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Abstract—Speeding up algorithm execution can be achieved by
increasing the number of processing cores working in parallel.
Of course, this speedup is limited by the degree to which the
algorithm can be parallelized. Equivalently, by lowering the
operating frequency of the elementary processors, the algorithm
can be realized in the same amount of time but with mea-
surable power savings. An additional result of parallelization
is that using a larger number of processors results in a more
efficient implementation in terms of GOPS/W. We have found
experimental evidence for this in the study of massively parallel
array processors, mainly dedicated to image processing. Their
distributed architecture reduces the energy overhead dedicated to
data handling, thus resulting in a power efficient implementation.

Index Terms—Parallel processing, Cellular Processing Array,
Multicore processing, Computational efficiency

I. INTRODUCTION

Distributing tasks between several elementary processors
working in parallel speeds up processing. This is constrained,
however, by the degree of parallelization that can be achieved
[1]. Amdahl argued that this limitation favors the use of a
single-processor system in order to achieve large computing
efforts [2]. However, in cases in which the amount work grows
beyond tractability, parallel is the only alternative to operate
on a large amount of data in a certain amount of time [3]. In
addition to this, there is a less intuitive result that is related
with energy efficiency [4], which is that hardware paralleliza-
tion renders more efficient implementations. While power
consumption scales linearly with the operating frequency,
computing power measured in MIPS (million instructions per
second) does not. This happens because computing power does
not depend exclusively on the processor performance, but on
other factors that do not scale with the clock, like memory
operations or data transmission. Distributing resources is the
key to overcome this limitation. By placing the necessary re-
sources close to the processing elements, e. g. sensors, memory
cells, the overhead introduced by data handling is reduced.
This architectural intervention represents an adaptation to the
nature of the signal. Flexibility is traded for efficiency.

While Amdahl’s work concentrated in performance, there
are scenarios in which power efficiency is the main driver,
for instance image processing in embedded vision systems. In
this study we will consider single- and multicore processor
chips, GPUs and different types of SIMD (single-instruction
multiple-data) arrays containing from tens to hundreds of

processing elements (PE). In all cases, they will be single-
chip devices.

II. A SURVEY ON POWER-EFFICIENT PROCESSORS

In order to validate the hypothesis, we have collected data
from processors designed, fabricated and tested from 2003
to 2013. A total of 65 processors have been considered for
this analysis. The processors’ data, together with their biblio-
graphic references and a complete table in Excel format can be
downloaded from http://www2.imse-cnm.csic.es/mondego/

public/. Most of them employ more than one single core and
are oriented to portable applications, being therefore designed
for power efficiency. We have also included some analog and
mixed-signal array processors, although their heterogeneous
design style, operating principles and throughput estimation,
can introduce a noticeable distortion of the results.

In order to make these processors comparable, we will adopt
the terminology employed in [1]. Therefore, each particular
multicore processor chip contains n base core equivalents
(BCEs), that will be the elementary processor. These resources
could be employed to implement n of the simplest cores
—one BCE each—, working in parallel, or to implement
a single processor with all the n BCE resources. Between
these extremes, multicore chips with Nproc cores using r BCE
resources each. It is easily seen that Nproc = n/r.

Now, the silicon area, A, occupied by a circuit is related
with its complexity. This figure needs to be normalized by λ2,
as the chips in the survey have been fabricated with different
resolutions. In order to establish a common reference, the
normalized area of the BCE, A0, needs to be defined. We
have divided all the normalized areas of the chips in the table
by Nproc, and have chosen the smallest value. Notice that this
is a normalizing factor, so it will not distort the results. Each
chip will be characterized by a pair of values: the total number
of resources n and the resources of each individual core:

(n, r) =

(
A/λ2

A0
,

n

Nproc

)
(1)

III. PERFORMANCE VS. COMPLEXITY

According to Pollack’s rule, performance scales with the
square root of any increase in complexity [5]. Based on this,
the throughput of a processor composed of n/r cores with r
BCEs each is given by:

G(n, r) =
n√
r
G0 (2)
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Fig. 1. Pollack’s rule: GOPS vs. n

where G0 is the performance of the BCE. Notice that Eq. (2)
encompasses the cases of a single processor using the n BCE
resources (r = n) and of n elementary one-BCE-processors
working in parallel (r = 1). If we represent

√
rG(n, r) vs.

n we should obtain a straight line. Fig. 1 represents this
magnitude for the 56 digital processors in the survey. The
least-squares regression line has a slope of m = 1.1665, being
R = 0.7993 the correlation coefficient. This confirms the
linear dependence of

√
rG(n, r) with n. Given the relative

disparity of design style, system-on-chip architecture and ap-
plication field, the alignment found can be enough to identify
a trend.

IV. POWER EFFICIENCY VS. NO. OF PROCESSORS

If we plot power efficiency, G(n, r)/P (n, r), vs. the number
of processors working in parallel (n/r) in each processor
(Fig. 2), it can be observed that it grows as roughly:

G(n, r)

P (n, r)
∼

(n
r

) 2
3

(3)

Given the different design principles, architectures and internal
organization of resources employed at the different processors,
the correlation found (R = 0.6962) denotes a trend that is:
the more processors working in parallel the higher power
efficiency. Notice that increasing the number of resources
in order to build one single but more complex sequential
processor (r = n) does not have an incidence in power
efficiency.

With respect to the 9 analog and mixed-signal array proces-
sors in the list, it is not possible to find an elementary processor
to establish a comparison. Area is the closest estimation of
circuit complexity that can be employed. However, the trend
on performance vs. area is highly correlated (R = 0.8170),
although the relation responds to a different model. No power
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Fig. 2. Power efficiency vs. number of parallel processors

efficiency trend has been identified, but area efficiency vs.
Nproc is highly correlated as well (R = 0.9269).

V. CONCLUSIONS

It is an observable trend that increasing the degree of
parallelism in hardware has a positive incidence not only in
performance but also in power efficiency. There must be a
fundamental reason for that, given that processors developed
by following different design strategies and internal organi-
zation of resources, follow the common behavior displayed
by experimental data. In analog and mixed-signal processors,
performance increases with Nproc but the disparity in the de-
sign approaches end up in highly uncorrelated data concerning
power efficiency. Area efficiency however grows —it needs
to— when more processors are packed into the same chip.
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