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Modeling Emerging Memory-Divergent GPU Applications
Lu Wang, Magnus Jahre, Almutaz Adileh, Zhiying Wang, and Lieven Eeckhout

Abstract—Analytical performance models yield valuable architectural insight without incurring the excessive runtime overheads of
simulation. In this work, we study contemporary GPU applications and find that the key performance-related behavior of such
applications is distinct from traditional GPU applications. The key issue is that these GPU applications are memory-intensive and have
poor spatial locality, which implies that the loads of different threads commonly access different cache blocks. Such memory-divergent
applications quickly exhaust the number of misses the L1 cache can process concurrently, and thereby cripple the GPU’s ability to use
Memory-Level Parallelism (MLP) and Thread-Level Parallelism (TLP) to hide memory latencies. Our Memory Divergence Model (MDM)
is able to accurately represent this behavior and thereby reduces average performance prediction error by 14× compared to the
state-of-the-art GPUMech approach across our memory-divergent applications.

F

1 INTRODUCTION

Quantitative evaluation is an essential part of the computer
architect’s tool box. Simulation is the most common evaluation
tool since it enables detailed, even cycle-accurate, performance
analysis. However, simulation is excruciatingly slow and hence
parameter sweeps commonly require thousands of CPU hours.
An alternative approach is analytical modeling, which captures
the key performance-related behavior of the architecture with
a set of mathematical equations. Analytical models are much
faster than simulation — making them ideally suited for early-
stage architectural exploration [1], [2] and helping program-
mers understand application performance [3], [4].

GPUs are the de facto standard platform for executing
performance-critical applications. Their highly parallel execu-
tion model and high-performance memory system makes GPUs
a popular choice for emerging applications such as data ana-
lytics [5], [6]. The diversity of modern-day GPU applications
makes them challenging to model. Several contemporary GPU
applications differ from traditional GPU-compute workloads
because they put a much larger strain on the memory system.
More specifically, they are memory-intensive and memory-
divergent — i.e., the memory accesses from concurrently ex-
ecuting threads map to multiple cache lines. While simulators
account for this behavior by modeling cycle-by-cycle activities,
state-of-the-art GPU modeling approaches are unable to predict
performance with sufficient accuracy.

Our objective is to provide an analytical performance model
for GPUs that is able to accurately predict the performance of
the various GPU applications, including divergent memory-
intensive applications. Our starting point is interval model-
ing [7], which is a widely used approach for CPU performance
evaluation. The key observations are that an application will
have a certain steady-state performance in the absence of miss
events (e.g., data cache misses), and that miss events are inde-
pendent of each other. Therefore, performance can be predicted

• Lu Wang, Almutaz Adileh and Lieven Eeckhout are with the Dept. of
Electronics and Information Systems (ELIS), Ghent University, Belgium.
E-mail: {luluwang.wang, almutaz.adileh, lieven.eeckhout}@ugent.be

• Magnus Jahre is with the Dept. of Computer Science, Norwegian Univer-
sity of Science and Tech., Norway. E-mail: magnus.jahre@ntnu.no

• Zhiying Wang is with the School of Computer, National University of
Defense Technology, Changsha, P.R. China. E-mail: zywang@nudt.edu.cn

• Manuscript submitted: 21-May-2019. Manuscript accepted: 06-Jun-2019.
Final manuscript received: 14-June-2019.

0 

500 

1000 

1500 

2000 

2500 

3000 

HS 
BT 

BP 

FDTD 

SRAD 
RAY 

2D
CONV 

ST 
CFD 

BFS 
PVR 

SPMV 
PVC 

IIX
 

KMEANS L1
 m

is
s 

br
ea

kd
ow

n 
(c

yc
le

s)
 

NMD-applications                                               MD-applications 

MSHR delay LLC access latency DRAM access latency NoC queue delay DRAM queue delay 

Fig. 1: L1 miss latency breakdown for select GPU-compute
applications. The key take-away is that delays due to insufficient
MSHRs significantly affect the overall memory latency of MD-
applications while NMD-applications are hardly affected.

by predicting steady-state performance and subtracting the
performance loss due to each miss event. GPUMech [1] applies
interval modeling to GPUs. While GPUMech is accurate for
traditional GPU-compute workloads, we find that it falls short
for memory-divergent applications.

We propose the Memory Divergence Model (MDM) which
captures the key performance-related behavior of modern,
memory-divergent GPU applications. We find that the poor
spatial locality of memory-divergent applications leads to
inefficient utilization of the Miss Status Holding Registers
(MSHRs). The number of MSHRs determines the number of
concurrent misses the cache can sustain without blocking (a
blocked cache cannot accept any requests). Blocking has a
profound performance impact. First, a blocked cache limits the
ability of the GPU core to hide memory latencies with Memory
and Thread-Level Parallelism (i.e., MLP and TLP). Second, the
memory system becomes saturated as the cores issue a large
number of requests to fetch all required data. MDM accounts
for these effects by accurately modeling MSHR behavior and
the Network-on-Chip (NoC) and DRAM queuing latencies.
Overall, MDM improves performance prediction accuracy by
14× on average compared to the state-of-the-art GPUMech [1]
approach across our memory-divergent applications.

2 UNDERSTANDING EMERGING GPU APPLICATIONS

2.1 The Architectural Effects of Memory Divergence

GPUs use multiple Streaming Multiprocessors (SMs) to execute
code. Each SM can run a limited number of software threads
concurrently. Thus, software threads are divided into groups,
called warps, that match the width of the SM. An SM executes
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Fig. 2: MD-applications and NMD-applications have very dif-
ferent behavior. The poor spatial locality of NMD-applications
results in poor utilization of the L1 MSHRs — crippling the SM’s
ability to use TLP and MLP to hide memory latencies.

the instructions of all threads within a warp in lock-step. For
load instructions, each thread issues a load for a single data
element. These per-thread requests are aggregated to cache
requests by the coalescer. On a cache hit, the cache line is read
by the SM. On a miss, an MSHR is allocated and a memory
request is sent to the lower levels of the memory hierarchy. If
the access pattern is favorable (e.g., sequential), the coalescer
can map the misses of the warp’s concurrent threads to a
single cache request, consuming a single MSHR. However, a
significant fraction of emerging GPU applications are memory-
divergent (i.e., the threads of a warp tend to access different
cache blocks), exerting significant pressure on the limited num-
ber of MSHRs. If the cache runs out of MSHRs, it blocks until
an MSHR becomes available. A blocked cache causes SM stalls
because no load instructions can be executed.

To understand how the poor spatial locality of memory-
divergent applications affects the memory system, Figure 1
breaks down the average memory latency of GPU applications
into the memory unit where it is incurred (see Section 4 for a
description of our experimental setup). The key observation is
that the benchmarks are clearly partitioned into two categories:
The Non-Memory Divergent (NMD) benchmarks — where the
latency due to insufficient MSHRs is negligible — and the Mem-
ory Divergent (MD) benchmarks — which on average spend
hundreds and even thousands of cycles waiting for MSHRs to
become available. Figure 1 also shows that MD-applications
tend to experience significant queuing latencies in the NoC and
DRAM subsystems. Thus, an effective performance model for
MD-applications needs to accurately model MSHR behavior,
NoC queuing and DRAM queuing.

2.2 Modeling Memory-Divergent Applications

Accurately modeling MSHR behavior and queuing in the NoC
and DRAM requires understanding how the poor spatial local-
ity of MD-applications interacts with the underlying architec-
ture and how this interaction differs from NMD-applications.
Figure 2 illustrates this with a simple example. We consider an
NMD-application that has one L1 cache miss per warp and an
MD-application with four cache misses per warp. Both warps of
both applications first execute a couple of compute instructions.
Then, they execute two load instructions (the second load
depends on the first) before they finish by executing additional
compute instructions. We assume that the SM can execute two
warps concurrently and that the L1 cache has two MSHRs.

We first consider the NMD-application. For the first few
cycles, Warp 1 and Warp 2 execute compute instructions at their
steady-state IPC. Then, they both reach the load instructions
that miss in the L1 cache (an L1 cache miss takes at least 120
cycles in our model, see Section 4). NMD-applications typically
have good spatial locality across threads, and this enables the

coalescer to combine the load instructions into a single cache
request (one for each warp). The cache allocates an MSHR for
each miss. Since there are two MSHRs in the cache, the misses
are processed concurrently — uncovering MLP that success-
fully hides the latency of one of the requests. When the misses
return, the MSHRs are freed. This enables the next misses to be
issued in parallel as well. Since a realistic SM has a large num-
ber of warps in-flight and many MSHRs (128 in our model),
MLP effectively hides memory latency in NMD-applications.
The result is that memory latency has a limited impact on
overall performance, and the simple memory latency models
used in GPUMech [1] are sufficiently accurate to achieve low
performance prediction errors for NMD-applications.

The key performance-related behavior of the MD-
application is significantly different. Initially, Warp 1 and
Warp 2 execute their compute-instructions concurrently. How-
ever, the four L1 cache misses of Warp 1 exceed the MSHR
capacity of the L1 cache. This results in the misses being exe-
cuted in batches. When Warp 1 has issued two miss requests, the
L1 cache blocks and Warp 1 cannot execute its remaining cache
requests. Further, Warp 2 cannot make progress as the L1 cache
cannot service its memory requests either. After a few hundred
clock cycles, the two first requests of Warp 1 return and it can
issue its final two cache requests. When these requests return,
Warp 2 can issue its two first requests. This causes Warp 1 to
stall since its next instruction is a load instruction and the cache
is blocked. Execution continues in batches until both warps
have executed their load instructions (only partially shown).

The example explains how poor spatial locality leads to
widespread L1 cache blocking. This limits the SM’s ability
to use MLP to hide memory latencies since the number of
concurrent loads is limited by the number of MSHRs. Further,
it also destroys TLP as all available warps will stall on their
first load instruction because the L1 cache is mostly blocked.
At the same time, the memory system saturates because it
is flooded with requests that fetch little useful data (e.g., 128
concurrent requests from each L1 cache in our model), causing
excessive NoC and DRAM queuing. This illustrates that an
effective performance model for MD-applications must accu-
rately model batching and saturation behavior. GPUMech falls
short of this requirement, leading to high prediction errors for
MD-applications.

3 THE MEMORY DIVERGENCE MODEL (MDM)

In this section, we explain how MDM models the batching
and saturation behavior of MD-applications. We leverage the
framework used by GPUMech [1] to collect the interval profile
and select a representative warp. The starting point of MDM is
the number of cycles it takes an SM to execute the instructions
of interval i within the representative warp without contention
(i.e., Ci). We then add the predicted MSHR-related stall cycles
(i.e., SMSHR

i ) and the predicted stall cycles due to queuing in
the NoC and DRAM subsystems (i.e., SNoC

i and SDRAM
i ) to Ci

to predict the number of cycles an SM would use to execute
interval i with contention (i.e., Si). We can obtain per-interval
IPC predictions by dividing the number of instructions in the
interval by the number of cycles we predict that it will take to
execute them (i.e., IPCi = #Instructionsi/[Ci + Si]).

We predict the IPC of the entire warp by summing the
number of instructions executed by the warp across all intervals
and dividing them by the total number of cycles required to
execute all intervals. Then, we multiply by the number of warps
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concurrently executed on an SM (i.e., W ) to predict the overall
IPCSM of an SM:

IPCSM = W ×
∑#Intervals

i=0 #Instructionsi∑#Intervals
i=0 Ci + SMSHR

i + SNoC
i + SDRAM

i

(1)

We obtain the IPC of the entire GPU by multiplying by the
number of SMs (i.e., IPC = #SMs × IPCSM). MDM obtains
Ci following the approach of GPUMech [1], but we provide
new approaches for predicting SMSHR

i , SNoC
i and SDRAM

i . The
following sections explain how MDM predicts the stall cycles Si

per interval (and we drop the subscript i from the discussion).

3.1 MDM’s Memory and NoC Queue Models
Memory contention occurs because the memory requests of all
SMs queue up in the NoC and DRAM subsystems. The NoC
and DRAM use a certain number of cycles to service each
request. More specifically, the NoC service latency LNoCService

is a function of the cache block size, the clock frequency f and
the NoC bandwidth BNoC:

LNoCService = f × BlockSize
BNoC (2)

The DRAM service latency can be computed in a similar way.
However, only the LLC misses access DRAM:

LDRAMService = f × LLCMissRatio× BlockSize
BDRAM (3)

We obtain the LLC miss ratio from the information collected in
the interval profile and adjust the service latencies to account
for parallelism in the memory system (e.g., we divide the
average service latency by n to model an n-channel system).

We now use the service latency predictions to predict the
average queuing latency — and thereby the SM stall cycles
caused by queuing latencies. The average queuing latency is
determined by the average number of pending requests an
arriving request must wait for times the average service latency.
We first predict the average number of concurrent L1 misses M :

M = min(MRead ×W,#MSHRs) +MWrite ×W (4)

Read misses allocate MSHR entries and are therefore bounded
by the number of L1 MSHRs. In other words, the application
will either: (1) issue the number of read misses of the current
interval of the representative warp times the number of warps;
or, (2) as many read misses as there are MSHRs. Since the L1
caches in our GPU models are write-through and no-allocate,
write misses effectively bypass the L1 and are independent of
the number of MSHRs.

The number of queued requests is determined by appli-
cation behavior while the service latency is an architectural
parameter. Thus, we can use the same model to predict both
NoC and DRAM stalls by providing LNoCService (LDRAMService) as
input to compute SNoC (SDRAM):

SNoC =

{
#SMs×M × LNoCService, MRead ×W > #MSHRs
(1/2)× #SMs×M × LNoCService, otherwise

(5)
The equation formalizes the key observations of Section 2.
For MD-applications, the number of MSHRs is the bottleneck
and the high degree of divergence keeps the memory system
saturated. Since the memory system is saturated, each request
needs to wait for all other requests. For NMD-applications, the
memory requests are not sufficient to keep the memory queue
saturated. In this case, the first request is serviced directly and
the last request needs to wait for all other requests. Thus, a
request waits for approximately half the concurrent requests.

TABLE 1: Simulator configuration.
Parameter Value
Clock frequency 1.4 GHz
Number of SMs 28
Number of mem. ctrl. 24
Warp schedulers per SM 4 (LRR)
Issue width per sched. 2 warp-instructions/cycle
L1 cache per SM 48 KB, 6-way, LRU, 128 MSHRs
L2 cache per mem. ctrl. 128 KB, 8-way, LRU, 128 MSHRs
NoC bandwidth 1050 GB/s
DRAM bandwidth 480 GB/s
Maximum warps per SM 64
Minimum L2 hit latency 120 cycles
Minimum DRAM latency 220 cycles

TABLE 2: Benchmarks.
Benchmark Suite Abbr. Type
Hotspot Rodinia [8] HS NMD
B+trees Rodinia BT NMD
Back Propagation Rodinia BP NMD
FDTD3d SDK [9] FDTD NMD
Srad Rodinia SRAD NMD
Ray tracing GPGPUsim [10] RAY NMD
2D Convolution Polybench [11] 2DCONV NMD
Stencil Parboil [12] ST NMD
CFD solver Rodinia CFD MD
Breadth-first search Rodinia BFS MD
PageView Rank MARS [13] PVR MD
RageView Count MARS PVC MD
Inverted Index MARS IIX MD
Sparse matrix mult. Parboil SPMV MD
Kmeans clustering Rodinia KMEANS MD

3.2 MDM’s MSHR Contention Model

The warps of MD-applications send their requests to the mem-
ory subsystem over consecutive batches (see Section 2.2). To
estimate the length of these batches, we start by determining
the memory latency in the absence of contention:

LNoContention = LMinLLC + LLCMissRate× LMinDRAM (6)

Here, LMinLLC is the round-trip latency of an LLC hit without
NoC contention. The round-trip latency through the DRAM
system is LMinDRAM (again assuming no contention), but only
LLC misses incur this latency. We then combine LNoContention

with the average stall cycles due to queuing in the NoC and
DRAM subsystems (obtained with Equation 5):

SMem = LNoContention + SNoC + SDRAM (7)

SMem is the predicted stall cycles due to L1 misses — consid-
ering both NoC and DRAM contention. We then use SMem to
predict the SM stall cycles due to MSHR contention:

SMSHR =

{
(dM

Read×W
#MSHRs e − 1)× SMem, MRead ×W > #MSHRs

0, otherwise
(8)

Equation 8 checks whether the number of requests of the
current warps exceeds the number of MSHRs. If it does, we
compute the number of batches needed to issue the memory
requests of all warps by dividing the total number of read
misses by the number of MSHRs. The latency of the final batch
is covered by the queuing model, so we need to subtract one
from this quantity to avoid adding this latency twice. Then, we
multiply by SMem to obtain the combined SM stall cycles of
these batches. NMD-applications are typically able to issue the
requests of all warps in a single batch (see Figure 1). Therefore,
we set SMSHR to zero for non-divergent intervals.
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Fig. 3: IPC prediction error for our NMD and MD-benchmarks
and the different performance models. The key take-away is that
MDM significantly reduces prediction error for MD-applications
while minorly reducing error for the NMD-applications.

4 EXPERIMENTAL SETUP

We use GPGPU-sim 3.2 [10], a cycle-accurate GPU simulator, to
evaluate MDM’s prediction accuracy. We model an architecture
similar to Nvidia’s Pascal [14] as shown in Table 1. We select 15
applications: 8 NMD-applications and 7 MD-applications, from
the main GPU benchmark suites. Table 2 provides details on the
selected benchmarks. We simulate the benchmarks to comple-
tion with the (largest) default input set and report performance
prediction error relative to simulated performance.

The original GPUMech proposal does not model NoC
queuing delay and does not account for the DRAM and
NoC queuing delays when estimating the MSHR stall laten-
cies. GPUMech+ models a NoC queuing delay that resem-
bles GPUMech’s DRAM queuing model, whereby each re-
quest waits for half the total number of requests on average.
GPUMech+ also accounts for the NoC and DRAM queuing
delays when estimating the MSHR waiting time. MDM-Queue
improves upon GPUMech+ by using MDM’s NoC and DRAM
queue model. MDM-MSHR improves upon GPUMech+ by
using MDM’s MSHR model. This enables us to independently
evaluate MDM’s queue model and MSHR model. MDM incor-
porates the improved NoC, DRAM and MSHR queuing delays.

5 RESULTS

Figure 3 reports the relative IPC prediction error for our
NMD and MD-benchmarks for all model combinations. MDM
reduces prediction error by 14× on average compared to
GPUMech for the MD-benchmarks, from 444% to 32%. For the
NMD-benchmarks, MDM reduces prediction error marginally
compared to GPUMech, from 19% to 16% on average. Across all
benchmarks, GPUMech has an average performance prediction
error of 217%. MDM achieves an average prediction error of
23%. The execution times of the MDM and GPUMech models
are practically equal.

GPUMech+, MDM-Queue and MDM-MSHR shed light on
the relative importance of the different components of MDM
for the MD-applications. Although GPUMech+ improves ac-
curacy significantly compared to GPUMech, it still has a high
average prediction error of 206%. This reinforces that minorly
modifying GPUMech is insufficient and that MD-applications
need a fundamentally new modeling approach. MDM-Queue
improves upon GPUMech+ by applying the saturation model
described in Section 3.1 to memory-divergent intervals, thereby
reducing the average prediction error to 100%. Similarly, MDM-
MSHR improves upon GPUMech+ by applying the batching
model of Section 3.2 to memory-divergent intervals, which
reduces the average prediction error to 98%. Neither MDM-
Queue nor MDM-MSHR are able to accurately predict MD-
application performance in isolation, indicating that modeling

both queuing effects and MSHR behavior is critical to achieve
low prediction error.

6 RELATED WORK

Prior work uses GPU modeling techniques to guide runtime
optimizations (e.g., DVFS configuration [15] and cache miss-
related optimizations [16]) or GPU resource scaling analysis [2].
Our work provides an accurate model for fast design space ex-
ploration. In general, prior performance modeling efforts make
simplifications that lead to inaccuracies when modeling the
cache hierarchy [4] and divergent applications [1], [3], or do not
provide insight [2]. Volkov [17] studies GPU performance using
simple synthetic benchmarks and shows that recent GPU mod-
els do not accurately capture the effects of memory bandwidth,
non-coalesced accesses, and memory-intensive applications.

7 CONCLUSION

In this paper, we analyze the key performance characteristics
of contemporary GPU applications and find that the poor
spatial locality of these applications cause them to be memory-
divergent. The modeling assumptions made by state-of-the-art
GPU performance models such as GPUMech do not capture
the characteristics of such applications. Applying GPUMech
to memory-divergent applications leads to significant perfor-
mance prediction errors (444% on average). We propose the
Memory Divergence Model (MDM), which accurately models
the batching and saturation behavior caused by high memory
intensity and poor spatial locality. MDM significantly improves
performance prediction accuracy compared to GPUMech, by
14× on average across a set of memory-divergent applications.
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