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Abstract 

This work describes a combined experimental-numerical study to characterize fine spray-dried 

powder used in the ceramic tile pressing process. A DEM-based granular assembly is endowed 

with a new set of scaling laws that allows for simulating reliably industrial processes using a much 

lower number of granules. To do it, a calibration strategy relying on three experimental setups is 

proposed; (i) compression test of bulk for granule stiffness, (ii) dynamic angle of repose and (iii) 

image analysis of the powder motion in a rotating drum for the intergranular and 

granular-boundary sliding and rolling friction coefficients. In order to evaluate the powder motion 

in a rotating drum, a robust method relying on a direct image analysis is proposed. This 

methodology makes it possible to quantitatively assess the frictional properties of the powder in 

contact with different surface materials. 

Keywords: spray-dried powder, rotating drum angle of repose, calibration, discrete element 

method, scaling-up 

 

1. Introduction 

The procedure of forming ceramic tiles basically consists of three stages: first, the powder is 

poured in a mould via a transportation system, secondly it is compacted using a uniaxial hydraulic 

press and finally, the generated “green tile” is moved to a kiln for the firing stage [1, 2]. 

                                                
* Corresponding author. Phone: +34678070851 
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Despite the important advances in pressing systems and kiln technology, interestingly, the 

first stage of filling has not experienced progress over the past few decades [3]. Nowadays, the 

accuracy of this stage still relays on the experience and intuition of the operator, being this 

particularly relevant when it comes to fabricating large tile formats (up to 120 cm x 120 cm). 

Despite the operator’s skills, this is a procedure that is still greatly prone to generating defects in 

the tiles due to a poor powder distribution in the mould [4]. In the authors’ opinion, there is still a 

lack of a scientifically-based and systematic approach to improve this stage. In this regard, DEM 

simulations depict a suitable computational approach to analyse how these defects are generated 

during the forming of ceramic tiles as well as to propose the strategy to prevent or minimize them. 

This work is the first of a series of three papers that present a combined numerical-experimental 

framework based on DEM simulations to understand and improve the mould filling stage currently 

employed in the ceramic tile industry. 

The Discrete Element Method (DEM) is a well-established computational technique to 

simulate different movement regimes of granular materials. This method was first proposed by 

Cundall and Strack [5]. Later on, Luding [6] extended the physical model, including rolling and 

torsion resistance [7], analogous to the sliding friction model. Concerning the scalability, Sakai et 

al. [8] introduced the coarse granule model in order to simulate realistic industrial scenarios, where 

the amount of involved particles leads to unaffordable computations. 

DEM has been used in the analysis of powder flow during silo discharge [9], filling and 

packing particles [10], segregation studies [11, 12], in the simulation of compression test [13] or in 

the mixing and transport of powders [14]. In the pharmaceutical industry, DEM has demonstrated 

the influence of filling cadence and die form in powder segregation [15]. In addition, recent studies 

[16] have shown that die filling with complex shapes can be successfully simulated using DEM 

with a simple linear model and the signed distance function as wall boundary. 

In order to set the model parameters, a calibration procedure is required. Calibration 

consists in setting the model parameters through reproduction of real experiments. These 

parameters are selected so that certain simulated macroscopic magnitudes compare correctly with 

the experimental results. In this point, there is still a lack of sufficient benchmarks to validate DEM 

simulations under industrial environments [17]. Some efforts have been done to settle a robust 

calibration procedure [18, 19], where the ambiguity of parameter combination was addressed. 

Recently, probabilistic [20] and rheometric [21] based calibrations have also been performed, and 
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a review of the calibration procedures can be found in [22], where the existing variety of 

calibration studies is shown. Nevertheless, the morphology and particle size of the powder 

ultimately determine the calibration testing setup (due to the computational limits and the required 

small time increment), and in most cases the multiple parameters involved in the constitutive laws 

and the assumed simplifications lead to design custom calibration tests according to specific 

applications and conditions [23]. To the best of authors’ knowledge and experience, some sectors 

like those related to ceramic tile production are currently demanding a straightforward calibration 

procedure, where micrometric granules with a wide granule size distribution are involved. The 

current state of the art is lacking of a robust and reliable framework to calibrate DEM models. In 

that sense, this calibration framework to simulate an industrial process must be straightforward in 

terms of implementability, namely, the costs involved in the experimental setup arrangement and 

test execution time of the material parameter identification must be as low as possible. 

In DEM, the most widely used model to describe the powder dynamics is the linear 

spring-dashpot (LSD) model [5]. To calibrate the LSD model, confined axial compression tests 

[18, 24, 17] and shear cell tests [25, 26] are widely used, where intergranular stiffness and friction 

coefficients can be assessed, respectively. The shear cell test is suitable for coarse materials, such 

as corn [10] or polyethylene pellets [1], with granules of millimeter size. Unfortunately, when finer 

granules are involved (   1 mm), the shear cell test simulation is computationally unfeasible if real 

properties are used [27, 28]. As the granule size decreases, not only the number of granule 

increases, but a smaller integration time step is required to simulate successfully the calibration 

procedure without adding numerical artifacts. For example, Coetzee et al [18] showed a DEM 

calibration using the direct shear cell with relatively large particles. However, O’Sullivan et al [26] 

found that when small particles are involved, stability issues (a consequence of the small particle 

masses in comparison with the contact stiffnesses) and some discrepancies between the real and 

simulated tests arise, i.e., in the values of the angle of friction and normal stresses obtained from a 

direct shear cell test. 

Another issue associated with the shear tests is the required time to perform a full test, 

because the longer the elapsed time to perform a test, the longer the simulation. Table 1 shows the 

estimated time to perform typical tests used to calibrate DEM parameters with different 

equipments, including the angle of repose test used in this paper. The pre-conditioning step, which 

is usually applied to remove the packing history of the powder, is not considered (it is normally 
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ignored in the simulations to reduce the computational cost). The dynamic angle of repose is the 

shortest test, followed by the FT4 rheometer test. The shear cell test can be significantly longer 

compared to the others. Regarding the FT4, which is a universal powder rheometer, the typical full 

test duration takes a few minutes but only short cycles are simulated. The confined compression 

test is also a long test, but no better alternatives to calibrate the stiffnesses have been found in the 

literature. 

This study presents an alternative, faster and straightforward methodology to calibrate 

powder models composed of granules with a wide range of sizes. The methodology also relies on 

scaling laws that make it possible to study big granular assemblies typically used in powder-based 

industrial applications. 

This paper is organized as follows: section 2 presents the numerical model used to simulate 

the powder and the scaling laws. Section 3 addresses the experimental part of this work, where the 

powder material and the setups used to calibrate the model are described. The rolling and sliding 

friction coefficients of intergranular and granule-boundary were determined using a rotating drum. 

With it, measurements of dynamic angles of repose and powder dynamics can be achieved. 

Section 4 presents the details of the identification parameter process and the results of the 

calibration. The influence of using different types of wall surface in the powder response is also 

addressed. This paper concludes by summarizing the main findings as well as the limitations and 

basic assumptions required for this type of analysis. Additionally, two appendices are included 

dealing with the computational validation of the used DEM framework. 7 shows the verification of 

the implemented constitutive equations for the contact law (Scilab script is provided as 

Supplementary Material) and 8 presents the study of scaling independence. Further details of 

validation by simulating real mould filling industrial processes will be presented in a forthcoming 

publication. 

 

2. Theory 

2.1. Model formulation 

The LSD model [6] was selected due to its well-balanced ratio between simplicity from the 

computational point of view and reliability of its response from the physical point of view. Despite 

its simplicity, this model has proved efficient and accurate to simulate the powder dynamics [29, 
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30, 31] and powders under low consolidation stresses [32, 33]. Its development results in the 

well-known differential equation of the damped harmonic oscillator. 

Fig. 1 shows schematically of the forces involved in the interaction between granules. 

When two spherical particles, i and j (with diameters 
id  and 

jd , respectively) are close to each 

other, they can collide generating a force 
ijF  and a moment 

ij  on the contact point. The 

collision occurs when there is an interpenetration between the particles. The interpenetration value 

is defined as =ij i j i jh R R  r r , where 
ir  and 

jr  are the position of the particles center and 

iR  and 
jR  are the radii of the particles i  and j , respectively. 

A granular system is modelled as a set of spatial coordinates 
ir  and angular coordinates 

i  with =1,..., pi N , where 
pN  is the total number of particles in the system. The time evolution 

of these quantities is governed by: 
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In these equations, the summation is extended to the 
cN  particles (or surfaces) in contact with the 

particle i. 
im  and 

iI  are the mass and moment of inertia, respectively, and g  is the gravity. In 

this work, adhesive forces are not considered. Moments occurring in (2) are due to tangential and 

rolling forces. 

In the LSD model, the contact forces 
,ij nF  and 

,ij sF , which are the normal and tangential 

forces between two particles, can be formulated as: 
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The superscript t  denotes the current time and t  is the time step. The reduced mass *m  is 

calculated as * = / ( )i j i jm m m m m , 
nk  and 

sk  are the normal and tangential spring elastic 

constants, 
n  is the normal viscous damping and   is the damping ratio. Note that the tangential 

viscous damping was not considered. 
s  is the corresponding increment of the tangential 

overlap; = ( )/ij j i j i n r r r r  is the normal unit vector pointing from particle i  to particle j , 

,rel nv  and 
,rel sv  represent the relative normal and tangential velocities between two particles, and 

iv  and 
jv  are the velocities of the particles i  and j , respectively. Finally, 

i  and 
j  are the 

angular velocities for each particle, and 
s  is the sliding friction coefficient. 

The torques between two particles, 
ij  and 

ji  are defined as: 

 *

, ,=ij i ij ij s ij ij rR R  n F n F  (9) 

 *

, ,=ji j ij ij s ij ij rR R  n F n F  (10) 

The reduced radius *R  is calculated as 
* = / ( )i j i jR R R R R . The rolling quasi-force 

,ij rF , is 

defined as: 
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r  is the increment of the rolling overlap, rk  represents the rolling spring elastic constant, 

,rel rv  represents the objective relative rolling velocity between two particles, and r  is the 

rolling friction coefficient. 

Newton’s third law is applied in order to enforce the correct force direction for each 
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particle. The boundary surfaces were considered to be granules of infinite mass, infinite radius, 

and infinite normal stiffness. It is important to note that the directions of the tangential force and 

the rolling quasi-force from the previous time step ( )t tF  must be corrected at the new time step 

[7]. Additionally, the Coulomb criterion (Eqs. (8) and (13)) is applied to truncate the tangential 

force and the rolling quasi-force with the maximal possible value, i.e. the product of the friction 

coefficient and the magnitude of the normal contact force. For further details, see [7, 32]. In this 

work the Verlet integration scheme [34] was used, and the time increment t  must be smaller 

than the critical time increment in order to guarantee numerical stability. For the LSD model, the 

critical time step [35] is defined as: 

 =crit

n

m
t

k
  (14) 

where m  is the mass of the lightest granule and 
nk  is the normal spring elastic constant. In this 

work, the selected time step was 0.6 critt . 

 

2.2. Scaling laws 

The computational cost of DEM simulations increases with the number of particles in the system. 

Unfortunately, many industrial processes of interest typically involve a huge number of particles 

(more than 10 millions) which cannot be simulated even using the highest current computational 

resources. For this reason, the application of scaling laws is essential to reduce the number of 

particles in the system with the aim of simulating industrial processes realistically. To do this, the 

coarse granule model approach is widely used [8, 36]. In this scaling method, the number of 

particles is reduced by increasing their size, but trying to keep the overall dynamic response 

unaltered. Recently, Lommen et al. [37] presented another approach of the coarse granule model, 

which is applied to the Hertz physical model. This novel approach conserves the character of the 

contact, making it possible to scale correctly particle assemblies. The scaling laws proposed in the 

present work are fundamentally based in the coarse granule model proposed by Hilton et al. [36]. 

A real system with rN  particles can be reduced to sN  particles using the following 

equation: 

 

3

= = =
r s s
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where   is the scale factor, V and R stand for the volume and radius of the particle, respectively, 

and the superscripts “r” and “s” refer to “real” and “scaled” variables, respectively. One way to 

apply the coarse grain model is to keep the mass of the coarse granule constant. In that case, the 

following relation must hold: 

 = =r r s sm V V   (16) 

where   is the density of the particle. Comparing Eq. (15) with Eq. (16), the following 

relationship can be obtained: 

 1=
s

r






  (17) 

This expression corrects the density of every particle when their volumes change, what leads to the 

same coarse granule model approach presented by Hilton et al. [36]. Notice that this way enables 

us to obtain the coarse granule model by changing just the size of the granules and its density. 

Another scaling law must be applied in order to keep constant the average coordination 

number in the system. As it can be observed in the Fig. 2, when the particle size increases while 

keeping its mass unaltered, the relative overlap (defined as /ijh R ) will decrease, which in turn 

might decrease the coordination number. 

In order to keep the relative overlap constant, the relationship between   and the stiffness 

coefficient 
nk  is: 

 1/3= =
s r

n

r s

n

k R

k R
  (18) 

Therefore, two scaling laws are required to obtain an appropriate similarity between the scaled and 

the real system. 

Nevertheless, the scale factor cannot be increased indefinitely and, for each application, it 

is necessary to determine the minimum number of particles that reproduce the studied effect, since 

its influence in some experiments, like the angle of repose tests, has been proved [38, 39]. This 

situation would be analogous to what happens during the process of mesh convergence required in 

simulations based on finite element method. Therefore, when this type of scaling is applied, a 

preliminary analysis is crucial to determine the maximum applicable scale factor (Appendix B). 

 

3. Experimental procedures 
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3.1. Spray-dried powder characterization 

A standard porcelain tile powder (Grupo EUROATOMIZADO®) was selected. The powder was 

dried to avoid cohesion effects due to moisture presence, which ranges between 4 and 8 % on a dry 

basis. Drying was performed in a laboratory oven at 110 °C for 24 hours. A sieve analysis was used 

to extract the granule size distribution (GSD) of the spray-dried powder. Fig. 3 shows the granule 

morphology and the GSD. It can be observed that the spray-dried powder is quite spherical, 

therefore, it was considered appropriate to approximate the shape of the granules to perfect 

spheres. The density of the granules was measured in laboratory tests, estimating an average value 

of 1800  kg/m3. The GSD was fitted to a log-normal distribution with a number-median 

distribution of 200 µm and a geometric deviation of 1.43 . 

 

3.2. Calibration strategy 

Calibration is necessary to approximate the rheological behaviour of simulated powder to the real 

one. Several experiments were selected to calibrate the model, which ideally should maximize the 

influence of one or two parameters and minimize the others. They should be short experiments, 

because DEM simulations require a high computational effort to simulate the necessary amount of 

particles with small time steps for numerical stability. Despite the use of scaling laws, the 

simulated macroscopic properties are usually not independent of the scaling factor, therefore, this 

factor must be reduced until convergence is achieved. Furthermore, experiments must be 

reproducible. It is worth mentioning that the calibration procedure outlined in this section is 

intentionally aimed at being straightforward, flexible and computationally less demanding. 

Therefore, although more complex calibration strategies can be found in [23, 18, 19], they rarely 

deal with small particles ( <1 mm) which are relatively common in industrial scenarios and they 

imply a much higher computational effort, scaling laws and a high variability of the material 

properties. 

For the sake of simplicity, in all simulations the three types of stiffnesses were assumed to 

be equal to each other ( = =n s rk k k ) and the damping coefficient was set to 70 % of the critical 

damping coefficient, assuming quasi-static conditions [9]. 

First, the confined compression test was used to evaluate the granule stiffness value. Next, 

the measurement of the dynamic angle of repose and the powder motion inside a rotating drum was 
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performed to find the corresponding values for the friction coefficients. These friction coefficients 

are four: the sliding and rolling friction coefficients between granules (
,s g g 

 and 
,r g g 

) and the 

sliding and rolling friction coefficients between the granules and the boundary (
,s g s 

 and 
,r g s 

). All tests were recorded with a video capture system. A color digital Camera (Canon PowerShot 

S90) was used for image acquisition. The camera was attached to a tripod completely 

perpendicular to the ground. 

 

3.2.1. Confined compression test 

To determine the stiffnesses, compression tests were quasistatically conducted at low pressures [9, 

24]. A vertical load is applied to the bulk powder confined in a cylindrical container and the bulk 

material is compressed along the vertical axis. Bulk material strain is associated with the stiffness 

parameter in DEM simulations. 

Fig. 4 shows the equipment used to perform the test. A universal Instron testing machine 

was used with a cylindrical die that contained the bulk material. This die had an inner diameter of 

76 mm and a depth of 15 mm. The spray-dried powder was subjected to several 

compression-decompression cycles between a maximum and minimum pressure until a 

pseudo-steady state was achieved. The normal load and resulting axial displacement were 

recorded and the normal stress and strain (  and  , respectively) were calculated. During the 

first cycles a rearrangement of particles took place, and as a result the cycles were not stable. This 

was because the packing was not perfect and intergranular movements occurred in this stage. 

However, in the last cycles when the particle movement was limited, stable hysteresis loops were 

obtained. Confined Young’s modulus E , obtained from stable cycles, can be calculated as: 

 = max min

max min

E
 

 





 (19) 

where 
max  is the maximum axial compression stress, 

max  is its associated strain, min  the 

minimum axial compression stress and min  its associated strain. 

The pressure limits of the compression cycles were selected in a series of preliminary trials 

such that, at maximum pressure, no breakage of the spray-dried granules occurred, whilst at 

minimum pressure the granules were still in direct contact with each other. 

The load application rate was very low (1 mm/min). Consequently, the test was conducted 
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under quasi-static conditions implying that the forces were exclusively governed by the 

intergranular elastic contacts. 

 

3.2.2. Dynamic angle of repose 

The dynamic angle of repose or flowing angle is a widely used measure for the flowability 

characterization of powders by using rotating drums [40, 41]. 

The equipment for measuring the dynamic angle of repose is shown in Fig. 5. The 

assembly consists of a rotating drum and a variable DC power supply in order to control the drum 

rotational speed. The drum was constructed with polycarbonate and had an inner diameter of 100 

mm and a depth of 44 mm. The powder was inserted into the drum through a movable end plate. 

Moreover, sheets of different materials were prepared to cover the inner drum wall in order to 

analyse the motion and the dynamic angle of repose with different wall materials. In this test, the 

rotation rate remained constant at 4 rpm with a filling degree of 43 %, which produced a rolling 

motion with a steady flow. In this type of motion, the dynamic angle of repose can be measured as 

the angle formed between the horizontal and the inclined plane formed by the particles. 

The dynamic angle of repose was determined through the open source image processing 

software ImageJ [42]. The same procedure was used for both experimental and simulated results. 

 

3.2.3. The area method 

The aforementioned rotating drum can be used to obtain more valuable information about the 

powder, as for example how the powder motion occurs into the drum at different rotational speeds. 

With this purpose, an additional methodology called “the area method” is presented here to 

achieve the powder calibration. The area method consists in tracking the evolution of the 

cross-sectional area (CSA) of the drum occupied by the powder as a function of the rotational 

speed of the drum. It must be noticed that the higher the rotational speed, the higher the CSA of the 

drum occupied by the powder, until centrifugation occurs. Likewise, as long as centrifugation does 

not occur, the higher the CSA of the drum occupied by the powder, the higher the porosity of the 

powder bed. In this test the filling degree was also 43 %. 

This method brings two advantages over other calibration tests such as the static angle of 

repose [43, 44, 45]: firstly, the methodology is fast, because the physical simulation time takes less 

than 3 seconds; second, this calibration test is purely dynamic, and therefore very suitable to 
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calibrate the powder models undergoing highly dynamic situations (very common for DEM 

simulations aimed at industrial environments). 

In this test, 5 different rotational speeds for the area method were studied: 4, 40, 80, 105 

and 116 rpm, which cover a wide range of speeds. Fig. 6 shows the evolution of the powder flow in 

the drum for every rotation speed. 

Fig. 7b shows a red circumference, that encloses the area corresponding to the CSA of the 

drum (CSAdrum), and a black area corresponds to the CSA occupied by the powder. Therefore, the 

CSA occupied by the powder (CSAoc) can be obtained by the following relationship: 

 
oc

drum

blackarea(units)
CSA (%) =100

CSA (units)
 (20) 

 

3.3. Preparing the cylindrical surfaces 

In order to evaluate the coefficients of friction of the granules with different surfaces, cylindrical 

plates of different materials were collected. Fig. 8 shows four different cylindrical surfaces made 

of aluminium, polypropylene (PP), polytetrafluoroethylene (PTFE) and granules. Fig. 9 shows a 

zoomed view of the surface covered by granules. 

Among all surfaces, the surface coated with granules has a great interest because it makes 

possible to obtain the intergranular friction coefficients. The preparation consisted in covering one 

side of a plastic surface with double-face adhesive tape. Then, the porcelain tile powder was 

sprinkled over the surface. Finally, the surface was vibrated to homogenize and spread the 

granules uniformly. 

This coating of granules neutralizes the effect of the plastic inner surface of the drum on the 

behaviour of the powder, in such a way that each granule always interacts with another granule. 

For the sake of simplicity, it is assumed that in this drum the inner surface has a major impact on 

the powder motion than the end plates. Notice that some researchers have identified that, 

depending on the diameter to depth ratio of the drum, the end plates can exhibit a significant 

influence on the powder dynamics [46, 47]. 

 

3.4. Simulation details 

The DEM simulations were performed on an in-house software developed. The software was 

implemented using the C++  programming language. A brief computational verification of the 
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software is included in Appendix A, which will be extended in a forthcoming paper. Numerical 

simulations were performed on a cluster with 2 Intel Xeon hexacore E5649 2.53 GHz processors 

and 48 GB of RAM memory. The operating system was CentOS 6. The code was compiled using 

g++ 5.2 with the compiler flag -Ofast. 

 

4. Results and discussion 

4.1. Determination of the stiffnesses 

The stiffness of the granules showed in Fig. 3 was determined using the confined compression test 

described in section 3.2.1. Fig. 10 presents the experimental and numerical force-displacement 

curves. The first cycle produces a wider deformation range of the granular bed in comparison to 

the subsequent cycles. This situation is a result of the rearrangement regime of granules. It can be 

seen that the deformation increases slightly in every applied cycle, until reaching a stationary state. 

Once the granular assembly reaches this level of packing, the level of permanent deformation does 

not increase by applying additional cycles. This means that the deformation produced within a 

stationary cycle is mostly elastic, and therefore, it should be related to the Young’s modulus of the 

granules. After 3 repetitions, the confined Young’s modulus was obtained from the stationary 

compression cycle. An average value of 45.4 1.5  MPa was measured for the dry spray-dried 

powder. 

This compression experiment was simulated using DEM as described in section 2. A total 

of six simulations were performed, in which the value of the stiffness was changed between 250 up 

to 10000 N/m. Fig. 10 shows the curves resulting from the simulations using two extreme 

stiffnesses. This response agrees very well with the results from other authors [24]. It can be seen 

that using granules with higher stiffness, the compressibility of the granular assembly decreases 

accordingly. For all the confined compression test simulations the scale factor was = 27 , 

simulating a total of 62000 granules. The influence of the intergranular friction coefficients is 

negligible during this type of test [9]. However, the effect of the granule-boundary frictions had to 

be considered in the simulations because the friction of the granules with the lateral surface of the 

cylinder has a certain influence in the resulting force-displacement curves. In fact, it has been 

demonstrated that increasing the value of the sliding friction coefficient between the granules and 

surfaces contributes to a stiffening of the system [47, Chapter 5]. Taking this into account, as a first 
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approximation the wall friction coefficients were set to 0.2 (both a significantly low values). 

Fig. 11 shows the confined Young’s modulus of the granular bulk versus the stiffness of 

the granules used in the simulations. The extrapolation of the simulation results indicates that the 

stiffness required to obtain the experimental confined Young’s modulus (45.4 MPa) should be 

87000 N/m. The simulation of the studied powder with this granule stiffness involves a critical 

time step of 710  s. At present, this time step hinders a practical usage of the model for real 

industrial scenarios, even if the most powerful computational resources are employed. A different 

strategy was finally followed: the stiffness value was set to the minimum value that keeps the 

coordination number constant during the filling of a graduated cylinder. This was deemed 

appropriate given the dominant role of the collisional regime in the target applications. During this 

type of regime only small strains (or overlappings) are expected [32]. 

To determine the smallest but acceptable stiffness constant, a series of 14 DEM 

simulations were performed using different stiffnesses values. The granules were poured in a 

metallic cylindrical container with a diameter of 100 mm and a depth of 40 mm (without applying 

the compression cycles) and the evolution of the average coordination number was analysed. All 

these simulations were made with a scale factor of = 125  and 80000 granules. Fig. 12 shows the 

coordination number obtained when the granules are in steady state, as a function of the stiffness 

value. The results of this test are consistent with those from Ref. [48]. For stiffness values lower 

than 200 N/m a excessively high coordination number variation is retrieved. However, for values 

greater than 200 N/m, the coordination number hardly changes. As a result, a stiffness of 200 N/m 

was proposed because lower stiffnesses produce bigger time steps and it drastically reduces the 

computational cost of the simulations. 

This assumption implies that the results obtained in systems where the intergranular 

compressive response plays an important role might not be realistic [29]. Nevertheless, it is 

expected that the external forces acting on certain applications, like powder dynamics, are small 

[49, 50]. In fact, according with the results observed in Fig. 12, Loomen et al [48] showed that a 

stiffness reduction can be applied without altering the simulation results as long as only low 

external forces are involved. However, this reduction should be made cautiously and the model 

results need to be thoroughly verified against different benchmarks. 

 

4.2. Determination of the intergranular friction coefficients 
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To determine the intergranular friction coefficients (
,s g g 

 and 
,r g g 

), the dynamic angle of 

repose test and the area method were performed. It was assumed that granule-boundary friction 

coefficients (
,s g s 

 and 
,r g s 

) of the surfaces covered with granules are identical to 
,s g g 

 and 

,r g g 
, respectively. This assumption reduces the number of unknowns to only two, 

,s g g 
 and 

,r g g 
. Therefore, the problem consists in finding pairs of 

,s g g 
 and 

,r g g 
 that simultaneously 

reproduce the dynamic angle of repose and the evolution of the area occupied by the powder in the 

rotating drum. 

The strategy to obtain the intergranular friction coefficient was the following: 

1. Determine pairs of 
,s g g 

 and 
,r g g 

 which reproduce the dynamic angle of repose. 

2. Perform the simulations of the area method with pairs of 
,s g g 

 and 
,r g g 

 obtained 

previously. 

3. Select the pair of values that best reproduces the area method. 

Using the surfaces coated with granules, the experimental dynamic angle of repose was 

34.6°. Several simulations of the dynamic angle of repose were performed using a range of sliding 

and rolling friction coefficients (Fig. 13). The number of simulated granules was 200000, with a 

scale factor of = 64 . In order to ensure a stable dynamic angle, the physical time simulated was 

6 s. This time was sufficient to produce a steady slope profile during the rotation. The angle was 

determined from the last iteration of the simulations. In the Fig. 14, the start and the end of a 

simulation of the dynamic angle of repose is shown. In this figure, a final angle of repose of 34.6° 

was obtained. 

Fig. 13 shows the influence of the intergranular friction coefficients on the angle of repose. 

As expected, the higher the friction coefficients, the higher the angles of repose. In general, the 

sliding friction coefficient has a larger influence on the angle of repose, and the rolling friction 

coefficient is more relevant when the sliding friction coefficient is large. 

The experimental results of the area method with the surface covered with granules are 

shown in Fig. 15. The simulations were performed as the previous one, with 200000 granules and 

a scale factor of = 64 . The results indicate a little variation of the area for a wide range of 

rotational speeds (from 4 to 80 rpm). Nevertheless, when the rotational speed overcomes 100 rpm 

(105 and 116 rpm) the differences of the occupied area depending on the rotational speed become 

evident. 
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Fig. 16 shows the evolution of the CSA occupied by the powder, depending on the 

rotational speed and the intergranular friction coefficients used. These coefficients correspond to 

the pairs (
,s g g 

, 
,r g g 

) obtained by simulation that reproduce the dynamic angle of repose: (

r = 0.2 , 
s = 0.8 ), (

r = 0.3 , 
s = 0.33 ), (

r = 0.5 , 
s = 0.27 ), where 

r r,g g r,g s= =   
 and 

s s,g g s,g s= =   
. The physical time simulated was 6 seconds for the rotation speeds of 4, 40 and 

80 rpm, and 3 seconds for the cases at 105 and 116 rpm. All CSAs were obtained from the last 

iteration of the calculation, with the same procedure already used experimentally. In the last 

iteration of the calculation, all CSAs were stable except for the pair (
r = 0.5  and 

s = 0.27 ) at 

the maximum rotational speed, where the steady state was not reached (hence, it was not 

considered). 

At low rotational speeds (between 4 and 80 rpm), all simulations agree very well with the 

experimental case. However, at high rotational speeds (105 and 116 rpm), the pair (
r = 0.2 , 

s = 0.8 ) is the only one that can capture satisfactorily the experimental case. With this pair of 

values, the maximum error in all cases is less than 10 %. As a consequence, the pair (
r = 0.2 , 

s = 0.8 ) was selected as the best pair of intergranular coefficients which simultaneously 

reproduce the dynamic angle of repose and the evolution of the CSA occupied by the powder in the 

rotating drum. 

 

4.3. Determination of the granule-boundary friction coefficients 

The same procedure used to obtain 
,s g g 

 and 
,r g g 

 was performed to determine the pair of (

,s g s 
, 

,r g s 
) for each type of surface considered. Once the intergranular friction coefficients 

were known, several simulations of the dynamic angle of repose and the area method were carried 

out like in the previous case. The experimental angles of repose obtained with different surfaces 

are collected in Table 2. 

Because of the similarity of the experimental results for the surface of spray-dried powder 

and aluminium, the same pairs of values reproducing the dynamic angle of repose were assigned to 

both. Besides, due to the similarity between the results of the PP and PTFE surfaces, both are 

considered equal. 

Fig. 17 presents the values of the dynamic angle of repose varying the sliding and rolling 
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friction coefficients for the granule-boundary contact, using the intergranular friction coefficients 

previously determined. The rest of simulation parameters were the same as before. The mean 

experimental dynamic angle of repose for the polymeric surfaces is represented using a dashed 

line. As it can be observed, the variation of the dynamic angle of repose with this friction 

coefficients is small. For example, when 
, = 0.001r g s 

, the maximum error in the reproduction of 

the experimental angle of repose with 
, [0.2,...,0.7]s g s    is less than 1°. However, for the same 

range of 
,s g s 

, if 
, = 0.01r g s 

 the maximum error is approximately 2°. 

The error generated in the reproduction of the experimental dynamic angle of repose 

varying 
,s g s 

 is practically negligible if 
, < 0.0001r g s 

. As a matter of fact, when 

, = 0.0001r g s 
, the resulting angle of repose remains constant if 

, < 0.7s g s 
. Only a little 

variation of the angle is observed when 
, > 0.7s g s 

. This response suggests that a quite robust 

value has been achieved by the simulation. On the other hand, a value of 
, < 0.18s g s 

 produced a 

clear slipping motion [40]. 

Given the small variation of the dynamic angle of repose with 
,r g s 

 and 
,s g s 

, pairs of (

,r g s 
, 

,s g s 
) reproducing the angle of repose with an error of 0.5   (green band in Fig. 17) 

were considered suitable for the simulation of the area method. 

The experimental results of the area method with different surfaces are shown in Fig. 18. 

Similar to section 4.2, these results present again a little variation of the area for a wide range of 

rotational speeds (from 4 to 80 rpm). Nevertheless, when the rotational speed exceeds 100 rpm 

(105 and 116 rpm), the differences between the CSA occupied by the powder are noticeable. On 

the one hand, the difference between using an internal coating of spray-dried powder and 

aluminium is negligible for all rotational speeds tested. Therefore, the same friction coefficients 

calibrated previously can be used as friction coefficients for the granule-aluminium contact. 

On the other hand, the differences between using PP or PTFE are also very little. The 

maximum difference is 10 % for a rotational speed of 116 rpm. For the sake of simplicity, the 

differences were not considered relevant, and the same friction coefficients were assigned for both 

granule-PTFE and granule-PP contact. Consequently, only the friction coefficients for the 

polymeric surfaces needs to be determined. 

To perform the simulation of the area method in this case the following pairs were selected: 
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(
r,g s = 0.01 

, 
s,g s = 0.2 

), (
r,g s = 0.001 

, 
s,g s = 0.5 

), (
r,g s = 0.0001 

, 
s,g s = 0.7 

) and (

r,g s = 0.0001 
, 

s,g s = 0.9 
). The rest of parameters were identical to those used in section 4.2. 

Fig. 19 shows the evolution of the CSA occupied by the powder, as a function of the 

rotational speed and the friction coefficients of the granule-boundary contact used. The 

experimental values depicted in Fig. 19 correspond to the mean value obtained from the two 

polymeric surfaces. As it can be observed, although the friction coefficients are very different from 

each other, the CSA occupied by the powder is practically constant for all pairs of values up to the 

rotational speed of 80 rpm. For rotational speeds higher than 80 rpm, the pair (
r,g s = 0.0001 

, 

s,g s = 0.9 
) is the one that best reproduces the experimental case, particularly at high rotational 

speeds. The maximum error generated with this pair of values is 10 % and only when the rotational 

speed is 40 rpm. Notice that the other pairs of values tested do not exhibit a better behaviour at this 

rotational speed either, and worsen considerably at high speeds. 

In summary, 
s,g s 

 should be increased to be able to reproduce correctly the area method, 

however, the 
r,g s 

 should be decreased to reproduce the dynamic angle of repose (Figs. 17 and 

19). As a result, the pair (
r,g s = 0.0001 

, 
s,g s = 0.9 

) represents the final calibrated values 

yielding the best results. 

 

4.4 . Discussion of results 

Table 3 shows the calibrated values of the granule stiffness and the sliding and rolling friction 

coefficients for the intergranular and granule-boundary contacts. It should be noticed that the 

stiffnesses for the granule-boundary contact is twice the stiffnesses for the granule-granule. This is 

because the surfaces are always considered elements infinitely rigid, and the contact stiffness is 

derived assuming two elastic springs connected in series. 

On the other hand, the granule-polymer contact involves a drastic reduction of 
r,g s 

, 

while the effect on 
s,g s 

 is, in comparison, negligible. However, as it can be deduced from Figs. 

13-19, 
s,g g 

 and 
r,g g 

 seem to have a higher impact in the model than 
s,g s 

 and 
r,g s 

. 

Finally, the scaling independence study was repeated for the calibrated model, 

demonstrating the validity of the proposed scaling (Appendix B). 
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5. Conclusion 

This paper proposes a straightforward methodology to obtain the main parameters of a DEM 

simulation based on the LSD contact law: the granule stiffnesses and the sliding and rolling 

friction coefficients of the intergranular and granule-boundary contacts. Currently, DEM 

simulations cannot handle the real number of particles present in many industrial processes. 

Therefore, with the aim of making this approach feasible for industrial applications, this paper also 

proposes a set of scaling laws where the size and the stiffnesses of the granules are conveniently 

modified. This procedure makes it possible to keep unaltered the dynamic response of the 

simulated spray-dried powder when the collisional regime dominates over the external confining 

pressures. This approach demonstrates that only one experimental setup was required to calibrate 

the powder model: a rotating drum. 

To calibrate a spray-dried powder for industrial-oriented purposes, four assumptions have 

been adopted: 

(i) the stiffness of all particles in the system is considered equal. 

(ii) the damping coefficient is the 70 % of critical damping coefficient assuming quasi-static 

conditions (no rate-dependency of the restitution coefficient). 

(iii)a covered surface of granules is approximately equal to a surface with granular properties. 

(iv) the influence of the end plates of the rotating drum is negligible in the powder dynamics 

compared to the inner surface effect. 

This proposal enables the characterization of different types of powders independently of 

their GSD, just by using a single experimental setup. In this sense, this work not only presents the 

calibration procedure but also its applicability by testing four types of material surfaces in contact 

with the powder. 

The main advantages of the proposed methodology over others (such as methods based on 

shear cell tests) to calibrate DEM models are the simplicity of the tests and the short simulation 

times involved. Furthermore, the presented procedure to calibrate the friction coefficients does not 

involve external loads, as the shear cell tests do. This is an advantage if the real stiffnesses cannot 

be used in the simulations as with the tested spray-dried powder, whose real stiffness involves too 

small time steps to perform feasible simulations. Additionally, the presented procedure is specially 
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suitable to calibrate powder models to be used for simulating highly dynamic processes. This is 

because the area method presented makes it possible to characterize the powder in a dynamic 

regime, which can also be adjusted depending on the final application of the model. 

Regarding the limitations, the proposed methodology uses a manual image treatment, 

which involves an inherent error in the measurements depending on the researcher who performs 

it. It produces, inevitably, less accurate results than the one obtained using a ring shear test, for 

example. In the future, a way to automate the measurement of the dynamic angle of repose and the 

image analysis should be investigated. Additionally, other calibration test could be investigated, 

such as the use of a FT4 rheometer. The authors encourage readers to assess more accurate tests to 

determine the friction coefficients, but meeting the requirements of easiness and quickness (highly 

demanded by industrial environments). Furthermore, the proposed methodology does not provide 

a calibration test for viscous damping, which is fixed at its theoretical value in quasi-static 

conditions. A customized test should be addressed to properly calibrate this parameter before the 

calibration of the friction coefficients. 

Finally, it is worth mentioning that the proposed scaling laws as well as the simulation 

strategy are also valid for simulating any powder-based process, independently of their size. 

Therefore, it has an immediate applicability in the modelling of large granular flows and in the 

design of powder equipment. 
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Appendix A. Computational verification of the DEM framework 

DEM simulations performed in this paper have been done using an in-house DEM framework 

entirely developed by the authors. Despite a forthcoming publication will deal extensively with the 
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development of this in-house framework, for the sake of completeness a computational 

verification of the model and a benchmark are described below. 

 

Appendix A.1. Model verification 

The purposed model detailed in section 2 was included in a DEM framework developed using the 

C ++ programming language. To verify the model implementation, a simple test was executed and 

compared with the same model implemented in Scilab. 

The verification test consisted in dropping two vertically aligned particles on a flat surface. 

A schematic of the test is depicted in Fig. A.1, where 
1R  and 

2R  are the radii of the particles 1 

and 2, respectively, 
1r  and 

2r  are the positions, 
1  and 

2  are the densities, and 
1  is the 

initial angular velocity of the particle 1. Initial conditions and the model parameters used in the 

verification test are depicted in Table A.1. 

Fig. A.2 shows the trajectories of both particles after 5 seconds of simulation. The results 

of the DEM framework match with those obtained from Scilab, validating the computational 

implementation of the equations of the model. The Scilab script used in this section can be 

consulted in the Supplementary Material attached to this paper. 

 

Appendix A.2. Benchmarking 

DEM framework implementation was verified by comparing it with one of the most widely used 

software packages for DEM simulations, LIGGGHTS [51]. The verification was made comparing 

the number of contacts and the total kinetic energy of the particles involved during a silo discharge. 

The discharge of the silo consisted in dropping the particles from the silo in a vessel (Fig. 

A.3). It is also worth emphasizing that LIGGGHTS does not include exactly the same contact 

model used in this paper. In order to perform a fairy comparison and use the same contact model in 

both implementations, some model parameters such as damping coefficient and rolling friction 

were set to 0 (note that LIGGGHTS considers the tangential damping coefficient, which was also 

set to 0). Table A.2 includes all model parameters used in the simulation of the silo discharge. 

Fig. A.4 presents the evolution of the number of contacts in both implementations. At the 

beginning of the discharge, the number of contacts decreases during the first 12 seconds. From this 

point on, the number of contacts increases until the total discharge occurs, reaching a constant 
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value. As it can be appreciated, both implementations give essentially the same results. 

On the other hand, Fig. A.5 shows the evolution of the total kinetic energy of the particles 

during the silo discharge. When the discharge begins, the total kinetic energy increases rapidly, 

and it gradually reduces as the discharge progresses. The differences between both 

implementations are small, which are attributable to the different integration schemes used 

(LIGGGHTS uses the velocity Verlet scheme, while the DEM framework developed uses the 

basic Verlet scheme). 

 

Appendix B. Scaling independence study 

DEM simulations performed in this paper required a granule upscaling to be computationally 

feasible to simulate realistic industrial processes. Although several granule properties were 

corrected to keep constant the macroscopic response of the powder bulk, it is essential to ensure 

that the solution is not affected by the scaling applied. After calibrating the model, the scaling 

independence study was repeated for each experiment, in order to increase the confidence in the 

calibrated values and the scaling applied. 

Fig. B.1 shows the scaling effect of the calibrated model in the confined Young’s modulus, 

obtained following the procedure described in section 3.2.1. No relevant differences in the 

confined Young’s modulus was noticed between the scale factors tested. On the other hand, it is 

worth mentioning that a greater reduction of the scale factor was not carried out because it was not 

computationally feasible due to the computation time required (in the order of months) with the 

computer resources available. 

Fig. B.2 illustrates the scaling effect of the calibrated model in the coordination number 

(section 4.1). For   values ranging from 8 to 125, the variation of the coordination number was 

found very small (notice that with the calibrated friction coefficients, the resulting coordination 

number is lower than expected according to the Fig. 12). This proves that, for the values of   

tested, the structure of the scaled powder bulk represents very well the unscaled one. 

The scaling effect of the calibrated model in the dynamic angle of respose and in the CSA 

of the drum occupied by the powder are shown in Table B.1. In all cases, the inner surface of the 

drum is considered to be aluminium. Regarding the dynamic angle of response, a difference of 1° 

is observed between a model where the diameter of the granules is scaled twice and another one in 
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which it is scaled four times, although the granule distribution pattern remains the same (Fig. B.3). 

The influence of the scale factor in the dynamic angle of repose may be related to the nature of the 

measure, which depends on the size of the powder [40]. Nevertheless, according to the Table B.1, 

the difference of the dynamic angle of repose between the unscaled model and the scaled one with 

the scale factor selected in sections 4.2 and 4.3 ( = 64 ) is expected to be about 1°. 

Regarding the CSA of the drum occupied by the powder, notice that it is not clearly 

independent of the scale factor. Similar to the case of the dynamic angle of repose, this behaviour 

may be related to the influence of the size of the powder in the measure. Anyhow, despite this 

slight impact of the scaling, the differences between the unscaled model and the scaled one with 

the scale factor used in the CSA measurement ( = 64 ) is less than 4 %. 
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Tables 

Table 1. Elapsed time for the typical tests performed to calibrate DEM parameters. 
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Test Volume of powder (cm3) Elapsed time (s) References 

Confined compression 65 30 This paper 

Jenike shear cell 50 30-100* [52, 53] 

FT4 rheometer 100 12 [54, 55] 

Dynamic angle of repose 148 6 This paper 

*It strongly depends on the type of powder and the normal load applied. 

 

Table 2. Dynamic angle of repose for the spray-dried powder with different drum inner surfaces. 

Surface Material Dynamic angle of repose (°) 

PTFE 31.9 

PP 32.2 

Aluminium 34.2 

Spray-dried powder 34.6 

 

Table 3. Calibrated parameters of the model. 

Granule-Granule Contact 

Granule density, 
g  (kg/

3m )  1800 

Normal stiffness, kn (N/m)  200 

Tangential stiffness, ks (N/m)  200 

Rolling stiffness, kr (N/m)  200 

Damping ratio,    0.7 

Sliding friction coefficient, 
s,g g 

  0.8 

Rolling friction coefficient, 
r,g g 

  0.2 

Granule-Boundary Contact 

Normal stiffness, kn (N/m)  400 

Tangential stiffness, ks (N/m)  400 

Rolling stiffness, kr (N/m)  400 

Damping ratio,    0.7 

Sliding friction coefficient, 
s,g s 

 Aluminium 0.8 

 PP 0.9 

 PTFE 0.9 

Rolling friction coefficient, 
r,g s 

 Aluminium 0.2 
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 PP 0.0001 

 PTFE 0.0001 

 

Table A.1. Initial conditions and parameters used in the model verification. 

Particle 1 

Radius, 
1R  (m) 0.025 

Density, 
1  (kg/

3m ) 500 

Position, 
1 1 1 1( , , )x y zr r rr  (m) (0,0.5,0) 

Linear Velocity, 
1 1 1 1( , , )x y zv v vv  (m/s) (0,0,0) 

Angular Velocity, 
1 1 1 1( , , )x y z    (rad/s) (0,0,-300) 

Particle 2 

Radius, 
2R  (m) 0.03 

Density, 
2  (kg/

3m ) 500 

Position, 
2 2 2 2( , , )x y zr r rr  (m) (0,0.2,0) 

Linear Velocity, 
2 2 2 2( , , )x y zv v vv  (m/s) (0,0,0) 

Angular Velocity, 
2 2 2 2( , , )x y z    (rad/s) (0,0,0) 

Particle 1 - Particle 2 

Contact 

Normal stiffness, kn (N/m) 200 

Tangential stiffness, ks (N/m) 200 

Rolling stiffness, kr (N/m) 200 

Damping ratio,   0.7 

Sliding friction coefficient, 
s  0.5 

Rolling friction coefficient, 
r  0.2 

Particle 1 – Surface 

Contact 

Normal stiffness, kn (N/m) 400 

Tangential stiffness, ks (N/m) 400 

Rolling stiffness, kr (N/m) 400 

Damping ratio,   0.7 

Sliding friction coefficient, s  0.8 

Rolling friction coefficient, r  0.2 

Particle 2 – Surface 

Contact 

Normal stiffness, kn (N/m) 400 

Tangential stiffness, ks (N/m) 400 
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Rolling stiffness, kr (N/m) 400 

Damping ratio,   0.7 

Sliding friction coefficient, 
s  0.8 

Rolling friction coefficient, 
r  0.2 

Simulation 

Conditions 

Time step, t  (s) 0.0001 

Physical time, t (s) 5 

 

Table A.2 All parameters used in the benchmark. 

Particles 

Particle Size d50 (m) 1.0 

Distribution (PSD) 
geo  1.1 

Density,   (kg/
3m )  500 

Particle – Particle 

Contact 

Normal stiffness, kn (N/m)  50000 

Tangential stiffness, ks (N/m)  50000 

Rolling stiffness, kr (N/m)  0 

Damping ratio,    0.0 

Sliding friction coefficient, 
s   0.5 

Rolling friction coefficient, 
r   0.0 

Particle – Surface 

Contact 

Normal stiffness, kn (N/m)  100000 

Tangential stiffness, ks (N/m)  100000 

Rolling stiffness, kr (N/m)  0 

Damping ratio,    0.0 

Sliding friction coefficient, 
s   0.5 

Rolling friction coefficient, r   0.0 

Simulation 

Conditions 

Time step, t  (s)  0.001 

Physical time, t (s)  120 

 

Table B.1. Scaling effect of the calibrated model in the dynamic angle of respose and in the CSA of 

the drum occupied by the powder. 

Scale factor   Dynamic angle of repose (°) CSA (%) 
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8 33.4 43.9 

27 33.9 44.5 

64 34.6 45.5 

 

Figures 

Fig. 1. Geometrical magnitudes defining the interaction distance in the DEM. 

 

Fig. 2. Alteration of the relative overlap between an unscaled and scaled assembly of granules 

according to the coarse granule model approach. 

 

Fig. 3. Top: spray-dried powder morphology. Bottom: granule size distribution histogram. 

 

Fig. 4. General view of the experimental setup of a confined compression test. 

 

Fig. 5. Dynamic angle of repose test setup. 

 

Fig. 6. Powder motion depending on the rotational speed. 

 

Fig. 7. Execution of the image analysis to obtain the CSA of the drum occupied by the powder. 

 

Fig. 8. Four different cylindrical surfaces. Top, left: aluminium drum. Top, right: raw drum. 

Bottom to top: granules, PP and PTFE. 

 

Fig. 9. Zoomed view corresponding to the surface coated with granules. 

 

Fig. 10. Experimental and simulated force-displacement curve from confined compression test. 

 

Fig. 11. Confined Young’s modulus calculated in the simulations, as a function of stiffness. 

 

Fig. 12. Variation of the repose coordination number of the granules with stiffness. 
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Fig. 13. Effect of the intergranular friction coefficients on the dynamic angle of repose. 

 

Fig. 14. (color online) Start and end of a simulation of the dynamic angle of repose test. 

 

Fig. 15. CSA occupied by the powder in the drum covered with the granules surface (%). 

 

Fig. 16. Effect of the intergranular friction coefficients on the CSA occupied by the powder (%). 

 

Fig. 17. Effect of the granule-boundary friction coefficients on the dynamic angle of repose, with 

the calibrated intergranular friction coefficients. 

 

Fig. 18. CSA occupied by the powder in the drum covered with different surfaces (%). 

 

Fig. 19. Effect of the granule-boundary friction coefficients on the CSA occupied by the powder 

(%). Experimental is considered the mean value for both polymeric surfaces. 

 

Flat Surface 

Fig. A.1. Schematic of the initial condition for the model verification. 

 

Fig. A.2. Trajectories of the two particles after 5 seconds of simulation, using the DEM framework 

developed and Scilab. 

 

Fig. A.3. Left: starting of silo discharge. Right: ending of silo discharge. 

 

Fig. A.4. Evolution of the number of contacts during the silo discharge. 

 

Fig. A.5. Evolution of the total kinetic energy of the particles during the silo discharge. 

 

Fig. B.1. Scaling effect in the confined Young’s modulus. 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

Fig. B.2. Scaling effect in the coordination number. 

 

Fig. B.3. (color online) Scaling effect in the granule distribution pattern after completing the 

dynamic angle of repose test. Top: initial conditions. Bottom: final angle of repose. 
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Research highlights 

► A novel methodology to calibrate DEM simulations is proposed.  

►The methodology is focused on systems with low particle size (Φ<1mm). 

►Scaling laws required to reduce the number of particles to simulate are 

shown. 

►Spray-dried powder behaviour with several surfaces is investigated. 
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