confianza
del 95%.

Esta tesis presenta dos procesadores digitales para el cálculo de la sincronización de
fase entre señales neuronales. Se basa en la medición de los períodos de tiempo entre dos
mínimos consecutivos. La simplicidad del enfoque permite el uso de bloques digitales
elementales, como registros, contadores o sumadores. De hecho, el primer procesador
introducido se fabricó en un proceso CMOS de 0.18µm y solo ocupa 0.05mm2 y consume
15nW de un voltaje de suministro de 0.5V a una tasa de entrada de señal de 1024S/s.



Estas características de baja área y baja potencia hacen que el procesador propuesto
sea un valioso elemento informático en prótesis neurales de circuito cerrado para el
tratamiento de trastornos neuronales, como la epilepsia, o para medir mapas de
conectividad funcional entre diferentes sitios de registro en el cerebro.

Además, se diseñó una segunda implementación VLSI que se integró como un
diseño de 16 canales integrado en masa. Se incorporaron al diseño 16 procesadores
de sincronización individuales (15 procesadores en línea y 1 procesador de prueba),
cada uno con un módulo de entrenamiento y cálculo dedicado, utilizado para construir
un sistema de detección epiléptico especializado basado en umbrales de sincronía
específicos del paciente. Cada uno de los procesadores principales es capaz de calcular
la sincronización de fase entre 9 señales de electroencefalografía (EEG) independientes
en 8 épocas de tiempo que totalizan 120 combinaciones de EEG. Cabe destacar que
todo el circuito ocupa un área total de solo 3.64 mm2.

Este diseño fue implementado teniendo en mente varios propósitos. En primer
lugar, como ayuda clínica para ayudar a los médicos a detectar estados cerebrales
patológicos, donde el área pequeña permitiría al paciente usar el dispositivo para las
pruebas caseras. Además, el pequeño consumo de energía permitiría una carga cero del
dispositivo, lo que le permitiría funcionar con baterías estándar durante largos períodos.
Los ensayos podrían producir información importante específica para el paciente que
podría procesarse utilizando herramientas matemáticas como la teoría de grafos. En
segundo lugar, el diseño se centró en el uso como un dispositivo in-vivo para detectar la
sincronización de fase en tiempo real para pacientes que sufren trastornos neurológicos
como el EP, que necesitan supervisión y retroalimentación constantes. En desarrollos
futuros, este dispositivo de sincronización sería una buena base para desarrollar un
sistema completo de un dispositivo chip para detección de trastornos neurológicos.
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Preface

This thesis was written to give a broad overview of the work conducted during the
doctoral scholarship over a period of approximately 5 years. The main goal during the
life of the project was the design and implementation of low powered and lower resource
consuming VLSI hardware, for the efficient and reliable detection of synchronisation
between neural assemblies.

The work was conducted in several key stages:

Firstly, through the research of state of the art in the field of neurological disorders
and synchronisation, we gathered a thorough understanding of the current limitations
and design challenges faced in this field of study. Using this information, we then
targeted the design of a new mathematical algorithm, which focused on solving the most
commonly faced problems. Furthermore, to test the algorithmic design a MATLAB
implementation was introduced which was compared against the state of the art in
terms of comparable features and accuracy. At this point, important aspects are
tested such as the signal-to-noise ratio, algorithmic sensitivity, sliding window size and
sampling rate distribution to name a few.

To follow, the algorithm was implemented into a field programmable gate array
(FPGA) using a hardware description language (VHDL), which allowed us to verify
the algorithm running at the logic gate level. This also provided us with prototype
metrics which could then be used to validate the scalability of the device compared to
the state of the art.

The FPGA implementation of the design was later mapped into CADENCE as a
register technology level (RTL) circuit. This design, operating at 1.2V, gave us a good
estimation as to the real life functionality of the circuit and algorithmic design. Once
the 1.2V design was verified at the RTL level in CADENCE, a 0.5V sub-threshold
biased design was implemented using custom layout techniques. Afterwards, the ASIC
design was tested in the laboratory using a mixture of test apparatus such as a logic
analyser for basic variable verification and micro-controllers for longer in-depth neural
signal simulations.

Later, a 16-channel mass VLSI implementation was integrated. This design incorpo-
rated 15 main synchronisation processors based on the previously integrated 2-channel
processor. In order to integrate this design a similar method to that of the previous
design was adopted. This included the FPGA implementation and verification before
a CADENCE based custom layout and verification.



NOTE: Due to a change in the MPW policy of the selected foundry, AMS AG,
regarding its 0.18µm CMOS process (MPWs were finally cancelled in 2018), the 16-
channel VLSI DDA processor was received 13 months after the tape-out. The limited
time that was available for the completion of the thesis meant that this design could
not be tested in the laboratory. Nevertheless, FPGA simulations have been incorporated
into the thesis as a verification of functionality.

Organisation

This thesis has been separated into five chapters.

Chapter 1 describes the most relevant principles needed for the rest of the Thesis.
Starting with a brief overview of the anatomy of the brain at the system level ("the
larger brain"), including its distinct regions and basic functions, we later go on to
describe the anatomy of the brain at the cell level ("the smaller brain") and the electrical
signals, such as action potentials (APs) and local field potentials (LFPs), which are
involved.

Moving forward, we introduce the concept of phase and synchronisation in both
stationary signals and neural signals. This includes the introduction of the most
common methods of detection and how synchronisation is being treated as one of the
most fundamental underlying principles for the encoding and transfer of information
between neuronal clusters.

Afterwards, we give a small overview of some of the most common neurological
disorders which suggests that synchronisation could be used as a tool for the detection
of pathological states.

Finally, we introduce the most recent advances in hardware implementations for
synchronisation detection algorithms.

Chapter 2 presents the proposed Delay Difference Analysis (DDA) algorithm for
phase synchronisation computation. The chapter discusses the mathematical premises
behind the algorithm and illustrates its functionality in real world scenarios. It also
shows how parameters such as quantisation, sample distribution or window evaluation
length, affect synchrony estimations.

Next the algorithm is verified in the Matlab environment using neural recordings
from 10 epilepsy patients. These recordings sum in total over 1800 hours of neural data
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and contain over 60 annotated seizures. The noise tolerance and sensitivity performance
of the DDA algorithm is evaluated and compared against more conventional techniques
to give a true impression of the algorithms capabilities.

Chapter 3 introduce the design of a VLSI phase synchronisation processor based
on the algorithm described in chapter 2. The chapter firstly gives a broad overview of
the design including its strengths and weaknesses. Next, the steps followed towards
the implementation of the VLSI design are presented. They included the design in an
FPGA, followed by the synthesis with an RTL compiler and finally the custom layout
in the CADENCE environment.

Then, the experimental results from the prototype are introduced. After describing
the laboratory test setup, a breakdown of the design’s power consumption is presented.
Then, several measurements using neural recording data from the mentioned epilepsy
dataset are presented. They include functional connectivity and graph theoretical
results.

Chapter 4 includes the design and implementation of a multi-channel phase
synchronisation processor based on the initial design in chapter 3. This section is laid
out similar to the previous section in that firstly, all of the individual digital blocks
and digital flow functionality is introduced. This is accompanied by many illustrations
of the digital blocks as well an illustration of the overall flow and the implemented
ASIC micro-photograph.

Next, a FPGA implementation of the VLSI circuit is introduced and system
simulations are presented.

Finally, Chapter 5 provides some final concluding comments and draw possi-
ble future work which will be conducted using the designed algorithm and VLSI
implementations.
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1.1 The larger brain

The human brain weighs approximately 1.5kg and accounts for only 2% the total weight
of the average human. Nevertheless, it is the most diverse and complex organism
known in the universe today. The brain is responsible for everything that we do in our
everyday lives from basic motor functions such as, walking, eating or talking to sensory
functions such as seeing, listening and touch. It is also responsible for our underlying
cognitive abilities in the form of thinking, memories, attention, logical processing and
reasoning. It also gives rise to consciousness, which is the state of being aware of one’s
surroundings and the ability to comprehend them. The brain also has some impressive
attributes. It has been theorised that the brain has a storage capacity of upwards of a
quadrillion bytes and can perform upwards of 10 quadrillion calculations per second.
This complex organ has been extensively studied over the past centuries with new
knowledge and understanding being discovered every day.

The larger brain is made up of the cerebrum, cerebellum and brain stem. The
cerebrum itself is made up of two hemispheres, the left and right which make up the
cerebral cortex. Although it is the largest and most distinguishable part of the brain it
only consists of 16 billion of the estimated 100 billion total neurons.

The cerebral cortex can be further broken down into four main lobes, namely, the
frontal, parietal, temporal and occipital lobes.

The frontal lobe is the largest of the four main lobes and maintains connections to
almost all other parts of the brain. Its main responsibilities include personality and
decision making, as well as motor control. This lobe makes sense of the environment
around us as well as making sense of memories and emotions. It also provides us with
working memory which allows us to hold relative information for short periods in order
to drive the attention span.

The parietal lobe interprets our sense of touch (somatosensation) and monitors
the position of the body as well as the relative position of the limbs. It integrates
information from senses in order to focus our attention on important tasks. It also
receives information from the occipital lobe in terms of location, size and speed of
objects and incorporates them into the sense of touch in order to interoperate our
surroundings.

The temporal lobe is where memories, emotions and language comprehension are
stored. It is also key to the recognition of objects, places and people.
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Frontal Parietal Temporal
Regulation of personality Interoperates language and words Understanding of Language
Behaviour and emotions Touch and pain Long term Memory
Judgement vision Hearing
Planning and problem solving Hearing Sequence and organisation
Speech motor Facial recognition
Writing sensory Emotions
Smell memory Emotions
Intelligence
Concentration
Self awareness
Emotional reactions

Table 1.1 Table showing the basic control functions of the frontal, parietal and temporal
lobes [1]

The occipital lobe is located at the far back of the cerebral cortex. It decodes
information arriving from the retina. It mainly informs us of where, how and what we
are seeing, via the detection of high contrast edges and their orientation and motion.
This information is then passed to the parietal lobe for response mechanisms or to the
temporal lobe to see if we recognise the object.

Fig.1.1 shows the relative positions and surface coverage of the four main lobes.[1],
and Table 1.1 summarizes some of the basic functions for the frontal, parietal and
temporal lobes.

The cerebellum is tucked underneath the occipital lobe and is actually small
compared to the four main lobes. Nevertheless, the cerebellum contains approximately
70 billion neurons. This part of the brain is responsible for our talents from playing
musical instruments to athletic agility. It does this by controlling complex movements,
it detects errors and creates adjustments to compensate, which in turn strengthens
neural circuits throughout the brain.

Frontal Parietal OccipitalTemporal

Fig. 1.1 Overview of the human brain including its four major regions of the cerebrum
[1]
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1.2 Connectivity and the smaller brain

1.2.1 Neurons

Neurons are the individual cells which make up the central nervous system. There
exist many different types of neurons all of which are packed into small networks of
upwards of 10000 neurons per network and are interconnected by kilometres of wiring
per cubic millimetre. These are called individual neural circuits. Their main purpose
is the transfer of information, which allows for the specific and complex movements,
associated with human motor skills as well as allowing for cognitive perception and
memory [2].

The basic neuron structure can be seen in Fig. 1.2. Consisting of three main parts.
Firstly, the dendrites, which are the main collectors of information (they are analogous,
to that of an input to a system).

The soma is the neuronal structure which is responsible for the central processing
of the incoming information (similar to that of a systems function f(x)). The soma
performs a non-linear threshold based comparison of the incoming information from
the dendrites.

The axon, which is the final main component of the neuronal structure, is considered
the main delivery system of information. This sends the soma generated information to
other neurons within the network. At the end of each axon, there are axon terminals
which connect to dendrites via synapses. In addition, there is a layer of fat which
surrounds the axon known as the myelin sheath, which is an electrically insulating
layer. The sheath regulates the proper transmission of electrical signals, helping speed
up electrical transmission down the axon.

The transmitted information is referred to as an action potential (AP). The AP is a
product of concentration gradients, which refers to the difference in ion concentrations
inside and outside of the neuronal cell.

In general an AP is generated as follows. Firstly, neuronal cells are surrounded by
an extracellular fluid (EF) which is full of positively charged sodium and potassium
ions. While the inside of the neuronal cell there are also positively charged sodium and
potassium ions. Nevertheless, the EF has many more positively charged ions than the
inside of the neuronal cell. This leads to a high concentration gradient which causes a
negative potential inside of the cell, known as a resting membrane potential (RMP).
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The RMP is the state in which neurons spend most of their time, it is a negative
concentration gradient of approximately -70 millivolts.

The membrane of the neuronal cell is very permeable to potassium ions, meaning
that they leak out of the cell towards the EF via leakage channels. The membrane of
the neuronal cell is also partially permeable to sodium ions which also flow out of the
cell via sodium leakage channels. This creates instability within the cell. Nevertheless,
a cell is constantly trying to to maintain its resting potential so it has tiny ion pumps
which pump potassium back into the cell and sodium out.

In addition to the ion leakage channels and pumps, the neuronal cell also has two
voltage controlled ion gates, one for sodium and the other for potassium. during RMP,
these gates are always closed. When an event occurs at the dendrites of the cell, such
as an AP sent from another neuron or a nerve input it causes the voltage-gated sodium
channels to open, allowing sodium ions to flow into the cell which in turn causes
a depolarisation in the current which tries to push the resting membrane potential
towards 0 millivolts. If the membrane potential reaches a critical threshold, roughly
speaking the threshold of approximately -55 millivolts an AP is formed. The AP itself
is a positive electrical impulse which can push the membrane potential to +30 mV.
Potassium channels then open and the sodium channels close in order to repolarise the
cell. The basic overview of the AP can be seen in Fig. 1.2, which marks the opening
and closing times of each voltage controlled gate. The potassium gate, however, stays
open slightly too long creating a hyperpolarisation after the AP which then slowly
moves back towards the resting potential [3, 4].

The interconnection between two neurons occurs at the synapse, which is an electro
or chemical junction. The human brain contains anywhere between 100 and 500 trillion
synapses of different varieties. Synapses are located at the dendrites (input terminals)
and the axon terminals (output terminals).

In a chemical synapse, once the pre-synaptic (output terminal) AP or nerve impulse
reaches the junction, a neurotransmitter chemical molecule is transmitted and diffused
across a small space known as the synaptic cleft. These molecules then bind with
neurotransmitter receptors on the postsynaptic (input terminal) neuron which opens
or closes ion channels in the receiving neuron. This leads to a change in the membrane
potential of the receiving neuron which can either lead to an AP or not. If the cell
does fire it is what is known as an excitatory synapse, otherwise it is an inhibitory
synapse. Since a neuronal cell has multiple synapse connections the firing of an AP is
actually the combination or summation of all of the excitatory and inhibitory activity
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at the input of the cell. If there are more excitatory signals, the membrane potential
increase towards the AP threshold. For the signal to end, the synaptic cleft must then
be cleaned of neurotransmitter.

Electrical synapse have a direct connection in the form of a gap junction, which
allows current to flow extremely fast from one neuron to the next. This has the
advantage of allowing neural circuits to synchronise rapidly. One of the benefits of
an electrical synapse is the ability to allow current flow in both directions, meaning a
bi-directional flow of information. It is believed that these types of synapses are used
in fast response actions such as the ’fight or flight mode’ in humans [5].

Axon terminalsExtracellular fluid

Flow, Action potential

Nucleus Myelin sheath

Dendrites

Soma

Information in

Information out

-55mv

0mv

+30mv

-70mv

Sodium 
channels open

More sodium channels 
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Fig. 1.2 Overview of neural connectivity, left, shows an example of an AP including
approximate channel opening and closing times, right, shows the basic structure of a
single neuron

1.2.2 Neural oscillations

The term neuronal oscillation refers to periodic variations in neural activity. These
variations can be measured at different scales such as the microscopic scale, which
could consist of the measuring of direct synaptic currents which produce spike trains of
AP’s, the mesoscopic scale, which consists of the summation of many synaptic currents
from a Local network, named a local field potential (LFP), or the macroscopic scale,
in the form of electroencephalography (EEG) data, which is the measure of multiple
local networks [6].

The history of neural oscillations started with the first ever recordings of individual
microscopic recordings. First recorded by Richard Caton in 1875, a physician from
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Liverpool, England, who used electrodes to probe the exposed surface of the brain in
animals. Using a reflecting galvanometer, he was successful in monitoring signals in
the microamperes range [7].

Nevertheless, it was the work of Berger in 1929, who first reported that he had
identified oscillations of approximately 8-12Hz coming from the brain. Berger named
this the alpha band since it was the first oscillation detected from such a source. This
was early on in his pioneering work on the study of EEG. During one of his experiments
Berger noticed that while the patients eyes were closed the prominent oscillations
of the alpha band were visible. In the power spectrum the alpha waves produced a
lone prominent peak of at approximately 12 Hz. However, when the patient opened
their eyes the oscillations seemed to diminish in amplitude and become faster and
more erratic, in a way the signals seemed to desynchronise and the prominent peak
disappeared. This is known as the ’Berger effect’. Noting this, it was apparent that
the alpha oscillations were attenuated by other more complex frequencies due to the
visual stimuli originating from the occipital lobe.

Further observations of Hans Bergers works were carried out by W. Grey Walter
in 1934, who devised an experiment entitled ’Thought and Brain: A Cambridge
experiment’, in Which one set of results was quoted as:

’When the eyes of a subject were open the lines were irregular, but when the subject’s
eyes were closed they showed as regular sinusoidal type signals occurring approximately
every 10 seconds. Interestingly, When the subject closed their eyes and was asked to
perform a simple arithmetic problem, the regular patterns disappeared, similar to that
of when the patient’s eyes were open. The lines continued to appear irregular until the
simple problem was solved at which time the regular patterns reappeared’.

The fundamental observation by these pioneers revealed that the electrical fields
recorded, must have been the combination of thousands of neurons firing in synchrony
as stated by [8].

Since then, further advances in technology have led to the identification of multiple
active frequency bands in which oscillations tend to occur. Namely,

• Infraslow (< 0.2Hz) and δ = 0.2− 3.5Hz. These wave patterns are usually seen
during sleep of newborn infants or adults with serious brain diseases.

• θ = 4−7.5Hz. These waves have been identified to mainly oscillate in the parietal
and temporal regions of children’s brains, and in healthy adults. Nonetheless,
these slow varying oscillations are absent or indistinguishable under normal
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conditions. Nevertheless, these oscillations do appear in healthy adults who show
signs of emotional stress or frustration.

• α, µ = 8 − 13Hz. These oscillations tend to occur during the period when a
person is awake but in a very relaxed state, mainly with the eyes closed. The
introduction of complex thought was proven to also diminish alpha waves causing
alpha blocking due to complex thought.

• β = 14 − 30Hz. The lower spectrum of the beta band usually falls into the
same category as the alpha band, in that it can be disturbed by small amounts
of complex activity or tension. The upper spectrum of the beta band is only
affected by extreme thought processes, such as complex arithmetic. The beta
band is usually considered as the awake and alert band, as we constantly process
visual and auditory senses, as well as perform cognitive tasks throughout the day.

Other oscillatory bands include, γ = 30 − 90Hz and the upper limit of High
Frequency Oscillations HFO > 90Hz. Recent research is, now starting to identify the
gamma band as a communication layer between individual neural circuits [9]. Fig. 1.3,
shows the decomposition of an original neural signal measured using EEG, into some
common respective oscillatory bands.

Fig. 1.3 Example of the most common neuronal oscillatory bands

The interconnection of neurons forms several states of connectivity, three main
types are as follows [10] :
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1. structural connectivity, which refers to the anatomical connectivity via the struc-
ture of major tracts (i.e, white matter) connecting local and remote cortical
regions of the brain.

2. functional connectivity, which is a statistical measure of the amount of connectivity
in one region vs another and their dependence upon each other.

3. effective connectivity, the amount of connectivity in one cortical region which
directly affects another cortical region by either activation or depression

1.3 Phase and Synchronisation

1.3.1 Basic concept

Phase is defined as the angular change in a signal over time. This can be represented
as the anticlockwise rotation around the unit circle. Each adjustment is measured in
terms of degrees, ranging from 0◦ to 360◦, which indicates a full rotation around the
unit circle. The rotation can also be measured in the SI unit radians, where 360◦ = 2π,
radians.

A sinusoidal wave can be expressed as:

x(t) = A · sin(ωt+ θ) (1.1)

where, A is the amplitude, θ (this has no relation to the theta oscillatory band described
above) is the initial phase of the signal and ω = 2πf denotes the rate of change of
the vector rotation around the unit circle. The rate of change of phase increases or
decrease as the frequency of the signal. If the frequency remains constant, the rate
of change in phase will also remain constant. These types of signals are known as
stationary signals.

Non-stationary signals, however, refers to a signal in which frequency changes over
time, such as a synthetic sinusoidal chirp in which the rate of change in phase is
constantly increasing. Another non-stationary source is that of EEG signals as LFP’s
tend to incorporate a wide range of frequencies.
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Fig. 1.4, shows an example of the change in phase angle from a typical sinusoidal
waveform and a cosine waveform. In this case, the first peak in the sine wave represents
0 radians and the first minimum in the cosine wave represents, π radians. As the two
signals evolve, by the time the first minimum has appeared in the sine wave the phase
angle has increased to π radians and the cosine has evolved to 2π radians.

Since the sine wave and cosine wave are both stationary at 10Hz, the phase of both
signals increases at a fixed rate. In comparative situations, it is desirable to take the
phase difference between the two waveforms. This can give rise to information on their
frequency offsets with respect to one another and can be calculated as:

θ = ϕsignal1 − ϕsignal2 (1.2)

Using specific markers in each signal such as minima or maxima, if the first
derivative d(ϕsignal1−ϕsignal2)

dt
, is constant it can be said that the signals have a constant

phase difference. Since the two signals in Fig. 1.4 are of a constant 10Hz, the phase
difference between the two is constant. In this case, the constant phase change is π
radians [11].

1.3.2 Synchronisation and phase locking

In general terms, synchronisation is defined as any two-coupled (phase locked) oscillating
systems, which have a relationship in both phase and frequency, but at the same time
are independent of amplitudes. In non-disturbed and noise free systems synchronisation
is usually described as the phase locking between instantaneous phase angles such that
n ·ϕs1−m ·ϕs2 = const, where ϕs1 and ϕs2 are the instantaneous phase angles of signal
1 and signal 2, respectively. m and n, are integer based weights which need adjusting
based on the source of the oscillating system.

In the example in Fig. 1.4, although the two signals are in anti-phase there does
exist a relationship between the two, in terms of phase locking.

In the case of non stationary signals, the phase locking condition should be con-
sidered as: |n · ϕs1 −m · ϕs2 − δ| < const. Where δ, is some average phase shift. This
condition indicates that although the rate of change is not completely constant, it
should reside (fluctuate) around a common constant [12].
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Fig. 1.4 Phase: example of how phase rotates anti-clockwise around the unit circle in a
stationary sine wave
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In many cases of phase locking, the values m and n are usually set to a fixed 1:1
ratio. This is especially true if the signals originate from the same source such as the
brain. Nevertheless, this phase locking attribute also holds true for signals of different
frequencies, such as a stationary sine wave of 10Hz and a stationary sine wave of 20Hz.
Although the frequencies are not the same there does exist a relationship in phase
known as cross-frequency phase locking [13, 14].

1.3.3 Synchronisation in the brain

The human brain seems to effortlessly communicate large quantities of information
over multiple regions of the brain. However, one of the questions still unanswered is
how neural communication between assembles throughout the larger brain actually
works. That‘s to say, what decides what information is accepted or declined at the
input of neural assemblies.

For many years it was assumed that general information processing was carried
out by changes in firing patterns of so-called ’smart neurons’. which were dedicated
to certain tasks and functions. Nevertheless, the work derived from Hans Berger and
others has led to the question as to whether synchronisation of neural assemblies is the
key to information processing and learning. The fact that neural oscillatory patterns
exist, indicates that to some degree, neural synchrony at the given frequency must be
intrinsic of some type of neural assembly collaboration.

Over recent years, new evidence is emerging that precise synchronisation and
desynchronisation of neural assemblies may, in fact, be the key to the encoding
of information transfer within the brain. This can be seen in various reviews and
experimental results from [15–17]

Two main hypotheses have been suggested for the efficient transfer of information
between neural circuits and brain regions. Namely, coherence, in the form of phase
synchronisation and gating by inhibition.

Phase synchronisation could be used as an identifier between neural assemblies,
similar to that of two radios set to the same frequency channel. If the presynaptic
response from one neural circuit is oscillating at the correct excitability rate of the
postsynaptic neurons, then the information is accepted. However, if the presynaptic
response is oscillating at a different rate (different frequency), then the postsynaptic
inputs of the second neural circuit then the information is blocked or diminished, as
with a radios set at different frequencies.
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In general terms, it is the phase of an oscillatory neuron population which determines
their excitability, hence their spike timings. It is, therefore, the phase relationship
between neuron populations which determines routing. This has been proposed to
occur in the gamma band [18].

The flow of information is controlled by an increase of alpha oscillations which
inhibit the neural population which is not firing in synchrony [19].

1.4 Synchronisation in pathological brain states

The topic of the synchrony between neural circuits for proper functional neuronal
communication is a trending topic in neuroscience today.

When comparing brain states we like to consider the differences between normal
and pathological brains, in order to identify the connectivity differences which may
exist between them. Therefore, the data of pathological brain state patients is usually
compared with that of a control subject (a patient with no medical history of neurolog-
ical disorders). Nevertheless, in the case of neurological disorders such as epilepsy, the
patients inter-ictal epileptic period can be associated with a non-pathological brain
state, hence used in further analysis.

In order to distinguish between these two brain states, we use a common mathemat-
ical tool known as graph theory. This allows us to gather insight into the structural,
functional and effective connectivity of the brain. It allows us to visualise the overall
connectivity as a function of time.

For an in-depth look into the most common mathematical calculations and an
overview of the steps required to calculate complex graph networks. Please see appendix
A.

It is widely accepted that the brains neural communication is characteristic of a
small world network where neural clusters are well connected and transfer information
over small distances. Therefore comparing the small-worldness of a non-pathological
brain state with that of pathological states can identify the changes which occur in
terms of overall functional connectivity.

Fig. 1.5, shows an overview of the steps required for identifying small-worldness in
epilepsy when taken from EEG sources.
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Fig. 1.5 Example of how graph theory methods can be applied to real data. In this
case, we compare an epileptic patients ictal period to that of their non ictal period.
We then calculate M and A using an binary/undirected graph and calculate metrics as
per needed

1. Firstly, all synchronisation values for every possible combination of electrode
positions are computed, creating a O = NXM matrix. Where N corresponds to
the electrode combination and M corresponds to each synchronisation value for
the given electrodes over time.

2. Next, two matrices G1 = NXN For the non ictal period and G2 = NXN for the
ictal period are constructed. This is done by creating a single mean representative
value for each electrode combination from O such that:

Gx(i,j) = 1
M

M∑
z=0

Oi,j (1.3)

3. The next step is to apply thresholds to each matrix G, for the purpose of
creating two binary based adjacent matrices Ax. The threshold which is applied
is subject to the experimental data and the related subject at hand. In many
cases, various thresholds are tested. This allows for the identification of the
strongest connections and builds 3d topologies which give rise to information on
C,L, k.
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
ϕ11 ϕ12 ϕ13 . . . ϕ1n
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... ... ... . . . ...
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0 0 1 . . . 0
1 0 1 . . . 1
... ... ... . . . ...
0 0 1 . . . 1


4. Finally, we can calculate λ, γ and η, by calculating the mean clustering coefficients

and the mean shortest path lengths.to distinguish the small-world characteristics
and small-worldness.

1.4.1 Synchrony in neurological disorders

Although each neurological disorder has distinct causes and effects, synchrony has
been found to manifest itself as an identifier, to distinguish between the normal and
neurologically damaged brain. Table 1.2 [20], shows an overview of the most common
neurological disorders as described above and how long and short-range communication
is affected by increases or decreases in synchronisation. Other numerical methods such
as graph theoretical analysis (please see appendix A) have also been shown to be a
useful tool in the identification of both functional and structural connectivity.

In Alzheimer Disease (AD) synchronisation has been observed to increase in the θ
and δ bands whilst, conversely, reducing in both the α and β bands at resting state.
Using a synchronisation likelihood (SL) measure, it was determined that these bands
decreased in synchronisation over both long and short range recording sites [21–23].
Whilst global efficiency measures are higher in AD patients compared to the normal
brain, the brain’s ability to synchronise decreased significantly over multiple EEG
bands in AD patients when their eyes were closed according to [24]. Synchronisation in
AD patients has also been analysed in patients during memory working tasks. These
include EEG and functional Magnetic Resonance imaging (fMRI) analysis of functional
connectivity. Once again it was shown that a decrease in synchronisation was present
when compared to control patients specifically in the α and β bands [25].

The way our brain synchronises does not just affect cognitive functions. In fact,
there is evidence which suggests that synchronisation in the β band is related to
pre-motor movements (i.e preparation for movement). Nevertheless, once the actual
movement takes place the β activity is replaced by γ activity [26, 27]. Moreover, there
is evidence to suggest that an increase in β activity could be responsible for tremors in
Parkinson Disease (PD) [28]. Where in patients who do not suffer from PD a short
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Disorder Neural synchrony
Epilepsy Increase in local synchrony and evidence for long range reduction
Schizophrenia Reduction in local and long range synchrony
Alzheimer Reduced synchrony, evidence for reduced functional connectivity
Parkinson Increase in synchrony

Table 1.2 Synchrony in different neurological disorders.

period of β synchrony prior to a motor movement is replaced by fast γ bursts during
the movement (where the β oscillations are dulled by inhibition), in patients with PD,
however, the hypersynchronous β activity cannot be dulled and hence the γ oscillations
responsible for the movement cannot take place [29].

It has been proposed that memory, attention and perceptual organisation are asso-
ciated with synchronisation in the β and γ bands [30]. Various studies of Schizophrenia
(SZ) show that a deficit in perceptual organisation is a common symptom and could
be related to a reduction in synchrony in the β and γ bands [20].

Epilepsy (EP), on the other hand, is a well studied neurological disorder with over-
whelming evidence suggesting that seizures occur due to hyper-synchronous networks.
High-frequency oscillations in the γ band have especially been observed in EEG both
during the ictal and pre-ictal periods [31]. It has also been observed that neurons
synchronise with high precision in the β band pre seizures, however, synchronous
activity is reduced during the ictal event [32]. Conversely, a decrease in synchronisation
was proposed by Le Van Quyen et al. who examined the synchronous activity of eight
patients finding a pre-ictal reduction in the β band in 77% of seizures [33].

1.5 Phase synchronisation methods

1.5.1 Analytical measures

Two main closed-form analytical approaches have been proposed for the estimation of
phase angles. One is based on the Hilbert Transform and the other on the Wavelet
Transform.

The Hilbert transform (HT) creates a projection of the original signal on to the
imaginary plane in such a way that positive frequencies are phase shifted by −π/2 and
negative frequencies by +π/2, while keeping the amplitude unaffected. Analytically, the
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Hilbert transform s̃(t) can be interpreted as the convolution of s(t) with the function
h(t) = 1/(πt) and is given by [34]:

s̃(t) = 1
π
· p.v

∫ +∞

−∞

s(τ)
t− τ

· dτ (1.4)

Where the integral is defined in terms of the Cauchy principal value p.v and s̃(t) is
a (90◦) phase shifted version of the original signal, s(t) .

In continuous time signals the HT can be represented as the convolution of a real
signal s(t) and a function h(t) = 1

πt
, such that s̃(t) = s(t) ∗ 1

πt
[35].

In the frequency domain the HT can be written as:

s̃(f) = X(f)× (−jsgn(f)). (1.5)

Where (−jsgn(f)), is the HT of X(f) [35].

An analytical construct introduced by Gabor in 1946 utilises the HT, to create an
analytical signal, given by:

sa(t) = s(t) + js̃(t) = A(t)ejϕ(t) (1.6)

The resulting complex signal sa(t), has the property that there exist no spectral
components for negative frequencies, that’s to say the Discrete Time Fourier transform
of sa(t), is Sa(ejω) = 0,−π < ω < 0.

The instantaneous phase of the analytical signal sa(t) can be calculated as:

ϕ(t) = tan−1
[
s̃(t)
s(t)

]
(1.7)

Two other important metrics can be extracted from the HT. Firstly, the instanta-
neous amplitude of the signal, which can be extracted as [36]:
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A(t) = (s(t)2 + s̃(t)2) 1
2 (1.8)

Secondly, the instantaneous frequency, which is given as the first derivative of the
phase,

ω(t) = dϕ

dt
(1.9)

The HT, however, is a linear function which in retrospect only works on stationary
signals. Nevertheless, an adaptation of the HT can be used known as the Hilbert-Huang
Transform (HHT).

The HHT incorporates an empirical mode decomposition (EMD) to the signals
before taking the HT. The EMD consists of breaking down the signal into a finite
number of components which are called Intrinsic Mode Functions (IMFs). These are
extracted from an arbitrary time series x(t), by means of sifting. In order to sift all
extrema, both maximum and minimum. The first IMF can be extracted as [37]:

h1(t) = x(t)−m1(t). (1.10)

Where, x(t) is the time series in question and m1(t), is the mean of the upper and
lower envelope derived from the extrema.

However, h1(t), is usually not sufficient to satisfy the constraints of an IMF and
hence the process is repeated such that:

h11(t) = h1(t)−m11(t). (1.11)

Where m11(t), is the mean of the upper and lower envelopes of h1(t).

In general, the process is as follows:
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h1k(t) = h1(k−1)(t)−m1k(t). (1.12)

where k is the number of iterations to find the first IMF C1(t) = h1k(t).

Furthermore, the residual part the signal should be obtained from such that:

h1(t) = x(t)− c1(t). (1.13)

at the end of the process the original signal can be represented as:

x(t) =
n∑

i=1
ci(t) + rn(t). (1.14)

The HT is then performed on each IMF [38]:

cai(t) = ci(t) + jc̃i(t) (1.15)

The instantaneous phase of the signal can be extracted as:

ϕi(t) = tan−1
[
c̃2

i (t)
c2

i (t)

]
(1.16)

A similar approach for estimating phase angles [39] uses a definition based on the
Wavelet Transform (WT). Here, the phase variable is defined as,

φs(t) = arctan Im(W (t))
Re(W (t)) (1.17)
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where Im(·) and Re(·) denote imaginary and real part, respectively, and W (t) is the
convolution of the band-limited signal s(t) with a Morlet wavelet ψ(t),

W (t) =
∫ +∞

−∞
ψ(t− τ)s(τ) · dτ

ψ(t) = exp (−t
2

2σ2 ) · exp (jω0t)
(1.18)

where σ is the decay rate of the wavelet and ω0 is the centre frequency of the signal
band. Both analytical methods give similar results when applied to neurophysiological
data [40].

The Phase Locking Value (PLV) or mean phase coherence usually accompanies
the HT or WT methods as an index for quantifying the amount of synchronisation
between two signals.

PLV =
∣∣∣∣∣ 1
N

N−1∑
K=0

ejϕ(t)
∣∣∣∣∣ = 1

N
·

√√√√[ N−1∑
K=0

cos(∆ϕk)
]2

+
N−1∑
K=0

sin(∆ϕk)
]2

(1.19)

The PLV converts instances of the relative phase △φ into unit vectors on the
complex plane. If N of said vectors all have the same instantaneous phase (i.e the same
vector direction) then the PLV will average out to 1 which equates to fully coupled
oscillations for that period. However, in the case that the relative phase angles are
very different the PLV will result in a value close to 0.

In some cases, a normalised PLV is more desirable than raw values as it gives a
better approximation of the difference between normal state PLV and large changes,
due to stimulus. The normalised values can be extracted as,

PLVnorm = PLV −mean(PLVts)
σ(PLVts)

(1.20)

Where ts, is a small baseline selection of samples taken before the episode. In this
case, σ, represents the standard deviation of the baseline.

This metric is actually based on the Z-score and provides a zero mean offset.
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1.5.2 Numerical measures

Phase synchronisation measures can be alternatively derived from the phase space
trajectories of the signals. Using time-delay embedding procedures [41], the phase
space trajectory of a time series {s(k)} is obtained by constructing the vectors,

S⃗i = {s(j), s(j + d), . . . , s(j + (m− 1)d)} (1.21)

where i = 1 . . . N , j = i+ mod[N − (m− 1)d], m ≥ 1 is the embedding dimension and
d ≥ 1 is an arbitrary but fixed time increment.

Based on this topological representation, the phase synchronisation between two
signals can be estimated by computing the cross-correlation between the probabilities of
recurrence in their respective phase spaces [42]. This approach has been used recently
for quantifying functional connectivity in EEG recordings [43]. The probability of
recurrence of a signal measures the likelihood that each phase space vector returns to
its neighbourhood after a time delay τ . It is calculated as:

pr(τ) = 1
N − τ

N−τ∑
i=1

Θ
(
ϵ− ∥S⃗i − S⃗i+τ∥

)
(1.22)

where ϵ is a pre-defined distance threshold, ∥·∥ is a norm to calculate the distance
between vectors and Θ is the Heaviside function. The cross-correlation CPR of two
trajectories is calculated as:

CPR =

〈
(pr,1(τ)−m1) · (pr,2(τ)−m2)

〉
σ1 · σ2

(1.23)

where m1 and m2 are the mean, and σ1 and σ2 are the standard deviations of pr,1(τ) and
pr,2(τ), respectively. If both signals are in synchrony, their probabilities of recurrence
will peak at the same time and CPR ∼ 1. Contrarily, if the signals are not synchronised,
low values of CPR can be expected.

Numerical techniques have been also proposed for the quantification of synchrony,
as an alternative to the PLV index in 1.19 [44]. Assuming that the phase angles of both
signals have been previously estimated, a synchronisation index can be calculated based
on the Shannon entropy of the phase difference distribution. Having an estimate Pse(l),
l = 1, . . . , L of the relative frequency of finding a phase difference △φ = φs1 − φs2 in a
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certain bin l, the index is given by,

Sse = 1 + 1
ln(L)

L∑
l=1

Pse(l) · ln[Pse(l)] (1.24)

where L is the number of bins. Note that Sse is comprised in the interval [0, 1],
where Sse = 0 corresponds to a uniform distribution (no synchronisation) and Sse = 1
corresponds to a distribution localised in one point. The estimate of this index heavily
depends on L [44].

Another synchronisation index is based on the conditional probability Pcp(k, l) to
find the phase of a first signal in a bin k when the phase of the second signal falls in
the l-th bin, l = 1, . . . , L. Denoting as Ml the number of hits of the second signal in
the l bin, a synchronisation index can be defined as,

Scp = 1
L

L∑
l=1

∣∣∣∣∣ 1
Ml

Ml∑
k=1

exp[jPcp(k, l)]
∣∣∣∣∣ (1.25)

It has been found that this index is particularly suitable for revealing weak interac-
tions between signals [44–47].

1.6 VLSI implementations of PS estimators

As mentioned in Sec.1.5.1, one popular approach for the calculation of the instantaneous
phase of a signal relies on the construction of the analytic representation sa(t) =
s(t) + js̃(t), where s̃(t) is the Hilbert Transform of s(t) [see 1.4]. Using time-frequency
domain techniques, the Hilbert Transform can be derived by [48] (i) obtaining the
Fourier transform of s(t), (ii) nulling the negative frequency components, (iii) calculating
the inverse Fourier transform and (iv) taking the imaginary part of the result. Given
the non-stationary nature of neural signals, the Fourier transform should be applied
over short intervals. This suggests the use of the Short Time Fourier Transform (STFT)
algorithm instead of the classical Fast Fourier Transform (FFT) [36]. 1.4 and 1.19

A simpler method for the generation of the analytic signal representation sa(t) uses
Hilbert Transformers based on digital filtering. These transformers can be implemented
in complex domain or formed by the combination of two sub-components; a Hilbert
filter with ideal transfer function −jsgn(f) for the generation of the imaginary part of
sa(t), and a delay equal to that of the Hilbert filter for the real part. In both cases,
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the total group delay of the signal components should be kept constant to not cause
phase errors. The vector analyzer presented in [49] follows the second implementation
approach and employs 16-tap Hilbert finite impulse response (FIR) filters for obtaining
s̃(t), and 16-tap All-Pass FIR filters for implementing the delay. In a more recent
implementation [50], the in-phase and quadrature components are directly provided by
the mixed-signal acquisition front-end, and four 64-tap FIR filters are used for band
selection.

Another transform-based approach for deriving the instantaneous phase of a signal
uses Wavelets (see 1.18). In this case, the on-chip implementation of the method
requires Multiply-and-ACcumulate (MAC) processors to correlate the input time series
with the wavelet templates. As an example, [51] proposes a charge-recycling mixed-
signal MAC processor for epilepsy detection in which time series of 1024 samples are
serially loaded and correlated in parallel with all the Morlet wavelet templates (coded
in 32 frequency bins with 4-bit coefficient resolution) stored in the on-chip memory.

The trigonometric functions involved in 1.7 and 1.17 as well as the computation of
the phase locking value in 1.19 can be readily implemented by CORDIC (COordinate
Rotation DIgital Computer) units. This is actually done in [52] where a digital signal
processing (DSP) block formed by three 16-bit CORDIC cores and two 32-tap moving
average FIR filters is used for computing the phase locking value (PLV ) from the
analytical signal sa(t).

Numerical methods for computing PS, such as the one based on probabilities of
recurrence, pr(τ), described in Sec. 1.5.2, typically use simpler logic than transform-
based techniques at the price of increased latency and more memory resources. Thus,
for instance, the evaluation of pr(τ) in 1.22 requires the collection and combination
of phase space trajectories, demanding for a large memory allocation. Nevertheless,
it is worth observing that, depending on τ , there are coincident terms in the sum
1.22. This opens doors for reducing the computational complexity of the algorithm
by avoiding recalculations. This is actually the approach followed in [53], where a
differential scheduling for the computation of the correlation integral of a signal (similar
to the calculation of recurrences) allows for a substantial reduction in complexity.
Following the calculation of pr(τ), a MAC unit should be used for the calculation of
the cross-correlation in 1.23 to serve as a synchronization index.

As shown in 1.24 and 1.25, numerical methods can also be used for the computation
of synchronization indexes. Although the computational complexity is relaxed as
compared to PLV (in particular for the index based on Shannon entropy), long sliding
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Table 1.3 Performance summary of proposals related to on-chip PS calculation

Process Supply Core Area Input rate Clk Freq. Power cons. Computation capability
[49] 0.13µm 1.2 V 1.86 mm2 7.2kHz (8-bit) 10MHz 400 µW 32 input-pairs multiplexed phase synchronization processor
[50] 0.13µm 1.2 V 1.27 mm2 NA NA 260 µW 32 input-pairs multiplexed phase synchronization processor
[51] 0.35µm 1.65 V 16 mm2 NA 50Hz NAa 128×1024 binary MAC operator
[48] 0.13µm 1.2 V 1.18 mm2 40kHz (16-bit) 10.24MHz 3.64.4 µW 16-channel multiplexed 16-bit Hilbert Transform block
[52] 0.13µm 0.85 V 0.178 mm2 1.7kHz (8-bit) 2.5MHz 102 µW 10-bit PLV Processor
[53] 90nm 1.0 V 0.143 mm2 256Hz (9-bit) 4096Hz 2.34 µW 16-channel Correlation Integral Processor
[55] 90nm 1.0 V 1.02 mm2 256Hz (16-bit) 522.24 kHz 57.3 µW 1-channel EMD processor extracting 5 IMFs and residue

aPower consumption mainly due to the 4×128 8-bit Σ∆ algorithmic ADCs. At 15 kHz parallel
sample rate, the bank of ADCs dissipates 6.3 mW from a 3.3 V supply [54].

windows are needed to populate the histograms and obtain meaningful distribution of
probabilities. Hence, circuit simplicity is counterbalanced with an increase in latency
and memory depth.

Table 1.3 illustrates the performance of the different integrated circuits presented in
this section. The two first rows are for complete PS processors while the rest corresponds
to building elements which can be eventually used depending on the particular PS
implementation strategy. The table clearly shows that the algorithms used for PS
calculation, although easily programmable in computers, tend to occupy large area
and consume significant power when dealing with silicon integration. The problem is
even more acute in the context of functional brain connectivity, where multiple phase
synchronisation indexes from different sites are needed. For instance, if functional
connectivity has to be measured between 16 recording sites, as it is typically done in
a standard 10-20 EEG electrode system, 120 different combinations of neural signal
pairs should be simultaneously addressed. This means application specific integrated
circuits (ASIC’s) for functional connectivity quickly become far to big and/or power
hungry, even if sophisticated multi-thread sharing DSP techniques are employed.

1.7 Thesis Objectives

This thesis aims to address three major aspects:

• Development of an algorithm for the detection and quantification of phase
synchronisation between pairs of neural signals which significantly alleviate
the constraints of power consumption and area occupation as compared to
state-of-art methods. The algorithm should exhibit little or no degradation
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on performance metrics such as seizure detection sensitivity, noise tolerance or
functional connectivity computation.

• Implementation of a low-power, low area silicon prototype of the proposed
algorithm to confirm its suitability for VLSI, and performance validation with
human recordings in a realistic application scenario, namely, the detection of
seizures in patients with different epileptic pathologies.

• Demonstration of the scalability of design through the implementation of a multi-
channel processor for surface or intracranial EEG signals, and confirmation that
the proposal represents a low-cost, low-complexity, programmable and portable
solution for computing functional connectivity in wearable/implantable systems.





Chapter 2

Delay Difference Analysis for Phase
Synchronisation Computation
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In this chapter, an algorithm for phase synchronisation computation, which aims
to alleviate the area/power consumption burden of silicon integration of previous
approaches such as in Sec.1.6 is proposed. The synchronisation algorithm, called Delay
Difference Analysis (DDA), is based on the piece-wise linear approximation in [12],
however, it has been modified by us to achieve a more hardware friendly implementation.
Furthermore, a new synchronisation index is introduced which allows for a more reliable
identification of synchronisation peaks. The two components of the algorithm, were
then subjected to tests, including: simulation of nearly two thousand hours of real
neural data, noise analysis and sensitivity analysis. Moreover, we include the effects of
sampling rate, window length and sample distribution.

All of the following was carried out by the author of this thesis.

2.1 Proposed algorithm

Similar to the transform-based methods, this proposal is also based on the estimation
of instantaneous phases in band-limited signals, however, instead of using complex
filtering or wavelet convolutions, phases are extracted through the identification of
distinct marker events in wave forms. Without loss of generality, in this work, it is
assumed that such events correspond to the local minima of the signal at time instants
tn. The time interval between two consecutive minima correspond to one complete
cycle and, therefore, the phase increment during this period is exactly 2π. Hence, the
signal phase can be approximated for any arbitrary time instant tn < t < tn+1 as,

φs(t) ≈ 2π t− tn
tn+1 − tn

+ 2πn (2.1)

where the term 2πn unwraps the phase angle and T s
n = tn+1− tn measures the duration

of the transition period between the minima, as illustrated in Fig.2.1. Note that this
approximation notably simplifies phase estimation as the problem basically reduces
to a measure of time intervals. For this reason, the proposed algorithm is denoted as
Delay Difference Analysis.

Based on the approximation in (2.1), an index for quantifying the synchronisation
level between two signals has been proposed in [56]. It relies on creating histograms
on how many times the events in one signal are preceded by events in the other. The
approach has a low computational cost, however, similarly to the numerical techniques
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described in Sec. 1.5.2, it requires long time series to build meaningful statistics and,
in some sense, it wastes the time information between events.

The proposed approach for measuring synchronisation is similar to the PLV

technique in (1.19) but avoids the use of trigonometric functions. DDA analyses the
time difference between the transition periods of both signals, not their relative phase
△φ, and, remarkably, it operates on-the-fly with no need to store long signal sequences.
The procedure simply consists in pairing transition periods from both signals as soon
as they are detected. If a pair is formed between the i-th transition period of signal
s1(t) and the j-th transition period of s2(t), the absolute difference △Tn = |T 1

i − T 2
j |

is calculated, where T 1
i and T 2

j denote, respectively, the durations of said transition
periods. If two or more transition periods in one signal are detected before a transition
period is found in the other, only the last transition period of the former signal is
accounted for in the computation of △Tn. Fig.2.1 shows an example of the procedure.
This, in turn, increases the phase error distribution.

Let us denote by K the number of absolute differences △Tn computed in the k-th
sliding window of length N , and let us assume with no loss of generality that N = 2m.
A synchronisation index between signals s1(t) and s2(t) can be defined as,

S
(r)
dda(k) = 1− 2r

N
min

(
K−1∑
n=0
|△Tn| − Tos,

N

2r

)
(2.2)

where r ∈ [0,m] is a user-defined selectivity control parameter and Tos is a positive
integer offset for adjusting the synchronisation index range. Fig.2.2(a) plots S(r)

dda for
Tos = 0 and different selectivity configurations assuming that s1(t) is a sine wave at
20Hz, and s2(t) is a chirp whose frequency linearly sweeps from 10 to 30Hz. Both
signals had a sampling rate of 1024S/s and were quantised at 10-b of resolution. Every
calculated index was obtained assuming a non-overlapping sliding window of length
N = 1024. Clearly, the higher the selectivity parameter, the narrower the band for
which the synchronisation index obtains non-null values. No matter the r parameter,
the plots in Fig.2.2 are not symmetrical around the tone frequency of s1(t); they decay
linearly for chirp frequencies below said tone but fall away more smoothly for higher
frequencies. This is because the number of absolute differences K is limited by the
smaller frequency, fmin, of both signals as K = N · fmin/fs. In Fig.2.2(a), it is also
observed that the peak value of the synchronisation index decreases with the selectivity
parameter. This can be compensated, without drastically increasing the sampling
frequency or the number of samples per observation window, by means of the offset
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parameter Tos. This is illustrated in Fig.2.2(b) where Tos = 6 making the synchronised
indexes for all selectivity parameters to mostly cover the range between 0, indicating
no coupling, and an approximate 1 for perfect coupling.

Note that too large of an offset may eventually make the synchronisation index
larger than 1, hence, a limiter, which can be easily implemented in hardware by an
overflow detector, should be used together with (2.2).
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Fig. 2.2 Synchronisation indexes obtained through the DDA algorithm for different
selectivity parameters, using a sine wave and a swept-frequency cosine as input signals.
(a) Tos = 0; (b) Tos = 6.
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For comparison purposes, Fig. 2.3 shows the PLV index (dashed line) for the same
experiment as in Fig. 2.2 together with the index S(4)

dda with no offset. Both approaches
give comparable results, with the DDA producing a piecewise linear approximation of
the main lobe of the PLV index and eliminating the smaller side lobes. This is not
surprising as the PLV index can be approximated as PLV ≃ 1 + α

∑N−1
k=0 |△φk|/N

for small △φ values, where α is a fitting parameter (see equation 1.19 ). Given the
relationship between phases and time delays expressed in (2.1), a clear connection
between the phase locking value and the Delay Difference Analysis can be established.

Appendix B.1, shows the MATLAB code used in the design and construction of
the DDA algorithm.
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Fig. 2.3 Results from DDA and Hilbert transform approaches for the same experiment
in Fig. 2.2. The inset shows a zoom of the shaded area.
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2.2 Parameters setting

2.2.1 Quantisation

In this section, we try to explain the effects of quantisation on the output of the
algorithm. The test was the same as in Fig. 2.2(a) however, quantising the two input
signals 1 and 2, from 6 to 13-b of resolution. The characteristics of the test can be
seen below. From the results shown in Fig. 2.4, we can note that 6, 7 and 8-b of
resolution cause a noisy output, significantly more for r = 0 to r = 2, whereas from
9-b onwards the output becomes recognisably consistent with Fig. 2.2(a). In this case,
we can see that after 9-b of resolution at a fixed sampling frequency of 1024 S/s the
performance of the algorithm no longer increases. Nevertheless, to allow for multiple
sampling frequencies a resolution of 10-b is recommended. Mathematically speaking,
the number of bits needed is relative to the sampling frequency and signal frequency
such that 2n > 2 · samplingfrequency

lowestsignalfrequency
.

2.2.2 Sample distribution

The sample distribution is another variable which should be analysed for this algorithm,
as we consider the phase errors in terms of samples. Fig. 2.5, shows the sample
distributions for 3 different sampling rates 1024 S/s, 512 S/s and 256 S/s varied over a
frequency range of 1 to 50Hz.

Firstly, in Fig. 2.5, we can note that the general sample distribution at fixed
sampling rates tend towards a non-linear exponential distribution at lower frequencies.
This means that during lower frequencies the accumulated errors will present much
higher values than that of the higher frequencies for a set window length. Nevertheless,
if we consider relatively low sampling frequencies such as seen in Fig. 2.5. We can
deduce that an approximate linear distribution can be extracted for frequencies ranging
from 5Hz upwards. Since the number of samples is defined as fs

f
as f increases the

number of samples gets smaller.

It is, however, important to point out that samples at high values of f will present
themselves as the same value due to the rounding of samples in the distribution. As
an example, at 1024 S/s and 48Hz the number of samples is 1024

48 = 21.3 and at 49Hz
1024
49 = 20.89, therefore 48Hz will obtain 21 samples after rounding and 49Hz will also

obtain 21 samples.
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Fig. 2.4 Example of how quantisation of the input signals can effect the results obtained
by the algorithm
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Fig. 2.5 Example of the non-linearity of a sample distribution at different sampling
frequencies

Therefore the most accurate results will occur using a 512 or 1024 bit sampling
rate from 5Hz upwards towards 30Hz. That said the sampling frequency can always
vary based on the specific frequency band of interest. As an example, if we would like
to monitor signals in the 80Hz range we could always increase the sampling frequency
above 1024 as the distribution will be approximately linear at that frequency given the
higher sampling rate. If we want to monitor the 10Hz to 20 Hz range it makes more
sense to use a lower sampling frequency of 256 S/s, where the linearity is highest and
the effects of quantisation are not prominent.

2.2.3 Window length

The window length is a common factor which can greatly vary the outcome of the results
as well as the detection of specific biomarkers. In Fig. 2.6, the effect of various window
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lengths on the DDA algorithm can be seen, once again using the same experiment as
in Fig. 2.2(a). The variables for the test can be seen below.

1. sampling frequency fixed 1024

2. window size variable 32 · 2i, where i is varied from 1 to 10

3. Signal 1: sine frequency fixed 20Hz

4. Signal 2: chirp frequency 10Hz-30Hz

The results show that for very small time windows, the output of the DDA suffers.
This occurs since at the lowest frequency of 10Hz and the fixed sampling rate of 1024,
a single period of the waveform is composed of approximately 124 samples. However,
the window length is only 64 samples, this indicates that DDA is unable to collect a
sufficient amount of data for accurate results, instead, creating noise perturbations. At
the other extreme, when the window length is very long such as 32 seconds, the DDA
over collects samples meaning the central 20Hz of the fixed sine wave never coincides
solely with the 20Hz of the chirp signal. Instead, the error accumulations from the
chirp consist of more widespread frequencies. Therefore, the DDA never reaches one
and has broader angles. In the case of the medium length windows of approximately
0.5 to 1 second, we see an optimal performance. As the window is sufficiently short,
that the two tone frequencies can exist solely together within 1 window and is long
enough to collect a reliable amount of errors.

It is important to point out that the signals captured during EEG, posses what is
known as the 3 N’s, non-stationary, non-linear and noisy. This can make identification
of specific markers difficult using linear time-based approaches. Nevertheless, it has
been observed that well filtered EEG signals posses quasi-stationary attributes for
periods lasting up to 1 second.

Therefore, with these two factors in mind, it remains clear that the optimal window
length should be the same as or similar to that of the sampling frequency of the device.
Once again it is still possible to vary the sampling frequency as long as the window
length adjusts accordingly.

2.3 Verification

The algorithm has been verified and validated using neural recording data available in
the European Epilepsy database (http://epilepsy-database.eu/) [57]. This database
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Fig. 2.6 Example of the effects of different window sizes on the algorithm
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Table 2.1 Records used in the verification of the phase synchronisation processor

Id Patient Dominant pattern Electrodes a Sync. Pairs Sample Rate Seizures Hours
#1 male 22y rhythmic sharp waves 1/114/0/0 SCL7 - {SCL8, SCR9, TPL1} 1024 Hz 26 113.20
#2 female 29y rhythmic beta waves 0/121/0/0 HAR1 - {HPR12, HPR1, HPR2} 1024 Hz 9 183.10
#3 female 16y low amplitude fast activity 21/0/12/48 IHB2 - {IHA1, IHA2, GB6} 256 Hz 9 229.30
#4 male 18y repetitive spiking 21/20/46/32 BLB1 - {BLB3, TRB1, FP1} 1024 Hz 13 245.20
#5 male 35y rhythmic beta waves 21/10/46/0 TBLB1 - {TBLB3, TBRB1, FP1} 256 Hz 26 180.00
#6 female 53y rhythmic beta waves 19/25/16/0 HL2 - {HL1, HL4, TBB1} 256-512 Hz 6 164.40
#7 male 5y low amplitude fast activity 21/20/50/0 TBA1 - {TBA2, HRA4, HRA5} 1024 Hz 22 170.60
#8 male 15y rhythmic beta waves 51/72/52/58 GG3 - {TL2, GG4, GH2} 256 Hz 19 199.8
#9 female 32y rhythmic beta waves 36/34/35/37 HL4 - {HL2, HL3, HL5} 1024 Hz 9 162.6
#10 female 11y rhythmic alpha waves 60/57/59/4 HR12 - {HR9, HR11, TBA4} 1024 Hz 14 155.0

a (S/D/M/G) for surface, depth, strip and grid electrodes.

contains recordings of multiple patients including 225 scalp recordings, 50 intracranial
recordings and over 100 annotated sets using both intracranial and surface electrodes
which were organised into a standard 10-20 format.

In this work, simulation experiments including the DDA and the PLV with 10
recording sets included in the European Epilepsy database have been conducted.
In total, 1803.2 hours of recordings and 61 annotated seizures have been analysed.
Simulations were carried out in Matlab using mathematical models of the DDA and
the PLV processors. In the DDA case, the model closely follows the block diagram
of Fig. 3.1 for N = 1024, r = 1, M = 10 and Q = 2 (see chapter 3, subsection 3.2.1
for definition of M and Q) and the Matlab code can be seen in Appendix B.1 while,
in the PLV case, the model uses the architecture presented in [50]. In both cases, an
input signal resolution of 10-b has been assumed.

Table 2.1 shows the records used for the verification of the proposed phase syn-
chronisation calculation approach. For each patient the table shows the electrode
configuration (both EEG and invasive), sampling rate, number of seizures, recording
duration and dominant seizure pattern. The EEG data were acquired using a Neurofile
NT digital video EEG system, while the invasive measurements were obtained with
depth, strip or grid electrodes from Ad-Tech. For each patient, three different phase
synchronisation indexes, involving four intracranial electrodes, were calculated. In all
cases, the three contact pairs have one electrode in common, located in the proximity
of the epileptic focus, while the other three electrodes, not necessarily from the same
array, were used as reference. These electrodes are identified in Table 2.1 as #F-{#R1,
#R2, #R3}, where #F denotes the electrode at the seizure focus and #Rx denote
the references. Prior to the calculation of the synchronisation indexes, records were
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Fig. 2.7 (a) Simulated DDA algorithm index and simulated PLV value from recordings
at positions M5 and M8 of a 1× 8 EcoG strip implanted in patient FR_1084. Signals
were pre-filtered in the β-band. The input rate of the chip was adjusted to the sample
rate of the recordings, i.e., 1024S/s. (b) Correlation between both plots.

band-pass filtered in the frequency bands where higher activities were observed. This
gave the selection of β-band for all patients but patient #4, for which the α-band was
most insightful. In the case of patient #10, the β- and θ bands offered similar results.

2.3.1 DDA-PLV correlation

For illustration purposes, 2 examples of the correlation results between the DDA SI
index and the PLV can be seen in Figs. 2.7 and 2.8, respectively, the synchronisation
results obtained from two recording blocks measured in patient FR_1084 (48 year old
female). In both blocks (6h long) three low amplitude fast activity (lafa) seizures were
annotated (red dotted lines). For each figure, the plots on the left show the simulated
synchronisation index (labeled as "SI") and the calculated PLV value (labeled as "SIM
PLV"), while the plots on the right represent the correlation between both measures
calculated at the time instants in which the experimental synchronisation indexes were
recorded. The DDA algorithm detects all major changes in synchrony and indeed
follows a similar trend as the PLV algorithm. This is verified by the high correlation
results of approximately 90% on average.

Figs. 2.7 and 2.8 also show that seizures manifest with a remarkable increase in
the synchronisation measures. This feature is in fact on the basis of the detection
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Fig. 2.8 (a) Similar as for Fig. 2.7 using the electrodes GA2 and GA5 of a 8 × 8
subdural grid implanted in patient FR_1084. (b) Correlation between both plots.

mechanism presented in [52] and [50] in which seizures are detected by applying
thresholds on the PLV indicators calculated between pairs of channels.

2.3.2 SNR

The simplicity of the DDA circuit comes at the expense of higher susceptibility to
noise on the recorded signals as compared to the PLV approach. This is illustrated in
Fig. 2.9 which shows the correlation between the ideal PLV values obtained with two
noise-free 60 minutes long neural signals, and the synchronisation indexes, derived from
the DDA approach, when the same signals are contaminated with white Gaussian noise.
The correlation is plotted against the spot Signal-to-Noise Ratio (SNR), assuming 1Hz
bandwidth, at the maximum frequency of the β band, i.e. 30Hz. PS estimations are
derived on that frequency band as well. Spot SNRs in the range between 10dB and
70dB at 5dB steps have been considered and, for each SNR, a Montecarlo analysis
(100 instances) has been carried out. The error bars show both the mean value and
the ±3σ of the synchronisation indexes. It is worth observing that for spot SNRs
above 30dB the average correlation between the DDA approach and the noise-free
PLV technique is larger than 90%. Also note that for large SNRs, i.e. when the
noise contamination is negligible, the correlation is in the order of 95%. This "intrinsic"
deviation can be attributed to the structural differences between the DDA and the
PLV algorithms. Fig. 2.9 also shows the correlation between the noise-free PLV
values and those obtained with a 16-tap Hilbert transformer with passband ripple of
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Fig. 2.9 Correlation of the DDA synchronisation index and the PLV processor in [52]
with an ideal noise-free PLV calculation when the input signals are contaminated by
Gaussian noise.

0.01dB when input signals are corrupted by noise, following the implementation in [52].
Similar as for the DDA case, performance worsens for SNRs below 20dB.

To assess the impact of the noise behaviour shown in Fig. 2.9, it must be emphasised
that surface and intracranial EEG signals exhibit 1/fx-like power spectra at low
frequencies [58, 59]. This makes low frequency bands more tolerant to the aggregated
noise contributed by biological tissue, electrodes and recording front-ends [60, 61].
Indeed, it has been shown that even with modest amplifier noise specifications, without
suppressing flicker contributions, SNRs larger than 30dB can be obtained at low
frequencies [62]. This suggests that PS calculations can be relevant as a neurological
biomarker in the β and lower frequency bands although the reliability decreases for the
high-γ band and higher frequencies. This observation is indeed confirmed in Section
2.3.1, where it is also demonstrated that DDA deviations compared to PLV can be
tolerated without sensibly degrading the quality of the results while the DDA approach
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offers light and modular hardware implementations, easily scalable to large neural
recording arrays.

2.3.3 Sensitivity

In order to estimate the sensitivity (number of seizures which are correctly detected
divided by the total number of real positive cases) of the DDA and the PLV approaches
in terms of the False Positive Rate, FPR (number of wrong positive detections divided
by the total number of actual negative events), different thresholds per contact pair and
patient have been applied over the corresponding synchronisation indexes. Thresholds
for the DDA and the PLV algorithms do not necessarily coincide even if applied on the
same electrode pair. Thresholds are obtained by scanning the synchronisation results
and identifying the index value leading to a specific FPR performance. To identify each
of the 5 thresholds for each individual contact pair and patient the following procedure
is enforced. Firstly, by identifying the total length of the resulting SI and PLV values
(the length is in hours and does not include the pre, post and ictal periods). Secondly,
by multiplying the total hours by the desired FPR we can extract the exact amount of
false positives allowed during the resulting SI and PLV values. Since we are looking
for peaks (false positives), we then search the SI and PLV values for the top x peaks
in descending order. From there, using the last peak from the x peaks selected we set
a threshold. The Matlab code for the thresholding can be seen in Appendix B.2.

In our experiment, a detection is produced whenever one out of three synchronisation
indexes (or PLV values) rises above their corresponding thresholds. Hence, decisions
are taken based on the outcomes from three contact pairs, not just one. Additionally,
the following considerations have been adopted [63]. An observation window of 15 min
before the annotated seizure has been defined for the detection of true positives. Hence,
if a crossing is detected any time within this window, which can be associated to a
preictal state, a true seizure detection is accounted for. Further, in order to exclude
effects from postictal states, recording periods within 30min after the onset of a seizure
were discarded for threshold calculations. If two successive seizures are separated
by less than 45min, the preictal window before the onset of the following seizure is
preserved in the analysis. Fig. 2.11 illustrates a true positive detection identified in
patient #7. In this case, the synchronisation indexes calculated with DDA from the
three contact pairs pass their respective thresholds during the preictal period.
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Fig. 2.10, shows an example of the full SI index results obtained from patient
#7. The 5 horizontal red lines indicate the different thresholds for each FPR and the
vertical red boxes indicate the pre/post and ictal periods. All though the results can
be somewhat noisy, it is apparent that there do exist very Strong prominent peaks in
synchronisation.

Fig. 2.12 shows the sensitivity variation with respect to FPR, averaged over all
the 10 patients in Table 2.1, according to the one out of three detection rule described
before. Five different FPR values, in units of number of events per hour, have been
considered. Both DDA and PLV detectors were analysed. Error bars indicate the
95% confidence interval limits per method and FPR value. The average detection
threshold variation along the FPR range (from 0.15 to 0.75 FP/hr) was 8.8% for DDA
and 14.5% for PLV . Table 2.2, shows all of the true positives, false negatives and
sensitivity results which where used for the sensitivity analysis.

As can be seen in Fig. 2.12, there are little differences between the two approaches
(only 4.6% sensitivity variation averaged over all FPR), with DDA slightly outperform-
ing PLV detection, excepting at 0.45 FP/hr for which both methods obtain similar
results. As the constraint is relaxed in terms of FPR, it is observed that the sensitivity
rises and the confidence levels get tighter. In fact, at 0.75 FP/hr, DDA achieves an
84% sensitivity whilst its upper confidence level reaches as much as 92%. These results
are comparable to those in [50].

Although results can be hardly generalised, it was observed in the analysis that
certain seizure patterns tend to offer better sensitivities than others. In particular,
those patients showing low-amplitude, fast activity or rhythmic β waves, obtained
some 5% better sensitivity in β band. This was observed both for DDA and PLV PS
detection.



48 Delay Difference Analysis for Phase Synchronisation Computation

Fig.2.10
patient

#
7,SIresults

from
sensitivity

test.
T

he
horizontalred

lines
represent

the
threshold

levels
and

the
vertical

red
boxes

represent
the

pre/post
and

ictalperiods.



2.3 Verification 49

Table 2.2 DDA and PLV results showing the number of true positives (TP), false
negatives (FN) and sensitivity for each of the 10 patients shown above. The FPR rate
ranges from 0.15 through to 0.75

Patient Metric DDA PLV
FPR 0.15 0.3 0.45 0.6 0.75 0.15 0.3 0.45 0.6 0.75
TP 4 5 5 6 6 4 4 5 5 5

#1 FN 3 2 2 1 1 3 3 2 2 2
Sensitivity 0.57 0.71 0.71 0.86 0.86 0.57 0.57 0.71 0.71 0.71
TP 7 8 9 9 10 9 10 10 10 10

#2 FN 3 2 1 1 0 1 0 0 0 0
Sensitivity 0.70 0.80 0.90 0.90 1.00 0.90 1.00 1.00 1.00 1.00
TP 2 3 3 3 3 3 3 3 3 3

#3 FN 1 0 0 0 0 0 0 0 0 0
Sensitivity 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TP 2 2 2 2 2 2 2 2 2 2

#4 FN 1 1 1 1 1 1 1 1 1 1
Sensitivity 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
TP 1 1 1 1 1 1 1 1 1 1

#5 FN 0 0 0 0 0 0 0 0 0 0
Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TP 4 4 4 4 4 3 3 3 3 3

#6 FN 0 0 0 0 0 1 1 1 1 1
Sensitivity 1.00 1.00 1.00 1.00 1.00 0.75 0.75 0.75 0.75 0.75
TP 1 6 6 7 10 0 3 7 8 10

#7 FN 11 6 6 5 2 12 9 5 4 2
Sensitivity 0.08 0.50 0.50 0.58 0.83 0.00 0.25 0.58 0.67 0.83
TP 3 3 3 3 3 2 3 3 3 3

#8 FN 4 4 4 4 4 5 4 4 4 4
Sensitivity 0.43 0.43 0.43 0.43 0.43 0.29 0.43 0.43 0.43 0.43
TP 3 3 3 3 4 1 3 3 3 4

#9 FN 1 1 1 1 0 3 1 1 1 0
Sensitivity 0.75 0.75 0.75 0.75 1.00 0.25 0.75 0.75 0.75 1.00
TP 5 5 6 7 7 1 6 7 7 7

#10 FN 5 5 4 3 3 9 4 3 3 3
Sensitivity 0.50 0.50 0.60 0.70 0.70 0.10 0.60 0.70 0.70 0.70
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Fig. 2.11 Zoom synchronisation indexes for patient #7 during a clinically annotated
seizure and pre/post ictal padding at a false positive rate of 0.15 per hour. (a) Pair
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95% confidence analysis obtained via 1803.2 hours of recordings and 61 annotated
seizures.



2.4 Conclusions 51

2.4 Conclusions

In this chapter, a hardware friendly algorithm for the detection of phase synchronisation
has been introduced. The algorithm achieves a very high absolute sensitivity of
approximately 80% for an FPR of 0.75 FP/h. Indeed, it produces an absolute sensitivity
of close to 90% at 0.75 FP/h at the upper bound of the 95% confidence levels. The
effect of noise has also been assesed which shows for SNR values greater than 30dB
the algorithm performs almost perfectly with over 90% correlation to an ideal PLV.
The correlation between other proven methods of phase detection has been assessed
giving on average a 90% correlation to the PLV.





Chapter 3

Synchronisation Processor
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The contributions in this chapter includes the design, implementation and verifica-
tion of a sub-threshold phase synchronisation processor capable of calculating ‘phase
synchronisation between two neural signals. The processors design and verification
process was firstly implemented in an FPGA environment and RTL compiler, later the
design was implemented manually in the CADENCE layout environment.

All of the design and verification processes were carried out by the author of this
thesis.

3.1 Overview

The synchronisation processor is based on the measurement of time periods between
two consecutive minima as described in section 2. The simplicity of the approach
allows for the use of elementary digital blocks, such as registers, counters or adders. In
fact, the processor, fabricated in a 0.18µm CMOS process, only occupies 0.05mm2 and
consumes 15nW from a 0.5V supply voltage at a signal input rate of 1024S/s. These
low-area and low-power features make the proposed processor a valuable computing
element in closed-loop neural prosthesis for the treatment of neural disorders, such as
epilepsy, or for measuring functional connectivity maps between different recording
sites in the brain.

The ASIC uses circuit elements from a full-custom digital library for 0.5V power
supply operation, based on low-leakage transistors in weak inversion. The library
blocks were generally designed using conventional CMOS logic, with device dimensions
close to minimum size, as they were found to offer an acceptable trade-off between
power dissipation and operating frequency [64]. Indeed, the library was exhaustively
verified and characterised under PVT deviations assuming a maximum clock frequency
of 25kHz, i.e., about twice the operation frequency needed by the I/O ports of the
ASIC. In spite of the reduced noise margin and the slow switching transitions, post-
layout simulations of the chip showed complete functionality with no data loss for 0.5V
operation.

The implemented ASIC is competitive when compared to currently available FDA
approved devices and other state-of-the-art devices such as described in chapter 1.6.
The small size and power consumption allows for increased scalability, allowing for
more EEG data streams to be incorporated, leading to an increase in sensitivity
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when compared to more complex algorithmic structures such as the HT and PLV
combination.

Based on the algorithmic design from chapter 2, An overview of the system can be
seen in Fig. 3.1. The design consists of 5 main layers. Firstly the minimum detection
layer, which is used for the identification of the quasi-periodic local minima as denoted
by tn from equation 2.1, in each given neural signal denoted s1 and s2 for neural signal
1 and neural signal 2, respectively. The Timestamp layer is the practical identification
of the phase/frequency increase between two consecutive local minima within a given
signal i.e T s

n from equation 2.1. The third and most complex layer is the calculation
layer, which is responsible for calculating the difference in samples between consecutive
minima in the two signals, such that we get the relative error △Tn = |T 1

i − T 2
j |. The

calculation block is also responsible for the accumulation of these errors such that
Sdda(k) = ∑K−1

n=0 △Tn. The filtering layer is used for the smoothing of Sdda(k), leading
to more interoperable data and easier to set thresholds at the output of the device.
The final, detect layer, is a test platform for setting epileptic alarm thresholds.

3.2 Design

The following section describes each of the 5 layers in-depth including examples.
Appendix C.1, provides a pseudo code of the hardware flow for the design.

3.2.1 Minimum detection

From Fig. 3.1, The minimum detection architecture consists of two identical subsystems,
one for neural data stream S1 and the second for neural data stream S2.

In order to reduce hardware utilisation and minimise power consumption, the
minimum detection scheme introduces a simple yet robust toggling architecture.

To begin, each subsystem is comprised of a 10-b most significant bit comparator
which, compares two samples, S(i) and S(i− 1), corresponding to the signals current
sample and previous sample respectively. Where S(i− 1) is delayed 1 clock cycle via a
10-b register. If S(i) is smaller than S(i− 1), then, a logic 0 is produced such that the
result from the comparison is, C = 0. Contrarily, if the opposite is true then a logic 1
is produced such that C = 1. In the final case that S(i) = S(i− 1), then C = C, i.e
there is no change in the output. Nevertheless, the final scenario is unlikely to occur
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Fig. 3.1 Synchronisation processor: Block diagram of the main blocks used for the
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incorporates a non complex architecture structure
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if the sampling rate of the system is sparse enough. To reduce hardware utilisation
and power consumption, the MSB comparator first compares the 5 most significant
bits of S(i) and S(i− 1). If a solution is found then the result C is produced else the
comparator moves on to the lower 5 bits for comparison. In general C is given as:

C =


0 for S(i) < S(i− 1)
1 for S(i) > S(i− 1)
C for S(i) = S(i− 1)

The value of C gives an indication as to whether, at the current sample in time,
the signal is traversing in a downwards fashion or in an upwards fashion. Additionally,
to achieve a more robust system, a 10-b M shift left register was implemented which
records the signals history over the past 10 values of C. The result from this register
O, is outputted every clock cycle with the newly updated word.

In the case that the shift left registers output is O = 0000011111, it becomes evident
that at some point during the signals history, it moved in a downward trend followed
by an upward trend. This indicates that at points O(6) = 0 and O(5) = 1, there was a
local minimum tn. Fig. 3.2, shows this concept.

This simple architecture is hardware friendly, nevertheless, as described in section
2 subsection 2.3.2 the noisy nature of neural data and the possibility of random
fluctuations can produce false positives in detection out the output.

Therefore, to increase robustness of the minimum detection system, bubble detection
logic, as seen in Fig 3.2, is used. This small piece of logic relaxes the strict rule of
O, by allowing for one outlier (Q) either side of the values O(6) = 0 and O(5) = 1 ,
such that a detection M1 = 1, of a local minimum is confirmed if any single value in
O(9 : 6) = 1 or any single value in O(4 : 0) = 0. However, the values O(6) = 0 and
O(5) = 1 must be true in any of the cases.

3.2.2 Time stamp

The time stamp layer relies heavily on a single 10-b up counter. Whose, main purpose
is to count upwards with time between two consecutive minima within a signal, hence
discovering T s

n. This gives a good understanding of the instantaneous frequency of the
signal at that given point in time.
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Fig. 3.2 Minima detection logic (left) and example of bubble detector(right). The
example shows an example of a real EEG data stream pre filtered into the beta band.
Here we can note that the first minimum in the signal is detected as O = 0000011111.
As for the second minimum it is also detected due to the relaxed outlier condition such
that O = 0100011111
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In the case that a minimum is detected, M1 activates a 10-b array of reading logic
gates which are implemented as standard 2 input AND gates and the current value in
the up counter Co(9 : 0) is passed into a 10-b latch and stored. simultaneously, since a
new minimum has been detected the counter is reset and it once again begins its count
towards the next minimum in the signal.

3.2.3 Calculation

The architecture of the calculation layer starts with a signed 10-b subtracter with
one-bit overflow. This is used to calculate the difference △Tn = |T 1

i − T 2
j |, between

the two signals detected minima. The subtracter runs continuously subtracting values
every cycle. However, since the algorithm simplifies the calculations to a minima
detection basis only, rather than a sample by sample basis, a small piece of extra logic
is needed.

This logic comes in the form of two 1 bit latches and a logic AND gate. Once T 1
n

has been detected in S1 the logic value of M1 gets latched. This indicates that S1, is
ready for the calculation stage, Similarly, M2, is latched if T 2

n is detected in S2.

If M1 = M2 = 1, then a signal is sent to read logic block situated at the output of
the previous latching stage. This allows the values from both of the counter modules
to be subtracted. Simultaneously the small piece of logic resets the latches holding M1
and M2 such that the output is now of logic state 0. In terms of the read logic if they
are inactive then the output of the read logic is a constant logic 0, for all 10-b.

Therefore, although the subtracter is in continuous operation, when no relevant
data is ready for calculation it will simply subtract 0 − 0. Since non-switching is
necessary for this specific case, the dynamic power consumption of the subtracter
during non-crucial data is almost null and only consumes static power.

The initial subtraction can create two different outputs at Sub(9 : 0), firstly, if
L1(9 : 0) > L2(9 : 0), then the result will be a positive unsigned 10-b result. However,
in the reverse case that L(9 : 0) < L2(9 : 0), a 2’s complement negative result is
produced. In this case, the MSB (the eleventh bit of the subtracter(S)), is set to 1
indicating the result is negative. Since the algorithm desires |△Tn|, the 2’s complement
result needs converting back to standard unsigned notation. To achieve this the design
incorporates an array of 10 bit XOR gates which perform the logic conversion to 1’s
complement and a full adder adds 1 to Sub(9 : 0) producing Abs(9 : 0).
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The next stage requires the accumulation of errors for the value of Sdda(k), This is
achieved using a 10-b add and accumulate block, where the window size K, consists
of a variable up counter with a maximum size of 2048 samples. When the window
counter is less than its maximum value. Adderout(9 : 0), consistently calculates
Abs(9 : 0) + feed(9 : 0), However, once again, since Abs(9 : 0), is only non zero
when relevant data is available the resulting sum is 0 + feed(9 : 0), which requires no
switching.

Once the counter reaches its maximum value. A pulse is generated which resets
the feedback register in the accumulator creating a zero-sum, at which point read
logic at the output of the accumulator captures Sdda(k) = ϕ(i) and is passed to
the post-processing stage for smoothing. This happens every K samples and avoids
irrelevant data being passed into the next stage.

3.2.4 Filter

Due to fast fluctuations of ϕ(i) at the processors output, the detection of high and low
values of ϕ(i), becomes troublesome. To counteract this problem an unconventional
exponential filter was adopted, which is based on an autoregressive IIR filter. Mainly
used for time series, the filter acts as a low pass filter and provides a substantial
amount smoothing with very little cost in terms of hardware. the basic equation for
the exponential filter is given by:

y(i) = α · ϕ(i) + (1− α) · y(i− 1) (3.1)

Where, y(i), is the new filtered value, ϕ(i), is the new incoming value (in this case
new synchronisation value Sdda(k)), y(i− 1), is the previously filtered value, and α, is
a weighting for the function, also known as a smoothing factor.

At this point, it is clear to see that this function produces an approximation of what
the next value in the sequence should be, based solely on the current synchronisation
value and the previously filtered value. This is why only currently relevant data can
be passed into the filter, otherwise, its predictions will be erratic.

The smoothing factor, can be set such that 0 ≤ α ≤ 1, where a α = 1 provides no
smoothing, hence y(i) = ϕ(i), and α = 0, provides maximum smoothing.
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At first glance, the terms α · ϕ(i) and (1 − α) · y(i − 1), may seem complicated
leading to floating point multiplication. However, re-writing the formula we get the
equation:

y(i) = y(i− 1)− y(i− 1) · α + ϕ(i)·α (3.2)

By choosing, α, such that it is always a power of 2, we can replace α, with 2pos

such that:

y(i) = y(i− 1)− y(i− 1) · 2pos + ϕ(i)·2pos (3.3)

Where pos, is an integer value. Since a bit shift right, results in a division, a
drastic hardware reduction can be made. This approach limits our range of smoothing,
nevertheless, for the generalised purpose of smoothing ϕ(i), it is sufficient. As an
example, if pos is set to 1, then that would correspond to:

y(i) = y(i− 1)− y(i− 1)
2 + ϕ(i)

2 (3.4)

It is also important to note that since the filter relies heavily on its previous value,
if y(i), is initially set to one, a certain time frame must pass before stabilisation.

Fig.3.3, shows the basic architecture of this block. Firstly, a 10-b shift right register,
which is externally adjustable to provide the smoothing factor and a 10-b full subtracter
are used to calculate y(i− 1)− y(i− 1) · 2pos. Secondly, a 10-b shift right register is
used to calculate ϕ(i)·α, which is added to y(i− 1)− y(i− 1) · α, via a full adder to
produce the final value of y(i).
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Fig. 3.3 Block diagram of the implemented exponential filter with variable smoothing
capabilities (left). Filters magnitude response (right)

3.2.5 Detect

The detection block was designed for the detection of large changes in synchronisation.
Namely, this would prove useful for such neurological disorders as epilepsy. In which
large changes in synchronisation occur during different periods before, during and after
the event. it is important, to stress the fact that since Sdda(k), is now effectively equal
to ∑K−1

n=0 △Tn, then a large drop in synchronisation is equivalent to better synchrony,
whilst the opposite is true increases in Sdda(k). Therefore if ϕ(i) < Thh, then an alarm
is triggered indicating there has been a significant increase in synchrony, contrarily if ϕ(i)
> Thl, an active high alarm is triggered indicating a significant reduction in synchrony.
This is performed by 2 10 bit comparators. Nonetheless, due to the inherent noisy
output, 2 small counters of 4 bits are also placed in the detect block. These counters
place the constraint that Thl and Thh, must be active for a set number of consecutive
outputs. This diminishes the possibility of false positive detections. This block relies
heavily on the previous filtering stage such that insufficient smoothing can increase the
number of false detections. Thl, Thh and the set number of consecutive outputs are
all injected into the device from an outside source and are not set dynamically within.
This gives more control for testing.
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3.3 Methods

The hardware implementation of the test was built and verified at several keys stages
via various platforms.

3.3.1 Design flow

FPGA implementation and verification

The digital design was firstly realised in the VIVADO design environment using a VHDL.
After successful simulation of the design within the environment, it was later synthesised
and downloaded onto a XILINX ARTIX 7 AC701xc7a200tfbg676-2 evaluation board.
For ease of testing, a hardware Co-Simulation of the DDA algorithm was ran through
the MATLAB DSP SIMULINK environment along with a MATLAB based calculation
of the HT and PLV index.

Fig.3.7, shows an overview of the top-level RTL compiled schematic from the VHDL
code. This consists of 4 main blocks. Firstly, the synchronisation processor as described
above (a view of the synchronisation processor blocks can be seen in Fig. 3.8).

Secondly, the SPI interface, which used to convert serial input streams to parallel
data for the processor. The SPI has 3 main inputs ’datain1’, ’datain2’ and ’loadpa-
rameters’. The first two inputs convert neural signals 1 and 2, from a 1-b binary serial
stream into a 10-b parallel unsigned binary sample. Since the processor requires 2x10-b
unsigned parallel data at the input (1x10-b for each signal), the conversion of ’datain1’
and ’datain2’ are made via a 2x10 shift registers which operates 10 times faster than
the core clock. Due to the 10 times increase in speed for the datain SPI interface the
’datain1’ and ’datain2’ samples from the SPI are latched at the output until 1 clock
cycle of the main processor is complete. The final input ’loadparameters’, allows for
all of the static variables of ’K’, ’Thh’, ’Thl’, ’2pos’ and others, to be uploaded via a
single binary stream. This allows us to reduce the total number of PADS used in the
ASIC implementation, hence, reducing overall area consumption of the final design.

The third block, ’Check parameters’, was used as a test strategy in order to verify
that all of the uploaded variables were correct. This, block simply re-downloads the
data sent onto the chip for verification.
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Lastly, the PSI interface is the download link for the data generated by the
synchronisation processor. Similar to the SPI interface this block is used to reduce
area consumption of the device. Nevertheless, this block works in the opposite fashion
converting parallel data streams into a single serial data stream. Assuming a clock
frequency of approximatley 1024Hz operating frequency for the main processor this
output PSI can run at the standard processor frequency.

Fig. 3.4, shows an example of how ’loadparameters’ and the data stream ’datain1’ are
uploaded in a serial fashion and ultimately re-downloaded and checked via ’Parameter
check’ and ’checkdata1’.

Fig. 3.5, shows the minima detected by the system for signals S1 and S2. Here we
can see that there exists a delay between the actual minimum and the detection pulse
(the delay is indicated by the blue box). This delay exists because we need to gather
10 samples of history before an accurate decision can be made. Nevertheless, this delay
in no way disturbs the systems ability to calculate phase as the exact same delay is
present in both signals. Furthermore, we can see that no minima were detected during
the section of signal encompassed in the red boxes. This is due to the outlier logic
described previously which correctly dismisses these very small dips for minima.

Fig. 3.6, shows an example of the output ϕ(i) using a filtering of α = 1 and two
detection thresholds Thh = 170 and Thl = 590. During the simulation 1 drop in
synchrony was detected (i.e when ϕ(i) > Thl ’dropdetected’ = 1) and one increase in
synchrony (i.e when ϕ(i) < Thh ’risedetected’ = 1) (both of which are highlighted by
blue boxes). There do exist false positive at the beginning of the output due to the
time needed for the filter to build reliable data.

RTL compiler verification

In the second phase of the design, the VHDL code was implemented using the RTL
compiler from CADENCE (An example of the RTL compiler script used to build the
RTL schematic can be seen in Appendix B.4. This compiler maps all of the logic gates
from the synthesised FPGA design to a specific technology in this case 0.18µm. The
RTL compiler delivers a complete schematic of the design at the register level. Once
obtained the schematic is then uploaded to the CADENCE environment and simulated
for error detection. If the design produces errors, certain attributes and optimisations
can be enforced in the RTL compiler and re-simulated as per needed.
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Fig. 3.9 Layout view of the 2-channel 0.5V synchronisation processor from CADENCE

CADENCE layout

Fig 3.9, shows the circuit layout from the CADENCE design environment. Due to
a sub-threshold operating voltage the design was implemented via a manual layout
approach. The design was fully tested using extracted layouts including parasitic
components.
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3.4 Discussion

3.4.1 Indexing

The synchronisation index from equation 2.2 described in section 2, is a construct
related to the comparative studies of the algorithm and is not actually needed to
produce results of synchrony for a patient. In the previous sections the index was used
mainly to emphasise the fact that the results obtained follow a similar pattern to that
of more complex algorithms. Actually, the SI index is a form of scaling and does not
change the results at the output. By omitting this from the hardware implementation.
A drastic reduction in hardware can be achieved.

3.4.2 Minimum detection scheme

This overall detection scheme was chosen for several specific reasons, Firstly, due to
the quasi-periodic nature and variations in the neural data, it is not guaranteed that a
local minimum will have specific identifiers such as a zero crossing point. This means
that it is imperative to follow the history of the signal as it moves forward in time.

Secondly, the toggling system was chosen to reduce hardware utilisation. In many
systems which do not use a zero crossing identifier. There is a need to record the
previous x samples and x future samples of the signal. This can lead to large memory
allocations. The use of the outlier logic omits these memories.

The outlier logic in this design was set to a static 1 each side of the switching point.
This was set to 1 as observations of many band limited signals there exist only small
perturbations.

3.4.3 Filtering

Standard low pass filtering and smoothing such as the moving average filter use the
averaging of multiple points in a signal to derive a single output. Defined as:

y(i) = 1
M

M−1∑
j=0

ϕ[i+ j]
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Where M, represents the total number of points to average, i.e, the window size for
the filter. In single-sided averaging, when j = 0, the moving average filter sufferers
from lag as a new result is only produced every M samples. In hardware, this would be
implemented with an accumulator for the addition of samples and a shift right register
if M is set to a power of 2. Nevertheless, for sensitive systems such as the detection of
epilepsy, new and reliable data is needed fast to increase the reliability of detection.

Another alternative is that of the two sided moving average window, set such that
j = −(M−1)

2 to j = (M−1)
2 . This method reduces latencies, however increases hardware

resources due to temporary storage of j = −(M−1)
2 .

The exponential filter avoids the problems of lag and storage, by utilising only the
current and previous sample, where more importance is placed on the new value.

We should also point out that although the filter is of an exponential origin, the
10-bit resolution is sufficient as the filter can never overflow, instead, it can only produce
a maximum value of 1024. Such that: y(i) = 1024− 1024

x
+ 1024

x
= 1024

3.4.4 Power/Accuracy trade-off

The power consumption of the chip and its performance largely depends on the sampling
frequency of the input signals. The slower the sampling rate, the lower the number
of operations per second carried out by the chip and, hence, the lower the power
consumption. However, the accuracy achievable on the calculation of transition periods
decreases and the overall performance of the DDA algorithm degrades. On the other
hand, for high sampling rates, the performance improves at the cost of higher power
dissipation. This is illustrated in Fig. 3.10, which shows the power consumption of
the chip in terms of the sampling frequency, assuming that both input signals are
band-limited in the β band. In the same plot, the correlation between the measured
synchronisation index and the PLV value (calculated off-chip with the same input
signals) is represented as a measure of the DDA approach accuracy. It is worth noting
that beyond a given sampling rate of about 2-3kS/s, no further improvement can
be observed in the chip performance as the correlation states around 85%. Hence, a
sampling rate of 2 kS/s is chosen for which the power consumption of the chip core
is 15nW from a 0.5V supply voltage. Similar trade-offs can be observed for other
frequency bands.
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0 0 0 0

Fig. 3.10 Power/sampling frequency trade off overview

3.4.5 Resource allocation

Fig. 3.11, gives an impression of the hardware reductions which can be obtained by
the DDA algorithm. the DDA algorithm can be calculated using as little as 37 slices,
112 flip-flops and 60 LUT(Look-Up Tables), excluding SPI interface, PSI interface and
CHECK PARAMETERS. Which is significantly less than other systems, HT1[65] and
HT2[66], which both utilize a Hilbert transform based filter and CORDIC arctan phase
extraction system. The mean number of resources needed to calculate the discrete
distances (DDA approach) is 69.6, which is almost 95% less than system 1 (1348) and
almost 96.8% less than system 2 (2149).
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Fig. 3.12 Circuit layout fabricated in a 0.18µm CMOS process and occupies an active
area of 0.05mm2(left) adn dedicated PCB testing platform (right)
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Fig. 3.13 Laboratory functional test setup, showing the logic analyser, power supply
and the laptop used to transfer data files.

3.5 Experimental results

Fig. 3.12 shows a microphotograph of the chip implementing the DDA algorithm.
The chip has been fabricated in a 0.18µm CMOS process and occupies an active
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Fig. 3.14 Illustration of the system response versus supply voltage for two input tones
at 25 and 30Hz.

area of 0.05mm2 including the main processor core, two series-to-parallel input (SPI)
ports, one parallel-to-series output (PSO) port and some additional buffers for testing
intermediate nodes. The I/O ports work 10 times faster than the rest of the ASIC
in agreement with the 10-b resolution used for the input signal samples. The total
number of integrated gates is 6053.

Fig. 3.13 shows the test setup used for functional verification. The chip was mounted
on a dedicated PCB together with a set of adjustable level shifters and regulators for
scaling the logic levels and supply voltage of the ASIC. Firstly, Low voltage operation
was experimentally verified by driving the chip with different tones in the β band and
comparing the generated synchronisation index stream with electrical and behavioural
simulations. A logic analyser (Agilent 16823A) was used for synthesising the tones,
sampled at 1024S/s, and for serially retrieving binary information from the output and
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other test points of the ASIC through a pod connector. For two tones at 25 and 30Hz
(100k samples each), deviations from the ideal synchronisation index were noticeable
for supply voltages below 0.35V. At this point, the index starts to drop and, for 0.2V
supply, the system breaks down completely with no observed activity. The reset signal
generated in the ASIC after and-ing the latched outputs of the two minima logic blocks
(see Fig. 3.1) was also monitored along this transition. This signal goes high every time
a transition period is computed. For supply voltages above 0.35V, the train generated
by the ASIC is quite regular (only minor variations due to the quantisation of the
inputs) in good agreement with the expected response, however, pulses are eventually
missed below 0.35V and, at 0.2V supply, they are no longer observable.

Electrical simulations show that this behaviour is compatible with data transfer
failures from the SPI input ports of the ASIC. This is illustrated in Fig. 3.14 which plots:
(i) the experimentally observed degradation of the synchronisation index as the supply
voltage decreases according to Smeas/Sid, where Smeas and Sid denote, respectively, the
measured and ideal values of the index and, (ii) the simulated SPI register position,
normalised to the vector resolution, at which input data fails to be shifted. In both
cases, 1 indicates no error while 0 means complete breakdown. It is worth observing
the good agreement between both curves. Similar behaviour was obtained for other
tones in the β band.

At a signal input rate of 1024S/s and 0.5V supply voltage, the power consumption
of the chip core is 15nW. Table 3.1 shows the power budget of the chip. Event detection
and time stamp calculations by the finite state machine are the two most power
demanding tasks of the processor due to the higher switching activity. Table 3.2
shows the normalised performance of the ASIC compared to other designs in Table
1.3. Variables have been normalised to a single channel and, in the case of core area
occupation, an additional normalisation has been applied by arbitrarily assuming
all chips are fabricated in CMOS 65nm. Accordingly, the original area per channel
has been scaled by (65nm/Wmin)2, where Wmin is the feature size of the fabrication
technology. Note that the proposed implementation exhibits the smallest normalised
area and it is among the designs with lower energy consumption.

3.5.1 Experimental Setup with Neural Recordings

The processor has been also verified and validated using neural recording data available
in the European Epilepsy database [57]. This database contains recordings of over
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Table 3.1 Power breakdown of the synchronisation processor based on the blocks in
Fig.3.1

Block Average Power (nW)
Event detection 4.01

Finite state machine 4.52
Counter 1.46
Indexing 2.64
Filtering 2.86

Table 3.2 Normalised performance summary

Norm. area Power Energy
(mm2/ch) (µW/ch) (pJ/ch/bit)

[49] 0.0073 6.25 108
[50] 0.0050 4.06 NA
[51] 0.0043 49.22 NA
[48] 0.0184 0.23 0.36
[52] 0.0223 51 3.75k
[53] 0.0047 0.15 63.5
[55] 0.5320 57.3 14k

This work 0.0033 0.0075 0.73

275 patients including 225 scalp recordings and 50 intracranial recordings. As very
long recording sessions, often lasting for more than 6h, are included in the database, a
specific experimental set-up has been devised. As shown in Fig. 3.15, it uses an mbed
LPC1768 MCU based on a 32-bit ARM® Cortex™-M3 core from NXP Semiconductors.
The test platform has been expanded with an application board which includes an RJ45
Ethernet connector and a USB-A Host/Device port (in addition to the built-in USB
drag’n’drop FLASH programmer). The MCU defines settings and transmits driving
stimuli to the DDA chip through the available GPIO ports and other I/O interfaces.
Neural input signals are stored as CSV files in a 32 GB Fat-32 formatted stick memory
plugged into the USB-A port of the test platform. These files are sequentially read
by the MCU and serially transmitted to the SPI ports of the ASIC. Long testing
sessions have been run uninterruptedly using this setup with no need to split the
database recordings into smaller blocks (this would clear the internal states of the
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Fig. 3.15 Test setup showing the ASIC mounted on a dedicated PCB, mbed LPC1768
micro controller and dedicated level shifters.

ASIC). The synchronisation index generated by the chip is transferred back to the
MCU and steered through the USB port to a host computer where data are further
analysed with MATLAB®.

The C++ code to send data from the MBED device to the ASIC and retrieve data
from the ASIC can be seen in appendix B.5.

Neural recording signals from the database have to be pre-processed prior to being
used as stimuli in the described platform. This involves the following steps: (i) bandpass-
filtering for selecting the frequency band of interest (fourth-order Butterworth filters
have been used), (ii) resampling for matching the frequency rates of the recordings
and the ASIC (only if needed), (iii) adding noise for a given input-referred SNR value,
(iv) digitising the samples to the resolution of the ASIC (10-b), and (v) casting data in
CSV format files for storing in the stick memory. As mentioned, files as large as 10GB
have been handled without any observed problem.
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Fig. 3.16 Experimental synchronisation index and simulated PLV value from recordings
at positions M5 and M8 of a 1× 8 EcoG strip implanted in patient 1. Signals were
pre-filtered in the β-band. The input rate of the chip was adjusted to the sample rate
of the recordings, i.e., 1024S/s. The Sdda curve (labeled "ASIC SI") was obtained at a
sample rate of 1S/s.

3.5.2 Epilepsy Detection Results

Different blocks of intracranial data from the referred database were used for assessing
the epilepsy detection capabilities of the DDA chip. These blocks were selected for their
high confirmed seizure rate. No other consideration was taken into account. For each
block, signals were first pre-filtered in MATLAB® into conventional neuro-physiological
bands. After a preliminary computer analysis of the records, the frequency band with
the largest synchronisation index activity was finally selected. For each experiment,
the set of valid values were plotted alongside with the theoretical PLV value obtained
through the Hilbert Transform method.

For illustration purposes, Fig. 3.16 shows the synchronisation results obtained from
two channels of a recording block measured in a 48 years old, female patient. In this
block, one low amplitude fast activity (lafa) seizure was annotated (dotted line). Before
driving the ASIC, Gaussian noise were added to the signals for a spot SNR of 30dB at
30Hz. The plot shows the experimental synchronisation index (labeled as "ASIC SI")
and the calculated PLV value (labeled as "SIM PLV"). The DDA algorithm detects all
major changes in synchrony and, indeed, follows a similar trend as the PLV algorithm.
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This is verified by the high correlation measure of approximately 91% (in line with
Fig. 2.9) .

Fig. 3.16 also shows that the seizure manifests with a remarkable increase in the
synchronisation measures. This feature is in fact on the basis of the detection mechanism
presented in [52] and [50] in which seizures are detected by applying thresholds on the
PLV indicators calculated between pairs of channels. In some cases, as in Fig. 3.16,
seizures are preceded by a sudden drop in synchronisation [67], however, we have not
verified this feature in all the analysed blocks.

3.5.3 Functional Connectivity Results

The proposed DDA prototype has been also used for estimating functional brain
connectivity. As in the previous section, chip results were later compared with computer
simulations of the Hilbert Transform approach with PLV indexing. Recordings from
patient #7 have been considered. This patient suffers from simple and complex partial
seizures originated from temporal lobe. Among the recordings, a block including one
rhythmic β wave episode has been analyzed. This has been the only aspect taken into
account for the selection.

To assess the functional connectivity strength between neural assemblies, a mapping
approach has been followed in which synchronisation indexes for every possible electrode
combination at a given observation window were arranged into a symmetric matrix. A
1h long recording block including inter-ictal, pre-ictal, ictal and post-ictal periods was
examined. Signals were band-pass filtered in the β band.

Both EEG and ECoG recordings are available from patient #7, however, only the
results from EEG analysis are herein presented. The EEG recordings consisted of
16 EEG captures selected from a standard 10:20 system. The resulting 120 pairwise
combinations were arranged in a 16× 16 matrix. For easy visualisation, index values
were colour-coded between yellow (index close to 1) and dark blue (no coupling).

Figure 3.17 shows the connectivity maps obtained through the Hilbert Transform
(first column) and the DDA chip (second column) for observation windows in the
four mentioned time segments. Both sets are clearly correlated as verified by the
absolute differences between the two methods (third column). This is particularly
noticeable during the ictal stage (first row), where the difference across all neural
combinations is almost null. This shows that for high values of synchronisation, DDA
retains the detectability of high synchronisation changes when compared to other more
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complex algorithms. For smaller synchrony levels, as occurs in the pre-ictal, post-ictal
and inter-ictal periods, the variations between both methods become a little more
pronounced. That said, the biggest difference can be seen in the post-ictal period
(third row) between electrodes T3-F8 at approximately 10%.

Similar conclusions were drawn from the analysis of ECoG maps on the same
recording block (not shown). Good correlation between both approaches was also
observed. Nevertheless, it was noticed an overall increase in synchrony for all the
observation windows. This is consistent with the closer proximity of ECoG electrodes
compared to surface electrodes. In any case, the ictal-period was still clearly identifiable.

Next, we analysed the graph theoretical metrics as described in Appendix A. Using
non-directional, un-weighted binary matrices were the thresholds were set for each
individual partition. To maintain consistency each threshold was set as 25% less than
the maximum swing between the maximum and minimum respective values, such that:
Thresholdpartition = max− max−min

4 .

In order to calculate the small world metric we introduce a comparison between
the inter-ictal and ictal periods. Notably, we use the graph metrics from the inter-ictal
period as a random reconnection of the ictal period such that λ = Cictal

Cinter−ictal
and

γ = Lictal

Linter−ictal
. Conversely, for the inter-ictal period λ = Cinter−ictal

Cictal
and γ = Linter−ictal

Lictal
.

Fig.3.18, shows the various average graph theoretical metrics over the ictal and
inter-ictal partitions. As expected the average nodal degree and clustering increases
substantially during the ictal period. Conversely, the average path length drops over
the ictal period. This indicates an overall more heavily synchronised and connected
network, as can be seen in the ictal connectivity graph. Fig. 3.18, also shows that
the ictal partition tends towards a higher small world connectivity than the inter-ictal
period. Nevertheless, this highly connected ictal period as compared to the inter-ictal
period indicates a mass synchrony between multiple nodes. In a normal brain network,
however, these characteristics can be considered undesirable as neural clusters should
operate with a certain degree of independence and not oscillate at the same frequencies.

Further analysis, was made for patient #7 in terms of the variance in nodal degrees
and clustering coefficients. Using, ’topoplots’ in the form of colour graded contour
plots projected onto a 2D representation of the brain.

Fig. 3.19, show the variance of these metrics for patient #7. Over the ictal period,
there exists a high nodal degree towards the right temporal lobe which would indicate
higher connectivity from other nodes to this area. This is indeed consistent with the
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clinical prognosis for this patients type of epilepsy. Nevertheless, The clustering during
the ictal period tends to shift to the left hemisphere, indicating that although the
right temporal lobe is heavily connected during this period the connections tend to
be longer range and less clustered than the left hemisphere, Nevertheless they remain
high at approximately 0.6. Over the next three periods, noticeable reductions in nodal
degree in the right temporal lobe can be seen, indicating that this area actually has
a lower connectivity than other regions. In fact, a reduction in both the inter-ictal
and pre-ictal periods accounts for an approximate 23% reduction from in the epileptic
event time. Interestingly, the highest connectivity during the non-ictal period shifts
towards the P4 parietal electrode which is consistent with the correlation colour maps
seen in Fig. 3.17.

Another interesting, characteristic for this patient is the reduction in clustering
during the pre-ictal period, indicating a sudden drop in clustering around the epileptic
centre before the ictal event is triggered.

Once again the gathered DDA data shown in the plots was compared with that of
the PLV and HT method for a comparative visual aid. In all cases, the two algorithms
show a strong correlation with all shifts in clustering and nodal degrees trending
towards the same pattern.

In conclusion, the ictal period proves itself to evolve from a non-hyper synchronous
network to a hypersynchronous network. Where the epileptic event originates from one
point of origin and incorporates new clusters into the firing process. This is indicated
by the short path lengths, meaning that long-range synchrony does not necessarily take
place, instead, the synchrony evolves from one cluster to another. On the contrary,
during the inter-ictal period, long rage synchrony is more apparent and the average
nodal degree is low.
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Fig. 3.17 EEG connectivity maps for patient #7. Columns 1 through 2 are colour maps
representing the mean values for both the PLV and DDA for all possible combinations
of EEG signals. Column 3, shows the absolute difference between columns 1 and 2.
EEG data were organised into a standard 10-20 format.
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Fig. 3.18 Graph theoretical results for patient#7. Row 1, shows the average metrics
for both the PLV and DDA approach over both the ictal and inter-ictal periods. Row
2, shows the functional connectivity representation of the brain using a standard 10-20
EEG electrode set-up for both the ictal and inter-ictal partitions. The blue solid line
represents the connectivity of the PLV value and the dashed red line represents the
connectivity of the DDA approach
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3.6 Conclusion

A dedicated processor, fabricated in a 0.18µm CMOS process, has been proposed for
the estimation of phase synchronisation between neural signals. It obtains similar
results as those achievable with more computationally demanding algorithms, but it
consumes much less power and it is highly scalable. This makes the proposal suitable
for parallel multi-channel phase synchronisation calculations on-chip.

In some sense, the proposed algorithm can be regarded as an inexact computing
paradigm [68] in which a small amount of errors can be tolerated, without sensibly
degrading the quality of results, but attaining considerable efficiency gains.

Although the processor performance has been demonstrated for surface and in-
tracranial EEG signals, its usage can be extended to other scenarios where a low-cost,
low-complexity, programmable and portable solution for computing functional connec-
tivity is needed as, for instance, in functional magnetic resonance imaging (fMRI) or
positron emission tomography (PET).



Chapter 4

Multi-channel synchronisation
processor
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The contributions in this section include the design, implementation and verification
of a sub-threshold phase mass integrated phase 16-channel VLSI synchronisation
processor capable of calculating ‘phase synchronisation between 9 independent neural
signals and 120 neural combinations. The processors design and verification process
was firstly implemented in an FPGA environment for architecture verification, later the
design was implemented manually in the CADENCE layout environment and verified
through simulation.

All of the design and verification processes were carried out by the author of this
thesis.

4.1 Overview

This design was implemented with a multi-functional purpose in mind, firstly, as
a clinical aid for the identification of pathological brain states, by monitoring and
mapping synchronisation features of patients using graph theory. Secondly, as a
dedicated epileptic seizure diagnosis tool.

The ASIC was designed in an AMS 0.18µm high voltage, low leakage technology us-
ing a fully custom 0.5v threshold digital logic library to reduce total power consumption
and operates from a main clock frequency of 2KHz.

Incorporated into the design are 16, individual synchronisation processors (15
on-line processors and 1 test processor) each with a dedicated training and calculation
module, used to build a specialised epileptic detection system based on patient-specific
synchrony thresholds. Each of the 15 main synchronisation processor are based on the
previously verified synchronisation processor in section 3 and are capable of calculating
the phase synchrony between 9 independent EEG signals over 8 epochs of time totalling
120 EEG combinations. Furthermore, two SPI interfaces are incorporated for ease of
communication to 3rd party devices.

To optimise area, the processors were organised into an array of 4X4 of processors
(P) and training and calculation modules (T), this is illustrated in Fig. 4.1. In addition,
an independent control logic unit was implemented for each row of the array.

The last processor in the array was used as a test processor which was implemented
completely independently from the other array.
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The final VLSI implmented design can be seen in Fig 4.2. The core area of the design
occupies only 3.64mm2, whilst the SPI input interface occupies 0.091mm2 and the
output interface occupies 0.063mm2. Each synchronisation processor occupies 0.04mm2

(This is less than the original processor described in section 3, due to a reduction in
control logic) and consumed on average 12-15nW (Simulated power estimation), whilst,
each training and calculation module occupies 0.066mm2.

P1 T1 C1P2 T2 P3 T3 P4 T4

P5 T5 C2P6 T6 P7 T7 P8 T8

P9 T9 C3P10 T10 P11 T11 P12 T12

P13 T13 C4P14 T14 P15 T15 PT TT

SP
I 1

-1
6

0

P
SI
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-1

6
0
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0.5v
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Clk

Fig. 4.1 Top level matrix layout for the 16 synchronisation processors and associated
training and calculation modules
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Fig. 4.2 Microscopic view of 16-Channel ASIC

4.2 Design

4.2.1 Input conversion SPI

A single 1 to 160-b serial to parallel converter is used at the input of the ASIC to
convert a single 1 bit EEG data stream into a 16x10 bit array of neural data. Where
each 10-b of data represents a single sample from every 16 channels of data. Fig.
4.3 shows a block diagram of the converter which is made up of three distinct layers.
Firstly, a concatenated serial array of D-type flip-flops are interconnected via their
inputs and outputs, where the input of the nth flip-flop is connected to the output of
the (n− 1)th flip-flop for a total of 160 flip-flops. Since each neural data stream sample
consists of 10 unsigned bits, the converter can translate 1 sample for each neural data
stream over a total of 160 clock cycles. The serial data stream is feed into the input of
the converter as the least significant bit first. Once 160 cycles are complete, the data is
shifted out of the registers in parallel, which then gets stored into an individual latch
for each bit of data (i.e there are 160 1-b latches). This latching is necessary as the
clock of the input converter (Clk2) is running 160 times faster than the main clock of
the circuit (Clk), the latching system is therefore used to hold the data in place for 1



4.2 Design 89

complete cycle of the main Clk. This way, the initial registers can continue loading the
next samples, while the previous sample is held stable.

Finally, the latched data is pushed into an individual buffer for each data bit, in
order to drive the logic 1 values high and pull the logic 0 values low. This is a crucial
part of the system as the long conversion dissipates power every cycle, leading to a
diminished voltage. The new data samples are then pushed onto a 160-b bus which
interconnects all of the processors.

The serial interface is beneficial for interfacing the ASIC with 3rdparty hardware
platforms such as FPGAs and reduces overall area consumption from 160 individual
inputs.

4.2.2 Output conversion PSI

The output converter is a 160 to 1 bit parallel to serial converter and is used at the
output to capture synchronisation values from the 15 main processors. Fig. 4.4 shows
a block diagram of the converter. The architecture consists solely of a concatenated
array of D-type flip-flops and a single buffer at the output. An enable line is activated
every time new synchronisation values are ready, which tells the converter to accept
the data at its input. If no new values are available the converter blocks new inputs
and starts shifting the values out of the registers. The long period between updated
synchronisation values means that this converter can run using the master clock of the
circuit.
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4.2.3 Epoch selection

Using 16 main electrodes, a combinational total of 120 neural combinations need to be
assessed. Normally, this would lead to a large array of 120 synchronisation processors,
where each processor is capable of handling two data streams. To combat this, we use
a custom epoch based multiplexing of neural data to reduce the array of processors
from 120 down to just 15.

The ’epoch’, on which the method is based, can be considered as a small time
segment window, where 1 epoch lasts for a total window size of x samples. The
actual time of the window is dependent on the sampling frequency of the master clock,
however, for argument’s sake, let’s assume for now that it is set to a standard sampling
rate of 1024S.

During an epoch, each processor will receive 1024 samples from any two given
neural data streams. Therefore, during 1 epoch the 15 processors can calculate the
correlation between 15 neural data combinations. In order to reach the total of 120
combinations, 8 epochs are required.

The epoch system, therefore, reduces the number of processors from 120 to 15, at
the cost of losing small amounts of data between epoch cycles. In terms of samples,
this means that each neural data combination will get updated every 8192 samples or
in terms of time every 8 seconds.

The tradeoff between data loss and realistic implantation schemes is questionable.
Nevertheless, it is clear that as a diagnostic tool for pathological brain states such
as Alzheimers, Parkinsons or schizophrenia, the need for constant data monitoring is
unnecessary. Mainly due to the constant and stable change or deterioration in the
neural network. That’s to say, the instability in the neural network does not change
rapidly or fluctuate from a better to a worse state or visa versa. In epilepsy, however,
abrupt rapid changes in the neural network are the most common attribute. A paper
by et. al Sigmund Jenssen [69], reports that on average a Tonic seizures last for
a median time of 18.5 seconds, simple partial seizures last for 28 seconds, primary
generalised tonic-clonic seizures lasted approximately 66 seconds and complex partial
seizures lasted for as long as 78 seconds. From these results, it is clear that an 8-second
refresh rate for neural synchronisation values is sufficient. In the fastest seizures of
18.5 seconds there would be a minimum of two attempts at detection of the epileptic
event and in the slowest seizures, there would be almost 10 attempts at identification.
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Processor Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7 Epoch 8
1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9
2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10
3 3,4 3,5 3,6 3,7 3,8 3,9 3,10 3,11
4 4,5 4,6 4,7 4,8 4,9 4,10 4,11 4,12
5 5,6 5,7 5,8 5,9 5,10 5,11 5,12 5,13
6 6,7 6,8 6,9 6,10 6,11 6,12 6,13 6,14
7 7,8 7,9 7,10 7,11 7,12 7,13 7,14 7,15
8 8,9 8,10 8,11 8,12 8,13 8,14 8,15 8,16
9 9,10 9,11 9,12 9,13 9,14 9,15 9,16 10,1
10 10,11 10,12 10,13 10,14 10,15 10,16 11,1 11,2
11 11,12 11,13 11,14 11,15 11,16 12,1 12,2 12,3
12 12,13 12,14 12,15 12,16 13,1 13,2 13,3 13,4
13 13,14 13,15 13,16 14,1 14,2 14,3 14,4 14,5
14 14,15 14,16 15,1 15,2 15,3 15,4 15,5 15,6
15 15,16 16,1 16,2 16,3 16,4 16,5 16,6 16,7

Table 4.1 Table showing which neural data streams are connected to specific processor
during each of the 8 epochs of time

Table 4.1, shows a grid of the neural signals being computed for each processor
during any given epoch. As an example processor 1 (P1), calculates the synchrony
between neural data channels, [1-2,1-3,1-4,1-5,1-6,1-7,1-8,1-9] at epochs 1 through 8
respectively. Whilst processor 15 (P15), calculates the synchrony between [15-16,16-
1,16-2,16-3,16-4,16-5,16-6,16-7].

4.2.4 Window, epoch and memory addressing logic

Structurally speaking, the control logic for the entire system is simple and consists of
basic logic gates and counters. Firstly, as can be seen in Fig. 4.5 (Window counter),
the window logic consists of a simple 10-b up counter with self-reset. This counts
from 0 to 1024, when the maximum of 1024 is reached a single clock cycle positive
pulse ’K’ is created. From observations in the previous design discussed in chapter 3, a
fixed window of 1024 was chosen. This allows for a reduction in hardware and power
consumption by omitting the variable shifting aspect.

The epoch selection of the neural signal inputs and addressing of memory elements
is driven by a 3 bit up counter, built from D-type flip-flops as seen in Fig. 4.5 (Epoch
selection and memory addressing logic). Where the output of each flip-flop is hard-wired
to 8 distinct 3 input AND gates in combinations which create an up sequence ranging
from 1 through 8 (a1 through a8). The counter has an enable line connected to ’K’,
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hence the counter only counts up once ’K’ is introduced. Contrarily, when ’K’ is low,
the counter is paused in its current state meaning that the count is kept constant until
the next ’K’. This combination allows us to produce logic high signals of exactly 1024
samples long. Using the hard-wired AND gates at the output has the advantage of
hardware reduction over ring counters as a reduction of five D-type flip-flops can be
introduced. The long pulses of a1 through a8 are used as a reference for the current
epoch as well as address memory locations, which will be described later. Fig. 4.5
shows a basic timing diagram, where the 1024 sample pulses of a1 through a8 rotate
continuously. In the zoomed view of a1, we can see how a single cycled pulse of ’K’
activates the epoch a1.
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Fig. 4.5 Dedicated control logic for the window length, epoch selection and memory
addressing.

4.2.5 Flow

From Fig. 4.6, we can see an overview of the hardware implemented for processor
1 (P1) (all 15 processors are identical). Firstly, during any given epoch, 2 of the
9 possible channels of parallel neural data are multiplexed into the synchronisation
processor as per, table 4.1. During epoch 1 signals S1 and S2 are evaluated, the phase
error between these two signals is then continuously monitored and updated until
the window has finished (K = 1) producing a phase value ϕepoch1. Simultaneously,
the Epoch has increased to 2, hence new data streams S1 and S3 are feed into the
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synchronisation processor for assessment. Working as a pipelined system ϕepoch2, is
now being processed whilst ϕepoch1 continues to be post-processed. In general ϕepoch(n),
is always being processed whilst ϕepoch(n−1), is always being post-processed.

ϕepoch1, is then passed into a dedicated custom low pass filter and stored in a
custom dedicated memory for future retrieval. After filtering, ϕepoch1, is then passed
to a dedicated training and calculation module which uses the values of synchrony to
produce patient-specific epileptic detection and graph theoretical thresholds for online
epileptic detection and offline graph analysis respectively.

The dedicated thresholds are then used as a comparison in a detection block which
compares new synchrony values to determine whether a rise or fall in a patient’s specific
synchrony values has occurred.
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Fig. 4.6 Overview of the 16-channel processors control and flow

4.2.6 Neural multiplexing

To accommodate all 120 neural data combinations over 8 epochs of time, each processor
must manage the phase calculations of 9 independent neural combinations. In order to
minimise the large area occupation enforced by standard multiplexing schemes, our
design incorporates a non-conventional hard-wiring via tristate buffers.
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Fig. 4.7 shows the basic hard-wiring technique. Where select processor input
channels are connected via a multi-dimensional 8x10 array of tristate buffers. Each of
the 8 rows of 10 tristate buffers connects to an individual neural data stream of 10-b,
which all have a dedicated enable line connected to a specific epoch. This allows us to
connect 8, 10-b neural data streams to a single bus.

When a current epoch is active (a1 through a8, see section 4.2.4), the output of
that given tristate array is set to low impedance, Hence, the data can pass onto the
main line and feed into the synchronisation processor unimpeded. Contrarily, when an
epoch is not active the output is set to a state of high impedance (Z), meaning that
the neural data is blocked from passing onto the main line.

From Table. 4.1, for synchronisation processors 1 through 8, the first channel is
always hard connected to neural data streams 1 through 8, respectively. Whilst channel
2, is connected to each processor’s dedicated tristate array. As an example in Fig.
4.7, channel 1 (Ch1) of processor 1, is hard-wired to the neural data stream 1 (D1),
whilst channel 2 (Ch2), is connected to the tristate array, the first row in the array is
connected to neural data stream 2 (D2), the second row to neural data stream 3 (D3)
and so on until the 8th row, which is connected to neural data stream 9 (D9).

Synchronisation processors 9 through 15 incorporate an extra 2-row tristate array
at channel 1. As per table 4.5, eventually the input at channel 1 will have to change,
however, this is not a uniform process so a small piece of distinct logic is added to
control the switching of these tristate rows. As an example during epoch 8 of processor
9, the Ch1 input will need to switch from D9 to D10. To achieve this a simple inverter
is added to the enable line of the first row, such that if epoch 8 is not active then neural
data D9 can flow into Ch1, else D10 is allowed to pass unimpeded. The additional
logic for each of the processors 10 through 15 can be seen in Fig.4.7.

The timing diagram shows the currently active rows for processors 1 and 9 during
epochs 1 (highlighted in green) and 8 (highlighted in blue).
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Fig. 4.7 Example of the neural input multiplexing scheme and dedicated control logic.
The top figures show how tristate buffer arrays are used to control 8 separate neural
streams to one processor. The bottom figures shows the extra control logic needed in
order to control the first input channel
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4.2.7 Post processing

The epoch based method chosen means that temporary variables and data need to
be stored for future access. The exponential filtering is an example of this, where the
original low pass filtered ϕ(i), from Fig. 3.3 of section 3.2.4 in chapter 3:

Now needs to store the previous value of y(i) for each epoch, until a full rotation of
the signals has been complete. The equation can then be expressed as:

y(i)(P ) = y(i− 1)(P )
epochx − y(i− 1)(P )

epochx · 2pos + ϕ(i)(P )
epochx · 2pos

Were y(i− 1)epochx, represents the previously stored filtered value for that current
epoch and P, represents the processor.

From herein, we will omit the term epochx and (P) for clarity of reading, hence we
assume that all further references are indicative of all 15 processors and epochs

Since each processor manages multiple neural data streams, a dedicated 8x10
memory, which is illustrated in Fig. 4.8 (a), is used to store the previous values of
y(i − 1), until the epoch selection module makes a full round and returns back to
the chosen epoch. The memory itself consists of a 10x8 array of D-type latches all
interconnected at the output via tristate buffers (T1 through T8) onto a single 10-b bus.
This allows for both the read and write operations to be carried out simultaneously.
The latching of the data to the correct address requires a single cycle positive pulse
in this case ’a1Lf’ through ’a8Lf’. Which are activated by ’anding’ the current epoch
with the single cycled window pulse of ’K’ as illustrated in Fig. 4.8 (b). Once the new
data is latched to the correct address, the output of the memory is read constantly
throughout the life of each individual epoch via epoch selection signals a1 through a8.

Fig. 4.8 (c), shows an overview of the hardware requirements for such a filter.
Which is similar to the hardware described in from Fig. 3.3 of section 3.2.4 in chapter
3. Nevertheless, by assuming a constant value of pos, in this case, pos = 2 a reduction
of two 10-b shift registers can be omitted by hard wiring the shift into the dedicated
hardware. Firstly, a 10-b subtracter calculates y(i− 1)− y(i− 1) · 2pos (collected from
memory), where, y(i − 1) · 2pos is hard-wired to the subtracter by taking the most
significant bits from 10 down to 2 and grounding out the first 2 most significant bits
and concatenating bits 10 to 2 in position 8 down to 1
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The result from the subtracter, is then added to ϕ(i) · 2pos (once again hard-wired),
using a 10-b adder to create the final result y(i), which is simultaneously passed on to
the next stage and stored into memory as y(i− 1).
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Fig. 4.8 Adapted exponential filter from processor 1, using a hard-wired smoothing
factor and memory array

4.2.8 Training and Thresholds overview

It is well known that there are a wide variety of different forms of epilepsy which can
produce different varying quantities of synchrony between different regions. Additionally,
each and every patient will produce varying amounts of synchrony due to the uniqueness
of every brain. These variations make it difficult to set reliable static thresholds for
epileptic detection as seen in Fig. 3.6 of section 3.2.5 in chapter 3, where the thresholds
were set based on pre simulation. Therefore, in this design, a patient-specific epileptic
threshold calculator was implemented.

To begin, an initial training phase is set, such that 2 separate arrays are built, 1
containing the maximum filtered synchronisation values and the other the minimum
values, from each processor at each epoch (i.e the maximum and minimum filtered
values for each neural data combination).

In an ideal situation, the training period would be performed during a patient’s
epileptic episodes by clinical specialists. The arrays, give an accurate starting point for
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the patient’s pathological synchronisation state. Once training is complete, the data
accumulated is then used to set a patient specific low and high threshold voltage such
that:

Thh = max(y(i))−∆ (4.1)

Thl = min(y(i)) + ∆ (4.2)

Where, p, is the processor in question and ∆ is a margin calculated as the voltage
swing between the maximum and minimum values stored in the array divided by a
constant such that::

∆ =
[
max(y(i))−min(y(i))

]
· 1

2n
(4.3)

A threshold low (Thl) is set to produce alerts when the patient synchrony levels
are increasing towards the maximum recorded value in the array, warning the patient
to a possible upcoming episode. The threshold high (Thh) is set as a diagnostic tool
to track a possible upcoming epileptic seizure.

The time for an accurate array to be built depends greatly on the patient and the
amount of successfully induced episodes recorded. Take for example a patient who, did
not reach a positive seizure state during the training period, this patients Thh and Thl
thresholds will not give an accurate gauge of his/her hypersensitive network detection.

This dynamic approach to thresholds gives rise to several advantages over fixed
threshold based architectures. Firstly, since the thresholds are based from a patient’s
specific source, the thresholds are dynamically adjusted to account for a synchronisation
offset which may occur from patient to patient. Secondly, In the fixed threshold hold
based algorithmic designs a normalization between 0 and 1 is usually applied. This
makes setting the thresholds easier, however, the thresholds are still susceptible to
large error margins due to offsets of patient-specific synchrony.

The dynamic thresholds also provide an all-important feature towards the graph
theoretical analysis. The complexity of threshold setting for the binary adjacent
matrices (see appendix A for definition of graph theory), usually leads researches to
handle multiple data sets at varying thresholds.
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It is pertinent to point out that, these dynamic thresholds can be recalibrated at
any moment in time. This may be desirable to change when different frequency bands
are being evaluated, due to synchrony baseline offsets.

The architecture can be seen in Fig. 4.9. In order to minimise hardware utilisation,
a combination of multi-purpose/reusable, 8x10 D-type latch memories are used for the
2 arrays, in combination with a 10-bit subtracter, several hard-wired tristate arrays,
twin MSB comparators and control logic.

Training

1. During the initial set up of the device, a small initialisation period is set (Inital
= 1). This allows for the low memory MemL, which will ultimately store the low
thresholds Thl to be loaded with a logic level 1 and the high memory MemH

which will ultimately store the high thresholds Thh, to be preloaded with a logic
level 0. The initial period lasts for a total round of epochs from 1 to 8, hence
lasts approximately 8 · 1024 samples in order to fully initialise the memories.

2. Once complete, the training period is set (Train = 1). In this case, the twin
comparators are activated, one of which, compares the newly filtered synchro-
nisation value y(i), with the currently stored value in the memory MemL. If
y(i) is less than that in the memory it overwrites the current value in memory
location MemL by activating the tristate array T6, if false tristate array T7 is
activated which rewires the output of the memory back to the input. Conversely,
the second comparator checks to see whether y(i) is greater than the current
value in the memory MemH, if true tristate array T3 is activated, allowing for
the new data to overwrite the data in location MemH, otherwise, tristate array
T1 is activated re-storing the current value of MemH.

Over a designated period of time, the memory arrays will slowly build the
lowest and highest recorded values. We should note, that we initially pre-set
the memories to 0 and 1, for memories high and low respectively, hence the
probability that all values in the memories will initially be overwritten is high.

When a suitable amount of data has successfully been gathered for the patient in
question the true thresholds Thl and Thh, can be calculated.
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Stage MemL MemH

Inital Min(y(i)) Max(y(i))
Stage1 ∆ MemH
Stage2 ∆ Thh
Stage3 Thh− 2∆ Thh

Table 4.2 Table showing the memory allocation during calculation phase of the patient
specific thresholds

Calculation

In order to reduce area occupation, we re-utilise the high and low memories and pipeline
information. The calculations of the thresholds occur over three master clock cycles
per epoch, these stages are named S1, S2 and S3. The information during each stage
can be seen in table 4.2.

The stages are controlled via a simple 4 stage ring counter as seen in Fig. 4.10,
where the fourth stage is a delay element needed for synchronising internal signals of
the device. The memories in the training module are latched via a1L through a8L, the
logic for latching can be seen in Fig. 4.10 and depends on the multiple stages being
accessed.

1. Firstly, during S1, the value of ∆, is calculated, by activating T8 and subtracting
the maximum and minimum values from training, hence making the calculation
MemH−MemL. T4 is then activated which is a hard-wired tristate buffer array
which mimics a shift left of 22, to create a final division by 4, to create ∆ which
is then stored in MemL. T1 is activated for MemH keeping it constant.

2. During stage S2, Thh, is calculated and stored inMemH, by calculatingMemH−
(∆). In this case T2 and T8 is activate for memory MemH and T7 is activated
for memory MemL, in order to preserve ∆.

3. Finally, during stage S3, Thl is calculated. In order to minimise hardware, we
forgo the use of an additional adder which would normally be required to calculate
equation 4.2 and re-utilise the subtracter such that Thl = Thh− 2 ·∆. Where,
tristate T5 are activated to push the subtraction to memory MemL and T9 is
activated to perform a hard-wired shift right of 21, i.e, a multiplication of 2. The
high memory maintains its value of Thh, once again by activating T1.
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The processes of calculation run through all 8 epochs, hence lasting approximately
3 · 1024, samples. Once, the calculation mode has finished, a stable mode of
synchronisation values can begin. At this point, the write enable to MemL and
MemH, are disabled in favour of read-only mode via the epoch selection signals
a1 through a8.
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Fig. 4.10 Dedicated control logic overview for memory latching

Detection

The thresholds Thl and Thh held in the two memories are then feed into the first
terminal of two 10 bit comparators Cl and Ch at each given epoch respectively. At the
same time, the most current synchronisation value ϕ(i) is feed into the two comparators.

Comparator Cl checks if ϕ(i) < Thl and Ch checks if ϕ(i) > Thl.

4.3 FPGA Implementation

In order to design the circuit in a VLSI environment, the design was first implemented
and verified in the VIVADO design suit and eventually passed on to the ARTIC 7
FPGA used in section 3.3.1. An elaborated schematic view of the design can be seen
in Fig. 4.11, which shows block diagrams of the tristate multiplexing arrays as well as
the 15 synchronisation processors. To be architectural correct, the inputs and outputs
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of the design incorporated an SPI and PSI, respectively. Whilst, Fig. 4.12 shows a
schematic of the inner blocks which make up a single synchronisation processor, which
are largely the same as in Fig. 3.8 in chapter 3, with the addition of the 3 memories
and a training and calculation module.

Fig. 4.13, shows a VHDL simulation of the basic control unit signals a1 through
a8, as well as the preloading of the high and low memory modules for training and
calculation.

Fig. 4.14, Shows a VHDL simulation example of the threshold calculations. In this
case the highlighted circles in red represent the calculation of Thh(1) and Thl(1). Firstly,
when the training is turned of and the calculation signal goes high. max(y(i)) = 292
and min(y(i)) = 18. In this case n, from equation 4.3 is set to 2, hence we get:

∆ =
[
292− 18

]
· 14 = 68

which represents a quarter of the maximum voltage swing. Calculating Thh and
Thl from here is easy.

Thh = 292− 68 = 224

Thl = 224− 2 · 68 = 88

Fig. 4.15 shows an example of how the resulting outputs of the design change
over various epochs for all of the 15 main processors. In this case, each vertical line
represents the accumulated results gathered by the synchronisation processor during
1 epoch, where each consecutive line, represents epoch+1. To test the full range of
possible combinations for the synchronisation processors, 16 synthetic signals were
created. Each signal had a fixed sampling frequency of 1024 S/s, all odd numbered
signals were assigned an increasing frequency chirp starting from the range 26 to 51Hz,
and increasing by 1 every following signal. All of the even channels, however, were
assigned a fixed sine wave of 37Hz.

As an example the signals introduced into processor P1 can be seen in table
4.3. Referring to table 4.1, we know that processor 1 receives signal combinations
[1-2,1-3,1-4,1-5,1-6,1-7,1-8,1-9], over epochs 1 through 8 respectively.

Therefore, we can see a distinct triangular shaped output (identified by the red
line) as the chirps of the odd signals converge towards the tone frequency (37Hz) of
the stationary even signals. This effect can be seen in all processors, however, the tone
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Signal (P1) Static or chirp frequency range

1 chirp 26-51Hz
2 static 37Hz
3 chirp 27-52Hz
4 static 37Hz
5 chirp 28-53Hz
6 static 37Hz
7 chirp 29-54Hz
8 static 37Hz
9 chirp 30-55Hz

Table 4.3 Table showing the signals for processor 1 during VHDL simulation of 16-
channel design

Resource Utilisation
LUT’s as logic 4035(3%)
Register as Flip Flop 4418(2%)
Input/output 25(9%)
Clocking 2(6%)

Table 4.4 Table showing all design resource allocation for the DDA hardware imple-
mentation.

frequencies converge at an earlier stage as the processors get higher due to the odd
chirp signals increasing in frequency the higher the signal number.

As another example the first result for epoch 1 is 292 which corresponds to the
synchronisation results for S1(26Hz) and S2(37Hz), since their frequencies are distant
from one another we get a large value at the output. However, during epoch 2 signals
1(26Hz) and 3(27Hz) are compared hence producing a small value of 43.

Table 4.4, shows the resources used in the FPGA implementation of the 16-channel
synchronisation processor.
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4.4 Conclusions

In this chapter a 16-channel VLSI phase synchronisation processor was implemented
The design only occupies 3.64mm2. Due to a change in the MPW policy of the selected
foundry, AMS AG, regarding its 0.18µm CMOS process, the processor was received 13
months after the tape-out and finally it was not tested. Nevertheless, the design has
been fully verified in an FPGA environment.



Chapter 5

Conclusions
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5.1 Conclusions

In this thesis a new algorithm and synchronisation index for the detection of phase
synchronisation between neural signals has been introduced. The algorithm shows a
high correlation of approximately 90% when compared to more complex transform-
based methods with only a slight decrease on noise performance. In addition, an
exhaustive sensitivity analysis with human neural recordings shows that the algorithm
produces average values of over 80% for FPR values of 0.6 and 0.75.

Two VLSI phase synchronisation processors have been introduced.

The first circuit, implemented with a custom 0.5V subthreshold digital library in
a 0.18µm standard CMOS process, allows for the detection of phase synchronisation
between two independent neural signals. The circuit occupies just 0.05 mm2, including
SPI AND PSO interfaces. The design consumes on average 15nW of power at 2KHz
operating frequency which has been proven to be much lower than current state-of-
the-art. In fact, when normalised to a 65nW technology, the design consumes just
0.0075µW per channel. That is a remarkable 20 times less power.

The functionality of the prototype has been extensively tested with neural recordings
from an epilepsy database and its correct operation demonstrated both in seizure
detection tasks and functional connectivity computation.

The second multi-channel processor, using the same library and technology node as
above, is capable of calculating phase synchrony between 16 independent neural signals.
The circuit occupies 3.64 mm2 in total and incorporates novel patient-specific training
and on-the-fly seizure detection mechanisms. The design has been implemented in
FPGA and shows very small resource allocations of just above 4000 LUTs and 4400
registers.
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En esta tesis se ha introducido un nuevo algoritmo e índice de sincronización para
la detección de la sincronización de fase entre señales neuronales.

Los resultados del algoritmo propuesto mostraron una alta correlación de aproxi-
madamente el 90% en comparación con el método PLV basado en la transformación
más complejo.

También se demostró que cuando se realizó un análisis de SNR de ruido puntual en
el algoritmo, se produjeron valores de correlación con una señal ideal libre de ruido
superior a 90% para valores de SNR de 25 a 70 dB. Esto es solo un poco más bajo que
el del método más complejo de HT + PLV.

Además, un fuerte análisis de sensibilidad absoluta mostró que el algoritmo produjo
valores promedio de más del 80% para valores de FPR de 0,6 y 0,75. Increíblemente,
se demostró que el algoritmo DDA superó el método más complejo de HT + PLV en
todos los valores de FPR.

Además, se han introducido dos procesadores de sincronización de fase implementa-
dos por VLSI. El primero de ellos permitió detectar la sincronización de fase entre 2
señales neuronales independientes y tenía una frecuencia de operación principal de 2
KHz. El VLSI se implementó utilizando una biblioteca digital por debajo del umbral
de 0.5V y una tecnología estándar de 0.18 µm.

La implementación de FPGA del diseño mostró que el diseño usaba hasta un 90%
menos de recursos de FPGA en comparación con otras 2 implementaciones avanzadas.

El VLSI ocupaba solo 0.05 mm 2 que incluía interfaces SPI Y PSO. Además, cuando
se normalizó en torno a una tecnología de 65 nm, el diseño ocupó solo 0,0033mm2 por
canal, que es 1,5 veces más pequeño que el diseño más pequeño del estado de la técnica.

El diseño consumió un promedio de 15 nW de potencia a 2 KHz de frecuencia de
funcionamiento, que se ha demostrado que es mucho más bajo que el estado actual
de la técnica; de hecho, cuando se normaliza a una tecnología de 65 nW, el diseño
consume solo 0,0075µ W por canal. Eso es un notable 20 veces menos poder. Además,
a través de una prueba de laboratorio, se demostró que el diseño puede operar tan solo
a 0.3 voltios antes de que la corrupción de datos comience a infringir el circuito.

Los resultados tomados de la implementación VLSI a través de la configuración de
prueba de laboratorio mostraron que el ASIC estaba funcionando correctamente, lo
que se indica por un aumento repentino en la sincronización justo después del inicio de
la crisis. Esto fue respaldado por la simulación del método HT + PLV que muestra un
patrón muy similar.
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Además, el análisis estadístico mostró altos aumentos en la sincronía alrededor del
evento epiléptico en términos de conectividad funcional y análisis teórico de gráficos.

El segundo procesador multicanal fue capaz de calcular la sincronía de fase entre
16 señales neuronales independientes. Una vez más, se implementó utilizando una
biblioteca digital por debajo del umbral de 0.5V y una tecnología estándar de 0.18µm.

El VLSI ocupó 3,64 mm2 en total e incorpora el entrenamiento específico del
paciente y el umbral de cálculo, así como la detección de la mosca.

Los umbrales específicos del paciente son de última generación y no se han integrado
hasta este punto.

El diseño se implementó en FPGA y mostró asignaciones de recursos muy pequeñas
de poco más de 4000 LUT y 4400 registros.
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Chapter A

Graph Theory concepts

Graph theory is common mathematical approach which provides interesting metrics
for the determination of networks. The applications for graph theory have a strong
hold in many disciplines including computer science, biology and sociology to name a
few. A historical mathematical problem named Seven bridges of Konigsberg written
by Leonhard Euler in 1736, is considered to be the first introduction to graphs and
topologies, where Euler proved using graphs that it was impossible to traverse the
city of Königsberg exactly once and return to the starting point using seven different
interconnected bridges [70].

In neuroscience graph theory is used as a tool to further identify underlying
characteristics of the brains structural, functional and effective connectivity.

Figure A.1, shows an overview of some of the underlying concepts behind graph
theory. Firstly, every object in the network is assigned as a node (identified as a grey
dot). Where each node in the network are connected via edges, which are the abstract
connections between the nodes. As an example, in a typical EEG/MEG scalp recording
set-up the electrodes would be considered the nodes and all the interconnections
between the electrodes would be considered the edges of the network. In the 10-20
system this would typically consist of 16 nodes and 120 edges (excluding isolated
nodes).

In general, graph networks are complex networks which should follow the following
logical steps[71, 72]:

1. Define all nodes in the network: As stated above, the definition of the nodes
could be in the form of EEG/MEG electrodes or as anatomically defined regions
via the interpretation of MRI or DTI data.
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2. The second step, is to identify a continuous measure of association between nodes.
This is usually done between all combinations of nodes. This continuous measure
could be time based correlation, spectral analysis or DTI analysis.

3. The next step is to derive an ’association matrix’, M , which consists of a square
NxN , map of all the continuous measures from the previous step.

4. The next step is to derive an ’adjacency matrix’, A, from the association matrix.
These can be constructed in several ways depending on the application intended.
Nevertheless, the most common A, is a binary matrix, in which a static or
dynamically varying threshold is applied the M . In this case anything above
the threshold is set to 1, conversley, anything below is set to 0, this produces a
symmetrical A matrix filled with zeros and ones.

5. The final step in the process is to conduct analysis on A, using graph theoretical
based metrics to build information maps on the network.

Other types of networks do exist beyond the non-weighted non-directional net-
work, such as weighted/directed graphs, binary/directed graphs, however functional
connectivity is usually set as binary/undirected graphs.

In general there are three main desirable metrics which can prove useful to the
identification of structural and functional connectivity in brain networks[73]:

1. Degree

The degree k, is a metric which identifies the number of edges connected to a
given node such that:

ki =
N∑
i

Ai,j (A.1)

Where A, is the adjacency matrix and i and j are the row and coulomb in the
matrix respectively. In the case of binary threshold matrices, this gives a clear
indication of how heavily each node in the network is connected with other nodes.

More often than not the averaging of the edges per node is calculated such that:

⟨k⟩ = 1
N

N∑
i

ki (A.2)
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This gives an overall value for the brains connectivity patterns (i,e) the total
number of nodes which passed the threshold. This metric is especially useful for
time varying analysis and dynamic thresholds as time lapse maps can be built.

2. Path length

The average path length L, indicates the minimum number of edges between any
two nodes within a network, using global efficiency E to account for isolated
nodes. The path length indicates how well information or other entities in the
network can be transferred from one region to another. Given as:

E = 1
N(N − 1)

N∑
i,j,i̸=j

1
di,j

(A.3)

L = 1
E

(A.4)

Where, d, is the distance between two nodes.

3. Clustering coefficient

The clustering coefficient C, measures the occurrence of clusters in a given network
by showing the probability that a nodes neighbours are also connected. This
measure is an index of local structure and is used as a resilience factor, i.e if
a node is lost (doesn’t pass threshold), what’s the probability that its nearest
neighbours are still connected.

C = 1
N

N∑
i

2ni

ki(ki − 1) (A.5)

Where ni, represents the number of edges between the neighbours of node i.

4. Edge density

The edge density m, identifies the fraction of existing edges in a network out of
the total number of edges in the network:
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m = 1
N(N − 1)

N∑
i,j

Ai,j (A.6)

figure A.1, shows an example of how graph theory can be applied to a network.
In this case the network (shown in the upper left hand corner), comprises of 5 nodes,
A,B,C,D and E.

To calculate the average nodal degree of the network the mean of the total number
of edges per node is taken. In this case, A = 3, as it is connected to 3 other nodes
via edges, B = 4, etc... To grade the overall network the average is taken such that:
avg(ki) = 1

5 · (3 + 4 + 2 + 2 + 1), giving a mean total of 2.4.

The average minimum distance between any two nodes is such that: E = 1
5·4 · (3.5 +

4 + 3 + 3 + 2.5), giving a mean total of 0.8, this is known as the global efficiency. The
Path length is calculated as L = 1

0.8 = 1.25.

As an example in the case of the distance between nodes A and E, there exists a
shortest route of 2 edges, therefore, 1

di,j
= 1

2 = 0.5.

For the clustering coefficient node A = 2·2
3·(3−1) = 1

3 , the denominator signifies the
amount of edges connected to the node A, whereas the numerator signifies the number
of connections made between other nodes connected to these edges. In A the numerator
ni = 2, since C is connected to B and D is also connected to B.

In the case that isolated nodes are located such as node E, the clustering coefficient
is set to 0, because the denominator ki(ki − 1), is set to 0, and is hence undefined.

From the metrics above it is possible to construct special networks topologies which
derive an association to brain connectivity and can be seen in figure A.1. These
are,ordered, small-world and random networks. The ordered network is a such that
each node is connected to its K nearest neighbours. In general the ordered network
has a high C and high L (neighbouring nodes are well connected and the path length
is long).

The random network is such that all edges are randomly connected to nodes, in this
case C tends to be very small L very small (neighbouring nodes are not well connected
and the path length is short).
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The final network, small world, is a form of the ordered network, where some nodes
are disconnected and reconnected based on probability, Small world tends to have a
high C but a very low L.

The brains connectivity tends to show characteristics similar to that of a small
world network, where neuronal clusters are well connected via short connections [74].

The small-worldness of a given network H, which comprises of N nodes can be
obtained by normalising its C and L with that of a random network such that:
λ = CH

Crandom
and γ = LH

Lrandom
. If λ > 1 and γ ≈ 1, the network is said to be

characteristic of a small world network. η = λ
γ
, defines the small worldness but must

strictly be greater than 1 [73].

It is however important to stress that the probability factor allows for many networks
between p = 0 and p = 1, By increasing the rewiring probability.
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Fig. A.1 Graph theory: Overview of some of the basic concepts in graph theoretical
analysis. A node is represented as a grey dot and an edge is represented as the connection
between two nodes. The degree defines the number of connections connected to a node,
in this case the number of connections connected to the blue dot. The path length, is
the shortest distance between two nodes and clustering refers to the probability that
neighbouring nodes are connected to each other. In the top example, which consists
of nodes A through E, the degree of node A is 3, the minimum path length between
nodes A and E is 2. The clustering coefficient of A is 2

3 . The three network topologies
show an ordered network, which has a high C and long L, the random network has a
small C and a short L, the small world network has a high C and shot L, which are
properties similar to that of the human brain. In the ordered case the number of nodes
are 8 N=8 and k=4





Chapter B

Code listings

B.1 Matlab Code DDA

1 clc;

2 clear all;

3 %Inital setup of signals

4 samples = 1024;

5 bins = 2048;

6 t = 0:1:samples*bins;

7 fs = 2048;

8 fc = 20;

9 %Signal 1

10 S1 = 10*sin(2*pi*fc/fs*t);

11 f1 = 10;

12 f2 = 30;

13 %Signal 2

14 S2 = 10*chirp(t,f1/fs,t(end),f2/fs);

15 r = 4;

16 % Initiate variables

17 j = 0; p = 0; l = 0; n = 0; k = 0; storagea1 = 0; storageb1 = 0;

18 count1 = 0; count2 = 0; v = 1; Deltas(1) = 0; Deltas(2) = 0;

19 wincount = 0; RS = 0; window = samples;

20

21

22 for i = 2:length(s1)

23 windowcount = windowcount + 1;

24

25 %Signal 1 event detection based on variable M and Q
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26 %Toggeling comparator

27 if s1(i) < s1(i−1)
28 M(end) = 0;

29 elseif s1(i) > s1(i−1)
30 M(end) = 1;

31 end

32 %Shift register minima

33 M = circshift(M,[0 1]);

34

35 %Logic outlier decision

36 if sum(M(1:(length(M)/2))) == length(M)/2 && ...

sum(M((length(M)/2)+1:end)) == 0;

37 j = j + 1;

38 elseif nnz(¬M(1:length(M)/2)) < Q && ...

nnz(M((length(M)/2)+1:end)) < Q

39 j = j + 1;

40 end

41

42 %Same set−up for signal 2

43 if s2(i) < s2(i−1)
44 M2(end) = 0;

45 elseif s2(i) > s2(i−1)
46 M2(end) = 1;

47 end

48 M2 = circshift(M2,[0 1]);

49

50

51 if sum(M2(1:(length(M2)/2))) == length(M2)/2 && ...

sum(M2((length(M2)/2)+1:end)) == 0;

52 p = p + 1;

53 elseif nnz(¬M2(1:length(M2)/2)) < Q && ...

nnz(M2((length(M2)/2)+1:end)) < Q

54 p = p + 1;

55 end

56

57

58

59 % signal1 minimum found start count

60 if j == 1

61 count1 = count1 + 1;

62 % signal1 second minimum found store count and reset

63 elseif j == 2

64 count1 = count1 + 1;

65 storagea1 = count1;
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66 count1 = 0;

67 j = 1;

68 n = 2;

69 end

70

71 % signal2 minimum found start count

72 if p == 1

73 count2 = count2 + 1;

74 % signal2 second minimum found store count and reset

75 elseif p == 2

76 count2 = count2 + 1;

77 storageb1 = count2;

78 count2 = 0;

79 p = 1;

80 l = 2;

81 end

82

83 % Minimum trasition period found in both signals abs(diff)

84 if n == 2 && l == 2

85 Deltas(i−3) = abs(((storagea1) − (storageb1)));

86 storagea1 = 0;

87 storageb1 = 0;

88 n = 1;

89 l = 1;

90 v = v + 1;

91 else

92 Deltas(i−3) = 0;

93 end

94

95 % accumulate error for N samples (window)

96 if wincount < window

97 RS = Deltas(i−3) + RS;

98 else

99 %If window reached store phi(i)

100 k = k + 1;

101 RSfinal(k,:) = [k*window RS];

102 wincount = 0;

103 RS = 0;

104 end

105 end

106

107

108 %Synchronisation index

109 SI = RSfinal(2,:);
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110 SIH2 = 1−min(SI(:,2),samples/2^r)/(samples/2^r);
111 SIH2 = smooth(SIH2,15);

B.2 Matlab Code Threshold

1 %%%%%%%%%%%%%%%%%%Signal 1 dda%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %This is how many false positives are allowed over the length of ...

the signal

3 %Find total length of SI values minus the pre, post and ictal periods

4 %Multiply by the desired FPR rate in order to find the total ...

number of

5 %false positives

6 totalpeaks015 = (length(Mineoverall1(SI))/60/60)*0.15;

7 %Find all of the highest peaks within this period

8 peaks = findpeaks(Mineoverall1(SI));

9 %Organise the peaks from highest to lowest

10 [val ind] = sort(peaks,'descend');

11 %Take the x highest peaks

12 Threshold015 = val(round(totalpeaks015));

13

14 %FPR @ 0.3

15 totalpeaks03 = (length(Mineoverall1(SI))/60/60)*0.3;

16 peaks = findpeaks(Mineoverall1(SI));

17 [val ind] = sort(peaks,'descend');

18 Threshold03 = val(round(totalpeaks03));

19

20 %FPR @ 0.45

21 totalpeaks045 = (length(Mineoverall1(SI))/60/60)*0.45;

22 peaks = findpeaks(Mineoverall1(SI));

23 [val ind] = sort(peaks,'descend');

24 Threshold045 = val(round(totalpeaks045));

25

26 %FPR @ 0.6

27 totalpeaks06 = (length(Mineoverall1(SI))/60/60)*0.6;

28 peaks = findpeaks(Mineoverall1(SI));

29 [val ind] = sort(peaks,'descend');

30 Threshold06= val(round(totalpeaks06));

31

32 %FPR @ 0.75

33 totalpeaks075 = (length(Mineoverall1(SI))/60/60)*0.75;



B.3 VHDL Code DDA 133

34 peaks = findpeaks(Mineoverall1(SI));

35 [val ind] = sort(peaks,'descend');

36 Threshold075 = val(round(totalpeaks075));

37

38

39 threshold(1,:)= zeros(1,length(Mineoverall1)) + Threshold015;

40 threshold(2,:)= zeros(1,length(Mineoverall1)) + Threshold03;

41 threshold(3,:)= zeros(1,length(Mineoverall1)) + Threshold045;

42 threshold(4,:)= zeros(1,length(Mineoverall1)) + Threshold06;

43 threshold(5,:)= zeros(1,length(Mineoverall1)) + Threshold075;

B.3 VHDL Code DDA

1 −−−−−−−−−−−−−−−−−−−−VARIABLE EXPONENTIAL FILTER INPUT ...

SIGNALS−−−−−−−−−−−−−−−−−−−−−
2 entity adder is

3 port(adder_in_s1: in std_logic_vector(9 downto 0);

4 clr,clk: IN std_logic;

5 alpha2: in std_logic_vector(3 downto 0);

6 adder_out: out std_logic_vector(9 downto 0)

7 );

8 end adder;

9

10 architecture Behavioral of adder is

11 signal tmp2: std_logic_vector(9 downto 0):= (others => '0');

12 attribute dont_touch : string;

13 attribute dont_touch of tmp2 : signal is "true";

14 begin

15 process(clk,tmp2)

16 begin

17 if clk'event and clk = '1' then

18 if clr = '1' then

19 tmp2 ≤ (others => '0');

20 adder_out ≤ (others => '0');

21 else

22 −−this is the calculation to create the exponential filter using ...

shift left registers and bitvectors

23 tmp2 ≤ ((tmp2 − to_stdlogicvector((to_bitvector(tmp2) srl ...

to_integer(unsigned(alpha2))))) + ...
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to_stdlogicvector((to_bitvector(adder_in_s1) srl ...

to_integer(unsigned(alpha2)))));

24 end if;

25 end if;

26 adder_out ≤ tmp2;

27 end process;

28 end Behavioral;

29

30 −−−−−−−−−−−−−− MINIMA DETECTION −−−−−−−−−−−−−−−−−−−−−−−−−
31 −−−−−−−−−−−−−COMPARATOR VALLEY DETECTION−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 entity Comparator is

33 port(compare_in_sample: in std_logic_vector(9 downto 0);

34 compare_in_ref: in std_logic_vector(9 downto 0);

35 clk,rst: in std_logic;

36 compare_out: out std_logic);

37 end Comparator;

38

39 architecture Behavioral of Comparator is

40 signal tempcomp: std_logic := '0';

41 begin

42

43 process(clk,tempcomp)

44 begin

45 if clk'event and clk = '1' then

46 if rst = '1' then

47 tempcomp ≤ '0';

48 compare_out ≤ '0';

49 else

50 −− Compare the previous value and new value coming value and ...

assign 1,0 or equal to accordingly

51 if (compare_in_sample > compare_in_ref) then

52 tempcomp ≤ '0';

53 elsif(compare_in_sample < compare_in_ref) then

54 tempcomp ≤ '1';

55 else

56 tempcomp ≤ tempcomp;

57 end if;

58 end if;

59 end if;

60 compare_out ≤ tempcomp;

61 end process;

62

63 end Behavioral;

64 −−−−−−−−−−−−−−−SHIFT REGISTER OUTLIER LOGIC−−−−−−−−−−−−−−−−−−−−−−
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65 entity Shifter is

66 port(reg2_in: in std_logic;

67 reg2_out: out std_logic_vector(9 downto 0);

68 rst: in std_logic;

69 clk: in std_logic

70 );

71

72 end Shifter;

73 architecture Behavioral of Shifter is

74 signal sig2: std_logic_vector(9 downto 0):= (others => '0');

75 begin

76 process(clk,sig2)

77 begin

78 if (clk'event and clk = '1') then

79 if rst = '1' then

80 reg2_out ≤ (others => '0');

81 sig2 ≤ (others => '0');

82 −− Shift left and store the values out from COM1 these are telling ...

us about the signal if we are

83 −−going down the signal or up the signal for the outlier event

84 else

85 sig2(0) ≤ reg2_in;

86 sig2(1) ≤ sig2(0);

87 sig2(2) ≤ sig2(1);

88 sig2(3) ≤ sig2(2);

89 sig2(4) ≤ sig2(3);

90 sig2(5) ≤ sig2(4);

91 sig2(6) ≤ sig2(5);

92 sig2(7) ≤ sig2(6);

93 sig2(8) ≤ sig2(7);

94 sig2(9) ≤ sig2(8);

95 end if;

96 end if;

97 reg2_out ≤ sig2;

98 end process;

99

100 end Behavioral;

101

102

103 −−−−−−−−−−−−−−−−−−−−−−−−−−MINIMA ...

LOGIC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 signal temp20: std_logic_vector(9 downto 0);

105 signal temp31: std_logic ;

106 signal ones: std_logic:='0';
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107 signal valleyfoundtemp: std_logic:='0';

108 signal zeros: std_logic:='0';

109 signal change: std_logic:='0';

110 begin

111 ADD : adder PORT MAP(adder_in_s1 => data_in,adder_out => ...

temp1,clr => clr,clk =>clk,alpha2=>alpha2);

112 COM1: Comparator PORT MAP (compare_in_sample => ...

temp11,compare_in_ref => temp12,compare_out => temp31,clk ...

=>clk,rst=>clr);

113 SHFT: Shifter PORT MAP(rst => clr, reg2_in => temp31,clk => ...

clk,reg2_out => temp20);

114 SHFT2: shft22 PORT MAP(rst => clr,shft_in => temp1, clk => clk, ...

shft_out(21 downto 11) => temp11, shft_out(10 downto 0) => ...

temp12);

115

116

117 −− Calculations to find the valleys in the signal using data from ...

shifter

118 −−ones, if we detect 4 ones in a row outut 1

119 ones ≤ ((temp20(3) AND temp20(2)AND temp20(1)AND temp20(0))) OR

120 (NOT(temp20(3)) AND temp20(2)AND temp20(1)AND temp20(0)) OR

121 (temp20(3) AND NOT(temp20(2))AND temp20(1)AND temp20(0)) OR

122 (temp20(3) AND temp20(2)AND NOT(temp20(1))AND temp20(0)) OR

123 (temp20(3) AND temp20(2)AND NOT(temp20(1))AND NOT(temp20(0)));

124

125 −−zeros, if we detect 4 zeroes in a row output 1

126 zeros ≤ ((NOT(temp20(9)) AND NOT(temp20(8)) AND NOT(temp20(7)) AND ...

NOT(temp20(6))))OR

127 ((temp20(9)) AND NOT(temp20(8)) AND NOT(temp20(7)) AND ...

NOT(temp20(6))) OR

128 (NOT(temp20(9)) AND (temp20(8)) AND NOT(temp20(7)) AND ...

NOT(temp20(6))) OR

129 (NOT(temp20(9)) AND NOT(temp20(8)) AND (temp20(7)) AND ...

NOT(temp20(6))) OR

130 (NOT(temp20(9)) AND NOT(temp20(8)) AND NOT(temp20(7)) AND ...

(temp20(6)));

131

132 −− if the middle two bits are 0 and 1 output is one this ...

indicates a change in direction

133 change ≤ (NOT(temp20(5)) AND temp20(4));

134

135 −− If all are true possible valley detected output a 1

136 valley_found ≤ (ones AND zeros AND change);

137 end Behavioral;
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138

139

140

141

142

143 −−−−−−−−−−−−−TIME STAMP TRANSITION ...

COUNTER−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
144 entity CountMod is

145 port(startstop,rst,clk: in std_logic;

146 countout: out std_logic_vector(9 downto 0)

147 );

148 end CountMod;

149 −− This is a start, stop and reset counter, when a valley is ...

detected from the valdet block

150 −− the counter starts if another is detected we reset the count, ...

and start counting again.

151 architecture Behavioral of CountMod is

152 signal count: std_logic_vector(9 downto 0) := (others => '0');

153 signal startcount: std_logic := '0';

154 begin

155 process(clk,count)

156 begin

157 if clk'event and clk = '1' then

158 if rst = '1' then

159 count ≤ (others => '0');

160 countout ≤ (others => '0');

161 startcount ≤ '0';

162 else

163 −−if a valley is detected

164 if startstop = '1' then

165 −−send a flag to start the transitional up counter

166 startcount ≤ '1';

167 end if;

168 −−if the counter is currently counting a transition and a ...

second transition has yet to be found

169 −−then start counting. The variable startstop is sent in from ...

a control block which indicates

170 −− a reset

171 if startcount = '1' and startstop = '0' then

172 count ≤ count + 1;

173 else

174 count ≤ (others => '0');

175 end if;

176 end if;
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177 end if;

178 countout ≤ count;

179 end process;

180 end Behavioral;

181

182 −−−−−−−−−−−−−CONTROL BLOCK FLAGS FOR CALCULATION ...

BLOCK−−−−−−−−−−−−−−−−−−−−
183 entity Calculations is

184 PORT(ready1, ready2,clk,rst: in std_logic;

185 flag1,flag3,flag5: out std_logic);

186

187 end Calculations;

188

189 architecture Behavioral of Calculations is

190 signal countv1: std_logic:='0';

191 signal countv2: std_logic:='0';

192 type states is (sr,calc1);

193 signal current_s,next_s: states;

194 begin

195

196 process (clk)

197 begin

198 if clk'event and clk = '1' then

199 if rst='1' then

200 current_s ≤ sr;

201 else

202 current_s ≤ next_s;

203 end if;

204 end if;

205 end process;

206

207

208

209 process(current_s,countv1,countv2,rst)

210 begin

211 case current_s is

212 when sr => if rst = '1' then

213 next_s ≤ sr;

214 else

215 −−−countv1 is 1 if a minima was detected in signal 1 and ...

countv2 is 1 if −−
216 −−−a minima was detected in signal 2, else ...

0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
217 if countv1 = '1' and countv2 = '1' then
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218 next_s ≤ calc1;

219 else

220 next_s ≤ sr;

221 end if;

222 end if;

223 when others => next_s ≤ sr;

224 end case;

225 end process;

226

227 process(clk)

228 begin

229 if clk'event and clk = '1' then

230 if next_s = calc1 then

231 −−−2 minima detected reset−−−−−
232 countv1 ≤ '0';

233 countv2 ≤ '0';

234 else

235 −−−−this is the block which sets the minima detected ...

signals−−−−−−−−−−−−−−−
236 −−−−−ready1 cis a flag which comes from the minima detection ...

logic block−−
237 if ready1 = '1' then

238 countv1 ≤ '1';

239 else

240 countv1 ≤ countv1;

241 end if;

242

243 if ready2 = '1' then

244 countv2 ≤ '1';

245 else

246 countv2 ≤ countv2;

247 end if;

248 end if;

249 end if;

250

251 end process;

252

253

254 process (current_s,ready1,ready2)

255 begin

256

257 if current_s = sr then

258 flag5 ≤ '0';

259 if ready1 = '1' then
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260 flag1 ≤ '1';

261 else

262 flag1 ≤ '0';

263 end if;

264 if ready2 = '1' then

265 flag3 ≤ '1';

266 else

267 flag3 ≤ '0';

268 end if;

269

270

271 else

272 flag5 ≤ '1';

273 if ready1 = '1' then

274 flag1 ≤ '1';

275 else

276 flag1 ≤ '0';

277 end if;

278 if ready2= '1' then

279 flag3≤ '1';

280 else

281 flag3 ≤ '0';

282 end if;

283

284 end if;

285

286 end process;

287 end Behavioral;

288

289 −−−−−−−−−−−−−CALCULATION BLOCK ABSOLUTE VALUE OF TRANSITIONS ...

FROM TIMESTAMP BLOCK−−−−−−−−−−
290 entity Calcflags is

291 PORT(clk: in std_logic;

292 flag1,flag3,flag5,rstorage: in std_logic;

293 offset: in std_logic_vector(2 downto 0);

294 flagout: out std_logic;

295 countsubed: out std_logic_vector(9 downto 0);

296 raw: out signed(9 downto 0);

297 countin1, countin2: in std_logic_vector(9 downto 0)

298 );

299 end Calcflags;

300

301 architecture Behavioral of Calcflags is

302 signal storagea1 : std_logic_vector(9 downto 0) := (others => '0');
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303 signal storageb1 : std_logic_vector(9 downto 0) := (others => '0');

304 signal calcu1 : signed(9 downto 0) := (others => '0');

305 begin

306

307

308 process(clk,calcu1)

309 begin

310 if clk'event and clk = '1' then

311 if rstorage = '1' then

312 storagea1 ≤ (others => '0');

313 storageb1 ≤ (others => '0');

314 calcu1 ≤ (others => '0');

315 countsubed ≤ (others => '0');

316 flagout ≤ '0';

317 else

318

319 if flag1 = '1' then

320 −−if a transition period was found then store the value of count−−
321 −−to the storage registers

322 storagea1 ≤ countin1;

323 else

324 storagea1 ≤ storagea1 ;

325 end if;

326

327 if flag3 = '1' then

328 storageb1 ≤ countin2−offset;
329 else

330 storageb1 ≤ storageb1;

331 end if;

332 if flag5 = '1' then

333 −−If a transition period in both signals has been detected then ...

calculate the error

334 calcu1 ≤ (signed(storagea1) − signed(storageb1));

335 flagout ≤ '1';

336 else

337 calcu1 ≤ (others => '0');

338 flagout ≤ '0';

339 end if;

340 end if;

341 end if;

342 raw ≤ calcu1;

343 −−Calculate the absolute value of the error

344 countsubed ≤ std_logic_vector(abs(calcu1));

345 end process;
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346

347 end Behavioral;

348

349 −−−−−−−−−−−−−−−−−INDEXING AND ACCUMULATION ...

BLOCK−−−−−−−−−−−−−−−−−−−−−−−−−−
350 entity Indexing is port

351 (clk,rst: in std_logic;

352 flag: out std_logic;

353 flagin: in std_logic;

354 N: in std_logic_vector(9 downto 0);

355 cal: in std_logic_vector(9 downto 0);

356 sum: out std_logic_vector(9 downto 0)

357 );

358 end Indexing;

359

360 architecture Behavioral of Indexing is

361 signal accumvalue: std_logic_vector(9 downto 0) := (others => '0');

362 signal numberofsamples:std_logic_vector(9 downto 0) := (others => ...

'0');

363 attribute dont_touch : string;

364 attribute dont_touch of sum,accumvalue : signal is "true";

365 begin

366 process(clk)

367 begin

368 if clk'event and clk = '1' then

369 if rst = '1' then

370 sum ≤ (others => '0');

371 accumvalue≤ (others => '0');

372 numberofsamples ≤ (others => '0');

373 else

374 if numberofsamples < N then

375 if flagin = '1' then

376 −−while the the number of accumulations are less than N accumlate ...

errors

377 accumvalue ≤ accumvalue + cal;

378 flag ≤ '0';

379 numberofsamples ≤ numberofsamples + 1;

380 sum ≤ (others => '0');

381 else

382 accumvalue ≤ accumvalue;

383 flag ≤ '0';

384 numberofsamples ≤ numberofsamples;

385 sum ≤ (others => '0');

386 end if;
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387 else

388 flag ≤ '1';

389 sum ≤ accumvalue;

390 numberofsamples ≤ (others => '0');

391 accumvalue≤ (others => '0');

392 end if;

393 end if;

394 end if;

395 end process;

396 end Behavioral;

397

398 −−−−−−−−−−−−−−−OUTPUT EXPONENTIAL ...

FILTER−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
399

400 library IEEE;

401 use IEEE.STD_LOGIC_1164.ALL;

402 USE IEEE.STD_LOGIC_UNSIGNED.ALL;

403 use IEEE.NUMERIC_STD.ALL;

404

405

406 entity SmoothDetect is port

407 (sumin: in std_logic_vector(9 downto 0);

408 flag,rst: in std_logic;

409 sumout: out std_logic_vector(9 downto 0);

410 alpha: in std_logic_vector(3 downto 0);

411 clk: in std_logic);

412

413 end SmoothDetect;

414

415 architecture Behavioral of SmoothDetect is

416 signal y_minus_1: std_logic_vector(9 downto 0):= (others => '0');

417 attribute dont_touch : string;

418 attribute dont_touch of y_minus_1 : signal is "true";

419 attribute dont_touch of sumout : signal is "true";

420 begin

421

422 process(clk,y_minus_1)

423 begin

424 if clk'event and clk = '1' then

425 if rst = '1' then

426 y_minus_1 ≤ (others => '0');

427 sumout ≤ (others => '0');

428 else

429 if flag = '1' then
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430 −−This is the main calculation for the output exponential filter

431 y_minus_1 ≤ (y_minus_1 − ...

to_stdlogicvector((to_bitvector(y_minus_1) srl ...

to_integer(unsigned(alpha))))) + ...

to_stdlogicvector(to_bitvector(sumin) srl ...

to_integer(unsigned(alpha)));

432 else

433 y_minus_1 ≤ y_minus_1;

434 end if;

435 end if;

436 end if;

437 sumout ≤ y_minus_1;

438 end process;

439 end Behavioral;

440

441 −−−−−−−−−UPLOAD LINK BLOCK UPLOADS ALL OF THE PARAMETERES FOR THE ...

ASIC−−−−−−
442 −−−−−−−−−NOTE THAT THIS USES A 48 BIT SIPO REGISTER−−−−−−−−−−−−−−−−−−
443 entity UploadLink is

444 port(clk2,rst,datain1,datain2,loadparameters:in std_logic;

445 clkout,paramcomplete,rst2:out std_logic;

446 dataout1,dataout2: out std_logic_vector(9 downto 0);

447 N: out std_logic_vector(9 downto 0);

448 alpha: out std_logic_vector(3 downto 0);

449 alpha2: out std_logic_vector(3 downto 0);

450 offset: out std_logic_vector(2 downto 0);

451 Ndetected: out std_logic_vector(5 downto 0);

452 Tdropout: out std_logic_vector(9 downto 0);

453 Triseout: out std_logic_vector(9 downto 0)

454 );

455 end UploadLink;

456

457 architecture Behavioral of UploadLink is

458

459 signal shiftdata1: std_logic_vector(9 downto 0):= (others => '0');

460 signal shiftdata2: std_logic_vector(9 downto 0):= (others => '0');

461 signal dummy1: std_logic_vector(9 downto 0):= (others => '0');

462 signal dummy2: std_logic_vector(9 downto 0):= (others => '0');

463 signal parameterreg: std_logic_vector(47 downto 0):= (others => '0');

464 signal counterd1d2: std_logic_vector(3 downto 0):= (others => '0');

465 signal countert1t2: std_logic_vector(5 downto 0):= (others => '0');

466 signal slavecounter: std_logic_vector(3 downto 0);

467 signal paramcomplete2: std_logic := '0';

468 signal clktemp,test: std_logic;
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469 attribute dont_touch : string;

470 attribute dont_touch of dummy1,dummy2: signal is "true";

471 begin

472 process(clk2,dummy1,dummy2,paramcomplete2)

473 begin

474

475 if clk2'event and clk2 = '1' then

476 −−−−−−−−−−−−−−−−−−clockslave−−−−−−−−−−−−−−−−−−−−−−−−−
477

478 if rst = '1' then

479 shiftdata1 ≤ (others => '0');

480 shiftdata2 ≤ (others => '0');

481 paramcomplete2 ≤ '0';

482 parameterreg ≤ (others => '0');

483 counterd1d2 ≤ (others => '0');

484 countert1t2 ≤ (others => '0');

485 dataout1 ≤ (others => '0');

486 dataout2 ≤ (others => '0');

487 Tdropout ≤ (others => '0');

488 Triseout ≤ (others => '0');

489 N ≤ (others => '0');

490 alpha ≤ (others => '0');

491 alpha2 ≤ (others => '0');

492 offset ≤ (others => '0');

493 Ndetected ≤ (others => '0');

494 slavecounter ≤ (others => '0');

495 dummy1 ≤ (others => '0');

496 dummy2 ≤ (others => '0');

497 clktemp ≤ '0';

498 rst2 ≤ '1';

499 else

500 if slavecounter ≤ "0101" then

501 slavecounter ≤ slavecounter + 1;

502 clktemp ≤ '1';

503 elsif slavecounter ≥ "0110" and slavecounter < "1011" then

504 clktemp ≤ '0';

505 slavecounter ≤ slavecounter + 1;

506 else

507 rst2 ≤ '0';

508 slavecounter ≤ (others => '0');

509 end if;

510 −−−−−−−−−−−−−−−−−−−datain−−−−−−−−−−−−−−−−−−−−−−−−
511 if paramcomplete2 = '1' then

512 if counterd1d2 ≤ "1001" then
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513 shiftdata1(9 downto 1) ≤ shiftdata1(8 downto 0);

514 shiftdata1(0) ≤ datain1;

515 shiftdata2(9 downto 1) ≤ shiftdata2(8 downto 0);

516 shiftdata2(0) ≤ datain2;

517 counterd1d2 ≤ counterd1d2 + 1;

518 elsif counterd1d2 = "1010" then

519 dummy1 ≤ shiftdata1;

520 dummy2 ≤ shiftdata2;

521 counterd1d2 ≤ counterd1d2 + 1;

522 else

523 shiftdata1 ≤ (others => '0');

524 shiftdata2 ≤ (others => '0');

525 counterd1d2 ≤ (others => '0');

526 end if;

527 else

528 shiftdata1 ≤ (others => '0');

529 shiftdata2 ≤ (others => '0');

530 counterd1d2 ≤ (others => '0');

531 end if;

532 −−−−−−−−−−−−−−−−−−−constants−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
533 if countert1t2 < "110001" then

534 countert1t2 ≤ countert1t2 + 1;

535 parameterreg(47 downto 1) ≤ parameterreg(46 downto 0);

536 parameterreg(0) ≤ loadparameters;

537 paramcomplete2 ≤ '0';

538 else

539 −−parametercheckreg ≤ parameterreg;

540 Tdropout ≤ parameterreg(47 downto 37);

541 Triseout ≤ parameterreg(36 downto 27);

542 Ndetected ≤ parameterreg(26 downto 21);

543 offset ≤ parameterreg(20 downto 18);

544 alpha ≤ parameterreg (17 downto 14);

545 alpha2 ≤ parameterreg(13 downto 10);

546 N ≤ parameterreg(9 downto 0);

547 paramcomplete2 ≤ '1';

548 end if;

549 end if;

550 end if;

551 dataout1 ≤ dummy1;

552 dataout2 ≤ dummy2;

553 paramcomplete ≤ paramcomplete2;

554 end process;

555

556 clkout ≤ clktemp;
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557 end Behavioral;

558 −−−−−−−−−−−−−−−−−−−−−−DOWNLOAD LINK THIS IS THE PISO REGISTER−−−−−
559 −−−−−−−−−−−−−−−−−−−−−−−FOR THE SYNCHRONISATION VALUES−−−−−−−−−−−−−
560 −−−−−−−−−−−−−−−−−−−−−−−AND TEST PARAMETERS−−−−−−−−−−−−−−−−−−−−−
561 entity DownloadLink is

562 port(clk,rst,load: in std_logic;

563 sumin:in std_logic_vector(9 downto 0);

564 nonsmoothed: in STD_LOGIC_VECTOR (9 downto 0);

565 sumserialout,beforesmooth: out std_logic

566 );

567 end DownloadLink;

568

569

570

571 architecture Behavioral of DownloadLink is

572

573 signal holdsum: std_logic_vector(9 downto 0):= (others => '0');

574 signal nonsmoothedsum: std_logic_vector(9 downto 0):= (others => '0');

575 begin

576 process(clk,holdsum,nonsmoothedsum)

577 begin

578 if clk'event and clk = '1' then

579 if rst = '1' then

580 holdsum ≤ (others => '0');

581 sumserialout ≤ '0';

582 nonsmoothedsum ≤ (others => '0');

583 beforesmooth ≤ '0';

584 else

585 if load = '1' then

586 holdsum ≤ sumin;

587 nonsmoothedsum ≤ nonsmoothed;

588 else

589 holdsum(9 downto 1) ≤ holdsum(8 downto 0);

590 holdsum(0) ≤ '0';

591 nonsmoothedsum(9 downto 1) ≤ nonsmoothedsum(8 downto 0);

592 nonsmoothedsum(0) ≤ '0';

593 end if;

594 end if;

595 end if;

596 sumserialout ≤ holdsum(9);

597 beforesmooth ≤ nonsmoothedsum(9);

598 end process;

599 end Behavioral;
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B.4 RTL-compiler

1 #set_attribute hdl_vhdl_environment common

2 set_attribute hdl_vhdl_read_version 1993

3 set_attribute hdl_vhdl_case original

4 # this tells the compiler where to look for the libraries

5 set_attribute lib_search_path ...

/cad/KITS/CADENCE_13/ams_cdk_4.11_upd1/liberty/h18_1.2V

6 #this defies the libraries to use

7 set_attribute library {h18_CORELIB_HVT_TYP.lib}

8 #convert non conventional operands to library specified operands

9 set_attribute lp_insert_operand_isolation true /

10 #Clock gating on (reduces power consumption)

11 set_attribute lp_insert_clock_gating true /

12 #How much information to show user on design

13 set_attribute information_level 7

14 #Flag black box errors

15 set_attribute hdl_error_on_blackbox 1

16 #Flag latch errors

17 set_attribute hdl_error_on_latch 1

18 set_attribute interconnect_mode ple

19 #Load all VHDL files

20 read_hdl −vhdl ../rtl/adder.vhd

21 read_hdl −vhdl ../rtl/Calcflags.vhd

22 read_hdl −vhdl ../rtl/Comparator.vhd

23 read_hdl −vhdl ../rtl/CountMod.vhd

24 read_hdl −vhdl ../rtl/Detection.vhd

25 read_hdl −vhdl ../rtl/Indexing.vhd

26 read_hdl −vhdl ../rtl/Main.vhd

27 read_hdl −vhdl ../rtl/MainMain.vhd

28 read_hdl −vhdl ../rtl/shft22.vhd

29 read_hdl −vhdl ../rtl/Shifter.vhd

30 read_hdl −vhdl ../rtl/SmoothDetect.vhd

31 read_hdl −vhdl ../rtl/Valleydetect.vhd

32 read_hdl −vhdl ../rtl/Comlink.vhd

33 read_hdl −vhdl ../rtl/UploadLink.vhd

34 read_hdl −vhdl ../rtl/DownloadLink.vhd

35 read_hdl −vhdl ../rtl/Paramcheck.vhd

36 #Elaborate the design

37 elaborate Comlink

38 #Read constraints file

39 read_sdc ../constrains/CountMod.sdc
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40 #setup clocks in this case max frequency 125KhZ

41 define_clock −domain "system" −period 8000000 −fall 50 −rise 50 ...

−name clkup [find / −port clkup]

42 #Define the amount of skew

43 set_attribute clock_setup_uncertainty {100 50} [find −clock clkup]

44 #Define the amount of slew {minrise,minfall,maxrise,maxfall}

45 set_attribute slew {1000 1000 1500 1500} [find −clock clkup]

46 #Define input delays #all inputs will change 10000 ps after rising ...

edge

47 external_delay −input 100000 −clock [find −clock clkup] −edge_rise ...

[find /des* −port ports_in/*]

48 #Define output delays #all output data will be ready 10000 ps ...

before rising edge

49 external_delay −output 100000 −clock [find −clock clkup] ...

−edge_rise [find /des* −port ports_out/checkdata1]

50 external_delay −output 100000 −clock [find −clock clkup] ...

−edge_rise [find /des* −port ports_out/checkdata2]

51 #Synthesise the design

52 synthesize −to_generic −effort high

53 synthesize −to_mapped −effort high

54 #Write final verilog file to be used in encounter layout

55 write_hdl > ../Outputs/Phase_final_VERILOG_preserved.v

B.5 MBED-C++ test platform code

1 #include "mbed.h"//import mbed libraries

2 #include "MSCFileSystem.h"

3 #include "rtos.h"

4 #include "FastPWM.h"

5 //Setup all the GPIO pins and special pins

6 DigitalOut Clear(p14);

7 DigitalOut Msel1(p13);

8 DigitalOut Msel2(p15);

9 DigitalOut Enable(p10);

10 DigitalOut aaout(p29);

11 DigitalOut Sig1Out(p11);

12 DigitalOut Sig2Out(p16);

13 DigitalOut CLK(p12);

14 FastPWM CLK2(p23);

15 DigitalIn SIindex(p27);
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16 //Use the MSCFilesystem to read from the Fat32 SUB stick

17 MSCFileSystem fs("usb");

18 Ticker ticker2;

19 Ticker ticker3;

20 InterruptIn CLKs(p18);

21 InterruptIn Mux(p28);

22 Thread thread;

23 //Open serial USB port

24 Serial pc(USBTX, USBRX);

25 //Intermidiate variables

26 bool rising = false;

27 bool rising2 = false;

28 bool rising3 = false;

29 char s1;

30 char s2;

31 bool s1int = false;

32 bool s2int = false;

33 int loop = 1;

34 bool runit = true;

35 int temp = 0;

36 //This is a seperate thread which reads the output of the ASIC ...

every clock cycle it is active only if the end

37 //of the binary neural data files are still not empty, if the ...

variable K from the ASIC is active high and if the processors

38 //CLK is also high. It reads 10 samples.

39 void clockslow_thread()

40 {

41 while(runit == true) {

42 if(rising2 == true) {

43 for(int nn = 0; nn < 11; nn++) {

44 if(CLK == true) {

45 pc.printf("%d%d \r\n",SIindex.read(),rising2);

46 }

47

48 }

49

50 }

51 }

52 //Seperate function which sets up the main synchronisation CLK for ...

the processor 2KHz

53 //This gets called using a timer and is called periodically.

54 void clocktick2() {

55 CLK = !CLK;

56 }
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57 //This is a function which is activated by an external interrupt ...

Mux.rise.

58 //How this is activated is explained later

59 void interrupt_triggered2() {

60 rising2 = true;

61 }

62 //The next functions setup a matched register case PWM fast clock ...

of 20KHz on a dedicated

63 //PWM pin on the MBED

64 void PWMInit();

65 void PWM1_IRQHandler () {

66 if((LPC_PWM1−>IR & 0x01) == 0x01) { // Check whether it is ...

an interrupt from match 0

67 //If the PWM is rising then set this variable to true, ...

this is an edge detector

68 rising = true;

69 LPC_PWM1−>IR |= 1<<0; // Clear the interrupt flag

70 }

71 return;

72 }

73

74 void PWMInit() {

75 LPC_SC−>PCONP |= 1 << 6; // enable power for PWM1

76 LPC_SC−>PCLKSEL0 |= 1 << 12; // PCLK_PWM1 = CCLK

77

78 LPC_PWM1−>MR0 = 16000; // PWM freq = CCLK/16000

79

80 LPC_PWM1−>MCR |= 1 << 0; // interrupt on Match0

81

82 LPC_PINCON−>PINSEL3 |= (2 << 14 ); // P2.4 works as PWM1 ...

output

83 LPC_PINCON−>PINMODE3 |= 2 << 14; // enable neither pull up ...

nor pull down

84

85

86 LPC_PWM1−>PCR |= 1 << 4; // Configure channel 4 as double ...

edge controlled PWM

87 LPC_PWM1−>PCR |= 1 << 12; // Enable PWM channel 4 output

88

89 LPC_PWM1−>MR0 = 16000; // PWM freq = CCLK/16000

90

91 LPC_PWM1−>TCR = (1 << 0) | (1 << 3); // enable timer ...

counter and PWM

92
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93

94 NVIC_SetVector(PWM1_IRQn, (uint32_t)&PWM1_IRQHandler);

95 NVIC_EnableIRQ(PWM1_IRQn);

96 return;

97 }

98

99

100 int main() { // start main function

101

102

103 PWMInit();

104

105 //Set the serial communication bandwidth for the USB port

106 pc.baud(115200);

107 //These variables set an internal MUX inside the ASIC such ...

that the ASIC sends out

108 //a pulse every 1024 samples. This tells us every time ...

that an accumulation of errors

109 //has been colleted

110 Msel1=1;

111 Msel2 = 1;

112 //Enable sets an internal variable in the ASICs SPI ...

interface which tells it to activate

113 Enable = 1;

114 //Open the two neural signal files which are stored on the ...

Fat32 formatted memory stick

115 FILE *fp = fopen("/usb/Signal1.txt", "r");

116 FILE *fp2 = fopen("/usb/Signal2.txt", "r");

117 //Print an error message if there was a problem opening ...

the files

118 pc.printf("%s\n", (!fp ? "Fail :(" : "OK"));

119 if (!fp)

120 error("error: %s (%d)\n", strerror(errno), −errno);
121 wait(2);

122 //Start runnning a seperate thread which calls the CLK ...

funtion as described above

123 //This calls the Clk function every 500 micro seconds ...

which is equal to 2KHz main

124 //processor operating frequency

125 thread.start(&clockslow_thread);

126 ticker2.attach_us(&clocktick2, 500);

127 //This is an external interrupt which is connected to the ...

value K from the ASIC.
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128 //This is a single pulse every 1024 samples which sets the ...

variable rising2 to true

129 Mux.rise(&interrupt_triggered2);

130 //This is the main file loop it continues until the end of ...

the fneural signal file

131 while (!feof(fp)) {

132 LPC_PWM1−>MR3 = 6000;

133 LPC_PWM1−>MR4 = 15000;

134 LPC_PWM1−>LER |= (1<<3) | (1<<4) ;

135 //If the variable rising is true it means that a ...

rising edge on the 20KHz clock has been detected

136 //If this is true then we want to read data from the ...

Fat32 USB stick and send it to the ASIC

137 if(rising == true) {

138 rising = false;

139 //Collect 1 bit of data from each of the two ...

neural signal files

140 s1 = fgetc(fp);

141 s2 = fgetc(fp2);

142 //Since the function fgetc is a character we have ...

to do a test and assign an intermidate

143 //variable with a boolean variable which is ...

representative of the character.

144 if(s1 == '1') {

145 s1int = true;

146 } else if (s1 == '0') {

147 s1int =false;

148 }

149 if(s2 == '1') {

150 s2int = true;

151 } else if (s2 == '0') {

152 s2int = false;

153 }

154

155 //Send the data to the GPIO pins which are ...

connected to the ASICS data intput pins

156 Sig1Out = s1int;

157 Sig2Out = s2int;

158 }

159 }

160 fclose(fp);

161 fclose(fp2);

162 runit = false;

163 }
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Chapter C

Pseudo codes

C.1 Pseudo code DDA hardware flow

The following is a pseudo code representation of the synchronisation algorithm hardware
flow as seen in chapter 3.

1: procedure Minima detection ▷ Example signal 1, same applies to signal 2
2: loop:
3: if S1(i) < S1(i− 1) then
4: C1← 0.
5: else if S1(i) > S1(i− 1) then
6: C1← 1.
7: else
8: C1← C1.
9: if O1 = 0000011111 then ▷ Possible to have one outlier each side

10: M1← 1.
11: else
12: M1← 0.
13: procedure Time stamp
14: if M1 = 1 then
15: Co← Count.
16: Co← 0.
17: else
18: Co← Co + 1.
19: procedure Calculation and Filter
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20: if K < Window then
21: if M1 = 1 ∧m2 = 1 then
22: L1← Co.
23: L2← Co.
24: Sub← L1 - L2.
25: if s = 0 then
26: Abs← Sub.
27: else
28: Abs← |Sub|.
29: Adderout← Abs+feed.
30: M1← 0.
31: M2← 0.
32: else
33: null
34: else
35: ϕ(i)← phiraw.
36: Exp← smoothed(Addreg).
37: y(i)← y(i− 1)− y(i− 1)α + ϕ(i)α.
38: procedure Detect
39: if y(i) < thl then
40: Detect← 1.
41: else if y(i) > thh then
42: Detect← 1.
43: else
44: Detect← 0.
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C.2 Pseudo code for training and calculation hard-
ware flow

1: procedure Train and Calculate
2: if Inital = 1 then
3: MemLepoch,1:8 ← 1.
4: MemHepoch,1:8 ← 0.
5: else if Train = 1 then
6: if y(i)epoch(x) < MemLepoch(x) then
7: MemLepoch(x) ← y(i)epoch(x).
8: T6← 1.
9: else

10: MemLepoch(x) ←MemLepoch(x).
11: T7← 1.
12: if y(i)epoch(x) > MemHepoch(x) then
13: MemHepoch(x) ← y(i)epoch(x).
14: T2← 1.
15: else
16: MemHepoch(x) ←MemHepoch(x).
17: T1← 1.
18: else
19: loop while epoch < 9 :
20: if S1 = 1 then
21: MemLepoch(x) ← ∆.
22: MemHepoch(x) ←MemHepoch(x).
23: T4← 1.
24: T1← 1.
25: T8← 1.
26: else if S2 = 2 then
27: MemLepoch(x) ← ∆.
28: MemHepoch(x) ←MemHepoch(x) −∆.
29: T7← 1.
30: T8← 1.
31: T2← 1.
32: else if S3 = 3 then
33: MemHepoch(x) ←MemHepoch(x).
34: MemLepoch(x) ←MemHepoch(x) − 2∆.
35: T9← 1.
36: T5← 1.
37: T1← 1.





Chapter D

Control signals for future
16-channel testing platform

The following appendix shows the main control signals for the 16-channel ASIC implementation of the
DDA algorithm. Where, the first column indicates if the signal is an input or an output. Next, the
signal name is given as seen in the layout view of the device. The number column indicates the pin
number as per the selected encapsulation package. The Voltage is the desired voltage for the pin. The
pin type differentiates between pad ring power supply voltages, circuit supply voltages and general
input output pins. The function column gives a brief description of the pin and the last column
dictates whether the pin is active on a high or low signal.
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This thesis introduces a state-of-the-art algorithm and indexing equation
for the detection of phase synchronisation in pathological brains. When
tested on Epileptic data the algorithm produced results similar to that of
more complex methods, such as the Hilbert transform and phase locking
value. The proposed algorithm produced an absolute sensitivity of over 80
% for an FP/h of 0.75 and as much as 90% at the upper limit of the 95%
confidence thresholds. Furthermore the algorithm allows for nearly a 90%
reduction in digital logic when compare to other methods with the total
number of flip-flops, LUTs and slices of 112, 60 and 37 respectively.

In addition, a sub-threshold digital VLSI processor was designed. The
main processor consits of 15 sub-processors (including dedicated training
and threshold calculation modules for patient specific epilepsy treatment
and detection) and is capable of calculating the phase synchrony between 9
independent EEG signals over 8 epochs of time totalling 120 EEG combina-
tions. The ASIC was designed in an AMS 0.18µm high voltage, low leakage
technology using a fully custom 0.5v threshold digital logic library to re-
duce total power consumption and operates from a main clock frequency
of 2KHz. Each sub processor consumes just 15nW of power.

The core area of the design occupies only 3.64mm2, whilst the SPI input
interface occupies 0.091mm2 and the output interface occupies 0.063mm2.
Each synchronisation processor occupies 0.04mm2, whilst, each training and
calculation module occupies 0.066mm2.
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