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Trophic upgrading and mobilization of
wax esters in microzooplankton
Keyana Roohani1, Brad A. Haubrich1,2, Kai-Lou Yue1, Nigel D’Souza3,4,
Amanda Montalbano3, Tatiana Rynearson3, Susanne Menden-Deuer3

and Christopher W. Reid1

1 Science and Technology, Bryant University, Smithfield, RI, USA
2 Chemistry, University of Nevada, Reno, Reno, NV, USA
3 Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
4 Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA

ABSTRACT
Heterotrophic protists play pivotal roles in aquatic ecosystems by transferring matter
and energy, including lipids, from primary producers to higher trophic predators.
Using Oxyrrhis marina as a model organism, changes to the non-saponifiable protist
lipids were investigated under satiation and starvation conditions. During active
feeding on the alga Cryptomonas sp., the O. marina hexane soluble non-saponifiable
fraction lipid profile reflected its food source with the observed presence of long
chain mono-unsaturated fatty alcohols up to C25:1. Evidence of trophic upgrading in
O. marina was observed with long chain mono-unsaturated fatty alcohol
accumulation of up to C35:1. To the best of our knowledge, this is the first evidence
that heterotrophic dinoflagellates are capable of producing ester derived alcohols
and that dinoflagellates like O. marina are capable of synthesizing fatty alcohols up to
C35. Additionally, we show evidence of trophic upgrading of lipids. During a 20-day
resource deprivation, the lipid profile remained constant. During starvation, the
mobilization of wax esters as energy stores was observed with long chain fatty
alcohols mobilized first. Changes in lipid class profile and utilization of wax esters in
O. marina provides insight into the types of lipids available for energy demand,
the transfer of lipids through the base of marine food webs, and the catabolic
response induced by resource deprivation.

Subjects Biochemistry, Marine Biology, Microbiology, Aquatic and Marine Chemistry
Keywords Oxyrrhis marina, Wax ester, Resource deprivation, Trophic upgrading, Catabolism,
Microzooplankton

INTRODUCTION
Heterotrophic dinoflagellates are ubiquitous, important components of the pelagic
protozoan community. They are significant consumers of bacterial and phytoplankton
biomass, and contribute to the cycling of organic matter and nutrients, serving as
important trophic links in marine microbial food webs (Strom, 1991; Sherr & Sherr, 1994;
Steinberg & Landry, 2017). Trophic interactions within complex marine food webs can
strongly influence pathways and efficiencies of material and energy transfer to higher level
consumers (Anderson & Menden-Deuer, 2017; Mitra & Flynn, 2005; Rose et al., 2011).
Heterotrophic protists, like dinoflagellates, add biochemical value during this transfer
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through the production and chemical elaboration of compounds (Klein Breteler et al.,
1999). Thus changes to the diet of heterotrophic dinoflagellates (i.e., through starvation)
can alter the biomass and cellular composition of herbivores. Although heterotrophic
protists add biochemical value during trophic transfer, little is known about how cellular
composition changes in response to food availability. These changes in biomass can impact
higher trophic levels through changes in cellular composition. It has been shown that
heterotrophic dinoflagellates such as Oxyhrris marina, Gyrodinium dominans, and
G. spirale can survive long periods (>10 days) without algal prey. For example, starvation
of O. marina for up to 3 weeks resulted in a reduction in cell volume of 17–57% with some
cells deformed and transparent (Menden-Deuer et al., 2005). It has been puzzling how
a single celled heterotrophic organism can sustain survival in the absence of substantive
organic matter, particularly over such extended periods.

Lipids are important energy stores that can be used in times of resource deprivation.
Many of the studies on lipids of dinoflagellates fed on algal prey have focused on fatty acid
and sterol composition (Klein Breteler et al., 1999; Veloza, Chu & Tang, 2006; Park
et al., 2016). These studies have suggested that the fatty acid composition ofO. marinamay
not be dependent on its prey and have highlighted this organism’s ability to upgrade lipids
acquired from its diet. A subclass of the neutral lipids, wax esters, have traditionally
only been found in marine animal phyla (Sargent, Gatten & McIntosh, 1977; Bauermeister &
Sargent, 1979), but some examples have been reported in zooplankton species.Wax esters have
been observed in the chlorophyte Chlorella kessleri (Sargent, Gatten & Henderson, 1981),
the cryptomonad Chroomonas salina (Antia Naval et al., 1974; Henderson & Sargent, 1989),
and the euglenoid Euglena gracilis (Furuhashi et al., 2015). In Chroomonas salina ester derived
alcohols are almost exclusively saturated with the most predominant species C13 and C15

while in E. gracilis ester alcohol moieties of up to C22 have been observed.
The mechanism of trophic upgrading by heterotrophic protists may bridge the gap and

deliver essential nutrients between higher trophic levels (Klein Breteler et al., 1999; Veloza,
Chu & Tang, 2006). Given the importance of heterotrophic dinoflagellates in marine
food webs by providing essential nutrients to higher trophic levels, an understanding of the
changes to the lipid profile under varying availability of prey can provide insight into the
nutritional quality available to higher trophic levels. Here, we report the changes to the
non-saponifiable fraction (NSF) lipid composition of the representative dinoflagellate
O. marina, as our model organisms during active feeding and in response to long term
starvation. O. marina is a free living, cosmopolitan, and phagotrophic alveolate that feeds
on a variety of algae and bacteria (Landry et al., 2000) and has been recognized for its
unique starvation ability lasting for several months (Menden-Deuer et al., 2005; Calbet
et al., 2013).

MATERIALS AND METHODS
Materials
Long chain fatty alcohol standards were obtained from Millipore Sigma (Burlington,
MA, USA). High pressure liquid chromatography (HPLC) lipid standards included a
phospholipid mixture and mono-, di-, and tri-acylglycerol mixtures (Millipore Sigma,
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Burlington, MA, USA). Nile Red was purchased from Invitrogen (Carlsbad, CA, USA). All
solvents used were of HPLC or spectroscopic grade. All HPLC mobile phases were filtered
through a 0.22 μm membrane prior to use.

Cell culture
Non-axenic cultures of the cryptophyte alga Cryptomonas sp. were maintained in triplicate
two-L, transparent polycarbonate (PC) bottles to serve as prey under culture conditions
that included a 12:12 h light-dark cycle at 14 �C, salinity of approximately 30 practical
salinity units (PSU), and a light intensity of 70–80 µmol photons · m−2 · s−1. The culture
medium was prepared from sterile autoclaved 0.2 µm filtered seawater amended with
nutrients following the f/2 medium without silica recipe of Guillard (1975). The seawater
was collected at high tide from Narragansett Bay, Rhode Island, USA.

Non-axenic, clonal cultures of the heterotrophic dinoflagellate O. marina (CCMP3375;
Om), were established via single-cell isolation and grown in two-L transparent PC bottles
on a 12 h:12 h light–dark cycle at 14.5 �C, salinity of approximately 30 psu, and a
light intensity of 8–15 µmol photons · m−2 · s−1. Grazers were maintained in exponential
growth phase by feeding them once a week with Cryptomonas sp. prey and diluted with
autoclaved filtered seawater.

Estimating cell abundance, size, and biomass
Grazer and phytoplankton prey abundance and cell size were monitored using a
Multisizer TM 3 Coulter counter (version 3.53; Beckman Coulter, Indianapolis, IN, USA).
The Coulter counter provided a more rapid and reliable sampling approach than
microscopy and allowed convenient monitoring of the cultures over the course of the
experiments (Kim & Menden-Deuer, 2013). Grazer and phytoplankton prey were easily
distinguishable on the Coulter counter based on their respective size distributions. Grazer
volume was determined using the equivalent spherical diameter measurements from the
Coulter counter, and converted to carbon biomass (pg C. cell−1) using previously
established conversion equations (Menden-Deuer & Lessard, 2000).

Starvation and re-feeding experiments were set-up using established methods
(Anderson & Menden-Deuer, 2017). Briefly, grazers fed with prey were transferred to
triplicate four-L bottles and starved for 1–3 weeks until a reduction in predator abundance
or cell size was detected, which indicated a negative impact of algal prey deprivation and
marked the initiation of grazer starvation (Anderson & Menden-Deuer, 2017). Grazers
were starved for 20 days, received a fresh pulse of phytoplankton prey after starvation, and
were monitored for 3–7 days after re-feeding. Samples were taken at regular intervals
(0, 8, 10, 15, 18, 20 days) during the starvation for measurements of grazer abundance and
cell size. Grazer and prey abundances obtained using the coulter counter and flow
cytometer were verified by light microscopy.

Lipid isolation
Filter membranes containing Cryptomonas sp. or O. marina cells were extracted using the
Bligh-Dyer procedure (Bligh & Dyer, 1959). Briefly, 105 to 107 cells adhered to membrane
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were suspended in five mL of 1:2 (v/v) CHCl3:MeOH and sonicated for 5 min at
65% amplitude, (10 s on, 20 s off). Lipids were extracted with the addition of three mL of
2:1 MeOH:CHCl3 and mixed by vortexing. The sample was then converted to a two phase
Bligh-Dyer by the addition of one mL CHCl3 and 1.8 mL dH2O. The resulting biphasic
samples were centrifuged (4,000 rpm, 2 min) and the bottom layer was recovered and
transferred to a clean sample vial. The organic layer was dried under a stream on N2.
Samples were then analyzed by HPLC. Portions of the lipid extracts were subjected to
saponification (methanolic KOH) (Haubrich et al., 2015) for analysis of neutral lipids and
analyzed by gas chromatography-mass spectrometry (GCMS) without further
derivatization. Negative controls of solvent extracted filter membranes were incorporated
into the experiment to control for contaminants arising from the filter membranes.

Lipid staining and flow cytometry
Samples were stained with Nile Red as described by De la Jara et al. (2003). The optimal
fluorescence of Nile Red can be highly selective and variable based on dye concentration
and cell type stained (Rumin et al., 2015), and given the novelty of Nile Red staining
with marine heterotrophic dinoflagellates, we followed an optimization protocol. The effect
of several parameters on dye permeation and fluorescence were tested such as final dye
concentration (0.5–5 µg mL−1), incubation time (5–30 min), solvents (e.g., DMSO and
acetone), and temperature (Rumin et al., 2015). An optimum Nile Red concentration of
two µg mL−1 dissolved in acetone was determined based on fluorescence profiles (via flow
cytometry), and thus represented the dye concentration used in starvation experiments.
Triplicate five mL samples were spiked with Nile Red, gently vortexed, and incubated
for 10 min at room temperature in the dark to ensure dye permeation while avoiding
quenching effects. Nile Red samples were then fixed using glutaraldehyde (0.5% final
conc. v/v), flash frozen in liquid N2, and stored at −80 �C until flow cytometry analysis
(measured within 1–2 months).

Triplicate samples were analyzed using flow cytometry (BD-Influx flow cytometer,
Becton Dickinson Instruments) with an excitation wavelength of 488 nm. A minimum of
200 cells were counted for each sample. Populations of cells were identified based on
fluorescence vs forward and side scatter. Chlorophyll autofluorescence was determined
using a 692/40 nm filter and differentiated autotrophic prey from grazer lipid fluorescence.
Lipid content, measured as fluorescence intensity per cell, was estimated from the
fluorescence emission of NR-stained cells using 580/30 nm (neutral lipid), and 610/20 nm
(polar lipid) filters (Alonzo &Mayzaud, 1999; De la Jara et al., 2003). Non-stained samples
were used to control for NR autofluorescence; fluorescence of unstained cells was
consistently less than 10% of stained samples. Lipid content for each grazer species was
measured as a function of fluorescence, and expressed as relative fluorescence units, rather
than as equivalent lipid concentrations.

Non-saponifiable lipid extracts
Lipid extracts were treated with 10:10:80 (v/w/v) of dH2O:KOH:MeOH and refluxed for
30 min (Haubrich et al., 2015). After cooling to room temperature, water and hexanes were
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added. Saponified lipids were extracted three times with hexanes and pooled. The
combined hexane extracts were dried over anhydrous Na2SO4 and evaporated to dryness
under a stream of N2. Prior to analysis samples were dissolved in equal volumes of CHCl3.

Chromatographic analysis
RP-HPLC
Chromatographic separation was performed on a Prominence uHPLC system (Shimadzu,
Columbia, MD, USA) equipped with a COSMOSIL 5 μ C18-MS II (4.6 × 150 mm) column
(Nacalai Tesque Inc., Kyoto, Japan). Lipid classes were separated employing a binary
gradient system described by Knittelfelder et al. (2014) with detection at 205 nm (Guarrasi
et al., 2010). Mobile phase A consisted of water:methanol (1:1 v/v), mobile phase B was
2-propanol. Both solvents contained phosphoric acid (eight μM) and formic acid
(0.1% v/v). A linear gradient with initial conditions starting at 45% mobile phase B was
increased to 90% B over 30 min. Mobile phase B was then increased to 100% over 2 min
and was held at 100% for 10 min. The column was re-equilibrated for 15 min between
injections. Retention time regions for polar, and neutral lipids were established using
commercial lipid standards. Data was analyzed using LabSolutions (Shimadzu, Columbia,
MD, USA) and statistical analysis (ANOVA) performed using GraphPad Prism version
7.0. All samples were run in biological triplicate and technical duplicate.

GCMS
NSF lipid samples were analyzed GCMS with an Agilent 7890A gas chromatograph
equipped with a 5975C electron impact mass spectrometer set to 70 eV using a Restek
Rtx-5 column (30 m × 25 μm diameter). The GC flow rate of He was set at 1.2 mL/min,
injector port set to 250 �C, and the initial temperature set at 170 �C, held for 1 min,
then increased at 20 �C/min to a final temperature of 280 �C (Haubrich et al., 2015).
Chromatograms were processed using ChemStation (Agilent, Santa Clara, CA, USA) and
analyte identification of the resulting chromatograms was performed via interrogation
of resulting electron impact mass spectra with the NIST database and manual analysis.
Octadecanol (RT = 5.001 min) was the standard for determination of relative retention
time. All samples were run in biological triplicate and technical duplicate.

RESULTS AND DISCUSSION
O. marina lipid class profile
The lipidome of protist predators can change rapidly in response to environmental
conditions. Nile Red lipid staining of O. marina demonstrated significant changes in the
concentration of neutral and polar lipids in satiated and starved cells (Fig. 1A). A linear
relationship (r2 ¼ 0.9044) in the decrease in polar and neutral lipids during starvation
was observed via flow cytometry (Fig. 1A). The apparent differences in total polar and
neutral lipids after 7 and 15 days respectively are non-significant (p > 0.05). The change in
polar and neutral lipid concentration during starvation was further investigated by
RP-HPLC. While total polar and neutral lipids decreased during starvation the relative
abundance of the subclasses of these lipids showed a consistent ratio of polar to neutral
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lipids of 92.1 ± 3.2:3.0 ± 2.2:5.7 ± 2.6 (PL:MAG/DAG:TAG) was maintained (Fig. 1B).
The lipid class composition of O. marina is comparable to what has been previously observed
in dinoflagellates and phytoplankton (Harvey et al., 1988; Bourdier & Amblard, 1989;
Yoon et al., 2017). Nutrient deprived O. marina have been shown to decrease cell volume by
17–57% (Anderson & Menden-Deuer, 2017) and increase expression of genes involved in
the degradation of lipids (Rubin et al., 2019) suggesting a homeostatic requirement for
O. marina to maintain relative amounts of each lipid class as cell volume decreases and
stress-induced catabolism progresses.

GCMS analysis of hexane soluble non-saponifiable fraction
The prey Cryptomonas sp. contained wax ester-derived mono-unsaturated fatty alcohols
ranging in size from C18:1 to C25:1 (Fig. 2A; Fig. S1; Table S1). These results are in
contrast to observations in other phytoplankton in which fatty alcohols up to C22

have been observed (Henderson & Sargent, 1989; Furuhashi et al., 2015). Our results
obtained here for Cryptomonas sp. indicate the presence of both even and odd
chain alcohols.

Oxyrrhis marina actively feeding on Cryptomonas sp. showed the same base fatty
alcohol profile as its prey. In addition to the Cryptomonas sp. derived fatty alcohols,
there was evidence of trophic upgrading in that derived fatty alcohols were upgraded to
chain lengths of up to C35, which were not detected in the prey fatty alcohol profiles
(Fig. 2B). To the best of our knowledge, this is the first evidence that heterotrophic
dinoflagellates are capable of producing ester derived alcohols and that dinoflagellates like
O. marina are capable of synthesizing fatty alcohols up to C35, compared to zooplankton
species from arctic waters where mono-unsaturated fatty alcohols up to C22 have been
observed (Sargent, Gatten & McIntosh, 1977; Wakeham, 1982).
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Figure 1 O. marina maintains a constant ratio of polar:neutral lipids during a 20-day starvation period. (A) Linear relationship between
depletion of polar and neutral lipids during starvation measured using flow cytometry. O. marina feeding on Cryptomonas sp. polar vs neutral lipids
is characterized by a significant, linear relationship (model II regression, p < 0.0001, r2 = 0.903). (B) RP-HPLC analysis of lipid class. O. marina were
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Figure 2 Changes in hexane soluble NSF lipid extracts during active feeding and prolonged
starvation of O. marina. (A) Prey Cryptomonas sp., (B) O. marina during active feeding on Crypto-
monas sp., (C) O. marina after 15 days starvation, (D) O. marina after 18 days starvation. Day zero of
starvation commenced when prey were not detectable by Coulter Counter and microscopy. Evidence of
trophic upgrading of observed fatty alcohols in actively feeding O. marina. During a 20-day starvation,
O. marina mobilized wax esters as an energy source. Full-size DOI: 10.7717/peerj.7549/fig-2

Roohani et al. (2019), PeerJ, DOI 10.7717/peerj.7549 7/12

http://dx.doi.org/10.7717/peerj.7549/fig-2
http://dx.doi.org/10.7717/peerj.7549
https://peerj.com/


Over a 20 day starvation period, O. marina appeared to mobilize the fatty alcohols as
energy reserves with longer chain fatty alcohols utilized first (Figs. 2C and 2D). After
20 days near complete depletion of fatty alcohols was observed, consistent with
observations of increased expression of genes involved in lipid degradation in starved
O. marina (Rubin et al., 2019).

Wax ester production in dinoflagellates has been suggested to be involved in buoyancy
regulation and as a deposit of an energy rich food reserve during periods of low prey
abundance (Sargent, Gatten & Henderson, 1981). Wax esters and TAGs are commonly
found in lipid bodies within dinoflagellates. These compounds have been the focus of
investigations during nitrogen stress (Dagenais Bellefeuille et al., 2014) and in coral-
dinoflagellate symbiont relationships (Chen et al., 2012). This analysis of changes in lipid
class profile and utilization of wax esters in O. marina provides insight into the catabolic
response induced by general resource deprivation. We have provided evidence that
during starvation in O. marina that wax esters are mobilized as energy stores while the
ratio of polar:non-polar lipids remain constant as cell volume decreases. These data
provide information on the changes in lipid content, in particular the NSF in O. marina
during prolonged resource deprivation.

CONCLUSIONS
Here, we evaluated the lipid profile of a marine herbivorous zooplankton during starvation
and contrasted this with the NSF lipid profile of its phytoplankton prey. We found
evidence both of direct trophic transfer of lipids from the algal source, as well as trophic
upgrade of neutral lipids. While diet deprivation did not seem to affect ratios of polar
to neutral lipids in starved O. marina, starvation was accompanied by a time-dependent
depletion of longer-chain fatty alcohols from energy stores. In addition, the presence of
remarkably long fatty alcohols was noted in saponified lipids of a heterotrophic
dinoflagellate. Characterization and quantification of catabolic responses to resource stress
in marine herbivores provides opportunities to use lipids as biomarkers for energy demand
and assessment of energy status in marine microbial food webs and improve coastal
ecosystem models.
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