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ABSTRACT 

DUAL-MODALITY SMARTPHONE-BASED FIBER-OPTIC 

MICROENDOSCOPE SYSTEM FOR EARLY 

DETECTION OF CERVICAL 

NEOPLASIA 

Xiangqian Hong, B.S., M.E. 

Marquette University, 2019 

Cervical cancer remains the leading cause of death for women in low middle-

income countries (LMICs), where the incidence and mortality of cervical cancer are 

disproportionately high. Due to the poor medical conditions and lack of resources, the 

benefits of early screening methods such Pap smear and HPV test have yet to be realized 

in these areas. The more viable screening option - visual inspection with acetic acid 

(VIA) is relatively easier to implement and lower in cost. However, the effectiveness of 

VIA on the early detection of cervical cancer is still in question because of its low 

specificity, which may lead to many unnecessary follow-up diagnoses and treatments. 

  

Optical endoscopy is a powerful tool for detecting pre-cancerous changes in the 

epithelial tissue of the cervix. In this dissertation, we report the design and development 

of a dual-modality fiber-optic microendoscope system (SmartME) that integrates high-

resolution fluorescence imaging (FLI) and quantitative diffuse reflectance spectroscopy 

(DRS) onto a smartphone platform. A smartphone App has also been developed to 

control the SmartME, pre-process the data, and wirelessly communicate with a remote 

server where the image and data are processed to extract diagnostically meaningful tissue 

parameters. The SmartME device has been thoroughly tested and calibrated. The FLI has 

a spatial resolution of ~3.5 µm, which allows imaging of subcellular organelles and 

determining the nuclear-cytoplasmic ratio of epithelial tissues. The DRS has a spectral 

resolution of 2 nm and is capable of measuring optical properties of epithelial tissues with 

a mean error of ~5%, which is comparable to what can be achieved with a commercial 

spectrometer. The feasibility of the device in measuring biological samples has been 

verified ex vivo using monolayer cervical cancer cells, tumor tissue from xenograft solid 

tumor models and other normal tissues. In vivo study on healthy human oral mucosa 

tissues has demonstrated that the SmartME can noninvasively quantify the tissue 

parameters and distinguish between different tissue types. The SmartME may provide a 

compact, cost-effective, and globally connected solution for early detection of neoplastic 

changes in epithelial tissues. 
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            CHAPTER 1: INTRODUCTION AND BACKGROUND 

1.1 CERVICAL CANCER 

1.1.1 HPV infection leads to cervical cancer 

Human papillomavirus (HPV) is a widespread viral infection of the reproductive 

tract.[1] Although about 90% HPV infections disappear spontaneously without any 

medical intervention in 6 months to 2 years [2], persistent infections with certain cancer-

causing HPV may become chronic and pre-cancerous lesions, progress either to high-

grade cervical intraepithelial neoplasia (CIN) or to invasive cancer.[3] More than 150 

different types of HPV have been identified, of which 14 HPV types, including HPV 16, 

18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68, are considered cancer-causing or 

“high-risk”.[4] Particularly, HPV 16 and 18 are most commonly associated with the 

development of cervical cancer and are known to cause more than 70% of all cervical 

cancers.[1] A 60-year study evaluating HPV infections in more than 10,000 confirmed 

invasive cancer cases in 38 countries around the world has revealed that cancer-

causing types of HPV are detected in nearly all cervical cancers.[5]  

1.1.2 High incidence and mortality rates in LMICs 

Globally, cervical cancer remains the fourth most common cancer in women with 

an estimated 570,000 new cases in 2018 and 311,000 deaths every year.[6] Besides, the 

number of deaths keeps increasing and it is estimated to reach 460,000 per year by 2040. 

In 2018, approximately 84% of new cases and 90% of deaths due to cervical cancer occur 

in LMICs.[6] Figure 1-1 shows the latest incidence and mortality rates of cervical cancer 
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worldwide. The disproportionately high incidence and mortality rates in LMICs are 

mainly due to limited access to early preventative methods. In most cases, cervical cancer 

is not detected until it has processed to invasive cervical cancer in these countries, 

resulting in a higher rate of death from cervical cancer. 

 

Figure 1-1: Estimated cervical cancer incidence and mortality rates worldwide in 2018 

1.2 CERVICAL CANCER SCREENING 

In general, the precancerous change of cervical tissue can be classified into three 

stages, namely CIN1/CIN2/CIN3, based on the thickness of the affected epithelium 

tissue. CIN1 is the mild intraepithelial neoplasia when one-third of the epithelium is 

affected. While the higher degree lesions, CIN2 and CIN3 have dysplasia about two 



3 

 

thirds and all of the epithelium layer, respectively.[7] The high-grade cervical 

intraepithelial neoplasia (CIN2+) will eventually progress into invasive cancer if left 

untreated (Figure 1-2). Early detection and treatment is the key to saving a patient's life. 

Early screening allows pre-cancerous lesions to be detected at an early stage when 

treatment has a high cure rate. Studies suggest that ~90% of the patients who were 

diagnosed at an early stage (stage I) lived more than five years, while the 5-year survival 

rates for stage II and III are less than 50% and 10%, respectively.[8] 

 

Figure 1-2: Schematics of cervical intraepithelial neoplasia development 

 (Photo credit: Novikova, T. Adapted from reference 7) 

1.2.1 Screening in developed countries 

In developed countries, a comprehensive approach has been developed for 

cervical cancer prevention, diagnosis and treatment. It includes HPV vaccination of girls 

starting as early as age 9, regular screening and diagnosis, and treatment of pre-cancer 

lesions for women from age 30. Particularly, the regular screening allows pre-cancerous 

lesions to be detected at an early stage when treatment has a high cure rate. In the US, 

cervical cancer deaths have been reduced by 70% since 1941 when the Papanicolaou 
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(Pap) smear screening was first introduced.[9] Pap smear screening is still the primary 

approach in early detection of cervical cancer at present. The common procedures of a 

Pap smear test involve the collection of cells from the cervix for microscopic 

examination and identification of abnormal cells based on cytological characteristics, 

such as altered nuclear shape and increased nuclear size, which have been reported to be 

associated with cancer cells.[10] The Bethesda system (TBS) is a widely used system for 

reporting Pap smear results. A low-grade squamous intraepithelial lesion (LSIL) usually 

indicates mild intraepithelial neoplasia (CIN1). Expanded nucleus with a size at least 

three times bigger than the normal nucleus can be observed, leading to an increased 

nuclear-cytoplasmic ratio (N/C). A high-grade squamous intraepithelial lesion (HSIL) 

indicates moderate intraepithelial neoplasia (CIN2) and severe intraepithelial neoplasia 

(CIN3). Cells in HSIL have expanded nuclei with reduced cytoplasm, leading to an even 

larger N/C than LSIL, as illustrated in Figure 1-3[11]. Studies have shown that using 

nuclear morphometry such as nuclear size/diameter[12] and N/C[13] can effectively 

differentiate LSIL from HSIL and malignant cervical smears. The collected cells during a 

Pap smear test can also be used for the HPV test, which has been typically used as an 

adjunct to the Pap smear because of the high prevalence of HPV infection in the absence 

of cervical disease.[14] 
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Figure 1-3: Morphology of cervical epithelial cells 

(Photo credit: Yang, L., et al. Reference 11) 

1.2.2 Screening in LMICs 

Due to the lack of resources in LMICs, the benefits of the regular cervical cancer 

screening have yet to be realized in LMICs.[15-17]. Employing Pap smear and HPV test 

requires multiple visits, a centralized laboratory, and skilled staff for processing and 

evaluation of cytology, virology, and pathology specimens.[18,19] The Alliance for 

Cervical Cancer Prevention has suggested a see-and-treat paradigm for cervical cancer 

prevention in LMICs.[20] The most viable option is to screen using a more cost-effective 

method called visual inspection with acetic acid (VIA) or VIA with magnification 

(VIAM) and to treat the pre-cancerous lesions using loop electrosurgical excision 

procedure (LEEP) or cryotherapy.[21-23] Performing a VIA test starts with a vaginal 

speculum exam during which diluted acetic acid (5%) will be applied to the cervix. Due 

to the acetowhitening phenomenon, as shown in Figure 1-4, the tissue in the abnormal 

area will temporarily turn white when exposed to acetic acid. Suspicious lesions will be 

identified by viewing the cervix to identify color changes on the cervix. [24,25] However, 

studies have shown that the acetowhitening phenomenon is not exclusive to precancerous 
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lesions, normal epithelial tissue with infection or inflammation may appear similar to the 

positive ones, which leads to a lower accuracy for pre-screening. Although coagulation of 

the nucleoprotein and polymerization of cytokeratin have been hypothesized as the 

physical origin of the acetowhitening phenomenon[26,27], the mechanism of 

acetowhitening effect is still not fully understood.[28] Many efforts have been made to 

improve the performance of acetowhitening-based inspection, including modeling the 

temporal pattern of acetowhitening (rising and decay)[29-31] or quantitatively measuring 

the intensity of backscattered light during acetowhitening process[32-34] in benign and 

suspicious lesions. However, large variability in findings or even contradictory results in 

the acetowhite temporal patterns were observed from measurements in the cell 

suspension[28] and tissue in vivo[32,33]. The acetowhite rising and decay pattern is highly 

dependent on the concentration of acetic acid applied and is very sensitive to the physical 

conditions of the tissue which are related to patient age and race, the stage of 

menstruation, or the way colposcopy is performed.[35]  

 

Figure 1-4: Acetowhitening phenomenon during VIA test 

(Photo credit: Gaffikin et al. Adapted from reference 24) 
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1.2.3 Challenges for cervical cancer screening in LMICs 

Sensitivity and specificity are two statistical measures that are widely used to 

quantify the diagnostic performance in medical diagnosis. Sensitivity, also known as the 

true positive rate, measures the proportion of patients with the disease who will be 

identified to have a positive result. Specificity, also known as the true negative rate, is 

defined as the proportion of patients without the disease who will be identifies to have a 

negative result. Table 1-1 illustrates the effectiveness of VIA/VIAM in terms of 

sensitivity and specificity when compared to the Pap smear test. Although the sensitivity 

of the VIA/VIAM approach is as good as, if not better than, the Pap smear, the specificity 

is significantly lower.[36-39] In a see-and-treat paradigm, this would cause a large amount 

of overtreatment and unnecessary health care (e.g., biopsy and follow-ups), which would 

reduce the effectiveness of this approach. Consequently, there is a critical global need for 

affordable, effective point-of-care strategies to improve the screening and early 

diagnostic rates of cervical cancer in LMICs. 

Table 1-1: Effectiveness of current cervical cancer screening methods 

 

1.3 OPTICAL ENDOSCOPY FOR CERVICAL NEOPLASIA DETECTION 
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Biophotonics is an emerging interdisciplinary field that studies biomolecules, 

cells and tissues using optical techniques. The advent of optical endoscopy techniques 

has made it possible to noninvasively acquire biological and morphological information 

deep within the cervical tissue. White light endoscopy, such as reflectance colposcopy, is 

a standard tool that has been extensively used in cervical cancer screening, diagnosis, and 

treatment. In the past decades, various high-resolution imaging modalities, including 

optical coherent tomography (OCT),[40-44] Raman spectroscopy,[45-50] fluorescence 

imaging,[51-53], fluorescence spectroscopy[54-56], diffuse reflectance spectroscopy,[57-61] and 

photoacoustic imaging[62,63] narrow-band imaging,[64-67] have been successfully 

incorporated into endoscopic probes for early detection and delineation of epithelial 

neoplasia.  

1.3.1 Optical coherence tomography 

Studies on OCT have been growing rapidly in recent years. It is one of the most 

promising technologies for non-invasive imaging of biological tissue, especially in the 

clinical diagnosis of ophthalmology, dentistry and dermatology. OCT uses near-infrared 

light and low-coherence interferometry to take cross-sectional images of the internal 

structure of the biological tissue. By using the principle of interference, signals of tissue 

at different depths can be obtained. OCT provides a typical resolution of 1-15 μm and up 

to 4 mm penetration depth by using near-infrared light.  

Researchers have conducted pilot studies on applying OCT in the detection of 

cervical neoplasia. Gallwas et al. reported a sensitivity of 95% and a specificity of 46% 

for the detection of neoplasia and cancerous lesions using OCT in 60 patients.[68] Another 
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study on discriminating different CIN grades in 120 patients achieved an averaged 

sensitivity of 97% and specificity of 40%, respectively, with the threshold at CIN 1. The 

sensitivity decreased to 85% with the threshold at CIN 2, while the specificity increased 

to 62%.[40] These studies demonstrate the high sensitivity of OCT in distinguishing 

neoplasia grades and cancerous lesions. However, it was relatively more difficult to 

differentiate the CIN1 and the healthy tissue (false positive) due to other benign 

modifications, which resulted in a much lower specificity of OCT. The same group 

reported improved specificity of 69% in a more recent study by combining OCT and 

microscopy.  

1.3.2 Raman spectroscopy 

Raman spectroscopy is another promising tool that can be used in the early 

diagnosis of cancer due to its capability of obtaining highly detailed spectroscopic 

information of the tissue. During the development of cancer, the structure of proteins, 

nucleic acids, lipids, and carbohydrates changes. These changes can be effectively 

detected by Raman spectroscopy to reveal the underlying molecular structure and 

precancerous modifications. Raman spectroscopy can provide rich structural features and 

molecular fingerprint at the molecular level. 

The feasibility of using Raman spectroscopy as a label-free diagnostic method for 

the early detection of cervical cancer has been studied by different groups. Duraipandian 

et al. achieved an average accuracy of 82.6% by using simultaneous fingerprint and high-

wavenumber confocal Raman spectroscopy in an in vivo study.[50] Another study 

indicates that Raman spectroscopy can discriminate high-grade dysplasia lesions from 
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healthy tissue with a sensitivity of 89% and specificity of 81%, both are higher when 

comparing to regular colposcopy, which has a sensitivity and specificity of 87% and 

72%, respectively. [69] 

1.3.3 Fluorescence imaging 

Endoscopic FLI with a fluorescence dye allows imaging of subcellular organelles, 

such as cell nuclei of the mucosa of the cervix. To improve the efficacy of cervical cancer 

screening in LMICs, fiber-optic endoscopes have been developed for high-resolution 

fluorescence imaging of cell nuclei.[30,51,70,71] The Richards-Kortum group reported a 

high-resolution fluorescence microendoscope (HRME)[72,73], shown in Figure 1-5, based 

on a fiber bundle for molecular imaging of cell culture and living tissue. Two pilot 

studies conducted by Pierce et al. and Quinn et al. demonstrated the use of nuclear-

cytoplasmic ratio (N/C) obtained with the HRME achieved a sensitivity of 100% and 

specificity of 65%,[52] and a sensitivity of 86% and specificity of 87%,[53]  respectively, in 

differentiating CIN2+ lesions from non-neoplastic cervical tissues. 

 

Figure 1-5: HRME system developed by Richards-Kortum group 

(Photo credit: Grant, B. D, Springer.  Reference 64) 
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However, the reported HRME system uses expensive components such as the 

scientific camera[72] or DSLR camera[74], and the system has to connect to a local 

computer, which limits its portability and makes the system less easy-to-use. Therefore, 

additional studies are required to reduce the size and cost of the endoscopic fluorescence 

imaging system while maintaining its effectiveness in the early detection of cervical 

cancer. 

1.3.4 Diffuse reflectance spectroscopy  

Diffuse reflectance spectroscopy is very sensitive to the optical properties of 

epithelial tissue[75-78] and has demonstrated its potential for early detection of cancers in 

cervix,[79-84] oral cavity,[85-89] colon,[57,61,90,91] and Barrett's esophagus.[58,59,92] The 

absorption (𝜇𝑎) and reduced scattering coefficients (𝜇𝑠
′ ) of epithelial tissues reflect their 

underlying physiological and morphological properties.[93] For instance, dominant 

absorbers in the visible wavelength range in cervical tissues include oxy-hemoglobin and 

deoxy-hemoglobin, arising from blood vessels in the stroma. Light scattering is primarily 

caused by cell nuclei and organelles in the epithelium and stroma, as well as collagen 

fibers and cross-links in the stroma. Neoplastic epithelial tissue exhibits significant 

changes in their physiological and morphological characteristics that can be quantified 

optically given that the stromal layer absorption is expected to increase with 

angiogenesis,[78,84,94-96] resulting in decreased stromal scattering with the neoplastic 

progression that coincides with the degradation of extracellular collagen 

networks.[78,85,93,97-99] In contrast, epithelial scattering increases due to increased nuclear 

size and DNA content, as well as hyperchromasia.[78,84,93,94,100] In the visible wavelength 

range, DRS has a penetration depth that can be tuned to be comparable to the thickness of 
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the epithelial layer or deeper to probe both the epithelial and stromal layers.[77,94,101] 

These advantages enable DRS to be used as a cost-effective (<$5,000), fast and sensitive 

tool for early detection of cervical cancer. Thekkek et al. have summarized several 

studies on cervical tissue optical spectroscopy[51], in which DRS was shown to achieve 

sensitivities and specificities in the ranges of 83 – 92% and 80 – 90%, respectively.[18] 

1.3.5 Combined techniques 

While imaging and spectroscopy are being actively studied, few imaging or 

spectroscopy modalities alone can achieve the high sensitivity and specificity required for 

early cancer detection, and often two or more are required to provide the physician or 

computer algorithm with complementary information about the lesion in question. A 

technique that is superior on one side may have limitations on the other side so that its 

application will be limited. For example, OCT allows high-resolution imaging at larger 

depths but cannot provide functional information of the tissue. Raman spectroscopy 

provides highly detailed spectroscopic information but has very week signal and small 

field of view that limited within a small range of wavenumbers. Recent years have seen 

increasing research on the integration of multiple imaging modalities into a single device 

to obtain complementary tissue information.[102-104] Freeberg et al. developed an 

instrument that combined fluorescence and reflectance spectroscopy for the detection of 

cervical neoplasia. An 850-patient clinical study using the instrument has shown 

significant differences in mean intensity between normal and high-grade tissue.[105] 

Similar device developed by Twiggs et al. that combines fluorescence and reflectance 

spectroscopy achieved a sensitivity of  91.3% in differentiating high-grade lesions 

(CIN2+).[106] However, the instruments used in both groups are not portable or globally 
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connected. The devices have to be connected to and controlled by a local computer for 

data acquisition and analysis, which limits their application in LMIC. 

However, because most of these modern optical imaging methods are still in the 

early stage of development, it is hard to judge the diagnostic efficacy of each imaging 

modality.[107] Table 1-2 summarizes the performance and research status of several 

common optical imaging techniques. The major drawbacks of current high-resolution 

endoscopes are the use of expensive (over $10,000) and power-consuming light sources 

and detectors. Moreover, they often need experienced engineers to operate the 

sophisticated instruments and physicians to interpret the images, making them 

unaffordable to LMICs. Besides, some systems require a scanning mirror inside the 

endoscopes, which is bulky and incompatible with magnetic resonance imaging and 

computerized tomography scanners.  

Table 1-2: Summary of advanced optical techniques in cervical cancer detection 
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1.4 SMARTPHONE IN HEALTHCARE 

The cost of wireless technology has decreased over the years[108], thereby making 

smartphones, a subset of mobile phones, a very affordable device, even for people living 

in many rural areas and developing countries. The International Telecommunication 

Union reported that the mobile-broadband subscriptions reached 4.3 billion globally in 

2017; Between 2012 and 2017, the most rural areas saw the largest growth rate of mobile 

broadband subscriptions. Mobile broadband becomes more affordable than fixed 

broadband in most developing countries.[109] In addition to a high-resolution camera, 

smartphones also offer enormous computational power and wireless Internet access. The 

smartphone-based diagnosis could potentially reduce healthcare costs, provide wireless 

access to advanced laboratories, and experienced physicians in developed countries, thus 

revolutionizing healthcare delivery in LMICs. 

Smartphones are playing an emerging role in optical imaging for medical and 

biological applications — for example, Breslauer et al.[110] reported a mobile phone 

microscope with a field-of-view (FOV) of 180 µm in diameter and a 1.2 µm resolution 

for the diagnosis of hematologic and infectious diseases. Switz et al.[111] added a reversed 

camera lens to a mobile phone to enable high-quality imaging over a FOV of ~10mm2 

and successfully identified red and white blood cells in blood smears and soil-transmitted 

helminth eggs in stool samples. Tseng et al.[112] demonstrated a lens-free holographic 

microscope on a mobile phone that has been used to image variously sized 

microparticles. Zhu et al.[113] reported wide-field FLI on a mobile phone over a FOV of 

∼81 mm2 with a resolution of ∼20 μm. Smartphone spectrometers with nanometer to 

sub-nanometer accuracy have also been reported.[114-120] Gallegos et al.[115] demonstrated 
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the use of a smartphone spectrometer to measure shifts in the resonant wavelength of a 

label-free photonic crystal biosensor with 0.009 nm accuracy. Edwards et al.[120] reported 

a miniature, visible to near-infrared G-Fresnel spectrometer that connected with a 

smartphone through a Micro USB port for measurement of hemoglobin. Wang et al.[118] 

have proposed multiple methods for implementing smartphone-based spectroscopy. 

Smith et al.[117] developed two attachments that transform a phone camera into either a 

microscope or a spectrometer.  

Most smartphone imaging/spectroscopy devices utilize an external module 

attached to the rear camera of a smartphone, but only a few attachments have been 

designed for a fiber-optic endoscope. Bromwich et al.[121] proposed an adaptor for 

coupling a traditional endoscope to a videophone for transmitting images collected by the 

endoscope to a remote observer. Wu et al.[122] recently transformed a smartphone into an 

endoscope for acquiring otorhinoscopic images from six patients for remote diagnosis. 

Jongsma et al.[123] developed an otoendoscope system based on a mobile phone, which 

has been commercialized by Endoscope-i Ltd. MobileOCT has recently marketed a 

multimodal smartphone imaging system that can simultaneously undertake bright-field, 

polarization difference, and spectral imaging with applications for cervical cancer 

detection in developing countries.[124] The device uses a rigid imaging tube and requires 

sophisticated imaging optics; thus, its application in LMICs is limited. 

1.5 SOLUTION: SMARTPHONE-BASED DUAL-MODALITY FIBER-OPTIC 
MICROENDOSCOPE 

To fulfill the urgent need of practical and efficient approaches for cervical cancer 

screening in LMICs and reduce the cost of optical endoscopes, we have designed and 
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developed a portable, cost-effective, and easy-to-use optical microendoscope system, 

named SmartME and tested its capability of characterizing biological properties in vivo. 

The device consolidates the optical endoscope technologies into a smartphone platform 

that is capable of performing both fluorescence imaging and diffuse reflectance 

spectroscopy. This solution takes the advantages of both methods and provides high-

resolution imaging and quantitative information about the tissue physiology. We 

hypotheses that 1) there are significant differences in the biomarkers (nuclear size and 

density, hemoglobin concentration, absorption, and scattering) among high- and low-

grade lesions and their normal/benign counterparts, and 2) these contrasts can be detected 

by the proposed dual modality device.  

1.6 OUTLINE OF THEIS 

The development procedures of the SmartME device involve instrumentation of 

smartphone-based FLI and DRS separately and combination of two imaging modules 

together. In Chapter 2, we described the design and development of a smartphone-based 

fiber-optic microendoscope for high-resolution fluorescence imaging and present the 

procedure and results of performance characterization. The design was first simulated and 

optimized in Zemax OpticStudio to fulfill the high-performance requirements. The 

imaging system was characterized using a 1951 USAF target to determine its spatial 

resolution. With the help of fluorescence contrast agent proflavine, high-resolution 

fluorescence images were successfully taken from biological samples to evaluate its 

performance. Image processing approaches to remove the fiber bundle artifacts and 

extract N/C from the fluorescence images were developed.  
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In Chapter 3, we present the design and development of a smartphone-based 

spectrometer for diffuse reflectance measurement. The design was also simulated and 

optimized in Zemax to evaluate its feasibility. The developed DRS system was 

characterized and calibrated using two calibration lamps. An optical resolution of 2 nm 

was estimated, which is comparable to a commercially available benchtop spectrometer. 

Tissue-mimicking phantom experiment was performed to evaluate the accuracy of the 

system in measuring diffuse reflectance and extracting optical properties based on a fast 

Monte Carlo model. An averaged error of less than 5% was achieved, which is also as 

good as a commercial spectrometer that has been extensively verified in clinical studies.  

In Chapter 4, we demonstrated the instrumentation of the dual-modality fiber-

optic microendoscope SmartME by combining the FLI and DRS together. The SmartME 

has a spatial resolution of ~3.5 µm for FLI and high accuracy in measuring diffuse 

reflectance in tissue. A smartphone App has also been developed to control the phone 

camera, collect the images/spectra, and communicate with the remote server. When used 

with the App, the device can take FLI and DRS measurements on epithelial tissues, 

wirelessly transfer the data to the server for real-time data processing, and return the 

results to the SmartME within a minute. Our preliminary studies have demonstrated that 

the dual-modality SmartME can accurately characterize the biological properties and 

provide complementary information about epithelial tissues. The SmartME has great 

potential to provide a compact, cost-effective, and ‘smart’ solution for early detection of 

neoplastic changes in epithelial tissues, especially in low resource settings.  

Chapter 5 summarizes the achievements and current limitations of the dissertation 

work and discusses the future work to further improve the SmartME device and fully 
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investigate the potential of the SmartME for early detection of neoplasia in epithelial 

tissues in clinical studies. 
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CHAP  CHAPTER 2: SMARTPHONE-BASED FLUORESCENCE IMAGING 

Portions of this chapter are derived from the following publication: 

Hong, X., Nagarajan, V. K., Mugler, D. H., & Yu, B. (2016). Smartphone 

microendoscopy for high resolution fluorescence imaging. Journal of Innovative Optical 

Health Sciences, 9(05), 1650046.[108] 

In this chapter, we described the design and development of a smartphone-based 

fiber-optic microendoscope for high-resolution fluorescence imaging and present the 

procedure and results of performance characterization. The design was first simulated and 

optimized in Zemax to fulfill the high-performance requirements. The developed system 

was characterized using a 1951 USAF target to determine its spatial resolution. With the 

help of fluorescence contrast agent proflavine, high-resolution fluorescence images were 

successfully taken from biological samples to evaluate the performance of the system. 

The experiments have demonstrated the potential of developing a compact, easy-to-use 

and cost-effective smartphone-based microendoscope to improve the screening and early 

diagnostic rates of many medical conditions in LMIC. 

2.1 INTRODUCTION 

2.1.1 Fluorescence process 

Fluorescence is a form of photoluminescence that occurs in certain molecules 

called fluorophores. When a fluorophore is irradiated with light at a specific wavelength, 

it absorbs light energy and enters to an excited state, then immediately retreats and emits 

light with wavelengths longer than the incident light. This three-stage process is 

illustrated by the Jablonski diagram[125] in Figure 2-1.  
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Figure 2-1: Jablonski diagram illustrating the three-stage process of fluorescence 

Absorption and excitation: when a fluorescent molecule absorbs the energy of 

the incident light, the electrons in it are stimulated from the ground state 𝑆0 to the excited 

state 𝑆1
′ , so that 𝑆0 + ℎ𝜐𝐸𝑋 = 𝑆1

′  , where h is the Planck constant, 𝜐𝐸𝑋 is the frequency of 

the incident photon. 

Non-radiative transition: Electrons in the excited state can release their energy 

and transit to the ground state in different ways. In a non-radiative transition process, 

electrons can transit from the excited state 𝑆1
′  via a very fast (less than a picosecond) 

without radiation to a slightly lower excited state 𝑆1. The energy difference between the 

two excited states is called the Stokes Shift. 

Emission: The excited states are unstable so that electrons at the excited state 𝑆1 

will transit back the ground state 𝑆0. When the electrons are restored to the ground state,

the energy is released in the form of light. The light emitted here is fluorescence, and its 

frequency is 𝜐𝐸𝑀, so that 𝑆1 = 𝑆0 + ℎ𝜐𝐸𝑀 . The energy of the emitted photon is lower 

than the excitation photon due to energy loss (heat) during the non-radiative transition, 
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and therefore fluorescence usually has a longer wavelength. The ratio of the total number 

of photons emitted to the total number of photons absorbed is called quantum yield. 

Excitation spectrum and emission spectrum are two important indicators for 

characterizing fluorescent materials. In general, one fluorophore material can be excited 

by light at different wavelengths. Their emitting fluorescence can also cover a certain 

range of wavelengths. The excitation spectrum refers to the relationship between the 

intensity of the emission and the excitation wavelength. Based on the excitation 

spectrum, the wavelength range of the excitation light required to illuminate the 

fluorophores can be determined, and the optimal excitation wavelength at which the 

intensity of a certain emission is maximum can also be determined. The emission 

spectrum refers to the intensity and energy distribution of light of different wavelengths 

emitted by excitation at a specific wavelength. A typical illustration of excitation and 

emission spectra is presented in Figure 2-2. 

 

Figure 2-2: Excitation and emission spectra (generic) 
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2.1.2 Absorption and fluorescence of Proflavine 

Proflavine, an acriflavine derivative, was first introduced into clinical use in 1917 

for antiseptic applications.[126] It was typically used as an antiseptic drug that can be 

topically applied on the skin,[127] based on its capability to induce a genetic mutation by 

intercalating the DNA. This preferential cell nuclei staining property has later been 

shown to provide strong fluorescent contrast, allowing for its applications in endoscopic 

fluorescence imaging.[128] The measured absorption peaks of proflavine in the water at 

PH = 7 are 260 nm around 445 nm[129-132] and exhibits a fluorescence emission centered 

at 515 nm, with a quantum yield of 0.34.[133,134] 

 

Figure 2-3: The fluorescence excitation and emission spectra of Proflavine in water 

(Photo credit: Scott Prahl, OMLC. Reference 122) 

2.2 OPTICAL DESIGN 

2.2.1 System layout 

The smartphone-based fiber-optic microendoscope consists of a smartphone with 

a rear camera, imaging optics which was engineered as an attachment, and a fiber optic 

imaging bundle. A schematic diagram of the smartphone microendoscope is shown in 

Figure 2-4. The imaging optics include a band-pass filter for fluorescence excitation 
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(BP1), a dichroic beamsplitter (DBS), a finite microscope objective (OBJ), a band-pass 

fluorescence emission filter (BP2), an eyepiece (EP). The filtered excitation light from a 

blue light emitting diode (LED) propagates through a condenser lens (CL) and be 

redirected by the beamsplitter towards the objective to achieve a Kohler illumination 

(uniform illumination) on the proximal end of the fiber bundle plugged into the FC/PC 

connector. The distal end of the imaging bundle is in contact with the target being tested, 

such as biological tissue. The fluorescence emissions from the target are collected by the 

same fiber bundle, propagate through the objective, beamsplitter and emission filter that 

blocks the excitation lights, and then enter the rear camera of the smartphone after being 

collimated by the eyepiece. 

 

Figure 2-4: Schematic diagram of the smartphone microendoscope for FLI 

EP – eyepiece; BP1 and BP2 – optical bandpass filters; DBS - dichroic beamsplitter; OBJ – 
microscope objective; L1 – condenser lens; LED - light-emitting diode; GND – ground; SW – 
ON/OFF switch 
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The use of off-the-shelf optic components in optical system design can provide 

tremendous advantages in terms of reduced cost and development effort. Hence finding 

the most appropriate stock optics is critical to the system development. Zemax is a widely 

used optical design program that offers features and functions for comprehensive 

analysis, simulation and design. The design follows the system layout shown 

schematically in Figure 2-4. The blue beam represents the propagation of the blue LED 

light source. The green beam represents the in-focus fluorescence captured by the phone 

camera. The fluorescent microendoscope is designed in two major modules: 

• Imaging module: Microscope objective to the eyepiece lens and cellphone 

camera. 

• Illumination module: Light focusing system to the microscope objective to 

deliver excitation light to the fiber bundle. 

2.2.2 Simulation of imaging module 

Simulation of the imaging module was to determine the specification of optical 

lens to be used and the overall size of the design. It starts with sequentially defining each 

surface/element in the lens data editor (LDE), as shown in Table 2-1. A triplet lens and a 

doublet lens were used to represent the achromatic objective lens and eyepiece lens, 

respectively. This method is the easiest way to give enough degrees of freedom for 

optimization to further overcome aberrations. A 1 mm thick glass plate after the last 

objective element was added and tilted by 45 degrees about the x-axis to model the 

decenter introduced by the dichroic beamsplitter in the system, followed by a single 

surface to represent the emission filter. Note that coating profiles of the dichroic mirror 

and emission band-pass filter were not pre-defined to simplify the design process because 
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the introduction of these elements should not affect the imaging quality. A general 

cellphone camera module was imported and placed at the end of the system to become 

the last element. The total track length was required to be less than 200 mm. Vary the 

radii and thicknesses of each surface in the LDE to optimize the imaging quality. Figure 

2-5 depicts the design simulation. 

Figure 2-5: Simulation of fluorescence imaging system 

Elements from left to right: objective lens, dichroic beamsplitter, emission filter, eyepiece lens, 
and cellphone camera. The coating profiles of the mirror and filter were not defined in the design. 

Table 2-1: Values defined in the LDE for FLI module (optimized) 
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 In an optical system design, aberrations take place when light from one point of 

an object diverge from a single point after traveling through the system. An optical 

designer must correct the aberrations because they cause the image formed by the system 

to be blurred or distorted. The most common types of optical aberrations include 

spherical aberration, astigmatism, chromatic aberration, defocus, coma, and Petzval field 

curvature. The image simulation feature of Zemax simulates the image formed by the 

optical system when a 2D picture is imaged through it. It is ideal for characterizing the 

real performance of an optical system. A built-in full-color bitmap, as shown in Figure 2-

6(left), was used to simulate the imaging quality of the FLI system. Due to optical 

aberrations, the blurry image in the middle was generated by the FLI system before 

optimization. Details of the picture, especially the tiny objects such as the leaves and the 

human figures, became indistinguishable. Furthermore, although the achromatic 

objectives are corrected for axial chromatic aberration and spherical aberration in color, it 

will still result in uneven distribution of light from the center to the edge of the field-of-

view. Correction for flatness of field is required for a better performance. In addition to 

the imaging quality, a proper magnification was required so that the images occupy the 

most area of the camera sensor. Based on the camera specification of Moto G (1st Gen), 

the optimized simulation suggested that using a 20X plan achromatic objective 

(AmScope PA20X-B) with a wide-field 16X eyepiece (AmScope EP16X23-S) would 

provide required imaging performance and in the meantime most of the sensor area 

would be used. The objective has a numeric aperture of 0.40 (larger than the NA of the 

imaging bundle 0.39) and standardized tube length of 160 mm. 
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Figure 2-6: Simulation of imaging quality 

2.2.3 Simulation of illumination module 

The selection of the light source, excitation filter, dichroic beamsplitter and 

emission filter is based on the use of the fluorescence dye. Therefore, the purpose of the 

illumination simulation was to simulate how much light power could be obtained out of 

the fiber image bundle by using the selected optical components when combining the 

illumination and imaging modules. In this study, a blue LED (455 nm, M455L3, 

Thorlabs), excitation filter (FF01-452/45, Semrock), dichroic beamsplitter (475 nm 

cutoff, 475DCXRU, Chroma Technology), and emission filter (FF01-550/88, Semrock) 

were used based on the use of proflavine (Sigma-Aldrich P2508), a topically applied 

DNA dye, as the fluorescence contrast agent. The peak excitation and emission 

wavelength of proflavine are 445 nm and 515 nm, respectively. The fiber bundle (FIGH-

30-650S, Fujikura) has an imaging area of 600 μm and consists of ~30,000 individual 

fibers of ~3 μm in diameter with a center-to-center distance about 3.3 μm. The single 

core has a numerical aperture (NA) of approximately 0.39.  
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Table 2-2: Non-sequential component editor including illumination module 

 

Both sequential ray tracing and non-sequential ray tracing are available in Zemax. 

In the sequential mode, all of the rays traced must propagate through the same predefined 

set of surfaces in the same order. By contrast, rays in non-sequential mode can propagate 

through the optical components in any order and can hit the same object multiple times. 

The simulation of the illumination was first done in sequential mode. The illumination 

ray profile of LED is provided by Thorlabs so that it can directly be loaded to the design. 

Surfaces of the condenser lens were created with preliminary radii of the lens surfaces for 

further optimization.  The illumination module was then combined with the imaging lens 

system and converted into the non-sequential mode. In the Non-Sequential Component 

editor shown in Table 2-2, a detector surface (Object 12) was created on the plane of the 

proximal end of the fiber bundle so that the light power detected on this surface would be 

treated as the power coupled into the fiber bundle, given that the numerical apertures of 

the objective lens and the fiber bundle were matched. 
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The surface of the dichroic beamsplitter and fluorescence filters were coated in 

this modeling to simulate the real situation. A coating file of the front surface of the 

dichroic was added so that it would reflect 445 nm and passes 515 nm. Coating files of 

the excitation filter and emission filter were also defined accordingly. The light power 

detected on the detector surface was 1.276 mW, which was approved to be very close to 

the value we measured from the experimental setup. 

 

Figure 2-7: Simulation of fiber bundle light coupling 

Left: Illumination simulation using the ray profile provided by the manufacturer. Right: detector 
image on a surface placed on the proximal end of the fiber bundle. The detected power was 1.28 
mW 

2.2.4 System assembly 

In addition to the components that have been determined by simulation results and 

based on the use of fluorescence dye. Optomechanical components were used to fix the 

position of the optical components and ensure a good alignment. Figure 2-8 illustrates the 

assembly of the FLI system. All the components are shown at their relative locations. It is 

important to note that proper orientation of the filters is helpful to maximize performance 

and minimize autofluorescence. Most mounted filters have an arrow located on the edge 

of the filter to aid orientation. The dichroic beamsplitter (9) should be mounted with the 



30 

coated surface toward the light source (13), excitation filter (11), and the objective lens 

(4). The excitation filter (11) should be placed with the arrow pointing toward the cage 

cube (7), and away from the blue LED (13) light source. The emission filter (10) should 

be positioned with the arrow pointing toward the objective lens (4) and away from the 

camera (16). 

Figure 2-8: Exploded view of all components for FLI 

Exploded view showing the relative locations of (1) FC/PC adapter, (2) 1" Long lens tubes, (3) 1" 
Long lens tube coupler, (4) 20× objective lens, (5) RMS adapter, (6) 0.5" Long lens tube, (7) 30 
mm cage cube, (8) end cap, (9) dichroic beamsplitter, (10) emission filter, (11) excitation filter, 
(12) condenser lens, (13) 455 nm blue LED, (14) 2" Long lens tube, (15) 16× eyepiece lens, (16) 
Samsung Galaxy S6 cellphone, (17) cage cube platform, (18) optic mount, and (19) blank cover 
plate.  

The most challenging step of the assembly procedure is to properly align the LED 

(13), dichroic beamsplitter (9) and objective lens focus to deliver maximum power to the 
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fiber bundle when it connects to the FC/PC adapter (1), while the fiber bundle remains in 

focus. This alignment can be completed in three steps.  

First, attach the fiber bundle to the FC/PC receptor (1), adjust the distance 

between the FC/PC adapter (1) and objective lens (4) by rotating the lens tube coupler (3) 

so that a clear and sharp image of the fiber bundle can be captured using the camera. The 

position of the FC/PC adapter (1) is now optimized, and it should be locked using the 

lock ring on the lens tube coupler (3). The imaging focus is fixed on the proximal end of 

the fiber bundle after this step unless the distance between an objective lens and eyepiece 

lens is altered. 

Second, point the distal end of the fiber bundle to a light power meter, adjust the 

position of the LED (13) to maximize the light intensity exiting the distal end of the fiber 

bundle. The position of the LED (13) is optimized when the highest power is achieved. 

Secure the LED (13) in this position using the lock ring on the lens tube coupler.  

Third, after completion of the device assembling, slightly rotate/adjust the cage 

platform with the dichroic beamsplitter mounted on it and measure the power coming out 

of the fiber. The highest power is achieved when the dichroic beamsplitter is optimally 

aligned and it should be firmly secured at this location. 



32 

 

 

Figure 2-9: The completed smartphone FLI system 

Left: the completed FLI system with major optic components. Right: picture of the completed 
FLI system with a 3D-printed enclosure, and the fiber bundle attached.  

2.3 PERFORMANCE CHARACTERIZATION 

2.3.1 Imaging a uniform fluorescence reference slide  

In the prototype shown in Figure 2-9, a 20× plan objective and a 16× wide-field 

eyepiece were selected in combination with the cellphone camera lens to obtain a proper 

magnification. The actual imaging area filled 1730 pixels in diameter of the camera 

sensor array, which represents an image size of 1730×1.4 μm ≈ 2.4 mm in diameter, 

resulting in 4× magnification (2.4 mm/0.6 mm). Therefore, each fiber occupied ~36 

pixels of a raw image. The locations of the proximal end of the fiber bundle and the 

condenser lens were adjusted so that all pixels in the bundle were uniformly illuminated 

and clearly imaged onto the camera.  

A green fluorescence reference slide (2273-G, Ted Pella) was used to check the 

uniformity of the system. Figure 2-10 shows a representative image of the proximal end 

of the fiber bundle when its distal end was in contact with the reference slide. A close 

look of the image marked by the red box in Figure 2-10 indicates that individual fibers of 

the bundle were well resolved.  
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Figure 2-10: Fluorescence image of a uniform fluorescence reference slide 

2.3.2 Fiber bundle pixelation artifact removal 

While the fiber bundle brings the flexibility of the endoscopic imaging system, its 

honeycomb pattern artifact also brings inherent noise to the image. A variety of methods 

for removing the fiber bundle pixelation have been proposed. Generally, the processing 

methods can be classified into two groups, of which one is filtering and smoothing, and 

the other is interpolation reconstruction. Göbel et al. smoothed the image using Gaussian 

filtering on images obtained in a two-photon endoscope system.[135] However, the 

filtering method actually blurs the image, deteriorates the contrast of the image. Winter et 

al. proposed using different types of adaptive filters in the frequency domain to process 

the image[136] Similarly, Suter et al. used a low-pass filter to process the image in the 

frequency domain, filtering out the high-frequency components and retaining only the 

low-frequency information in the image.[137] However, choosing the right filter would 

become much more complicated if the images contain more complex frequency 

components. Han et al. proposed a method that histogram equalization was first applied 

before Gaussian filtering.[138] This method improved the imaging quality and minimized 
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the loss of details when the fiber bundle artifact was removed. Elter et al. proposed a 

method of interpolation reconstruction.[139] The center of each fiber was obtained first, 

and the pixel values at these locations were used to reconstruct the original image by 

interpolation.  

Since the intensity within each fiber has a Gaussian distribution, the intensity at 

the center of each fiber represents the fluorescence intensity collected by that fiber. In 

this work, we employed the interpolation reconstruction method to eliminate the fiber 

pattern artifacts in the fiber bundle imaging. Figure 2-11 illustrates the steps to do 

intensity correction and image reconstruction.  

 

Figure 2-11: Flowcharts for image calibration and fiber pattern removal 

First, the image measured from the uniform fluorescent reference slide is used to 

calibrate the illumination distribution of the fluorescence images. The imaging area of the 

fiber bundle was defined as the region of interest (ROI) and circularly cropped out of the 

image. The regional maxima (fibers) within the defined ROI were extracted using a built-
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in Matlab function ‘imregionalmax’. The function returns a binary image consisting of 1s 

at regional maxima and 0s elsewhere. Consequently, the location of fiber centers was 

given by the coordinates of 1s in the binary image. A lookup table consisting of the fiber 

center locations was created. Pixel values at these locations in the calibration image were 

extracted to form a correction matrix. Next, pixel values of a raw fluorescence image at 

locations that correspond to those in the lookup table were extracted to create a new 

image, which was divided by the correction matrix using an element-by-element 

operation to correct for the intensity fluctuation within each fiber. Next, the image was 

converted to a gray-scale intensity image. The final step was to assign the extracted 

center pixel values to the neighboring pixels to reconstruct a comb structure free image. 

Figure 2-12: Fiber pattern removed image of the uniform fluorescence reference slide 

It is important to note that the built-in Matlab function ‘imregionalmax’ can only 

process images with regional peaks that have maximum connectivity of 26 or less, the 

raw images with a fiber occupying 36 pixels (on the camera sensor) was scaled to half of 

its original size. Given that the resolution of the imaging bundle is limited by the center-

to-center distance of two adjacent fibers, reducing the image size to half doesn’t change 
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the spatial resolution of the system. The fiber pattern rejected image of Figure 2-12. The 

pixelation artifacts were effectively removed in the reconstructed image. 

2.3.3 Spatial resolution characterization 

To characterize the spatial resolution of the smartphone microendoscope, 

fluorescence images were taken from a 1951 USAF resolution test target that was placed 

on top of a green fluorescent reference slide. Figure 2-13(a) and (b) demonstrate the raw 

and fiber pattern rejected images of the test target, respectively. The intensity function 

across the lines (not shown) indicates that the valley intensity between the Group 7 

Element 2 lines is 3dB below the peak value, while less than 3dB for that of the Group 7 

Element 3 lines. This demonstrates that the microendoscope successfully resolved the 

adjacent lines of Element 2 in Group 7, as can also be visually seen from the enlarged 

area in Figure 2-13(b). Thus, the spatial resolution was estimated to be about 3.3 μm. 

This value meets our expectation that the resolution of the setup is limited by the center-

to-center distance between two adjacent fibers of the imaging bundle, which is about ~3.5 

μm.  

Figure 2-13: Fluorescence images taken from a 1951 USAF resolution target 

(a) raw image; (b) fiber patter removed image 
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2.3.4 Fluorescence imaging of biological samples 

Ex vivo porcine adipose and bovine skeletal muscle tissues were also imaged 

using the prototype FLI microendoscope. Fresh porcine and bovine tissues were obtained 

from a local butcher’s shop within 3 hours of the slaughter of the animals. Experiments 

were conducted immediately after the tissues were transported to the lab in a cooler. The 

tissues were sliced into a dimension of 2×2×1 cm (W×D×H). Proflavine at a 

concentration of 0.01% wt/vol was applied on the surface of the sliced tissues using a 

cotton swab, and fluorescence images were taken immediately after in a dark room. 

Typical images are presented in Figure 2-14. The white lipid cells and muscle fascicles 

are both clearly visible. The brighter backgrounds between the cells of the adipose 

samples are likely due to the non-specific binding of excessive proflavine on the tissue, 

which may be reduced by rinsing the sample before imaging. 
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Figure 2-14: Fluorescence images of ex vivo tissue 

Raw and fiber pattern removed image of ex vivo porcine adipose tissue (a, b) and bovine skeletal 
muscles (c, d). 

To test the feasibility of the microendoscope for imaging living cells, both cell 

lines and oral mucosa from a volunteer (IRB review exempted) were imaged. Images 

were taken immediately after proflavine (0.01% wt/vol in PBS) was applied on the 

surfaces of the cells or oral mucosa. The experiment setup and procedures to take images 

from a single layer of L929 cells in a disk were the same as that used for the ex vivo 

tissues. To image the oral mucosa, the fiber bundle was handheld and brought in gentle 

contact with the inner cheek of the volunteer. Figure 2-15(a) and (b) show the raw and 

fiber pattern rejected fluorescence images collected from the L929 cells. The cells can be 

easily identified with little overlap. It is important to note that the bright spots in the 

images represent the nuclei instead of the cells because proflavine selectively labels the 
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cell DNA. Figure 2-15(d) and (e) show the raw and fiber pattern rejected images 

collected from the oral mucosa. The nuclei of the mucosal cells can be clearly visualized 

with some background fluorescence, which is attributed to the underlying cells and tissue 

scattering.  

 

Figure 2-15: Fluorescence images of ex vivo cell line and in vivo oral mucosa tissue 

(a) Raw and (b) processed fluorescence images of a single layer of L929 cells. (c) Raw and (d) 
processed images of normal human oral mucosa in vivo.  

2.3.5 Quantitative information: nuclear-cytoplasmic ratio 

The images were further processed to extract quantitative information about the 

samples, such as cell density for cell lines and nuclear-cytoplasmic ratio (N/C) for 

tissues. The mean projected nuclear area of normal cervical cell is ~36.2 μm2 which 

occupies at least four pixels/fibers of the imaging bundle, while the average nuclear area 
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of carcinomatous cell is 81.28 μm2.[140] As we mentioned earlier, other studies reported 

that the LSIL cells have expanded nuclei that are at least three times (in area) as big as 

the normal nuclei, and HSIL cells have similar expanded nuclei with reduced 

cytoplasm.[13] Therefore, although the spatial resolution of the device limits its capability 

to separate two cell nuclei that are less than 3.5 μm apart, the increased size/area of the 

cell nuclei can readily be detected. Quinn et al.[53] demonstrated that the use of N/C 

measured from 26 patients in Botswana has achieved a sensitivity of 86% and specificity 

of 87% in differentiating CIN2+ lesions from non-neoplastic cervical tissues. A median 

filter was used to reduce the outliers and bring out the core of the bright fluorescent dots. 

Then the images were inverted to emphasize the dots. Finally, an ‘unsharp mask’ with a 

radius of 5 made the images even sharper, as shown in Figure 2-16(a) and (b). From 

Figure 2-16(a), it was determined, using a particle analysis function of ImageJ, that there 

was a total of 852 cells within the ROI. Thus, the cell density was 2973 cells/mm2, which 

is very close to the number estimated from a phase contrast microscope image (~3100 

cells/mm2). The N/C of the oral mucosa was calculated to be 3.5%.  
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Figure 2-16: Inverted images for N/C extraction 

Inverted image of (a) cell line, and (b) oral mucosa tissue. (c) N/C extraction procedures 

2.4 DISCUSSION 

The results obtained with the prototype smartphone FLI system demonstrate the 

feasibility of using the smartphone microendoscope for high-resolution fluorescence 

images. We have constructed a benchtop HRME system, as shown in Figure 2-17(left, 

top), based on the technology developed by Pierce et al.[72] The system consists of a 1.4 

megapixel monochromatic CCD camera with a pixel size of 6.45 µm (Point Grey 

Research, Inc., Canada), a blue LED, a Dichroic mirror, a 10× infinite corrected objective 

lens, excitation and emission filters, a fiber-optic imaging bundle, and a laptop computer 

loaded with custom software for image processing. Figure 2-17(right, top row) shows the 

images taken with the HRME system from a 1951 USAF resolution test target, ex vivo 

adipose and skeletal muscle of bovine tissues, and oral mucosa of a healthy volunteer, 

respectively. Proflavine at the concentration of 0.01% wt/vol (in PBS) was applied on the 
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surfaces of the tissue samples prior to imaging. The tissue images clearly show cell nuclei 

and tissue structures. Given that the pixel size of smartphones is much smaller than that 

of the CCD camera in the HRME, high excitation and better imaging optics may be 

required to obtain fluorescence images of similar quality. Fluorescence images taken 

using the smartphone-based FLI device were presented in Figure 2-17(bottom). The 

image quality is comparable to that achieved with the high-resolution microendoscopes 

(HRME) based on a scientific camera or a DSLR camera[74].  

 

Figure 2-17: Compare between smartphone-based FLI system with HRME 

Left: photographs of the benchtop HRME system and our smartphone-based FLI system. Right: images 

taken from a 1951 USAF resolution target, ex vivo adipose and skeletal muscle tissues, healthy oral mucosa 

from volunteers, and using the HRME system (top) and a Samsung smartphone (bottom). The images in 

each column are not from the same sample. 

However, the smartphone microendoscope has several advantages over the 

HRME and DSLR camera systems. First, scientific or DSLR cameras cost over $1,000 

and very few people own one. Smartphones, especially low-end or used smartphones, are 

widely available at low cost (<$100) even in rural areas in LMIC. In particular, being 

able to use customers’ existing smartphones for imaging significantly increases the 

adoption of the technology in resource-poor settings. Second, the HRME uses a local 

computer to collect or download images and often requires a trained engineer on site to 
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operate the system. The smartphone microendoscope does not need a local computer and 

the application software can be made easy to use, thus further reduces the cost associated 

with each use of the device in LMIC. More importantly, due to the convenient Internet 

access through a mobile data plan that is more widely available than a Wi-Fi network, a 

smartphone microendoscope is more likely to be used as a point-of-care device for 

telemedicine applications. Finally, our prototype system with a 3D printed enclosure 

measures about 20×15×5 cm (L×W×H) and weighs only 612 grams. 3D printing of the 

whole attachment (except the optical components, e.g., LED, lenses, and filters) will 

make the device even more compact and portable. The final version of the smartphone 

microendoscope can be readily engineered to a handheld device. 

The total cost of the current smartphone microendoscope apparatus is about 

$2,000. The primary costs include the imaging fiber bundle ($1,000 for two meters), 

optical components (~$1000). We expect that the cost for a future prototype will be 

reduced to $1,000 by batch ordering of the imaging bundle and optical parts as well as 

using 3D printing technique for the mounting components and enclosure. The final 

version of the microendoscope for LMIC will include an App (for Android) that is 

capable of processing the images on the smartphone or sending them to a remote server 

for processing and receiving the diagnosis. 

The biggest challenges in implementing the smartphone microendoscope are: (1) 

the much smaller sensor pixel size of a smartphone camera than that used in the HRME 

systems and (2) the unchangeable built-in lens kit. Due to the low throughput of the 

imaging bundle, it is critical to optimize the efficiency of the imaging optics so that a 

comparable signal-to-noise ratio can still be achieved with the smaller pixels of the 
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smartphone cameras. An eyepiece has also been used with the objective lens to correctly 

image the fiber bundle on to the smartphone camera through the built-in lens kit. 

Although the microendoscope described in this report was specifically designed for 

proflavine as the contrast agent, it can be readily modified for other fluorescence dyes by 

selecting a LED wavelength and filters that match the excitation/emission spectra of the 

stain. Almost all smartphone cameras in the market use CMOS sensors, which are 

sensitive to fluorescence in the visible and near-infrared wavelength range.  

The high-resolution smartphone microendoscope allows imaging of subcellular 

organelles, such as cell nuclei of the mucosa of the cervix, from which the nuclear-

cytoplasmic ratio can be determined. The technology can also be readily adapted for 

imaging suspicious tissues in other internal organ sites, including the GI tracts (colon, 

liver, esophagus, bladder, pancreas and stomach), prostate, lung, ovarian and oral cavity.  
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ChapterCHAPTER 3: SMARTPHONE DIFFUSE REFLECTANCE SPECTROSCOPY 

In this chapter, we described the design and development of a smartphone-based 

spectrometer for diffuse reflectance measurement. The design was first simulated and 

optimized in Zemax to evaluate the feasibility. The developed DRS system was 

characterized and calibrated using two calibration lamps. An optical resolution of 2 nm 

was estimated, which is comparable to a commercially available benchtop spectrometer 

(>$5000). Phantom validation was performed to evaluate the accuracy of the system in 

measuring diffuse reflectance and extracting optical properties based on Monte Carlo 

simulation. An averaged error of less than 5% was achieved, which is also as good as a 

commercial spectrometer that has been extensively verified in clinical studies. Therefore, 

the smartphone-DRS system has a great potential to provide a cost-effective solution in 

measuring tissue optical properties and is ready to be combined with other techniques 

such as FLI to obtain complementary tissue information. 

3.1 DIFFUSE REFLECTANCE SPECTROSCOPY 

Imaging and spectroscopy are two major groups of optical techniques that are 

used for biomedical applications. Imaging techniques, such as fluorescence imaging 

discussed in chapter 2, provide qualitative information by visualizing the morphological 

structure of the tissue. On the contrary, spectroscopic techniques are able to provide 

quantitative information of the biochemical or functional properties of the tissue by 

studying the light-tissue interactions such as absorption and scattering.[141] 
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3.1.1 Diffuse reflectance 

The phenomenon in which the light emitted into a sample scatters multiple times 

and eventually comes out is called light diffusion. As illustrated in Figure 3-1, photons 

that propagate in the tissue will undergo scattering and absorption. Some of the photons 

are absorbed by specific molecules such as hemoglobin and nucleic acids. Others are 

scattered multiple times by scatters in the tissue such as mitochondria and cell nuclei, and 

escape from the tissue in random directions. Diffuse transmission occurs when the 

emitted light passes through the sample and comes out on the other side. On the other 

hand, diffuse reflection happens when the outcoming light and the incident light are on 

the same side. Both the diffuse transmission and diffuse reflections light carry the internal 

information of the sample, and thus can be collected and analyzed to determine the 

intrinsic properties of the sample. However, because visible light can only travel for a 

limited distance in turbid media, the diffuse transmission is less feasible for most 

applications.  

 

Figure 3-1: Schematic representation of light-tissue interaction 
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3.1.2 Tissue optical properties 

Absorption coefficient 𝝁𝒂. For the visible light, light absorption in tissue is 

mainly caused by molecules like hemoglobin, melanin and other pigments. The 

absorption of light can be described by the absorption coefficient (𝜇𝑎), which represents 

the light extinction due to absorption. The absorption coefficient is wavelength 

dependent, and it is largely affected by the blood content and oxidation state. Figure 3-2 

shows the absorption spectra of oxyhemoglobin (HbO2) and deoxy-hemoglobin (Hb).[142] 

It can be seen that HbO2 and Hb have very different absorption characteristics across the 

whole wavelength range, especially at a wavelength longer than 600 nm. The absorption 

coefficient of most biological tissues is within the range of 0.1 to 10 cm-1.[143] 

Scattering coefficient 𝝁𝒔. The scattering of light in turbid media is usually 

characterized using the scattering coefficient (𝜇𝑠), which is similar to the absorption 

coefficient that indicates the light energy loss due to scattering. The uneven refractive 

index of tissue causes scattering and it depends on the size, density and morphological 

structure of the tissue contents such as collagen fibers, mitochondria, lipid membrane and 

nuclei. For example, the water-like lipid membrane interface surrounding each cell and 

inside a cell has a different refractive index from the gel-like fibrils in the intercellular 

substance. When both the absorption coefficient and scattering coefficient are given, the 

total attenuation/extinction coefficient can be obtained as 𝜇𝑡 = 𝜇𝑎 + 𝜇𝑠. 
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Figure 3-2: Absorption spectra of HbO2 and Hb 

(Photo credit: Scott Prahl, OMLC. Reference 131) 

Anisotropy factor 𝒈. When a scattering event occurs, the trajectory of the photon 

is deflected by an angle θ. Each deflection is random, and it can be described using the 

Henyey-Greenstein phase function, which represents the probability distribution of the 

photon deflection angle 𝜃 at which the scattering event occurs: 𝑃(𝜃) = [
1

1−𝑔
−

1

√1+𝑔2−2𝑔 cos 𝜃
] ⋅

1−𝑔2

2𝑔
, where 𝑔 is the scattering anisotropy factor, which is equal to the 

average of the cosine of the scattering angle: 𝑔 = 〈cos 𝜃〉 that measures how much the 

forward direction is retained after a scattering event. For most soft tissues, the value of 𝑔 

is between 0.65 and 0.95.[143] When 𝑔 = 1, 0 or -1, it corresponds to three special cases of 

totally forward scattering, isotropic scattering and totally backward scattering. 

Reduced scattering coefficient 𝝁𝒔
′ . The introduction of the reduced scattering 

coefficient is to simplify the description of multiple scattering of photons within the 

biological tissue. The process in which photons are scattered for multiple times at a step 
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size of 
1

𝜇𝑠
 can be simplified as a single scattering event with a step size of 

1

𝜇𝑠
′, where 

1

𝜇𝑠
′ is 

called the reduced scattering free path and 𝜇𝑠
′  is the reduced scattering coefficient. The 

reduced scattering coefficient connects to the scattering coefficient through the equation 

𝜇𝑠
′ = 𝜇𝑠(1 + 𝑔). It is important to note that the reduced scattering coefficient does not 

follow the superposition principle because the anisotropy factor does not change with 

concentration of scatters so that the reduced scattering coefficient is no longer linearly 

related to the concentration. 

3.1.3 Modeling of light-tissue interaction using Monte Carlo simulation 

Two different methods can be used to describe the absorption and scattering 

properties of light in biological tissues, namely analytical method and approximation 

method. The analytical method is based on Maxwell's equation and is the most basic 

description method in principle. However, the process of deriving the analytical solution 

is extremely complicated and not practical. Diffusion approximation, one of the most 

widely used approximation methods, directly describes the migration of photons in the 

absorption and scattering process. The feasibility of diffusion approximation has been 

experimentally verified.[144,145] However, the diffusion approximation model is only 

suitable when the scattering coefficient is much larger than the absorption coefficient 

(𝜇𝑠 ≫ 𝜇𝑎) and when the source-detection-separation (SDS) is much longer than the free 

pass of photon migration.[146]  
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Figure 3-3: Illustration of source-detection-separation 

In this study, the SDS is designed to be less than 1 mm in order to obtain enough 

signal using the optical fiber and the cellphone camera whose sensitivity is much lower 

than a scientific camera or photodetector, as illustrated in Figure 3-3. Therefore, diffusion 

approximation is not the best option for providing high accuracy in this application. 

Monte Carlo modeling of light reflectance developed by Lihong Wang et al.[147,148] offers 

a better flexibility in terms of range of optical properties and the tissue geometry being 

studied due to the following advantages: 1) it has no limitation on the light source or 

boundary conditions so that it can equally be applied to single-layer or multi-layer 

structures; 2) it does not need to solve the transmission equation and is computationally 

simple; 3) it has no requirements of the optical parameters and hence works for media 

that are not scattering dominant. While detailed description about the Monte Carlo 

simulation of photon migration in tissue and sample programs can be found in reference 

[129] and [130], the basic idea of this method is described as follows. 
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To simplify the problem, photons are treated as neutral particles and the light 

incident is perpendicular to the surface of the tissue. Each photon has an initial weight of 

1 and a random travel step s =
ln 𝜉

𝜇𝑡
 at its injection into the tissue, where 𝜉 is a random 

number uniformly distributed between 0 and 1, 𝜇𝑡 = 𝜇𝑎 + 𝜇𝑠 is the total attenuation 

coefficient due to absorption and scattering. At each step it travels, the photon will be 

partially absorbed and partially scattered. Absorption causes the weight of the photon to 

decay. The amount of weight loss is 𝛥𝑤 = 𝑤 ⋅
𝜇𝑎

𝜇𝑡
, where 𝑤 is the weight at the current 

position. Photon carrying the remaining weight 𝑤 − 𝛥𝑤 = 𝑤
𝜇𝑠

𝜇𝑡
  continues to transmit in 

the tissue. From the equations above, it is easy to see that the weight of the photon decays 

exponentially with a rate of 
𝜇𝑠

𝜇𝑡
.  While absorption reduces the weight of the photon, 

scattering changes the direction of propagation. After the photon is scattered, the travel 

distance 𝑠 for the next step will be updated. The scattering angle 𝜃, so as the anisotropy 

factor 𝑔, gives the new direction of movement of the scattered photon. As we mentioned 

in the previous section, the probability of distribution of the cosine of the scattering angle 

𝜃 is defined by the Henyey-Greenstein phase function. 

Consequently, a photon can either be absorbed by absorbers inside the tissue or 

escape from the tissue after multiple scattering events. For a photon that exits the tissue, 

it is treated as naturally terminated and the tracking of photon stops. For a photon that 

keeps propagating in the tissue, the tracking stops when the weight of photon decays to a 

value less than a preset threshold wTH (e.g., wTH = 0.00001). In this way, the Monte 

Carlo method simulates a large number of photons (in millions) individually as they 

transport in the tissue. A distribution of photon density at each position of the tissue can 
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be obtained. In homogenous media, the distribution is roughly banana-shaped between 

the light source and detector if photons are perpendicularly injected on the same surface 

of the media (Figure 3-3).   

The major drawback of the Monte Carlo simulation is that it is computationally 

intensive that requires long computation time, especially when simulating a large number 

of photons. Different approaches have been reported to speed up the simulation.[57,149-151] 

In this study, a flexible and fast Monte Carlo model proposed by Palmer et al.[151] was 

used to extract the optical properties of the tissue or tissue-mimicking phantoms. This 

model has been validated for absorption coefficient at a range of 0 - 20 cm-1 and reduced 

scattering coefficients of 7 - 33 cm-1 with high accuracy and has been extensively tested 

in tissue-mimicking phantoms[152,153] and multiple preclinical[154,155] and clinical 

studies[18,75,79,156,157]. Beyond this, the model is easily adaptable to arbitrary probe 

geometry and can be used with a single phantom calibration.  

A brief description of Palmer’s model is summarized as follows. The model 

consists of a forward model and an inverse model, as shown in Figure 3-4. The forward 

model uses pre-determined absorption coefficient, scattering coefficient and anisotropy 

factor to model the diffuse reflectance. Absorption coefficient 𝜇𝑎 is determined by the 

extinction coefficient 𝜀𝑖 of the chromophore and its concentration C𝑖 according to the 

linear relationship 𝜇𝑎 = 𝛴 𝑙𝑛(10) ⋅ 𝜀𝑖(𝜆) ⋅ 𝐶𝑖. Scattering coefficient 𝜇𝑠 and anisotropy 

factor g are modeled using Mie theory for spherical particles.[158] It is important to note 

that instead of running a simulation for each set of optical properties (𝜇𝑎, 𝜇𝑠, g), a scaling 

approach[159] was used in this fast Monte Carlo model to increase the efficiency of 

computation so that only one single simulation for a given set of 𝜇𝑎, 𝜇𝑠, g was required.  
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In the inverse model, initial parameters including chromophore concentration, size and 

density of scatterers are loaded into the forward model to model the diffuse reflectance as 

the predicted values. The measured (unknown) reflectance is then iteratively compared to 

the predicted values until the sum of squares error between them is minimized. In this 

way, a set of optical properties (𝜇𝑎, 𝜇𝑠, g) of the measured reflectance can be extracted. 

From the optical properties, the tissue parameters such as oxy-hemoglobin concentration 

(HbO2), deoxy-hemoglobin concentration (Hb), total hemoglobin concentration (THb), 

and tissue regional saturated oxygenation (rSO2) can be accurately determined.  

 

Figure 3-4: Forward and inverse models of Palmer’s fast Monte Carlo simulation 

(Photo credit: Palmer et al. Adapted from reference [133]). Left: forward model; Right: inverse 
model.  

3.2 OPTICAL DESIGN 

3.2.1 System layout 

The smartphone-based diffuse reflectance spectrometer consists of a smartphone 

with a rear camera and imaging optics. A schematic diagram of the smartphone 

spectrometer is shown in Figure 3-5. The imaging optics include an aspheric lens for light 

collimation, an optical slit and a transmission grating. The DRS channel uses a white 
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LED as the light source. The white light is delivered to the tissue through two 200/220 

µm multimode fibers, as shown in the end view of the DRS probe in Figure 3-5. Diffuse 

reflectance is collected by a single detection fiber, collimated by a collimating lens and 

then narrowed down by a 100 µm slit. The collimated lights are diffracted by a 

transmission grating and focused by the camera lens to be imaged on to the image sensor 

of the smartphone. The source-detector separation (center-to-center distance between the 

source fibers and the detection fiber) is 0.75 mm.  

  

Figure 3-5: Schematic diagram of the smartphone-based DRS 

CL – collimating lens; LED - light-emitting diode; GND – ground; SW – ON/OFF switch 

3.2.2 Ray-tracing simulation 

Prism and diffraction grating are two optical components that are commonly used 

to split the light in the design of a spectrometer. An optical prism disperses the light 
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based on the refractive effect, i.e., different wavelengths have different refractive indices 

so that they can be separated when passing through a prism. Generally, the shorter the 

wavelength, the larger the deflection angle. In the meantime, the resolution of the prism 

is higher at the shorter wavelength, which is not desirable in the design of a spectrometer 

from the perspective of “uniformity” or “linearity”. A diffraction grating uses the multi-

slit diffraction effect to decompose the light. It is usually a piece of flat glass or metal 

engraved with tens of thousands of parallel lines/slits. The formation of light through the 

grating is a combined result of single slit diffraction and multi-slit interference. When the 

complex light passes through the grating, the lines of different wavelengths appear at 

different positions to form a spectrum. When compared to a prism, the spectrum 

generated by a diffraction grating is relatively uniform, and the distance between two 

spectral lines with the same wavelength difference does not vary. The uniformity of the 

grating spectrum not only makes the spectrum easier to calibrate, but also facilitates the 

preliminary judgment of the wavelength value of the spectral line for qualitative analysis. 

Ray tracing simulation software such as Zemax provides the feature to design and 

model diffractive components.  Diffractive surfaces in Zemax are modeled based on the 

grating equation[160]: 𝑑(𝑛2 sin 𝜃2 − 𝑛1 sin 𝜃1) = 𝑚𝜆, where d is the line spacing, 𝑛1 and

𝑛2 are refractive indices,  𝜃1 is the angle of incidence, 𝜃2 is the angle between the 

diffracted light and the grating's normal vector, m is the diffraction order and 𝜆 is the 

wavelength. In this design, the incident light with wavelength 𝜆 propagates in the air and 

normally hits the grating as depicted in Figure 3-6, therefore 𝜃1 = 0, 𝑛1 = 𝑛2 ≈ 1. From 
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the grating equation, the diffraction angle 𝜃2 can be derived as 𝜃2 = sin−1 𝑚𝜆

𝑑
=

 sin−1 𝑁𝑚𝜆, which depends only on the line spacing (d) or the groove density 𝑁 =  
1

𝑑
. 

Figure 3-6: Diagram showing light incident normally to a transmission diffraction grating 

Throughput and optical resolution are the two most important characteristics of a 

spectrometer. Generally, there is a tradeoff between resolution and throughput, and they 

really depend on the specification of the components to be used, especially the grating 

and slit. For example, grating with a higher groove density has a broader dispersion 

(nm/pixel) for the same wavelength range; Slit with a smaller entrance (slit width) has a 

better pixel resolution. Consequently, using a high groove density grating together with a 

narrower slit will significantly increase the resolving power. However, the signal strength 

decreases with an increase in the groove density or decrease in the slit width, leading to a 

lower signal to noise ratio. Simulation of the DRS design is to evaluate whether the 

proposed combination of the grating (1200 grooves/mm) and slit (100 µm) can provide 

enough signal strength with acceptable spectral resolution, and to determine the distances 
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between components. In this study, throughput is more critical because diffused light 

signal through tissue that can be collected by the optical fiber is extremely weak. 

Therefore, the efficiency of the grating is not the most critical factor to be examined in 

this design, it is assumed to be 100% in Zemax although it depends on the structure of the 

diffractive surface in the real situation. In the LDE shown in Table 3-1, a groove density 

of 1200 g/mm and a slit width of 100 µm were assigned to the diffraction grating and slit, 

respectively. The 1st diffraction order was specified to be simulated. The optimized 

geometries and simulated spectral image at the camera sensor (last surface in the design) 

are shown in Figure 3-7. Discrete wavelengths range from 400 nm to 600 nm with an 

interval of 10 nm were used in the simulation. 

Table 3-1: Values defined in the LDE for DRS 
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Figure 3-7: Ray-tracing simulation of the DRS system 

(a) Elements from left to right: collimating lens, 100 µm slit, 1200 g/mm transmission grating, 
and cellphone camera with lens and sensor. (b) Simulated spectral image of the 1st diffraction 
order given discrete wavelengths range from 400 nm to 600 nm with 10 nm intervals. 

3.2.3 System assembly 

Figure 3-8 illustrates the construction of the DRS system. All the components are 

shown at their relative locations. It is important to note that the aspheric lens (4) 

(Thorlabs C110TMD-A) has a relatively short focal length of 4 mm so that it should be 

placed very close to the FC/PC adapter (1) where the detection fiber will be connected to. 

A 100 µm slit (Thorlabs S100RD) and 1200 grooves/mm grating (Thorlabs GT13-12) 

were used to obtain enough signal and, in the meantime, to have adequate resolving 

power. It is important to note that because a multimode fiber with a diameter of 200 µm 

and numerical aperture (NA) of 0.22 is used, the relatively larger diameter of the fiber 

may become the limiting factor of the system resolution even if narrower slits were being 

used. 
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Figure 3-8: Exploded view of all components for DRS 

Exploded view showing the relative locations of (1) FC/PC adapter, (2) 2" long lens tubes, (3) 
SM1 to M9 x 0.5 lens adapter, (4) mounted aspheric lens, (5) 1" long lens tube coupler, RMS 
adapter, (6) 100 µm slit, (7) 1" long cage assembly rods, (8) 0.5" long lens tubes, (9) cage, (10) 
grating holder, (11) 1200 groove/mm transmission grating, (12) Samsung Galaxy S6 cellphone. 

Another important factor worth attention is the collimation of light. Ideally, light 

pass through a collimating lens or a collimator should have a fixed size of the beam. 

However, no collimation is perfect because there is no actual point source. Consequently, 

the beam divergence must be considered in the design. Figure 3-9 shows the collimation 

of light from a fiber. A fiber with a radius of 𝑟1 is placed at the focal point (𝑓) of the 

collimating lens. The maximum ray of angle out of the fiber is 𝜃1. The beam size will be 

determined by the NA of the fiber and focal length of the collimating lens so that 𝑟2 =

𝑟1 + 𝑓 ⋅ tan 𝜃1. Given that the radius of the fiber is usually much smaller than the focal 

length and tan 𝜃1 ≈ 𝜃1,  the radius of the collimated beam can be simplified as 𝑟2 ≈ 𝑓 ⋅

𝜃1 and increases as it propagates away from the lens with a divergence angle 𝜃2 ≈
𝑟1

𝑓
.[161]

From the equations derived above, the beam size is directly proportional to the focal 
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length while the divergence angle is inversely proportional to it. In other words, there is 

also a tradeoff between the beam diameter and the divergence angle. Obtaining a smaller 

size of beam spot will at the expense of better collimation. 

Figure 3-9: Collimation of light from a fiber 

(Photo credit: Newport. Adapted from reference 160) 

In our design, the radius and numerical aperture of the fiber is 100 µm (𝑟1) and 

0.22, respectively. Therefore, the maximum ray of angle 𝜃1 equals to 0.22 or 12.7°.  

Given that the focal length of the collimating lens used in the design is 6.24 mm, the 

radius of the beam is calculated to be 1.37 mm and the divergence angle of 0.016 or 0.9°. 

These values are suitable for our application because the slit has a maximum length of 3 

mm that is wider than the beam diameter. We wanted to collect as much light as possible 

to achieve the maximum throughput. The complete smartphone-based DRS is shown in 

the figure below. 
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Figure 3-10: The completed smartphone DRS system 

Left: the completed DRS system with major optic components. Right: picture of the completed 
DRS system housed in a 3D-printed enclosure, and the fiber-optic probe attached. 

3.3 PERFORMANCE CHARACTERIZATION 

3.3.1 Wavelength calibration and resolution verification 

Two calibration lamps, krypton (6031, Newport) and neon (6032, Newport), were 

used for wavelength calibration of the DRS system because they have multiple narrow 

and intense peaks in the visible range. The raw images of the calibration light sources 

captured by the device are presented in Figure 3-11. A window of 1500×60 (X×Y) pixels 

(red box) was used to crop out the 1st diffraction order dispersed spectra. The cropped 

image was then converted to grayscale, and 60 Y-axis pixel values at the same X location 

were added up to represent the intensity. 

Figure 3-11: Raw and cropped spectral images of calibration lamps 
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The wavelength calibration was performed by identifying the known peak 

wavelengths of the calibration lamps and the corresponding pixel positions of the peaks 

in the spectra. Thirteen peak wavelengths across the range of 420 – 640 nm were 

identified based on the data sheet provided by the manufacturer[162], as shown in Figure 

3-12.  

 

Figure 3-12: Peak wavelengths used for wavelength calibration 

The peak wavelengths and pixel positions were fitted with a third-degree 

polynomial fitting (cubic polynomials) to generate a calibration equation 𝑌 = 𝑎𝑋3 +

𝑏𝑋2 + 𝑐𝑋 + 𝑑 so that wavelength can be calculated based on it. In the equation, Y is the 

wavelength, X is the pixel location, and a, b, c and d are coefficients. Table 3-2 provides 

the calibrated wavelength values calculated using the following cubic function: 𝑌 =

−1.01328 × 10−8 ⋅ 𝑋3 + 1.94689 × 10−5 ⋅ 𝑋2 + 0.19222 ⋅ 𝑋 + 395.32166. The 

differences between the calibrated and known values were within the range of -0.45 nm 
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to 0.26 nm. The total wavelength range of a 1500-pixel spectrum was calculated to be 

395.5 nm to 693.3 nm. Therefore, the dispersion was about 0.2 nm/pixel. The spectral 

resolution of a spectrometer was usually defined as the full width at half maximum 

(FWHM) of monochromatic light. At the peak of 557.03 nm in Figure 3-12, the FWHM 

was 10 pixels. Therefore, the spectral resolution was estimated at 2 nm (0.2 nm/pixel 

multiply by 10). 

Table 3-2: Wavelength calibrated using third-degree polynomial fitting 

To further verify the resolving power of the DRS device, a spectral image of a 

handheld laser source with a wavelength ~635 nm (HLS635, Thorlabs) was taken. The 

typical spectrum of the output light provided by the manufacturer was shown in Figure 3-

13(c). The wavelength of the light source is centered at ~637 nm and has short tails on 

both sides. The spectrum detected using the smartphone-based DRS device were given in 

Figure 3-13(a), (b), and (d). The sharp peak is centered at 636.3 nm and has an FWHM of 

~2 nm, which confirms the optical resolution of the device. 
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Figure 3-13: Spectrum of a monochromatic light source 

(a) Raw and cropped spectral image of a 635 nm handheld laser source; (b) Wavelength 
calibrated spectrum taken by smartphone-based DRS; (c) typical spectrum of the light source 
provided by the manufacturer; (d) FWHM indicated that the resolution is about 2 nm. 

3.3.2 Phantom validation 

To characterize the accuracy of the DRS channel in measuring optical properties 

of biological samples, 14 tissue-mimicking liquid phantoms with a mean absorption 

coefficient (𝜇𝑎) averaged over the wavelength range from 430 -630 nm between 1 cm-1 - 

3 cm-1 and a mean reduced scattering coefficient (𝜇𝑠
′ ) between 7 cm-1 - 12 cm-1 were 

created using powdered human hemoglobin (H0267, Sigma Aldrich) as absorbers and 1.0 

µm polystyrene microspheres (07310, Polyscience, Inc.) as scatterers (Table 3-3). The 

expected 𝜇𝑎 of the phantoms were independently determined from absorbance 

measurements of the stock hemoglobin solution using a UV/Vis spectrophotometer 
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(LAMBDA 35, PerkinElmer Inc.) and scaled to the actual concentrations in the 

phantoms. The expected 𝜇𝑠
′  was computed from the density, size, and refractive index of 

the polystyrene spheres using Mie theory.[147,158]  

Table 3-3: Expected phantom properties averaged over 430 nm – 630 nm 

 

A raw picture of the spectral image is shown in Figure 3-14. Spectra were taken at 

an exposure time of 0.25 second. The 1st order diffractions were cropped out and 

calibrated using the cubic function obtained in the previous section. Averaged smoothed 

raw spectra of all of the 14 phantoms are also provided in the following figure. The 

spectral intensity decreases as the concentration of hemoglobin increases because more 

light is absorbed within the phantom. 

 

Figure 3-14: Spectra of liquid phantoms 

Phantom # a  

(cm-1) 

'

s  

(cm-1) 
Phantom # a  

(cm-1) 

'

s  

(cm-1) 

1 1.02 11.64 8 2.37 8.84 

2 1.26 11.14 9 2.51 8.55 

3 1.48 10.67 10 2.64 8.27 

4 1.69 10.25 11 2.76 8.01 

5 1.88 9.86 12 2.88 7.77 

6 2.05 9.49 13 2.99 7.54 

7 2.21 9.15 14 3.09 7.33 
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Left: A sample picture (phantom #5) of the raw and cropped spectral images measured from 
liquid phantoms; Right: Wavelength calibrated spectra of all 14 phantoms (intensity of spectrum 
decreases while the phantom number increases). 

The absorption and reduced scattering coefficients 𝜇𝑎 and 𝜇𝑠
′  were extracted from 

the measured spectrum of each phantom using the scaling inverse Monte Carlo model 

discussed in the first section. The extracted parameters were compared to the expected 

values, as shown in Figure 3-15. Specifically, the difference between the extracted and 

expected values (error) was calculated and divided by the expected value. An average 

error of 6.9% and 5% were obtained for 𝜇𝑎 and 𝜇𝑠
′ . 

Figure 3-15: Extracted vs. expected  𝝁𝒂 and 𝝁𝒔
′  for all phantoms

3.4 DISCUSSION 

A benchtop DRS system has been developed in our lab to quantify the optical 

properties of epithelial tissues. As shown in Figure 3-16(left, top), the spectrometer 

consists of a three-channel fiber-optic USB spectrometer (Avantes BV, The Netherlands) 

and a laptop with custom LabVIEW and Matlab software. This commercial spectrometer 

covers a wavelength range of 400 - 635 nm with a spectral resolution of 1.8 nm. Liquid 

phantoms covering a similar range of absorption and scattering coefficients used for the 

smartphone-based DRS validation were employed to evaluate its performance. Figure 3-
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16(right, top row) shows the results of the phantom experiment as extracted versus 

expected wavelength averaged 𝜇𝑎 and 𝜇𝑠
′  calculated from the spectra. A mean error of 

1.4 % and 6.8% were obtained for 𝜇𝑎 and 𝜇𝑠
′ , respectively. The error bars in the plots 

were due to the different reference phantoms. As a comparison, for the smartphone-based 

DRS, mean error of 6.9% and 5% were obtained for 𝜇𝑎 and 𝜇𝑠
′  . The results are 

comparable to those of the benchtop DRS system, as shown in Fig. 3-16(right, bottom 

row).  

 

Figure 3-16: Compare between smartphone-based DRS system with a commercial 
spectrometer 

Left: photographs of the benchtop DRS system and experimental SmartME-DRS (w/o FLI 
channel). Right: results of a liquid phantom experiment using the commercial system (top) and 
smartphone-based DRS (bottom). 

Clinical study has been conducted by different groups using a similar benchtop 

spectrometer and Monte Carlo model to reveal the underlying sources of absorption and 

scattering contrast in 39 cervical cancer patients.[79] A significant increase in total 

hemoglobin concentration was observed in CIN2+ compared to CIN1 lesions and normal 

tissues. In the meantime, a decrease in mean scattering 𝜇𝑠
′  was observed in CIN2+ 
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compared to CIN1 and normal tissues. The result is consistent with others who carried 

out quantitative spectroscopy of the cervix.[100,163]  
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Chapter CHAPTER 4: A DUAL-MODALITY SMARTPHONE MICROENDOSCOPE 
FOR QUANTIFYING THE PHYSIOLOGICAL AND MORPHOLOGICAL 

PROPERTIES OF EPITHELIAL TISSUES 

Portions of this chapter are derived from the manuscripts submitted to Scientific Reports: 

Xiangqian Hong, Tongtong Lu, Liam Fruzyna, and Bing Yu. A Dual-modality 

Smartphone Microendoscope for Quantifying the Physiological and Morphological 

Properties of Epithelial Tissues. Scientific Reports. Submission ID: SREP-19-05266. 

In the previous two chapters, we present the development of a smartphone-based 

fluorescence microendoscope and a smartphone-based spectrometer individually. In this 

chapter, we further developed a dual-modality fiber-optic microendoscope (named 

SmartME) that integrates the high-resolution FLI and quantitative DRS onto a 

smartphone platform for noninvasive quantification of the tissue physiological and 

morphological properties of epithelial tissues. The SmartME has a spatial resolution of 

~3.5 µm for FLI and accuracy comparable to those of a benchtop DRS system for 

measuring the tissue absorption and scattering properties.[75] When used with the App, the 

device can be used to perform FLI and DRS on epithelial tissues, wirelessly transfer the 

data to a remote server for data processing, and potentially return the results to the 

SmartME within seconds or a few minutes. Our preliminary studies have demonstrated 

that the dual-modality SmartME can accurately characterize the biological properties and 

provide complementary information about epithelial tissues. The SmartME has great 

potential to provide a compact, cost-effective, and ‘smart’ solution for early detection of 

neoplastic changes in epithelial tissues, especially in low resource settings. 

4.1 HARDWARE DEVELOPMENT 

4.1.1 SmartME instrumentation 
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A schematic diagram of the SmartME device is shown in Figure 4-1. The system 

consists of a smartphone (Samsung Galaxy S6), a miniature fiber-optic endoscope, a 

phone attachment containing the imaging optics, and an Android Application (App). The 

system includes two functional channels, an FLI channel and a DRS channel. The details 

of the configurations of each channel have been described in chapter 2 and 3, 

respectively. Briefly, a blue LED (455 nm, M455L3, Thorlabs) coupled with a condenser 

lens (ACL2520U-A, Thorlabs) and a short-pass excitation filter (FF01-452/45, Semrock) 

are used for fluorescence excitation. The excitation beam is redirected by a dichroic 

beamsplitter (DBS, AT485DC, Chroma Technology) towards a 10× microscope objective 

which focuses the excitation lights onto the proximal end of a fiber bundle in the 

endoscope. The fluorescence emissions are collected by the same fiber bundle at the 

distal end, propagate through the objective, DBS and a long-pass emission filter (FF01-

550/88, Semrock) that blocks the excitation lights, and then are collimated onto the rear 

camera of the smartphone by a 16× eyepiece. The imaging fiber bundle (FIGH-30-650S, 

Fujikura) has an imaging area of 600 μm and consists of 30,000 individual fibers with a 

center-to-center distance of ~3.3 μm. The choice of the blue LED, filters and dichroic 

beamsplitter for the FLI is based on the use of proflavine.  
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Figure 4-1: Schematic diagram of the SmartME 

 A schematic diagram of the SmartME and an end view of the miniature dual-modality fiber-optic 
endoscope (EP - eyepiece; BP1 & BP2 - optical bandpass filters; DBS - dichroic beamsplitter; 
OBJ - microscope objective; CL1 - condenser lens; CL2 – collimating lens; LED - light emitting 
diode; GND - ground; SW - ON/OFF/ON switch). 

The DRS channel uses a white LED (MCWHF2, Thorlabs) as the light source. 

The white light is delivered to the tissue through two 200/220 µm multimode fibers 

attached along with the imaging fiber bundle, as shown in the end view of the endoscope 

in Figure 4-1. Diffuse reflectance is collected by a single detection fiber, narrowed down 

by a 100 µm slit (S100RD, Thorlabs), and then collimated by a collimating lens. The 

collimated lights are diffracted by a 1200 grooves/mm transmission grating (GT13-12, 

Thorlabs) and then imaged on to the rear camera of the smartphone. The source-detector 

separations (center-to-center distance between the source fibers and the detection fiber) 

are 0.75 mm. The LEDs are powered by the same rechargeable batteries and turned 

on/off sequentially using a 3-position switch. Both the FLI and DRS channels were 
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designed and optimized using a combination of the sequential and non-sequential modes 

in OpticStudio (Zemax LLC). 

 

 

Figure 4-2: The completed SmartME device 

Left: the assembly of the SmartME device by combining the FLI and DRS module using 3D 
printed adapters and a slide mechanism. Right: a picture of the combined SmartME device. 

The front-face camera has also been tested for the DRS during the development. 

However, compared to the rear camera, the front-face camera has a much lower imaging 

quality, and its focal length is fixed. Therefore, using the front-face camera requires a lot 

of trial-and-error testing to get an acceptable alignment, while the performance of DRS 

may still be vulnerable to a minimal misalignment. Consequently, the rear camera was 

used for both FLI and DRS. A sliding mechanism with a fixed moving distance was 

installed so that the phone can be switched back and forth smoothly to achieve different 

imaging functions one at a time. The two channels were combined and protected using 

3D printed parts that specially made for this design. 

4.1.2 Fabrication of miniature fiber-optic probe 
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The imaging fiber bundle and three DRS fibers were integrated into a fiber-optic 

endoscope of less than 3 mm in diameter, shown in Figure 4-3. The imaging bundle has 

30,000 pixels with a pixel size of ~3 µm and an imaging area of 0.65 mm in diameter. At 

the distal end of the probe, three 200 µm DRS fibers were mounted along with the 

imaging bundle, two for DRS illumination and one for detection of diffuse reflectance. 

The center-to-center distance between the source and detection fibers (or SDS) was about 

750 µm. According to our simulation with the Monte Carlo forward model with a range 

of optical properties representative of typical epithelial tissues, this SDS provides a 

penetration depth of 0.5-2 mm for the wavelength range of 450-630 nm[75], which would 

be sufficient to catch most precancerous (CIN1 - CIN3) lesions in the epithelium and 

stroma layers of the cervix. At the proximal end, the endoscope broke out into three 

branches. The imaging bundle was connected to the port for fluorescence imaging. The 

source fibers were connected to a white LED, and the detection fiber was connected to 

the port for diffuse reflectance spectroscopy. The distal end of the probe was housed in a 

surgical grade stainless-steel tube so that it can be easily cleaned and sterilized in the 

medical application. 

Figure 4-3: Picture of the integrated dual-modality endoscope probe 
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Left: A picture of the dual-modality probe. The fiber bundle was protected using a stainless-steel 
armor jacket. The DRS fibers were protected using 3mm blue jacket. Right: an end view of the 
probe. All optic fibers were housed in a stainless-steel tubing of 3mm in diameter. 

4.2 SOFTWARE DEVELOPMENT 

4.2.1 Smartphone App development 

An Android App has been developed to configure and control the SmartME, pre-

process the fluorescence and DRS images, and wirelessly transfer the fluorescence 

images and diffuse reflectance spectra. The Android App allows a user to set and save the 

camera parameters, initiate a measurement, store the measured data, display the spectra, 

perform simple analysis on the results such as gray-scale image conversion and 

wavelength calibration and communicate with the Cloud services and server. Figure 4-4 

shows the architecture of the App workflow. The App consists of two primary interfaces, 

one for the acquisition and processing of fluorescent images and the other for the 

collection and processing of spectral images. They are independently controlled and the 

settings are saved separately. 
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Figure 4-4: Architecture of the smartphone App 

During a procedure, a doctor can use a patient ID or name to retrieve the PHI 

from the hospital’s electronic medical records (or manually entered, if not available) and 

display it on the screen. For each new SmartME procedure, a unique ID related to the 

patient ID was generated. The App also assigns a site number and a measure number for 

each measurement saved, and the measure number increases automatically after 

completion of one scanning. Figure 4-5 shows the screenshots of the main menu and 

interfaces of the FLI and DRS modules. Measurement information, including the site 

number, measure number, integration time (for DRS and FLI), and diagnosis status will 

be displayed on the screen. The remote server downloads the data from the Cloud 

performs the image/spectral analysis and diagnosis (the images could be read by a 

physician as well) and returns the results to the App for display. 
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Figure 4-5: Screenshots of the SmartME App 

Left: the home screen of the App that allows the operator to enter the patient/subject information 
and configure the settings for the measurement. Middle: the user interface of the FLI module. 
The focus and exposure time can be manually controlled to obtain the best imaging quality. 
Right: the user interface of the DRS module. Both the raw spectral image and spectrum were 
displayed for better visualization during measurement. 

While it is impossible to go over all the details of the App, several critical features 

that specially designed are presented as follows.  In order to increase the speed of data 

transmission and processing, the DRS spectrum within the region of interest is cropped 

out, wavelength calibrated and converted to a text file in the App before sending to the 

server for further analysis using the Monte Carlo inverse model. A window of 1500 

pixels × 60 pixels is defined in the setting, as shown in Figure 4-6. A saturation check is 

then performed in the background before proceeding to wavelength calibration. A 

warning window will pop out if any pixels of the image becomes saturated. Recall that 

there are four coefficients in the cubic equation for wavelength calibration. These 

calibration parameters are saved in the App so that spectral images without saturation are 
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automatically calibrated and converted to a text file for display and data transfer, as 

shown in Figure 4-6. 

Figure 4-6: Image snipping and wavelength calibration in the App 

Left: the setting window to define the area to be cropped out. Middle: A green window covering 
the whole spectrum is set for image snipping. Right: Coefficients obtained from the cubic 
equation (chapter 3) are saved in the App for wavelength calibration. 

4.2.2 Wireless communication with the server 

Data collected by the App are wirelessly transmitted to the server through remote 

access with IP address. Data analysis are performed in the remote server where the image 

processing algorithms and Monte Carlo model are loaded. A custom tool named 

“SmartME Uploader” was developed and installed on the server to ensure a smooth 

connection between the SmartME and the server. Figure 4-7 shows the interface of the 

SmartME uploader software. To create a connection between the device and server, IP 

address and port number should be typed into the App, and a user account of the operator 
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should be created. Once the connection is established, data files will be uploaded to the 

server in real-time whenever a measurement is taken. 

Figure 4-7: SmartME remote server 

It takes less than 1 second for the App to transmit one data file to the server. A 

message will pop up on the server once the data files (image and text file) are 

successfully received. In the meantime, the successful data reception activates data 

processing modules. With the help of the fast Monte Carlo model, the inversion takes less 

than a second to extract the optical properties of the measured diffuse reflectance. The 

processed results are saved in the server and also sent back to the SmartME device for 

display. Figure 4-8 presents the results displayed in the App that are processed by the 

remote server. On the measurement page, the real-time display of the results for the most 

recent measurement is designed to disappear in 5 seconds. However, the results of all the 

analyses are saved in the App and available for browsing. 
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Figure 4-8: Display of results in the App 

Left: the real-time display of the data for current measurement disappears in 5 seconds or 
overwritten by the next measurement. Right: results files are also saved in the App.  

4.3 PERFORMANCE VERIFICATION AND IN VIVO STUDY 

4.3.1 System performance characterization 

The performance of the combined SmartME has been characterized using similar 

procedures described in Chapter 2 and 3. Briefly, the spatial resolution of the smartphone 

FLI was estimated by taking fluorescence images of a 1951 USAF resolution test target. 

The smallest pair of lines in the fluorescence images that can be successfully resolved 

was Element 2 in Group 7. Thus, the spatial resolution was estimated to be about 3.5 μm, 

which is high enough to resolve the cell nuclei. 

For the DRS, wavelength calibration using neon and krypton lamps was 

conducted. The resolving power was estimated to be 2 nm based on the FWHM method. 
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Liquid phantom experiments combined with the fast Monte Carlo inverse model were 

conducted to test the accuracy in measuring diffuse reflectance. The inversion process 

was repeated 14 times (for all 14 phantoms), in each inversion one phantom was selected 

as a reference to analyze all phantoms.[151] The percent errors, which are the difference 

between the extracted and expected values in µ𝑎 and 𝜇𝑠
′   divided by the expected values, 

were computed. An averaged accuracy of 95% in measuring diffuse reflectance was 

obtained. Among all phantoms, the phantom #9 was selected as the reference to calibrate 

the SmartME DRS channel for tissue measurements because it yielded the smallest error. 

4.3.2 Ex vivo measurements of biological samples 

Figure 4-9: Fluorescence images of HeLa cells 

(a)-(c): Raw and processed fluorescence images taken by SmartME FLI module. (d) and (e): 
phase contrast images taken by a microscope. Because the fiber-optic probe touched the cells 
during measurement, the cell distribution in the circled-out area (green) of the microscopic image 
was not exactly the same as it appeared in the fluorescence image. 
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Monolayer HeLa cells (cervical cancer cell line) grown in a disk was imaged 

using the SmartME-FLI. Proflavine at a concentration of 0.01% (wt/vol in PBS) was 

applied on the surface of the cells. The fiber-optic probe held on a Z-stage was adjusted 

until a clear image can be obtained. The end of the probe had a gentle contact with the 

cells. Figure 4-9(a)-(c) are raw and processed fluorescence images collected from the 

HeLa cells using the SmartME and miniature fiber-optic probe. The cell nuclei are clearly 

visualized with some background fluorescence, which is attributed to the excessive 

proflavine in the culture medium. Figure 4-9(d) and (e) are two phase contrast images at 

different magnifications. To further verify the capability of the device in imaging tissue 

samples, tumor tissue harvested from a nude rat xenograft model (breast cancer 4T1, 

epithelial) was imaged in vitro using the SmartME FLI. As shown in Figure 4-10, the 

cancer cells are densely packed. The tumor tissue is highly hypoxic (almost white in 

color) leads to a lot of reflectance background lights. Besides, fluorescence light from the 

cells of deeper layers is scattered by the surface layer. Therefore, the contrast of the 

fluorescence image of the tumor tissue was not as good as the contrast of monolayer cell 

line. 
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Figure 4-10: Fluorescence image of tumor tissue in vitro 

4.3.3 In vivo measurements of healthy oral tissue 

To test the feasibility of the SmartME for quantitative characterization of 

epithelial tissue properties, three types of healthy oral mucosa tissues, including labial 

mucosa, gingival tissue and tongue dorsum, from a healthy human volunteer were imaged 

in vivo. The experiment was conducted on the researcher himself. The subject in this self-

experiment fully understood the procedures and gave his consent to participate in the 

experiment voluntarily. Exempt determination was received from Marquette University's 

Institutional Review Board (IRB). All methods were performed in accordance with the 

relevant guidelines and regulations of the institution. Before the optical measurements, 

the volunteer was asked to rinse his mouth with a 0.9% saline solution. The SmartME 

endoscope was cleaned using 2% chlorhexidine digluconate in ethanol. Eight random 

sites were imaged from both labial mucosa and tongue dorsum tissues, while five random 
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sites were measured from gingival tissues. All measurements were taken under dimmed 

room light. To take a measurement, the endoscope was handheld and brought in gentle 

contact with the tissue. Diffuse reflectance spectra were collected by turning on the white 

LED and switching the SmartME App to the DRS mode. A diffuse reflectance spectrum 

was taken from a diffuse reflectance standard puck (Spectralon, Labsphere) for 

calibration purpose following the tissue measurements. A background spectrum was also 

collected and subtracted from all tissue spectra and the puck spectrum. 

Immediately following the DRS measurements, the surface of the same tissue 

sites was topically stained using cotton swabs with proflavine at a concentration of 0.01% 

wt/vol (in PBS) for 15 seconds, and then rinsed with PBS to remove excessive 

fluorescence dye. Fluorescence images were taken by turning on the blue LED and 

switching the App to the FLI mode. Each of the twenty-one tissue sites was imaged five 

times by slightly shifting the endoscope within the area of interest, resulting in a total of 

105 diffuse reflectance spectra and 105 fluorescence images. All the spectral data and 

fluorescence images were saved in the App and wirelessly transferred to the remote 

server for further processing to extract the biological properties using the methods 

described below. 

The image reconstruction method discussed in chapter 2 has been employed using 

MATLAB to eliminate the fiber pattern artifacts in the fluorescence images. The imaging 

area of the fiber bundle was defined as the region of interest (ROI) and circularly cropped 

out of the whole raw image. The intensity within each fiber has a Gaussian distribution. 

Therefore, the intensity at the center pixel of each fiber (which occupies multiple pixels 

on the smartphone camera) represents the fluorescence intensity collected by that fiber 
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and is assigned to the neighboring pixels within the fiber to construct a comb structure 

free image. The image was then converted to a binary image in ImageJ to calculate the 

N/C for the selected ROI using the built-in particle analyzer.  

The fast Monte Carlo inverse model of reflectance discussed in Chapter 3 was 

loaded in the remote server to analyze the diffuse reflectance spectra. The diffuse 

reflectance spectra of the liquid tissue phantoms were used to extract the 𝜇𝑎 and 𝜇𝑠
′

between 450 nm and 630 nm. The tissue hemoglobin concentrations were computed from 

the extracted µ𝑎 using the Beer-Lambert law. Phantom #9 of the phantom experiment 

was selected as the reference to invert the diffuse reflectance spectra of the oral tissues. 

Figure 4-11: DRS and FLI measurements of healthy oral tissues 

(a) Normalized representative diffuse reflectance spectra and (b) typical raw fluorescence images 
measured from healthy gingival tissue, tongue dorsum and labial mucosa in vivo. 
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Figure 4-11(a) shows representative diffuse reflectance spectra from three healthy 

oral sites that are normalized by (point-by-point) dividing the puck spectrum. The two 

major absorption bands (α and β bands) of oxyhemoglobin are clearly visible in the 

spectra. The measured spectra of the three types of oral tissue are different from each 

other in shape and intensity, representing the difference in their underlying physiological 

and morphological characteristics. Typical raw fluorescence images taken from the three 

oral tissues are shown in Figure 4-11(b). The bright spots in the images represent the 

nuclei instead of the cells because proflavine selectively labels the cell DNA. 

Reduced scattering coefficients 𝜇𝑠
′  and total hemoglobin concentrations (THC) 

were extracted from the tissue spectra using the Monte Carlo inverse model. Assumed 

that both the 𝜇𝑠
′  and THC are normally distributed, Student’s t-tests were performed using 

Minitab to test if there are significant differences among the three tissue types. Interval 

plots using the individual standard deviation of extracted THC and 𝜇𝑠
′  are presented in 

Figure 4-12(a) and (b), respectively. Each dot in the plots represents the average of 5 

repeated measurements taken from the same tissue site. Although the optical properties 

vary from site to site even for the same tissue type, the variation within each group of 

tissue type is generally smaller compared to differences between different tissue types. 

The extracted THC of labial mucosa is significantly higher than that of gingival and 

tongue tissues (P < 0.001). The THC of gingival and tongue tissues are also significantly 

different from each other (p<0.003). While the extracted 𝜇𝑠
′  of the tongue dorsum is 

significantly lower than gingival tissue and labial mucosa, there is no significant 

difference between gingival tissue and labial mucosa (P = 0.60). 
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The reconstructed, fiber pattern free fluorescence images for three representative 

tissues are presented in Figure4-12(c). The inverted and enhanced images were further 

processed to extract the N/Cs for the tissues. The average N/C (overall sites of the same 

tissue type) is 4.4 ± 0.6 (%) for gingival tissue, 4.1 ± 0.5 (%) for tongue dorsum and 3.9 ± 

0.8 (%), for labial mucosa. Consequently, the results suggest that the intervention of DRS 

measurements can provide diagnostically complementary information about the samples 

in question when it has difficulty in differentiating the tissues by using FLI alone. 

Figure 4-12: Quantitative analysis of tissue properties 

(a) Interval plots of extracted total hemoglobin concentration and (b) extracted wavelength-
averaged reduced scattering coefficient for three oral tissue types (gingival, labial and tongue). 
Each dot represents an average of 5 repeated measurements from the same tissue site. P-values 
are calculated using two-sided Student’s t-test at a significance level of 5%; (c) Representative, 
fiber pattern removed fluorescence images of the three oral tissues and the inverted images used 
for N/C calculation. 
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4.4 DISCUSSION 

We have developed a dual-modality smartphone fiber-optic microendoscope that 

integrates quantitative DRS and high-resolution FLI into a portable, cost-effective and 

globally connected device. The SmartME can noninvasively quantify the optical 

properties, hemoglobin concentrations and the nuclear-cytoplasmic ratio of epithelial 

tissues. The ability to measure these tissue parameters at low cost has a significant impact 

on epithelial cancer and pre-cancer detection in low-resource settings. In a clinical study 

for cervical cancer detection using DRS conducted by Chang et al.[79], a significant 

increase in THC and a decrease in mean 𝜇𝑠
′  were observed in high-grade neoplasia 

compared to low-grade lesions and normal tissues. Hornung et al.[163] and Georgakoudi et 

al.[100] also observed a decreasing trend in 𝜇𝑠
′  (P = 0.16) in high-grade neoplasia using 

spectroscopy. In a review article by Thekkek et al.[51], DRS was shown to have achieved 

sensitivities and specificities in the ranges of 83 – 92% and 80 – 90% for cervical 

precancer detection. High-resolution FLI also allows differentiating high-grade neoplastic 

changes from their low-grade and normal counterparts using the N/C. For example, a 

sensitivity of 86% and specificity of 87% were achieved using N/C in differentiating 

high-grade lesions from non-neoplastic cervical tissues in 26 cervical cancer patients by 

Quinn et al. [53]. A large advantage of the SmartME system is that it combines the 

benefits of both FLI and DRS to provide complementary information that can be used to 

improve the sensitivity and specificity in differentiating different epithelial tissue types. 

Therefore, the SmartME has great potential to be used for imaging of neoplastic changes 

in oral mucosa and cervical tissues as well as gastrointestinal tract tracts. 
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The implementation of the SmartME system is intended to provide a cost-

effective solution for precancerous screening in resource-limited settings. The integration 

of optical imaging technologies on a smartphone platform can significantly reduce the 

cost, weight and size, while maintains the high performance in the meantime. The total 

cost of the current SmartME device is less than $2500, among which the major costs are 

from the imaging fiber bundle, light sources and fluorescence filters. The cost may be 

further reduced by batch ordering and mass production, making it even more affordable 

to LMIC. More importantly, the App developed for the SmartME has the ability to send 

the images collected on site to a remote server for diagnostic analysis. The smartphone-

based diagnosis could potentially be used as a point-of-care device for telemedicine 

applications in LMIC where multiple clinical visits are not feasible and centralized 

laboratories do not exist. 
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CHAPTECHAPTER 5: CONCLUSIONS AND SUGGESTED FUTURE WORK 

5.1 SUMMARY 

The scope of this dissertation was to design and develop a cost-effective 

smartphone-based endoscope system that can perform both high-resolution fluorescence 

imaging and diffuse reflectance spectroscopy for early detection of cervical neoplastic 

changes. Figure 5-1 shows the development and prototyping history of the device. 

Figure 5-1: The development history of SmartME 

In Chapter 2, development procedures and performance characterization of the 

smartphone-based fluorescence imaging device were discussed. The results showed that 
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the imaging resolution (3.5 µm) and contrast of the device were as good as the benchtop 

system that had been verified in clinical studies, while the smartphone-based device was 

more cost-effective and easier to use. Chapter 3 presented the design and development of 

a fiber-optic smartphone-based spectrometer. While the spectrometer was very compact, 

the performance of the device, including optical resolving power (2 nm) and accuracy 

(95%) in measuring diffuse reflectance, was comparable to a commercial spectroscopy 

system. Chapter 4 further combined the two modalities onto the smartphone platform to 

obtain a dual-modality device SmartME. The rear camera was shared by two modules 

due to the hardware limitations of the front-face camera. Biological samples including 

monolayer HeLa cells and ex vivo tumor tissues (4T1) were imaged using the SmartME. 

The results showed that cell nuclei were clearly visualized when fluorescence agent 

proflavine was applied on the sample surfaces. Beyond this, an in vivo study of healthy 

human oral tissue using the SmartME was conducted to verify its capability to 

quantitatively characterize the epithelial tissue properties. Three types of normal oral 

mucosa tissues, including labial mucosa, gingival tissue and tongue dorsum, were 

measured by both modalities. Optical and tissue properties such as scattering coefficient, 

total hemoglobin concentration and nuclear-cytoplasmic ratio were extracted from the 

diffuse reflectance spectra and fluorescence images using a fast Monte Carlo inverse 

model and image processing algorithms. The results showed that the measured spectra of 

the three types of oral tissue are significantly different from each other in shape and 

intensity due to different absorption and scattering properties, representing the difference 

in their underlying physiological and morphological characteristics. Since all 

measurements were taken on normal tissues, the N/Cs were similar across all three types 
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of tissues, which met our expectation. However, with the help of DRS, tissue types were 

successfully distinguished from each other that otherwise impossible if solely based on 

N/Cs obtained from FLI.  

5.2 SIGNIFICANCE OF THIS WORK 

From the 1990s, improving the medical conditions of all human beings and 

scaling healthcare innovations worldwide have now become the consensus of people 

from all over the world. However, as stated in a report by WHO in 2003, quote: 

“… a significant proportion of the world’s population, especially in developing countries, 

has yet to derive much benefit from innovations that are commonplace elsewhere. The reasons 

range from weak supply systems to unaffordable prices. The factors that drive innovation are 

often biased against conditions that disproportionately affect the populations of developing 

countries. … Innovation to address conditions primarily affecting poor people is held back by a 

combination of market failure and underinvestment by the public sector. The process of bringing 

a new product to the market is both expensive and lengthy. …”[164] 

While there is still a long way to go to improve the healthcare conditions in 

LMICs, we are committed to developing medical devices that are suitable and practicable 

for LMICs. Figure 5-2 shows how the SmartME can be combined with VIA/VIAM to 

screen and detect cervical neoplastic changes in LMICs. Without the SmartME, all 

abnormal lesions identified by VIA/VIAM (low specificity) will be biopsied, leading to a 

large number of unnecessary biopsies. With the SmartME, only the patients with the 

highest likelihood of having CIN2+ will be biopsied, thus reducing the number of 

unnecessary biopsies that might otherwise be taken for diagnosis. In the long-term, if this 
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combined strategy is proven to be highly specific, it can enable a see-and-treat paradigm 

in which a diagnosis of CIN2+ could immediately be followed by cryotherapy or LEEP, 

thereby preventing the need for biopsy and multiple clinical visits.  

 

Figure 5-2: Benefits of using SmartME in clinical applications 

This study is an application of the translational research concept that takes 

advantage of recent advancements in high-resolution fluorescence imaging, optical 

spectroscopy and Mobile Internet technology, and aims at improving or transforming 

current cancer diagnostic practice in LMICs. The work is scientifically innovative in 

three aspects: hardware, software, and optical biomarker discovery. The compact 

integration of FLI and DRS into a miniature fiber-optic endoscope on to a smartphone 

platform is a key innovation, which enables high-resolution imaging and quantitative 

endoscopy to be affordable, portable and easy-to-use. Another innovation is that the 

smartphone App not only allows data collection but also connects the device and operator 

in a low-resource setting to a high-performance server loaded with custom image/spectral 

processing and diagnostic software as well as experienced personnel in a developed area. 

This new solution may transform the current on-site cancer diagnosis in LMICs to a 

cloud-based online smart diagnosis paradigm. A third innovation is the discovery of 
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biomarkers that best differentiate high-grade from low-grade lesions and their 

normal/benign counterparts if the device is successfully validated in the clinical study.  

5.2 FUTURE INVESTIGATIONS 

We note that the current study on the SmartME is subject to several limitations. 

First, the effect of acetowhitening phenomena on the FLI and DRS measurements 

remains unstudied. Studies have shown that acetic acid increases the backscattering of 

cell nuclei, which leads to images with increased contrast under confocal 

microscopy.[11,29] Other studies reported that the backscattering from cytoplasmic fraction 

dominates backscattering from nuclear or mitochondrial fractions after application of 

acetic acid.[34] If both the reported findings mentioned above are correct, it is safe to 

assume that the contrast of FLI measurements will not be affected much because the 

fluorescence dye selectively stains the cell nuclei. However, the increased scattering 

intensity from the cytoplasmic fraction will definitely increase the scattering readings if 

DRS measurements are taken immediately after acetic acid application. Using scattering 

coefficient to differentiate tissue types may become less effective. Consequently, 

comparative experiments in a clinical setting should be conducted to fully investigate 

whether acetowhitening effects will significantly affect the measurements taken by 

SmartME device. Alternatively, since most acetowhitening effect starts to decay in 5 

minutes after acetic acid application[28,31], a standardized procedure could be developed in 

which SmartME measurements are only performed after acetowhite decay to bypass its 

effect. Test accuracy is still the most important factor, given that the testing speed and 

comfort are not significantly reduced. 
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Second, because only one healthy subject was measured in our in vivo study, the 

conclusions and findings may not be extended to all subjects. Many factors, including 

race, gender, age, diet habit and physical conditions, may lead to higher inter-subject 

variations. Future clinical studies that include both normal/benign tissue and cancer or 

precancer are necessary to fully test its efficacy in early detection of cervical neoplastic 

changes. We have recently contacted hospitals in developing countries in an attempt to 

establish a collaborative clinical trial. 

Finally, motion artifacts and probe-tissue contact pressure may also contribute to 

differences in the tissue optical properties from site to site because it is challenging to 

maintain a consistent pressure applied to the tissue by the endoscope.[75,165-167] Therefore, 

device optimization both in hardware and software, such as including a pressure sensor 

on the tip of the endoscope, adding another imaging modality or improving the 

communication establishment between the device and the server, may be necessary to 

improve the reliability and consistency.  
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