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Abstract

Recovery Glacier flowing into Filchner Ice Shelf drains about 8 % of the East Antarctic
Ice Sheet with velocities up to about 900 m a−1. Its future ice loss will probably
be the largest of the East Antarctic Ice Sheet over the next millennia. The evolu-
tion of Recovery Glacier can be predicted by models solving the equations of the
momentum and mass balance. Ice dynamics are fundamentally driven by bedrock
conditions underneath the ice, but these can not simply be measured yet. Several
lakes are expected to exist underneath the onset of Recovery Glacier enhancing its
flow. This thesis utilizes an inverse method implemented in the Ice Sheet System
Model (ISSM) to acquire basal parameters. The technique minimizes the difference
between horizontal surface velocities derived from remote sensing and computed by
the model. A sensitivity analysis is carried out to capture the influence of a couple of
parameters on the inversion of basal conditions. This includes the viscosity, initial
values and lower boundaries of the controlled parameter as well as the quality of
the observed velocities.
False values in the velocity field can lead to uncertainties in basal parameters because
these are fitted to the observed velocities. In order to improve the quality of the input
velocity field, it is necessary to remove false values in the remote sensing derived
data and to fill gaps using a suitable interpolation method. This thesis presents a
filtering method with three processing steps. It detects smooth segments, removes
outliers using the median and constraints fluctuations of the flow direction. The
approach removes false data points successfully, while preserving structures like
shear margins and keeping 83 % of the data. Data gaps are filled comparing four
different interpolation methods: linear interpolation, natural neighbor interpolation,
minimum curvature with tension, and Kriging. By examining advantages and disad-
vantages of the approaches, the natural neighbor interpolation turns out to be the
best method to fill the gaps in the Recovery Glacier velocity field.
The sensitivity analysis shows that the influence of filtering outliers and interpolation
on basal parameters derived from inverse modelling is large at least near Recovery
Glaciers grounding line and far upstream. Furthermore, the ice has to be relatively
stiff to match the observed velocities best. The inversion is robust in the onset area
of Recovery Glacier for all parameter sets, wherefore the results are used to complete
the picture of Recovery Glaciers base.
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Zusammenfassung

Der Recovery Gletscher, der in das Filchner Eisschelf fließt, drainiert etwa 8% des Ost-
antarktischen Eisschildes mit Geschwindigkeiten bis zu 900 m a−1. In den nächsten
Jahrtausenden wird vermutlich kein anderer Gletscher des Ostantarktischen Eisschil-
des so viel Masse verlieren wie dieser. Die Entwicklung des Recovery Gletschers
kann von Modellen vorhergesagt werden, welche die Gleichungen der Impuls- und
Massebilanz lösen. Die Dynamik des Eises wird fundamental durch Bedingungen am
Felsbett unter dem Eis gesteuert, jedoch können diese bisher nicht einfach gemessen
werden. In dieser Dissertation wird eine inverse Methode benutzt, um die notwe-
nidigen Parameter zu bestimmen. Diese ist in das Ice Sheet System Model (ISSM)
implementiert. Die Methode minimiert die Differenz zwischen beobachteten und
simulierten horizontalen Oberflächengeschwindigkeiten, welche durch Fernerkun-
dung gewonnen bzw. vom Modell berechnet wurden. Um den Einfluss verschiedener
Parameter auf die Invertierung von basalen Bedingungen zu untersuchen, wird
eine Sensitivitätsanalyse durchgeführt. Diese untersucht die Abhängigkeit von der
Viskosität, Startwerte und untere Grenzen des optimierten Parameters sowie die
Qualität der beobachteten Geschwindigkeiten.
Fehlerhafte Geschwindigkeiten können zu Ungenauigkeiten in den basalen Parame-
tern führen, da diese an die beobachteten Geschwindigkeiten angepasst werden.
Um die Qualität des beobachteten Geschwindigkeitsfeldes zu verbessern, ist es not-
wendig falsche Werte in den aus Fernerkundung gewonnenen Daten zu entfernen
und Lücken durch Verwendung von geeigneten Interpolationsverfahren zu füllen.
Diese Dissertation stellt eine 3-Schritt-Filtermethode vor. Der Filter detektiert glatte
Segmente, entfernt Ausreißer durch Abgleich mit dem Median und begrenzt die
Änderung der Fließrichtung. Der Ansatz entfernt fehlerhafte Datenpunkte erfolg-
reich, während Strukturen, wie z.B. Scherzonen sowie insgesamt 83 % der Daten
erhalten bleiben. Die Datenlücken werden vergleichend durch vier verschiedene
Interpolationsverfahren gefüllt: lineare Interpolation, Voronoi Interpolation, mini-
male Krümmung mit Spannung und Kriging. Bei der Untersuchung von Vor- und
Nachteilen der Verfahren, stellt sich die Voronoi Interpolation als am geeignetsten
heraus um Lücken im Geschwindigkeitsfeld des Recovery Gletschers zu füllen.
Die Sensitivitätsanalyse zeigt, dass der Einfluss des Filters und der Interpolation
zumindest nahe der Aufsatzlinie des Recovery Gletschers und in vorgelagerten Re-
gionen groß ist. Weiterhin muss das Eis relativ steif angenommen werden um die
beobachteten Geschwindigkeiten am besten wiederzugeben. Alle Parametersätze
führen in der Region, in der die subglazialen Seen des Recovery Gletschers vermu-
tet werden, zu ähnlichen basalen Gegebenheiten. Die Ergebnisse sind daher eine
verlässliche Informationsbasis, um das Bild vom Bett des Recovery Gletschers zu
vervollständigen.
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1Introduction

„Over the last two decades, the Greenland and
Antarctic ice sheets have been losing mass,
glaciers have continued to shrink almost
worldwide, and Arctic sea ice and Northern
Hemisphere spring snow cover have continued to
decrease in extent.

— IPCC REPORT

1.1 The Antarctic Ice Sheet under Changing
Climate

The Antarctic Ice Sheet (AIS) is the largest coherent body of ice in the world with a
volume of approx. 27 × 106 km3 and thereby also the largest reservoir of fresh water
(Fretwell et al., 2013a). It corresponds to 58.3 m of sea level equivalent (Vaughan,
Comiso, et al., 2013). The term ice sheet comes from its very thin geometry, which is
in the first moment hard to envisage because it has a thickness of several kilometers.
Nonetheless, it has a width-to-height ratio of about 1800 (Faria et al., 2018). For
comparison: a typical A4 paper sheet has a width-to-height ratio of about 3000,
hence they are in the same order of magnitude. The AIS has surface elevations up to
approx. 4000 m (Slater et al., 2018) and therefore represents topographic barriers to
atmospheric circulations and shows regional climate conditions, e.g. katabatic winds
(King and Turner, 1997; Parish and Bromwich, 1987). The Antarctic Plateau is not
only the coldest, but also one of the driest places on Earth with precipitation rates of
less than 7 cm per year (Vaughan, Bamber, et al., 1999). Although this continent is
one of the most remote parts of the world for human activities, it is strongly coupled
to the climate system because the ice sheet interacts with atmosphere and ocean on
a global scale (e.g. Bamber et al., 2007; Oerlemans, 2001). Therefore, the AIS is
sensitive to climate change like all other components of the cryosphere and hence
IPCC (2014) found that the ice mass loss from the AIS increased during the last
decades. The WCRP Global Sea Level Budget Group (2018) stated a mean sea level
contribution of 0.42±0.06 mm a−1 since 2005, which is about 12 % of the total global
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Fig. 1.1: Map of Antarctica with ice thickness data from Bedmap2 (Fretwell et al., 2013a).

mean sea level. In the 1993 to present time period they calculated a contribution of
only 8 % (0.25 ± 0.1 mm a−1). DeConto and Pollard (2016) demonstrated that the
AIS could contribute to sea-level rise by more than 1 m until the end of the century
and more than 15 m until 2500 under a climate scenario with stable emissions
(RCP8.5). Furthermore, Darelius et al. (2016) and Rintoul et al. (2016) showed that
even in some regions of the East Antarctic Ice Sheet (EAIS), which is believed to
be stable since 14 million years, e.g. at Filchner Ice Shelf (Recovery Glacier basin)
and Totten Ice Shelf, an influx of warm ocean water occurs, which may lead to a
response in form of mass loss.
In turn, ice sheets have a fundamental sustainable impact on physical, biological
and social systems (Vaughan, Comiso, et al., 2013). They affect e.g. oceanic and
atmospheric temperature, global ocean circulation as well as marine ecosystems
and global biogeochemical cycles (King and Turner, 1997; Schwerdtfeger, 1984).
Therefore, a profound in-depth knowledge of all parts of glacier and ice sheet
dynamics is absolutely essential. It is the basis of all further considerations, from ice
sheet evolution projections over sea level change predictions to risk management in
coastal regions (Vaughan, Comiso, et al., 2013).

1.1 The Antarctic Ice Sheet under Changing Climate 2



1.2 Thesis Outline

This thesis investigates the basal conditions of a major ice stream of the EAIS,
Recovery Glacier. A summary of previous studies of the Recovery catchment area
is given in Chapter 2. The local conditions are introduced and it is argued why
this region comes more and more into scientific focus. Chapter 3 outlines the
application of remote sensing to derive ice surface velocities. It presents the most
important instruments and methods as well as which data of Recovery Glacier are
used to derive a fundamental parameter of glacier flow: basal friction. Which
meaning this parameter has, can be understand by deriving the equations of ice
dynamics, what is done in Chapter 4. This section also introduces the later used
Higher-Order approximation as well as the Ice Sheet System Model (ISSM). As
the background of the basal friction is clear, the question rises how to acquire
information about basal conditions, since a simple measurement is not possible. The
solution is presented in Chapter 5 by establishing an inverse problem minimizing
the difference between modelled and observed surface velocities. First, the general
inversion theory including cost functions, the Lagrangian, adjoint equations, and the
steepest descent algorithm is introduced. After that, the theory is applied to the case
of basal friction and different solution strategies are presented. Chapter 6 deals with
the elimination of false values in observed surface velocities. A three step filtering
procedure is tested and applied to Recovery Glaciers velocities in order to improve
its quality. Existing data gaps are filled in Chapter 7. Four interpolation methods
are analyzed to investigate their usefulness in application to surface velocity fields.
Subsequent to these processing steps, the inversion of basal friction is carried out
in Chapter 8. This includes a sensitivity analysis, which examines the influence of
parameters of ice dynamics and inversion as well as the quality of the velocity field
fed into the ice flow model. Chapter 9 summarizes the results and gives perspective
ideas.

1.2 Thesis Outline 3



2Recovery Glacier

„I seemed to vow to myself that some day I would
go to the region of ice and snow and go on and
on till I came to one of the poles of the earth, the
end of the axis upon which this great round ball
turns.

— ERNEST SHACKLETON
Polar Explorer

2.1 Introduction

Filchner-Ronne Ice Shelf is located at the confluence of WAIS and EAIS and is the
second largest ice shelf after Ross Ice Shelf. It can be seen as two parts, Ronne
Ice Shelf in the west and Filchner Ice Shelf in the east divided by Berkner Island.
Filchner Ice Shelf is fed by 4 tributaries: Bailey Ice Stream, Slessor Glacier, Recovery
Glacier, and Support Force Glacier (Figure 2.1). The drainage basin of Recovery
Glacier is situated in Queen Maud Land, East Antarctica and has an area of about
996000 km2, which is about 8 % of the area of the EAIS (Rignot, Bamber, et al.,
2008). The main ice stream of this basin is Recovery Glacier flowing into Filchner Ice
Shelf by contributing 58 % of its total influx (Bell et al., 2007). This huge ice stream
borders in the north the Shackleton Mountain Range overlooking Recovery Glacier
with 400 m high cliffs (Fogwill et al., 2004). At the grounding line it is about 30 km

wide and gets in contrast to other ice streams much wider in the upstream area,
thus it has the shape of a funnel (Jezek, 1999). Recovery Glacier reaches far into
EAIS with an impressing length of almost 1000 km. The ice stream has two tributary
branches in the south, Ramp and Blackwall glaciers. The first one is approx. 270 km

long, is about 250 km away from the grounding line, and reaches velocities of up to
about 140 m a−1. It is to a large extent crevasse free, which gives the impression that
shear stresses occur in particular at the margins. Blackwall Glacier is located only
35 km upstream of the grounding line of Recovery Glacier and is less active (Jezek,
Sohn, et al., 1998). The main trunk of Recovery Glacier itself is highly crevassed in
many regions, which is assumed to be due to strong variations in the topography at

4



Fig. 2.1: Map of the Filchner ice shelf region with MEaSUREs flow speeds (Rignot et al.,
2017).

the bedrock (Jezek, 1999). Recovery Glacier has a large fast flowing part reaching
velocities up to approx. 870 m a−1 (Floricioiu et al., 2014).

2.2 Previous Studies

The first exploration of the Recovery Glacier region was in 1957 during the Com-
monwealth Trans-Antarctic Expedition (Lister and Pratt, 1959). For a long time it
was one of the least known places on Earth because it was not covered by many
satellites and also not further explored by expeditions (Bell et al., 2007). The first
synthetic aperture radar (SAR) mapping of the region was available in 1997 as
a result of the RADARSAT-1 Antarctic Mapping Project (RAMP) (Jezek, Floricioiu,
et al., 2009). But the reason why Recovery Glacier came into the scientific focus,
was mainly the alleged detection of subglacial lakes underneath the onset of the
glacier by Bell et al. (2007), later called Bell lakes. Because of the presence of
enhanced flow despite a low surface gradient, they supposed that these lakes have
a high influence on the dynamics of the glacier leading to higher flow velocities
downstream. In the following, a couple of studies investigated the region with
respect to these subglacial lakes. B. Smith et al. (2009) used ICESat data from 2003
to 2008 and detected elevation changes on the AIS. By doing so, they proposed ten
active lakes downstream of the previous detected Bell lakes. Le Brocq et al. (2008)
suggested the presence of a large basin with water saturated deformable sediments
in the Recovery region, which is fed by basal melt water. Based on ice penetrating

2.2 Previous Studies 5



radar measurements, Langley et al. (2011) found only one of the Bell lakes water
filled, while others were at a low stand maybe due to recent drainage events. The
existence of the subglacial water system was confirmed by Fricker et al. (2014), who
used data from ICESat and Operation IceBridge to investigate the activity of the
Recovery lakes and found the system to be highly variable in short time scales. They
also employed a simple model of subglacial hydrology to model flow paths between
the lakes and found nine of them to be connected. During the ICEGRAV campaigns
between 2010 and 2013 gravity, magnetic and ice penetrating radar measurements
were carried out in the Recovery Glacier region and contributed, inter alia, to a
better coverage of ice thickness and bedrock topography. Radar profiles acquired
by these flights also suggest the existence of liquid water in two of the Bell lakes
(Forsberg et al., 2018). Diez et al. (2018) used the new data to improve the bed
topography map of the Recovery region. With these information they found that
Recovery Glacier is controlled by its topography in the downstream area, whereas in
the upstream area it is stronger controlled by variable basal conditions, fast flow is
there supported by basal water. Another survey of ice thickness, ice structure and
surface topography in the Recovery drainage basin was carried out in January 2014
(Humbert et al., 2018). The results of this campaign have led to doubt the existence
of the Recovery lakes. Humbert et al. (2018) cannot find a proof for the presence of
lakes at most of the suggested locations underneath Recovery Glacier. Therefore, it
is not clear if subglacial lakes enhance the flow of the glacier or if there are other
reasons for it. These findings improve the importance of studies on basal conditions
and the dynamics of Recovery Glacier.
Golledge et al. (2017) stated that the largest part of ice loss from the EAIS in the
future will likely come from the Recovery catchment area. This holds not only for
this century, but also over subsequent millennia. Reasons for that mass loss may be
the influx of warm deep ocean water into the sub–Filchner Ice Shelf cavity (Hellmer
et al., 2012). This may cause a thinning of the ice shelf, which results in a decreased
buttressing for the inflowing glaciers (Hellmer et al., 2012). Consequently, Recovery
Glacier runs the risk of an acceleration, grounding line retreat and thus increased
contribution to sea level rise. Therefore, the improvement of the understanding of
ice dynamics especially in this vulnerable region is of paramount importance.
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2.3 Thesis Objectives

This thesis takes up previous studies of the region by inspecting the conditions
underneath Recovery Glacier from a modelling perspective. Thus, the main objective
of this thesis is:

1. Deriving the spatial distribution of the basal friction coefficient in the Recovery
catchment area by using an inverse method.

The inversion minimizes the misfit between modelled and observed velocities. Thus,
remote sensing derived velocities serve as model input. False values in the obser-
vations can result in erroneous inverted basal conditions. Therefore, a second aim
is:

2. Improvement of the quality of velocity fields derived from remote sensing by
application of filtering and interpolation techniques.

Finally, it should be analyzed how strong the benefit of the processing steps is. The
influence of the quality of the velocity input field and of other model parameters on
the inversion results should be analyzed:

3. Conduct of a sensitivity analysis of the inversion of basal friction with regard
to model parameters as well as quality of input surface velocities.
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3Ice Surface Velocities

„What we’re able to do now is track the flow of
the world’s ice from pole to pole and on every
continent.

— Ted Scambos
Glaciologist

Surface velocities of glaciers can be acquired either by carrying out point measure-
ments or by remote sensing. Point measurements of glacier velocity are sparse
especially in remote parts of the world. They need the accomplishment of field
campaigns under difficult weather conditions. For this purpose, in the past markers
were installed on the glacier and their positions were surveyed over time (Cuffey and
Paterson, 2010). With these information the displacement and therefore the surface
velocity can be calculated (Cuffey and Paterson, 2010). Today, GPS antennas play
this role, which are left on the glacier for a time period. However, comprehensive
velocity fields can only derived by satellite remote sensing, thus this thesis focuses
on this technique. The following sections give a short summary of instruments and
methods used to calculate glacier velocities as well as introduce the velocity fields
of Recovery Glacier utilized in the context of this thesis. It is further discussed how
to handle gaps and false values in velocity fields. A detailed discourse on remote
sensing and its application in glaciology can be found e.g. in Lubin and Massom
(2006), Bamber (2007), and Campbell and Wynne (2011).

3.1 Sensor Types

There are basically two types of sensors used in glacier satellite remote sensing,
whose images are processed in order to derive glacier velocities. They differ in
the wavelength of the emitted signal send to the Earth surface, scattered back,
and received from the antennas mounted on the satellite. On the one hand side
there exist optical sensors using visible and infra-red wavebands, the other one
uses the microwave part of the spectrum (Bamber, 2007). The first ones have the
disadvantage that their images are effected by clouds and darkness. In polar regions,
which are anyway not completely covered by many sensors because the inclination of
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the orbit is often only around 80◦, this worsens the temporal resolution significantly
(Bamber, 2007). Conversely, microwave sensors can be used any time of the day,
also in darkness. Additionally, clouds are unproblematic for them because they are
invisible for these wavelengths (Bamber, 2007).
An advantage of visible and infra-red instruments is the long time series they provide.
Landsat images are available already since 1972, however they are mostly used in
mapping and monitoring variations in glacier extent (Bamber, 2007; Bolch et al.,
2010; Pfeffer et al., 2014; Wei et al., 2014). Indeed, images of visible sensors are
also used to derive glacier surface velocities (Heid and Kääb, 2012b).
A great achievement was done by the development of a special microwave sensor:
synthetic aperture radar (SAR). It records both phase and amplitude of the radar
signal and therefore it is possible to simultaneously measure elevation and ice motion
(Lubin and Massom, 2006). With the launch of ERS-1 in 1991 applications entered
glaciology.

3.2 Deriving Velocities from Satellite Data

This section shortly presents the fundamentals of the most important methods used
to derive surface velocity fields from satellite remote sensing data: feature tracking,
InSAR, and speckle tracking.
Feature tracking uses features on the glacier (e.g. crevasses) to derive displacements.
Therefore, two images with a time shift of some days are necessary. By mapping the
location of the features and comparing them in the two images, the displacement
can be calculated and thus also the ice velocity (Cuffey and Paterson, 2010). For this
method the usage of both optical and radar sensor derived images is possible.
In featureless areas Interferometric Synthetic Aperture Radar (InSAR) can be applied,
if the region is covered by SAR images. Ice movement returns in a shift in phase
because of different return times of the transmitted radiation as a result of distance
variation (Cuffey and Paterson, 2010). Thus, InSAR uses the phases of two SAR
images from the same viewpoint to calculate their difference and thus produces an
interferogram. With this information the displacement of the ice in view direction of
the satellite can be derived (Bamber, 2007). By using images from intersecting orbits
it is possible to calculate also the other velocity component (Cuffey and Paterson,
2010). Highest resolutions and accuracies of only a few m a−1 can be achieved
with InSAR (Joughin, B. Smith, Howat, Scambos, and Moon, 2010). However,
interferometry often fails e.g. due to a too long repeat cycle (Joughin, 2002), surface
melt (Cuffey and Paterson, 2010), meteorological conditioned noise, snowfall or
winds (Strozzi et al., 2002).
However, there is an alternative to the InSAR technique, which has similarities with
the feature tracking approach: speckle or intensity offset tracking (Strozzi et al., 2002;
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Michel and Rignot, 1999; Gray, Mattar, Vachon, et al., 1998). A SAR image displays
the intensity of the signal scattered back to the antenna. A main property of the
signal received by a SAR system is speckle. It is a form of noise which arises from
accumulated signals, which are scattered from the surface (Gupta, 2003). Speckle
patterns can be correlated, thus the phases instead of the amplitudes (as with feature
tracking) are correlated and features are not needed (Michel and Rignot, 1999; Gray,
Mattar, Vachon, et al., 1998).

3.3 Velocity Data of Recovery Glacier

From August 2012 to December 2013 a TerraSAR-X campaign was carried out to
derive a high resolution velocity field covering the entire Recovery Glacier two times.
In this process, TerraSAR-X acquired data in left looking mode in intervals of eleven
to 22 days. The German Aerospace Center (DLR) obtained in total 150 stripmap
pairs with a size of 30 × 45 km2 (Floricioiu et al., 2014; Abdel Jaber, 2016) and used
speckle tracking to derive the velocities. In the course of this work the velocity field
will be further processed resulting in a velocity field with 6137 × 3074 data points
with a grid spacing of 156 m in the Antarctic Polar Stereographic coordinate system
(WGS 84 / EPSG:3031).
In order to cover the entire Recovery basin, the data set is completed by using the
Making Earth System Data Records for Use in Research Environments (MEaSUREs)
ice velocity map of Antarctica (Rignot et al., 2011b; Rignot et al., 2011c). This data
set is used in every case where additional data are required. Nonetheless, this thesis
focuses on the spatially higher resolved TerraSAR-X velocity data.

3.4 Postprocessing of Velocities - Preprocessing
for Inverse Modelling

The remote sensing derived velocity fields can often not easily serve as input for
models, because they contain errors and gaps. Dealing with these problems is
dicussed in detail in Sect. 6 and 7, wherefore this section only summarizes the most
important aspects.

3.4.1 Removing Erroneous Values

Velocity fields often contain false values, also called outliers because they strongly
deviate from surrounding data points. This differences can appear in form of both
magnitude and direction of flow velocity. Reasons for such errors are manifold and

3.3 Velocity Data of Recovery Glacier 10



can occur in every processing stage described in Sect. 3.2. As an example, in the case
of speckle tracking, low correlation between the speckle patterns of the two SAR
images can lead to false displacements. Removing these outliers is essentially prior
to modelling applications because these observations are used to fit models to reality.
By feeding the model with a false picture of reality, it will not be able to reliably
predict the future evolution. The present state is simply wrong and also small errors
can propagate in further calculations. In order to avoid such effects, filter algorithms
can be applied. By using this term, it has to be distinguished between the widely
used meaning to replace values of data points by new values and the connotation
used in this thesis: removing false values. With this meaning, the task of a filter
reduces to the detection of false values. Determining new values can be done by
another step in connection with filling gaps.
Detection of single false values is possible if they differ from surrounding data points
with regard to its characteristics. Using such an approach, it is therefore necessary to
define what surrounding points are. Often, a moving window is used to determine
this subset. Afterwards, the characteristic, which should be inspected has to be
calculated for the chosen subset, e.g. mean or median of the velocity magnitude in
the subset of surrounding data points. How much a data point is allowed to deviate
is generally defined by a threshold. Summarizing this, there are many steps which
are adjustable and many parameters need to be defined, e.g. the size of a moving
window and the threshold.
If there exist patches of false values, they can be detected by algorithms, which
recognize patterns in the velocity field, which means areas including data points
with similar attributes are collected. The subsequent procedure is basically the same
as for single false values. False value patches differ in some characteristic from other
patterns, e.g. in its size. With this, a threshold can be defined determining if a patch
contains outliers.
Sect. 6 presents a filter combining three approaches, two of them rather detecting
single false values, the other one detecting patches of outliers.

3.4.2 Filling Gaps

Removing false values in the velocity field results in gaps, i.e. locations where no
velocity values exist. But there are also several other reason why gaps occur in
remote sensing derived velocity fields. The most apparent one is that the region
is not entirely covered by satellite images. Furthermore, failures in the processing
chain can cause the lack of data. Specific reasons depend therefore on the method
used to derive velocities from satellite data as well as on the data themselves. Feature
tracking of images from optical sensors is e.g. not possible in cloud covered areas,
what would cause gaps. However, the aim of this thesis is rather filling the gaps
instead of inspecting their reasons. The question that rises is from where to get
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data in gap positions. One possibility is to use velocities from other data sets, the
other one is to estimate the velocities in gap positions. The latter approach is called
interpolation and there exist several methods for doing so. Four of these methods,
which may be suitable to fill gaps in velocity fields, are explained and tested in detail
in Sect. 7.
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4Modelling Ice Flow

„When you measure what you are speaking about
and express it in numbers, you know something
about it, but when you cannot express it in
numbers your knowledge about is of a meagre
and unsatisfactory kind.

— WILLIAM THOMSON LORD KELVIN
Physicist

The dynamics of ice sheets and glaciers and therefore its future evolution is based
on physical laws like the conservation of mass, momentum and energy. They are
derived from continuum mechanics (see e.g. Liu (2002) and Hutter (1983) for
an introduction) and complemented by constitutive equations (e.g. Glen’s flow
law). The result is a system of partial differential equations bounded by initial and
boundary conditions at all interfaces between the ice and its environment. Together
with climate forcing the system of equations is utilized in models to predict the
future development of glaciers and ice sheets.
A detailed derivation and description of the equations of ice dynamics can be found
e.g. in Greve and Blatter (2009), Cuffey and Paterson (2010), and Hutter (1983).
This chapter describes the basic equations of ice dynamics derived from continuum
mechanics, the Full Stokes model as well as an approximation, Blatter/Pattyn’s
Higher-Order model. An introduction of the Ice Sheet System Model (ISSM) follows,
which is used for further computations.

4.1 Fundamental Variables of Continuum
Mechanics

It is useful to introduce some fundamental variables of continuum mechanics at
this point. The second-order tensor space is written as T 2. The Cauchy stress tensor
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σ ∈ T 2 defines the state of stress at some point in the interior of a continuum and at
its boundaries. With that the pressure is defined as

p = −1
3 tr(σ) (4.1)

with the trace operator tr(·).
The deviatoric stress tensor σ′ ∈ T 2 is a fraction of the Cauchy stress tensor:

σ = σ′ − pI (4.2)

with the identity tensor I ∈ T 2.
The strain-rate tensor ϵ̇ ∈ T 2 is defined as:

ϵ̇ =
(

1
2

(
∂vi

∂xj
+ ∂vj

∂xi

))
ij

(4.3)

and describes the local rate-of-change of the materials deformation as a result of
stress.
The effective strain rate and the effective shear stress are the second invariants of the
their respective tensors, strain rate tensor and deviatoric stress tensor:

ϵ̇e = 1√
2

⎛⎝ ∑
i,j=1,...,3

ϵ̇2
ij

⎞⎠1/2

(4.4)

σ′
e = 1√

2

⎛⎝ ∑
i,j=1,...,3

σ′2
ij

⎞⎠1/2

(4.5)

4.2 Mass Balance

The law of mass conservation states that the mass of a closed system is constant over
time. The local form reads:

Theorem 4.1 (Mass conservation). Let Ω ⊂ R3 be a material body of density
ρ : Ω × [0, t̂] → R∗

+ and velocity v : Ω × [0, t̂] → R3 for a time frame [0, t̂]. The mass
conservation imposes:

∀x ∈ Ω ∀t ∈ [0, t̂], dρ

dt
+ ρ∇ · v = 0 (4.6)

Ice is usually assumed as incompressible material, what means that its volume stays
constant for any applied pressure. This is not true for the entire ice sheet or glacier,
because ice is more compact in deeper layers. However, strongest variations in ice
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density occur in the upper 100 m of the ice column and influence the average over
the entire ice column by maximal 2 % (Cuffey and Paterson, 2010). Therefore, the
effect is neglected and with the condition of incompressibility the mass conservation
(Eq. 4.6) reduces to:

∇ · v = 0 (4.7)

4.2.1 Mass Balance Boundary Conditions

The glaciers upper surface can be described by s(x, y, t) − z = 0 and the glaciers
bed can be analogous described by b(x, y, t) − z = 0. Then the kinematic boundary
conditions at the surface and at the base are:

∂s

∂t
= −vx(s) ∂s

∂x
− vy(s)∂s

∂y
+ vz(s) + as

∂b

∂t
= −vx(b) ∂b

∂x
− vy(b) ∂b

∂y
+ vz(b) + ab

(4.8)

with surface velocities vi(s) = vi(x, y, s(x, y)), i = x, y, z, analogous base velocities,
accumulation/ablation rate as and melting/freezing rate ab.

4.3 Ice Thickness

The ice thickness evolution can be derived by vertical integration of Eq. 4.7 and
application of the kinematic boundary conditions (Eq. 4.8):

∂H

∂t
= − ∂

∂x

∫ b

s
vxdz − ∂

∂y

∫ b

s
vydz + as − ab (4.9)

with ice thickness H = s − b.

4.4 Balance of Angular Momentum

The conservation of angular momentum states that the rate-of-change of angular
momentum of some portion of a continuous body is equal to the total torque applied
on it. Thus, Theorem 4.2 follows:
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Theorem 4.2 (Balance of angular momentum). Let Ω ⊂ R3 be a material body and
σ its Cauchy stress tensor. The balance of angular momentum imposes that the stress
tensor is symmetric.

∀x ∈ Ω ∀t ∈ [0, t̂], σ = σT (4.10)

4.5 Balance of Linear Momentum

The local form of of linear momentum conservation is the generalization of Newton’s
second law. It states that the time rate of change of the momentum of a body equals
the sum of the forces acting on it and reads:

Theorem 4.3 (Balance of linear momentum). Let Ω ⊂ R3 be a material body of den-
sity ρ : Ω×[0, t̂] → R∗

+, velocity v : Ω×[0, t̂] → R3 and a body force ρb : Ω × [0, t̂] → R3

for a time frame [0, t̂]. Let σ : Ω × [0, t̂] → T 2 be the Cauchy stress tensor. The balance
of linear momentum is:

∀x ∈ Ω ∀t ∈ [0, t̂], ρ
dv

dt
= ρ

(
∂v

∂t
+ (v · ∇)v

)
= ρb + ∇ · σ (4.11)

The body forces acting on a glacier or ice sheet are the gravitational force ρg and the
Coriolis force 2ρΩ × v with the angular velocity vector Ω of the rotating reference
frame. The momentum balance (Eq. 4.11) reads then:

ρ

(
∂v

∂t
+ (v · ∇)v

)
= ∇ · σ + ρg − 2ρΩ × v (4.12)

Hutter (1983) showed in a scaling analysis that the acceleration and inertia terms as
well as the Coriolis force are negligible for glaciers and ice sheets. Therefore, the
momentum balance (Eq. 4.12) reduces to:

0 = ∇ · σ + ρg (4.13)

Commonly ice is taken as isotropic, incompressible viscous fluid (Hooke, 2005) and
therefore described by the following equation:

σ′ = 2µϵ̇ (4.14)

with the viscosity µ.
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Theorem 4.4 (Full Stokes model). Inserting Eq. 4.2 and 4.14 in the momentum
balance (Eq. 4.13), the Full Stokes equations of ice flow follow:

2∇ · (µϵ̇) − ∇p + ρg = 0

∇ · v = 0
(4.15)

These four equations contain the three velocity components v = (vx, vy, vz), the
pressure p and the viscosity µ as unknowns, therefore a constitutive equation is
necessary. This should relate strain rate and stress and can be found in the widely
used Glen’s flow law, also called Glen-Steinemann flow law (Glen, 1953; Glen and
Perutz, 1955; Steinemann, 1954):

ϵ̇e =
(

σ′
e

B

)n

(4.16)

where n is the stress exponent, calculated from experiments as a value between 1.5
and 4.2, but usually taken as n = 3 (Cuffey and Paterson, 2010; Hooke, 2005). B is
a viscosity parameter, which increases with ice stiffness. The relation was extended
by Nye and Perutz (1957) to cover multiaxial states of stress resulting in Glen-Nye
flow law:

ϵ̇ = (σ′
e)n−1

Bn
σ′ = A(σ′

e)n−1σ′ (4.17)

A is the rate factor and was found to depend on temperature T and microscopic water
content W . The relation neglects all other softening effects on the ice. Therefore,
the flow law is further adapted using an Arrhenius equation (e.g. Gagliardini et al.,
2013):

µ = 1
2A(T, W )−1/nE−1/nϵ̇(1−n)/n

e (4.18)

where the enhancement factor E accounts for any softening due to other than
thermodynamic factors.

4.5.1 Momentum Balance Boundary Conditions and Basal
Friction

Boundary between ice and atmosphere

The boundary between ice and atmosphere is treated as a free surface because the
atmospheric pressure pa is negligible compared to the lithostatic pressure of ice.

σ · n = −pan ≃ 0 (4.19)
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Boundary between ice and water

Hydrostatic pressure pw acts on the ice front, which can be described by

pw = −ρwgz (4.20)

with the density of the water ρw. Thus, the boundary condition at the ice-water
interface is:

σ · n = −pwn (4.21)

Boundary between ice and bedrock

The interface between ice and bedrock is described by two boundary conditions. The
first one is a Dirichlet boundary condition ensuring a non-interpenetrating condition
between ice and bedrock:

v · n = −ab (4.22)

This means that any motion perpendicular to the basal tangential plain is due to
melting or freezing (ab). The second one is a Neumann boundary condition which
describes the basal friction and is also called sliding law. Often, a viscous relation
between basal shear stress and basal speed is used (Cuffey and Paterson, 2010):

||vb|| = kN−q||τ b||p (4.23)

with the vector norm || · ||, the velocity component tangential to the bedrock surface
vb, the friction stress component tangential to the bedrock surface τ b, positive
constants k, q and p, and the effective pressure N at the base b. The effective
pressure is a function of the ice overburden pressure pi and the water pressure pw

and is defined as:
N = pi − pw = ρgH + ρwgb (4.24)

With the assumption of p = 3 and q = 1, this law gets a special case, Weertman’s
relation (Weertman, 1957):

τ b = −k2N r||v||s−1vb := −α2vb (4.25)

where r = q
p and s = 1

p . Later, it was shown that the relation also holds in more
general cases for positive p and q (Cuffey and Paterson, 2010; Weertman and
Birchfield, 1983). The parameter α depends on the bed roughness as well as on
thermal and mechanical properties of the ice. It is not possible to measure k (and
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thus also α) directly and even difficult to estimate its spatial distribution. However,
it is a primal control on ice stream dynamics. Therefore, inverse methods (Ch. 5)
are taken into account to adjust this parameter.

4.6 Blatter/Pattyn’s Higher-Order Model

The Full Stokes model (Eq. 4.15) may be the most accurate model for ice dynamics,
but it is computationally challenging because of large computational costs. Therefore,
different approximations were developed for simplification, e.g. the shallow-ice
or shallow-shelf approximations. This thesis is limited to the Higher-Order model
(HOM) developed by Blatter (1995) and Pattyn (2003). In contrast to the Full stokes
equations the Higher-Order model is not a saddle point problem. Additionally, the
vertical velocity and the horizontal velocities can be computed independently in
this approach. Therefore, it is much less computational expensive than solving the
Full Stokes model. For this purpose, two assumptions are necessary. The first one
implies that the horizontal gradients of the vertical velocity are small compared
to the vertical gradient of the horizontal velocities, which is indicated in a scaling
analysis of Greve and Blatter (2009). The other assumption is that the variation
in horizontal shear stress along the direction of shear is small compared to vertical
changes of vertical stress, which means that the bridging effect (Van Der Veen and
Whillans, 1989) is negligible.

Theorem 4.5 (Blatter/Pattyn’s Higher-Order Model). Under the following assump-
tions:

• ∂σxz
∂x ≪ ∂σzz

∂z and ∂σyz

∂y ≪ ∂σzz
∂z ,

• ∂vz
∂x ≪ ∂vx

∂z and ∂vz
∂y ≪ ∂vy

∂z

the Full Stokes model (Eq. 4.15) reduces to

∂

∂x

(
4µ

∂vx

∂x
+ 2µ

∂vy

∂y

)
+ ∂

∂y

(
µ

∂vx

∂y
+ µ

∂vy

∂x

)
+ ∂

∂z

(
µ

∂vx

∂z

)
= ρg

∂s

∂x

∂

∂x

(
µ

∂vx

∂y
+ µ

∂vy

∂x

)
+ ∂

∂y

(
4µ

∂vy

∂y
+ 2µ

∂vx

∂x

)
+ ∂

∂z

(
µ

∂vy

∂z

)
= ρg

∂s

∂y

vz(x, y, z) = vz(x, y, b) −
z∫

b(x,y)

∂vx

∂x
+ ∂vy

∂y
dz′

(4.26)
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4.7 Ice Sheet System Model

The Ice Sheet System Model is a massively parallelized numerical model of ice flow
developed by Larour et al. (2012). It contains different models of ice dynamics:
the Full Stokes model, the Blatter-Pattyn Higher-Order model, the shallow shelf
approximation (SSA), and the shallow ice approximation (SIA). The model utilizes
the Continuous Galerkin Finite Element Method for discretization of the ice flow
equations, which allows for the use of unstructured meshes. It is thermomechanically
coupled and uses FEM methods also to solve equations for evolving temperature and
mass transport. ISSM relies on a static anisotropic adaptive mesh refinement and is
therefore capable to run simulations on a continental scale with high resolution in
interesting regions, like outlet glaciers, and coarse resolution in the interior of an
ice sheet. The model has the capability for the inversion of basal friction. ISSM is
written in C/C++, has a MATLAB user interface and is open source.
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5Inverse Problems

„Nothing takes place in the world whose meaning
is not that of some maximum or minimum.

— LEONHARD EULER
Mathematician and Physicist

Constitutive equations come with many physical parameters, some of which are
not known in real applications. If they can be measured in some way, there are
often only some point measurements available. This lack of spatial (and temporal)
resolution as well as large uncertainties makes them unusable for application as
model input. Also measurements in laboratories are difficult and its reliability can
called into question because the scales are very different from those in reality.
At the same time, such parameters, which describe the initial state of the model,
have a strong influence on ice sheet and glacier projections, especially on timescales
of decades to centuries (Arthern and Gudmundsson, 2010). This section introduces
the basic principles of inverse theory used in models like ISSM to estimate these pa-
rameters. Afterwards the special case of unknown basal parameters in ice dynamics
is described and a summary of different solution strategies is given. Because Sect. 8
will discuss mainly the results of the inversion, more details of the underlying theory
are given in this section.

5.1 General Case

5.1.1 From Direct Problem to Minimization

In a direct problem, an initial state and maybe other boundary conditions are given
and model equations are solved to calculate a final state. This problem is also called
forward model and can be described in the following way:

y = F (p) (5.1)

where y ∈ Y is the solution of the model equations F : P → Y, which depend on
the known parameter p ∈ P.
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Unfortunately, in many applications the solution y is observed instead of the param-
eter p. The challenge is then to find parameters p holding Eq. 5.1. This is called an
inverse problem or backward problem and can be formulated as follows:

p = F −1(yobs) (5.2)

with the observation of the solution yobs. Often, there is no possibility to simply
run a model backwards meaning inverting the model equations because there is no
explicit formulation of F −1 or the problem is ill-posed. Following Hadamard (1902),
this means that

• a solution does not exist or

• a solution exists but is not unique or

• an unique solution exists but does not depend continuously on the data.

In many applications one of these criteria is fulfilled because the dimensions of Y
and P are not the same, whereby the problem is either over-determined or under-
determined.
An alternative is to formulate an optimization problem by minimizing the misfit
between the observations yobs and modelled solution y:

min
p∈P

||F (p) − yobs|| (5.3)

The optimal parameter p can then be determined by using an optimization algorithm,
e.g. a steepest descent algorithm.

5.1.2 Setting up a Minimization Problem

We can write the model equations as follows:

F (y, p) = 0 (5.4)

It is assumed that the direct problem 5.4 has a unique solution for any p ∈ P , which
means that it is not an ill-posed problem. It is further assumed that there exists an
operator G : Y → Yobs with G(y) = yobs translating the model solution into the
space of observations. This assumption takes care that y and yobs are comparable.
The basis of an optimization problem is the function which should be minimized,
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called cost function or objective. Therefore, it is useful to define the cost function
j : Y → R:

j(y) = ||G(y) − yobs|| (5.5)

j(y(p)) is then equivalent to another cost function J : P → R with

J(p) = ||G(y(p)) − yobs|| (5.6)

Minimizing J means to search for the parameters p such that the misfit between y

and yobs is minimal and y fulfills the model equations. Thus, it is valid that

min
p∈P

J(p) ⇔ min
p∈P,F (y,p)=0

j(y) (5.7)

A minimum is defined in the following way:

Definition 5.1 (Local minimum). p∗ is a local minimum of J if and only if p∗ ∈ P
and ∃ϵ > 0 : J(p) ≥ J(p∗) ∀p ∈ P ∩ Bϵ(p∗) with Bϵ(a) = {x ∈ Rn| ||x − a|| < ϵ}.

Definition 5.2 (Global minimum). p∗ is a global minimum of J if and only if p∗ ∈ P
and J(p) ≥ J(p∗) ∀p ∈ P.

The minimum of the cost function can be found by an optimization algorithm, but
this often needs the gradient of the cost function to solve the problem. E.g. steepest
descent algorithms utilize this information to follow the steepest descending gradient
to reach a minimum.

5.1.3 Calculation of the Cost Function Gradient

The following minimization problem is considered:

min
p∈P

j(y) under the constraint F (y, p) = 0 (5.8)

To calculate the gradient of the cost function it is useful to introduce the La-
grangian:

Definition 5.3 (Lagrangian). The Lagrangian of the minimization problem 5.8 is
the functional L : Y × V × P → R with

L(y, λ, p) = j(y) + λF (y, p) (5.9)
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λ ∈ V is called Lagrange multiplier or adjoint state of the constraint F (y, p) = 0.

Because F (y(p), p) = 0, it is valid that

J(p) = j(y(p)) = L(y(p), λ, p) (5.10)

Instead of calculating the derivative of the cost function, it is easier to calculate the
derivative of the Lagrangian. The derivative of the Lagrangian with respect to the
parameter p and a direction q is

qJ ′(p) = ∂L

∂y
(y(p), λ, p) ∂y

∂p
(p) q

+ ∂L

∂λ
(y(p), λ, p) ∂λ

∂p
(p) q (5.11)

+ ∂L

∂p
(y(p), λ, p) q

Choosing λ such that the first two summands vanish, means that the Lagrangian is
stationary with respect to λ

∂L

∂λ
µ = µ F (y, p) = 0 ∀ µ ∈ V (5.12)

and also with respect to y:

∂L

∂y
f = j′(y) f + λ

∂F

∂y
f = 0 ∀ f ∈ Y (5.13)

Eq. 5.13 is called Adjoint equations. These both conditions are called Karush-Kuhn-
Tucker (KKT) conditions (Karush, 1939; Kuhn and Tucker, 1951). If they are fulfilled,
the gradient of the objective is equal to the derivative of the Lagrangian with respect
to the parameter p. This means:

qJ ′(p) = ∂L

∂p
(y(p), λ, p) q (5.14)

The gradient of the cost function is in this case relatively easy to calculate in
practice.

5.1.4 Solving the Minimization Problem

There exist many different types of optimization algorithms, e.g. the Nelder-Mead
method or evolutionary algorithms. However, this thesis will focus on gradient based
methods to solve the following problem:

min
p∈P

J(p) (5.15)
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A gradient descent algorithm is an iterative approach starting at some state p(0) ∈ P .
Then, a sequence of states {p(k)} ⊆ P is generated in the following way:

Algorithm 5.1 (General gradient descent).

(1) Choose p(0) ∈ P. Set k := 0.

(2) IF p(k) satisfies some termination criterion: STOP

(3) Determine direction of descent d(k) of J in p(k)

(4) Determine a step size tk > 0 with J(p(k) + tkd(k)) < J(p(k))

(5) Set p(k+1) = p(k) + tkd(k), k=k+1, go to (2)

Definition 5.4 (Direction of descent). d ∈ Rn is called direction of descent of J in
p if ∃ t̂ > 0 with J(p + td) < J(p) ∀ t ∈ (0, t̂].

There are different possibilities to choose a direction of descent, but the simplest
way is to use the steepest descent:

d(k) = J ′(p(k))
||J ′(p(k))||

(5.16)

For many applications it is easier to calculate the gradient of the Lagrangian with
respect to the desired parameter instead of calculating the derivative of the cost
function directly as explained in Sec. 5.1.3.
Finding a suitable step size can also be problematic, which is demonstrated in the
following example:

Example (Importance of the step size). Be J : R → R with J(p) = p2. Choose the
initial state p(0) = 1, the direction of descent d(k) = −1 and the step size tk = (1

2)k+2.
The solution calculates then as follows

p(k+1) = p(k) − tk = p(k−1) − tk−1 − tk = · · · = p(0) −
k∑

i=0

(1
2

)i+2

Because the last term is the partial sum of a geometric series, it follows:

p(k+1) = 1 −
1
4 −

(
1
2

)k+3

1 − 1
2

= 1
2 +

(1
2

)k+2
k→∞−−−→ 1

2

and thus do not converge to the true minimum p∗ = 0.
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Fig. 5.1: Schematic glacier: velocities on the surface can be measured, while basal condi-
tions are unknown.

Thus, a good choice of the step size is essential, wherefore Morlighem (2011)
described the optimized step size algorithm. This method computes tk such that

J(p(k+1)) = inf
tk∈R+

J(p(k) + tkJ ′(p(k))) (5.17)

The step size tk is found by a Brent search algorithm, which is terminated, if the cost
function falls below a threshold. The Brent method is a combination of bisection,
secant method and inverse quadratic interpolation to find the root of a function
(Brent, 1971).

5.2 Special Case: Ice Dynamics

In the special case of ice dynamics the forward problem takes the equations of
ice dynamics and some parameters, also basal parameters, and computes a three-
dimensional ice velocity field containing horizontal surface velocities and the vertical
velocity as described in Sect. 4. The bedrock conditions underneath the glacier are
not observable, but they strongly influence glacier speed (Figure 5.1). Therefore, an
inverse problem has to be solved to estimate the basal friction α.
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Problem formulation

The conditions underneath the ice at the interface between ice and bedrock are
formulated in the sliding law (see Sect. 4.5.1):

τb = −k2Nvb = −α2vb (5.18)

where the basal drag coefficient k or rather the basal friction coefficient α, which
also includes the effective pressure, are the parameters of interest. The basal friction
coefficient is optimized such that the model output, i.e. the modelled surface velocity,
fits the surface velocity observed by satellite remote sensing. We measure this misfit
integrated over the upper ice surface Γs with the help of a cost function:

J(α) = j(v(α)) = 1
2

∫
Γs

(
vx − vobs

x

)2
+
(
vy − vobs

y

)2
dΓs (5.19)

with v = (vx, vy) the modelled velocity and vobs = (vobs
x , vobs

y ) the observed velocity.
Following calculations will focus on the Higher-Order approximation (Eq. 4.26).
The minimization problem is of the following form:

Theorem 5.1 (Basal friction inverse problem). Let Ω be the model domain, Γu

Dirichlet boundary conditions, Γσ Neumann boundary conditions, f a force, and the
cost function j as in Eq. 5.19. The PDE-constraint minimization problem is then of the
form:
Minimize the objective function j(v(α)) with the constraint⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂x

(
4µ∂vx

∂x + 2µ
∂vy

∂y

)
+ ∂

∂y

(
µ∂vx

∂y + µ
∂vy

∂x

)
+ ∂

∂z

(
µ∂vx

∂z

)
= ρg ∂s

∂x in Ω
∂

∂x

(
µ∂vx

∂y + µ
∂vy

∂y

)
+ ∂

∂y

(
4µ

∂vy

∂y + 2µ∂vx
∂x

)
+ ∂

∂z

(
µ

∂vy

∂z

)
= ρg ∂s

∂y in Ω

vz(x, y, z) = vz(x, y, b) −
z∫

b(x,y)

∂vx
∂x + ∂vy

∂y dz′ in Ω

v(α) = 0 on Γu

σ · n = f on Γσ

(5.20)

by controlling the parameter α.
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Adjoint problem

The Lagrangian of the minimization problem (Theorem 5.1) reads

L(v,p, λvx , λvy , λp, α) = j(v)

+
∫
Ω

λvx ·
(

∂

∂x

(
4µ

∂vx

∂x
+ 2µ

∂vy

∂y

)
+ ∂

∂y

(
µ

∂vx

∂y
+ µ

∂vy

∂x

)

+ ∂

∂z

(
µ

∂vx

∂z

)
− ρg

∂s

∂x

)
dΩ

+
∫
Ω

λvy ·
(

∂

∂x

(
µ

∂vx

∂y
+ µ

∂vy

∂y

)
+ ∂

∂y

(
4µ

∂vy

∂y
+ 2µ

∂vx

∂x

)

+ ∂

∂z

(
µ

∂vy

∂z

)
− ρg

∂s

∂y

)
dΩ

+
∫
Ω

λp

⎛⎜⎝vz(x, y, z) −

⎛⎜⎝vz(x, y, b) −
z∫

b(x,y)

∂vx

∂x
+ ∂vy

∂y
dz′

⎞⎟⎠
⎞⎟⎠ dΩ

(5.21)

where (vx, vy, p) are the state variables (the velocity components as well as the
pressure p) and (λvx , λvy , λp) the adjoint states. To derive the adjoint equations,
the viscosity is assumed to be linear (only in the adjoint problem), which is widely
employed (e.g. MacAyeal, 1993) in order to simplify the calculation. This procedure
is called incomplete adjoint method. The adjoint of the HOM is then (more details
and a similar proof can be found in Morlighem (2011)):

Theorem 5.2 (Higher-Order adjoint). For a linear viscosity, the adjoint state
λv = (λvx , λvy ) of the Higher-Order equations is solution of the following problem:

∂

∂x

(
4µ

∂vx

∂x
+ 2µ

∂vy

∂y

)
+ ∂

∂y

(
µ

∂vx

∂y
+ µ

∂vy

∂x

)
+ ∂

∂z

(
µ

∂vx

∂z

)
= 0 in Ω

∂

∂x

(
µ

∂vx

∂y
+ µ

∂vy

∂x

)
+ ∂

∂y

(
4µ

∂vy

∂y
+ 2µ

∂vx

∂x

)
+ ∂

∂z

(
µ

∂vy

∂z

)
= 0 in Ω

λv = 0 on Γu

σλv · n = 0 on Γσ\Γs

σλv · n = j′(v) on Γs

(5.22)

with the cost function derivative

j′(v) =

⎛⎜⎜⎝
vx − vobs

x

vy − vobs
y

0

⎞⎟⎟⎠

5.2 Special Case: Ice Dynamics 28



Cost function gradient

The gradient of the cost function with respect to basal friction can be derived from
the partial derivative of the Lagrangian. For simplification it is presented only the
Higher-Order cost function gradient limited on cost functions, which do not depend
on the basal friction. More details as well as an analogous proof for the Full-Stokes
model can be found in Morlighem (2011).

Theorem 5.3 (Higher-Order cost function gradient). The derivative of the cost func-
tion 5.19 with respect to basal friction is:

J ′(α) =
{

0 in Ω
−2α(vxλx + vyλy) on Γb

(5.23)

Advanced cost functions

This paragraph describes a more sophisticated cost function including more than
only a linear misfit as used in Eq. 5.19. The cost function consists of three terms
which are added and weighted by γ1, γ2 and γ3:

J = γ1J1(v) + γ2J2(v) + γ3J3(α) (5.24)

The first term is an absolute linear misfit between the measured and the modelled
velocities on the surface of the glacier:

J1(v) =
∫
Γs

1
2(vx − vobs

x )2 + 1
2(vy − vobs

y )2dΓs (5.25)

While J1 has the strongest influence on fast flowing parts of the glacier, a logarithmic
misfit (Eq. 5.26) ensures a good match of observed and modelled velocities in slow
flowing areas.

J2(v) =
∫
Γs

⎛⎝log

⎛⎝
√

v2
x + v2

y + vmin√
vobs

x
2 + vobs

y
2 + vmin

⎞⎠⎞⎠2

dΓs (5.26)

with a small constant vmin ensuring mathematical consistency. In order to avoid
oscillations in the controlled parameter, a regularization (Eq. 5.27) is taken into
account. It forces the solution to be smooth by penalizing bumps.

J3(k) =
∫
Γb

1
2 ||k||2dΓb (5.27)
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The three terms have to be well-balanced because otherwise the solution may be e.g.
too smooth (γ3 too large) or only high velocities are fit by the model (γ1 too large).
In order to find suitable weights, an L-curve analysis has to be performed (Hansen,
2001). For this purpose, values of the three objectives are plotted for various γi. The
resulting curve has an L-shape and its edge gives the optimal weightings.
The adjoint problem and the cost function gradient can be calculated in a similar
way as before. With this information, a minimization algorithm can find the basal
friction matching the observed velocities. An implementation based on this advanced
cost function can be found in the ISSM framework.

Optimization algorithms

ISSM includes an implementation of a steepest descent algorithm as described in Sect.
5.1.4. In order to achieve a faster convergence, in general the second derivative of
the cost function, the Hessian is necessary. Most optimization algorithms bypass this
by approximating the Hessian using so called update formulas. Several algorithms
are implemented in toolboxes and ISSM provides interfaces to two of them: Toolkit
for Advanced Optimization (TAO) included in PETSc (Balay et al., 2018) and M1QN3
(Gilbert and Lemaréchal, 1989). From the TAO package three algorithms can be
chosen, all of them need function and gradient evaluations as input. The Conjugate
Gradient method (CG) limits the direction of descent to conjugated directions. This
procedure prevents e.g. that the direction of descent is alternating, what can cause
slow convergence of the steepest descent method. The Limited-Memory Variable-
Metric method (LMVM) approximates the Hessian matrix from previous iterates
and gradient evaluations. It uses the Broyden-Fletscher-Golfart-Shanno (BFGS)
update formula. A similar method for constrained problems (bounded variables) is
the Bounded-constrained Limited-Memory Variable-Metric Method (BLMVM). The
M1QN3 package is designed to solve for functions which depend on hundreds of
millions of variables. It is also a Quasi-Newton appraoch approximating the Hessian
using the BFGS update formula. Furthermore, it uses a preconditioner, which is
dynamically updated, and enforces global convergence by determining the step
size using the Fletcher-Lemaréchal algorithm (Gilbert and Lemaréchal, 1989) and
realizing the Wolfe conditions.

Reliability of the solution

By applying an inverse method it is import to be aware of the problems that can
come with it. The solution is found by fitting the modelled velocity to observations.
Errors in observations can thus lead to errors in the solution. Also uncertainties of
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the model (e.g. choice of parameters, resolution, approximation or ignoring physical
processes) are compensated by the optimized parameter. Therefore, the resulting
solution is not necessarily the true basal friction, but it is the parameter that must
be applied to the model to fit the observed velocities best. The distribution of basal
friction gained by an inversion is only an indication of the real distribution, not an
evidence. A sensitivity analysis should be conducted to evaluate the reliability of the
estimated parameters and of the model output. A comparison with other studies on
the basal conditions in the same region can help to verify the result in the meaning
of a physical quantity.
The optimized parameter is assumed to be constant over time. This is only valid
for smaller timescales (centuries), wherefore inversions should only be applied for
simulations, which do not exceed this time.

5.3 Inverse Methods in Glaciology

Inverse methods were introduced in glaciological applications by MacAyeal (1992)
in order to determine the controls on ice stream flow. He applied his method on
Ice Stream E, Antarctica, by using a 2D SSA. He states a direct approach using an
algebraic solution and a least squares approach. Using variational theory similar to
the method described above, the gradient of the cost function is computed and the
cost function is minimized using a minimization algorithm. The method was further
applied, e.g. by MacAyeal (1993). Vieli and Payne (2003) applied a similar method
to Pine Island Glacier. Joughin, MacAyeal, et al. (2004) adapted the algorithm to
the Ross ice streams. Goldberg and Sergienko (2011) expanded the method to a
hybrid model. A generalization to a 3D model was described by Morlighem, Rignot,
Seroussi, et al. (2010) and implemented in ISSM (Larour et al., 2012). Comparisons
and improvements of minimization techniques in this field were done e.g. by Haber-
mann et al. (2012) and Petrat et al. (2012). Solving an inverse problem as described
above can be called classical adjoint method, but there are several other approaches
that can be employed.
Another method solving a generalized version of the problem described by MacAyeal
(1992) is introduced by Arthern and Gudmundsson (2010) and manages the inver-
sion of the basal drag coefficient and ice viscosity by solving an inverse Robin problem.
For this purpose, they treat the basal parameter as an unknown parameter in a Robin
boundary condition. The problem is then solved using only a solver for the forward
problem, which needs to be able to handle Robin boundary conditions. Therefore,
they do not need to solve an adjoint problem. A drawback of this method is that
it does not integrate observation errors in the cost function. Jay-Allemand et al.
(2011) extended the Robin method with a regularization term and implemented it
in Elmer/Ice. Gillet-Chaulet et al. (2012) compared results of the classical adjoint
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method and the Robin method and found that neither of them is favourable.
Probabilistic approaches were explored by Chandler et al. (2006), who iteratively
computed basal shear stress and basal sliding velocity by minimizing errors in mod-
elled surface velocity and used a Monte Carlo approach to estimate uncertainties.
Gudmundsson and Raymond (2008) as well as Raymond and Gudmundsson (2009)
utilized a Bayesian inference approach to invert for basal slipperiness and bedrock
topography at the same time. For this purpose they used surface topography as
input data additionally to the surface velocities. The solution of their approach is
the posteriori distribution of the searched parameters as well as an error estimate in
the form of a covariance matrix. A Kalman Filter was utilized by Bonan et al. (2014)
in order to estimate the bedrock topography, the ice thickness and the basal sliding
parameter of a synthetic ice sheet based on SIA.
Pollard and DeConto (2012) fitted modelled to observed ice thicknesses by adapting
the basal sliding coefficient. For this purpose they run the model forward with a
constant climate forcing. The method, which does not use velocity data, was then
applied to the AIS.
A totally different approach to generate initial conditions including basal properties
is a spin-up procedure. For this purpose, the model is run forward for a long time
(millennia) with climate forcing (Goelzer et al., 2018). A combination of classical
adjoint inversion and spin up was done by Rückamp et al. (2018).
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6A Combined Approach for
Filtering Ice Surface Velocity
Fields Derived from Remote
Sensing Methods

„It is quality rather than quantity that matters.

— LUCIUS ANNAEUS SENECA
Philosopher

Context

Methods inverting basal friction (Ch. 5) are all based on one type of data: horizontal
surface velocities. These data feed directly into the cost function of the minimization
problem, which is mainly the difference between simulated and observed velocities.
The friction coefficient is forced to explain the observed surface velocities best.
Therefore, a high quality of the observed velocity is assumed to be absolutely
essential for inverse modelling. False values in the observed velocities would mean
that the basal friction is fit to these errors resulting in false values of the friction
coefficient. In the end, this would lead to poor projections, as the friction coefficient
is a fundamental parameter controlling ice dynamics and thus an input for modelling
the future development of glaciers and ice sheets.
Unfortunately, observation errors occur in all remote sensing based velocity fields
due to several reasons like low correlation, poor coherence or atmospheric and
ionospheric effects. Removing these errors is necessary to improve the quality of the
observed velocities and the inverted basal friction. A main demand on the filtering
procedure is the preservation of correct measurements. Removing too many data
points would otherwise decrease the quality of the velocity field. A suitable filter
algorithm is described in the following paper. It is implemented in python and
applied to an artificial velocity field and different real test sites to demonstrate its
performance.
The velocity field described in 3.3 will later serve as input for the inversion of
the friction coefficient underneath Recovery Glacier, but also this field contains
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erroneous values. Thus, the filtering procedure is also applied to the velocity field of
Recovery Glacier. The algorithm is able to remove the majority of outliers contained
in the velocity field by keeping a reasonable number of data points. The velocity
scenes are mosaicked afterwards, so that it can be further processed using a suitable
interpolation method. The influence of the quality of surface velocities on the
inverted basal friction will be analyzed in a sensitivity study (Sect. 8). Therefore,
both filtered and unfiltered velocities will serve as input for the inversion.

Contributions

C.Eis (former Lüttig) has implemented the filter in python programming language,
created the artificial flow field and tested the filter on it. N.Neckel has derived
velocity fields of Greenland, Petermann Glacier and NEGIS. C.Eis applied the filter
on those velocity fields as well as on the velocity field of Recovery Glacier provided
by DLR. C.Eis did the statistical analysis and the sensitivity analysis of parameters.
All authors discussed the results. C.Eis wrote Sect. 6.2 ("Materials and Methods")
and Sect. 6.3.1 ("Artificial Flow Field"), N.Neckel wrote Section 6.6.1 ("Intensitiy
Offset Tracking“), A.Humbert wrote the sections containing the sensitivity analysis
(6.3.2, 6.6.2). To all other sections all authors contributed to the writing. Figures
related to the sensitivity analysis were created by A.Humbert, all other figures were
created by C.Eis. A.Humbert designed the study and supervised it.
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Abstract

Various glaciological topics require observations of horizontal velocities over vast
areas, e.g. detecting acceleration of glaciers as well as for estimating basal param-
eters of ice sheets using inverse modelling approaches. The quality of the velocity
is of high importance, hence methods to remove noisy points in remote sensing
derived data are required. We present a three-step filtering process and assess its
performance for velocity fields in Greenland and Antarctica. The filtering uses the
detection of smooth segments, removal of outliers using the median and constraints
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on the variability of the flow direction over short distances. The applied filter pre-
serves the structures in the velocity fields well (e.g. shear margins) and removes
noisy data points successfully, while keeping 72-96% of the data. In slow flowing
regions, which are particularly challenging, the standard deviation is reduced by up
to 96%, an improvement that affects vast areas of the ice sheets.

6.1 Introduction

The dynamics and mass balance of glaciers governs the contribution of ice sheets to
sea level change. Consequently, monitoring changes in the dynamics in high spatial
resolution and with a large spatial coverage, like entire ice sheets, is crucial. Also,
the temporal evolution of the flow dynamics is very important. This can only be
achieved using satellite remote sensing data. The key physical quantity here is the
three dimensional velocity field of the glacier v⃗(x, y, z, t), of which, however, only
the horizontal velocity at the surface of the ice sheet is accessible. Numerous studies
(e.g. Joughin, B. Smith, Howat, Scambos, and Moon, 2010) use different sensors
and algorithms to retrieve velocity fields, but common to all are measurement errors
that lead to noisy velocity fields. False velocity data needs to be filtered out in order
to avoid complications in all the following fields of applications.
Timing and spatial onset of changes in velocities, caused by seasonal or long-term
climate forcing, is of particular interest to glaciologists. With more accurate velocity
fields our ability to detect acceleration is improved. The most prominent exam-
ple is the acceleration and increased seasonality of Jakobshavn Isbræ in western
Greenland. This might be connected to changes in the shear margins of the ice
stream, highlighting the need of accurate velocity retrievals in these areas. Here, the
gradients of the velocity field components are required with high accuracy, so that
shear deformation rates can be retrieved in order to assess if changes in the shear
margins are indeed the cause of acceleration.
Numerical models of ice sheets and glaciers use horizontal surface velocities to assess
the model quality and partly to adjust model parameters. Simulations projecting
the future contribution of ice sheets to sea level change are suffering from a poorly
constraint initial state, which is today’s velocity field. In order to overcome this,
glaciologists use inverse modelling of ice sheets and ice streams, in which basal
parameters are adjusted so that modelled horizontal surface velocities match the
observed field. As the momentum balance equation, which is solved in inverse
modelling, contains gradients of the velocity components (strain rates), the influence
of non-smooth velocity data is enhanced. In this case, errors in the input field lead to
errors in computed basal parameters and this in turn leads to incorrect projections.
With missions such as Radarsat-1, Radarsat-2, TerraSAR-X, TanDEM-X, Sentinel-
1A/B, Sentinel-2 and Landsat-8 a new era of mapping large-scale surface velocities
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has begun (Joughin, B. Smith, Howat, Scambos, and Moon, 2010; Fahnestock et al.,
2015; Nagler et al., 2015; Kääb et al., 2016; Mouginot, Rignot, et al., 2017). Today
surface velocities of ice sheets, glaciers and ice caps are produced in near real-time
and several data portals exist where the user can download velocity products. How-
ever, as most of these velocity estimates are based on offset tracking procedures,
outliers and data gaps are most common and appropriate filtering is absolutely
essential before further analysis.
Many of the applications of velocity fields will use an interpolation to obtain con-
tinuous velocity data sets which might be used for inverse modelling of glaciers
subsequently. Depending on the type of interpolation applied, outliers might have
strong effects, as interpolation techniques that rely on higher order polynomials are
generally very oscillatory and may produce high amplitude outliers between the
interpolation points.
The nature of erroneous data points is two fold. On the one hand, a pixel may
have a false value in one or both velocity components. On the other hand, such a
false velocity estimate can lead to a false flow direction. Outliers can occur in many
different ways, such as covering only one pixel or a cluster of connected pixels. These
clusters can be either smooth within themselves, or also very noisy. Other features
are appearing over larger areas, like single lines or regular patterns. False velocity
retrieval is caused by different factors: (i) low correlation, caused by changes in the
surface properties between data acquisitions (e.g. surface melt or precipitation), (ii)
very fast flow is causing poor coherence or (iii) atmospheric and ionospheric effects.
Errors induced by atmospheric variations between the dates of data acquisitions can
mostly be neglected for velocity retrievals from intensity offset tracking, but can be
an issue for velocity estimates from synthetic aperture radar interferometry (Yan
et al., 2015). Ionospheric effects can result in azimuth streaks in the derived velocity
fields (Gray, Mattar, and Sofko, 2000; Wegmüller et al., 2006).
Critical zones can be especially slow or fast flowing regions, shear margins or pinning
points of ice shelves. Future and current satellite missions in L-band, like ALOS
PALSAR-2, NISAR and Tandem-L are preferable for ice velocity retrieval as deeper
penetration is beneficial in areas with loss of coherence due to changes in surface
properties or very fast flow. However, L-band signals suffer from ionospheric effects
leading to errors in velocity retrieval (Gray, Mattar, and Sofko, 2000; Wegmüller
et al., 2006). Again, a filter procedure might be able to reduce ionospheric effects in
the velocity fields.
This reveals the importance of an appropriate filtering procedure. To avoid manual
filtering of outliers, because this would be very time consuming and leads to dif-
ferent solutions for different users, it is possible to use a wide range of algorithms
developed for this purpose. A filter needs to fulfill the following criteria: (i) remove
erroneous data reliably, (ii) the structure of the velocity field remains unchanged,
e.g. shear margins or sticky spots are not smoothed out, (iii) concurrently, as many
data points as possible are saved and (iv) reasonable computational costs. Here, we
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present a filter approach consisting of three different filter steps. This filter will be in
future implemented into the Tandem-L product generation.

6.2 Materials and Methods

6.2.1 Description of the Filter

Starting with the projected x- and y-components of the velocity field we applied a
filter combining three approaches. The first one divides the field into parts recursively,
which are smooth within themselves, and was introduced by Rosenau et al. (2015).
In the second step, the remaining outliers are removed by a filter using the median
of the field. The third filter is based on variations of directions of the vector field.
In the first component of the filter, all data points in the field are allocated to different
segments. Afterwards, segments with less than nmin data points are deleted. The
division in segments of the data points is done recursively, starting with a random
seed point p. For each direct neighbour n, the difference between the velocity of
p and n in both components (x and y) has to be compared with the threshold t.
Only if it is less than t in both velocity components, the neighbor n is allocated to
the same segment as p and the procedure starts again with this new point. There
are two terms influencing the threshold t: These are a constant error econst and the
difference between the same points in an a-priori velocity field ∆v multiplied with a
factor w (in our case 1.5).

t = econst + |w · ∆v| (6.1)

econst = a ·
√

σ2
M + σ2

R (6.2)

The constant error includes the errors of offset tracking σM and coregistration
σR and is multiplied by a factor a ∈ [0, 1] in order to reduce the accepted error,
often leading to better results with more points sorted out. In the applications
below, we set a = 0.2. We computed these errors like in Seehaus et al. (2015),
where σR is calculated from stable points on rock surfaces. For this purpose we
figured out coordinates of rocks in the area of the velocity field and computed the
magnitudes of the velocities in these locations. If there are no stable points in the
considered region, this error has to be estimated with the help of a velocity field
with similar characteristics. The error of coregistration is calculated as the median
of the magnitudes. The offset tracking error is computed as in (6.3) and strongly
depends on the sensor resolution.
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σM = C∆x

z∆t
(6.3)

with C, uncertainty in image registration and tracking in pixels [px], ∆x image
resolution [m/px], z oversampling factor and ∆t time interval between the images
[d]. We assumed C = 0.4 px and z = 2, as it is suggested in Seehaus et al. (2015).

The second filter step is performed in a window moving one pixel per step. For every
data point p, the medians ṽx, ṽy and the standard deviations sx, sy of the window in
both components are computed. The point is only kept, if the difference between
the velocity and the median is smaller than ϵm times the standard deviation in both
components as described in (6.4) and (6.5).

|vx(p) − ṽx| < sx · ϵm (6.4)

|vy(p) − ṽy| < sy · ϵm (6.5)

with vx(p) velocity of data point p in x-direction and vy(p) velocity of p in y-direction
as well as ṽx median of all velocities of the window in x-direction and ṽy median of
all velocities of the window in y-direction. The parameter ϵm can be freely chosen,
however, ϵm = 3 was optimal in our applications. The window size in this filter was
set to 25 pixels.
The displacement in x- and y-direction defines the direction of flow, θp, of each data
point. The third approach works with this information, again by using a moving
window, which is in our application of the same size as before (25 pixels), but can
be chosen independently from the second filter step. With each step, the window is
shifted by one pixel. First we check if the direction of a data point p is close to the
mean direction x̄ of the window (6.6)

|θp − θ̄| < s · ϵd (6.6)

with s standard deviation of all directions in the window and ϵd unrestricted param-
eter proposed to be ϵd = 3. Subsequently, the number of direct neighbors n of the
point p with θp ∈ R having a difference of more than α degrees to θp is counted.
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|θp − θn| < α (6.7)

For the angle α a value of α = 10◦ is proposed. If this number of neighbors is higher
than 4, the point is discarded.
In the last step, all points having less than 2 neighbors n with θn ∈ R, are removed
because in this case a comparison with neighboring points is not possible. In all three
steps, a point which is detected as an outlier in only one component is removed in
the other component of the velocity vector. More details to the filter processes can
be found in the flowchart in Figure 6.13. The effect of the choice of the parameters
on the performance of the filter is discussed below in more detail.

6.3 Results

6.3.1 Artificial Flow Field

In order to test the performance of the filter, we created an artificial velocity field
across which we have distributed outliers randomly. The field has a size of 200×245
data points. The a-priori field has increasing velocity values between 1 and 200 m a−1

in x-direction, while the vy component increases in y-direction from 1 to 245 m a−1,
which leads to different flow directions. We distributed outliers by adding normal
distributed values (∼ N (0, 122.5)) to 4900 random points of the field. Additionally,
we added 5000 values distributed with ∼ N (0, 50) in a smaller region to simulate
strong outliers in a limited area. In the end, in a region with a size of 10×10 pixels
the velocity values are generated randomly (∼ N (0, 100)) (Figure 6.1a). The applied
filtering procedure can remove nearly all of these outliers (Figure 6.1b). Only 0.33%
of the generated outliers are left. These outliers have a relatively small difference
(maximal 6.07 m a−1) to the expected values given by the a-priori field. Valid points
falsely removed by the filter had less than 2 neighboring points for comparison in
the last filter step.

6.3.2 Filter Parameter Sensitivity Tests

The three filter steps obey a number of parameters. Here we test the influence of
these parameters on the ability to filter outliers. As glacier and ice sheet velocity
fields contain certain characteristics with distinct challenges for the filter, we selected
a subset of a velocity field covering a stripe-shaped area over a fast flowing glacier,
including its shear margins and extending into slow flowing areas (the location of
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(a) (b)

Fig. 6.1: Performance test of the filter using an artificial velocity field: (a) Before filtering
and (b) after filtering.

the profile is shown in Figure 6.3d). This subset contains 80 676 pixels of the velocity
field, which we consider to be sufficiently large for these tests. For filter step one
(smooth segments), we have varied a from 0.1 to 1 in steps of 0.1, nmin from 2 to
12 with increments of 2 and the difference to the a-priori velocity field ∆v from 1
to 2 in increments of 0.1. For filter step two (median) we tested the effect of the
window size (windowmedian) and ϵm. windowmedian was varied from 5 to 45 in steps
of 5 and ϵm was increased from 1.0 to 5.0 in increments of 0.5. The third filter step
(directions) is influenced by the choice of the window size too, (windowdir, varied
from 5 to 45 in steps of 5), ϵd (from 1.0 to 5.0 in increments of 0.5) and the angle α

(from 2.5◦ to 30◦ with step size 2.5◦). Figure 6.2 shows an example of parameter α

while the remaining parameters can be found in Figures 6.14 to 6.18 in the Appendix.

Fig. 6.2: Sensitivity of the third filter (directional) to α. Data points that passed the filter
are plotted as black points, while those that were removed are shown in gray color.
The selected value of α (left vertical axis) is highlighted in orange. The blue line
displays vx along the profile shown in Figure 6.3d.
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Filter one is highly insensitive to nmin, the range from nmin = 4 − 12 give similar
results, only nmin = 2 shows a difference. Thus the choice of nmin = 8 is rea-
sonable and does not affect the performance of the filter negatively. The effect of
a is, however, larger but declines for a ≥ 0.4. With increasing w, the number of
points remaining is increasing, which is to be expected, as a higher w is increasing
the threshold t. Similar to that, w = 0.1 is reducing the remaining data points
significantly in both, fast and slow flowing regions. The optimal parameter set is
thus nmin = 8, a = 0.2 and w = 1.5.
The second filter is not particular sensitive to the window size. In the range of 20
to 35 pixel no variation occurs at all and below and above this range, only slight
changes in faster flowing areas appear. windowmedian was thus chosen to be 25
pixels. This filter is more sensitive to the choice of ϵm. Low values of ϵm ≤ 2 remove
a large number of data points, while ϵm ≥ 3.0 does lead to similar results. An outlier
at a distance along track of 57 km exemplifies that our choice of ϵm = 3.0 is suited
well to remove this outlier.
The directional filter shows a similar response to the window size, meaning that it
is not particular sensitive on the size. The effect of ϵd is also similar to the second
filter, as small values for ϵd remove an unreasonable high number of data points
and the range ϵd ≥ 3.0 does lead to similar results. The effect of α is strongest in
slow flowing areas, in which we also expect the largest number of false directions.
From α ≥ 20 the number of remaining data points increases in a way that the filter
becomes meaningless. At the other end of the spectrum of values for α, the number
of remaining data points becomes critical for α < 10. Hence our choice is α = 10.0,
the window size is set to 25 pixels and ϵd = 3.0. These values may serve for other
applications of the filter as a first guess, however, we recommend users perform
similar tests for their particular areas and sensors for optimising the performance.

6.3.3 Recovery Glacier

We applied the filter to a velocity field of the Recovery Glacier (Antarctica, Figure
6.3a). The data are derived by intensity offset tracking of stripmap pairs of TerraSAR-
X in 2012/13 and were provided by DLR in Floricioiu et al. (2014) and Abdel Jaber
(2016). The revisit time was eleven to 33 days and the resolution of the velocity
field is 156 meters. Every individual velocity field retrieved from one pair of satellite
scenes was filtered separately to preserve as much data points as possible. Thus,
overlapping scenes can compensate for removed outliers. As an a-priori velocity field
for the smooth segments filter we used the Making Earth System Data Records for
Use in Research Environments (MEaSUREs) ice velocity map of Antarctica (Rignot
et al., 2011b; Rignot et al., 2011c). Afterwards the field was mosaicked by gmt
grdblend (Wessel et al., 2013) using the mean of overlapping pixels. We have done
this also for the fields after the first two filter steps to illustrate the results. Figure
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6.3 shows the original vx field and the results after each filter step. This figure
demonstrates that the first filter (upper right panel) removes most outliers that are
visually detectable on this scale. The next two steps (panels below) remove still a
markable number of outliers, however keeping a reasonable amount of data. As the
scale of the figure does not allow any detailed discussion of the effects, we selected
four different sites for an in-depth discussion, with very distinct characteristics: one
fast and one slow moving region, a shear margin and a region with a very high
number of outliers (named line of outliers in the continuation). These regions are
annotated in Figure 6.3a.

(a) (b)

(c) (d)

Fig. 6.3: Velocities in x-direction of the Recovery Glacier, Antarctica: (a) Original data.
(b) After the first filter step (smooth segments). (c) After the second filter step
(median). (d) After the third filter step (directions). The upper left panel shows
the locations of the tested regions: 1 - fast flowing region, 2 - shear margin, 3 -
region with line of outliers and 4 - slow flowing region.

In order to give some quantitative information on the statistics of the effect of
the combined filter, we present boxplots for all four regions in Figure 6.4 for both
components, vx and vy. The left panels show the original data, whereas the right
panels present the statistics after the application of all three filter steps. Please note
that the vertical axis changes between the left and right panels. In all cases the
number of outliers is significantly reduced and the range of values is diminished.
The range of the quartiles in vx and vy becomes smaller. The efficiency of the filter
to remove outliers is also evident from Table 6.1. For three of the four subregions, as
well as for the whole mosaic, the standard deviation decreased significantly during
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the filtering while the mean stays rather constant. For example: while the mean
vx from the line of outliers changed by 3.4%, the standard deviation was reduced
by 76.6% during the filtering (Table 6.1). This difference is less striking in regions
with more heterogeneous flow velocities, for example in the shear margin. In this
example the mean vx changed by 9.1% while the standard deviation was reduced by
27.3%. In order to investigate the effect of the three filter steps in-depth, we discuss
below the vx field for the four regions after each filter step.

(a) (b)

(c) (d)

Fig. 6.4: Boxplots of the four test regions at Recovery Glacier. vx before (a) and after (b)
filtering. vy before (c) and after filtering (d).

Shear margin

This subset (Figure 6.5) is a shear margin with a transition from the main trunk of
the glacier to nearly stagnant motion and the inflow from a side branch into the main
trunk. The first filter step (smooth segments) removes clusters of outliers (marked 1
and 3 in Figure 6.5a) successfully and also eliminates the outliers along the margins
of the satellite scenes (denoted with 2). The second filter (median) removes more
data points with low vx, which is also the range (marked with 4 in Figure 6.5d) with
the strongest effect of the third filter (directions). In comparison of Figure 6.5a to
6.5d, the most obvious outliers are captured, however, a stripe-like pattern (denoted
with 4 in Figure 6.5d) is still present after all filter steps. The comparison between
the initial and final field of vx also reveals that the number of data points in the
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shear margin itself is strongly reduced and patches without data appear, however,
there are enough remaining data points to assure that a subsequent interpolation
would be able to represent the shear margin well.

(a) (b)

(c) (d)

Fig. 6.5: Velocities in x-direction in a shear margin of the Recovery Glacier, Antarctica: (a)
Original data. (b) After the first filter step (smooth segments). (c) After the second
filter step (median). (d) After the third filter step (directions)

Fast flowing region

We also chose a very fast flowing region, typical for the central part of ice streams
(Figure 6.6) with displacements up to 800 m a−1 to test the filter. After the first
step, the outliers at margins of the satellite scenes are removed. The cluster of
outliers around 2 in Figure 6.6a are also well detected. In the zone labeled with 1
large variations in vx are removed successfully. Here, the glacier surface is heavily
crevassed, which might be the cause for false velocity detection. The median and
directional filters do not remove a significant number of data points in this case. This
was to be expected, as wrong flow directions are typically a problem in slow moving
areas.
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(a) (b)

(c) (d)

Fig. 6.6: Velocities in x-direction in a fast flowing region of the Recovery Glacier, Antarctica:
(a) Original data. (b) After the first filter step (smooth segments). (c) After the
second filter step (median). (d) After the third filter step (directions)

Slow flowing region

The subset in Figure 6.7 is characterised by low velocities, which are typically prone
to problems in both, magnitude as well as direction of flow. Consequently, a lot
of erroneous data points are exhibited in Figure 6.7a. The first filter removes the
clusters, like those marked with 1, successfully, but leaves much more outliers than
in the case of the fast flowing region and the shear margin. The second filter is
most effective with outliers like the ones marked with 2 and 3. In this example the
effect of the directional filter becomes more apparent: the area around 4 has been
stripped off a large number of data points. However, there are still invalid data
points remaining in this region. As the difference between the data points in this area
is small, a subsequent interpolation is not expected to be affected substantially.
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(a) (b)

(c) (d)

Fig. 6.7: Velocities in x-direction in a slow flowing region of the Recovery Glacier, Antarctica:
(a) Original data. (b) After the first filter step (smooth segments). (c) After the
second filter step (median). (d) After the third filter step (directions)

Line of outliers

A large number of outliers is evident in the region shown in Figure 6.8. Beside the
clusters of outliers (marked with 1) that also appeared in the other examples, there
is a notable feature: a line running through the velocity field of the entire glacier.
The first filter step detects these clusters well, as in the examples above. However,
the feature 2 is not detected. After the second filter, the line is almost completely
erased, whereas the outliers in the region marked with 3 remain. The last filter
step has the strongest effect in the area around 3 and the adjacent region of low
velocities. This is in agreement with the above examples where the directional filter
is most effective in slow moving areas.
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(a) (b)

(c) (d)

Fig. 6.8: Velocities in x-direction in a region with a line of outliers of the Recovery Glacier,
Antarctica: (a) Original data. (b) After the first filter step (smooth segments). (c)
After the second filter step (median). (d) After the third filter step (directions)

6.3.4 Other Locations

Next to the Recovery Glacier in Antarctica, we tested the filter in some more regions
in Greenland. Here we chose a Sentinel-1 velocity mosaic of the Greenland Ice Sheet,
a TerraSAR-X derived velocity field of Petermann Glacier and a part of a Sentinel-1A
velocity field of a subset of the North East Greenland Ice Stream (NEGIS). These
regions are annotated in Figure 6.9a.
Figure 6.10 shows boxplots for the three regions, indicating vx in the upper panels
and vy in the lower ones. The left panels show the original data, while the right
panels represent the data after the three step filtering approach. From the boxplots
it becomes evident that the number of outliers could be significantly reduced for
the NEGIS subset. This applies for both components vx and vy. However, a minor
reduction of the standard deviation as evident from Table 6.1 implies that only few
large outliers were present and fast and low velocities coexist in this example. The
Sentinel-1 velocity mosaic of Greenland covers a wide range of velocities in both
directions wherefore the effect of successfully removed outliers becomes hidden in
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(a) (b) (c)

Fig. 6.9: Surface velocities of the Greenland Ice Sheet (magnitude): (a) Original data (b)
Filtered data. (c) Removed data. The left panel indicates the locations of the
tested regions: 1 - Petermann Glacier, 2 - subset of the North East Greenland Ice
Stream (NEGIS).

the boxplots shown in Figure 6.10. The latter also applies for the minor reduction of
the standard deviation in this example as shown in Table 6.1. The small reduction of
0.4% of the standard deviation of vy for Petermann Glacier can be attributed to the
fact that only few outliers were present in this example (Table 6.1). In the following,
the effects of the presented filtering strategy on the three test regions in Greenland
are shown in more detail.

Sentinel-1 Greenland velocity mosaic

The velocity mosaic of the Greenland Ice Sheet was obtained by intensity offset
tracking on 6-day repeat-pass Sentinel-1A/B acquisitions. For this we employed
all available Level-1 Single Look Complex (SLC) products acquired in IW TOPS
mode between 01 December 2016 and 01 March 2017 resulting in a total amount
of 1779 image pairs. Prior to the coregistration of image pairs, successive bursts
of each acquisition were mosaicked. Then intensity offset tracking was performed
as described in Section 6.6.1. After testing several window sizes we choose a final
search window size of 1000 m in both range and azimuth directions. Offsets with
a normalized cross correlation below 0.1 were considered erroneous and excluded
from the analysis. The single velocity fields were gridded to 250 m and masked
by a manually adjusted version of the Bedmachine ice mask (Morlighem et al.,
2014; Morlighem et al., 2015). This excluded large areas of open water and hence
reduces the computation time of the filtering steps significantly. After filtering of
the single velocity fields mosaicking was performed as described in Section 6.3.3.
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(a) (b)

(c) (d)

Fig. 6.10: Boxplots of the three regions in Greenland. (a) In x-direction before filtering. (b)
In x-direction after filtering. (c) In y-direction before filtering. (d) In y-direction
after filtering.

It is very important that the a-priori velocity field used in the first filtering step
(smooth segments) has a good spatial coverage. We therefore make use of the
MEaSUREs Multi-year Greenland Ice Sheet Velocity Mosaic which shows no data
gaps but includes data acquired between 01 December 1995 and 31 October 2015
(Joughin, B. Smith, Howat, and Scambos, 2016).
While Figure 6.9a shows the Sentinel-1 velocity mosaic of Greenland prior to the
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region
compo-
nent

mean
before
[m a−1]

mean
after
[m a−1]

standard
deviation
before
[m a−1]

standard
deviation
after
[m a−1]

Recovery vx -49.83 -60.65 222.00 99.49
Glacier (RG) vy -5.82 -7.40 203.77 69.09
RG slow vx -13.44 -16.84 111.34 6.62
flowing region vy -3.47 -4.63 104.99 4.42
RG fast vx -518.72 -530.76 243.28 144.13
flowing region vy -373.49 -374.38 242.39 110.98
RG line of vx -59.60 -57.59 183.84 43.04
outliers vy -8.01 -15.02 169.18 20.10
RG shear vx -269.21 -296.07 278.77 202.53
margin vy -3.93 0.89 243.12 112.50
Greenland vx -10.32 -11.92 134.11 124.85
mosaic vy 2.53 3.41 100.06 90.86
Petermann vx -200.95 -206.43 224.59 225.19
Glacier vy 568.97 586.79 474.42 472.45
NEGIS subset vx 176.43 179.93 246.22 243.5

vy 294.83 296.06 413.03 400.63

Tab. 6.1: Statistical properties of the velocity in x- and y-direction before and after applica-
tion of all three filter steps in the tested regions.

filtering, Figure 6.9b shows the data after applying the three step filtering approach.
The excluded velocity measurements are shown in Figure 6.9c. It becomes evident
that most removed data points are located in the central part of the ice sheet and
in its south-eastern part. On the one hand the acquisition of Sentinel-1A/B data is
concentrated on the margins of the Greenland Ice Sheet as these are the dynamical
key regions. Therefore, less velocity fields could be derived in the interior of the ice
sheet, leading to a decreased ability to fill gaps from multiple data takes. On the
other hand low velocities of < 20 m a−1 are prevailing in this region. Similar to the
slow flowing region of Recovery Glacier, this region is strongly affected by the median
and the directional filter. It is also evident from Figure 6.9 that many data points
were removed in the south-eastern part of the ice sheet. This region is known to
have poor coherence due to frequent snowfall wherefore velocity retrieval is difficult
in this area (Joughin, B. Smith, Howat, Scambos, and Moon, 2010; Nagler et al.,
2015). This large-scale example shows that the applied filtering strategy is capable
to discover regions in which the offset intensity tracking poses challenges. Thus it
is also conceivable to think of the filter as a tool to investigate systematically the
locations in which velocity retrieval is difficult. Individual fast flowing outlet glaciers,
where the offset tracking often relies on surface features remain well preserved
during the filtering procedure.
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Petermann Glacier

For Petermann Glacier we show a 2014 winter velocity field generated by intensity
offset tracking on a 11-day repeat-pass TerraSAR-X/TanDEM-X acquisition following
the approach described in Section 6.6.1. After testing several window sizes we
choose a search window size of 250 m in both range and azimuth directions, which
is close to window sizes employed in earlier studies (e.g. Rankl et al., 2014; Seehaus
et al., 2015). Offsets with a normalized cross correlation below 0.1 were considered
erroneous and excluded from the analysis. The final velocity field was gridded to
50 m.
Figure 6.11 shows the vy field of Petermann Glacier, which represents the main flow
component. Obvious outliers are marked as 1 in Figure 6.11a and are removed
during the first filtering step (smooth segments, Figure 6.11b). Also several data
points of the side margins of two tributary glaciers are removed by the smooth
segment filter (marked as 2 in Figure 6.11b). The median filter leads to more data
gaps in both of the mentioned tributary glaciers. The directional filter removes
several data points on stable ground (marked as 3 in Figure 6.11d). As the vy field
of Petermann Glacier is almost in the azimuth direction of the satellite scene, some
minor ionospheric effects remain visible.

(a) (b) (c) (d)

Fig. 6.11: vy of Petermann Glacier, Greenland: (a) Original data. (b) After the first filter
step (smooth segments). (c) After the second filter step (median). (d) After the
third filter step (directions). Circles and numbers indicate locations which are
discussed in the main text.
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NEGIS subset

Compared to the smooth TerraSAR-X velocity field of Petermann Glacier we selected
a rather noisy velocity field of a subset of NEGIS to further test the presented three
step filtering strategy. The velocity field is based on two Sentinel-1A scenes acquired
on 02 March 2016 and 14 March 2016. The data were processed as described in
Section 6.3.4.
The velocities in y-direction are presented in Figure 6.12. The original velocity field
is shown in Figure 6.12a, the results of the first filtering step (smooth segments) are
presented in Figure 6.12b, while Figure 6.12c and 6.12d show the data after applying
the second (median) and third (directions) filtering step respectively. Contrary to
the fast flowing region of Recovery Glacier, outliers are also evident in fast flowing
regions of >600 m a−1 (marked as 1 in Figure 6.12a). Most of these outliers are
successfully removed after the first filtering step (smooth segments, Figure 6.12b).
However, some outliers, e.g. in the shear margin (marked as 2 in Figure 6.12b)
are still present. These specific outliers are removed by the second filtering step
(median, Figure 6.12c). Also several data points on stable ground are deleted by the
median filter (marked as 3 in Figure 6.12c), an effect which is further amplified by
the third (directions) filtering step. In this example the filter is able to remove many
erroneous data points (i.e. only 71.58% of the original data points are remaining,
Table 6.2). However, depending on the further analysis an additional smoothing and
interpolation step might be necessary for this example.

(a)

(c)

(b)

(d)

Fig. 6.12: vy of the NEGIS subset, Greenland: (a) Original data. (b) After the first filter
step (smooth segments). (c) After the second filter step (median). (d) After the
third filter step (directions)
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region points before points after
percentage of
remaining data
points

Artificial flow field 49 000 39 906 81.44%
Recovery Glacier (RG) 7 748 376 6 422 695 82.89%
RG slow flowing region 563 242 442 413 78.55%
RG fast flowing region 95 280 91 092 95.60%
RG line of outliers 514 596 414 873 80.62%
RG shear margin 140 551 121 734 86.61%
Greenland 28 087 899 26 632 467 94.82%
Petermann Glacier 1 036 193 989 318 95.48%
NEGIS subset 805 170 576 362 71.58%

Tab. 6.2: Number of data points before and after application of all three filter steps in the
tested regions.

6.4 Discussion

Our results demonstrate that the presented three step filtering strategy is capable to
remove the majority of outliers from remote sensing derived surface velocity fields.
Despite a positive qualitative impression when comparing the filtered velocity fields
with the unfiltered input fields (e.g. Figures 6.3, 6.5, 6.7) a quantitative test on a
synthetic velocity field with randomly included outliers revealed that the presented
filtering strategy removes up to 99.67% of erroneous data points (Figure 6.1). On
the other hand a maximum of valid velocity measurements is preserved throughout
the filtering. While from the rather noisy velocity field of the NEGIS subset 28.42% of
data points were removed by the filter, up to 95.60% of valid velocity measurements
were preserved for the relatively smooth velocity field in the fast flowing region of
Recovery Glacier (Table 6.2).
The three step filtering strategy applied in this study relies on several parameters
which can be adjusted by the operator. In the first filter (smooth segments) these
include a, w, nmin and σM . Lower values of a ∈ [0, 1] in (6.2) would lead to a lower
threshold during the classification of segments. As a result, segments would have
less elements and consequently more points would be removed. A higher value
can be chosen if the filtering procedure should be more defensive. Our sensitivity
analysis showed that a value between 0.2 and 0.4 removes most erroneous data
points (Figure 6.15). The factor w is designated to account for possible temporal
changes between the a-priori velocity field and the satellite derived velocity field
(Rosenau et al., 2015). It is therefore highly dependent on the expected changes
in the study region. Here we propose a value of 1.5 for regions where we expect
little changes between the a-priori velocity field and the raw input velocities. The
number of elements in a segment to be accepted, nmin = 8, is already proposed in
(Rosenau et al., 2015). We can confirm this in section 6.3.2, however, the result for

6.4 Discussion 53



nmin between four and twelve seem to be very similar. A higher value of nmin can
improve the result, if there are larger outlier areas, which are very smooth within
themselves. The offset tracking error σM in (6.3) is dependent on the resolution and
the revisiting time of the employed satellite and need to be adjusted correspondingly
by the operator (e.g. Mcnabb et al., 2012; Seehaus et al., 2015).
In the second filter (median) the parameter ϵm and the size of the moving window
can be changed. ϵm in (6.4) and (6.5) influences the threshold below which data
points are deleted and therefore the amount of removed points directly. The window
size should be larger than the size of the erroneous features, as otherwise the filter is
not able to remove them. At the same time, the window size should depend on the
resolution of the velocity field. A larger window leads to the removal of more points,
causing problems especially in shear margin regions. Therefore, this parameter
should be reconsidered in case of loosing too much data points during the second
filtering step. However, the size of the moving window plays also an important role
for the computation time. If a reduction of the computation time is necessary, e.g. in
the case of high resolution input data or large spatial coverage, a reduction of the
window size should be considered.
In the third filter (directions), the angular threshold α in (6.7) and the size of the
moving window can be adjusted by the operator. A changing value of α has the
strongest effect in slow flowing areas as there are only little differences between two
satellite images with a small time interval in between. Therefore, the direction of
the flow cannot be detected in many cases. This problem does not appear in fast
flowing areas, wherefore the strongest effect of the directional filter is evident in
slow moving regions.
Previous remote sensing studies rely only on one of the presented filtering steps to
exclude outliers from satellite derived velocity fields. While most large-scale studies
of ice streams and ice sheets rely on filters based on local variance within a moving
search window (e.g. Mouginot, Scheuchl, et al., 2012; Nagler et al., 2015), studies
examining mountain glaciers also make use of directional filters employing certain
angular thresholds to which neighboring data points are allowed to deviate (e.g.
Scherler et al., 2008; Burgess et al., 2012). In order to find segments of continuous
glacier flow Rosenau et al. (2015) implemented a gradient based filtering approach.
The latter has been successfully applied on Landsat derived velocity fields for numer-
ous outlet glaciers in Greenland (Rosenau et al., 2015).
In this study all of these approaches were connected in series. This way erroneous
data points are successfully removed even if an outlier is not detected in the previous
filtering step. This is evident for example in the shear margin of Recovery Glacier
(Figure 6.5). In this example, 54.23% of the removed data points were detected by
the first filter (smooth segments), 12.04% by the second filter (median) and 33.73%
by the third filter (directions).
Our results show that the different methods used in the three filtering steps have
different effects on the velocity field. While the first two steps remove clusters which
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are noisy in magnitude, the last one removes data points with false flow directions.
The segment filter can remove clusters, which are smooth within themselves but
having an offset to surrounding points. The median filter on the other hand is
capable to remove features with a smoother transition from correct to incorrect data
points. We found that the order of the three filtering steps has a significant impact
on the results. We therefore tested all possible arrangements and the presented
procedure turned out as being most effective. The major cause for this is that the
first filter relies on segments, meaning that once the second and third filter steps
were removing individual points, there were less clusters and with that the first filter
becomes less successful.
In this study it has been shown that the combination of three separate filtering algo-
rithms is very effective for removing outliers from surface velocity fields. However,
it should be noted that it is not possible to employ the complete filtering strategy
for all settings of glaciers. This is mainly because an input to the segmentation
filter is an a-priori velocity field with a good spatial coverage. In this filtering step,
the difference of neighboring points in the a-priori field is taken to compute the
accepted error between two points in a segment. This means that a missing value
in the a-priori field would also lead to a missing value in the result, even if the
corresponding value is a valid velocity measurement. For the examples shown in this
study, this is not a problem as we rely on large scale high resolution ice motion fields
available through the MEaSUREs program. These mosaics were compiled from data
of various remote sensing sources including ALOS PALSAR, Envisat ASAR, ERS-1/2,
Landsat-8, RADARSAT-1/2 and TerraSAR-X and show no gaps in our study regions.
For many mountain ranges no such compilations are available yet, specifically for
smaller mountain glaciers. This limits the use of the smooth segment filter in these
regions. However, it has been shown previously that filters based on local variance
within a moving search window or a directional threshold are capable to remove
many outliers in such areas (Scherler et al., 2008; Burgess et al., 2012; Heid and
Kääb, 2012a; Neckel et al., 2017). We therefore argue that even if the smooth
segment filter fails in these areas, robust results might be obtained by employing the
median filter and the directional filter.

6.5 Conclusions

We presented a new approach to filter outliers of remote sensing based glacier
velocity fields. The approach consists of three individual steps, with each filter
detecting different types of incorrect data points. The combination of the three filter
steps leads to a robust filtering of data, so that the standard deviation of the velocity
field is reduced significantly, while a reasonable number of data points (72-95%)
is preserved. Velocity retrieval is particularly challenging in slow moving areas,
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which leads to standard deviation values up to a factor of ten of the mean velocity.
With our filter, this can be reduced to a factor of 0.5 to 1, leading to data sets
with acceptable measurement errors. Also in areas of high velocities, the standard
deviation is significantly reduced, leading to higher accuracy in estimates of ice
discharge at grounding lines of fast ice streams and hence improved measurement
of mass loss of ice sheets. As the procedure does not manipulate the values of the
velocity field, no smoothing of velocity gradients occurs, which is important for
glaciological applications. Due to its efficiency, this filtering processor is also suitable
for future missions dealing with big data volumes.

6.6 Appendix

6.6.1 Intensity Offset Tracking

In this study surface velocities are obtained by intensity offset tracking on spatially
lower resolved Sentinel-1 Terrain Observation with Progressive Scans (TOPS) Inter-
ferometric Wide swath (IW) SAR data (∼2.3 m × 13.8 m in range and azimuth) and
spatially higher resolved TerraSAR-X stripmap data (∼1.4 m × 1.9 m in range and
azimuth). While a full Sentinel-1 scene covers an area of approximately 250 km ×
200 km on the ground a TerraSAR-X stripmap scene is restricted to approximately
30 km × 50 km resulting in a trade-off between spatial resolution and ground cover-
age between both sensors. Independent of the sensor, repeat-pass acquisitions of the
respective satellite need to be available for applying intensity offset tracking. While
the repeat-pass of Sentinel-1A/B takes 6 days the revisiting time of TerraSAR-X is 11
days. In a first step data from successive repeat-passes of the respective satellite are
coregistered based on precise orbit information and a digital elevation model (DEM).
A great advantage of this new generation of SAR satellites is that precise orbit infor-
mation is aided by an on-board Global Navigation Satellite System (GNSS) receiver.
Therefore, no stable ground control points or global fits are required for the initial
coregistration of repeat-passes and a precise coregistration over moving ice surfaces
is possible (Pritchard, 2005; Nagler et al., 2015). For each coregistered image pair
offsets in range and azimuth direction are then calculated by cross correlating the
backscatter intensity in predefined moving search windows (e.g. Strozzi et al., 2002).
In order to improve the accuracy of the estimated shift an oversampling factor is
applied to the correlation function (Jezek, Floricioiu, et al., 2009). Depending on the
spatial resolution of the sensor and the anticipated ice movement between satellite
passes the size of the search window is adjusted by the operator. Range and azimuth
offsets are finally translated into metric surface displacements and projected into a
polar stereographic coordinate system.
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Fig. 6.13: Flowchart of the filter algorithm
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Fig. 6.14: Sensitivity of the first filter (smooth segments) to w. Data points that passed the
filter are plotted as black points, while those that were removed are shown in
gray color. The left y-axis represents the value of ∆v, while the right axis denotes
the velocity. The selected value of ∆v is highlighted in orange. The blue line
displays the original velocity in x-direction along the profile shown in Figure
6.3d.

6.6.2 Filter Parameter Sensitivity Tests

Here we present additional information on the sensitivity of the individual filter steps
to their parameters. The graphs displayed in Figures 6.14 to 6.18 are undermining
the discussion in Sections 6.3.2 and 6.4 and visualise the parameters used in our
applications to glaciers in Greenland and Antarctica. Each figure displays vx (blue
color, right y-axis) along a transect crossing a glacier and hence incorporate slow and
fast moving glaciers and the shear zone in their transition. The different parameter
values are shown as values along the left y-axis. In all cases, data points that have
been removed appear in grey color, whereas data points that passed the filter are
drawn as black points, or in orange color for those filter parameter setting that has
been our setting in the applications to ice sheets within this study.
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Fig. 6.15: Sensitivity of the first filter (smooth segments) to a.

P P'

Fig. 6.16: Sensitivity of the first filter (smooth segments) to nmin.

Fig. 6.17: Sensitivity of the second filter (median) to ϵm.
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Fig. 6.18: Sensitivity of the third filter (directions) to windowdir.
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7An Evaluation of Gap Filling
Methods for Glacier Surface
Velocity Fields Derived from
Remote Sensing

„A hole is a space where everything has been
moved out so that opportunity has space to move
in.

— CRAIG D. LOUNSBROUGH
Author and Life Coach

Context

In Ch. 6, the TerraSAR-X velocity field covering Recovery Glacier was filtered in
order to remove outliers. Unfortunately, false values in the data set are not the only
problem while preparing the velocities to serve as inversion input. Data gaps are
a typical problem in remote sensing derived velocity fields resulting from lack of
coherence, filtering, non-overlapping satellite orbits or failures of the instruments.
For many applications, inter alia basal friction inversion in ice sheet models, a grid
without gaps is necessary, thus a gap filling technique is required to solve the prob-
lem. The method of choice should avoid decreasing the quality of the velocity field
with the same reason why filtering was carried out: false values in the input velocity
field lead to errors in the inverted basal friction.
The following paper investigates different interpolation methods testing their useful-
ness for application to glacier velocities: linear interpolation, minimum curvature
with tension, natural neighbor interpolation and Kriging. All methods are already
implemented in some software packages, but the Kriging method needs an additional
speed up procedure to enable its application to big data sets. The speed up procedure
was implemented in python during this work. Advantages and drawbacks of the
method are balanced out against each other in order to find the best method. The
methods are applied to an artificial velocity field including different gap characteris-
tics for the purpose of quantifying estimation errors. All methods are then applied to
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the complex system of Recovery Glacier. None of the investigated techniques meets
all the requirements and preferences, but natural neighbor interpolation turned out
to be the best choice. The resulting velocity field serves as input for the inversion.
The basal friction resulting from the best interpolation will be compared to the basal
friction inverted from the non-smooth linear interpolated velocities in the course of
a sensitivity analysis. Thus, the influence of low quality velocity fields as a result of
inappropriate interpolation will be examined.
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Conceptual design of the study was done by C.Eis consulted by A.Humbert. C.Eis
designed and implemented the speed-up procedure of the Kriging method. The arti-
ficial flow field was created by C.Eis. The application of the interpolation techniques
NatInt, LinInt and MinCurv using the software packages Matlab and gmt as well
as the Kriging procedure on the artificial flow field and Recovery Glacier was done
by C.Eis. C.Eis analyzed the results. C.Eis wrote Sect. 7.2 and 7.3 ("Materials and
Methods", "Results"), which were proofread by A.Humbert. Both authors contributed
to the other sections. All figures were created by C.Eis.
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Abstract

Velocity fields of glaciers and ice sheets are required in many applications, like
assessment of changes in glacier dynamics, ice sheet mass loss or as model input
data. Based on satellite remote sensing, high resolution horizontal surface velocity
fields are derived. However, data gaps arising from e.g. coherence loss, are a
common problem. Those gaps need to be filled, while still keeping a high accuracy
of the product. Here we compare four different interpolation approaches: linear
interpolation, natural neighbor interpolation, minimum curvature with tension,
and Kriging. We apply the methods to an artificial velocity field for quantifying
their capability. Furthermore, we study a typical application, a large ice stream in
Antarctica, the Recovery Glacier. Up to 86% of the gaps can be filled with errors
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less than 5%. Computational costs for a field of 6137x3074 data points range from
1 min to 14.5h. We find that the natural neighbor interpolation method is the best
choice to obtain reasonably filled gaps. Data gaps along ice stream shear margins
are challenging for all methods, which exemplifies that further methods need to be
developed in future that are tailored specifically to those types of gaps.

7.1 Introduction

For a few decades satellite remote sensing has been used to derive horizontal surface
velocity fields of glaciers and ice sheets (e.g. Rignot, 2006; Joughin, B. Smith,
Howat, Scambos, and Moon, 2010). This has changed the understanding of ice sheet
dynamics considerably, as individual point measurements gained from ground-based
methods on ice sheets are sparse. While a simple estimation of the characteristic
time scale of ice dynamics leads to 100 years, glaciers in Greenland, Antarctica and
all other glaciated areas have, however, change on sub-decadal time scale as the
system responds with acceleration to climate change. In addition to that, glaciers
e.g. in Greenland also undergo a seasonal variation in glacier speed. Observations
of surface velocities are becoming ever more important to assess the change of the
natural system. The era of high resolution (3-20 m) satellites began with ERS-1/2,
Landsat, Radarsat, ALOS Palsar, TerraSAR-X and is continued with the Sentinels that
are sustaining Earth observation from space in the next decades. All those sensors
can be used to derive surface velocities of glaciers based on interferometry or on
offset tracking, either using features or speckle (Joughin, B. Smith, Howat, Scambos,
and Moon, 2010; Fahnestock et al., 2015; Nagler et al., 2015; Kääb et al., 2016;
Mouginot, Rignot, et al., 2017).

Although, the resulting fields have a large areal coverage in general, data gaps
arise. These gaps result typically from lack of coherence, removing outliers, non-
overlapping satellite orbits or instrumental failures, although these issues are sig-
nificantly reduced due to reduced repeat pass periods available today. Often it is
necessary to fill the gaps, e.g. to use the velocity field as a model input.
There are three different approaches to do this. One approach of gap filling is
data fitting, e.g. proposed in Wang et al. (2012). In general, such methods use a
regression to approximate values in data gaps. Therefore, they do not fit the input
data points exactly. The advantage is that these methods can also work for very
erroneous data sets and work simultaneously as a smoothing. However, using such
an approach features can be lost because they are smoothed out. A combination of
the processing steps, filtering and interpolation, allows little control by the user. It is
preferable to filter the data set in a separate step before the gap filling. Afterwards,
it is more important to fit the data points instead of approximate them.
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Beside the mathematical method, there are other concepts that may be engaged.
New sensors such as Sentinel 1 and 2, Landsat 8 with repeated coverage may allow
to fill in gaps. Mouginot, Scheuchl, et al. (2012) did apply this concept. This can,
however, only be conducted if it is justified to assume that the system does not
change between the acquisitions or the velocities are contemporaneously derived
from different sensors. While this may be reasonable in the interior of ice sheets,
it may not be appropriate for outlet glaciers in Greenland or glaciers in warmer
climates with strong seasonal variability. In that case, mismatches between different
fields from different times can occur. If specific surface conditions are the reason
for the lack of data, none of the radar sensors may lead to retrieval of velocity and
in consequence, there may be areas where such a procedure would fail. Another
disadvantage of filling gaps with additional data is that this can cause a loss of quality,
if the additional data are of lower quality. However, if filling gaps is appropriate, it
will certainly improve the overall situation prior to e.g. an interpolation procedure
and hence the goal to derive velocity fields in high accuracy from satellite remote
sensing can be more likely achieved.
Another way to fill gaps is to use interpolation methods, which fill the gaps by fitting
the input data exactly. If an interpolation of a field of a physical quantity is needed,
there are some important requirements and preferences on the method:

1. It should fill all data gaps.

2. The input data need to be preserved.

3. The solution should be smooth, while preserving patterns (e.g. shear zones).

4. The computational costs have to be low, what enables application to huge data
sets (in terms of data structure and memory).

5. An error estimation is preferable.

6. Easy handling is desirable.

To our knowledge, no interpolation procedure can fulfill all of these criteria in every
case (yet), however every method has its own advantages and disadvantages. It is
thus the decision of the user which method is the best for a particular application.
In this paper, we aim to discuss different methods to interpolate velocity fields of
glaciers derived by remote sensing data analysis. We describe the principles of linear
interpolation, natural neighbor interpolation, minimum curvature with tension, and
Kriging and apply the methods on an artificial flow field and a real world case with
sufficient complexity, the Recovery Glacier in Antarctica. We analyse the results with
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respect to different quality measures as well as the computational effort.

7.2 Materials and Methods

The problem of interpolating a velocity field derived by remote sensing can be
formulated in a mathematical language as follows:

Problem. Let x1, . . . , xn with xi = (xi, yi) be a set of locations of n scattered input
data points. The corresponding values are zi = g(xi), i = 1, . . . , n whereby g is an
underlying function g : R2 → R. The task is to find an interpolant f ∈ H with
H =

{
h : R2 → R | h(xi) = zi ∀i = 1, . . . , n

}
. With this information it is possible to

compute the value z = f(x) at any given position x including all gap locations on the
grid G of the velocity field.

A number of techniques have been developed to interpolate the case of a spatial
distributed quantity, e.g. linear interpolation, bi-cubic splines, radial basis functions,
interpolation filters, inverse distance weighting, nearest and natural neighbors,
minimum curvature and Kriging (Amidror, 2002; Spedding and Rignot, 1993;
W. H. F. Smith and Wessel, 1990; Shepard, 1968; Cressie, 1990; Nogueira et al.,
1997). This study presents the advantages and disadvantages of four very different
approaches. We selected Kriging as a very complex technique also used in other
geospatial applications. In contrast to other tools, the Kriging method provides an
error estimation, which is a huge benefit. A major problem with the Kriging method
is that it needs a huge amount of computational time and memory. Therefore,
different advanced features were proposed, e.g. covariance tapering (Furrer et al.,
2006) and optimally weighted cluster Kriging (Stein et al., 2015). This study also
uses some advantages of these methods to reduce the computational costs, however
this may limit the quality of the result. We will test the usefulness of the Kriging
procedure in the case of glacier flow velocities and compare the results to three
simpler methods: linear interpolation, natural neighbor interpolation and minimum
curvature with tension.
The interpolation methods are based on weighting special points in the vector field
around the point of interest. The easiest way utilized by many methods, e.g. linear
interpolation, is to use only the distance between the points to compute the weights.
A similarity between all distance based methods is that they assume that points
close to each other are more similar than points far away from each other, under
the assumption that the physical field to be interpolated is continuous. The Kriging
procedure is also based on distances, but takes statistical information into account.
There are also other strategies, e.g. the area based natural neighbor interpolation.
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The latter two methods have the advantage that they do not put too much weight
on groups of data points in a small distance. Characteristics of the methods are
summarized in Tab. 7.1.

7.2.1 A Velocity Field with Artificial Gaps

In order to test the performance of the different approaches, we set up a synthetic
velocity field (Figure 7.1a) with artificially distributed gaps (Figure 7.1b). This
allows us to assess the capability of each interpolation method. The velocity field
has a size of 1000x1000 data points with a pixel size of 1m. We simulated single
missing values, stripes, a missing satellite scene (region A), and unavailable data in
a shear margin (region B). The latter may be the consequence of poor data quality in
these zones and is a quite typical case. In total, about 14% of the data points of the
true signal are removed to create the interpolation input data (4.9% single missing
values, 1.7% region A, 2% region B, 5.5% stripes).

7.2.2 Recovery Glacier

This study focuses on one real case the Recovery Glacier, situated in East Antarctica
and draining into the Filchner Ice Shelf. Recovery Glacier is covering a large area
between 80◦ S and 82◦ S, 10◦ W and 38◦ W, and has two side branches, the Ramp
Glacier and Blackwall Glacier. With the Shackleton Range framing the area on one
side and a very widespread upstream area of low flow velocities, this glacier is
obeying several different types of flow regime and is thus a test case with quite some
complexity. The gap characteristics include various types, ranging from small to
large gaps and from round to elongated. They occur in both fast flowing and slow
flowing areas and there is a lack of information in shear margins. Summarizing
these points, it is a representative example for many other cases, whether in another
region or on data from another sensor.
The velocity field is derived from TerraSAR-X data in 2012 and 2013 (Floricioiu et al.,
2014) by applying the speckle tracking technique to 150 stripmap pairs recorded in
intervals of eleven to 22 days. They have a size of 30x45 km2 each with a resolution
of 3 m. In Lüttig et al. (2017) a combination of three different filters is applied on
the resulting velocity fields to remove outliers and therefore improve the quality
significantly. Outliers are removed by detection of smooth segments, using the
median and constraining the variability of the flow direction of nearby data points
leading to data gaps at the detected locations. Afterwards the function grdblend of
the open source software tool GMT (Wessel et al., 2013) was used to generate a
mosaic covering the entire Recovery Glacier. Overlapping data points are averaged
in this process. The result is a velocity field with 6137x3074 data points with a grid
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(a) (b)

(c) (d)

(e) (f)

Fig. 7.1: Test case artificial velocity field. (a) Artificial velocity field serving as the true
signal (Truth). (b) Test velocity field with artificially distributed gaps taken as
input to test the different interpolation methods. The labeled regions should
simulate a missing satellite scene (A) and missing values in the shear margins (B).
Interpolated fields using (c) LinInt. (d) MinCurv. (e) NatInt. (f) Kriging.
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Fig. 7.2: First component of the remote sensing derived velocity data field that serves
as input data for the interpolation. Location is the Recovery Glacier System,
Antarctica. The Black line describes a profile from P to P’. The region marked with
a rectangle will be discussed in the results section. The white color presents no
data locations.

spacing of 156 m in the Antarctic Polar Stereographic coordinate system (WGS 84 /
EPSG:3031).
Already before the filtering process the data set contains many gaps, which is of
course enhanced while removing outliers. There is also no information available
in the velocity field about the regions between the side branches of the Recovery
Glacier, Blackwall and Ramp glacier. Because extrapolation outside of the convex
hull of the data set leads to very erroneous results for all methods, we used as an
additional information the velocity field of Rignot et al. (2011b) and Rignot et al.
(2011c) at the margins of the covered area. This edge is resampled to the grid
spacing of the velocity field of the Recovery Glacier and cut around it with a distance
of about 25 km. The resulting input data for the different interpolation procedures
can be seen in Figure 7.2. We show in all examples the first component of the
velocity vector because this is the main flow direction of the Recovery Glacier. The
other component is treated in the same way, but not displayed here, because the
interpolation procedures do not show a different behavior applied on it.

7.2.3 Linear Interpolation

The linear interpolation method is one of the easiest ways to solve Problem 7.2. For
the sake of completeness we want to give a short outline of the method. For a more
detailed description, see e.g. Amidror (2002).
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A linear interpolation on scattered input data points as in our case, needs a pre-
processing step in which the data set x1, . . . , xn is triangulated. The Delauney
Triangulation is the preferred method and widely used because it maximizes the
minimal angle of the triangles. Therefore, the triangles are as equilateral as possible.
After triangulating the data set, the interpolation procedure is applied on any
interpolation point x inside the corresponding triangle. Assuming this triangle has
the vertexes x1, x2 and x3, the linear interpolator is a weighted average of the
values z1, z2 and z3:

z = az1 + bz2 + cz3 (7.1)

with a + b + c = 1. The coefficients a, b, and c are the barycentric coordinates of the
interpolation point x calculated by solving the linear system of equations (7.2).

ax1 + bx2 + cx3 = x

ay1 + by2 + cy3 = y (7.2)

a + b + c = 1

In this paper, we used one of several existing implementations, the MATLAB function
scatteredInterpolant. This function provides beside others an option to use the
method linear. We denote this method in the following with LinInt.

7.2.4 Minimum Curvature with Tension

This method was introduced by W. H. F. Smith and Wessel (1990) and is a gener-
alization of the minimum curvature interpolation. The idea is to lay a thin elastic
plate with minimal strain energy through the given data points at the positions
x1, . . . , xn. This surface is called minimum curvature surface and equivalent to the
natural bi-cubic spline. To create any other surface interpolating the given data
points, more work has to be done on it. To avoid oscillations in this surface W. H. F.
Smith and Wessel (1990) established a modification which relaxed the condition
on the surface that it must minimize the total curvature. For this purpose they
use a tension parameter, which makes it possible to stretch the plate additionally
to bending it. The method is implemented in GMT (Wessel et al., 2013), where
equation (7.3) is solved to compute the values at all positions x ∈ G.

(1 − T )∇2(∇2z) + T∇2z = 0 (7.3)

with the tension parameter T ∈ [0, 1]. For T = 0 this gives the minimum curvature
interpolation and a harmonic surface is calculated for T = 1. To avoid aliasing short
wavelengths a pre-processing step has to be carried out using the GMT function
blockmean. The procedure computes the mean position and value for every block
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derived from a given block size. In the following, this method is denoted with
MinCurv.

7.2.5 Natural Neighbor Interpolation

This method is another local method, also described in detail in Amidror (2002).
It needs an additional pre-processing step in which the Voronoi tesselation of the
data set x1, . . . , xn must be found. This means that the entire plane is divided into
disjoint areas. Each Voronoi polygon Vi contains only one given data point xi and
only the area which is not closer to any other data point xj , which is defined in
equation (7.4).

Vi =
{
x ∈ R2|d

(
x, xi

)
≤ d

(
x, xj

)
∀j = 1, . . . , n

}
(7.4)

with d(a, b) describing the Euklidean distance between the points a = (a1, a2) and
b = (b1, b2).
Afterwards, the interpolation position x is added to the tesselation. The overlapping
areas of the new Voronoi polygon V corresponding to x with the areas of the old
tesselation polygons Vi are taken as weights for the interpolation. This means that
the natural neighbor interpolant is

z = f(x, y) =
n∑

i=1

A (Vi ∩ V )
A (V ) zi (7.5)

where A(P ) is the area of the polygon P . This procedure is implemented in the
MATLAB function scatteredInterpolant by using the natural method. In the following,
we denote this method with NatInt.

7.2.6 Kriging

The Kriging procedure is the best linear unbiased estimator (BLUE). It is linear
because it is a weighted average of the input data z1, . . . , zn, the expected value of
the estimator does not differ from the true value, and it minimizes the variance of
the estimation error. In contrast to other methods the weights are here determined
by the statistics of the input data. In this study we focus on ordinary Kriging because
in this case no knowledge about the mean of the input data is needed. Therefore,
the estimator is defined by equation (7.6).
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z∗ = wz
n∑

i=1
wi = 1

(7.6)

with w = (w1, . . . , wn)T and z = (z1, . . . , zn)T . The weights w are chosen such that
they hold equation (7.7) assuming that z is the true value at the location x.

min
w∈Rn

(
E (z − z∗)2 )

= min
w∈Rn

(
2

n∑
i=1

wiγ
(
xi, x

)
−

n∑
i=1

n∑
j=1

wiγ
(
xi, xj

)) (7.7)

where γ is called semivariogram and is defined by equation (7.8). The variogram
(2γ) can be estimated by fitting a variogram model to the point cloud of variogram
values over the distance of the given data points. The variogram model is often
chosen as spheric, exponential or Gaussian model function. For big data sets it
makes sense to use only a subset of the input data set to determine the estimated
variogram to speed up the procedure. This subset can be found by choosing uniformly
distributed points of the input data, however, it has to be ensured that the subset is
representative for the entire data set.

2γ(xi, xj) = V ar
(
zi − zj

)
(7.8)

It can be shown that the solution of the minimization problem equation (7.7) leads
to the interpolator equation (7.9).

z = γT Γ−1zi + (1 − γT Γ−11)(1T Γ−11)−1(1T Γ−1zi) (7.9)

with

γ =
(
γ(x, x1), . . . , γ(x, xn)

)T ∈ Rn

Γ =
(
γ(xi, xj)

)
i,j=1,...,n

∈ Rn×n

1 = (1, . . . , 1)T ∈ Rn

In applications the number of data points xi can be large, which leads to a large
vector γ and a large matrix Γ. In this case, solving equation 7.9 can be very memory
consuming. Thus, it is necessary to reduce the problem to a smaller system. This
means, the matrix Γ becomes a sparse matrix by setting most of its values to zero.
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Thus, most of the equations of the system are cancelled. This can be achieved e.g.
by defining a maximal distance d ∈ R from the location x to the surrounding data
points as described in equation (7.10). Only data points fulfilling the condition get a
non zero value in Γ.

D = {xi|i ∈ {1, . . . , n}, ∥x − xi∥ ≤ d} (7.10)

It is not useful to take the same value d for all searched points, as the data set may
contain gaps of very different sizes. To fill also huge gaps, it would be necessary to
choose a high value for d because otherwise Γ would be a zero matrix. This also
means that points in very small gaps had a high value d. For points, which are closer
to existing data points, many values in Γ would be non zero. Thus, Γ is not as sparse
as it could be and in consequence the solution of the system of equations is more
complex.
It is also not useful to take different values d for every new data point, because this
would mean that the Kriging function has to be called with different parameters for
every data point. This possibility would thus increase computing time strongly.
To speed up the procedure, we choose the same conditions for a set Ci of new data
points. We categorize the gaps in a certain number of clusters by using three criteria
for the cluster algorithm: the area, the perimeter, and the maximal width of the
gaps. The maximal distance di for the all data points in the cluster Ci is then defined
as the maximal width of all gaps in the cluster Ci.

di = max
j∈{1,...,m}

{w(gj)} (7.11)

with g1, . . . , gm gaps in cluster Ci and w(g) width of the gap defined by.

w(g) = d
(
(xmin, ymin), (xmax, ymax)

)
(7.12)

where xmin, ymin, xmax, and ymax describe the outer coordinates of the gap and
d(a, b) the Euklidean distance between the points a = (a1, a2) and b = (b1, b2). In
this way, it is guaranteed that also for the middle point in the widest gap, some data
points are selected for the Kriging procedure and Γ is not empty. For some clusters,
e.g. line shaped gaps, this radius can be huge and is therefore not the best choice for
di. In this case, di has to be further reduced, e.g. by defining di as the range r of the
variogram.
Another option is to select only a certain number m of nearby data points as non
zero values in Γ. The disadvantage of either way of reduction of selected data points
is that it can lead to sharp edges in the result, but without a reduction of the size
of the problem it cannot be solved. Finding a balance between too many and too
few points can be very difficult and strongly depends on the distribution of the data
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Tab. 7.1: Characteristics of the four different methods.

Characteristic LinInt MinCurv NatInt Kriging

local/global local global local global
based on distance curvature area covariance
software package MATLAB GMT MATLAB R

preprocessing triangulation blockmean
Voronoi tes-
selation

-

points as well as the resolution of the velocity field.
After defining the subset of data points used for the cluster Ci, we applied the
function krige of the gstat package implemented in R to the cluster (Pebesma, 2004;
R Core Team, 2017). Thus, it is possible to interpolate the different clusters in
parallel and combine them afterwards to one new velocity field with filled gaps.

7.2.7 Quality Measures

We can compute the errors of the methods applied on the artificial velocity field by
calculating the difference between the interpolated values and the true signal in all
gap positions, ∆vx =

(
(∆vx)1, . . . , (∆vx)n

)
. We will call the mean of the absolute

error µ(|∆vx|) and the corresponding standard deviation σ(|∆vx|). Additionally, we
will compute a goodness of fit gf(∆vx) =

√∑n
i=1(∆vx)2

i . For the Kriging procedure,
an error estimation is also provided by the algorithm. A good interpolation method
will achieve small values for all three statistical values. Furthermore, the solution
has to be smooth, in other words, lines or other artifacts visible in the resulting
velocity field are highly undesirable. For every method we will calculate how many
gaps are filled with an error (∆vx)i of less than 5%.

7.3 Results

7.3.1 Application to a Velocity Field with Artificial Gaps

Figure 7.1 shows the results of the four different interpolation methods. While
smaller gaps are not challenging for any of the interpolation approaches, all of them
show errors in the two large gaps (Figure 7.3). Region A was best interpolated
by the linear approach, followed by NatInt and the Kriging procedure. MinCurv
shows in this case the highest differences. This impression is additionally enhanced
by erroneous values in the entire shear margins, which result from the necessary
pre-processing step of the method. The other large gap labeled with B shows even
worse interpolation results.
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Statistic LinInt MinCurv NatInt Kriging

µ(|∆vx|) 11.68 15.68 12.3 13.15
σ(|∆vx|) 36.22 37.62 35.39 51.05
gf(∆vx) 1388 1487 1367 1923
µ(|∆vx|) in A 3.02 37.16 13.07 11.49
σ(|∆vx|) in A 3.90 30.87 15.12 18.47
gf(∆vx) in A 530 5194 2149 2339
µ(|∆vx|) in B 85.25 88.85 83.32 90.7
σ(|∆vx|) in B 59.43 54.47 57.27 110.52
gf(∆vx) in B 1387 1391 1350 1909

Tab. 7.2: Statistics of interpolation errors ∆vx with µ mean, σ standard deviation and
gf goodness of fit in all gaps as well as limited to region A and B. All values in
m/a.

In total, LinInt fills 85.9% of the gaps with values with an error of less than 5%,
closely followed by NatInt with 83.9% and Kriging (80.2%), while MinCurv (71.2%)
is substantially worse. Figure 7.4 presents histograms of the differences between
interpolated velocities and original velocities in gap positions and hence, the error
of the method. LinInt, MinCurv and Kriging all exhibit a peak with small differences.
The MinCurv approach has more large errors in regions with a velocity smaller
than 50m/a, whereas linear and natural neighbor interpolation have better results
there. Velocities between 100 and 500m/a are best interpolated by the MinCurv
approach. Table 7.2 supports the first impression that the linear and natural neighbor
interpolations give the best results, with statistical information. They have the
smallest errors on average and also the smallest Euklidean norm serving as goodness
of fit with regard to all gaps. In the shear margin (marked with B) NatInt can obtain
the smallest values, while the Kriging procedure as already expected has the largest
errors. Region A is by far best fitted by LinInt with a mean absolute error of about
3m/a. NatInt and Kriging exhibit similar statistics in the intermediate range, while
MinCurv is massively erroneous in this area.

7.3.2 Application to Recovery Glacier

Natural Neighbor Interpolation

All gaps are reasonably filled using NatInt (Figure 7.5). The interpolated field is
sufficiently smooth meaning that there are no kinks in the result, although the
derivative is theoretically not continuous in the data points, which leads to peaks
and pits at these locations that will influence applications that require gradients
of the velocity field. Features like shear zones are nevertheless preserved. NatInt
has the advantage that it is based on areas and not on distances. Therefore, it
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(a) (b)

(c) (d)

Fig. 7.3: Error of the four methods (difference between interpolated values and true signal):
(a) LinInt. (b) MinCurv. (c) NatInt. (d) Kriging.

Tab. 7.3: Computational costs of the different methods (averaged over 10 runs).

Method Computation Time [s]

LinInt 1min
NatInt 1min
MinCurva 20min
Krigingb 14,5h

aincluding the time needed for the pre-processing (gmt
grd2xyz and gmt blockmean)

busing three computing nodes on AWI’s super computer (each
has 2x Intel Xeon Broadwell 18-Core CPUs with 64GB RAM)
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Fig. 7.4: Stacked histograms of the errors of the different interpolation procedures. The
colors distinguish velocity classes of the expected result.

can compensate for data density variations and does not overweigh data clusters.
The method performs well in both regions, data clusters and sparse areas, and is
therefore a good choice for the investigated data set.

Linear Interpolation

The computation time of this approach is very fast, even the best we achieved in
our experiments as can be seen in Table 7.3. The method is thus easy and quick to
use to get a first overview. However, already a first look on the results in Figure 7.6
shows the disadvantages of the linear interpolation. In order to distinguish better
between the results, we plotted the differences between the outcomes of NatInt
and LinInt. Although the solution is continuous, it is not smooth, because the first
derivative is not continuous between the triangles described in the methodology
section. Therefore, edges of the triangles are visible in the form of lines. These
discontinuities are not acceptable as a good solution and therefore the application of
a linear interpolation is not useful in the case of the glacier velocity field described
in the methodology section.
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Fig. 7.5: Interpolated velocities of the Recovery Glacier using NatInt. The results of the
other methods will be displayed in difference to this solution.

Fig. 7.6: Resulting velocity difference between NatInt and LinInt.
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Fig. 7.7: Solutions of MinCurv with different T along the profile P - P’ (Figure 7.2)

MinCurv

Because of its efficiency (Table 7.3), it is reasonable to test the method with different
tension parameters T . All solutions have the similarity that they are continuous in
both the interpolator and its first and second derivatives. For a small T , the plate
is relatively inelastic, which leads to sharper edges in the result as can be seen in
Figure 7.7. In contrast, higher values in T result in softer edges and a smoother
overall appearance. We chose T = 0.4 in the following analysis resulting in a surface,
which is very similar to a harmonic surface. Therefore, the overall appearance is
smoother without losing the minimum curvature condition completely.
The procedure needs an additional pre-processing step. The gmt function blockmean
computes the mean of defined blocks of the velocity field to avoid spatial aliasing.
Therefore, the user has to define a block size, which has a strong influence on
the results. In our analysis we chose a blocksize of 1 km. We found that in some
cases, a poor choice can result in assigning the overall mean of the data set to all
interpolation positions. Another effect of this pre-processing step is, although the
algorithms theoretically fits all input data points, in practice, this is not the case.
Changes in resolution lead to undesired deviations from the original data points,
which is also indirectly visible in Figure 7.9. This figure shows the difference between
NatInt and the other methods along the profile P-P’ (Figure 7.2). Knowing that the
other methods (especially NatInt) do not deviate from the original data points, it is
clear that MinCurv does not fit the input data. In this representation it becomes also
apparent how large the differences are in all parts of the glacier.
The results displayed in Figure 7.8 are very similar to those from NatInt in slow
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Fig. 7.8: Resulting velocity difference between NatInt and MinCurv.

flowing regions, but show a smoothing in the shear margins in consequence of the
pre-processing and differences in the very fast flow.

Kriging

The results of this method are presented as differences to NatInt in Figure 7.10. It
exhibits artifacts that are clearly generated by the speed-up procedure, which is
required to receive a solution in an acceptable time. The borders between areas
with different subsets of influencing points are visible. Therefore, the solution
contains discontinuities, which should be prevented in general. Despite this, the
resulting velocity field in the interior of glacier appears reasonable and there are no
significant differences to other interpolated velocity fields. A great advantage is the
error estimation obtained from the Kriging variance, presented in Figure 7.11. High
variance values reflect high uncertainty of the solution. As expected, this is the case
in wide gaps, where no input data is nearby. In contrast, smaller gaps are filled with
less erroneous values.

7.4 Discussion

We begin our discussion with the assessment of the methods to the artificial velocity
field, as only in this case we have a true measure to assess the quality of the
interpolated fields. None of the methods can handle the sharp transition between
fast and slow flow. We see slight advantages in NatInt and MinCurv. Both methods
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Fig. 7.9: Difference between NatInt and the other solutions along the profile P - P’ (Figure
7.2)

Fig. 7.10: Differences between the reference and the Kriging procedure.
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Fig. 7.11: Error estimation of the Kriging procedure: square root of the Kriging variance.

(a) (b)

(c) (d)

Fig. 7.12: Zoom into the area marked with Z in Figure 7.2, interpolated with the different
methods: (a) LinInt. (b) MinCurv. (c) NatInt. (d) Kriging.
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produce smoother edges in contrast to Kriging and LinInt. In addition, it is noticeable
that the patterns of the errors are similar for all methods except for the Kriging
procedure. This is also reflected in the error histograms presented in Figure 7.4,
where only the Kriging result differs and has the highest errors. The other histograms
indicate differences mainly in slow flowing areas.

For Recovery Glacier, all of the methods can fulfill some of the requirements de-
scribed in the introduction, but none of them can comply with all the requirements.
In sum, all methods work well for small gaps (few pixels), while larger gaps result
in major differences. In general, the methods produce reasonable results, while
existing structures are preserved. A result which can be seen as not sufficient is the
one of LinInt. In this case we see many artifacts because it is not as smooth as the
other solutions. Also the Kriging result is not smooth enough and clearly shows some
lines, which result from speeding up the procedure as described in the methodology
section. In the other cases, there are no visible discontinuities. Figure 7.12 shows
clearly the differences of the methods with regard to this issue.
Another aspect are the computational costs, which vary extremely between the
methods as shown in Table 7.3. While LinInt and NatInt as local methods need only
one minute, Kriging takes 14.5 hours, even though we used a speed-up mechanism.
MinCurv has an intermediate performance. However, the measured computation
times depend on details of the implementation, e.g. the programming language, and
give only a rough estimation.
The linear and natural neighbor interpolation can be utilized with minimal effort
because they are already implemented e.g. in MATLAB. They lead to the same
results independent from the user as they do not need the selection of an additional
parameter. The MinCurv algorithm is also implemented in a toolbox, but needs the
additional input parameter T and a parameter for the pre-processing step. These
parameters have a great influence on the solution, thus the user has to know which
solution he or she wants to receive. This is not the case for the Kriging procedure,
which is however also not very easy to use in the case of big data sets. Although, the
method is implemented in the R package gstat, it needs a speed-up to be feasible for
the amount of data. To achieve this, the user needs to specify at least one parameter
to define a radius of influencing points. Finding a good balance for this parameter is
sometimes difficult making Kriging the worst method from this point of view.
The only method providing an error estimation of the solution is Kriging. To esti-
mate errors of the other methods an analysis of synthetic flow fields like the first
application of this paper is necessary. MinCurv does not fit the data points exactly,
because an additional pre-processing step is mandatory. This samples the data to the
selected block size, which leads in some areas to an undesired smoothing.
An additional disadvantage of LinInt and NatInt is that there is no possibility for
extrapolation, as they are limited to the convex hull of the given data set. This is
caused by the triangulation, which is necessary prior to the the proper interpolation.
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Tab. 7.4: Assessment of the performance criteria of the four different methods.

Criterion LinInt MinCurv NatInt Kriging

all gaps filled ✓ ✓ ✓ ✓

smooth ✗ ✓ ✓ ✗

preserves input data ✓ ✗ ✓ ✓

easy to handle ✓ ✗ ✓ ✗

acceptable computational costs ✓ ✓ ✓ ✗

error estimation available ✗ ✗ ✗ ✓

In the presented case, this is a reason why additional information from another veloc-
ity field is taken into account. In regions where data coverage is sparse, this becomes
an issue, but there are opportunities to overcome this: a linear extrapolation based
on boundary gradients of the vector field and the nearest neighbor extrapolation.
Nevertheless, both extrapolation methods would lead to very erroneous results
outside the convex hull of the input data points.
Table 7.4 summarizes these findings and shows that LinInt and MinCurv are not
suitable in the presented case. Also Kriging is not useful for the application, be-
cause the error estimation does not balance all its disadvantages out. However, for
smaller data sets this might be the most interesting procedure. This would enable
the possibility to use Kriging without a speed up procedure, what maybe improve
its performance. NatInt fulfills nearly all criteria, except it does not provide an
error estimation. The latter might be overcome by testing its performance with
artificial fields as we presented here that mimic the characteristics of the application.
Therefore, we recommend NatInt as best choice for situations similar to this study,
hence the vast majority of applications of velocity fields over ice sheets, ice caps and
valley glaciers.
All four methods revealed problems in particular in the shear margins. More work
has to be done to overcome these challenges either by developing new techniques
or by improving existing methods, e.g. the Kriging procedure. A problem for this
method could be that the characteristics of the velocities in the shear margin are
different from those of the interior of the ice stream. Those are in turn different from
the characteristics in surrounding areas with comprehensive slow flow. However,
Kriging assumes a homogeneous velocity field. A procedure which does not need
this assumption has probably less problems in shear margins.

7.5 Conclusions

We compared four different interpolation methods to fill gaps in surface velocity fields
derived by remote sensing: LinInt, NatInt, MinCurv and Kriging. The approaches
result in partially very different solutions and not all of them are satisfying. We
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found the natural neighbor interpolation to be the best compromise between low
computational cost and reasonable interpolated velocity fields. Kriging, although
complex and renowned is not favourable for this application.

Applying the methods to an artificial velocity field, allowed to quantify the impact on
the ability to fill gaps of different characteristics. Data gaps across a shear margin,
which often arise due to difficulties for the feature tracking algorithm to find a valid
match, leads even with the best method to an underestimation of speed in the fast
flowing area of the glacier. The glacier would thus appear more sticky in applications,
like inverse modelling of basal friction parameters. The application to an artificial
velocity field also demonstrated that interpretation of seasonal speed-up, e.g. in
tidewater glaciers, is unlikely to be misinterpreted, as small-scale data gaps in the
fast flowing parts are well represented after interpolation. This is important for
upcoming satellite missions, like Tandem-L, that aim to deliver products as such as
weekly velocity fields.

Our results also demonstrate that there is still a requirement for improvement of
interpolation approaches in future. The impact of errors in interpolation of velocity
fields on estimation of e.g. basal friction and subsequently projections of ice sheet
mass loss is still to be assessed. The distribution of typical gaps in remote sensing
data and the variability in remote sensing velocity fields in itself, remains challenging
and deserves attention of applied mathematicians. With new missions acquiring big
data in terms of spatial resolution, efficiency and hence high performance computing
will in future also be a factor to be developed further.
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8Basal Properties of Recovery
Glacier from Inverse Modelling
and Observations

„Look beneath the surface; let not the several
quality of a thing nor its worth escape thee.

— MARCUS AURELIUS
Roman emperor and philosopher

Context

Basal conditions are the substance of many studies, in particular at Recovery Glacier
because they are a main driver of ice dynamics. It is assumed that several subglacial
lakes exist underneath Recovery Glacier fundamentally contributing to enhanced
flow. Basal conditions can derived from surface observations by inverse modelling.
The following article presents inverted basal friction of Recovery Glacier and com-
pares it with the outcome of other studies. Different lake identification criteria
become involved to get a more comprehensive picture of Recovery Glaciers bed.
Furthermore, a sensitivity analysis of the inversion is carried out. For this purpose,
the enhancement factor, initial and minimum values of basal friction as well as the
quality of the observed surface velocity is taken into account.
All experiments are conducted with ISSM using the Higher-Order approximation of
ice flow. The classical adjoint method with incomplete adjoints is used for solving
the inverse problem minimizing an advanced cost function as described in Sect. 5.2.
Linear and logarithmic misfit as well as a regularization are optimally weighted
by parameters derived from an L-Curve analysis. Filtered and unfiltered velocity
data are used as input for the inversion, interpolated on the model mesh using a
bilinear interpolation as standard in ISSM and a natural neighbor interpolation,
which turned out to be the best method in Sect. 7. Far upstream large effects of both
the interpolation and the filter can be seen. Unfiltered data lead to much smaller
values in basal friction in vast areas and patterns are clearly changed. This finding
demonstrates the importance of a filtering procedure prior to the inversion. Inter-
polation has less influence, however near the grounding line, differences between
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the methods are large. Minor effects can be seen by varying initial values and lower
bounds of the controlled parameter, basal friction. The enhancement factor leading
to smallest misfits in slow flowing areas is smaller as expected, E = 0.5, showing
that the ice is too soft without considering this parameter.

Contributions

The model setup was done by C.Eis with counselling A.Humbert and M.Rückamp.
All model runs were performed by C.Eis, including the sensitivity study of the en-
hancement factor, the initial values and lower bounds of the controlled parameter,
and the quality of the input velocities, as well as the L-Curve analysis. Calculation
of glaciological quantities (like basal drag, driving stress and slip ratio) and com-
putations of the rms of the different experiments were done by C.Eis. C.Eis and
A.Humbert analyzed the results and all authors discussed them. The publication text
was written by A.Humbert and proofread by all co-authors. Figures 8.4, 8.16 and
8.17 were created by C.Eis, all other figures were created by A.Humbert.
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Abstract

Recovery Glacier drains about 8 % of the Antarctic ice sheet and feeds the Filchner
Ice Shelf, that is suggested to be prone to changes in the oceanic forcing in future.
Recent studies have used radar data to infer basal properties in particular with
respect to the existence of subglacial lakes and its role in the genesis of the ice
stream. Here, we take a different approach and use inverse modelling to infer
the basal friction coefficient and basal drag. We use the Ice Sheet System Model
(ISSM) in higher order Blatter-Pattyn approximation. To overcome limitations
in a representative temperature field, we adopted this from a spin-up using the
Parallel Ice Sheet Model (PISM). Minimization of the cost function is using a high-
resolution TerraSAR-X derived surface velocity field as target. We conduct an L-curve
analysis and sensitivity study to ensure the robustness of the minimization. We find
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alterations between high and low basal drag in the main trunk, associated with ice
falls and large bedrock undulations in case of high drag and smooth basins for low
basal drag. The basal friction coefficient in the onset area of the ice stream is not
small, indicating non vanishing friction at the ice base, which is not conform with
subglacial lakes. This backs previous studies that lack evidence for the existence
of large subglacial lakes at the onset of Recovery Glacier. A shear margin, inferred
from radar satellite imagery, is matching with a transition to a lower basal friction
coefficient but not to patterns in basal topography. This rules out a topographically
driven formation of the ice stream. Given that the Recovery Glacier is resting on
a deep subglacial base, sediment basins and hence wet sediments may play an
important role in the onset of this ice stream.

8.1 Introduction

Subglacial lakes are suggested as a key element for the formation of ice streams.
One prominent example, where lakes were thought to play a major role, is the
Recovery Glacier System (Fig. 8.1) of the East Antarctic Ice Sheet (EAIS). With this
system being an important contributor of mass loss of the EAIS (Golledge et al.,
2017), understanding its dynamics is crucial. The original idea (Bell et al., 2007)
was that subglacial lakes at the onset of the ice stream deliver continuously water
acting as a lubricant. Two approaches can be taken to understand if this is likely a
driving mechanism at Recovery Glacier: (i) perform observations of subglacial water,
including existence of lakes and (ii) conduct modelling studies - and use both to
increase our understanding of ice stream genesis at this location.

Recovery Glacier is a particular interesting ice stream as it drains a large area
(996, 000 km2, 8 % of the area and 5 % of volume of Antarctica (Rignot, Bamber,
et al., 2008)) and it reaches about 1000 km into the interior of the Antarctic ice
sheet. As this glacier system is also very remote in terms of logistically accessibility,
field studies are limited, highlighting the importance of remote sensing.

Radar satellites with left looking capabilities that cover areas south of 80◦S open
thus a great opportunity. Among those sensors are high-resolution radar satellites
RADARSAT and TerraSAR-X/TanDEM-X. Also the altimeters ICESat-1 and CryoSat-2
are able to survey this area. The RADARSAT mosaic of Antarctica (Jezek, 1999)
exhibits the upstream area of the Recovery Glacier with areas that appear very
smooth, similar to the appearance of Lake Vostok. This was the basis for the
hypothesis of Bell et al. (2007) that these locations are large subglacial lakes.
Studies of B. Smith et al. (2009) and Fricker et al. (2014) were indicating a dynamic
connection between elevation changes and lake filling or drainage on time scales of
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Fig. 8.1: Overview map showing the Recovery Glacier system with its drainage basin in
black lines. The modelling area of this study is shown in colored dots representing
the basal topography. Background image is the RADARSAT mosaic of Antarctica
(Jezek, 1999).

Fig. 8.2: Overview map of Recovery Glacier including proposed subglacial lake positions
(black polygons). Observed velocities vobs (Floricioiu et al., 2014; Rignot et al.,
2011b) are presented on finite element nodes of the ISSM mesh (colored points).
Dashed white line shows the outline of the TerraSAR-X derived velocity field
(Floricioiu et al., 2014). The bold white line marks the approximate onset of
the ice stream, defined as velocities ≥ 20 m a−1. The dark grey polygons are
previously suggested lake outlines.

a few years. Both have been challenged in a recent study by Humbert et al. (2018),
of which we will use some data in this study to compare our modelling results.

The left looking capabilities of TerraSAR-X and TanDEM-X allowed coverage of
the Recovery Glacier in stripmap mode (3 m resolution). Although the surface of
steep ice falls within the main trunk is challenging the estimation of velocity fields,
Floricioiu et al. (2014) derived a high-resolution velocity dataset. This dataset is the
basis for inverse modelling in this study, after sophisticated filtering (Lüttig et al.,
2017) and interpolation (Eis and Humbert, submitted, 2019). Furthermore, the
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individual radar imagery allows to identify structures like crevasse fields, which can
be used to infer locations of high tensile stress.

MacAyeal et al. (1995) and Joughin, MacAyeal, et al. (2004) were early studies using
the classical adjoint method for inversions of surface velocity, elevation and thickness
data to infer basal properties. In particular they addressed the question if large ice
streams are in general resting on widespread till layers. The current generation of
ice sheet models allows to conduct inverse modelling in high resolution, which has
been done with a regional focus (Morlighem, Rignot, Seroussi, et al., 2010; Zhao
et al., 2018; Brondex et al., 2019). In the recent past, inversions became more
prominent for deriving an adequate initial state for projections of future mass loss
(Goelzer et al., 2018). An introduction to inverse methods and their applications
will be given below.

An early modelling study focussing on the basal shear stress of the Recovery and
nearby glaciers was conducted by Joughin, Bamber, et al. (2006). However, this
modelling attempt was limited by the lack of bedrock data, that only became
available in the last two years. A general finding of Joughin, Bamber, et al. (2006)
was that Recovery Glacier is resting on a bed that is a mixture of weak and strong
bed. This is contrasting to the ice streams along the Siple Coast, which are suggested
to rest on a weak subglacial till bed (Joughin, MacAyeal, et al., 2004; Kamb, 2001).
This conclusion was drawn based on the difference between driving stress and
simulated basal shear stress. The alternation between strong and weak spots was
argued to be due to the vicinity of the Transantarctic Mountains (in contrast to
the Siple Coast ice streams) and the ice stream potentially flowing alternating over
mountain ranges and sedimentary basins. In the continuation, we will see, that
despite the lack of bedrock constraint, this study captured quite some characteristics
correctly.

A challenge for inverse modelling of basal friction is the knowledge of the viscosity
and with that the temperature field of the glacier. Many applications used simplified
parameterizations for temperature (e.g., Joughin, Bamber, et al., 2006; Zhao et al.,
2018) or conduct a thermal spin-up with fixed ice sheet geometry in conjunction
with the inversion for the basal friction coefficient (Rückamp et al., 2018). Here
we use the 3D temperature and water content fields that have been derived from a
coarse resolution ice sheet model with a long spin-up as in Humbert et al. (2018).

Given that gradients of the bedrock topography are influencing the dynamics of the
system strongly, a decent knowledge of the bedrock topography is an important
prerequisite. This became available for Recovery Glacier only in the recent past
with airborne campaigns of Operation Ice Bridge (Leuschen et al., 2010, updated
2017), Forsberg et al. (2018) and Humbert et al. (2018). These surveys unveiled a

8.1 Introduction 89



more than 1000 km long marine based main trunk, with a deep trough exceeding
−2300 m about 270 km upstream the grounding line (Fig. 8.3). A subglacial ridge
just 50 km away from the grounding line, will certainly influence its future retreat
characteristics.

The intention of this study is to use the inverse modelling to infer the basal friction
coefficient and to interpret this parameter, as well as basal shear stress, with respect
to the existence of subglacial lakes at the onset of the ice stream. Also the simulated
contribution of sliding in the horizontal velocity profile is used to infer areas with a
wet base and/or underlying sediment.

The article is structured in the following way: we first present the mathematical
model, introduce the inversion approach, and lay out the model setup, before we
present the modelling results and compare them with data formerly presented in
Humbert et al. (2018).

Fig. 8.3: Basal topography in the modelling domain shown at the nodes of the finite element
mesh. The dark grey polygons are previously suggested lake outlines.

8.2 The Modelling Approach

8.2.1 Balance Equations

The mass balance for incompressible ice (omitting firn) is written as

div v = 0 (8.1)

with the glacier velocity field v = (vx, vy, vz).
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The momentum balance assumes acceleration, horizontal gradients of the vertical
velocities and bridging effects (variation of horizontal shear stress along the direction
of shear) to be negligible (Blatter, 1995; Pattyn, 2003). The resulting elliptical system
of equations for the horizontal velocities represents an elliptical system of PDEs with
two unknowns and reads as
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(8.2)

with η the viscosity of ice, ρi = 917 kgm−3 the density of ice, g the norm of the
acceleration due to gravity and with hs the ice surface topography. This hydrostatic
approximation is often referred to as Longitudinal Multi Layer stress approximation
(LMLa) as introduced by Hindmarsh (2004). The vertical velocity vz is computed
from integration over the mass balance equation after the linear system of equation
from Eq. 8.2 is solved.

vz = vz|z=hb −
∫ z

hb

(
∂vx

∂x
+ ∂vy

∂y

)
dz′ (8.3)

with hb the basal topography.

8.2.2 Boundary Conditions

The ice surface is assumed to be traction free. At the base the ice experiences friction
and hence the stress boundary condition in tangential direction at the base is a
sliding law, that leads to vanishing basal drag at the grounding line. Furthermore,
the impenetrability condition holds at the base of the ice sheet. Together, the
boundary condition of the momentum balance at the base reads as

(σ · n) · n = −ρgH (8.4)

(σ · n) · t1 = τb,1 = −k2Nvb,1 = −α2vb,1 (8.5)

(σ · n) · t2 = τb,2 = −k2Nvb,2 = −α2vb,2 (8.6)

v · n = 0 (8.7)

with the basal drag coefficient k estimated by the inversion presented below, the
basal friction coefficient α2, the effective normal pressure N , the basal drag τ ∥

b =
(τb,1, τb,2) and the basal velocity v∥

b = (vb,1, vb,2). The basal drag and velocity are
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two-dimensional vectors acting in the basal tangential plane. The sliding relation
in Eq. 8.5 and Eq. 8.6 is implemented in ISSM for the LMLa scheme as (Morlighem,
Seroussi, et al., 2013):

τ b = −k2Nvb, (8.8)

where τ b = (τb,x, τb,y) and vb = (vx, vy)|hb
are the basal drag and the basal velocity

in the horizontal plane. Low values of k are associated with low basal shear stress
and large contribution of sliding, which is why in the following a focus of the study
is on the interpretation of k with respect to subglacial lakes and ice stream dynamics.
N is a function of the ice overburden pressure Pi and water pressure Pw

N = Pi − Pw (8.9)

with Pi = ρigH. Assuming a hydrological connection between the subglacial
drainage system and the ocean, the water pressure becomes

Pw = min (ρwghb, 0) (8.10)

and ρw = 1028 kg m−3 the density of sea water.

Along all lateral margins the momentum balance is completed by a Dirichlet bound-
ary condition for the horizontal velocities which is set to the observed velocities
treated as plug flow.

8.2.3 Constitutive Relation

The constitutive equation is given by a Norton-Hoff type power law, namely the
Glen-Steinemanns flow law

η = 1
2A(T, W )−1/nE−1/nd(1−n)/n

e . (8.11)

The rate factor A depends on temperature T and microscopic water content W

following an Arrhenius relation (Cuffey and Paterson, 2010). The enhancement
factor E accounts for any softening due to other than thermodynamic factors. If not
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mentioned otherwise, the enhancement factor is set to 0.5. The exponent n of the
flow law is assumed to be 3.

The second invariant of the strain-rate tensor, de becomes in LMLa
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(8.12)

and enables strain-thinning of the non-Newtonian fluid.

8.2.4 Inversion

The inversion infers the basal drag coefficient k by minimizing a cost function,
which calculates the misfit between modelled vmod and observed horizontal surface
velocities vobs. The cost function consists of three parts: one contribution J1 of a
linear misfit optimizing basically fast flowing areas, one term J2 that optimizes slow
flowing areas by controlling a logarithmic misfit and one regularization term J3 that
penalizes oscillations in k. The terms read as

J1 =
∫
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(1
2(vmod
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x )2 + 1
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y )2
)

dΓs (8.13)
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dΓs (8.14)

J3 =
∫

Γb

1
2 ||k||2dΓb (8.15)

J = γ1J1 + γ2J2 + γ3J3 (8.16)

The cost function gradient is calculated in ISSM using the classical adjoint method
with incomplete adjoints (Morlighem, Seroussi, et al., 2013). This means the
viscosity is assumed to be linear in the inversion. The minimization problem is
solved using the M1QN3 algorithm (Gilbert and Lemaréchal, 1989).
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8.3 Model Setup

The simulations are carried out using the Ice Sheet System Model (Larour et al.,
2012) in higher order Blatter-Pattyn approximation (Blatter, 1995; Pattyn, 2003).
The domain is defined by ice divides based on Rignot et al. (2011a) (Fig. 8.1), but
extends outside our main focus region of the Recovery Glacier system. This has been
done in order to avoid influences of boundary conditions on our interpretation. We
only simulate the grounded area. We use ice thickness data from several recent
airborne radio-echo sounding campaigns conducted in the Recovery Glacier area,
namely RECISL (Humbert et al., 2018), ICEGRAV (Forsberg et al., 2018; Ferraccioli
et al., 2018) and Operation IceBridge (Leuschen et al., 2010, updated 2017) to
derive a new regional ice thickness grid. This grid is than incorporated into the
Bedmap2 (Fretwell et al., 2013b) dataset that is only based on IceBridge data in the
Recovery Glacier area. To produce the bedrock elevation dataset the ice thickness
grid is substracted from the Bedmap2 surface elevation. The details of the applied
methods are given in Humbert et al. (2018).

TerraSAR-X derived surface velocities (Floricioiu et al., 2014) are filtered in order
to remove outliers using the method presented in Lüttig et al. (2017). Because the
resulting mosaic does not cover the entire drainage basin, the field is completed by
velocities from Rignot et al. (2011b) and afterwards linear interpolated onto our
mesh. Please note, that we test in the following the sensitivity of the filtering and
interpolation method.

The system is not modelled in a thermo-mechanical coupling, but we engage a
temperature and water content field that has been achieved in a spin-up with the
3D thermomechanical Parallel Ice Sheet Model (Bueler and Brown, 2009)[v0.6.2].
The model is forced with surface skin temperature and surface mass balance from
RACMO 2.3/ANT (van Wessem et al., 2014, multi-annual mean 1979 – 2011) and the
geothermal heat flux dataset from Shapiro and Ritzwoller (2004). After initialization,
a short relaxation period and a purely thermal spin-up (fixed geometry), the model
runs for 124 ka in its hybrid shallow-shelf/shallow-ice mode (SSA+SIA). During
this stage the geometry is free to evolve including ice thickness, calving front and
grounding line. Details of the setup are described in Humbert et al. (2018). The
PISM fields of temperature and water content are mapped from the regularly spaced
10 km finite-difference grid with 101 z-layers to the unstructured finite-element
mesh (refined towards the base; 14 m basal layer thickness) using a piecewise cubic
Hermite interpolation in the vertical and a bilinear interpolation in the horizontal.
As the geometries of the PISM spin-up deviates to the data assembled geometry used
here, the vertical profiles are stretched or compressed, respectively.
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8.3.1 Numerics

Model calculations are performed on an horizontally unstructured grid which is
refined in areas of faster ice flow and in the Bell-lake area (shown in Fig. 8.2). The
vertical discretization comprises 15 layers refined towards the base to capture vertical
shearing at the base. The final mesh is formed by prism elements with a median edge
length of 4824 m resulting in 761852 elements. This mesh is used for the ’best-fit’
simulation and the interpretation of the basal drag and friction coefficient pattern
and further glaciological quantities. For the numerous sensitivity tests and L-curve
analysis presented below we generated a coarser mesh to keep the computational
amount manageable. This mesh comprises in total 699538 elements.

We use Lagrange P1 elements. For solving the nonlinear system we employ a Picard
iteration scheme. For the remaining linear systems of equations, we make use of
the iterative GMRES solver with an Additive Schwarz preconditioner provided by
the PETSc package. For the linear system, we apply convergence criteria (Larour
et al., 2012) on (i) the linear system ϵres of 0.1 and (ii) solution vector ϵrel as relative
residuum of 0.1. Compared to Larour et al. (2012) our stopping criteria is much
larger in order to speed up the computation. However, at the last inversion steps
the mechanical stress equilibrium is much lower than the recommended value of
ϵres = 10−4. We tested a convergence criterion of ϵres = 10−4 for our ’best-guess’
setup and found that the results are not influenced by this, while it doubles the
computation time.

To solve the optimization problem we used the M1QN3 algorithm with a max-
imum number of iterations and function evaluations of 200. Two points with
a difference of less than 10−5 in the uniform norm are considered to be identi-
cal during the line search. We apply a gradient relative convergence criterion
||g(X)|| = ||g(X0)|| < 10−5 for the inversion.

8.3.2 Experimental Setups

We conduct a series of inversion sequences (a total amount of 51), with different
foci:

(i) obtaining an L-curve by a series of simulations of a suite of γ1-γ3,

(ii) suites for enhancement factor E, for initial values kini and lower bounds kmin

of the friction parameter k,
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(iii) testing the influence of the interpolation method and filtering from observed
velocities by conducting a series of simulations using the best guess inversion
parameters.

This is conducted in a cascade, in which first the L-curve is obtained and an optimal
parameter set for γ1-γ3 is selected and is used in all subsequent runs.

8.4 Results

8.4.1 Optimal Parameter Choice and Sensitivity Tests

In order to ensure a smooth velocity field an L-curve analysis is performed (with
E = 0.5) to find the optimal parameter for the Tikhonov regularization (J3). Fig-
ure 8.4 displays J3 over J1 and the logarithmic misfit J2 in color. The distribution
demonstrates a smooth curve, from which γ1 = 10, γ2 = 10−2 and γ3 = 5 · 10−8 are
selected as optimal parameter set. This set is chosen to prevent too large oscillations
in k but still reveal a good match to the observations.
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Fig. 8.4: L-Curve: log-log plot of the cost function J3 with respect to J1. The logarithmic
misfit J2 is in color, while the different values of the Tikhonov parameter, γ3 are
annotated. The selected optimal parameter combination is highlighted with a
black circle.

Based on the selected parameters γ1,γ2 and γ3 we test the effect of using a filter to
remove outliers in the observed velocities. Therefore, we conducted the inversion
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with a differing input field. We directly merged the data sets of Floricioiu et al.
(2014) and Rignot et al. (2011b) without previous filtering and mapped them to our
mesh using bilinear interpolation. The resulting inverted parameter k shows large
differences between with and without filtering in extensive parts of Recovery Glacier
(Fig. 8.14). As filtering is removing outliers, the resulting field using a filter is less
variable leading to a smoother k. This shows clearly the need of filtering observed
velocities before using them as inversion input.

Testing the effect of the interpolation method is aiming to understand how gaps in the
remote sensing velocity field affect the inverted basal drag coefficient in general. It is
also conducted to clarify if any drawbacks in this field influence our interpretation of
the basal drag coefficient with respect to the basal properties. In another study (Eis
and Humbert, submitted, 2019) we were testing different interpolation techniques
using artificial datasets, as well as the velocity field that we use in this study, and
came to the conclusion that natural neighbour interpolation (natint) is best suited
for the interpolation. Here we compare a bilinear interpolation (linint) with natint.
The comparison is, however, done with the interpolated values at finite element
nodes, thus indeed directly in the finite element framework, not as an interpolation
onto a regular grid that is then subsequently interpolated onto nodes. The results
are shown in Fig. 8.15. Close to the grounding line, the effect is large, as well as
very far upstream (not shown here). This is expected in the vicinity of the grounding
line, as it is highly crevassed and velocity data might even after filtering contain
outliers. The low velocities in the very far upstream areas are naturally leading to
high changes in k, as sliding is only a minor contribution and small changes in the
horizontal velocities vx and vy will not be smoothed out by the interpolation.

The deformational part of the overall velocity field is basically fixed by the tempera-
ture and water content field retrieved from the PISM results. To test the influence of
the viscosity we vary the enhancement factor (Eq. 8.11) by conducting simulations
with E = [0.5, 0.75, 0.9, 0.95, 0.99, 1.0, 1.01, 1.05, 1.1, 1.25, 1.5, 2, 2.5, 3.0, 3.5,

4.0]. Note that smaller values of E describe stiffer ice. We find the best root mean
square (rms) of differences between modelled and observed surface velocities in slow
moving areas (observed velocities smaller than 50 m a−1) with E = 0.5 (Fig. 8.16),
however, there is only a minor difference to E = 1.0. In the region of interest,
which is the outline of the TerraSAR-X velocity field, the effect is even smaller. This
exemplifies that the ice is either too soft or about correctly stiff considering the
temperature and water content effect only, but enhancement factors of E = 3 are
unlikely.

Next we aim to test if the choice of the initial values kini is affecting the minimum
that the inversion approaches and if that leads to significantly different distributions
of the basal friction parameter. For this purpose, a list of initial values is chosen
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kini = [1, 5, 10, 25, 50, 75, 100, 125, 150] (s/m)1/2 and the rms of the velocity differ-
ences is evaluated (Fig. 8.17). For higher initial values, the effect of the particular
initial values is minor, which is to be expected, as all represent low sliding, however,
starting with a very low kini leads to a low k everywhere, which is unreasonable
(and is therefore not included in the figure). The best rms of velocity differences
is obtained with kini = 100 (s/m)1/2. The last sensitivity study estimates the effect
of the allowed minimum value kmin for k during the inversion. The tested range
comprises kmin = [0.1, 1, 5, 10] (s/m)1/2. The influence of this parameter on the
result is negliable, however, we find a minimum value kmin = 0.1 (s/m)1/2 to best fit
the observed velocities (Fig. 8.17).

We were testing several setups that are not presented here. In particular, we were
testing, if an a priori estimate of the friction coefficient for an initial field for k would
lead to another minimum in the optimization with distinct different characteristics
in the distribution of k. We followed Morlighem, Seroussi, et al. (2013, Eq. 31)
and found, that the resulting k does not change considerably. This is increasing the
confidence that both basal drag and friction coefficient are in the upstream area
quite robust.

For the optimal parameter set, we present in Fig. 8.5 the simulated surface velocities
and in Fig. 8.6 the difference to the observed velocity field. The general pattern
of the flow field is represented reasonably, however, it becomes obvious, that in
the faster parts of the Recovery main trunk, there are substantial differences to
the observed velocities, as well as in the inflow from Ramp and Blackwall glaciers.
Differences in the main trunk are associated with ice falls, where the ice surface is
heavily crevassed and the basal topography is steep. Both tributaries, Ramp and
Blackwall glaciers, are exhibiting too low simulated velocities. Along the shear
margin of the main trunk between Ramp and Blackwall glaciers, we overestimate
the speed. However, the overall distribution is that we tend to underestimate flow
velocities in the areas of streamish flow. The Bell-lake area exhibits low magnitudes
in differences, and the differences are a factor of 5-8 below the observed velocities
in that region.

8.4.2 Basal Drag and Friction Coefficients

Based on the optimal parameter choices for γ1 − γ3, E, kini and kmin found in the
sensitivity tests, we present in the following section our ’best-guess’ for the basal
drag and friction coefficient and aim to address the raised glaciological questions.
In the following, we present α (Fig. 8.7) instead of α2 (that would directly express
the linear relationship between basal shear stress and velocity) in order to compare
our results with Morlighem, Seroussi, et al. (2013). The range of α indicates areas
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Fig. 8.5: Modelled surface velocity after inversion obtained with the optimal parameter
set for γ1–γ3 and E = 0.5. White polygons are locations of sinks updated from
Humbert et al. (2018), the dark grey polygons are previously suggested lake
outlines.

Fig. 8.6: Obtained difference in surface velocity magnitude vmod − vobs with the optimal
parameter set for γ1–γ3 and E = 0.5. White polygons are locations of sinks updated
from Humbert et al. (2018), the dark grey polygons are previously suggested lake
outlines.

with particular smooth bed with very low values, whereas widespread areas in the
onset area of the ice stream are marked by moderate values of α < 25 (Pa a/m)1/2.
The main trunk is intersected with several patches of very high values. Figure 8.8 is
basically showing k, which is of the same type of distribution across the catchment,
but is not subsuming the effective pressure N (Fig. 8.18).

Beside the distribution of α, Fig 8.7 also contains two criteria that are used to
estimate potential subglacial lake locations from radio echo sounding. The data
is taken from Humbert et al. (2018) and discussed there in detail. In short those
criteria are searching for a change in the power of the basal reflection between inside
and outside a sink, hence a potential subglacial lake. Where the change is significant,
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the power criterion is full filled and shown as an orange dot. In a similar way, the
peak criterion searches in sinks for high correlation of the peakiness (shape of the
waveform) of the basal reflection, with high correlation meaning minor change in
the type of reflection and hence similar properties of the base which is only expected
with vanishing roughness that would itself represent a subglacial lake.

Fig. 8.7: Inferred basal friction coefficient α. The orange and green dots are representing
the power and peak criteria similar to Fig. 7 in Humbert et al. (2018). White
polygons are locations of sinks updated from Humbert et al. (2018), the dark grey
polygons are previously suggested lake outlines. The grey dashed line represents a
potential shear margin and is related to Fig. 8.13.

Fig. 8.8: Inferred basal drag coefficient k. White polygons are locations of sinks updated
from Humbert et al. (2018), the dark grey polygons are previously suggested lake
outlines. The grey dashed line represents a potential shear margin and is related
to Fig. 8.13.

8.4.3 Basal drag, driving stress and basal sliding

Driving stress is estimated by assuming a shallow ice driving stress of τd = ρigHgrad hs.
Figure 8.9a, displaying the driving stress τd, exemplifies the low surface gradient
in the onset region of the ice stream leading to low τd in this area. Driving stress
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is high where the ice is moving into that area, as well as in the main trunk. There,
only small patches of low basal drag appear.

The distribution of basal drag (Fig. 8.9b) is consisting of three different regimes:
the main trunk with alterations between high and low values, the onset area with
a pattern of low and moderate values of τb and the transition between both zones.
At the onset beyond the Bell-lake area the shear stress is increasing to 50-70 kPa
representing the area where the transition from the steeper interior to the onset is
taking place. The onset area is a mixture of very low τb and spots of localized high
basal drag. High basal drag is often, but not always, associated with subglacial hills,
low values are found in valleys but also in some instances on slopes in the basal
topography. In the transition to the main trunk, the bands with increasing basal drag
are located on steep flanks in the basal topography and where a ridge crossing the
ice stream is located. Low values are often found in valleys and on flat terraces. At
the location of R5–R8 (see Fig. 8.2) the main trunk is in flow direction divided by a
zone of high basal drag. This is situated on the steep flank of a subglacial terrace
that represents a step elevation change towards the Transantarctic Mountains.

The difference between basal drag and driving stress is often used to infer bed
properties. Figure 8.9c is unveiling that in vast areas the driving stress is either
exceeding the basal drag or vice versa and only in very limited areas both are
balanced out. This is the case in the LA/LB area, although it is also patchy, and
along the southern margin of the ice stream. In the onset area exist more locations
with τd > τb, but due to very localized surface gradients affecting the driving stress,
the distribution is rather patchy there, too. The main trunk exhibits then a clearer
picture with wider areas of either τd or τb dominating. In the steep slopes of the
ice falls and subglacial ridges the high basal stress is dominating, whereas the low
values are found in flatter areas and valleys. This pattern is basically dominated by
the magnitude of τb.

One of the most interesting parts in studying the dynamics of this ice stream is to look
at the contribution of sliding to the flow. Figure 8.10 is presenting the basal velocity.
The main trunk reaches speeds of more than 500 m a−1 close to the grounding line
and even 500 km upstream the grounding line sliding speeds of 100 m a−1 are found.
Across the onset (see Fig. 8.2) the sliding speed doubles. Between south and north
of the grey dotted line the sliding speed is rising by a factor 3-4.

We compare the ratio between surface and basal velocities vs/vb. Figure 8.11 displays
in dark blue color areas which are either plug flow or close to plug low. Greenish
areas are dominated by deformation. The onset area is dominated by a sliding
regime with some patches of plug flow (dark blue). Upstream the Bell-lake area
deformation dominates the flow field, however, there are also areas where the sliding
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Fig. 8.9: Calculated (a) driving stress τd, (b) basal shear stress τb and (c) difference τd − τb
for the simulation with the best parameter choice. White polygons are locations of
sinks updated from Humbert et al. (2018), the dark grey polygons are previously
suggested lake outlines.

is prevailing. Fig. 8.11 also marks a potential shear margin (discussed more in detail
below) as grey dashed line. This line is connecting several deformation dominated
spots. The main trunk exhibits several zones which are dominated by deformation.
These zones basically intersect the ice stream over the entire width. Two of them are
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Fig. 8.10: Modelled basal velocity vb of the simulation with the best parameter choice.
White polygons are locations of sinks updated from Humbert et al. (2018), the
dark grey polygons are previously suggested lake outlines. The grey dashed line
represents a potential shear margin and is related to Fig. 8.13.

coincident with ice falls. The zone just upstream the grounding line is more patchy,
representing also the complex basal topography in this area.

Fig. 8.11: Modelled slip ratio of surface to basal velocity, vs/vb for the simulation with
the best parameter choice. White polygons are locations of sinks updated from
Humbert et al. (2018), the dark grey polygons are previously suggested lake
outlines. The grey dashed line represents a potential shear margin and is related
to Fig. 8.13. The pink box outlines the region of Fig. 8.12.

8.5 Discussion

The mismatch between modelled and observed surface velocities is quite reasonable,
only the main trunk shows differences that are considerably high. This is similar to
other studies, which also have large differences in the fast flowing areas (Morlighem,
Rignot, Seroussi, et al., 2010), but lower in magnitude. This gives us confidence in
interpreting the inverted basal friction coefficient and associated values.
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An updated version of sinks (S. Beyer, pers. comm., 2019) based on the new bedrock
topography available is not changing the general distribution of sinks (only one is
missing), but it slightly shifted and in/decreased the size of the sinks. These sinks
match in the lower main trunk with areas of very low friction coefficient. Also the
sink at R5 (see Fig. 8.2) is situated in a very low α. Other than those locations are
not representing a match between a sink and low basal friction coefficients.

Comparing the distribution of α with the power criterion we find that the area
around former LA/LB matches a sink and is also an area where low α represents
low friction. This supports the findings of Humbert et al. (2018), which suggested a
wet base in this area. There are also two further sinks in which the power criterion
matches, however α is not very low, indicating that friction remains a contribution
there.

Comparison of our vs/vb with Morlighem, Seroussi, et al. (2013) demonstrates
that we find more variation in the ratio both in the main trunk, as well as in the
onset region. In contrast to Morlighem, Seroussi, et al. (2013) the upstream area
is consisting of alterations between high and low basal shear stress with areas
below 20 kPa and above 90 kPa. The more complex pattern in our study is strongly
attributed to new bed topography being available. An additional contribution is also
the high resolution velocity data set and its preprocessing and differences in the
viscosity due to different temperature fields. Similar to Morlighem, Seroussi, et al.
(2013) we find upstream the former Bell-lake area bands of high basal shear stress
and the magnitudes agree well. A prominent difference to Morlighem, Seroussi,
et al. (2013) is that the lower parts of the tributaries of Blackwall and Ramp Glacier
are subjected to high basal shear stress. The data coverage for ice thickness is
limited (and was missing in 2006 entirely), however, the bedrock topography there
is unlikely an artefact. All three studies represent the ice fall as an area of high
basal shear stress. In contrast to Joughin, Bamber, et al. (2006) we do not find an
extensive area in the lower part of the main trunk with low τb, but this is most likely
to the missing bed topography data back then.

Analysis of the basal shear stress, k and α also needs to consider weaknesses in
the modelling approach. There are two issues concerning areas of the ice falls.
The higher order approximation may not hold there, as it is not excluded that
bridging effects are a strong factor there. This cannot be assessed as no full Stokes
simulations are available for this particular region and no comparison of higher order
to full Stokes was yet successfully conducted in similar situations. The findings of
Morlighem, Rignot, Seroussi, et al. (2010) exemplify a strong influence in the vicinity
of the grounding line of Pine Island Glacier, which may support that full Stokes may
lead to a lower basal drag and friction coefficient at the ice falls. Furthermore, the
ice is heavily crevassed at the surface and hence, the viscosity would be reduced due
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to the damage. This has not been taken into account. The strain-softening effect
may, however, contribute to lower viscosity in the ice fall, and hence the ratio of
surface to basal velocity, is representing a deformation dominated regime.

We find, similar to Morlighem, Rignot, Seroussi, et al. (2010) that the basal drag
is high at steep bedrock slopes where the ice needs to flow upwards. In their
comparison between full Stokes and higher order approximation based inversion,
it becomes clear, that the basal drag at steep slopes is larger using higher order
approximation. This is due to the missing bridging effects in the stress balance,
which is balanced out in the inversion by increasing τb. Our simulations exhibit
similar features (which we cannot compare to full Stokes) and as the Recovery
Glacier main trunk is by no means a smooth deep trunk, this is likely affecting the
simulations here, too.

When comparing α in this study with Morlighem, Seroussi, et al. (2013) the differ-
ence in the main trunk is most striking, as we find alterations of low and high basal
friction coefficient. The transition between Slessor and Recovery glaciers near the
grounding line is in both studies exhibiting a higher α, as well as a branch between
both glaciers with medium values. Although our difference between observed and
modelled velocities in this area is not very low, we interpret from this comparison
that our results in this area are still plausible.

In order to compare the results from the inversion with structural characteristics
found in high-resolution satellite remote sensing imagery for two selected locations,
we were using TerraSAR-X imagery in stripmap mode that has been transformed
with a bi-cubic interpolation to 12.5 m resolution. We focus on two areas, one in the
area where Humbert et al. (2018) were not finding the proposed subglacial lakes
R5–R8 in their airborne radar survey, another is a newly proposed signature of a
shear margin in the upstream area.

Figure 8.12 displays two TerraSAR-X overpasses in 2012, which exhibit the onset
of crevasse formation. The formation of crevasses is in an area in which we find a
change in the basal drag coefficient k from high to low values and in combination
with that a change from low to high basal velocities, indicating that the contribution
of sliding is increasing. This is to some extent driven by a slope in the basal
topography, as the band of low basal velocities is situated on a bedrock ridge. Up to
8◦W the crevasse field is constrained by a flow band (comparable to situations on
Filchner Ice Shelf (Hulbe et al., 2010)) and west of that wing shape crack formation
by shear is visible (mode-II cracks). A subglacial sink west of 9◦W is coincident with
a strong and irregularly crevassed surface that also matches a transition in the basal
drag coefficient.
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Fig. 8.12: Basal velocity vb (large dots) and basal drag coefficient k (small dots) superim-
posed on TerraSAR-X stripmap mode scenes from 2012-11-27. White polygons
are locations of sinks updated from Humbert et al. (2018), the dark grey poly-
gons are previously suggested lake outlines. The grey dashed line represents a
potential shear margin and is related to Fig. 8.13.

Fig. 8.13: Shear margin detected in TerraSAR-X imagery (smaller patches are in stripmap
mode, large tiles are in ScanSAR wide swath mode). The orange dotted line
indicates the shear margin. Red lines mark crevasse areas. White and grey
lines are lake polygons similar to other figures. The background imagery is the
RADARSAT mosaic.

Most interesting is the match between the suggested southern shear margin and the
onset of higher basal velocities. The coincidence is less prominent with the basal
drag coefficient, but again high when comparing to k. As the suggestion of the
location of the shear margin is completely independent from any modelling result
and has in fact been first made even before the flight campaign, the surface features
are seen as plausibility check of the inverted basal properties.

The inversion for k is depending on the effective normal pressure (shown in Fig. 8.18).
The choice of the water pressure acting against the ice overburden pressure is thus
also having a crucial effect on the inversion results. We are here relying on a widely

8.5 Discussion 106



used assumption that locations beneath sea level are connected to the ocean and the
ocean pressure to be a representative water pressure. This choice may break down
wherever subglacial channels are formed or cavities are capturing water leading to
pressurized system. The influence of this effect can only be simulated applying a
model for subglacial hydrology (as done in Beyer et al. (2018)), which is not only
beyond the scope of this study, but has also not be combined with the inversion of a
basal drag coefficient so far.

The results of this study will also inform seismic campaigns, which is the ideal
method to shade some light into the basal properties of the ice, as well as underlying
sediment. Ideally such campaigns retrieve along flow profiles from R5-R8 upstream
crossing the onset region. Given that vast parts of the main trunk are heavily
crevassed preventing field campaigns, the combination of remote sensing, airborne
surveys and modelling will remain the only access to information on basal properties
of the main trunk in future.

8.6 Conclusions

A major difference between our study and previous inverse approaches in this area
is the availability of a new ice thickness dataset. Former studies were presumably
biased by bedrock topography determined from balance velocities and hence, a main
trunk that is flatter and more even than the real system. Although Recovery Glacier
is deeply incised into the margin of the Transantarctic Mountain range, mountain
ridges across the glaciers main trunk are making this ice stream distinct from ice
streams along the Siple Coast (Joughin, Bamber, et al., 2006). These ridges are
associated with large basal drag and high drag and friction coefficients, which can
be a consequence of bridging effects being neglected.

The onset region of Recovery Glacier is characterised by a sliding dominated flow
regime with moderate values for basal friction and drag coefficient. A wet base is
hence very likely, however, the base is not expected to be smooth. The basal drag in
this area exhibits a complex pattern of low and moderate values with higher values
found on subglacial hills.

We found a shear margin detected from TerraSAR-X imagery to match with both, the
transition from deformation to sliding dominated flow regime and to the onset of
lower basal friction coefficient.

Given that it is to be expected that friction is going to vanish over a lake, the
distribution of both, basal drag and friction coefficient, precludes lakes at the onset
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of the ice stream. This is taking the findings of Humbert et al. (2018) one step
further as this approach is not relying on radar data analysis, but is an independent
assessment of the existence of lakes.

8.7 Appendix

8.7.1 Effect of Preprocessing of Remote Sensing Data for
Inverse Modelling

In the following figures we provide differences of velocity fields for simulations with
and without filter as preprocessing of the remote sensing dataset, as well as the
effect of the interpolation method.

Fig. 8.14: Difference kfilt − knofilt between applying a filter (Lüttig et al., 2017) to no filter
to the remote sensing velocity fields. Both input fields are mapped onto our mesh
using linear interpolation.

8.7.2 Sensitivity to Enhancement Factor and Inversion
Parameters

Here we present the rms between measured and modelled surface velocities for
simulations conducted with various enhancement factors and a variety of inversion
parameters.
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Fig. 8.15: Difference klinint − knatint between using a linear interpolation or natural neigh-
bour interpolation to map the filtered velocity field to finite element mesh nodes.

Fig. 8.16: Sensitivity of the inversion on the enhancement factor E: rms of the difference
of surface velocity magnitudes for the respective parameter choice. The redish
graphs show the rms of the entire data set, while blueish colored graphs indicate
subsets classified according to observed surface velocities. Orange marks the
region covered by the TerraSAR-X derived velocity field (Fig. 8.3).

8.7.3 Effective Normal Pressure

As the effective normal pressure is influencing the sliding law and hence the inversion
for k, we present here the distribution of N , which remains unchanged for all
simulations conducted in this study.
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Fig. 8.17: Sensitivity of the inversion on kmin (solid lines) and kini (dashed lines): rms
of the difference of surface velocity magnitudes for the respective parameter
choice. The redish graphs show the rms of the entire data set, while blueish
colored graphs indicate subsets classified according to observed surface velocities.
Orange marks the region covered by the TerraSAR-X derived velocity field (Fig.
8.3).

Fig. 8.18: Effective normal pressure N .
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9Conclusion

„The important thing is to never stop questioning.

— Albert Einstein
Physicist

9.1 Achievements

In Sect. 2.3 three objectives were formulated. This section highlights the objectives
achieved in this work.

1. Deriving the spatial distribution of the basal friction coefficient in the Recovery
catchment area by using an inverse method.

The equations of ice dynamics and the boundary conditions are derived in Chapter
4. This includes also the sliding law, which depends on the friction coefficient, the
variable, which is the heart of this thesis. Chapter 5 introduces the theory of inverse
problems and its application to ice dynamics. The model framework ISSM is used
to conduct the inversion of basal friction at Recovery Glacier. For this purpose, the
Higher-Order approximation of ice flow is used. ISSM applies the classical adjoint
method to minimize the misfit between observed and modelled velocities on the ice
surface. The misfit is measured by the weighted sum of three cost functions: linear
and logarithmic misfit as well as a regularization term. The results are presented
in Chapter 8 and show medium values in the onset area of Recovery Glacier. In
the main trunk, basal friction alternates between very high and very low values.
Altogether, the results of the study support the findings of Humbert et al. (2018)
and raise doubts about the existence of subglacial lakes enhancing Recovery Glaciers
flow. Furthermore, the study considers some other glaciological quantities, which
can be calculated with the inversion results: driving stress, basal shear stress, and
the contribution of sliding.

2. Improvement of the quality of velocity fields derived from remote sensing by
application of filtering and interpolation techniques.
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The two articles presented in Chapter 6 and 7 present the quality improvement
of the TerraSAR-X derived velocity field presented in Sect. 3.3. A new filtering
procedure combining three approaches was implemented. In a first step, smooth
segments in the velocity field are detected in order to remove segments which are
too small. The next step utilizes the median of a moving window to remove points
with high deviations from surrounding velocities. The third filtering step removes
points with large differences in flow direction. During the procedure 83 % of the
data were kept while the majority of false values was removed. The remaining
data points served as input for four interpolation methods: linear interpolation,
natural neighbor interpolation, Kriging, and minimum curvature. The results were
compared in order to determine the most suitable interpolation method for this kind
of data, which turned out to be natural neighbor interpolation. Thus, the quality
of the initial velocity field was strongly improved by applying these processing
steps. However, some stripe features in the velocity field are still present and all
interpolation procedures had difficulties filling gaps in the shear margins.

3. Conduct of a sensitivity analysis of the inversion of basal friction with regard
to model parameters as well as quality of input surface velocities.

The sensitivity analysis was carried out in the article presented in Chapter 8. The
influence of the enhancement factor as well as filtering of the velocities and the
choice of the interpolation method were investigated. For this purpose, the inversion
was performed with different velocity input fields: the original field of Recovery
Glacier presented in Sect. 3.3 and the filtered velocity field, interpolated using
linear and natural neighbor interpolation. Major differences can be seen in the
basal friction inverted from filtered and unfiltered data due to many patterns of
outliers in the unfiltered velocity field. Clear differences result also from varying
the interpolation method, in particular near the grounding line and far upstream,
however in the interesting onset area of Recovery Glacier the effect is minimal.
The sensitivity to three other parameters was tested: the initial value of the basal
friction, the minimal basal friction (lower bound), and the enhancement factor. Only
for the latter an influence can be seen, showing that the inversion is very robust.

9.2 Outlook

While improving the quality of the velocity field, two steps were necessary: filtering
and interpolation. Both can be further developed in order to improve the results
even more. In the velocity data stripes are visible, which occur from processing
the satellite images. Therefore, more work has to be done in this field of research.
Better processing techniques would already prevent the origin of these features. An
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alternative is an additional filtering step, which detects the stripes and removes
them. In doing so, a challenge would be to decide which values are false, hill or
valley of the stripe. Furthermore, such a procedure would maybe unintentionally
remove too many data points.
None of the evaluated interpolation methods turned out to be perfect in the appli-
cation to velocity fields. Shear margins are a problematic terrain for all of them.
Techniques which are able to solve these problems have to be further developed,
in particular because the choice of interpolation can have an effect on modelling
results at least in specific regions. This finding should also lead to overthink the
interpolation methods used in models. Although the influence of the interpolation
method is not strong in the region of interest of Sect. 8, this choice may have an
effect in other studies. It is advisable to utilize natural neighbor interpolation instead
of linear interpolation as standard for interpolating velocities or at least to examine
the effect of this change.
It would be reasonable to also inspect the influence of the interpolation of other
variables, such as ice thickness or surface elevation. Especially when inverting for
the ice viscosity parameter B minimizing observation mismatches of ice thickness,
improper interpolation can lead to errors, which could be avoided.
To measure the influence of the different inverted basal frictions on quantities like
sea level contribution, further simulations have to be carried out. For this purpose,
basal friction would serve as input for transient runs using e.g. ISSM. Due to the
strong differences obtained from the velocities with varying quality, strong differ-
ences in future evolution of Recovery Glacier may be expected.
To ensure smaller errors in the initial states of flow models, more studies like this
have to be conducted. The results would improve the knowledge of the effect of
errors in the input data and lead to better error estimates of model results.
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