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ABSTRACT  

This paper presents the application of monolayer doping (MLD) to silicon-germanium (SiGe). 

This study was carried out for phosphorus dopants on wafers of epitaxially grown thin films of 

strained SiGe on silicon with varying concentrations of Ge (18, 30 and 60 %). The challenge 

presented here is achieving dopant incorporation while minimising strain relaxation. The 

impact of high temperature annealing on the formation of defects due to strain relaxation of 

these layers was qualitatively monitored by cross-section transmission electron microscopy 

(XTEM) and atomic force microscopy (AFM) prior to choosing an anneal temperature for the 

MLD drive-in. Though the bulk SiGe wafers provided are stated to have 18, 30 and 60 % Ge 

in the epitaxial SiGe layers it does not necessarily mean that the surface stoichiometry is the 

same and this may impact the reaction conditions. X-ray photoelectron spectroscopy (XPS) 

and angle-resolved XPS were carried out to compare the bulk and surface stoichiometry of 

SiGe to allow tailoring of the reaction conditions for chemical functionalization. Finally, 

dopant profiling was carried out by secondary ion mass spectrometry (SIMS) to determine the 

impurity concentrations achieved by MLD. It is evident from the results that phosphorus 

incorporation decreases for increasing mole fraction of Ge, when the rapid thermal annealing 

temperature is a fixed amount below the melting temperature of each alloy. 
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INTRODUCTION 

Device sizes for electronic applications have been aggressively scaled down over the 

past 50 years, pushing the limits of what was capable by introducing new materials such as 

high-k dielectrics,1 and new device architectures such as FinFETs,2 for example. Regardless, 

in recent times device dimensions have approached a critical point where silicon, the 

cornerstone of the semiconductor industry, struggles to achieve the performance gains as 

scaling continues. In this context, other high mobility materials, such as SiGe, are being 

investigated to assess their potential.3 Currently, low mole fraction (MF) SiGe is being used as 

a stress enhanced carrier mobility booster4 and is considered to be a viable candidate for a 

channel material in MOSFETs.5-7 Recently, the 7-nm technology node solution has also been 

proposed with integration of SiGe p- and strained-Si n-MOSFETs, showing the feasibility of 

SiGe devices in future devices.8 However, there are no reports of chemical functionalization of 

SiGe in literature, and only a few reports of ex-situ doping SiGe9, 10 when compared to silicon.  

For thin-film homogeneous strained or relaxed SiGe with >50 % Ge-content there is little 

available experimental data on processing such as dopant diffusion and activation, contact 

formation, or on in-situ doping and selective epitaxial growth on surfaces with different crystal 

orientations. Very recently, publications have emerged on high-Ge content SiGe for solar cell 

applications.11-13 

Doping of future technology devices fabricated either from thin-films or 3-dimensional 

structures could prove difficult for ion implantation, which has been the most commonly used 

ex-situ doping technique during the device miniaturization drive until this point.14, 15 High 

energy ion beams induce damage (amorphization) into these structures which prove difficult 

to remove, if at all.16 Possibly the most critical flaw of ion implantation is the lack of 

conformality seen when doping 3-dimensional structures such as fins or nanowires. Due to the 

directionality of the technique it struggles to equally dope both the top and sidewalls of these 
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structures.17 A number of alternative ex-situ doping methods have been proposed and 

developed to offer solutions to the problems encountered with ion implantation such as plasma 

doping (PLAD),18 spin-on-doping,19 and solid-source-diffusion.20 However, these techniques 

also suffer from crystal damage or lack of dose control. Doping SiGe in-situ has been studied 

for many years21-23 and is the current trend in certain technology applications. Furthermore a 

boost in dopant activation by using a laser anneal after the growth of the in-situ doped epi layer 

has shown to be beneficial in source/drain contact regions.24 However for alternative 

applications, or other parts of the transistor, epitaxy may not be suitable due to design or space 

restrictions.  

Monolayer doping (MLD) has been developed as a method to produce ultra-shallow 

junctions (USJ’s) without crystal damage, while also conformally doping 3-dimensional 

substrates.25-27 It has already been demonstrated on a variety of semiconductors including Si,28-

34 Ge,35-37 and a number of III-V materials.38  Figure 1 depicts the MLD procedure on SiGe. 

The key step involves functionalization of the target surface through the bonding of a dopant 

molecule (in this case allyldiphenylphosphine (ADP)) to form a self-limiting monolayer where 

the quantity of dopant molecules present is determined by the molecule size and also defines 

the dose. Once monolayer formation is complete the samples are capped with an oxide layer to 

prevent desorption and promote diffusion of the dopant atoms into the substrate during thermal 

treatments. After thermally treating the samples the capping layer can be removed to leave a 

uniformly doped substrate whether it be planar or 3-dimensional. This paper will examine the 

application of phosphorous MLD to SiGe alloys ranging from low Ge content 18 %, to high 

Ge content 60 % aiming to understand if this novel doping technique can effectively dope these 

substrates. There are two main challenges associated with doping SiGe by MLD 1) How to 

chemically functionalize the SiGe with dopant-containing molecules (i.e. will the reactivity of 
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the surface atoms to the molecules be like silicon or germanium?) and 2) How to avoid strain 

relaxation of the non-buffered SiGe layers during the dopant drive-in annealing step? 

 

Figure 1: Summary of MLD procedure on SiGe 

 

EXPERIMENTAL 

Thin films of strained SiGe were grown on a 300 mm Applied Materials epitaxy system 

on silicon substrates with germanium contents of 18, 30  and 60 % respectively. The thickness 

of these films was inspected with cross sectional transmission electron microscopy (X-TEM). 

All chemicals were purchased from Sigma Aldrich. 1×1 cm samples were cut from the starting 

SiGe wafers and cleaned by sonicating in acetone (≥99.8 %) for 2 minutes, followed by a rinse 

in isopropyl alcohol (IPA-99.9 %) and drying under a stream of nitrogen. Samples were 

hydrogen terminated by dipping in 2 % hydrofluoric acid (HF) for 10 seconds and placed under 

nitrogen in a Schlenk line to prevent re-oxidation. A 0.1 M solution of allyldiphenylphosphine 

(ADP-95 %) in mesitylene (98 %) was degassed and transferred into the reaction flask 

containing the H-terminated samples. This reaction flask was heated to 180 °C for 3 hours to 

allow for optimal monolayer formation on the SiGe surface. Samples were then removed and 

sonicated in IPA for 1 minute followed by a further IPA rinse and drying under a stream of 

nitrogen to remove any physisorbed dopant molecule. Functionalized samples were stored 

under nitrogen until capping with 50 nm sputtered SiO2. Rapid thermal annealing (RTA) was 
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carried out at a variety of temperatures and times which are specified for each result. The SiO2 

capping layer was then removed by dipping in a 25:1 BOE solution until a hydrophobic H-

terminated surface was produced.  

SIMS data was acquired on a Phi Adept 1010 using a 0.5-1 keV Cs+ bombardment with 

negative ion detection. Calibration was carried out using SiGe which has been implanted with 

P and measured using RBS (Rutherford backscattering spectrometry) to determine 

composition. AFM was implemented in tapping/noncontact mode at room temperature over a 

3×3 μm scanning area. A Kratos ULTRA spectrometer was used for XPS measurements with 

the following parameters. Sample temperature was kept between 20-30 °C with a 

monochromated Al K  α source used. Pass energies of 160 eV for survey spectra and 20 eV for 

narrow regions were used with steps of 1 eV (survey) and 0.05 eV (narrow regions). Dwell 

times were 50 ms (survey) and 100 ms (regions) while 12 sweeps were carried out during 

survey spectra and for narrow region analysis from 5-40 sweeps were used. For structural 

analysis, FEI’s Dual Beam Helios Nanolab 600i system using Ga ion beam was used to obtain 

cross-section samples. Electron beam C, electron beam Pt, and ion beam C were used as 

protective layers. Lamellas were thinned and polished at 30 kV 100 pA and 5 kV 47 pA, 

respectively. JEOL 2100 HRTEM operated at 200 kV in Bright Field mode using a Gatan 

Double Tilt holder was used for XTEM imaging. 

RESULTS AND DISCUSSION 

Figure 1 broadly describes the process of doping SiGe by MLD. ADP was chosen as a 

source of phosphorus for these experiments for two reasons. (1) It contains the C=C 

functionality which reacts with both Ge and Si, an assumption being made that it will also react 

with SiGe and (2) its remaining functional groups are phenyl rings which are highly unreactive 

thereby inhibiting multilayer formation.  Epitaxially grown SiGe with varying concentrations 

of Ge were used in this study. As-received, the amount of Ge in the SiGe wafers provided was 
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stated to be 18, 30 and 60 %.  Representative XTEM images are show in Figure 2. Though 

chemical reactions on Si and Ge are similar there are variations in reactivity between the two 

materials.  For example, the reaction of an alkene with hydrogen terminated Si will occur in 

solution when heated to 180 oC but under these same conditions it will not react with Ge. Either 

much higher temperatures (> 220 oC) or UV light are required for the reaction between an 

alkene and Ge to proceed. 35, 36   

 

Figure 2: XTEM of as-received SiGe (a) 18% Ge (b) 
30% Ge and (c) 60% Ge 

 

Though the bulk SiGe wafers provided are stated to have 18, 30 and 60 % Ge in the 

epitaxial SiGe layers it does not necessarily mean that the surface stoichiometry is the same as 

the bulk.  The surface stoichiometry is important as it may impact the chosen reaction 

conditions for the chemical functionalization. In order to assess if surface stoichiometries differ 

to the bulk, an angle-resolved XPS study was carried out. Table 1 show the measured 

stoichiometries for each sample. 
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The measured stoichiometries are 14, 33 and 65 % for XPS with a take-off angle of 90o 

which corresponds to a sampling depth of 9.1 nm for the Ge 3d peak and 8.8 nm for Si 2p 

peak.39  Those measured for the XPS with a take-off angle of 60o were 12, 31 and 65 %, where 

the sampling depth is halved when compared with samples measured with a take-off angle of 

90o and thus are more surface sensitive.  With a commonly specified error range of +/- 10 % it 

can be concluded that the surface and bulk stoichiometries do not differ drastically.  

 
Figure 3: Illustration showing the 
approximate footprint of the molecule, ADP, 
on the surface of silicon. 

 

Table 1: The experimentally measured surface stoichiometries of the epitaxial SiGe. 
The measured stoichiometries are reported for take-off angles of 90 and 60 degrees, 
The measured stoichiometries are calculated from the areas of the Si 2p and Ge 3d XPS 
core levels, normalized using the appropriate relative sensitivity factors. 

Sample ID Measured stoichiometry  Measured stoichiometry (60o) 

SiGe18 Si0.86Ge0.14 Si0.88Ge0.12 

SiGe30 Si0.67Ge0.33 Si0.69Ge0.31 

SiGe60 Si0.35Ge0.65 Si0.35Ge0.65 
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Figure 3 shows roughly how much space the ADP will take up on the surface of a 

substrate.  For the purposes of illustration the surface depicted is silicon. Given that ADP has 

an approximate molecular footprint of 1 nm2 and that the Si-Si bond length in crystalline Si is 

roughly 0.25 nm about 1 in 16 Si atoms (or ~6 % of the surface atoms) will have a molecule 

bonded to them. An assumption is made here that these calculations will be very similar for the 

SiGe substrates.  Though these calculations and the illustration in Figure 3 are for indication 

only, when combined with the XPS data we are satisfied that we can treat the SiGe surface, 

from a chemical reactivity point of view, as if it were silicon.  It should be noted that the authors 

recognize that though the chemical reactivity of Si and Ge are well established 28, 29, 36, 37there 

is no available data on the reactivity of SiGe.   

The selection of the drive-in anneal temperature is a critical part of this experimental 

set-up. Si melts at 1416 °C, while Ge melts at 938 °C, and alloys of SiGe melt at temperatures 

between those extremes, depending on the % Ge content. Another consideration is that the 

epitaxial SiGe is strained and heating to high temperatures will cause strain relaxation.  XTEM 

and AFM were carried out on SiGe 30 % to assess the impact of annealing at high temperature. 

The standard annealing temperature for MLD on Si is 1050 °C. 26, 32 Before anneal, the 

substrates show no obvious crystal defects in cross-section or in the AFM analysis 

(representative images in Figure 4a). Post-anneal at 1050 °C, it is obvious the SiGe layer has 

been degraded (Figures 4b). For example, there is extensive crosshatching in the AFM. 

Crosshatching occurs as a result of misfit dislocations having formed at the SiGe:Si interface. 

These misfit dislocations are an indication of the strain relaxation which can also be seen in the 

XTEM which contains a noticeably defective SiGe:Si interface. Furthermore a stacking fault 

is visible in Figure 4b resulting in a kink or step-like feature at the surface where it terminates. 
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Figure 4: XTEM and AFM of as received SiGe 30 % 
(top row) and SiGe 30 % after annealing at 1050 °C 
for 5 seconds (bottom row). 

Due to this degradation it is assumed that a 1050 °C RTA used for Si cannot be applied 

to Ge, and thus we are unable to apply a constant RTA temperature across all the SiGe alloys 

studied here. Instead we have chosen an RTA temperature at a fixed amount below the melting 

temperature of each material, in accordance with Figure 5. As 1050 °C is routinely used for P 

in-diffusion into Si,34 we used this as our basis for a constant Tmelt - TRTA (1416-1050 °C) value. 

The RTA temperatures for 18, 30, and 60 % Ge content SiGe are thus 935, 835 and 685 °C 

respectively. 
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Figure 5: Melting temperature of SiGe as a function of 
Ge content. The dopant drive-in RTA was chosen to be 
a constant value below the melting temperature, also 
plotted here. 

 

Figure 6 shows AFM images of all SiGe samples before and after MLD processing. 

Samples before MLD show that the surface topology is very uniform, with RMS values <0.3 

nm. MLD processing leads to a small increase in all RMS values which is to be expected with 

wet chemistry processing and cap addition/removal possibly leaving residue on the sample 

surface.  Disregarding these residues due to processing which are clearly present on the 18 and 

60 % after MLD, all surfaces are of good quality. Though not quantified it is clear that 

crosshatching can be seen in both the 30 and 60 % samples which is an indicator of the onset 

of strain relaxation. 40, 41 
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Figure 6: AFM before (left column) and after MLD 
(right column) of (a) 18 % SiGe (b) 30 % SiGe and (c) 
60 % SiGe. 

 

The impact of MLD on SiGe sample quality was further probed using X-TEM. Figure 

7 shows images of SiGe 30 % before and after MLD. It is clear from these images that P-

diffusion into the SiGe30 sample does not lead to any crystalline damage at the temperature 

used in this study. This agrees with numerous other studies which demonstrate MLD as a non-

destructive doping technique. 26,42 The SiGe:Si interface in Figure 7 does not show any 

evidence of defects which leads us to believe that the small amount of crosshatching seen in 

AFM after MLD is inconsequential.   
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Figure 7: (a) XTEM of SiGe30 after MLD (b) 
Magnified region showing smooth interface 
and crystalline SiGe. 

 

 If defect formation as a results of strain relaxation of the SiGe layer was not considered 

problematic it would be possible to utilize higher anneal temperatures up to those seen in 

Figure 4 (1050 °C). These higher anneal temperatures would theoretically enable higher in-

diffusion and activation of the P dopant atoms. Previous studies on silicon have found that 

optimal RTA temperatures for P in-diffusion and activation were somewhere in the region of 

1000-1100 °C.26, 32 Another approach which may have the potential to reduce the probability 

of nucleating defects at the Si/SiGe interface seen at higher anneal temperatures (Figure 4) is 

the use of buffer layers. These buffer layers include a gradual increase in germanium content 

which leads to a smaller lattice mismatch than what is seen in samples where high Ge content 

SiGe has been grown directly on Si. Alternative annealing methods such as laser annealing 

have also been shown to work effectively in combination with ion implantation to dope strained 
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SiGe layers. 43 Combining laser annealing and MLD may prove to be a more suitable means 

than RTA, of achieving highly doped SiGe layers while maintaining the strained nature of the 

SiGe layer. 

 
Figure 8: SIMS of P MLD doped SiGe with 
concentration of 18%, 30 % and 60 % with 
respective annealing temperatures of 935, 835 and 
685 °C at annealing times of (a) 10 s (b) 100 s. 

 

Figure 8 shows SIMS analysis of the concentration of P versus depth for the SiGe 

samples doped using MLD. From both Figure 8a and 8b we note that less P diffusion occurs 

as the Ge content increases, again within the experimental framework of a constant Tmelt - TRTA, 
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as the profiles for 18 % Ge content SiGe are deeper than those in 30 % Ge content SiGe, which 

are again deeper than those in 60 % Ge content SiGe. The longer anneal time produced more 

diffusion, which is consistent with theory, as dopant diffusion lengths are proportional to √𝑡𝑡, 

where t is anneal time.44 Based on the TEM images of the as-received SiGe layers, the dopant 

profiles in Figure 8 are all contained within the SiGe layers, for the most part, and have not 

diffused into the underlying Si substrate. 

Figure 9 shows P-diffusivity (D) in SiGe as a function of Ge content, at the specific 

temperatures used for the drive-in anneal. The blue points are data extracted from our 

experiments, while the black points are the data we could find in literature for similar 

temperatures and material compositions.45-49 . The two blue points represent values extracted 

from the two annealing times, namely 10 and 100 s, as shown in Figure 8. 

Note that the literature value temperatures and Ge content correspond to the 

experimental data we have in this work. In the literature, phosphorus D is presented as a 

function of 1/kT, and so for the specific content (e.g. 18% Ge) we could read off the D value 

for the corresponding temperature in this work (e.g. 935 °C). Overall the values extracted from 

our data correspond with the trends previously reported in literature. D drops with increasing 

Ge content and decreasing RTA temperature when using a constant Tmelt - TRTA. 
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Figure 9: Phosphorus diffusivity in SiGe versus 1000/T extracted from 
our experiments (blue symbols) as well as literature values (black 
symbols). In this case T is the temperature of the drive-in anneal, which 
was kept at a constant value below the melting temperature of the 
material. 

 

The method for extracting D for in-diffused doping profiles is now briefly summarized. 

The impurity concentration (C) profile for a chemical pre-deposition process has the form  

𝐶𝐶(𝑥𝑥,𝑡𝑡) = 𝐶𝐶𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑥𝑥

2√𝐷𝐷𝐷𝐷
� (1) 

where x is the distance from the surface, t is time, Cs is the impurity surface concentration, and 

D is the impurity diffusivity. If D is constant, the depth of the profile depends only on time, 

and the surface concentration remains fixed as this is limited by solid solubility limit at that 

processing temperature. If the total quantity of dopant is defined as dose, Q, then this can be 

described as  
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                            𝑄𝑄(𝑡𝑡) = ∫ 𝐶𝐶(𝑥𝑥,𝑡𝑡)𝑑𝑑𝑑𝑑
∞
0   (2) 

Using these two equations, the total incorporated dose can be simplified as   

𝑄𝑄(𝑡𝑡) =
2
√𝜋𝜋

𝐶𝐶𝑠𝑠√𝐷𝐷𝐷𝐷 
(3) 

Using the SIMS analysis in Figure 5, Q and Cs can be extracted. Knowing the 

experimental processing time, t, means D is the only unknown, and thus can be calculated.  

Factors that affect changes in dopant diffusivity in semiconductors include the relative 

dominance of interstitial-mediated or vacancy-mediated diffusion mechanisms, point defect 

populations, lattice strain, presence or absence of threading dislocations and their density, and 

finally the dose or supply of dopant. P diffusion in Si is predominantly interstitial-mediated,50, 

51 while P diffusion in Ge is vacancy-mediated.45, 52 It is not clear presently at what point along 

the Ge % content axis where it changes from one mechanism to the other. From the evidence 

in Figure 6 diffusivity changes quite linearly rather than reaching a toggle point or falling off 

a cliff, so probably the switch from interstitial or vacancy mediation is gradual.   

 Note that this is a simplified model for the purposes of our discussion, although it is 

well-known as a surface-source in-diffusion model. The system under study is very 

complicated considering the changing alloy composition will affect diffusion mechanisms, 

probability of dopant-point defect pairing, intrinsic concentrations of those point defects, both 

charged and uncharged, as well the presence of strain and extended defects. It is not the aim of 

this work to go into depth of the changing diffusion mechanisms as it would be another, quite-

substantial, work. Furthermore, we have not explicitly considered a dependence of D on 

phosphorus concentration in this surface-source in-diffusion model, mainly as concentration 

enhancement effects usually arise at concentrations approaching or above 1020 at./cm3 and we 
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are below those concentrations in this work. Nevertheless it is important to note that we have 

benchmarked our results with existing reports, and the data appear consistent. 

The influence of strain should also be mentioned as these SiGe layers are grown directly on a 

Si substrate, without a strain-relaxed-buffer (SRB). Pakfar et. al modelled the effects of strain 

and Ge content on point defect population in SiGe,53 which drive a change in dopant diffusivity. 

For P it was found that the effect of stress counterbalances the Ge chemical effect on 

interstitials, and thus the change in diffusivity is minimized. Note, we should state again that it 

was not the aim of this work to explore strain as one of the variables here, but rather to explore 

the choice of RTA temperature in the trade-off between successful dopant incorporation while 

avoiding epitaxial layer structural relaxation. Given the 2 orders of magnitude change in D as 

a function of RTA temperature, that is a dominant variable here. 

As seen in the TEM and AFM data, with high thermal budgets threading dislocations 

will form in order to relax the strained layer. The threading dislocation density (TDD) will 

affect the diffusivity if the material is extremely defective as these defects could form 

preferential pathways for P atoms to diffuse.54 However the data presented in Figure 6 and 7 

show that the TDD is less for the RTA temperatures considered in Figure 8 and 9 then for the 

standard anneal temperature of 1050 oC.  Although overall the TDD should not have a strong 

bearing on the conclusions in this work we cannot conclusively state that the trend in SIMS 

profiles in Figure 8 are not contributed to by the TDD.  

Finally, Si and Ge inter-diffusion has been modelled by Zechner and Zographos,55 

which may locally affect the SiGe composition close to the SiGe-Si interface. The change in 

Ge % content will have a knock-on effect on point-defect populations and hence point-defect 

mediated dopant diffusion, as discussed earlier. For the study here, namely in-diffusion from 

the top surface, the back interface of the SiGe (away from the source of the dopant) should 

only have a minimal effect on the dopant drive-in.   
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CONCLUSIONS 

This paper has outlined the application of MLD to SiGe showing both the advantages 

of this form of doping and some of the issues which must be overcome for future use. Ultra-

shallow doping has been achieved with phosphorus dopant atoms to levels currently in the 

region of 2×1019 atoms/cm-3. Doping levels in excess of 1×1020 atoms/cm-3 are required for 

working devices and the authors are working on combining MLD with advanced annealing 

processes (e.g. laser annealing) to achieve these values. Diffusivity levels found during this 

study agree with values from literature for P diffusion in strained SiGe. Strain relaxation is a 

major issue when applying high thermal budget treatments to epitaxially grown SiGe/Si 

substrates. In this study we have optimized RTA temperatures for low to high Ge content SiGe 

samples to produce maximum doping levels without introducing strain relaxation into the 

substrates. More advanced annealing methods or the use of buffer layers would allow for 

greater dopant incorporation while maintaining the strained nature of the SiGe layer.  
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