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Abstract—Modern GPUs feature an increasing number of streaming multiprocessors (SMs) to boost system throughput. How to
construct an efficient and scalable network-on-chip (NoC) for future high-performance GPUs is particularly critical. Although a mesh
network is a widely used NoC topology in manycore CPUs for scalability and simplicity reasons, it is ill-suited to GPUs because of the
many-to-few-to-many traffic pattern observed in GPU-compute workloads. Although a crossbar NoC is a natural fit, it does not scale to
large SM counts while operating at high frequency. In this paper, we propose the converge-diverge crossbar (CD-Xbar) network with
round-robin routing and topology-aware concurrent thread array (CTA) scheduling. CD-Xbar consists of two types of crossbars, a local
crossbar and a global crossbar. A local crossbar converges input ports from the SMs into so-called converged ports; the global
crossbar diverges these converged ports to the last-level cache (LLC) slices and memory controllers. CD-Xbar provides routing path
diversity through the converged ports. Round-robin routing and topology-aware CTA scheduling balance network traffic among the
converged ports within a local crossbar and across crossbars, respectively. Compared to a mesh with the same bisection bandwidth,
CD-Xbar reduces NoC active silicon area and power consumption by 52.5% and 48.5%, respectively, while at the same time improving
performance by 13.9% on average. CD-Xbar performs within 2.9% of an idealized fully-connected crossbar. We further demonstrate
CD-Xbar’s scalability, flexibility and improved performance per Watt (by 17.1%) over state-of-the-art GPU NoCs which are highly
customized and non-scalable.

Index Terms—graphics processing unit (GPU), network-on-chip (NoC), crossbar

F

1 INTRODUCTION

Graphics Processing Units (GPUs) are widely deployed
in high-performance computing systems and data centers
for massive data processing. A GPU-compute application
typically consists of a number of kernels that are composed
of (up to hundreds of) thousands of threads. These threads
are organized into cooperative thread arrays (CTAs) and are
scheduled on streaming multiprocessors (SMs). To contin-
uously boost raw computational power in modern high-
performance GPUs, the number of SMs keeps increasing.
For example, while the Nvidia Fermi GPU integrated 16
SMs, the latest Nvidia Pascal [1] and Volta GPUs [2] feature
60 and 80 SMs, respectively.

The increasing number of SMs puts critical pressure on
the Network-on-Chip (NoC) that connects the SMs to the
last-level cache (LLC) slices and memory controllers (MCs).
How to design a scalable area- and power-efficient GPU
NoC is a major challenge. As reported by previous work,
the NoC in manycore processors incurs substantial chip area
and power consumption [3], [4], [5]; for example, network
power accounts for 19% of total chip power for a recent
manycore processor [6].

Scalable NoC topologies have been proposed, including
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mesh, Clos and butterfly. These network topologies were
conceived for CPU systems in which the different CPUs
need to communicate with each other to support cache
coherence. However, these networks are poorly suited to
GPUs because of the many-to-few-to-many traffic pattern
in which communication only exists between SMs on the
one side and LLC slices (and memory controllers) on the
other side [7]. There is no communication between SMs,
i.e., coherence at the SM-side L1 cache is achieved through
software issuing flush operations to the shared last-level
cache (LLC). Scalable CPU topologies lead to underutilized
links and are thus both power- and area-inefficient when
deployed in a GPU. A crossbar NoC on the other hand is a
natural fit by only providing links to connect the SMs to the
LLC slices and vice versa; there are no links to connect the
SMs among themselves. However, scaling a crossbar NoC
to large SM counts at high clock frequency is problematic
because of long propagation delays [8], [9], [10], [11].

In this paper, we propose the Converge-Diverge Crossbar
(CD-Xbar), a scalable, area- and power-efficient GPU NoC.
CD-Xbar consists of two types of switch nodes, a local
crossbar and a global crossbar. Instead of directly connecting
the SMs to the LLC slices, CD-Xbar uses local crossbars to
connect the SMs to a set of converged ports. These converged
ports are then diverged to the LLC slices through a global
crossbar. For example, instead of having one monolithic
fully-connected 80 × 16 crossbar to connect 80 SMs to 16
LLC slices, CD-Xbar features 8 local 10 × 3 crossbars that
each connect 10 SMs to 3 converged ports and a global
24 × 16 crossbar to connect the 24 converged ports (8 local
crossbars × 3 converged ports per local crossbar) to the 16
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LLC slices. By doing so, CD-Xbar enables high-frequency
operation while preserving area- and power-efficiency.

The converged ports pose a routing challenge as dif-
ferent input nodes have several converged ports to choose
from. Existing routing policies such as source-based routing
and adaptive routing are ineffective because they make the
routing decision locally without considering the requests
from the different nodes. We instead propose round-robin
routing which assigns converged ports to incoming packets
in a round-robin way across the different nodes to reduce flit
contention. A key benefit of the round-robin routing policy
is that it provides a simple mechanism to guarantee path
diversity through the converged ports.

CD-Xbar achieves similar performance as a fully-con-
nected crossbar when network traffic is balanced among the
different local crossbars, which is typically the case as CTAs
exhibit similar execution characteristics [12]. However, un-
balanced traffic may exist in two scenarios: (i) a small
GPU kernel may not occupy all SMs, and (ii) a spatially
multitasking GPU may co-execute a memory-intensive and
a compute-intensive kernel on different sets of SMs. In both
scenarios, some local crossbars would receive most of the
network traffic while other local crossbars would remain
idle, which could severely hurt overall system performance.
To solve the unbalanced NoC problem, we propose topology-
aware CTA scheduling to balance network traffic among the
different local crossbars.

We make the following contributions in this paper:

• We show that because of a GPU’s unique traffic
pattern, a crossbar topology is inherently more area-
and power-efficient than other NoCs including mesh,
Clos and butterfly, however it faces scalability chal-
lenges with increasing SM count.

• We propose CD-Xbar, a converge-diverge crossbar
that delivers scalable performance at low chip area
and power cost. CD-Xbar provides routing path di-
versity through the converged ports.

• We devise round-robin routing, a critical compo-
nent to mitigate contention in converged ports, and
topology-aware CTA scheduling to balance network
traffic among the local crossbars.

• We report that CD-Xbar reduces NoC active silicon
area by 52.5% and power consumption by 48.5%
while improving performance by 13.9% compared
to a mesh network. CD-Xbar performs within 2.9%
of an idealized fully-connected crossbar. Finally, CD-
Xbar improves performance per Watt by 17.1% on
average over state-of-the-art GPU NoCs while being
more flexible and better scalable.

2 MOTIVATION

How to construct a high-performance cost-effective GPU
NoC with an increasing number of SMs is a major challenge.
In this section, we evaluate the area- and power-efficiency as
well as the maximum operating frequency for four different
NoC topologies that are well explored in the CPU domain,
including mesh, Clos, butterfly and crossbar, plus one NoC
topology that is optimized for the GPU, namely S-mesh.
This will allow us to more clearly describe the goal of this
work.

4*4 

mesh

4-ary, 2-fly

butterfly

(m=2, n=4, r=4)

Clos

(b) (d)(c)(a)

12*4 

crossbar

Fig. 1: NoC topologies: (a) crossbar, (b) mesh, (c) Clos and
(d) butterfly.

TABLE 1: NoC configurations.

Topology 20 SMs 80 SMs 120 SMs 180 SMs

Mesh 6×6 10×10 12×12 14×14
Butterfly (6-ary, 2-fly) (10, 2) (12, 2) (14, 2)
Clos (4, 6, 6) (8, 10, 10) (8, 12, 12) (8, 14, 14)
Crossbar 20×16 80×16 120×16 180×16
S-Mesh 6×6 10×10 12×12 14×14

2.1 NoC Topologies
We consider the following five NoC topologies.
Crossbar: A crossbar (Figure 1(a)) connects m inputs (the
SMs) to n outputs (the LLC slices) via an m × n crosspoint
switch.
Mesh: An n × n mesh network (Figure 1(b)) consists of n2

routers with each router consisting of five input ports (i.e.,
four neighbors and the node itself). Each router consists of
a 5× 5 crossbar.
Clos: The Clos network (Figure 1(c)) is a multistage net-
work. Here, we assume a 3-stage Clos network charac-
terized by the triple (m,n, r): m denotes the number of
middle-stage switches; n is the number of input and output
ports of the first and last stage switches, respectively; r is
the number of the switches in the first and last stage. An
(m,n, r) Clos network can support r × n SMs and memory
nodes.
Butterfly: The butterfly network (Figure 1(d)) is another
multistage interconnection network. A k-ary n-fly is imple-
mented by using n stages of switches. Each stage consists of
kn−1 switches and each switch has a radix of k which means
it has k input and output ports. The k-ary n-fly network can
support kn SMs and memory nodes. Here, we assume a 2-
stage butterfly.
S-Mesh: S-Mesh is a mesh NoC optimized for GPUs [13].
Due to a GPU’s unique traffic pattern, i.e., there is no
communication between SMs, some links and buffers in a
traditional mesh are not used. As a result, the 5× 5 crossbar
architecture of a router can be simplified. S-mesh removes
these unused resources to reduce hardware cost.

2.2 Area Analysis
To understand how NoC topology affects chip area, one has
to consider its constituting components. Links and routers
are the two important components of a NoC. Links connect
the input and output ports of neighboring routers. For each
router, the input buffers and the crossbar switch are the
major components consuming chip area (and power). The
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TABLE 2: NoC component breakdown in terms of the
number of routers, buffers, crossbar switches and links.

Topology #Routers #Buffers #Crossbars #Links

Crossbar 1×2 384 2 (80×16) 192 (L)
Mesh 100×2 4000 200 (5×5) 912 (S)
Clos 28×2 2080 40 (10×8), 16 (10×10) 512 (L)
Butterfly 20×2 1600 40 (10×10) 392 (L)
S-Mesh 100×2 3000 200 (4×4) 732 (S)
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Fig. 2: NoC area breakdown for the five network topolo-
gies assuming 80 SMs and 16 LLCs. A crossbar topology is
inherently more area-efficient.

overhead of these components is affected by the node degree
(the number of input and output ports of the router). As the
number of ports increases, the associated buffers, allocator
logic and crossbar area also need to increase. We assume
input-buffered routers in this work.

We compare the specific NoC configurations shown in
Table 1. We assume a channel width of 32 bytes across all
configurations, and every input port has 4 virtual channels
(VCs) and 4 flits per VC. We further assume 8 memory
controllers and 2 LLC slices per memory controller, for a
total of 16 LLC slices. We use DSENT [14] to compute NoC
area, power consumption (assuming a 0.1 injection rate)
and clock frequency. (See Section 4 for further details about
the experimental setup.) Table 2 provides a detailed com-
ponent breakdown for the five topologies. #Routers is the
total number of routers in the request and reply networks.
#Buffers is the total number of VC buffers located in the
input ports across all routers (in both networks). #Crossbars
is the number of crossbar switches and their configurations.
#Links is the total number of links to connect the routers. To
provide a fair comparison between the different topologies,
we take the input/output links into consideration.

We assume two physically separate networks, a request
network and a reply network, to avoid protocol deadlock.
This is sufficient as GPUs exploit software-based coher-
ence and network packets only constitute of read/write
requests and replies. Note that we assume two physically
separate networks for the mesh topology as well, as done
in prior work [13], [15], [16], [17]. This allows for separate
and asymmetric optimizations for the different networks
based on their respective traffic characteristics and load,
see the S-Mesh proposal [13] in particular. The alternative
approach of exploiting two virtual networks on one physical
network can reduce the hardware cost of a mesh network
considerably. However, it loses the opportunity for asym-

metric optimization opportunities. Moreover, even in the
ideal case where two virtual networks would yield similar
performance as two physical networks, performance would
still be worse than CD-Xbar, as the evaluation section in
this paper shows that CD-Xbar significantly outperforms
a mesh topology with two physical networks. We further
assume one network port per SM and do not consider
concentration [18], which is a one-time solution that can be
exploited by all networks that we evaluate here.

Figure 2 breaks down the area cost for the five topologies
for a GPU architecture with 80 SMs and 16 LLC slices. The
breakdown includes network area due to buffers, crossbars,
allocators and links. Interestingly, the crossbar is much
more area-efficient than the (S-)mesh, Clos and butterfly
networks. In particular, the mesh topology requires 4000
input buffers and 200 5×5 crossbars (Table 2). This leads to
more than 4 times the active silicon area cost of the crossbar
topology. The Clos, butterfly and S-mesh topologies exhibit
similar area inefficiencies. The fundamental reason is that
a fully-connected crossbar only provides connections from
the SMs to the LLC slices and vice versa, i.e., there are
no connections in-between SMs nor in-between LLC slices.
In contrast, other topologies provide connections between
SMs, by construction. This leads to a large number of
under-utilized routers, which induces unnecessary chip area
overhead.

2.3 Scalability Analysis
Although the crossbar is more area-efficient, the other
topologies are known to be better scalable with node count.
Figure 3 quantifies chip area, power consumption and op-
erating frequency for the five topologies as we scale the
number of SMs. (We keep the number of LLC slices constant
but we scale memory bandwidth and LLC capacity propor-
tionally with SM count.) The key observation is that while
the crossbar is substantially more area- and power-efficient
across SM count, operating it a high frequency becomes
problematic as we scale the number of SMs.

As port count increases, a crossbar cannot operate at
high frequency. A typical matrix-style crossbar consists of
a collection of switches that route the data, plus an arbiter
to configure the crossbar. The physical size of the crossbar
grows quadratically with port count. This not only increases
propagation delay, it also complicates the arbiter logic [8],
[9], [11]. Although designs such as swizzle-switch [11] dis-
tribute the arbitration logic across the crossbar crosspoints
— swizzle-switch was shown to operate at high frequency
with 64 ports and a 16-byte channel width — the propaga-
tion delay problem caused by the crossbar size still persists.
For GPUs that require high bandwidth, the channel width is
typically higher and GPUs are expected to grow to hundreds
of SMs in the next few years [19]. These considerations all
preclude a fully-connected crossbar as a scalable GPU NoC.

2.4 Goal
The mesh, Clos and butterfly topologies offer good scalabil-
ity, however, they do not fit a GPU’s unique traffic pattern
and are therefore power- and area-inefficient. For GPUs, the
crossbar is the most cost-efficient NoC by only support-
ing communication between SMs and LLC slices, and not
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Fig. 3: Comparing GPU NoC topologies as a function of the number of SMs. A crossbar is fundamentally more area- and
power-efficient than a mesh, Clos or butterfly network, however, maintaining high clock frequency at high SM counts is impossible.

among SMs nor LLC slices. Unfortunately, a crossbar faces
a major scalability problem with increasing SM count.

One possible solution is to tailor multi-stage NoCs, i.e.,
butterfly and Clos, to GPUs by only providing communi-
cation paths between SMs and LLC slices. The idea of re-
moving unused paths is similar to the previously proposed
partial cascaded crossbar network [20]. Unfortunately, such
solutions pose significant problems. In particular, a tailored
2-stage butterfly as well as a partial cascaded crossbar do
not provide path diversity, which severely degrades per-
formance when network traffic is imbalanced. Although a
tailored Clos network can provide path diversity, it leads to
a high hardware cost as it relies on middle-stage switches to
provide different routing paths. Moreover, it also requires
a complex adaptive routing policy to choose the least con-
gested path.

Our goal is to devise a novel GPU NoC topology
that achieves the best of both worlds. We want the GPU
NoC topology to provide path diversity without relying
on middle-stage routers. Moreover, instead of making the
routing adaptive, we want a simple routing policy that can
still exploit path diversity. In the next section, we show how
we achieve this goal by proposing CD-Xbar with converged
ports to provide path diversity. Converged ports bridge the
gap between the large number of SMs and the relatively
small number of LLC slices.

3 CD-XBAR

In this section, we first discuss the inherent limitation of
a fully connected GPU crossbar, which provides an oppor-
tunity that we exploit in this work. We then introduce the
CD-Xbar NoC, after which we propose a solution for the
routing and load balancing problem.

3.1 Opportunity

In a conventional crossbar GPU NoC, the request network
connects all the SMs to all the LLC slices through a fully-
connected crossbar; the reply network does the inverse:
it connects all the LLC slices to all the SMs. The fully-
connected crossbar here only provides a communication
path between SMs and LLC slices. Due to the huge gap
between the SM count and LLC slice count, a full crossbar
exhibits the inherent limitation that a significant fraction of
the network is underutilized — only a limited number of
links are effectively used in each cycle. For example, in a
GPU architecture with 16 LLC slices and 80 SMs, at most
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Fig. 4: Average number of flits transferred per cycle in a
full crossbar. The number of utilized links is small.
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Fig. 5: CD-Xbar architecture. In the request network, CD-Xbar
converges requests from the SMs through a local crossbar to a
number of converged ports which are then diverged to the LLCs
and memory controllers through the global crossbar. The inverse
happens in the reply network.

16 links are used at any given point in time. In reality, the
number of active links, or the number of flits transferred per
cycle is even smaller (Figure 4). For the request network, we
observe an average of only 2.8 flits per cycle. For the reply
network, we observe an average of 9.7 flits per cycle. (The
number of flits transferred over the reply network is higher
than the request network because a reply typically consists
of a long data block transmitted as several flits.) The key
take-away message is that many links in a crossbar NoC
are underutilized. This provides an opportunity to devise a
converge-diverge NoC topology that achieves much better
hardware utilization while achieving similar performance as
a fully-connected crossbar.

3.2 CD-Xbar NoC
The key idea of the Converge-Diverge Crossbar (CD-Xbar)
is to first converge and then diverge NoC traffic to max-
imize bandwidth efficiency. CD-Xbar consists of several
local crossbars and a global crossbar (Figure 5). SMs are
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connected to the local crossbars whereas LLC slices are
connected to the global crossbar. The key feature of the
converge-diverge topology is the use of converged ports as
intermediate ports. The total number of converged ports is
a balance between the number of SMs and LLC slices: there
are fewer converged ports than SMs to improve hardware
utilization; and there are more converged ports than LLC
slices to avoid congestion.

CD-Xbar clusters SMs into several groups and all SMs in
a single group use a local crossbar to connect to the global
crossbar. The local and global crossbars are input-queued
crossbar switches. In the request network, a converged port
is the output port of a local crossbar and the input port to
the global crossbar. We use uni-directional links to connect
the converged ports of the local and global crossbars. The
link direction is from SM to LLC in the request network. In
the reply network, a converged port connects an output port
of the global crossbar to an input port of a local crossbar; the
link direction is from LLC to SM.

CD-Xbar applies wormhole switching where packets are
subdivided into a number of flits of fixed length equal to the
channel width. Credit-based flow control guarantees that
there is always available buffer space in the downstream
crossbar before sending a packet. Note that each flit needs
to travel exactly two hops from source to destination. This
increases the transfer latency per packet compared to an
idealized full crossbar but we will show that this has a
negligible impact on overall performance. GPU-compute
workloads consist of thousands of concurrent threads, hence
the GPU can easily switch to a ready warp when the current
one is stalled. Finally, note that CD-Xbar has the same
bisection bandwidth as a fully-connected crossbar.

There are different ways to scale CD-Xbar to larger SM
counts. In this paper, we scale CD-Xbar by increasing the
number of SMs per local crossbar while keeping the number
of local crossbars and the number of converged ports per lo-
cal crossbar unchanged. Alternative scaling solutions would
be to increase the number of local crossbars (while keeping
the number of converged ports per local crossbar constant)
and/or increase the number of converged ports per local
crossbar as each local crossbar groups more SMs. Either
alternative scaling solution would increase the total number
of converged ports which may lead to scaling issues for the
global crossbar. The former scaling approach — increasing
the number of SMs per local crossbar while keeping the
number of local crossbars and the number of converged
ports per local crossbar constant — thus is the better option.
As shown in the evaluation section, CD-Xbar, with this
scaling solution, scales to GPUs with up to 180 SMs.

We want to emphasize that CD-Xbar exhibits a unique
feature compared to multi-stage NoCs such as the but-
terfly and Clos networks. In particular, butterfly does not
offer path diversity whereas Clos relies on the middle-
stage switch to provide different paths between each pair
of nodes. Unlike these two designs, CD-Xbar does not
have middle-stage switches, yet it provides path diversity
through the converged ports. Moreover, the converged ports
also bridge the gap between the SMs and the LLC slices
by first shrinking many SM ports to a few converged ports
through a local crossbar which are then diverged through
the global crossbar to the LLC slices.

It is also worth noting that the converged ports not only
provide path diversity, they are all productive ports. This
is unlike a mesh network where some router ports are not
productive. We will exploit this feature when describing our
newly proposed round-robin routing scheme.

CD-Xbar does pose a number of new challenges in terms
of routing and CTA scheduling, which we discuss in the
next section.

3.3 CD-Xbar Routing Problem
How to route packets is important for load balancing and for
minimizing network latency. In particular, if different mem-
ory nodes want to send packets to different SMs connected
to the same local crossbar, how we route packets to the con-
verged ports can have a significant impact on performance.
Possible routing algorithms include oblivious routing and
adaptive routing. However, both face challenges.
Oblivious routing makes the routing decision based on
the source or destination node [21], [22]. Each node makes
its routing decisions locally and independently from other
nodes, which makes it a simple and fast routing policy. One
possible implementation of oblivious routing in CD-Xbar
is source-based routing, which deterministically selects the
converged port based on the source node ID, as shown in
the formula below:

PortID = SourceID % #Ports.

Although oblivious routing is easy to implement, it faces
the obvious shortcoming that when a node makes its routing
decision, it does not consider whether other nodes also want
to send packets to the same port or not, which may lead to
congestion. In addition, oblivious routing does not consider
the status of the network. A network port that is already
over-utilized may still be chosen even though other less-
congested ports might be a better option.
Adaptive routing [21], [23] takes network contention into
account by choosing the least contended port, e.g., the port
with the most free VC buffer entries. A problem arises if
different nodes want to send packets to the same group of
ports in the same cycle as adaptive routing would choose
the same least-contended port for all requests which leads to
severe contention on that particular port. To solve this prob-
lem, previous work [23] proposed a randomized version of
adaptive routing which, for each input port, first randomly
chooses several outputs and then adaptively chooses the
one with the least congestion. When evaluating randomized
adaptive routing in CD-Xbar, we randomly select two out of
the three converged ports, and then send the packet to the
least congested port out of these two ports. Randomization
reduces congestion to some extent by spreading requests
across the different ports, although there is still a significant
probability that the same congested port is selected for
two input ports. Round-robin routing reduces congestion
beyond randomized adaptive routing by assigning network
ports in a round-robin fashion, as we describe in the next
section.

3.4 Round-Robin Routing
To avoid converged port contention, we propose round-robin
(RR) routing which strives at routing packets to different
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Fig. 6: Round-robin routing. Round-robin routing minimizes
contention on the converged ports.

converged ports. Round-robin routing considers all packets
that need to be sent and routes packets so as to minimize
contention on the converged ports. Note that sending a
packet to any of the converged ports brings the packet closer
to its destination — as mentioned before, all converged
ports are productive ports. For each crossbar, we consider a
round-robin unit that calculates the routing path for all the
inputs that send packets to the converged ports. Figure 6
provides an example to illustrate how the round-robin rout-
ing unit works along with its microarchitecture. In Figure 6a,
there are five inputs sending packets to three converged
ports. Round-robin routing first chooses three out of the five
packets in a first-come, first-served (FCFS) way, and then
assigns them to the three converged ports in a round-robin
way. Figure 6b shows the microarchitecture of the round-
robin unit which consists of several arbiters, where arbiter
count equals the number of converged ports. Each arbiter
can be implemented as a low-cost/high-frequency matrix
arbiter and the number of arbiters is small. The round-
robin routing unit incurs negligible hardware cost and can
operate at high frequency. In fact, the round-robin policy
can be integrated with the switch allocator, which makes
our design low-cost by integrating multiple functions within
a single unit. We provide a round-robin unit in the local
crossbars in the request network, and we provide a round-
robin unit in the global crossbar in the reply network.

3.5 Topology-Aware CTA Scheduling

An implicit assumption underlying the CD-Xbar proposal
is that network traffic is balanced among the different local
crossbars. This is typically the case as CTAs of a kernel
exhibit similar execution characteristics [12]. Conventional
round-robin CTA scheduling [24], [25] first distributes CTAs
across all SMs in a round-robin way, and once all SMs have
one CTA assigned, it repeats the assignment process until
an SM runs out of hardware resources to accept more CTAs.
When more than one kernel is scheduled on a multitask-
ing GPU, the SMs are evenly partitioned among the co-
executing kernels.

Round-robin CTA scheduling may lead to imbalanced
execution in two specific scenarios. First, a small kernel,
due to algorithmic limitations or due to a small input
data set [26], [27], [28], may occupy only a subset of the
SMs and may lead to imbalance across the SMs, i.e., some
SMs are assigned more CTAs than others. Second, when
co-executing multiple kernels through spatial multitasking,
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Fig. 7: Topology-aware CTA scheduling. Balancing network
traffic in single- and multi-workload scenarios.

some local crossbars may be over-utilized while others
are under-utilized. Consider for example the case where a
memory-intensive kernel is assigned to one half of the SMs
while a compute-intensive kernel is assigned to the other
half. The former would suffer from heavy contention while
the other is under-utilized.

We propose topology-aware CTA scheduling to balance
network traffic across the different local crossbars. For a
single workload, topology-aware CTA scheduling first dis-
tributes CTAs across local crossbars and then across SMs
within a crossbar. Once all local crossbars are assigned one
CTA, the next batch of CTAs gets assigned to the second SM
in each local crossbar, etc., until all SMs are assigned one
CTA. This process repeats until the SMs run out of resources
to accept more CTAs, or the workload runs out of CTAs.
This is illustrated in Figure 7a.

For a multitasking GPU, topology-aware CTA schedu-
ling first assigns CTAs of the first kernel to the first SM in
each local crossbar, and then switches to the second kernel
and assigns CTAs to the second SM in each local crossbar.
This process continues until all SMs across all local crossbars
are occupied, or until one kernel has no more CTAs to
assign. In the latter case, if the other kernel still has CTAs
to schedule, the remaining CTAs are assigned as in the
single-workload case which distributes CTAs across local
crossbars and then across SMs within a local crossbar. This
is illustrated in Figure 7b.

In summary, topology-aware CTA scheduling aims at
distributing network traffic across all crossbars and SMs,
irrespective of the characteristics of the particular workload.

3.6 CD-Xbar Layout

We rely on a state-of-the-art and widely used architectural
NoC analysis tool, namely DSENT [14], to evaluate the
effectiveness and feasibility of the CD-Xbar architecture.
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Fig. 8: CD-Xbar preliminary chip layout. Local crossbars
(LCs) connect to neighboring SMs while the global crossbar (GC)
connects the local crossbars with the LLC slices.

We motivate and complement DSENT results with a pre-
liminary chip layout, as well as a discussion of DSENT’s
validity based on previously published hardware validation
studies of high-radix NoC designs. Figure 8 provides a
preliminary chip layout of CD-Xbar while considering the
placement of SMs and LLC slices based on a die photo of the
recent Nvidia Pascal GPU [29]. The local crossbars (LC) are
distributed across the chip and are located near a respective
cluster of SMs. The global crossbar (GC) is located in the
center of the GPU die and is connected to the local crossbars
on the one hand and the LLC slices on the other hand.
This layout suggests that wire congestion can be avoided
by spreading out the local crossbars across the chip while
locating the global crossbar at the center. This figure also
illustrates that assuming the long links in the high-radix
topologies to be half the die size, as we will describe in
Section 4, is a reasonable (even conservative) assumption
for our design; in fact, many links are shorter than half the
die.

To further increase our confidence in the results obtained
using DSENT, we now compare DSENT’s timing predic-
tions against real hardware implementations of high-radix
routers. Passas et al. [9], [10] propose a 128-radix crossbar
with a 32-bit width that operates at 750 Mhz in a 90 nm
technology. Relating this design against our results obtained
using DSENT is non-trivial, however, we can make some
first-order approximations as follows. A crossbar’s critical
path is determined by the propagation delay and allocator
delay [11]. For large crossbars that are highly optimized,
see for example [9], [10], [11], it is reasonable to assume
that propagation delay occupies a large portion of the
critical path. For wires with repeaters, propagation delay
scales approximately linearly with wire length. As a result,
propagation delay scales with the square root of crossbar
size. Meanwhile, crossbar size scales exponentially with
technology node [30], radix and channel width [7]. Hence,
as a first-order approximation, we assume that timing scales
with the ratio of technology nodes, channel width and radix.
For the Passas et al. design, this means that — by shrinking
the radix to 80, increasing the channel width to 32 byte
and considering a 22 nm technology node — the operating
frequency of an 80-radix full crossbar is approximated to
be 613 MHz (= 750MHz × 128

80 × 32 bits
32 bytes × 90 nm

22 nm ). This is
similar to the DSENT results as reported in Figure 3c for the

TABLE 3: Baseline GPU architecture.
Parameter Value

SM 80 SMs, 1400 MHz, 1536 threads/SM,
32768 registers/SM, 2 GTO schedulers/SM,
48 KB shared memory/SM, SIMD width 32

L1 data cache/SM 16 KB, 4-way, LRU, 128 B line
2 L2 slices/MC (8 MCs total) 128 KB, 8-way, LRU, 128 B line
Interconnection network Crossbar, 32 B channel width

4-stage router, VC/switch allocator – Islip
4 VCs per port – 4 flits/VC

DRAM model and bandwidth FR-FCFS, 16 banks/MC, 700.0 GB/s
GDDR5 timing tCL=12, tRP =12, tRC=40, tRAS=28,

tRCD=12, tRRD=6, tCCD=2, tWR=12

TABLE 4: Benchmarks considered in this paper.

Benchmark Abbr. NoC
Demand

K-means [31] KMEANS High
PageViewCount [32] PVC High
B+TREE Search [31] B+TREE High
InvertedIndex [32] II High
StringMatch [32] SM High
2DConvolution [33] 2DCONV High
Leukocyte [31] LEU High
Euler3d [31] CFG High
Histogram [34] HIST High
3DConvolution [33] 3DCONV High
Fdtd2d [33] FDTD2D High
MatrixMultiply [28] MM High
Breadth First Search [31] BFS High
SRAD [31] SRAD High
WordCount [32] WC High
Two Point Angular Corre-Function [34] TPACF Low
DXTC [28] DXTC Low
CP [35] CP Low
Pathfinder [31] PF Low
N-Queens Solver [35] NQU Low
Magnetic Resonance Imaging - Q [34] MRI-Q Low
QuasiRandomGenerator [28] QRG Low
MergeSort [28] MS Low

full crossbar with 80 SMs.
Swizzle switch [11] is an another highly-optimized high-

radix crossbar design to scale to high radices. Swizzle switch
with a radix of 64 and 16-byte channel width was shown
to operate at 1.5 GHz in a 32 nm technology. Assuming
the above first-order approximation, we estimate an 80-
radix full crossbar with a 32-byte channel width in a 22 nm
technology to operate at a frequency of 872.7 MHz, which
is somewhat higher than DSENT’s predictions for an 80-
radix full crossbar with a 32-byte channel width in a 22 nm
technology. This discrepancy can be explained by the fact
that swizzle switch is specifically designed and optimized
to operate at high frequencies.

4 EXPERIMENTAL SETUP

Simulated System. We use GPGPU-sim v3.2.2 [35] to evalu-
ate the proposed CD-Xbar NoC architecture. Table 3 lists
the configuration for our baseline GPU architecture. We
consider 4-stage pipeline routers for all the NoCs evalu-
ated in the paper. We use DSENT v0.91 [14] to evaluate
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the area and power cost for the different NoC designs,
assuming a 22 nm technology node. For power, we collect
activity counters through timing simulation using GPGPU-
sim which we then use to estimate power using DSENT.
For area, we consider active silicon area versus global wire
area. For the links, repeater area is included in active silicon
area whereas the wires are attributed to the global wire area
as they can be routed in the higher metal layers. In the
evaluation, we assume that short links measure 3.3mm (SM
size is estimated to be 10.9mm2 from the Pascal die size [1]);
the long links in the high-radix topologies are assumed to
be 12.3 mm long (half the die size)1. In CD-Xbar, unless
mentioned otherwise, we assume 8 local crossbars with 3
converged ports each; a local crossbar connects to 10 SMs.
A sensitivity analysis regarding CD-Xbar’s configuration is
provided in the evaluation. We assume topology-aware CTA
scheduling throughout the evaluation unless mentioned
otherwise.

GPU NoCs. We compare CD-Xbar against three state-of-the-
art GPU NoC proposals, namely S-Mesh [13], cfNoC [16]
and HRCnet [17]. All three topologies exploit the notion
that, in a GPU, communication only exists between SMs
and LLC slices. S-Mesh removes unused links and input
buffers in a traditional mesh. cfNoC and HRCnet focus
on the request and reply network, respectively. cfNoC pro-
vides exclusive subnets of SMs to eliminate packet conflicts
through a token-based mechanism in the many-to-few re-
quest network. HRCnet proposes a ring-like topology to
eliminate conflicts in the few-to-many reply network; a high
channel width is assumed in the ring-like reply network
to improve performance. Conflict elimination enables a
simplified router design which reduces hardware cost. It is
important to note that cfNoC and HRCnet require special
(physical) placement of memory nodes in the network.
Because cfNoC optimizes the request network and HRCnet
optimizes the reply network, these two NoC optimizations
are incompatible. As we will observe in the evaluation,
cfNoC and HRCnet are area-efficient; S-Mesh, although it
significantly reduces chip area compared to a traditional
mesh, still incurs a significant hardware cost. A major issue
with the cfNoC and HRCnet proposals though is that they
impose very strict requirements on the number of SMs
and LLC slices, and their placement in the network, which
severely limits their flexibility.

Workloads. We consider a broad set of CUDA GPU-
compute benchmarks from a range of application domains.
These benchmarks are selected from Rodinia [31], Par-
boil [34], CUDA SDK [28], GPGPU-sim [35] and other two
sources [32], [33] (Table 4). We divide these applications
into two categories depending on their NoC intensity. In
particular, we classify an application as a high-NoC demand
workload if performance degrades by more than 5% when
halving the NoC bandwidth. In the evaluation section, we
consider the high-NoC bandwidth benchmarks unless men-
tioned otherwise. When evaluating different CTA schedu-
ling policies, we pair high-NoC demand applications with
low-NoC demand applications to construct heterogeneous

1. The length for a long link is a conservative estimate which can be
reduced through optimized floorplanning [36], [37], [38].

TABLE 5: Mesh-based GPU NoCs.

Network Configuration

Mesh Request network: Mesh / Reply network: Mesh
S-Mesh Request network: S-Mesh / Reply network: S-Mesh
cfNoC Request network: cfNoC / Reply network: S-Mesh
HRCnet Request network: S-Mesh / Reply network: HRCnet

multi-program workloads; and we use small data sets as
input to obtain small kernels.

Performance Metrics. We use instructions per cycle (IPC) to
quantify single-application performance; and we simulate
one billion instructions, or to completion, whichever occurs
first [39]. System throughput (STP) and average normalized
turnaround time (ANTT) are used to evaluate multiprogram
performance [40]. For the multiprogram workloads, we
simulate for two million cycles, which is in line with prior
GPU multitasking research [41], [42].

5 EVALUATION

The evaluation is done in a number of steps. We first
compare against state-of-the-art GPU NoC proposals and
evaluate performance, power and chip area (Sections 5.1
through 5.3). This comparison assumes a specific number
of SMs (56) and LLC slices (8) because of the limitations
in the previously proposed GPU NoCs that we compare
against. The second half of the evaluation (Sections 5.4
through 5.6) compares CD-Xbar against idealized and re-
alistic fully-connected crossbar designs. We also perform
various sensitivity and scalability analyses assuming the
default SM count (80) and LLC slices (16).

5.1 Performance per Watt

Previous work has assumed a baseline mesh network upon
which it provides various optimizations to exploit the
unique GPU traffic pattern [7], [15], [16], [17], [43]. In this
subsection, we compare CD-Xbar against three state-of-the-
art mesh-based GPU NoC proposals, namely S-Mesh [13],
cfNoC [16] and HRCnet [17], see also Table 5. As the latter
two designs require a specific number of memory nodes
versus compute nodes, we assume 56 SMs and 8 memory
controllers (MC) with one LLC slice per MC. cfNoC and
HRCnet focus on the request and reply networks, respec-
tively. As they both require specific placement of memory
nodes, which is different for both topologies, these designs
are incompatible. To construct the best possible baseline
networks to compare CD-Xbar against, we use S-Mesh for
cfNoC’s reply network; similarly, we assume S-Mesh for
HRCnet’s request network. We complement cfNoC and
HRCnet with an S-mesh network, and deliberately do not
compare against cfNoC and HRCnet complemented with
a conventional mesh network, in order to compare against
the best possible NoC configuration based on prior work
in the literature. For CD-Xbar, we assume 4 local crossbars
with 3 converged ports each; each local crossbar connects to
14 SMs. To enable a fair comparison, we keep the bisection
bandwidth unchanged across all the NoCs in the compari-
son.
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Fig. 9: Performance, NoC power efficiency, and perfor-
mance/Watt relative to a mesh NoC. CD-Xbar achieves the
highest performance per Watt compared to state-of-the-art GPU
NoCs. HRCnet achieves similar performance as CD-Xbar but is
not scalable.

Figure 9 reports performance, power efficiency (1 / NoC
power) and performance per Watt for the various NoC
designs, normalized to the baseline mesh network. CD-Xbar
and HRCnet are the best performing NoCs, i.e., CD-Xbar
improves performance by 13.9% whereas HRCnet improves
performance by 14.6% on average over a mesh network. CD-
Xbar consumes the least NoC power, followed by cfNoC
and HRCnet. CD-Xbar achieves the highest performance per
Watt: an average improvement of 17.1% over HRCnet, the
best performing state-of-art GPU NoC. Note that in addition
to not being as power-efficient, HRCnet is less flexible and
less scalable than CD-Xbar. To achieve a conflict-free design,
HRCnet can only operate with a specific number of memory
nodes and compute nodes [17]. Moreover, scalability is
limited by HRCnet’s ring-like topology.

5.2 Per-Application Performance

Figure 10 reports per-benchmark performance results. S-
Mesh and cfNoC achieve similar performance as the default
mesh network. S-Mesh removes unused links, input buffers
and simplifies the crossbar, with no measurable impact on
performance. cfNoC also achieves similar performance to
a mesh network. cfNoC uses exclusive subnets for each col-
umn of compute nodes to eliminate packet conflicts. Subnets
with sliced channel width increase the serialization latency
of the request packets; however, most request packets are
short read requests that can be transferred as a single flit in
the cfNoC subnetwork. Moreover, cfNoC reduces the per-
hop latency in the request network by exploiting a conflict-
free router design.

HRCnet and CD-Xbar significantly improve perfor-
mance due to the efficient utilization of the available net-
work bandwidth. Because of the GPU’s unique traffic pat-
tern, the actual achieved bandwidth is (much) less than
the bisection bandwidth for a mesh topology. In particular,
in the reply network, only few memory nodes can inject
packets, which leaves many links under-utilized. In contrast,
HRCnet and CD-Xbar can achieve the maximum bisection
bandwidth when all memory nodes are injecting packets
into the network. We observe variable performance benefits
across different applications in Figure 10; this is because of
the NoC bottleneck occupying different fractions of the SM
stall cycles.
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Fig. 10: Per-application performance. CD-Xbar and HRCnet
improve performance by 13.9% and 14.6% on average, respec-
tively.
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Fig. 11: NoC comparison in terms of (a) power consump-
tion, (b) active silicon area and (c) global wire area. cfNoC,
HRCnet and CD-Xbar are low-power, low-cost designs, although
HRCnet and CD-Xbar increase global wire area but these long
wires can be routed in the upper metal layers.

5.3 Power Efficiency and Chip Area

Figure 11a breaks down NoC power consumption into its
four components: buffer, crossbar, links and other. Buffer
power is the largest contributor. Compared to a conven-
tional mesh network, S-Mesh reduces power consumption
by 18.7% by removing the input buffers of unused ports.
Compared to S-Mesh, cfNoC and HRCnet reduce power
consumption by removing all input buffers from the request
and reply networks thanks to the conflict-free design. In
cfNoC, the larger ‘other’ component is caused by the large
ejection-buffer size. HRCnet has much higher link power
consumption compared to the other three designs as it
uses high channel width links for the ring-like network.
Compared to the mesh network, CD-Xbar reduces power
consumption by 48.5% as many input buffers are removed.
Link power increases because of the long links to connect
the SMs and LLC slices to the local and global crossbars,
respectively.

Figures 11b and 11c report chip area for the different
designs in terms of NoC active silicon area and global
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wire area, respectively. cfNoC, HRCnet and CD-Xbar incur
similar active silicon area. cfNoC and HRCnet reduce active
silicon area by featuring a simplified router architecture in
the request and reply networks, respectively. Compared to
cfNoC and HRCnet, although CD-Xbar reduces the buffer
area, this is offset by the increase in crossbar area. CD-
Xbar and HRCnet both consume more global wire area
than the other three designs (Figure 11c). In HRCnet, high
channel width links are used to construct the ring-like reply
network. In CD-Xbar, long links are used to connect the
SMs and LLC slices to the NoC. Note that long wires are
typically routed in the upper metal layers, hence they do
not contribute to chip area [44] (apart from the repeaters
which we account for as active silicon area, as mentioned
before).
Conclusion. CD-Xbar achieves similar performance, similar
area cost and higher power efficiency compared to HRCnet
(the best performing prior work). However, a key problem
with the HRCnet proposal is that it imposes restrictions
on the number of SMs, LLC slices and their placement,
which severely limits HRCnet’s flexibility. In contrast, CD-
Xbar can be implemented for any arbitrary number of SMs
and LLC slices. Moreover, the ring network in HRCnet has
limited scalability with increasing SM and LLC slice count.
In the evaluation, we adopt 56 SMs and 8 LLC slices as in
the original HRCnet paper [17], which is a sweet spot for
HRCnet. Even in its best case, CD-Xbar still outperforms
HRCnet in performance per Watt by 17.1%.

5.4 Crossbar Alternatives
So far, we benchmarked CD-Xbar against mesh-based net-
works. We now compare CD-Xbar against a number of
crossbar NoC alternatives. We compare against a fully-
connected crossbar (FC), which is commonly assumed in
research studies considering GPUs with a relatively small
number of SMs [45], [46], [47]. Note though that a full
crossbar incurs a substantially higher hardware cost (26.9%
higher active silicon area cost) than CD-Xbar. We also
compare against crossbar networks that exploit external
concentration [18] by grouping several SMs to share one
network port. External concentration can be regarded as a
special case of the CD-Xbar design in which there is only
a single converged port per local crossbar. Concentration
reduces the number of ports to the crossbar, hence it enables
operating the NoC at high frequency without incurring
extra latency. In this section we assume 80 SMs and 16 LLC
slices and consider the following fully connected crossbar
configurations:

• FC-Ideal: Full 80×16 crossbar is assumed to operate
at high frequency with no extra latency. This is an
idealized fully connected crossbar.

• FC-Real: Full 80 × 16 crossbar incurs a one cycle
extra latency. This is an optimistic assumption given
that, according to Figure 3, an 80 × 16 crossbar can
operate at approximately 600 MHz compared to the
rest of the GPU that is assumed to operate at 1.4GHz.
This optimistic assumption for our baseline puts our
proposed solution, CD-Xbar, at a disadvantage.

• FC-16ports: 5 SMs are grouped to share one concen-
trated network port of a full 16× 16 crossbar.
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Fig. 12: Comparing CD-Xbar against idealized and realistic
crossbar designs. CD-Xbar performs within 2.9% on average of
an idealized fully connected crossbar, while significantly outper-
forming realistic alternative crossbar designs.

• FC-24ports: 3 (or 4) SMs are grouped to share one
concentrated network port of a full 24× 16 crossbar.

Figure 12 reports performance for the different crossbar
NoCs. Compared to the idealized full crossbar, the realistic
crossbar degrades performance by 34.4% on average. The
extra cycle latency in the switch and VC allocators increases
the number of cycles that a flit occupies the switch and
VC resources, which in its turn increases NoC contention
substantially. External concentration with 16 ports and 24
ports leads to a performance gap of 24.8% and 13.2%, respec-
tively, compared to the idealized full crossbar. Decreasing
the number of SMs per local crossbar and only assigning one
converged port to connect to the global crossbar increases
contention when network traffic is unbalanced. Increasing
the number of converged ports per local crossbar reduces
port contention. This enables CD-Xbar to achieve perfor-
mance that is within 2.9% of an idealized crossbar, while
outperforming a realistic, fully connected crossbar with 24
ports by 10.3%.

5.5 Sensitivity Analyses

We now perform sensitivity analyses with respect to the
number of converged ports, the routing policy, and CTA
scheduling policy.
Number of converged ports. The number of converged
ports poses a performance-cost trade-off. Increasing the
number of converged ports per local crossbar reduces port
contention, improving performance. On the other hand, this
also incurs higher hardware cost. Figure 13 evaluates CD-
Xbar performance as a function of the number of converged
ports assuming 8 local crossbars. Initially, performance im-
proves steeply as we increase the number of converged
ports, e.g., performance improves by 60% on average as
we increase from 1 to 2 converged ports. However, the
performance improvement gradually decreases as we fur-
ther increase converged port count, e.g., from 3 to 4 ports,
performance improves by only 5.2%. Performance saturates
around 3 converged ports per local crossbar, which is what
we assume throughout the paper.
Routing policy. We previously discussed different routing
policies including source-based routing, randomized adap-
tive routing and the newly proposed round-robin routing.
Here, we evaluate their performance impact, see Figure 14.
Round-robin routing improves performance by 10.0% and



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2906869, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XX 2018 11

0

0.5

1

1.5

2

2.5
N

o
rm

a
liz

e
d

 I
P

C
 

1 port 2 ports 3 ports 4 ports

Fig. 13: Performance as a function of the number of
converged ports in CD-Xbar. Performance improves with
increasing port count and saturates around 3 converged ports per
local crossbar.
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Fig. 14: Performance for different routing policies. Round-
robin (RR) routing outperforms source-based and randomized
adaptive routing.

8.5% compared to source-based and randomized adap-
tive routing, respectively. When multiple packets traverse
through a local crossbar, both source-based and adaptive
routing may route packets to the same converged port even
though other converged ports remain under-utilized. This
incurs flit contention as only one flit can be transferred per
converged port per cycle. For example, as there are only
three converged ports per local crossbar, the randomized
version of adaptive routing first randomly chooses two
converged ports and then chooses the least congested port.
However, with only three converged ports per local cross-
bar, even with randomization, two incoming packets may
still be sent to the same port (probability of 2/3), as pre-
viously described in Section 3.3. Such contention does not
happen in round-robin routing as it assigns the converged
ports to incoming packets in a round-robin way.
CTA scheduling. Figure 15a compares topology-aware sche-
duling against traditional round-robin CTA scheduling.
Topology-aware scheduling improves single-task perfor-
mance by 10.1% on average by balancing NoC traffic among
the different local crossbars. Figure 15b reports STP and
ANTT improvement curves for the multitasking workloads.
STP improves by 15.4% on average. The highest improve-
ments are obtained for mixed workloads, i.e., workload
mixes in which a high-NoC demand application co-executes
with a low-NoC demand application. Topology-aware CTA
scheduling for such mixed workloads balances the NoC traf-
fic by the high-NoC demand application across the different
converged ports. When co-running two high-NoC demand
applications in a multiprogram setup, topology-aware CTA
scheduling yields similar performance as traditional round-
robin CTA scheduling because network traffic is balanced
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Fig. 15: Evaluating topology-aware CTA scheduling per-
formance for (a) single-task and (b and c) multi-
tasking workloads relative to round-robin CTA schedu-
ling. Topology-aware CTA scheduling outperforms traditional
round-robin scheduling.
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Fig. 16: Scalability analysis. CD-Xbar scales better than a mesh
NoC with increasing SM count.

across all local crossbars for both scheduling policies. We
note that for some workloads, per-application performance
suffers under topology-aware CTA scheduling. This is the
case when a high-NoC demand application puts signifi-
cant pressure on the converged ports, which decreases the
network bandwidth utilization and the performance of a
co-executing application with limited TLP to hide memory
access latency. Although some applications experience some
performance degradation, we report a significant average
ANTT improvement of 12.4%.

5.6 Scalability Analysis

We now evaluate CD-Xbar’s scalability with the number of
SMs. While increasing SM count, we keep the number of
converged ports unchanged and increase the number of SMs
per local crossbar. For example, with 120 SMs, we maintain 8
local crossbars (same number as for the default 80 SMs) and
we maintain 3 converged ports per local crossbar; hence the
number of SMs per local crossbar increases from 10 to 15.
Note that scaling the number of SMs per local crossbar does
not affect the timing of the overall NoC. In particular, the
critical component in CD-Xbar is the global crossbar which
is a 24× 16 full crossbar, i.e., this crossbar connects 24 ports
(8 local crossbars and 3 converged ports per local crossbar)
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to 16 ports (16 LLC slices). The global crossbar remains
the critical component in CD-Xbar as we scale the number
of SMs. The reason is that we keep the number of local
crossbars constant at 8 and the number of converged ports
per local crossbar at 3, hence the total number of ports to
connect to the global crossbar is constant at 24. So, even for
the largest configuration with 180 SMs, the global crossbar
is a 24×16 full crossbar, whereas the local crossbars include
four 22 × 3 full crossbars and four 23 × 3 full crossbars.
Timing for CD-Xbar is determined by the size of the largest
crossbar, i.e., the global crossbar. In other words, timing is
not affected when scaling the number of SMs.

To demonstrate the performance potential with increas-
ing SM count, we report raw performance across all applica-
tions including the NoC bandwidth-limited and bandwidth-
unlimited applications. Figure 16 reports performance for
CD-Xbar and the default mesh network as we scale SM
count. (We assume the same bisection bandwidth for the
mesh and CD-Xbar networks.) There are two take-away
messages. First, increasing the number of SMs leads to
a significant performance improvement [48], [49]. For ex-
ample, increasing the SM count from 80 to 180 improves
performance by 62%, i.e., IPC increases from 1514 to 2450.
Second, CD-Xbar achieves good scalability and in fact the
performance improvement over the mesh network increases
with increasing SM count as a result of better NoC band-
width utilization.

6 RELATED WORK

We now discuss related work in GPU NoCs, CPU NoCs and
CTA scheduling.
GPU NoC. Prior work in GPU NoCs primarily focuses on
how to optimize a mesh network because of its inherent
simplicity and scalability. In particular, Bakhoda et al. [7]
propose checkboard routing and a simplified crossbar struc-
ture to reduce the router area. Kim et al. [15] propose the
DA2mesh network to achieve a low-cost conflict-free design
by exploiting the few-to-many traffic pattern in a GPU’s
reply network. Ziabari et al. [13] explore different GPU
NoC designs and show that an asymmetric concentrated
mesh provides the highest power efficiency. Jang et al. [43]
explore MC placement and combine the reply and request
network into one network. They further propose asymmet-
ric VC partitioning by assigning more VCs to reply packets.
Two recent works, cfNoC [16] and HRCnet [17], optimize
the request and reply network, respectively, as previously
described in the paper. We propose the CD-Xbar NoC which
better fits a GPU’s unique traffic pattern while being more
area- and power-efficient than and similarly scalable as
mesh-based NoCs. Moreover, CD-Xbar is better scalable and
more flexible than the state-of-the-art cfNoC and HRCNet
topologies while improving performance per Watt by 17%.
CPU NoC. A GPU NoC bears essential differences and
opportunities compared to a multicore CPU NoC. Next to
connecting all CPU cores with the LLC slices and memory
controllers, a CPU NoC also needs to connect all CPU
cores with each other to support cache coherence, memory
consistency and synchronization [50]. Scalable CPU NoC
solutions, such as mesh, Clos or butterfly, are suboptimal so-
lutions for GPUs in terms of chip area and power consump-

tion because of the unique GPU traffic pattern, as detailed
in this paper. Other CPU NoCs such as CNoC [36], Slim
NoC [38], Flattened Butterfly [51], Kilo-Core [52], concen-
trated mesh [53] and Kilo-NoC [54], all face similar issues in
the context of a GPU. The many-to-few-to-many GPU traffic
suggests a crossbar network topology, however, scaling a
crossbar to large SM counts and a large number of memory
nodes is problematic. Buffered and pipelined crossbars have
been proposed [10], [55]; swizzle-switch improves crossbar
scalability by distributing the centralized arbiter to each
crosspoint [11]. However, these proposals assume a fully
connected crossbar which GPUs do not need to support the
many-to-few-to-many traffic pattern. Various routing poli-
cies have been proposed for CPUs [23], [51], however round-
robin routing exploits the characteristics of the CD-Xbar
topology and is shown to outperform previously proposed
routing policies including source-based and (randomized)
adaptive routing.

CTA scheduling. Recent work focuses on increasing the
number of SMs beyond a single chip. The Multi-Chip Mod-
ule GPU design (MCM-GPU) aggregates several GPU mod-
ules in a single package [48]. NUMA-aware GPUs achieve
performance scalability by exploiting a multi-socket GPU
design [49]. How to connect the SMs to the LLC slices
and memory controllers within a chip in a scalable way
remains unexplored in this prior work. Several proposals
optimize CTA scheduling to control thread-level parallelism
per SM [25], to fit the multi-GPU system [56] or to exploit
inter-CTA locality [24], [57]. None of these prior proposals
however notice that traditional CTA scheduling policies
may cause unbalanced network traffic in GPUs.

7 CONCLUSION

The increasing number of SMs in modern-day GPUs poses
a major challenge for the network-on-chip (NoC) that con-
nects the SMs to the LLC slices and memory controllers.
In this paper, we propose the converge-diverge crossbar
network (CD-Xbar) by exploiting the observation that, be-
cause of the many-to-few-to-many traffic pattern, there is
no need to directly connect all SMs to the LLC slices as
done in a fully-connected crossbar. CD-Xbar features local
crossbars that connect a group of SMs to a smaller number of
converged ports, which are then connected to the LLC slices
through a global crossbar. Converged ports provide routing
path diversity; round-robin routing is employed to reduce
flit contention on the converged ports. Topology-aware CTA
scheduling balances network traffic among the different
local crossbars. Our experimental results report that CD-
Xbar improves performance by 13.9% on average compared
to a mesh with the same bisection bandwidth, while at
the same time reducing NoC active silicon area and power
consumption by 52.5% and 48.5%, respectively. We find
that CD-Xbar performs within 2.9% of an idealized fully-
connected crossbar. In addition, we demonstrate CD-Xbar’s
scalability, flexibility, and improved performance per Watt
(by 17% on average) compared to state-of-the-art, highly-
customized GPU NoCs.
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