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Astronomical and cosmological observations support the existence of invisible matter

that can only be detected through its gravitational effects, thus making it very difficult to

study. Dark matter makes up about 27% of the known universe. As a matter of fact,

one of the main goals of the physics program of the experiments at the Large Hadron

Collider of the CERN laboratory is the search of new particles that can explain darkmatter.

This review discusses both experimental and theoretical aspects of searches for Weakly

Interacting Massive Particle candidates for dark matter at the LHC. An updated overview

of the various experimental search channels performed by the ATLAS experiment is

presented in order to pinpoint complementarity among different types of LHC searches

and the interplay between the LHC and direct and indirect dark matter searches.

Keywords: dark matter, WIMP, Hadron Collider, ATLAS, LHC, particle physics

1. INTRODUCTION

Understanding the nature of dark matter (DM) is one of today’s major open questions in
fundamental physics. Astrophysical and cosmological observations provide strong evidence that
most of our universe’s energy budget consists of unknown entities. Analysis of anisotropies of the
cosmic microwave background provides overwhelming evidence in support of the existence of dark
matter five times more abundant than ordinary baryonic matter [1].

The Standard Model (SM) does not provides a viable candidate dark matter
particle—consequently, new physics is needed to explain it under the common hypothesis
that dark matter is made of massive neutral particles featuring a weak self-interaction (WIMPs). A
WIMP is an electrically neutral, colorless, stable particle with a mass in the range from a few MeV
to the electroweak scale. The WIMP paradigm naturally accounts for the DM relic density in the
universe observed today and is highly attractive both experimentally, because of the feasibility of
WIMP searches with several techniques, and from the point of view of theoretical physics, as viable
candidates for DM particles are predicted in several models of physics beyond the SM.

Experimentally, three approaches are pursued today to probe theWIMPDMparticle hypothesis:
production at particle accelerators, indirectly by searching for signals from annihilation products,
or directly via scattering on target nuclei. In Figure 1 a schematic representation of the coupling of
SM and DM particles is shown, illustrating possible dark matter detection channels.

Searches for DM at colliders require the dark matter particle and its mediator to be within the
energetic reach of the collider itself, a limitation not present in direct and indirect searches. By
contrast, direct and indirect searches are less sensitive to low mass DM and generally are affected
by larger experimental uncertainties, due to uncertainties in the knowledge of the distribution of
DM in the universe.
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FIGURE 1 | Schematic showing the possible dark matter detection channels.

All this makes collider searches for dark matter highly
complementary and competitive to direct and indirect DM
detection methods, and the ATLAS [2] and CMS [3] experiments
at the Large Hadron Collider (LHC) are in a privileged position
to try to provide a answer to the dark matter problem.

It is important to notice here that WIMP dark matter it is
not the only possibility to provide a particle-based solution to
the dark matter problem. Several dark matter models that do
not follow the WIMP paradigm have been proposed, many of
them testable at the LHC energy scale, hidden valley and dark-
sector models [4–6], or asymmetric dark-matter models [7], to
name a few. Given the constraints imposed by the mini-review
setting of this write-up, the results of these very interesting
and complementary searches carried on in ATLAS will be not
discussed here, but a list of the most updated results of searches
from ATLAS can be found in ATLAS Collaboration [8] while
an example of the discussion regarding the general approach to
probing for dark matter physics at accelerators can be found
in Belotsky et al. [9] and Khlopov [10].

The LHC completed at the end of 2018 its second phase of
operations (Run 2), which started in 2015. In three years of
data-taking at a center-of-mass energy of 13 TeV, the LHC has
delivered a total integrated luminosity of about 150 fb−1 to the
ATLAS and CMS experiments, a significant increase over the
initial three-year LHC Run 1. The accumulated data allows us
to extend the experimental sensitivity to the production of new
particles and rare new processes, including WIMPS particles
with cross-sections at the level of the femtobarn. The results
reported in this short summary are based on data collected by the
ATLAS [8] experiment in the first two years of Run 2, a relatively
small portion of the whole Run 2 data set in our hands today.

2. THEORETICAL FRAMEWORK

Current ignorance of the particle physics nature of DM requires
that several different interpretative approaches need to be
considered in order to cover the wider possible portion of the DM
theory space. Each approach features strengths and weaknesses,
so it is highly desirable from the phenomenological point of view
to pursue all the different approaches in parallel.

One of the approaches widely used, especially in early work
at the LHC, is the effective field theory (EFT). In EFT minimal
assumptions on the new particle spectrum are made: the DM
particle is the only new state beyond the SM kinematically
accessible at the LHC. In this context, EFT describes a general
contact-like interaction between SM and dark matter mediated
by particles with masses above the kinematical reach of the
machine. As the EFT assumes that the kinematic distributions
are independent from the new physics scale 3, it is customary
to present the results of the searches for DM in terms of
limits on the new physics scale as a function of the DM
mass. For DM masses smaller than the missing transverse
momentum requirements imposed by the experimental selection,
the bounds become independent of the DM mass and so
LHC results can be sensitive down to very small DM masses.
In the context of EFT it is also possible to have contact
interactions between DM and Higgs or vector bosons at
the LHC, resulting in characteristic experimental signatures
indicated for simplicity with the names mono-Higgs and mono-
W/Z (mono-V).

The simplicity and model independence of the EFT approach
clash with the observation that many interesting models
describing the production of DM at the LHC are not correctly
captured by the EFT approach [11]. Moreover, it has been shown
how in specific conditions the effective operator approach makes
unphysical predictions so that it becomes impossible to find an
associated plausible complete model [12].

To avoid these limitations the use of the EFT approach
is restricted to processes with sufficiently small momentum
transfer, obtaining in these conditions conservative and model-
independent bounds on the new physics scale [13].

At the opposite side—with respect to the EFT approach—are
the complete models, like SUSY or Universal Extra Dimensions,
just to mention two popular ones. Complete models are
by definition more theoretically sound but, in contrast, the
realization of DM depends crucially on the fine details of the
model, and so complete models lack generality.

Between the EFT models and complete models are the so-

called simplified dark matter models, which play a crucial role

in interpreting today’s results of DM searches at the LHC. In
simplified models, the assumption that DM particles are the

only new particles kinematically accessible is released, and the
possibility to have a second light new particle responsible for
mediating the interactions of quarks and DM is introduced [14].

These models resolve the EFT contact interaction into an
s- or t-channel exchange of the mediator. Compared to EFT
models, simplified models introduce additional parameters: DM
mass, mediator mass, and couplings of the mediator to SM and
DM particles.

Frontiers in Physics | www.frontiersin.org 2 May 2019 | Volume 7 | Article 75

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Giagu WIMP Dark Matter Searches at the LHC

Common benchmark scenarios for the simplified model
baseline couplings scenarios have been agreed by the LHC DM
Working Group [15]. In this approach DM is described as a
Dirac particle, and mediators with scalar, pseudo-scalar, vector
and axial-vector couplings are considered. To preserve minimal
flavor violation content of the model, scalar, and pseudoscalar
mediators are assumed to have Higgs-like couplings with quarks,
while vector mediators are assumed to have universal couplings
to quarks.

3. SEARCHES FOR DARK MATTER AT THE
LHC

In the following sections, the most important aspects of the
experimental strategies applied in searches for DM at the LHC are
briefly highlighted, summarizing the most recent experimental
results obtained by the ATLAS experiment.

DM searches performed in ATLAS can be subdivided into
three main categories: searches in final states with dark matter,
searches without dark matter itself in the final state, and search
for light darkmatter signals from dark sectors. The first case focus
is the so-called mono-X searches, which arise when the DMmass
is small compared to the mediator, and whereby the WIMP pair
is then boosted opposite to the direction of the visible particle,
leading to the mono-X signature. Searches for final states without
darkmatter become important when theDMmass is heavier than
the mediator. Production cross-section suppression due to off-
shell mediators results in fact in weaker constraint from mono-
X searches, and a stronger constraint can be obtained looking
for example at distortions in the di-jet invariant mass spectrum
and/or angular correlations. Finally new physics models with
dark sectors may provide a way for light dark matter particles
to hide in the hidden sector and to escape the strict limits
placed by standard searches. Dedicated searches for signals from
dark sectors in both prompt and displaced topologies have been
performed in ATLAS in Run 1 and Run 2 data [16–18], but due
to space constraints will not be described in this review.

It is worth noticing at this stage of the summary that so far
no significant excess has been observed in any of the performed
searches. If a wide portion of the theory parameter space remains
still open to exploration from ATLAS in the following years,
the obtained results can nevertheless already be used to place
significant constraints on a large number of interesting dark
matter models and masses.

3.1. Searches Based on Missing
Transverse Momentum
Light enough DM to be produced in proton-proton collisions
at the LHC can be produced in association with one or
more QCD jets from initial state radiation. Due to the large
QCD coupling with respect to other interactions and the
distinctive experimental signature, searches for events with one
or more energetic jets produced in association with large missing
transverse momentum (Emiss

T ) have been extensively studied at
the LHC not only in the context of searches for DM but also

in other contexts beyond SM physics, like large extra spatial
dimensions and supersymmetry.

The final discriminant in the mono-jet analyses is the
distribution of Emiss

T , in which DM is expected to produce an
excess over SM expectations, typically at high Emiss

T . The signal
includes also searches for jets from hadronic decay of W and Z
bosons (more properly indicated with the name mono-V), where
at the LHC energies the decay products are typically boosted,
producing distinctive signatures with large-radius collimated jets
with a substructure reflecting the origin process [19]. For low
DM masses most of the analysis sensitivity comes from the
mono-jet production mode, whereas for higher masses mono-V
gains importance. The main backgrounds are Z(→ νν̄) + jets
and W(lν) + jets, and are estimated by data-driven techniques
in a number of dedicated data control regions. The remaining
backgrounds from di-boson processes are determined using MC
simulated samples [20].

In a similar manner as in mono-jet events, DM may also be
produced in association with a vector boson radiated off a quark
in the initial state. This give rise to very clean signatures (mono-
photon, mono-Z, mono-W) although with smaller production
rates when compared with the mono-jet case. Mono-photon
and mono-Z [21, 22] with leptonically decaying Z bosons are
among the conceptually simplest searches for DM, with very
low experimental backgrounds and with a discovery sensitivity
substantially limited only by the available data statistic. It is worth
noticing here that if DM particles couple directly to a pair of
gauge bosons, mono-V processes may be the only way in which
DM is produced at the LHC.

If DM particles couple dominantly to heavy quark, for
example when DM is produced via the exchange of a scalar
or pseudo-scalar mediator, then to preserve minimum flavor
violation Yukawa-like couplings proportional to the fermion
mass are preferred, producing final states with heavy flavor
quarks and large Emiss

T . Final states with DM+bb̄, DM+tt̄,
DM+b, and DM+t have been probed by the ATLAS experiment,
implementing several different discriminating variables in
addition to transverse momentum and Emiss

T to cope with the
large multiplicity of different final states [23–25].

Finally, the discovery of the Higgs boson provides additional
ways to search for DM at the LHC. Searches for invisible
Higgs boson decays, sensitive to decays of the Higgs in DM
particles, have been performed using multiple production and
decay channels. Among the different production mechanisms
that have been studied by ATLAS, the vector boson fusion (VBF)
production of Higgs bosons decaying into invisible particles is
the most sensitive one. The most stringent limits to date still
derive from the Run 1 analyses performed at

√
s = 8 TeV [26].

For the mono-Higgs searches in case of a SM-like Higgs boson,
the couplings of the Higgs to initial state quarks are Yukawa
suppressed, so the Higgs is directly produced by the mediator.
Different theory models give rise to mono-Higgs signatures and
have been studied by ATLAS looking at decay modes of the Higgs
boson in photons and b-quarks [27, 28]. In the h(γ γ ) + Emiss

T
search two leading photons with pT > 25 GeV are chosen to
reconstruct the Higgs candidate. The background is estimated
from data by fitting an analytical function to the diphoton
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invariant mass spectrum. Non-resonant background distribution
is also fitted on data assuming an empiric exponential function.
Signal sensitivity in the h(bb̄) + Emiss

T analysis is optimized by
dividing the events in two orthogonal signal regions addressing
resolved and boosted Higgs boson candidates. The signal regions
are then categorized according to the content in the number of
b-tagged jets. Finally the signal is extracted by a simultaneous
binned likelihood fit to the bb̄-jets invariant mass distribution.
The dominant background from the multi-jet is estimated using
data-driven techniques.

3.2. Indirect Searches for Dark Matter
Mediators
Searches for final states without dark matter provide important
constraints and complementarity with respect to the various

mono-X searches discussed above. If DM can be produced at
the LHC via, for example, a s-channel process, the mediator of
the process may decay back into quarks, gluons, or leptons, and
so the results of searches for narrow resonances—for example
in the dijet mass spectrum—can be interpreted in terms of the
DMmodels.

ATLAS has explored multiple final states in search of
deviations from the SM background expectations, including
dijet [29–31], dilepton [32], di-bjet [33], and tt̄ [34] resonances.

The signature for the dijet search is two high pT jets,
and the discriminant is the dijet invariant mass. The analysis
looks for a bump on the smoothly falling invariant mass
distribution modeled by an empirical parameterized function.
Dijet searches excel at probing high mediator masses while
sensitivity at low masses is limited by the high pT requirements

FIGURE 2 | Regions in a DM mass-mediator mass plane excluded at 95% CL by the ATLAS dijet, dilepton and mono-X searches, for vector mediator simplified

models with two choices of the couplings: leptophobic scenario (Left) and leptophilic scenario (Right). Exclusions are computed for the DM coupling gχ , the quark

coupling qg, universal to all flavors, and the lepton coupling ql , indicated in each plot. The dashed curve “thermal relic" indicates combinations of DM and mediator

mass that are consistent with a DM density of � = 0.12 h2 and a standard thermal history. A dotted curve indicates the kinematic threshold where the mediator can

decay on-shell into DM. Excluded regions that are in tension with the perturbative unitary considerations are indicated by shading in the upper left corner.

FIGURE 3 | Regions in a DM mass-mediator mass plane excluded at 95% CL by the ATLAS dijet, dilepton and mono-X searches, for axial-vector mediator simplified

models with two choices of the couplings: leptophobic scenario (Left) and leptophilic scenario (Right). Exclusions are computed for the DM coupling gχ , the quark

coupling qg, universal to all flavors, and the lepton coupling ql , indicated in each plot. The dashed curve “thermal relic" indicate combinations of DM and mediator

mass that are consistent with a DM density of � = 0.12 h2 and a standard thermal history. A dotted curve indicates the kinematic threshold where the mediator can

decay on-shell into DM. Excluded regions that are in tension with the perturbative unitary considerations are indicated by shading in the upper left corner.
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imposed by the jet triggers. To cope with this limitation,
novel strategies have been developed either based on trigger-
object level analysis of data (TLA), in which a higher trigger
rate is allowed by reducing the data-format size for the
events used in the dijet specific analyses, or requiring hard
ISR (jet or photon) in addition to a light dijet resonance.
Loss of sensitivity in presence of resonances with large
widths is instead recovered, at least partially, by looking not
only at the invariant mass of the two jets but also their
angular distribution.

The dilepton analysis selects events with at least two same-
flavor leptons (muons or electrons). Background with two real
leptons are modeled using MC samples, while data-driven

methods are employed to estimate backgrounds with one ormore
misidentified lepton.

3.3. Interpretation
None of the searches for dark matter signals described above
has shown a significant deviation from the expected background
from SM processes. This can be interpreted as exclusion limits
on the different signal models described in section 2. Confidence
level exclusion limits of 95% are obtained from the signal regions,
alone or combined, of the various searches performed by ATLAS
by applying the CLs method [35]. Due to space limitations only
the most important and general results are described in this
short summary review, although a full and updated list of all the

FIGURE 4 | Exclusion limits for color-neutral scalar (Left) or pseudo-scalar (Right) mediator models as a function of the mediator mass for a DM mass of 1 GeV. The

limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of

gq = gχ = 1. The solid (dashed) lines show the observed (expected) exclusion limits for each channel.

FIGURE 5 | A comparison of the inferred limits to the constraints from direct detection experiments on the spin-dependent WIMP-proton scattering cross-section in

the context of the vector leptophobic model (Left) and on the spin-independent WIMP-nucleon scattering cross-section in the context of the axial-vector leptophilic

model (Right). The ATLAS results are compared with limits from direct detection experiments. ATLAS limits are shown at 95% CL and direct detection limits at 90%

CL. ATLAS searches and direct detection experiments exclude the shaded areas. Exclusions beyond the canvas are not implied for the ATLAS results. The dijet and

mono-X exclusion regions represent the union of exclusions from all analyses of that type.
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results produced by the ATLAS experiment is available in ATLAS
Collaboration [36].

In Figure 2, the results of the various experimental signatures
expressed as exclusion contours in the dark matter-mediator
mass plane are reported for two representative scenarios: a
leptophobic vector mediator scenario and a leptophilic vector-
mediator scenario. The same results, but for the axial-vector
mediator case, are presented in Figure 3 (left) and (right),
respectively. For each scenario “thermal relic" curves indicate
combinations of DM and mediator mass that are consistent with
a DM density of � = 0.12 h2 and a standard thermal history.
Dark matter models with vector or axial-vector mediators are
mainly constrained by dijet resonance searches and associate
production of DM and objects from initial state radiation. The
very strong limits obtained from the dijet resonance searches
are due to the particular choice of the universal quark couplings
used as benchmark. Smaller values of gq reduce substantially the
constraints from indirect searches for dark matter mediators.

The most stringent limits on scalar and pseudo-scalar
mediator models come from DM+heavy flavors analyses, in
particular from the DM+tt̄ final states. In Figure 4 the 95%
exclusion limits for color-neutral scalar and pseudo-scalar
mediator models as a function of the mediator mass obtained by
ATLAS are shown.

An interesting comparison between results from searches for
DM at colliders and indirect and direct detection experiments can
be obtained by translating vector and axial-vector mediator limits
on the spin-dependent DM-proton and spin-independent DM-
nucleon scattering cross-section as a function of the DM mass.
A comparison of the inferred limits from the ATLAS searches
to the constraints from direct detection experiments is shown
in Figure 5. ATLAS exclusion contours for vector and axial-
vector neutral mediator models are complementary to the ones
obtained by direct detection, with a better sensitivity for low
values of the DM mass where direct experiment loose sensitivity
to the below detection threshold energy recoils, induced by
the DM scattering. It is important to observe here that the
results of the interpretation in both the spin-dependent and
spin-independent cross sections depends on the mediator mass
and the couplings assumptions, so the comparison is only
valid in the context of the specific model and couplings that
is assumed.

4. OUTLOOK AND FUTURE
PERSPECTIVES

The ATLAS experiment is actively searching for dark matter
at the LHC, a thriving research field in both theoretical and
experimental fields. There is sensitivity to DMundermanymodel

assumptions for the interaction and the mediator, and a large
number of different searches have already been performed in final
states with both missing transverse momentum and in indirect
searches for dark matter mediators. No evidence for DM has
been observed so far and present searches performed by ATLAS,
within the choice of models and couplings that have been used to
interpret the results, already allow for probing a large portion of
the parameters space.

One of themost important features of the DM searches at LHC
is the strong complementarity with the searches implemented for
indirect and direct detection experiments, so that the union of the
three efforts allows for probing the full parameter space of many
of the most viable and motivated theory models of dark matter.

The ATLAS analyses summarized in this short review are all
based on up to 37 fb−1 of proton-proton collision data at a
center of mass energy of 13 TeV collected in 2015 and 2016, only
a small fraction of the total LHC data set already collected by
ATLAS in Run 2. Moreover an even larger data set is expected
to be delivered by the LHC in the future, first in Run 3 which is
expected to start in 2021 and to accumulate 300 fb−1 of data in
three years of data taking, and then in the HL-LHC phase that
will eventually deliver to the LHC experiments up to 3,000 fb−1

of proton-proton collisions at 14 TeV.
Using a simplified model in which WIMP pairs are produced

from the s-channel exchange of an axial-vector mediator
coupling to quarks with a coupling strength of 0.25 and to
WIMPs with unit coupling strength, ATLAS has estimated the
expected 95% CL limit on the mediator mass in the mono-Jet
search for a target luminosity of 3,000 fb−1 . An expected 95%
CL limit on the mediator mass of 2.65 TeV could be reached for
a signal with a WIMP mass of 1 GeV and can be extended up
to 2.88 TeV by reducing the systematic uncertainties by a factor
of four, an improvement of about 80% with respect to the latest
published results from the ATLAS experiment [37].

Only a limited portion of the dark matter model phase
space has been explored so far, and much more has yet to
be investigated. Combining this with the impressive advances
in theoretical developments and in the design and deployment
of innovative experimental analysis techniques expected in the
following years, we are quite convinced that the experiment-
based journey for ATLAS and the LHC in search if dark matter
has just begun.
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