
Detecting Conflicts and Inconsistencies in Web
Application Requirements

Matias Urbieta1,3, Maria Jose Escalona2, Esteban Robles Luna1,
and Gustavo Rossi1,3

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{murbieta,esteban.robles,gustavo}@lifia.info.unlp.edu.ar

2 IWT2 Group. University of Seville, Spain
mjescalona@us.es

3 Conicet

Abstract. Web applications evolve fast. One of the main reasons for this
evolution is that new requirements emerge and change constantly. These new
requirements are posed either by customers or they are the consequence of
users’ feedback about the application. One of the main problems when dealing
with new requirements is their consistency in relationship with the current
version of the application. In this paper we present an effective approach for
detecting and solving inconsistencies and conflicts in web software
requirements. We first characterize the kind of inconsistencies arising in web
applications requirements and then show how to isolate them using a model-
driven approach. With a set of examples we illustrate our approach.

1 Introduction

Eliciting web application requirements implies understanding the needs of different
stakeholders, those that are related with the same underlying enterprise business. Most
of the times, requirements are agreed by stakeholders in such a way that the semantics
and meanings of each used term is well understood; however when different points of
view [11] of the same business concept exist, ambiguities and/or inconsistencies may
arise, being them detrimental to the Software Requirement Specification (SRS).
Traditionally, conciliation tasks are performed using meeting-based tools, in order to
eliminate requirements ambiguity and inconsistence. When requirement
inconsistencies are not detected on time -being this one of the most severe reason of
project cost overrun [12][17]-, they may become defects in the web software. In this
context, the effort to correct the faults is several orders of magnitude higher than
correcting requirements at the early stages [12].

Inconsistencies may also arise from new requirements, which introduce new
functionality or enhancements to the application or, even, for existing requirements
that change during the development process. For example, an online e-commerce site
may plan a promotion for Christmas, where some products have free shipping for a
period of time; meanwhile other products keep the usual shipping cost. This
new

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/227044212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

requirement introduces changes that are perceived by the user because he can see
promotional banners in different pages. It is noteworthy that the existing “shipping”
requirement is overridden (and contradicted) with the shipping cost exception,
introducing ambiguities: what products have the free shipping promotion? In which
way users are notified? How long will the promotion be available?

In this paper we present a model-based validation and inconsistency detection
technique for web application requirements, particularly for those that reflect
themselves during navigation and interaction, two aspects are the key features of web
applications. Though we exemplify our technique with WebSpec[15], the same ideas
can be easily applied to other similar approaches such as WebRE[8] or Molic[6]. By
using this technique we reduce the risk of errors and costs caused by inconsistencies
detected in the final stages of software development.

The main contributions of this paper are threefold: a characterization of web
application requirement inconsistencies depending on a taxonomy for conflicts; a
modular approach for detecting inconsistencies that can easily complement any web
application engineering process no matter its style: agile or unified; and a set of
running examples to illustrate our approach.

The rest of this paper is structured as follows. Section 2 presents some related work
in requirements validation. Section 3 introduces the background for the paper. Section
4 presents our characterization of web requirement conflicts. Section 5 describes our
approach to detect and deal with inconsistencies. Section 6 presents a tool which
provides support for conflict detection analysis. Finally Section 7 concludes this work
discussing the lessons learned, our main conclusions and some further work on this
subject.

2 Related Works

The analysis and detection of conflicts in the requirements phase are one of the most
critical tasks in requirements engineering [15]. A global view presented in [7] divides
this phase in three main tasks: requirements capture, requirements definition and
requirements validation. The detection of conflicts is normally executed in the last
one. In [7] the authors surveyed the way in which web engineering approaches dealt
with these three phases and conclude that requirements validation is one of the less
treated. Besides, none of these techniques offers a systematic detection of conflicts in
requirements. Approaches studied in this survey support four main techniques for
requirements validation: reviews, audits, traceability matrix and prototypes. In [16]
this set is enriched adding requirements test. It consists in the generation of early test
cases derived from requirements, which enables the early validation with users.

Recently, some web design approaches, such as WebML[5], support this idea using
the model-driven paradigm. However, even offering systematic (or even automatic)
support for early testing, the detection of inconsistencies in the requirements
specification continues being “too artisanal” and depends on the analyst’s experience
and his/her capability for supporting the review with customers and users.

Focusing only on the detection of conflicts, in [3], an approach to detect conflict in
concerns is presented. In this approach, the authors propose the use of a Multiple
Criteria Decision Making method to support aspectual conflict management in aspect
oriented requirements. The main limitation of this approach it that it is oriented to
aspect-oriented requirements treatment and it only deals with concern conflicts.

In other phases of the life cycle, the conflict detection process has been researched
intensively by the model-driven community mainly focused to UML model conflicts.
In [1] the author proposes detecting conflict in a twofold process: analyzing syntactic
differences raising candidate conflicts and understanding these differences from a
semantic view.

3 Background

In this work we focus on detecting conflicts in web applications requirements which
are modeled using WebSpec, a web requirement meta-model describing interactions,
navigations and interface aspects.

WebSpec[15] is a visual language; its main artifact for specifying requirements is
the WebSpec diagram which can contain interactions, navigations and rich behaviors.

A WebSpec diagram defines a set of scenarios that the web application must
satisfy. An interaction (denoted with a rounded rectangle) represents a point where
the user can interact with the application by using its interface objects (widgets).
Interactions have a name (unique per diagram) and may have widgets such as labels,
list boxes, etc. In WebSpec, a transition (either navigation or rich behavior) is
graphically represented with arrows between interactions while its name,
precondition and triggering actions are displayed as labels over them. In particular, its
name appears with a prefix of the character ‘#’, the precondition between {} and the
actions in the following lines.

The scenarios specified by a WebSpec diagram are obtained by traversing the
diagram using the depth-first search algorithm. The algorithm starts from a set of
special nodes called “starting” nodes (interactions bordered with dashed lines) and
following the edges (transitions) of the graph (diagram).

As an example of WebSpec’s concepts we present in Fig. 1 the specification for
the user story: “As a customer, I would like to search products by name and see their
details” in an e-commerce application. Home represents the starting point of the
specification and it contains 2 widgets: searchField text field and search button (see
[15] for further details).

4 Characterizing Requirements Conflicts in Web Applications

During requirement specification, there may be cases where two or more scenarios
that reflect the same business logic differ subtly from each other producing an
inconsistency. When these inconsistencies are based on contradictory behaviors, we
are facing a conflict of requirements [10]. Conflicts are characterized by differences
of objects’ features, logical (what is expected) or temporal (when is expected)
conflicts between actions, or even difference of terminology that creates ambiguity.

In this analysis, we will emphasize on web application navigation, as well as user
interaction peculiarities that are not covered in the traditional characterization of
requirement conflicts [10]. Consequently, we provide an interpretation of each
conflict type in the web application realm, using simple but illustrative examples. We
use WebSpec terminology to specify the requirements.

Fig. 1. WebSpec diagram of the Search by name scenario

Structural conflicts stand for a difference in the data expected to be presented in
one web page by different stakeholders. A stakeholder may demand a data to be
shown in a web page that contradicts other stakeholder requirement. For example, a
stakeholder expects a product content description just as a read-only label, while
another one may expect the content as a list of packaged items with an overall
description contradicting the first requirement.

Two web application requirements may contradict the way in which links are
traversed producing navigational conflicts, e.g. having a single source node but two
targets. The target nodes are different, but the event that triggers the navigation and
the condition guards are the same, producing an ambiguity of such requirement. In
WebSpec terms, for a given navigation sequence (or path) composed with
interactions and navigations, there are two navigation alternatives triggered by the
same event. For instance, a WebSpec navigation can define that after clicking the
“Buy” button at the Product interaction, a shopping cart is presented. On the other
hand, the same navigation has as target the PaymentMethod interaction, which allows
selecting a payment method instead of presenting the Shopping cart.

A semantic conflict occurs when the same real world object is described with
different terms. This situation may generate a false negative in the conflict detection
process, since a conflict may not be detected and new terms are introduced into the
system space thus increasing its complexity. As a consequence the same domain
object is modeled in two entities having different terminology. For instance, an e-
commerce site can wrongly define two entities that stand for the same concept: Good
and Product.

5 Detecting and Correcting Conflicts

Next we present our approach that helps detecting conflicts checking the existences of
false positives and false negatives conflicts. The approach comprises the following
steps, depicted in Fig. 2 (notice that steps 1 and 2 are already part of any development
process; therefore the novel contribution begins in step 3):

1. Requirement gathering: Using well-known requirement elicitation techniques such
as meetings, surveys, Joint Application Development (JAD), etc. a Software
Requirement Specification (usually in natural language) is produced. In the case of
an agile underlying development process, a briefer description is usually produced
with user stories [4]; use cases are often used in a unified process style.

2. Requirement modeling: Web application requirements are formalized using a
requirement domain specific language (DSL) (e.g. WebSpec, WebRE or Molic).
This formalization is essential during the validation process with stakeholders. By
means of using a requirement DSL, the validation process can automated.

3. Structural analysis of the web requirements model: by means of an algebraic
comparison of models, candidate structural and navigational conflicts are detected.
Additionally, navigation paths are evaluated for checking their consistency.

4. Semantic analysis: candidate conflicts are analyzed and semantic equivalences are
detected. For each candidate conflict, both the new requirement and the
compromised requirement are translated from a high abstraction level (the
requirements DSL) to a minimal form, using an atomic constructor in order to
detect semantic differences.

5. Conciliation process: once the existence of a conflict is confirmed, we must start
conciliating requirements. This process demands the establishment of a
communication channel among those stakeholders concerned to the conflict.

6. Refinement: When a conflict is confirmed some adjustment and tuning must be
done in order to remove the detected conflict and reach a consistent state.

Fig. 2. The overall process for detecting requirement conflicts

The process is applied iteratively each time a new set of requirement rises. The
new incoming set of requirements is checked with each one of the already
consolidated requirements of the system space. In Fig. 2, those steps that can be
implemented to be automated are grouped with a dashed box and those steps outside
the dashed box are manually elaborated.

Fig. 3. User stories for gathered requirements

5.1 Requirement Gathering and Requirement Modeling (Steps 1 and 2)

In order to describe clearly and accurately the aforementioned process, we use as a
running example the development and extension of an e-commerce site. In Fig. 3,
user stories [4] derived from gathered requirements are shown. Instead of including in
this section the corresponding WebSpec diagrams, we show them in each of the
subsequent steps.

5.2 Detecting Syntactic Differences (Step 3)

A candidate conflict arises when the set of syntactic differences between requirement
models is not empty. These differences may be a consequence of the absence of an
element in one model but present in the other, the usage of two different widgets for
describing the same information, and finally a configuration difference in an element
such as the properties values of a widget. This situation may arise when two different
stakeholders have different views of a single functionality, or when an evolution
requirement contradicts an original one. As the result of having a formal tool for
describing requirements, the detection task can be implemented by reasoning over the
specification. In this case using the WebSpec support tool [15], this task can be
performed using OCL [14] sentences or RDF [9] queries.

Structural conflicts detection can be implemented by a comparison operation
between interactions, in order to detect the absence of elements or elements
constructions differences. Since WebSpec interactions are containers of widgets, we
can apply set’s difference operations in order to detect inconsistencies. For example, a
Product interaction version called Product1 have Name, Valorization and Content
Labels, and an addToShopping Button and, on the other hand, a different version
called Product2 comprises a Name, and Description Label, and a list of PackageItem
Labels. After applying the symmtric difference, following widgets differs:
Valorization, Content, addToShoppingCart, Description, and a list of PackageItem.

Notice that for the comparison operation, two elements are equal if and only if they
have the same identifier and have the same widget type and compatible configuration.

To detect navigational conflicts, outgoing navigations from a given node with
identical triggering events but different targets must be detected. The task is pretty
straightforward; since navigations are described by a guard and a set of actions that
trigger them, the navigations for a given interaction must be compared to each other
taking into account their guards and set of actions. The main challenge of this
procedure is to check whether or not the sets of actions that correspond to navigations
are semantically equivalent considering that the actions can be syntactically different.

Next we introduce an analysis process that helps avoiding false positives.

5.3 Semantic Analysis (Step 4)

As the result of the structural analysis of models, a list of candidate conflicts is
reported; this list must be verified in order to detect false positives, i.e. conflicts that
actually are not conflicts since the compromised specifications describe the same
requirement. This issue has been already studied in [1][13] where models are
analyzed in order to expose their underlying goals. When the underlying goals are
different, we are facing a confirmed conflict.

We use an approach proposed in [1] and based on having an additional semantic
view of requirements that complements the existing syntactic view. For achieving
this, requirements models are downgraded in terms of abstraction, obtaining a refined
model formed only with semantically simple elements. The resultant model is larger
than the source diagram but has the same semantics.

This approach is twofold: a meta-model called semantic view, defined as a reduced
subset of the web application requirement DSL is specified, and a transformation is
specified that takes elements from the source model to the “semantic view”.

The compromised models (the new and the stable one) are transformed into a
semantic view where the derived models are finally compared syntactically. For each
conflict detected in step 3, this approach helps detecting false positives because the
semantically equivalent constructions imply that different models specify the same
requirement. In the other hand, models are compared when no conflict is detected to
expose false negative cases.

We will use as semantic view a simplified WebSpec meta-model where the
Transition’s hierarchy and Container widgets are removed. The transition hierarchy
is formed by two specializations - Navigation and RichBehavior - that are removed in
order to focus on determining what is the intent of the interaction, independently of
the used interaction pattern: traditional navigation or RIA interaction. When
containers do not have a name, they are removed in order to reduce composition
complexity and avoid unnecessary object aggregations.

Finally a model transformation must turn a WebSpec model into a semantic one in
order to provide a simpler understanding.

 In the transformation, a set of rules closely related to the Web requirement meta-
model used are applied over the input model obtaining the semantic view. These rules
are based on heuristics defined by the requirement engineer and the available set of
rules must be improved iteratively by means of lessons learned of its application.

 If other Web requirement meta-model is used such as WebRE, a different set of
rules must be defined where each one must increase the abstraction level in such a
way the intent of the model is emphasized.

Some of the rules for WebSpec meta-model comprised by the transformation are:

• Disabled TextFields are translated to Labels. As disabled TextFields do not
allows user inputs these are replaced by simple Labels.
• Links are translated to buttons. Links and Buttons are usually used for
describing an action triggering. Therefore, links are normalized to buttons.
• Navigations and RichBehavior are simplified into a single transition
abstraction. This rule makes the diagram focus more on the data itself instead of
the way in which it is accessed. Finally, Navigation´s and RichBehavior ´s
actions are removed.

In order to detect if the syntactic conflict is in fact a conflict, the semantic
transformation is applied over both requirement specifications. Both transformations
produce the same model that is formed by Labels and a Button. Thus, as both
semantic views are equal, there is not conflict at all.

The following example aims at illustrating how semantic conflicts are detected; in
particular a false negative case. In Fig. 4 two requirements, namely “show product

information” and “show product summary” represent the same interaction idea but
use two different interaction patterns: traditional web navigation and RIA´s mouse
hover pattern.

The left-hand image specifies that after clicking the name of a product, the link is
traversed and a product detail is shown. On the other hand, in the picture at the right,
when the mouse´s pointer is place over the product´s name, a product detail is
popped-up. It is remarkable that both requirements´ models have the same intent but
are described with distinct WebSpec constructors.

The resultant of applying the transformation to both conflicted WebSpec is a pair
of normalized diagrams that must be syntactically compared in order to detect
differences. Fig. 5.a and Figure 5.b show the result of applying the transformation to
the examples presented in Fig. 4.a and 4.b respectively where Navigations and
RichBehavior were normalized into the more abstract Transitions, and the Home link
was removed because it is not referenced anymore.

Fig. 4a. Specification of conventional
navigation requirement.

Fig. 4b. Interaction based on a RIA feature.

Fig. 5a. Normalized conventional navigation
model into Semantic view.

Fig. 5b. Normalized RRIA feature model into
Semantic view.

Then a semantic conflict is detected because both models are not syntactically
equal in the semantic view because Price and Description Labels are not present in
both ProductDetail interactions (Fig. 5.a and Fig. 5.b).

There are cases were both traditional navigation and RIA features are required, in
this case the raised warning for a false negative conflict must be omitted.

5.4 Conciliation Process (Step 5)

So far, we have shown how to detect conflicts that must be resolved in order to keep
the SRS sound and complete. Next we will introduce a set of heuristics that helps
resolving structural and navigation conflicts and that have been implemented as
suggested refactorings in our tool support.

In the case of structural conflicts, the absence of a given widget in a model but
present in the other, we can take an optimistic position understanding that the best

solution is to include the construction as an improvement when it is not present. This
idea comes from the fact that new requirements may improve others requirement´s
functionality; therefore the new requirement widget may enrich an existing
interaction.On the other hand, the widget type incompatibility demands a deeper
analysis understanding the context of the difference.

Navigational conflicts express ambiguity in the way in which the web application
is browsed, having two targets (WebSpec interactions) in a navigation triggered by
the same event. This situation is naturally resolved enriching the scenario in such a
way that the conflict is dissolved because the scenario detail is increased. Since we
are using WebSpec as a requirement modeling tool, there are two strategies available
for disambiguating: adding precondition clauses or extending the scenario path; both
increase scenario detail.

As we have previously introduced, different stakeholders may provide slightly
different specification for the same application goal. Nonetheless, there are scenarios
where it is more prone to face inconsistencies such as the presence of business
objects’ hierarchies. At the requirement elicitation stage, hierarchies of business
objects may not be clearly detected and defined, and as a consequence several
business objects structurally different are referenced with the same name.

6 Tool Support

We have extended the WebSpec tool [15] with a reasoning support that helps
detecting inconsistencies in the requirement modeling process. The tool provides a
consistency checker engine based on the Eclipse EMF OCL[14] query system. By
means of executing OCL queries over diagrams both structural and navigational
inconsistencies are detected. The tool automates the structural analysis of web
requirement models, transformation of requirements into semantic view and the
syntactic analysis discussed in Section 5. Its main intent of use is during the
requirement gathering and requirement modeling steps of the process, as it aids
analysts in the requirement modeling, requirement management, and consistency
checking activities. The tool provides a consistency report is generated showing
detected conflicts and compromised widgets. Finally, when inconsistencies are
detected, candidates list of automatic and semiautomatic (those that require an input
parameter) refactorings that correct inconsistencies are presented. Since conflicts can
not be trivially resolved, the tool provides a list of refactorings that could be applied
to resolve the problem. The analyst should decide which option is the best to be
applied, and afterwards the tool will perform automatically the refactoring over the
WebSpec diagrams.

7 Concluding Remarks and Further Work

We have presented a novel approach for detecting conflict and inconsistencies in web
application requirements in the early stages of software development. The presented
approach leans on a web requirement meta-model used for specifying, in a formal

way, the application requirements. Any new requirement is checked against the
consolidated requirement set in order to detect conflicts. By means of syntactic and
semantic analysis inconsistencies are detected. The approach is modular so it can be
plugged in any software engineering approach to ensure application consistency,
validate requirements, and save time and effort to detect and solve error in latest
software development steps. Our support tool helps to automate the analysis and
correction of these inconsistencies.
 We have presented some simple examples that illustrate the approach feasibility
but it still requires further work. We are currently working on the following issues:
complete the approach with a set of ontology matching algorithms in order to improve
semantic conflicts detection; extend the available heuristics for resolve detected
conflicts in order to provide automated conflict detection and solving solution; and
carry out an experiment instantiating the approach in order to provide evidence and to
measure the time and effort effectively saved.

References

[1] Altmanninger, K.: Models in Conflict - Towards a Semantically Enhanced Version
Control System for Models. In: MoDELS Workshops 2007, pp. 293–304 (2007)

[2] Boehm, B.W., Grünbacher, P., Briggs, R.O.: Developing Groupware for Requirements
Negotiation: Lessons Learned. IEEE Software 18(3) (2001)

[3] Brito, I.S., Vieira, F., Moreira, A., Ribeiro, R.A.: Handling Conflicts in Aspectual
Requirements Compositions. In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD III.
LNCS, vol. 4620, pp. 144–166. Springer, Heidelberg (2007)

[4] Cohn, M.: Succeeding with Agile: Software Development Using Scrum, 1st edn.
Addison-Wesley Professional (2009)

[5] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco
(2002)

[6] de Paula, M.G., da Silva, B.S., Barbosa, S.D.: Using an interaction model as a resource
for communication in design. In: CHI 2005 Extended Abstracts on Human Factors in
Computing Systems, Portland, USA, April 02-07, pp. 1713–1716 (2005)

[7] Escalona, M.J., Koch, N.: Requirements Engineering for Web Applications: A Survey.
Journal of Web Engineering II(2), 193–212 (2004)

[8] Escalona, M.J., Koch, N.: Metamodeling Requirements of Web Systems. In: Proc.
International Conference on Web Information System and Technologies (WEBIST 2006),
INSTICC, Setúbal, Portugal, pp. 310–317 (2006)

[9] Euzenat, J., Shvaiko, P.: Ontology Matching, 1st edn. Springer, Heidelberg (2007) ISBN:
978-3540496113

[10] IEEE Recommended Practice for Software Requirements Specifications. IEEE Std 830-
1998 (1998)

[11] Kotonya, G., Sommerville, I.: Requirements engineering with viewpoints. Software
Engineering Journal 11(1), 5–18 (1996)

[12] Leffingwell, D.: Calculating the Return on Investment From More Effective
Requirements Managament. American Programmer 10(4), 13–16 (1997)

[13] Li, C., Ling, T.W.: OWL-Based Semantic Conflicts Detection and Resolution for Data
Interoperability. In: ER (Workshops) 2004, pp. 266–277 (2004)

[14] Object Management Group, Object Constraint Language, Version 2.2,
http://www.omg.org/spec/OCL/2.2/

[15] Luna, E.R., Garrigós, I., Grigera, J., Winckler, M.: Capture and Evolution of Web
Requirements Using WebSpec. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.)
ICWE 2010. LNCS, vol. 6189, pp. 173–188. Springer, Heidelberg (2010)

[16] Sommerville, I.: Software Engineering. Addisson Wesley (2002); Van Der Straeten, R.,
Mens, T., Simmonds, J., Jonckers, V.: Using Description Logic to Maintain Consistency
Between UML Models. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS,
vol. 2863, pp. 326–340. Springer, Heidelberg (2003)

[17] Yang, D., Wang, Q., Li, M., Yang, Y., Ye, K., Du, J.: A survey on software cost
estimation in the chinese software industry. In: ESEM 2008, pp. 253–262 (2008)

	Detecting Conflicts and Inconsistencies in Web Application Requirements
	Introduction
	Related Works
	Background
	Characterizing Requirements Conflicts in Web Applications
	Detecting and Correcting Conflicts
	Requirement Gathering and Requirement Modeling (Steps 1 and 2)
	Detecting Syntactic Differences (Step 3)
	Semantic Analysis (Step 4)
	Conciliation Process (Step 5)

	Tool Support
	Concluding Remarks and Further Work
	References

