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Abstract. A common problem in food science concerns the assessment
of the quality of food samples. Typically, a group of panellists is trained
exhaustively on how to identify different quality indicators in order to
provide absolute information, in the form of scores, for each given food
sample. Unfortunately, this training is expensive and time-consuming.
For this very reason, it is quite common to search for additional infor-
mation provided by untrained panellists. However, untrained panellists
usually provide relative information, in the form of rankings, for the food
samples. In this paper, we discuss how both scores and rankings can be
combined in order to improve the quality of the assessment.

Keywords: Consensus evaluation; Absolute information; Relative in-
formation.

1 Introduction

We consider the problem in which several panellists are asked to score a food
sample on a given ordinal scale, the goal being to reach a consensus evaluation of
the sample. This problem commonly appears in food science, for instance, when
identifying the degree of spoilage [1, 2] or when evaluating the appearence [3,
4] of a given sample. Unfortunately, training and (subsequently) collecting in-
formation from panellists usually carries big expenses. For this reason, there
usually is a limited amount of data available to reach a consensus evaluation. It
is thus quite common to invoke untrained panellists and to gather some addi-
tional information [5]. However, untrained panellists are obviously not as skilled
as trained panellists, and might be unable to accurately evaluate a given sample.
Since it is a conceptually easier task, untrained panellists are then just asked
to rank different samples according to their personal appreciation. In this pa-
per, we propose to combine both types of information in order to improve the
quality of the assessment. Moreover, we illustrate our proposal by discussing an
experiment concerning the freshness of raw Atlantic salmon (Salmo salar) [6].
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The remainder of the paper is organized as follows. In Section 2, we recall
the well-known notions of median and Kemeny median. Section 3 is devoted to
the introduction of a method for reaching a consensus evaluation of the given
samples while combining both scoring and ranking information. We end with
some conclusions in Section 4.

2 Preliminaries

2.1 Obtaining a consensus vector of scores

We consider the setting where nT trained panellists are asked to assign a score
on a k-point scale to each (food) sample in a set X = {x1, . . . , xn} of n (food)
samples. The goal is to agree on the consensus score that should be assigned to
each of the samples based on the scores provided by the trained panellists. For
any i ∈ {1, . . . , nT }, we denote by si the vector of scores assigned by the i-th
panellist. The scale we use throughout this paper is shown in Figure 1.

1 2 3 4 5

Spoiled

Neither spoiled

nor fresh Fresh

Fig. 1. Example of a 5-point scale, where the extreme scores of “1” and “5” represent
spoiled and fresh, respectively, and the intermediate score of “3” represents a neutral
response of neither spoiled nor fresh.

A common method for determining the consensus vector of scores is based
on the minimization of a distance, i.e., the consensus vector of scores s∗ should
satisfy

s∗ = arg min
s∈{1,...,k}n

nT∑
i=1

d(s, si) ,

where d is a fixed distance function on the set of vectors of scores. Note that
there can be multiple minimizers s∗.

One could note that several examples of this procedure are commonly used
in practice. For instance, when we consider the sum of zero-one distances1 over

1 The zero-one distance function is defined as d0(s, s′) = 0 if s = s′ and d0(s, s′) = 1
otherwise.



all components, the preceding method amounts to identifying the mode(s). Simi-
larly, when we consider the sum of `1-distances2, the preceding method amounts
to identifying the median(s), and, when we consider the sum of `2-distances3,
it amounts to identifying the mean(s). One could note that the latter method
presumes the existence of a certain notion of distance between labels, something
that is not advisable in case the considered scale is defined by abstract words [7].

Example 1. Consider the set of n = 4 samples X = {x1, x2, x3, x4} and the
vectors of scores on the fixed 5-point scale provided by nT = 10 trained panellists
shown in Table 1. Note that these data come from a real-life dataset concerning
an experiment on raw Atlantic salmon (Salmo salar) [6].

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

x1 5 4 5 2 3 3 5 5 2 4

x2 5 2 1 2 4 2 5 4 3 3

x3 2 1 5 2 2 4 3 2 2 2

x4 3 1 2 1 2 2 2 3 3 1

Table 1. The scores assigned to samples x1, x2, x3 and x4 by the trained panellists.

For each of the 625 possible vectors of scores, we compute the sum of `1-
distances to the vectors of scores provided by the trained panellists. We conclude
that the vector of scores that minimizes this value is s∗ = (4, 3, 2, 2). As expected,
this vector coincides with the one obtained by identifying the median for each
of the samples. /

2.2 Obtaining a consensus ranking

We consider the setting where nU untrained panellists are asked to rank all
the samples on the considered set X = {x1, . . . , xn} of n samples. Untrained
panellists are asked to provide a complete ranking of the samples, however, they
are allowed to express ties in case they consider two or more samples to be
equally suitable. The goal is to agree on the consensus ranking that should be
assigned to each of the samples based on the scores provided by the trained
panellists. For any i ∈ {1, . . . , nU}, we denote by -i the ranking assigned by the
i-th panellist, which can be split into the usual symmetric ∼i and antisymmetric
≺i parts. We denote by W the set of all rankings (with ties) on X.

2 The `1-distance function is defined as d1(s, s′) = |s− s′|.
3 The `2-distance function is defined as d2(s, s′) = (s− s′)2.



A common method for determining the consensus ranking is due to Ke-
meny [8] in which a consensus ranking -∗ is one that satisfies

-∗= arg min
-∈W

nU∑
i=1

K(-,-i) ,

where K(-1,-2) denotes the Kemeny distance between two rankings -1 and
-2. We recall that the Kemeny distance4 between two rankings is computed as
follows. For each pair of samples {xu, xv}, if both rankings agree on the order
of the samples, we write down 0; if, in one ranking, xu is ranked above xv (or
xv is ranked above xu) and, in the other ranking, xu and xv are tied, we write
down 1; and, if, in one ranking, xu is ranked above xv and, in the other ranking,
xv is ranked above xu, we write down 2. After writing down the numbers for all
n(n− 1)/2 possible pairs, the Kemeny distance between the two rankings equals
the sum of these numbers.

Example 2. Consider the same set of n = 4 samples X = {x1, x2, x3, x4} of
Example 1, and the rankings provided by nU = 28 untrained panellists shown
in Table 2. Note that these data also come from the experiment on raw Atlantic
salmon (Salmo salar) in [6].

i -i Space i -i

1 x2 ∼ x4 ≺ x3 ∼ x2 15 x2 ≺ x1 ≺ x4 ≺ x3
2 x4 ≺ x3 ≺ x2 ≺ x1 16 x4 ≺ x3 ∼ x2 ≺ x1
3 x4 ≺ x2 ≺ x3 ∼ x1 17 x4 ≺ x3 ∼ x2 ≺ x1
4 x1 ≺ x4 ≺ x3 ≺ x2 18 x4 ≺ x3 ∼ x2 ≺ x1
5 x1 ∼ x4 ≺ x3 ≺ x2 19 x2 ≺ x4 ≺ x3 ≺ x1
6 x4 ≺ x3 ∼ x1 ∼ x2 20 x4 ≺ x3 ≺ x2 ≺ x1
7 x4 ∼ x3 ≺ x1 ∼ x2 21 x1 ∼ x4 ≺ x3 ∼ x2
8 x4 ≺ x1 ∼ x2 ≺ x2 22 x1 ∼ x2 ≺ x3 ≺ x4
9 x1 ≺ x3 ∼ x2 ≺ x4 23 x4 ≺ x3 ≺ x2 ≺ x1
10 x2 ≺ x4 ≺ x1 ≺ x3 24 x4 ≺ x1 ≺ x2 ≺ x3
11 x4 ≺ x2 ≺ x3 ≺ x1 25 x4 ≺ x2 ≺ x3 ≺ x1
12 x4 ≺ x1 ≺ x3 ∼ x2 26 x1 ≺ x4 ≺ x3 ≺ x2
13 x2 ∼ x4 ∼ x3 ≺ x1 27 x4 ≺ x2 ≺ x3 ≺ x1
14 x2 ≺ x4 ≺ x1 ≺ x3 28 x4 ≺ x2 ≺ x3 ≺ x1

Table 2. The rankings expressed by the untrained panellists.

For each of the 75 possible rankings, we compute the sum of Kemeny dis-
tances to the rankings provided by the untrained panellists. We conclude that
the ranking that minimizes this value is -∗= x4 ≺ x3 ∼ x2 ≺ x1. /
4 When the rankings contain no ties, the Kemeny distance is equal to the double of

the Kendall distance [9].



3 Combining scores and rankings

We now consider the setting where nT trained panellists each have assigned a
score to each of the n samples in X and nU untrained panellists each have ranked
the n samples in X. The goal is to combine both types of information in order to
improve the quality of the assessment of the consensus vector of scores and/or
ranking. We propose to consider a combination of the median and the Kemeny
median.

3.1 Improving the quality of the assessment of a consensus vector
of scores

To compute the ‘distance’5 between each possible vector of scores s and the
rankings provided by the untrained panellists, we define the set θs of all possible
rankings that do not contradict s, as follows:

θs =
{
-∈ W

∣∣(∀i, j ∈ {1, . . . , n})(s(i) < s(j)⇒ xi ≺ xj
)}
. (1)

Note that the set θs is always non-empty.

Incorporating the rankings provided by the untrained panellists into the vec-
tors of scores provided by the trained panellists requires defining a cost function.
Thus, we define a convex combination of the ‘distances’ associated with the vec-
tors of scores provided by the trained panellists and the rankings provided by
the untrained panellists, as follows:

Cα(s) =
α

BT

nT∑
i=1

d1(s, si) +
(1− α)

BU
min
-∈ θs

nU∑
i=1

K(-,-i) . (2)

where BT = nT ·n·(k−1) and BU = nU ·n·(n−1) are normalizing constants, and
α ∈ [0, 1] is a parameter that controls the influence of the scoring and ranking
information. In particular, larger values of α give more importance to the trained
panellists, whereas smaller values of α give more importance to the untrained
panellists.

Finally, we consider the consensus vector(s) of scores to be the minimizer(s)
of Eqs. (2) for a fixed α, as follows:

s∗α = arg min
s∈{1,...,k}n

Cα(s) . (3)

Note that there can be multiple minimizers s∗α for the same α.

5 Note that we write the word ‘distance’ between quotation marks since we are compar-
ing objects of a different nature, and, thus, we are lacking the semantics associated
with the mathematical formalization of a distance (metric).



Example 3. We continue with the data from Examples 1 and 2. To determine
the consensus score that should be assigned to each of these samples, we consider
the problem defined by Eq. (3) by computing Cα(s) for each of the 625 vectors
of scores. For simplicity, we show one computation for the vector of scores s =
(4, 3, 2, 2), which was determined as the consensus vector of scores in Example 1,

with
∑10
i=1 d1(s, si) = 34. The distances associated with the vectors of scores are

bounded by the upper bound BT = 10 · 4 · 4 = 160, whereas the distances
associated with the rankings are bounded by the upper bound BU = 28 · 4 · 3 =
336. Now, we consider the set θs of all possible rankings that do not contradict
s. Since the score of x1 is the largest, x1 is ranked above the other samples.
Similarly, x2 is ranked above x3 and x4. Since the scores of x3 and x4 are equal,
any of the following cases applies: x3 is ranked above x4, x3 and x4 are tied, and
x4 is ranked above x3, as follows:

θ(4,3,2,2) =

x4 ≺ x3 ≺ x2 ≺ x1 ,
x3 ∼ x4 ≺ x2 ≺ x1 ,
x3 ≺ x4 ≺ x2 ≺ x1

 .

We compute the sum of the Kemeny distances between each -∈ θs and the
rankings provided by the untrained panellists. The results are summarized in
Table 3.

-
∑28
i=1K(-,-i)

x4 ≺ x3 ≺ x2 ≺ x1 109

x3 ∼ x4 ≺ x2 ≺ x1 129

x3 ≺ x4 ≺ x2 ≺ x1 153

Table 3. Sum of Kemeny distances between each ranking - that does not contradict
s = (4, 3, 2, 2) and the rankings provided by the untrained panellists.

Finally, we select the ranking that minimizes the sum of Kemeny distances
among those in θs and compute Cα(s) as follows:

Cα(s) =
α

160

10∑
i=1

d1(s, si) +
(1− α)

336
min


∑28
i=1K(x4 ≺ x3 ≺ x2 ≺ x1,-i) ,∑28
i=1K(x3 ∼ x4 ≺ x2 ≺ x1,-i) ,∑28
i=1K(x3 ≺ x4 ≺ x2 ≺ x1,-i)


=

109

336
− 6016

53760
α .

After computing Cα(s) for each of the 625 possible vectors of scores s, we il-
lustrate in Figure 2 all the s∗α that minimize Cα(s) for at least one value of
α ∈ [0, 1]. One should note that, for α = 0, there will always be multiple mini-
mizers s∗0 associated with all vectors of scores that are not contradicted by the
Kemeny median. Since we know from Example 2 that -∗= x4 ≺ x3 ∼ x2 ≺ x1 is
the Kemeny median, we illustrate (in black) all the vectors of scores s∗0 that are



not contradicted by this -∗. These vectors of scores form a fan-shaped pattern
starting at α = 0 since, at the left end, they all result in the same value C0(s),
and, at the right end, they result in (mostly) different values C1(s).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α
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0.3

0.35

0.4

0.45
C

α
(s
)

Incorporating rankings

4 2 2 2

4 3 2 2

Fig. 2. Illustration of the vectors of scores s∗α that minimize Cα(s) for α ∈ [0, 1].

Since we do not intend to rely only on the rankings provided by the untrained
panellists, we ignore the minimizers for α = 0. The obtained minimizers s∗α are
summarized as follows:

s∗α =


{(4, 2, 2, 2)} , if 0 < α < 50

71 ,

{(4, 2, 2, 2) , (4, 3, 2, 2)} , if α = 50
71 ,

{(4, 3, 2, 2)} , if α > 50
71 .

(4)

We deduce based on the vectors of scores provided by the trained panellists that
x2 is ranked at a better position than x3 and x4, since the former is assigned a
higher score than the former in the consensus vector of scores for large values
of α. However, incorporating the rankings provided by the untrained panellists
hints that these samples are similar. /

3.2 Improving the quality of the assessment of a consensus ranking

To compute the ‘distance’ between each possible ranking - and the vectors of
scores provided by the trained panellists, we define the set ϕ- of all possible
vectors of scores that do not contradict -, as follows:

ϕ- =
{
s ∈ {1, . . . , k}n

∣∣(∀i, j ∈ {1, . . . , n})(xi - xj ⇒ s(i) ≤ s(j)
)}
. (5)



Note that the set ϕ≺ is always non-empty.

The convex combination of the ‘distances’ associated with the vectors of
scores provided by the trained panellists and the rankings provided by the un-
trained panellists is now defined as follows:

Dα(-) =
α

BT
min
s∈ϕ-

nT∑
i=1

d1(s, si) +
(1− α)

BU

nU∑
i=1

K(-,-i) . (6)

Finally, we consider the consensus ranking(s) to be the minimizer(s) of Eqs. (6)
for a fixed α, as follows:

-∗α= arg min
-∈W

Dα(-) . (7)

Note that there can be multiple minimizers -∗α for the same α.

Since α ∈ [0, 1] can take infinite values, it will be impossible to compute s∗α
(resp. -∗α) for each α. Therefore, bearing in mind that, for any fixed vector of
scores s (resp. ranking -), the corresponding f(α) := Cα(s) (resp. g(α) := Dα(-))
can be visualized as a line, we can compare the lines of each possible pair of vec-
tors of scores (resp. rankings). When comparing two lines, we distinguish three
cases: there are no points of intersection, there is exactly one point of intersec-
tion, or both lines coincide. These facts can then be used to analytically compute
s∗α and -∗α as a function of α.

Example 4. We continue with the data from Example 3. To determine the con-
sensus ranking of the samples, we consider the problem defined by Eq. (7) by
computing Dα(-) for each of the 75 rankings. For simplicity, we show one com-
putation for the ranking -= x4 ≺ x3 ∼ x2 ≺ x1, which was determined as the
consensus ranking in Example 2, with

∑28
i=1K(-,-i) = 99. Now, we consider

the set ϕ- of all possible vectors of scores that do not contradict -.

ϕx4≺x3∼x2≺x1 =
{
s ∈ {1, . . . , 5}4 | s(4) ≤ s(3) = s(2) ≤ s(1)

}
.

We compute the sum of the `1-distances between each s ∈ ϕ- and the vectors
of scores provided by the untrained panellists. We note that the vector of scores
among those in ϕ- that minimizes the sum of the `1-distances is (4, 2, 2, 2) with∑10
i=1 d1(s, si) = 36. Finally, we obtain:

Dα(-) =
113

336
− 5984

53760
α .

After computing Dα(-) for each of the 75 possible rankings -, we illustrate in
Figure 3 all the -∗α that minimize Dα(-) for at least one value of α ∈ [0, 1].
One should note that, for α = 1, there will always be multiple minimizers s∗1
associated with all rankings that are not contradicted by the median. Since
we know from Example 1 that s∗ = (4, 3, 2, 2) is the median, we illustrate all



the rankings -∗1 that are not contradicted by this s∗. These rankings form a
fan-shaped pattern starting at α = 1 since, at the right end, they all result in
the same value D1(-), and, at the left end, they result in (mostly) different
values D0(-).

Fig. 3. Illustration of the rankings -∗α that minimize Dα(-) for α ∈ [0, 1].

Since we do not intend to rely only on the scores provided by the trained
panellists, we ignore the minimizers for α = 1. The obtained minimizers -∗α are
summarized as follows:

s∗α =


{x4 ≺ x3 ∼ x2 ≺ x1} , if α < 50

71 ,{
x4 ≺ x3 ∼ x2 ≺ x1
x4 ≺ x3 ≺ x2 ≺ x1

}
, if α = 50

71 ,

{x4 ≺ x3 ≺ x2 ≺ x1} , if 50
71 < α < 1 .

(8)

We deduce based on the rankings provided by the untrained panellists that x2
and x3 are similar. However, incorporating the vectors of scores provided by the
trained panellists hints that sample x2 might be ranked above sample x3. /

3.3 Discussion

A deeper analysis of the results of the preceding subsections shows that both
trained and untrained panellists agree that samples x1 and x4 are, respectively,
the best and worst samples in X = {x1, x2, x3, x4}. However, there is a disagree-
ment with regard to samples x2 and x3. While trained panellists considered sam-
ple x2 to be better than sample x3, untrained panellists did not see significant



differences between both samples. Thus, as can be concluded from both Eqs. (4)
and (8), samples x2 and x3 result to be similar (s∗(3) = s∗(2) and x3 ∼∗ x2)
for smaller values of α (i.e., in case more importance is given to the untrained
panellists), whereas sample x2 results to be better than sample x3 (s∗(3) < s∗(2)
and x3 ≺∗ x2) for larger values of α (i.e., in case more importance is given to
the trained panellists).

4 Conclusions

In this paper, we have discussed how to combine absolute and relative infor-
mation in order to improve the quality of the assessment of food samples. In
particular, we have proposed a method based on a convex combination of the
distances associated with the median and the Kemeny median. We have illus-
trated the use of this method using real-life examples, where the freshness of
Atlantic salmon was studied, and showed the influence of combining scores and
rankings on obtaining the consensus vector of scores and consensus ranking.

Acknowledgments

We gratefully acknowledge Innovation by Science and Technology (IWT) (now
known as Flanders Innovation and Entrepreneurship (VLAIO)) for their support
of the project CheckPack (IWT-SBO-130036) - Integrated optical sensors in food
packaging to simultaneously detect early-spoilage and check package integrity.
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