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Abstract

Abstract

A user of a recommender system is more likely to be satisfied by one or more

of the recommendations if each individual recommendation is relevant to her

but additionally if the set of recommendations is diverse. The most common

approach to recommendation diversification uses re-ranking: the recommender

system scores a set of candidate items for relevance to the user; it then re-ranks

the candidates so that the subset that it will recommend achieves a balance

between relevance and diversity. Ordinarily, we expect a trade-off between

relevance and diversity: the diversity of the set of recommendations increases

by including items that have lower relevance scores but which are different

from the items already in the set.

In early work, the diversity of a set of recommendations was given by an aggre-

gate of their distances from one another, according to some semantic distance

metric defined on item features such as movie genres. More recent intent-aware
diversification methods formulate diversity in terms of coverage and relevance

of aspects. The aspects are most commonly defined in terms of item features.

By trying to ensure that the aspects of a set of recommended items cover the as-

pects of the items in the user’s profile, the level of diversity is more personalized.

In offline experiments on pre-collected datasets, intent-aware diversification us-

ing item features as aspects sometimes defies the relevance/diversity trade-off:

there are configurations in which the recommendations exhibits increases in

both relevance and diversity.

In this thesis, we present a new form of intent-aware diversification, which

we call SPAD (Subprofile-Aware Diversification). In SPAD and its variants, the

aspects are not item features; they are subprofiles of the user’s profile. We

present a number of different ways to extract subprofiles from a user’s profile.

None of them is defined in terms of item features. Therefore, SPAD and its

variants are useful even in domains where item features are not available or

are of low quality.

On several pre-collected datasets from different domains (movies, music, books,

social network), we compare SPAD and its variants to intent-aware methods

in which aspects are item features. We also compare them to calibrated rec-

ommendations, which are related to intent-aware recommendations. We find

on these datasets that SPAD and its variants suffer even less from the rele-

vance/diversity trade-off: across all datasets, they increase both relevance and
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Abstract

diversity for even more configurations than other approaches. Moreover, we

apply SPAD to the task of automatic playlist continuation (APC), in which rel-

evance is the main goal, not diversity. We find that, even when applied to the

task of APC, SPAD increases both relevance and diversity.
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Chapter 1

Introduction

1.1 Motivation

Recommender systems have become an essential part of social networks (such

as Facebook and Twitter), e-commerce sites (such as Amazon), music and video

streaming platforms (such as Spotify and Netflix) and many other services on

the web. Recommender systems aim to satisfy the users of these platforms by

helping them to discover content that matches their interests.

Besides being an essential part of many platforms, recommender systems have

become an active research field as well. For instance, the ACM Conference on
Recommender Systems is one of the most relevant and among the most presti-

gious conferences in the field. Recommender systems have also become an im-

portant topic in other top conferences such as the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, ACM’s Special Interest Group on Informa-
tion Retrieval and the Web Conference (WWW). Recommender systems research

is also published in journals, for instance the ACM Transactions on Interactive
Intelligent Systems and User Modeling and User-Adapted Interactions.

An assumption of very early work on recommender systems was that the goal

was to accurately predict the users’ opinions of candidate items, and to use

these predictions to select items to recommend. It was soon recognized that it

is not enough for predictions to be accurate or recommendations to be merely

relevant. A focus on accuracy or relevance may result in recommendations that

are too obvious (e.g. sequels in a movie recommender), too popular (e.g. block-

buster movies), too similar to each other, or too similar to the user’s profile. It
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1. INTRODUCTION 1.1 Motivation

can lead to monotony in a user’s interactions with the system [EMB17], and it

may narrow, rather than broaden, a user’s horizons [CWM+17]. In many do-

mains, recommendations must be novel to the user or serendipitous, and a set

of recommendations must be diverse [MRK06]. It is diversity that is the focus

of this thesis.

Diversity is one response to uncertainty. A recommender cannot be certain of a

user’s short-term or longer-term interests, both because some user profiles are

small and others, while they may not be so small, will contain preferences over

different kinds of items. In the face of uncertainty, a diverse set of recommen-

dations is more likely to contain one or more items that will satisfy the user.

A number of user studies shows that a diverse set of recommendations can be

more attractive to users, reduce the difficulty of selecting an item to consume

from among the recommendations [NCGV18], and even increase satisfaction

with the chosen item, e.g. [WGK16], especially when visual interfaces are de-

signed to highlight the diversity of the recommended items, e.g. [TB17, TB18].

There is often thought to be a trade-off between accuracy and diversity. A set of

randomly-chosen items, for example, is likely to be diverse, but the individual

recommendations are less likely to be relevant to the user. Or, to give another

example, recommending a set of popular items will, in many cases, result in

high accuracy but may lead to lower diversity [AK08]. Past research has consid-

ered how to increase the level of diversity at the expense of negligible accuracy

loss [AK09]. However, as we will show in the following chapters of this thesis,

newer diversification methods may not be so susceptible to this trade-off and

may even increase both the accuracy and the diversity of the recommendations.

A diverse set contains items that are different from one another. Early work

measures the diversity of a set of items as an aggregate of the all-pairs dis-

similarity of the items. Dissimilarity is computed by a distance metric (or the

complement of a similarity metric) defined on item features (e.g. movie gen-

res), item ratings or latent factors. Typically, a recommender system finds a set

of recommendations incrementally, by considering the marginal contribution

that would be made by adding a candidate item to the result set [CG98]. The

marginal contribution is usually a linear combination of how relevant an item is

to the user and how dissimilar it is from the set of items that have been included

in the result set so far. Within the linear combination, a parameter determines

the trade-off between accuracy and diversity. In principle, this parameter can

have different values for different users (although this is rare in practice). But
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the assumption in this early work is that diversity should be measured in the

same way across all users (by item distances); it is not personalized. This as-

sumption may be wrong. Consider a music recommender, for example. One

user may like only pop and rock music; for her, a diverse set is one that covers

both genres. Another user may have much more catholic tastes and, for him, a

diverse set must cover a much wider range of genres.

More recently within Information Retrieval, a new approach to result set diver-

sification has emerged, known as intent-aware diversification [SMO10, VCV12].

The idea is that, to satisfy a user, a result set must cover her intention to a cer-

tain extent. In the case of an ambiguous query, there is uncertainty about her

intention. The query term “apple” could refer to the fruit or the corporation,

for example. In this case, there should be items in the result set corresponding

to each interpretation, thus ensuring that the user’s intent is covered. The more

ambiguous a query term is then, other things being equal, the more diverse the

result set needs to be if it is to cover all the possible interpretations.

Vargas et al. [VCV11] have adapted intent-aware diversification from Informa-

tion Retrieval to recommender systems. In this case, there is usually no query.

Instead of covering different interpretations of an ambiguous query, the idea

analogously is to cover the different tastes or interests of the user, as revealed

by her profile. A user’s tastes or interests are commonly modelled as a prob-

ability distribution over so-called aspects of the items, which can be explicit

item features (such as news item categories or music genres) or implicit item

features such as the latent factors computed, e.g., by a matrix factorization rec-

ommender system. Although the same aspects (e.g. music genres) are used for

all users, the aspect probabilities, computed from the user profiles, may differ

from user to user, making intent-aware diversification a more personalized ap-

proach. The recommendations to the user who likes only pop and rock music,

for example, are diversified to cover both pop and rock music and, to a certain

extent, to the degree that these are reflected in her profile.

Using item features for aspects brings several problems. In some domains, item

features may not be readily available. Even when available, they may fail to

capture the subtleties of a person’s preferences; they may be too coarse; they

may be inconsistently applied to the items; and they may be noisy. Instead of

defining tastes and interests in terms of item features, alternatively patterns

in user interactions with items can be used to define the distinct tastes and

interests of the users [Kul18]. Patterns of interaction with items, subprofiles in
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our case, rather than item features, form the basis of the aspects of an intent-

aware approach to diversification throughout this thesis.

In this thesis, we are proposing a new intent-aware diversification framework,

called Subprofile-Aware Diversification (SPAD). In SPAD, aspects are user sub-

profiles, rather than item features. A subprofile is simply a subset of the items

that the user likes, representing one of the user’s distinct tastes or interests.

Immediately, we see that subprofiles tend to give us more fine-grained aspects

than item features: if the user likes m items, then there are 2m− 1 possible sub-

profiles, i.e. all subsets except the empty set. But also it is a user’s interactions

with items that define which of these possible subprofiles are aspects for that

user.

1.2 Contributions

The main goal of this thesis is to address the question of how best to produce a
relevant but diverse set of recommendations. To do this, first, we propose a new

approach: a form of intent-aware diversification but one which diversifies with

respect to subprofiles that we mine from the user’s profile, rather than with

respect to genres or other item features. The following sections describe the

contributions that we make in addressing the main goal of the thesis.

1.2.1 SubProfile detection methods

We define eight methods for detecting subprofiles. We group them into three:

there are two methods (NN-1 and NN-2) that use the nearest-neighbours of

liked items; there are three methods (IB+, DAMIB and DAMIB-COVER) that

use the explanations of top-n recommendations, two of which are from [VG15];

and there are three methods (IB+cp, DAMIBcp and DAMIB-COVERcp) that

consider profile coverage.

In Chapter 4, we give a comprehensive empirical comparison of all eight meth-

ods for detecting subprofiles on three different datasets. The methods that use

the nearest-neighbours of liked items have several advantages over the others,

and the empirical comparison shows that one of these methods (designated

NN-1) is also the best in terms of recommendation accuracy and diversity.
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We analyze the subprofiles that NN-1 finds. We give descriptive statistics and

plot distribution graphs to better understand how subprofiles differ from da-

taset to dataset. We also give an explicit example of how subprofile detection

works on one of the datasets we use.

1.2.2 SPAD & RSPAD

In Chapter 4, we define the Subprofile-Aware Diversificiation (SPAD) and Rele-

vance based SPAD (RSPAD) intent-aware diversification methods.

In Chapter 5, using NN-1 as the subprofile detection method, we compare

SPAD and RSPAD against several existing intent-aware-diversification frame-

works where aspects are item features.

1.2.3 Adaptation of diversity metrics to subprofiles

The algorithms that we propose in this thesis, including SPAD and its variants,

make no use of item features at all. Since the diversity metrics that we take from

the literature and use in the experiments throughout this thesis are computed

with respect to the item features, SPAD and its variants are at a disadvantage. In

Chapter 5, we have adapted several diversity metrics so that they use subprofiles

instead of item features. Using these new metrics alongside the existing ones

gives a more balanced view of the performance of the recommender algorithms.

1.2.4 Community-Aware Diversification

In Chapter 6, we propose Community-Aware Diversification (CAD), in which

aspects are again subprofiles but are detected indirectly through users who are

similar to the active user. Thus, it explores the idea that a user’s community

(similar users) correlates with her tastes or interests (subprofiles). We show

that in certan domains this can give better results.

Subprofile Aware Diversification of
Recommendations

5 Mesut Kaya



1. INTRODUCTION 1.3 Publications

1.2.5 Intent-Aware Recommendation vs. Calibrated Recom-

mendation

In Chapter 7, we give a comparison between intent-aware approaches to re-

commendation diversification and recently-proposed calibrated recommenda-

tion, which has apparent similarities to intent-aware diversification. We define

a new variant of calibrated recommender system, one which calibrates with

respect to subprofiles, rather than item features. Finally, much as we adapted

diversity metrics that used item features to ones that use subprofiles, we also

adapt the calibration metric to give one that uses subprofiles instead of item

features.

1.2.6 Submodularity of intent-aware approaches

As we will explain later, diversification of recommendations is most often ac-

hieved by a greedy algorithm. The algorithm has a (1 − 1
e
) optimality guar-

antee if its objective function is submodular and monotone. In Chapter 7, we

adapt a proof from the literature to show that the objective function used in

intent-aware approaches, such as xQuAD and SPAD, is both submodular and

monotone.

1.2.7 Applying SPAD to Automatic Playlist Continuation

SPAD’s main goal is diversification. But, our experimental results show, that it

also always increases recommendation precision too. In Chapter 8, we apply

SPAD to a task that is different from the others in this thesis — a task where

precision, rather than diversity, is the main goal. The task comes from the ACM
RecSys Challenge 2018, which is about Automatic Playlist Continuation (APC).

We show that, playlists contain subprofiles and we show the advantages of

applying SPAD to APC.

1.3 Publications

We have published the work described in this thesis in international journals,

conferences, their workshops and poster sessions. These publications are listed
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as follows:

• Mesut Kaya and Derek Bridge: A Comparison of Calibrated and Intent-
Aware Recommendations, in Proceedings of the 13th ACM Conference on

Recommender Systems, 2019.

• Mesut Kaya and Derek Bridge: Subprofile-aware diversification of recom-
mendations. User Modeling and User-Adapted Interaction, Apr 2019.

• Mesut Kaya and Derek Bridge: Community-Aware Diversification of Rec-
ommendations, in Proceedings of the 34th Annual ACM Symposium on

Applied Computing, pp. 1639-1646, 2019.

• Mesut Kaya and Derek Bridge: Accurate and Diverse Recommendations Us-
ing Item-Based SubProfiles, in Proceedings of the Thirty-First International

Florida Artificial Intelligence Research Society Conference, AAAI, pp.462-

467, 2018.

• Mesut Kaya and Derek Bridge: Automatic Playlist Continuation using Sub-
profile-Aware Diversification, in Proceedings of the Workshop on the ACM

Recommender Systems Challenge (Workshop Programme of the Twelfth

ACM Conference on Recommender Systems), pp.1-6, 2018.

• Mesut Kaya and Derek Bridge: Intent-Aware Diversification using Item-
Based SubProfiles, in Proceedings of the Poster Track of the 11th ACM

Conference on Recommender Systems, CEUR Workshop Proceedings, vol-

1905, 2017.

Unrelated to our work on diversification, we also published the following:

• Mesut Kaya and Derek Bridge: Improved Recommendation of Photo-Taking
Locations using Virtual Ratings, in Proceedings of the Workshop on Recom-

menders in Tourism (Workshop Programme of the Tenth ACM Conference

on Recommender Systems), CEUR Workshop Proceedings, vol-1685, pp.1-

7, 2016.

1.4 Definitions and Notation

We give a brief summary of the main definitions and notation that we use for the

rest of the thesis to make it easier to follow. We describe additional definitions

and notation when necessary.
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Let I be the set of all items, U be the set of all users, and R be a |U |× |I|matrix,

where ru,i ∈ R is u’s rating of i or ru,i = ⊥ if u has not rated i. We denote the

user profile of user u by Iu = {i ∈ I : ru,i 6= ⊥}.

Subprofiles of a user are defined in terms of items that the user likes, i.e. ones to

which she has given a positive rating. Henceforth, we will use the phrase liked-
item-set to refer to the set of items that the user likes, and will designate this set

by I+
u where I+

u ⊆ Iu. In the case of a recommender system that uses positive-

only feedback, user u’s liked-item-set is the set of items she has interacted with

(liked, clicked on, purchased, etc.), and these are simply the ones in the user’s

profile i.e. for implicit ratings, I+
u = Iu. In the case of a recommender system

that uses numeric explicit ratings ru,i (e.g. 1–5 stars), then I+
u must be defined

in terms of items the user liked, which will usually involve thresholding the

ratings, e.g. in our experiments in the following chapters, we use I+
u = {i ∈ I :

ru,i ≥ 4} for 1–5 stars ratings.

We denote the set of all item features of I as F , and the set of features of a

specific item i ∈ I as Fi. Depending on the domain, item features may vary.

Consider, for instance, the datasets we use in the following chapters: item fea-

tures include movie and music genres, user-assigned tags and keywords.

1.5 Thesis Structure

The structure of the thesis is:

• In Chapter 1, we have presented the motivation behind our work and we

have summarized the contributions that we have made.

• In Chapter 2, we review the literature on the main topics of interest for

this thesis.

• In Chapter 3, we present our experiment design, which is used in the

subsequent chapters. First, we give the details of the datasets. Second,

we provide a detailed description of the recommendation algorithms that

we use as baselines. Third, we present the definitions of the metrics we

use to evaluate the performance of our algorithms. Fourth, we describe

our evaluation methodology.

• In Chapter 4, we propose a novel intent-aware diversification framework,

SPAD, which is the core contribution of the thesis, and a variant, Rele-
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vance based SPAD (RSPAD). SPAD and RSPAD represent user tastes and

interests by subprofiles, rather than item features. We define eight differ-

ent methods for detecting subprofiles. We give a comprehensive empiri-

cal comparison of all eight methods for detecting subprofiles on different

datasets and select one to use within SPAD and RSPAD for the rest of the

thesis.

• In Chapter 5, we give a comprehensive empirical comparison of SPAD

and RSPAD against a number of other diversification methods. We also

adapt several diversity metrics that are measured by item features to give

versions that use subprofiles instead of item features.

• In Chapter 6, we propose and evaluate an alternative to SPAD, Communi-

ty-Aware Diversification, which we refer to as CAD. CAD detects subpro-

files indirectly through user-user similarities. CAD allows us to explore

whether a user’s community (similar users) has correlation with her in-

terests (subprofiles).

• In Chapter 7, we compare intent-aware approaches to recommendation

diversification to a related concept, calibrated recommendation. We give

the proof of the optimality of intent-aware approaches including SPAD

and RSPAD. We adapt the calibration metric that uses item features to give

a variant that uses subprofiles instead. We also define a new calibration

recommender algorithm that uses subprofiles as user interests, instead of

item features.

• In Chapter 8, we apply SPAD to the task of Automatic Playlist Continua-

tion. By applying the idea of SPAD to a different task on a larger dataset,

we show the generality of SPAD.

• In Chapter 9, we conclude the thesis and offer ideas for future work.

Subprofile Aware Diversification of
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Chapter 2

Related Work

In this chapter, we study the state-of-the-art in the topics of interest to our

research, especially in the area of diversification of recommender systems.

2.1 Overview of Recommender Systems

A recommender system aims to help its users to discover resources that align

with their tastes and interests [RRS15]. They have become an essential part of

a great variety of platforms. For instance, in social networks they recommend

people to follow (Twitter), connect (Linkedin) or become friends with (Face-

book); in e-commerce sites they recommend products to buy (Amazon); in mu-

sic streaming platforms they recommend songs to listen to (Spotify, Deezer, Pan-

dora); in video streaming platforms they recommend videos to watch (YouTube,

Netflix); and they are part of many other services on the web.

There are many different recommendation algorithms. The choice of best al-

gorithm depends on the domain they are applied to (e.g. music or news); the

content delivery mechanism (e.g. streaming or download), the type of prob-

lem they solve (e.g. recommending complementary items or alternative items),

the type of user feedback they use (e.g. explicit user ratings for products or

user listening history for music), and many other factors. Although there exists

a variety of different recommendation algorithms, and different classifications

of them, we will distinguish between six classes of algorithms, as is done in

[RRS15]:

• Content-based: recommendations are generated by using item features as

10
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content.

• Collaborative Filtering: recommendations are generated by using patterns

of user-item preferences.

• Demographic: recommendations are generated by using demographic in-

formation about the users.

• Knowledge-based: recommendations are generated by using specific do-

main knowledge about the degree of usefulness of items to the users.

• Community-based: recommendations are generated by using preferences

of the users’ friends.

• Hybrid: recommendations are generated by using combinations of the

above mentioned algorithms.

Here we will not go into the details of each of the different classes; for detailed

definitions, see [RRS15]. The recommendation algorithms that we use in the

following chapters of the thesis are collaborative filtering algorithms. These

have been widely used and proven to be effective. We give their details in

Chapter 3.

As we mentioned before, selecting the type of recommendation algorithm de-

pends on different criteria, one of which is the type of user feedback on user-

item interactions. In general, user feedback can be categorized into two: im-
plicit and explicit. In the case of implicit feedback, the user does not directly

provide her preferences over items. The preferences are estimated from her

behaviour with the items in the system (e.g. clicking to view product details,

listening to music, watching videos, skipping music in a playlist, and so on). In

the case of explicit feedback, however, the user signals her interest in items di-

rectly (e.g. by giving a star rating on a 1–5 scale to a movie, by writing reviews

about restaurants or liking/disliking products). The majority of datasets that

we use to test the performance of our approaches record explicit feedback. But,

to show that our approaches work for both explicit and implicit feedback, we

also use some implicit feedback datasets.

In order to measure and compare the performance of different recommenda-

tion algorithms, different evaluation methodologies are used. It is common to

classify evaluation methodologies into three [SG11]:

• Offline experiments: These are the most common and easiest way to esti-

mate recommender performance. Users do not actively participate in the

Subprofile Aware Diversification of
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evaluation. Instead, performance is estimated automatically using pre-

collected datasets.

• User studies: A set of users actively participates in the evaluation process.

They are asked to perform some actions and perhaps answer related ques-

tions regarding their experience in a task or tasks designed to explore the

recommender performance.

• Online experiments: Large-scale experiments are run on a deployed sys-

tem. A typical example is A/B testing.

In this thesis, we use offline experiments to compare the performance of our

proposed approaches with existing approaches. We use offline experiments be-

cause they are simple and cost-effective compared to user studies or online

experiments. It would be too costly to run the volume of experiments that we

conduct using user trials or online experiments.

2.2 Beyond Accuracy in Recommender Systems

In early work on recommender systems, the main goal, either explicitly or

implicitly, was to accurately predict the users’ opinions of candidate items or

generate, from the candidate items, a top-n list of relevant recommendations.

It was soon recognized that prediction accuracy or relevancy of top-n recom-

mendations should not be the only measure of recommender quality [HKTR04,

MRK06]. For example, recommendations must be novel or serendipitous to

the user and a set of recommendations must be diverse [MRK06, KB16]. The

novelty of a recommendation to a user depends on how familiar a user is with

the item [KKT+15]. The serendipity of a recommendation to a user depends

on how relevant, novel and unexpected the item is to the user [KKZV18]. The

diversity of a set of recommendations depends on the variety of the items, or

the differences between the items, in the set [Var15].

Consider, for instance, a video streaming service’s recommender system. If it

recommends us a movie that we have never heard of before, we would say that

the recommended movie is novel to us to a certain extent. If, say, the movie is

also a movie that we would not have found by our own and we enjoy watching

it, we would say the recommendation was serendipitous as well. If the system

recommends a set of movies to watch, and if the set includes movies of different

types, we might say that the recommended set is diverse.
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Novelty, serendipity and diversity are among the so-called beyond-accuracy fac-

tors in the evaluation of recommender systems. Note that there are different

definitions of the beyond-accuracy factors, and no consensus on them. We will

not give all the different definitions here. For a survey, see [KB16]. In this

thesis, diversity is the beyond-accuracy objective that we focus on. In the next

section, we review the state-of-the-art in diversity in recommender systems.

2.3 Diversity in Recommender Systems

Diversity, as a general concept, can be seen as the variety or the differences

within parts of an experience [Var15]. For example, a movie recommender is

producing a diverse set of recommendations if it includes movies of different

types (e.g. genres) rather than different movies of similar types.

Note that, in this thesis, we use the term ”diversity” exclusively to refer to a

property of a set of recommendations, i.e. the diversity of a set of recommenda-

tions generated for a user. Elsewhere, in the recommender systems literature,

there are different definitions of ”diversity” — ones that do not refer to a prop-

erty of a recommendation set. For example, the word “diversity” can also refer

to a property of a recommender system as a whole, referring to the extent to wh-

ich the system’s recommendations cover the item catalog. For instance, “sales

diversity” and “aggregate diversity” (e.g. measured by the Gini index [SG11])

are system-centric definitions of diversity [AK12]. There is also a notion of

“temporal diversity”, measuring the extent to which recommendation sets gen-

erated for an individual user differ between different points in time [LHCA10].

For surveys, see [KB16, CHV15]).

Diversity in a set of query results or in a recommendation set is one response

to uncertainty. In Information Retrieval (IR), there is value in ensuring that

each retrieved document is relevant to the user’s query but also that the set

of retrieved documents is diverse, i.e. that they are different from one another

[CG98, CKC+08]. In IR, diversity is useful in improving the extent to which the

user’s intent is covered by at least one retrieved document, especially in cases

of uncertainty caused by query ambiguity or underspecification [AGHI09]. In

recommender systems, uncertainty is caused by small user profiles (e.g. for

cold-start users) and by profiles that span different tastes. Besides, a recom-

mender cannot be certain of a user’s short-term interests. Short-term interests
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are, almost by definition, ephemeral and therefore difficult to predict. While a

recommender should recommend items that it predicts are relevant to the user

(satisfying her long-term interests), its chances of recommending items that

satisfy the user on a given occasion can be increased by recommending a set of

diverse items [CHV15, KB16].

However, a recommender system must strike a balance between accuracy or

relevance on the one hand and diversity on the other hand. Indeed, early work

on diversification implied a trade-off between the two: increasing one typically

resulted in a decrease in the other [AK09].

2.3.1 Diversity as an objective

There is some work in which diversity is explicitly a part of the objective func-

tion that the recommender seeks to optimize when generating recommenda-

tions, e.g. [Hur13, SYCY13, CWM+17].

Hurley includes diversity (measured by item dissimilarity) into the objective

function of a pairwise learning-to-rank approach, which learns user and item

factors by minimizing an objective function that is formulated as the difference

between the predicted and original ranking for item pairs [Hur13]. By includ-

ing the item dissimilarities into the objective function, user and item factors are

learned by the combination of ranking and diversity. He shows that his pro-

posed approach produces more diverse recommendations with a small loss in

relevance of the recommendations.

Su et al. propose what they call a set-oriented personalized ranking [SYCY13].

This integrates diversity into a matrix factorization model. The objective func-

tion used in the matrix factorization incorporates a set diversity bias term that

models the diversity of the recommendation set. Diversity is measured as an

all-pairs aggregate of the inner-product of their latent factors.

Cheng et al. propose a method for diversified collaborative filtering that they re-

fer to as DCF [CWM+17]. In DCF, there are two components. First, a structural

support vector machine (SVM) learns to recommend sets of items to users. It

creates an accurate and diverse ground-truth for each user: to ensure accuracy,

it uses highly-rated items from the user’s profile; for diversity, a subset of the

highly-rated items that maximizes set diversity measured by item dissimilarity

is selected. Second, there is a parameterized matrix factorization algorithm
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that generates lower-dimensional representations of the users and items that

are used in each iteration of the structural SVM.

Although, diversity can be explicitly part of an objective function as explained

above, the dominant approach to diversification is greedy re-ranking.

2.3.2 Greedy re-ranking

Recommendation diversification aims to determine an optimal recommenda-

tion set of sizeN items, denoted here by RL∗. Commonly, the objective function

is a linear combination of the relevance of the items in the recommendation set

and the diversity of that set, the trade-off between the two being controlled by

a parameter λ (0 ≤ λ ≤ 1):

RL∗ = arg max
RL,|RL|=N

(1− λ)s(RL) + λ div(RL) (2.1)

where typically s(RL) = ∑
i∈RL s(u, i) is a modular function, that is the sum of

the predicted relevance scores s(u, i) of each recommended item i to user u,

and div(RL) is typically a submodular function that measures the diversity of

the set RL. Finding the optimal recommendation set RL∗ is NP-hard. When the

objective function defined in Eq. 2.1 is monotone and submodular, a (1− 1
e
) ap-

proximation to the optimal solution can be computed greedily [NWF78], where

e is Euler’s number. We will give definitions of monotonicity and submodularity

in Chapter 7.

The greedy re-ranking approach assumes the existence of a conventional recom-

mender algorithm (which we will refer to as the baseline recommender), which,

for user u, produces a set of recommended items, RS, and, for each item i in

RS, a relevance score, s(u, i) — the predicted relevance of recommended item

i to user u. The greedy algorithm re-ranks RS by iteratively inserting into or-

dered result list RL the item i from RS that maximizes a function, fobj(i, RL);
see Algorithm 1. Similarly to Eq. 2.1, fobj is usually defined as a linear combi-

nation of the item’s relevance score and the contribution item i makes to the

diversity ofRL, div(i, RL), the trade-off between the two again being controlled

by a parameter λ (0 ≤ λ ≤ 1):

fobj(i, RL) = (1− λ)s(u, i) + λ div(i, RL) (2.2)
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Algorithm 1 Greedy re-ranking algorithm

Input: RS, set of recommendations for user u, each with relevance score
Output: RL, ranked list containing all items in RS

1: RL← [ ]
2: while |RS| > 0 do
3: i∗ ← arg maxi∈RS fobj(i, RL)
4: delete i∗ from RS
5: append i∗ to the end of RL
6: return RL

In Maximal Marginal Relevance (MMR) [CG98], for example, div(i, RL) is the

maximum of the distances between i and the items already selected:

div(i, RL) = max
j∈RL

dist(i, j) (2.3)

The distance between items i and j, dist(i, j), can be calculated from meta-data

such as movie genres or book categories [SM01, ZMKL05] or from item ratings

data [KB06]. Alternatively, div(i, RL) can be computed as the average (or sum)

of the all-pairs intra-list distances, div(i, RL) = ILD({i} ∪ RL), where the ILD
of any list of items L is given by:

ILD(L) = 2
|L|(|L| − 1)

∑
i∈L

∑
j∈L,j 6=i

dist(i, j) (2.4)

The final recommendation comprises the top-N members of the re-ranked list,

RL, where N < |RL|. Re-ranking using Eqs. 2.3 or 2.4 can result in a top-N

that comprises items that are dissimilar to each other.

The assumption behind this form of diversification is that dissimilar items will

address the different tastes and interests of the user, but there is nothing in the

operation of the system to explicitly ensure that each of the user’s tastes and

interests are addressed, nor that each is addressed to an appropriate degree.

Other approaches, going under the name intent-aware diversification, seek to

select items that explicitly address different user tastes and interests and that

each is addressed to a degree that is reflected by their prevalence in the user’s

profile.

Before reviewing the intent-aware approaches, we mention some other recent

greedy re-ranking algorithms, which seek to increase diversity in somewhat

different ways.
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Some recent work, for example, uses Determinantal Point Processes (DPP),

which give a probabilistic model of subset selection that prefers diverse sets

[WRB+18, CZZ18]. For a set of items S, a point process P is a probability dis-

tribution on the powerset of S. In DPPs, the probabilities are proportional to

a combined measure of the relevance and diversity of the items in the subsets.

Wilhelm et al. propose a set-wise optimization approach for recommendation

diversification [WRB+18]. They use DPPs that combine estimates of item qual-

ity and distances between pairs of items. They use a greedy approximation

to apply their method to a large-scale video recommendation system. Their

empirical results show that their model improves user engagement with the

system. Chen et al. propose a fast greedy algorithm that uses DPPs to improve

recommendation diversity [CZZ18]. Their approach to using DPPs is similar

to Wilhelm et al.’s approach, as both use DPPs that combine estimates of item

quality and distances between items. What differs is the implementation of the

greedy algorithm. Chen et al. show that their implementation is faster than

existing greedy implementations of DPPs. They also propose a variant of their

algorithm that works for the scenarios where diversity is only required within a

sliding window of recent recommendations.

Ashkan et al. propose an optimal greedy solution that maximizes a modular

objective function (which computes the utility of the items), using submodular

constraints that measure the increase in diversity in terms of what they call

topic coverage [AKBW15]. For topics, in a movie dataset they use movie genres.

When the number of topics is very large, their proposed approach may not be

practical. They propose to overcome this limitation by using dimensionality

reduction techniques such as topic modeling [BNJ03].

2.3.3 Intent-aware diversification

Intent-aware diversification in IR assumes a set of query aspects (e.g. document

categories or query reformulations from a search engine) and diversifies by re-

ranking the query result set in a way that balances relevance with the degree to

which these aspects are covered [AGHI09, SMO10, VCV11, VCV12].

Intent-aware methods for recommendation diversification take inspiration from

the work done in IR [VCV11, VCV12, WH16]. These methods assume a set of

aspects A which describe the items and for which user interests can be esti-

mated. The aspects might be explicit: for example, categories such as politics,
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sport and entertainment in a news recommender, or genres such as comedy,

thriller and horror in a movie recommender. Alternatively, aspects might be

implicit, e.g. corresponding to the latent factors found by a matrix factorization

recommender system [KB11].

In intent-aware methods Eq. 2.1 can be rewritten as:

RL∗ = arg max
RL,|RL|=N

(1− λ)s(RL) + λ divIA(RL) (2.5)

divIA(RL) measures the diversity of the set RL. But this is not simply a mea-

sure of how different the items are from each other, as it would be in more

conventional approaches to diversity [CG98, SM01, ZMKL05]. Instead, it is de-

fined in terms of coverage of the user’s tastes and interests, but with coverage

modulated by recommendation relevance (below).

2.3.3.1 xQuAD

In Vargas’s adaptation to recommender systems [Var15] of Santos et al.’s Query

Aspect Diversification framework (xQuAD) [SMO10], we can write divIA(RL) =
divxQuAD(RL), where divxQuAD(RL) is defined as follows:

divxQuAD(RL) =
∑
a∈A

p(a|u)
(

1−
∏
i∈RL

(1− p(i|u, a))
)

(2.6)

User u’s interests can be formulated as a probability distribution p(a|u) for as-

pects a ∈ A. The probability of choosing an item i from the set of recommen-

dations RS given an aspect a of user u is denoted by p(i|u, a).

In xQuAD, diversification can be achieved by re-ranking a conventional rec-

ommender’s recommendation set RS as per Algorithm 1 and Eq. 2.2 but with

div(i, RL) = divxQuAD(i, RL) defined as:

divxQuAD(i, RL) = divxQuAD({i} ∪RL)− divxQuAD(RL) (2.7)

Using Eq. 2.6, we can obtain the following [AGHI09, SMO10, Var15]:

divxQuAD(i, RL) =
∑
a∈A

[p(a|u)p(i|u, a)
∏
j∈RL

(1− p(j|u, a))] (2.8)
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Consider the case where the aspects are explicit features F , i.e. A = F , hence

we will write p(f |u) and p(i|u, f) instead of p(a|u) and p(i|u, a). Let Fi be the

subset of F that describes item i (e.g. the genres of movie i) and, as in Section

1.4, let Iu denote the items that are in the user’s profile. Then p(f |u) can be

estimated as:

p(f |u) = |{i ∈ Iu : f ∈ Fi}|∑
f ′∈F |{i ∈ Iu : f ′ ∈ Fi}|

(2.9)

p(i|u, f), the probability of choosing i from a set of recommendations RS given

explicit aspect f of user u, can be estimated as:

p(i|u, f) = 1(i, f)s(u, i)∑
j∈RS 1(j, f)s(u, j) (2.10)

where 1(i, f) = 1 if f ∈ Fi and 0 otherwise.

xQuAD is a generalization of the IA-Select method [AGHI09]. The latter does

not consider relevance, hence they are equivalent in the case when λ = 1 in Eq.

2.2.

2.3.3.2 RxQuAD

A possible weakness of xQuAD is that its formulation implies selection of a

single item from the recommended set RS. In RxQuAD, Vargas et al. formulate

a model based on maximizing relevance, rather than the probability of choosing

a single item. Formally, div(i, RL) = divRxQuAD(i, RL) defined as:

divRxQuAD(i, RL) =
∑
a∈A

[p(a|u)p(rel|i, u, a)
∏
j∈RL

(1− p(rel|j, u, a)p(stop|rel))]

(2.11)

p(rel|i, u, a) is the probability that user u finds recommended item i relevant

when interested in aspect a. In the case of explicit features, this probability is

obtained by mapping from relevance scores s(u, i) using an exponential func-

tion [VCV12]. p(stop|rel) is the probability that a user stops exploring a recom-

mendation list conditional on finding a relevant item. Vargas observes that, to

maximize α-nDCG, the best value for p(stop|rel) is approximately equal to the

value of α [Var15].
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2.3.3.3 SxQuAD and SRxQuAD

Vargas & Castells define another two forms of intent-aware diversification, wh-

ich they refer to as SxQuAD and SRxQuAD, this time based on combining sets

of recommendations [VC13]. Specifically, given the set of items that a user u

has interacted with and a set of explicit features F , they define a subprofile for

each feature f ∈ F : the subset of the items u has interacted with that possess

feature f . This means that there are as many subprofiles as there are features

(|F|). When there are many features (e.g. where features are user-generated

tags), there is a scalability problem, which Vargas & Castells handle by using

only a user’s top features. Then they make recommendations to each subpro-

file. These sets of recommendations are combined using a modified version of

either Eq. 2.8 or Eq. 2.11, which in turn is used for greedy re-ranking using Eq.

2.2, from which a top-N can finally be recommended.

For SxQuAD, p(i|u, a) in Eq. 2.8 is replaced by p(i|uf ), where uf is the subset of

items that the user has interacted with and that possess feature f :

divSxQuAD(i, RL) =
∑
f∈F

[p(f |u)p(i|uf )
∏
j∈RL

(1− p(j|uf ))] (2.12)

p(i|uf ) is estimated as:

p(i|uf ) = s(uf , i)∑
j∈Ruf

s(uf , j)
(2.13)

where s(uf , i) is the predicted score for item i based on just subprofile uf and

Ruf
is the set of recommendations generated for subprofile uf .

For SRxQuAD p(rel|i, u, a) in Eq. 2.11 is replaced by p(rel|i, uf ).

There is an apparent similarity between our new approach to diversification,

SPAD and its variants (Chapters 4 and 6), and Vargas & Castell’s SxQuAD and

SRxQuAD. Both use subprofiles. But, this similarity is superficial; they differ

in several ways. First, Vargas & Castells define subprofiles in terms of explicit

features: the items a user has interacted with and that share a feature. By con-

trast, we extract subprofiles without reference to any meta-data, based instead

purely on patterns of items that the user likes (Section 4.3). Second, Vargas &

Castells make separate recommendations to each subprofile and then combine

them. We do not do this at all. By contrast, we make a set of recommendations

to the user and re-rank them in the style of xQuAD, i.e. by treating each subp-
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rofile as an aspect and modeling the user’s interests as a probability distribution

over the aspects.

2.3.3.4 c-pLSA and other intent-aware work

The advantage in intent-aware approaches such as xQuAD and its variants of

using explicit aspects, such as movie genres, is their interpretability. A dis-

advantage is that they may be less accurate. The advantage, by contrast, of

using implicit aspects, such as latent factors, is that they have been chosen

for their predictive performance; their disadvantage is that they may be less

interpretable [WH16]. Wasilewski & Hurley propose an intent-aware diversi-

fication method that is based on explicit aspects (and is hence interpretable)

but in which the probabilities are learned (and hence are optimized for predic-

tive performance) [WH16]. The learning is done by a constrained pLSA model

[Hof04]. They call their approach c-pLSA. More recently, the same authors

presented an intent-aware framework that uses a minimum variance criterion

based on portfolio theory from finance [WH17].

Wasilewski and Hurley subsequently used their intent-aware personalized co-

variance within an item-based collaborative filtering recommender [WH18].

Unlike the work we have cited so far, this is not an example of greedy re-

ranking; rather, intent-aware covariance is used in neighbourhood selection

and weighting.

Recently, Anelli et al. have incorporated temporal aspects into an intent-aware

diversification framework based on xQuAD [ABDN+17]. Noting that a user’s

intent can change during an interaction, they propose versions of Eq. 2.9 that

include a temporal decay function on the one hand and that handle sessions on

the other hand.

The advantage of intent-aware approaches is that they personalize the level of

diversification. Probabilities differ between users since they are computed from

each user’s profile. In the next section, we review other work on personalized

diversification.
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2.3.4 Personalized diversification

There has been an amount of recent research on personalizing the level of

diversification in IR, e.g. [VC12, LRD14], and in recommender systems, e.g.

[SZW+12, DRTD17, PUG16, ZH08, VC13, WH17].

In IR, Vallet & Castells propose to diversify search results in a personalized way

by taking intent-aware diversification methods such as xQuAD and introducing

the user as an explicit random variable [VC12]. Liang et al. take a very dif-

ferent approach, treating diversification as a form of supervised learning using

document terms and latent topics as features [LRD14]. They learn a model that

estimates whether a document relates to a user’s interests using a loss function

that combines user relevance with diversification.

Turning to recommender systems, in the work of Shi et al., the level of diversi-

fication for a user increases with the uncertainty in the user’s tastes [SZW+12].

There is more uncertainty if a user’s profile is small or if a user’s profile already

exhibits a wide range of tastes, measured by the variances of the latent factors

of the items in the profile.

Di Noia et al. model a user’s propensity to diversity [DRTD17]: for each at-

tribute of the items, they measure the entropy across the values of that at-

tribute for items in the user’s profile and then, from this, classify the user into

one of four quadrants according to whether they have low or high entropy and

whether they have small or large profiles. They then re-rank recommendation

sets using modified versions of both Eq. 2.4 and Eq. 2.8. The modifications

introduce quadrant-specific weights, thereby controlling the degree of diversifi-

cation in a personalized way.

Puthiya Parambath et al. do not use greedy re-ranking [PUG16]. Instead, they

recommend a set of items that covers the items in the user’s profile. Relevance

follows from a definition of coverage that takes into account the positively-rated

items in the user’s profile and the similarities between the items in the user’s

profile (using rating similarity). Diversification follows from the definition of

coverage being submodular so that there is more gain in covering uncovered

items than in covering ones that are already covered.

Eskandian et al. use a clustering approach for personalizing diversity [EMB17].

They do not use greedy re-ranking. Instead, they cluster the users based on the

degree of diversity in their profiles and perform collaborative filtering indepen-
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dently on the cluster of users. They measure the degree of diversity for users

based on item categories (like genres in movies etc.).

Zhang & Hurley present the problem of maximizing the diversity of a recom-

mendation set while maintaining the accuracy as constrained binary optimiza-

tion problems, and solve those optimization problems [ZH08]. In other work,

the same authors cluster the items in a user’s profile, using rating similarities

[ZH09]. They make recommendations to each partition and solve optimization

problems to combine these recommendations into a final recommendation set

in a way that balances relevance with diversity.

Teo et al. present a personalized, submodular diversification algorithm that re-

ranks the most relevant items based on categories whose weights are learned

and therefore personalized [TNH+16]. In online experiments, they show that

their algorithms significantly improve click-through-rate and session duration.

Wu et al. present a personality-based greedy re-ranking approach to generating

the recommendation list [WCZ18]. First, they conduct a user survey and find

out that personality traits can significantly influence users’ diversity preferences.

Based on this finding, they develop a personality-based greedy re-ranking ap-

proach to improving the recommendation diversity. They compute weights for

the personality traits of each user. Then, they use modified version of Eq. 2.2 for

re-ranking the recommendation sets. For the diversity part of the equation they

use personality weights that models the user’s propensity towards diversity.

Abdollahpouri et al. present a personalized diversification re-ranking approach

that manages popularity bias by increasing the representation of less popular it-

ems [ABM19]. Specifically, they adapt Santos et al.’s xQuAD [SMO10], propos-

ing a variant that adds a personalized bonus to long-tail items. They determine

the personalization factor based on each user’s historical interest in long-tail

items.

2.4 Calibrated Recommendations

Recently, Steck proposed the concept of calibrated recommendation [Ste18].

Calibrated and intent-aware recommendation have apparent similarities in that

both try to cover the user’s profile. However, they do differ. We postpone an in-

depth comparison of the two to Chapter 7. Here, in our state-of-the-art chapter,

we simply present the key concepts in calibrated recommendation.
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Calibrated recommendation aims to produce a recommendation set that covers

the user’s different tastes and interests in proportion to the extent they occur in

the user’s profile [Ste18]. Consider a music domain, for example, in which a

user listens to jazz 70% of the time and to rock music 30% of the time. Then

calibrated recommendations directly aims to reflect these proportions in the

final set of recommendations.1

In [Ste18], the degree of calibration, CKL(p, q), is quantified by taking the

Kullback-Leibler divergence between two probability distributions: the first,

p(f |u), is the distribution of features f across the items in user u’s liked-item-

set, I+
u ; the second, q(f |u), is the distribution of features f across the items

in a recommendation set RL. These two distributions are defined in terms of

another distribution, p(f |i), which is the distribution of features for each item

i. A simple definition is that, for each feature f possessed by an item i, p(f |i)
will be equal and such that

∑
f p(f |i) = 1 [Ste18].

Specifically, Steck defines p(f |u) as:

p(f |u) =
∑
i∈I+

u
wu,ip(f |i)∑

i∈I+
u
wu,i

(2.14)

In this definition, wu,i is a weight for item i. As an example, Steck suggests

that the weight could be based on how recently item i was consumed by user

u. However, in the rest of his paper, he takes wu,i = 1 for all u and i, and we do

the same in this thesis.

Steck defines q(f |u) as:

q(f |u) =
∑
i∈RLwr(i)p(f |i)∑

i∈RLwr(i)
(2.15)

wr(i) denotes the weight of item i due to its rank, r(i) in RL, although again

both in his paper, and in this thesis, wr(i) = 1.

The degree of calibration is the Kullback-Leibler divergence of the two distribu-

tions, taking p as the target distribution:

CKL(p, q) = KL(p||q̃) =
∑
f

p(f |u) log p(f |u)
q̃(f |u) (2.16)

1This example simplifies by ignoring the possibility that a song might have more than one
genre.
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Because Kullback-Leibler divergence diverges if q(f |u) = 0 and p(f |u) > 0,

Steck uses q̃ instead of q:

q̃ = (1− α)q(f |u) + αp(f |u) (2.17)

with a small positive value of α so that q ≈ q̃. Steck uses α = 0.01, and we do

the same.

Now that we can measure the degree of calibration, we can define an objec-

tive function. It is a linear combination of the relevance of the items in the

recommendation set and the degree of calibration of that set:

RL∗ = arg max
RL,|RL|=N

(1− λ)s(RL)− λ cal(p, q) (2.18)

We emphasize that, while p is different for each user, q is different for each

recommendation set being considered in the equation.

Steck proves that Eq. 2.18 satisfies the conditions for a greedy re-ranking ap-

proach to find a 1 − 1
e

approximation to the optimal solution. The greedy re-

ranking approach uses the following objective function:

fobj(i, RL) = (1− λ)s(u, i) + λ cal(i, RL) (2.19)

with cal(i, RL) = −(CKL(p, q(RL ∪ {i}))− CKL(p, q(RL))).

2.5 Conclusions

In this chapter, we summarized the state-of-the-art in the topics of interest to

our research, especially in the area of diversification of recommendations. We

have explained intent-aware diversification approaches and a related concept

to intent-aware approaches, calibrated recommendation, in detail.

In the next chapter, we give details of the experimental design that we followed

throughout the experiments conducted in this thesis.
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Chapter 3

Experiment Design

There are a lot of experimental results throughout this dissertation. In this

chapter, we describe the datasets we have used in our experiments (Section

3.1). We also give the details of all baseline recommendation algorithms that we

use (Section 3.2). Next, we present evaluation metrics that we use to evaluate

the performances of our proposed methods and existing methods (Section 3.3).

Finally, we explain the methodology we have followed in these experiments

(Section 3.4). The experiment design presented in this chapter aims to be as

clear as possible in order to provide reproducibility of our experiments and their

results.

3.1 Datasets

The datasets we use are the MovieLens 1 Million (ML1M) dataset, MovieLens

20 Million (ML20M) dataset1 [HK15], the LastFM (LFM) dataset,2 the Library-

Thing (LT) dataset [CdVR08], a Facebook (FB) dataset [FTTC+16], and the

Taste Profile Subset dataset (TasteProfile)3. They cover different recommenda-

tion domains: movies, music, books, and social network. Table 3.1 summarizes

the characteristics of the datasets. The popularity bias of the datasets is shown

in Figure 3.1. The popularity bias of LFM is lower than the rest of the datasets:

that of ML20M is the highest. We provide further details in the following sub-

sections.

1http://grouplens.org/datasets/movielens/
2 http://www.dtic.upf.edu/ocelma/MusicRecommendationDataset/lastfm-1K.html
3https://labrosa.ee.columbia.edu/millionsong/tasteprofile
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Figure 3.1: The popularity distribution of datasets used in the experiments.

Note that, in Chapter 8, we use the Million Playlist Dataset (MPD) [CLSZ18].

We used this dataset for Automatic Playlist Continuation (APC). Since APC is a

rather different task, we follow a different experimental methodology. Hence,

we explain that methodology and the MPD in Chapter 8.

3.1.1 MovieLens1M

The MovieLens1M (ML1M) dataset [HK15] is one of the most widely used

datasets in recommender systems research. It has ∼1 million ratings on ∼3,700

movies by ∼6,000 users. As item features, movie genres are provided. There is

a total of 18 genres.

Figure 3.2a shows the distribution of the ratings for the ML1M dataset. We

can see that users tend to give higher ratings to the movies, rather than lower
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Table 3.1: Datasets

ML1M 6040 users 3706 movies ∼1M ratings
avg. 165.6 (σ = 192.74) movies per user
avg. 95.25 (σ = 105.0) liked movies per user
18 genres in total; avg. 1.65 per movie

LFM 992 users 7280 artists ∼500k ratings
avg. 515.94 (σ = 475.14) artists per user
avg. 195.35 (σ = 194.95) liked artists per user
71833 tags in total; avg. 8 per artist

LT 7279 users 37232 books ∼750K ratings
avg. 102.95 (σ = 132.68) books per user
avg. 66.43 (σ = 82.56) liked books per user
4800 tags in total; avg. 9.08 per book

FB 104178 users 15374 pages ∼4.75M ratings
avg. 45.94 (σ = 49.43) pages per user
avg. 45.94 (σ = 49.43) liked pages per user
33,660 categories in total; avg. 10.62 per page

ML20M 138493 users 26502 movies ∼20M ratings
avg. 115.53 (σ = 184.18) movies per user
avg. 58.02 (σ = 81.81) liked movies per user
19 genres in total; avg. 2.01 per movie

TasteProfile 375749 users 190629 pages ∼19M ratings
avg. 41.15 (σ = 34.42) songs per user
21 genres in total; avg. 1 per song

ratings. This is the well-known and common bias that users tend to rate movies

that they like.

3.1.2 LastFM

The LastFM (LFM) dataset is another widely used dataset in the literature. We

modify it in the same way as in [KB16]. For example, the dataset is augmented

with additional meta-data (namely, user-generated tags from the LastFM web

site, a maximum of the 10 most popular labels for every artist), and artists

having fewer than 3 LastFM tags and artists that were listened to by fewer

than 20 users are filtered out. Then, the listening event frequencies in the LFM

dataset are converted into ratings on the scale 1–5. Figure 3.2b shows the rating

distribution after these modifications. After the modifications, there are ∼500K

ratings on 7280 artists by 992 users.
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Figure 3.2: For ML1M, LFM, LT and ML20M datasets, distribution of the ratings.

3.1.3 LibraryThing

The LibraryThing (LT) dataset [CdVR08] was originally collected from the Li-

braryThing site4, which is a cataloging and social networking site for book

lovers. It has the ratings that users have given to books, and the tags they

have assigned to them. We retrieved a maximum of the 10 most popular tags

for every book and kept the tags that appeared in the profiles of at least 10

books. After this preprocessing, there are ∼750K ratings on ∼37K books by

∼7,000 users. The ratings on the website are on a 1 to 5 stars scale with steps

of 0.5. The rating distribution of the LT dataset is shown in Figure 3.2c. Similar

to the ML1M dataset, users tend to give higher ratings.

4https://www.librarything.com/
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3.1.4 Facebook

Unlike the other datasets that we use in our experiments, the Facebook (FB)

dataset contains implicit ratings (’likes’) and it is multi-domain since it consists

of user preferences for Facebook pages pertaining to movies, music and books.

For the FB dataset, we keep users who have at least 10 likes and pages that

are liked by at least 10 users; for meta-data, we use categories crawled from

DBpedia [FTTC+16, TFTDNC16]. There is a total of 33,660 categories (10.62

per page on average), and ∼4.75M ratings by ∼105K users on 15,374 pages.

3.1.5 MovieLens 20 Million

In the original MovieLens 20 Million (ML20M) dataset, all users have at least

20 movies in their profile and movies have one or more of 19 genres. Some

of the movies have no genre information. Since we measure diversity in the

experiments, we eliminate movies that have no genre information. The result-

ing dataset has ∼ 20 million explicit ratings made by ∼ 140k users for ∼ 27k

movies. We use this dataset in Chapter 7, where we compare intent-aware

diversification with Steck’s Calibrated Recommendation (explained in Section

2.4) [Ste18]. We follow [Ste18] by binarizing the numeric ratings by dropping

ratings lower than 4 stars and we eliminate movies that have no genre informa-

tion. The resulting binarized dataset has ∼ 10 million implicit ratings made by

∼ 140k users for ∼ 21k movies.

Figure 3.2d shows the distribution of the ratings for the ML20M dataset. We

can see that, similar to ML1M dataset, users tend to give higher ratings to the

movies.

3.1.6 Taste Profile Subset

TasteProfile contains counts of the number of times a user has listened to a

song. Each song appears in the Million Song Dataset, from which we can take

information about up to 21 genres.5 We eliminate songs that have no genre

information and users who have fewer than 20 songs in their profile. We also

binarize the song counts so that we get an implicit dataset; the dataset is bina-

rized in the same way in [LACB16, Aio13]. Note that, we take the binarized play

5http://www.ifs.tuwien.ac.at/mir/msd/partitions/msd-MAGD-genreAssignment.cls
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counts since play counts for this dataset are not reliable and do not necessarily

correlate with numeric ratings [Aio13]. The resulting dataset is comprised of

∼ 19 million implicit ratings made by ∼ 375k users for ∼ 190k songs.

3.2 Recommendation Algorithms

In this section, we explain the baseline recommendation algorithms that we use

in the experiments conducted in the following chapters. In this thesis we use

collaborative filtering algorithms as they have been widely used and proven to

be effective in terms of user satisfaction.

We use three recommenders that represent well-known variants of model-based

collaborative filtering algorithms: matrix factorizaton, probabilistic latent se-

mantic analysis and factorization machines. We use their RankSys6 implemen-

tations.

For matrix factorization, we use a fast alternative least-squares matrix factor-

ization recommender (MF) [PZT10] based on the implicit Matrix Factorization

algorithm (iMF) of Hu et al. [HKV08], which factorizes the interaction matrix

R into two lower dimension matrices P ∈ R|U |,k and Q ∈ R|I|,k. Scoring func-

tion sMF (u, i), measuring how relevant item i is to user u, is computed by using

P and Q as:

sMF (u, i) = Pu.QTi (3.1)

where Pu is the latent factor vector of size k corresponding to user u and Qi
is the latent factor vector of size k corresponding to item i. The user and item

latent factor matrices P and Q are learned by minimizing the following loss

function by using alternating least squares (ALS):

LiMF =
∑
u,i

cu,i(Pu.QTi − ru,i)2 + λ

(∑
u

||Pu||2 +
∑
i

||Qi||2
)

(3.2)

where cu,i is the confidence level, i.e. how confident we are about the preference

of user u for item i based on the value of cu,i. The values of cu,i are assigned as:

6http://ranksys.org/
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cu,i =

1 + αru,i (u, i) ∈ R

1 otherwise
(3.3)

λ is the regularization parameter and ru,i is the rating given by user u to item i

(ru,i = 0 if i has not been rated by u yet). α controls the rate of increase in the

confidence level cu,i.

Pilaszy et al. [PZT10] minimize the same loss function by using fast ALS vari-

ants with a significantly lower computational complexity and their results show

that their fast ALS variant offers a better trade-off between running time and

accuracy. Because of its advantages over iMF [HKV08], we use Pilaszy et al.’s

version of matrix factorization.

For latent semantic analysis, we use the probabilistic Latent Semantic Analysis

(pLSA) of Hofmann [Hof04]. The idea is to introduce hidden variables Z with

states z for every (u, i) pair such that the states z will model a hidden cause for

the interaction between u and i. For this purpose the following mixture model

is proposed:

P (u, i; Θ) =
∑
z

P (u, i, z) =
∑
z

P (u|z)P (i|z)P (z) (3.4)

This model results in the following scoring function:

spLSA(u, i) = P (u, i) =
∑
z

P (u|z)P (i|z)P (z) (3.5)

The model parameters Θ are fit by minimizing the empirical logarithmic loss:

LpLSA(Θ) =
∑
u,i

ru,ilogP (u, i) (3.6)

Factorization Machines (FMs) are generic methods that are trained on a matrix

X = [x1, x2, . . . , xn], where xi is the feature vector of i-th sample, and n is the

number of training samples. A second-order FM predicts values ŷ as follows:

ŷ(x) = w0 +
n∑
i=1

wixi +
n∑
i=1

n∑
j>i

〈vi, vj〉xixj (3.7)
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where w0 is the global bias, wi is the weight of the i-th feature and vi ∈ Rk is

the latent factor vector for the i-th feature. The weight of each feature pair xixj
is given by the product of the corresponding latent feature vectors, 〈vi, vj〉.

FMs can be identical to MF models by using simple one-hot encodings of users

and items:

x = {. . . , 0,
xi︷︸︸︷
1 , 0, . . . , 0,

xj︷︸︸︷
1 , 0, . . .}

where xi = 1 corresponds to user i, and xj = 1 corresponds to item j. After

dropping all zero features and biases in Eq. 3.7, it reduces to:

ŷ(x) = w0 + wi + wj + vTi vj (3.8)

This is identical to a variation of matrix factorization that predicts how relevant

an item is to a user, in which vi and vj will be the latent factor vectors of user

and item respectively.

For Factorization Machines (FM), we use a factorization machine that uses

Bayesian pairwise loss for ranking (BPR), that we refer as to FMBPR [Bay15].

In other words, it learns the latent factor vectors, vi and vj using the BPR loss

function [RFGST09]. BPR makes the following pairwise assumption: users are

more interested in items with which they interact than the remaining items

with which they have not interacted. FMBPR creates a set of pairwise prefer-

ence DS := {(u, i, j)|i ∈ I+
u ∧ j ∈ I \ I+

u }, where I+
u is the liked-item-set of user

u. FMBPR’s loss function is as follows:

LFMBPR =
∑

(u,i,j)∈DS

ln δ(xuij) + λ||Θ||2 (3.9)

where Θ denotes the set of parameters and λ control the regularization. δ(x) =
1

1+exp(−x) and xuij := f(u, i)− f(u, j), where f(., .) indicates a scoring function.

3.3 Evaluation Metrics

In this section, we define the evaluation metrics that we use to measure the

performance of different recommendation diversification algorithms used in the

experiments of the following chapters of the thesis. We measure relevance,
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diversity and calibration.

For relevance, we measure Precision @N for N = 10:

Precision @N =
∑N
i=1 rel(u, i)

N
(3.10)

where rel(u, i) means item i is relevant to user u. We treat test set items with

a rating of 4 or higher as being relevant for the ML1M, ML20M, LFM, and

LT datasets. Any test set item in the FB and TasteProfile datasets is relevant,

because FB and TasteProfile are implicit rating datasets.

There is no one ideal metric for diversity. Accordingly, we use five metrics:

(i) α-nDCG [CKC+08], which is an aspect-aware version of nDCG; (ii) intent-

aware expected reciprocal rank, ERR-IA [AGHI09]; (iii) subtopic recall, S-recall
[ZCL03]; (iv) Intra-List Diversity (ILD, Eq. 2.4) [ZMKL05]; and (v) Expected

Intra-List Diversity, EILD [VC11], which is a rank- and relevance-aware ver-

sion of ILD. We give their definitions below. For each, we use their RankSys

implementations.

α-nDCG is based on nDCG but it is aspect and redundancy-aware, which makes

it a measure of diversity:

α-nDCG(L) =

1
α-IDCG

∑
i∈L

 1
log2(r(i, L) + 1)

∑
f∈F

rel(i|u, f)
∏
j∈L,

r(j,L)<r(i,L)

(1− α rel(j|u, f))


(3.11)

where α-IDCG is the highest possible value of α-nDCG(L), in which the re-

commendation set is made of ideally diversified relevant items, L is the set of

recommended items (of size N), r(i, L) is the position of i in L, and rel(i|u, f)
is 1 if item i has feature f and is relevant to user u but 0 otherwise. α is the

parameter that controls the penalty for redundancy. We use α = 0.5. (Hence,

following the argument from [Var15] given earlier, we use p(stop|rel) = 0.5 in

RxQuAD and RSPAD too — see Sections 2.3.3.2 and 4.2.2, respectively.)

We also use ERR-IA [AGHI09], which is an intent-aware measure:
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ERR-IA(L) =∑
f∈F

p(f |u)
∑
i∈L

1
r(i, L)p(rel |i, u, f)

∏
j∈L,

r(j,L)<r(i,L)

(1− p(rel |j, u, f)) (3.12)

where p(f |u) is the probability of feature f given user u, and p(rel |i, u, f) is the

probability that user u finds recommended item i relevant when interested in

feature f . When evaluating xQuAD and its variants, it is obvious what values

to use for these probabilities: the ones computed by the xQuAD algorithm. But

other algorithms, including SPAD and RSPAD, do not have these probabilities

and therefore ERR-IA cannot be used directly [WH16]. What we do is to use

the probabilities computed by xQuAD (Section 2.3.3.1), even when evaluating

SPAD and its variants. This gives xQuAD an advantage, which must be kept in

mind when looking at the results.

Subtopic Recall, S-recall, is a metric that measures how well the recommenda-

tion set covers the feature space [ZCL03]:

S-recall(L) = | ∪i∈L Fi|
|F|

(3.13)

where Fi is the set of features of item i and F is the set of all features.

Intra-List Diversity, ILD, measures the average pairwise distance of the items

in a recommendation set [ZMKL05]. We presented its definition already as Eq.

2.4.

Expected Intra-List Diversity [VC11] is a rank- and relevance-aware version of

Eq. 2.4:

EILD(L) =
∑

i,j∈L,i 6=j
Ci disc(ki) disc(kj|ki)p(rel |i, u)p(rel |j, u) dist(i, j) (3.14)

where disc(ki) = 1
log(ki+2) is the rank discount for item i at position k, and

disc(kj|ki) = disc(max(1, kj − ki)) is a relative rank discount for an item j at

position kj knowing that position ki has been reached. p(rel |i, u) is a binary

relevance factor, the value of which is 1 if and only if in the test set item i is

a relevant item for user u. dist(i, j) is the Jaccard distance between the fea-
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tures of items i and j. Ci = C∑
j′∈L\{i} disc(k′j |ki)p(rel |j′,u) is a normalizing constant

given C = 1
|L| . Note that when there is no rank discount, no relative rank dis-

count (i.e. when disc(ki) = 1 and when disc(kj|ki) = 1) and when the measure

is not relevance-aware (i.e. p(rel |i, u) = 1 and p(rel |j, u) = 1), then EILD is

equivalent to ILD [VC11].

To measure the degree of calibration, we use CKL, the definition of which has

been already presented as Eq. 2.16.

We have already mentioned that xQuAD has an advantage in the case of ERR-

IA. But, in fact, all five measures of diversity and the calibration metric are

computed with respect to item features, F . All may therefore favour recomme-

nders that re-rank using those features, such as MMR [CG98], xQuAD [VCV11],

RxQuAD [VCV12] and c-pLSA [WH16]. Our new methods, SPAD and its vari-

ants, make no use of the features at all and so they are at a disadvantage in our

experiments. To allow for a more rounded view of the algorithms that we eval-

uate, we have adapted the diversity metrics and the calibration metric defined

above to produce a corresponding set of metrics that use subprofiles instead of

item features. We give the definitions of the adapted diversity metrics in Section

5.2, and the adapted calibration metric in Section 7.3.

3.4 Evaluation Methodology

In this section, we give the details of our evaluation methodology for all the

experiments presented in the next four chapters. First, we give details of the

how the data is split. Next, we explain how we optimize the hyperparameters of

the baseline recommenders. Then, we we explain hyperparameter optimization

of the re-ranking algorithms. Finally, we explain how we evaluate the perfor-

mance of different approaches on the test sets.

3.4.1 Data split

For the ML1M, LFM, LT, FB, ML20M and TasteProfile datasets, we randomly

partition the ratings into training, validation and test sets such that 60% of

each user’s ratings are in the training set, 20% of them are in the validation set

and 20% are in the test set. For the smaller datasets (ML1M, LFM, LT and FB)

results are averaged over five runs with different random splits, whereas for
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the larger datasets (ML20M and TasteProfile) experiments are run with only

one random split.

3.4.2 Hyperparameter values for baseline recommenders

Here, we explain how we optimize the hyperparameters of the baseline re-

commenders (Section 3.2). We emphasize that all of hyperparameter values

are found using validation sets. We select hyperparameter values that opti-

mize precision on the validation sets [VCV12]. All the baseline recommenders

produce a ranked set of recommendations for all users who have data in the

training and validation subsets. For each user u, for all items i which are not in

the training subset of the user, a score s(u, i) is computed by the baseline rec-

ommender, and items are sorted in decreasing order by their computed scores

to produce ranked set of recommendations; we select the top-N recommenda-

tions, N = 10. Then, the resulting recommendations are evaluated in terms of

Precision by considering items that appear in the validation subset of the user

and which are relevant to the user. For relevancy, we consider items having a

rating value above a threshold.

Table A.1 in the Appendix shows optimized hyperparameter values of each base-

line recommendation algorithm on each dataset.

3.4.3 Hyperparameter values for re-ranking algorithms

Some of the re-ranking algorithms also have hyperparameters. Here we explain

how we choose their value.

After optimizing the hyperparameter values of the baseline recommenders, for

each user, we generate a recommendation set RS, where |RS| = 100 using the

baseline recommender with its best hyperparameter values. We re-rank RS to

produce ranked list RL using each of the re-ranking methods with each of their

combinations of hyperparameter values. Then, from eachRL, we select the top-

N recommendations, N = 10. Finally, for each re-ranking method, we select

hyperparameter values that give the best α-nDCG on the validation set. For re-

ranking methods we choose α-nDCG since it is a metric that combines accuracy

and diversity and the approaches proposed in the following chapters aim to

increase the accuracy and diversity of the baseline recommender algorithms. In
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the Appendix to this thesis, we give the values of these hyperparameters. Unless

explicitly indicated, all re-ranking methods follow the methodology given here

to optimize their hyperparameters.

3.4.4 Evaluation on test sets

After optimizing the hyperparameters of the re-ranking algorithms, to generate

the final set of top-N recommendations, we train the baselines using their se-

lected hyperparameter values on the union of the training and validation sets

and, for each user, generate a recommendation set RS, where |RS| = 100.

Then, we re-rank each RS to produce ranked lists RL using each of the re-

ranking methods with their selected hyperparameter values. Then, from each

RL, we select the top-N recommendations, N = 10, and measure the evalua-

tion metrics that we described in Section 3.3.

3.5 Conclusions

In this chapter, we have explained the details of the experimental design fol-

lowed throughout the experiments conducted in the next four chapters of this

thesis.

In the following chapter, we will explain our proposed approaches to recomme-

ndation diversification using subprofiles.
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Chapter 4

Subprofile-Aware Diversification

Intent-aware diversification seeks to ensure that the set of recommended items

covers the different tastes and interests revealed by the user’s profile but using a

formulation that takes item relevance into account [VCV11] (see Section 2.3.3

for the details). Consider, for instance, a music recommender. A user who only

likes jazz and blues will receive jazz and blues recommendations; another user

who likes jazz, blues and some classical will receive jazz, blues and classical

music recommendations similarly.

The most common way to characterize a user’s tastes and interests is as a prob-

ability distribution over so-called aspects of the items. Aspects are either explicit

item features or implicit item features such as the latent factors found, e.g., by

a matrix factorization recommender. Since the aspect probabilities may differ

across users, diversity is personalized to a certain extent.

In this chapter, we explain our approach, Subprofile Aware Diversification (SPA-

D), in detail. Like other intent-aware approaches, SPAD aims to ensure that the

final set of recommendations covers the aspects revealed by the user’s profile to

a certain extent. In the work on intent-aware diversification that we described

earlier (Chapter 2), aspects were often based on explicit item features. In SPAD,

by contrast, aspects are user subprofiles, i.e. subsets of the items that the user

likes.

In this chapter, first, we try to motivate the use of subprofiles as aspects. Next,

we explain SPAD’s formulation in detail. Then, we define eight methods for

detecting subprofiles. Finally, we give a comprehensive empirical comparison

of all eight methods for detecting subprofiles on three different datasets.
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4.1 Why Subprofiles as Aspects?

Intent-aware methods for recommendation diversification take inspiration from

the work done in IR by establishing an analogy between query intentions with

tastes and interests revealed by the user’s profile [VCV11, VCV12, WH16]. User

tastes or interests vary and they are heterogeneous, therefore it is a complex

task to capture them. As we mentioned before, the most common way to char-

acterize a user’s tastes and interests is as a probability distribution over so-called

aspects of the items, usually by using explicit item features.

Using item features for aspects brings several problems. In some domains, fea-

tures are not available. Where they are available, the features themselves may

be noisy (especially in the case of user-generated tags) or they may be incon-

sistently applied. They are often not very fine-grained; for example, the well-

known MovieLens system describe movies using just 18 genres [HK15]. In do-

mains such as movies and music where tastes and interests are complex, subtle

and highly subjective, it may not be possible to fully represent those tastes and

interests by a probability distribution over a small set of item features.

There is an alternative to defining tastes and interests in terms of item features.

Patterns in user interactions with items can be seen as indications of the distinct

tastes and interests of the users [Kul18]. Recommender systems already record

these interactions as explicit or implicit feedback in their ratings matrix. Pat-

terns of interaction with items, rather than item features, could form the basis

of the aspects of an intent-aware approach to diversification.

We propose to define aspects as subprofiles of a user’s profile, by considering

the patterns of user interactions with items. In defining these subprofiles, we

make no use of item features at all. Using subprofiles has two advantages over

using item features. First, they can be used in domains where item features

are not available or are unreliable. Second, as we show in different chapters

of this thesis, across multiple datasets and across almost all settings, re-ranking

approaches that use subprofiles instead of item features improve both accuracy

and diversity. They suffer much less from the relevance/diversity trade-off.

We hypothesize that this is because subprofiles are defined in terms of users’

interactions with items and tend to give us more fine-grained aspects than item

features: if the user likes m items, then there are 2m − 1 possible subprofiles,

i.e. all subsets except the empty set.
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4.2 SubProfile Aware Diversity

Subprofiles are defined in terms of items that the user likes (the liked-item-set),

i.e. ones to which she has given a positive rating, I+
u .

User u’s candidate subprofiles are simply the non-empty subsets of I+
u . In SPAD,

we select from among these candidate subprofiles ones that capture the differ-

ent tastes and interests of the user. We will denote user u’s set of subprofiles by

S∗u. Different subprofiles S ∈ S∗u can be of different lengths; the number of sub-

profiles |S∗u| can differ across users. We have explored several ways of deciding

which of the candidate subprofiles best capture the user’s tastes and interests.

We postpone our presentation of this to the next section. For now, we will show

how SPAD uses the subprofiles S∗u to re-rank recommendations.

We produce a set of recommendations RS using some baseline recommender.

This can be any recommender that produces relevance scores, s(u, i), for the

items that it recommends. The set RS is greedily re-ranked (Algorithm 1) using

the objective function given as Eq. 2.2 with div(i, RL) = divSPAD(i, RL) (Eq. 4.1

below), which is analogous to divxQuAD(i, RL) (Eq. 2.8).

4.2.1 SPAD

What differs between SPAD and other forms of intent-aware diversification is

the computation of the probabilities used in Eq. 2.8. Given that aspects are now

subprofiles, we will write p(S|u) and p(i|u, S) instead of p(a|u) and p(i|u, a) for

S ∈ S∗u, resulting in:

divSPAD(i, RL) =
∑
S∈S∗u

[p(S|u)p(i|u, S)
∏
j∈RL

(1− p(j|u, S))] (4.1)

Analogously to Eq. 2.9, p(S|u) can be estimated as:

p(S|u) = |S|∑
S′∈S∗u |S ′|

(4.2)

p(i|u, S), the probability of choosing i from a set of recommendations RS given

subprofile S of user u, can be estimated as:

p(i|u, S) = 1(i, S)s(u, i)∑
j∈RS 1(j, S)s(u, j) (4.3)
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But here there is a problem. We want 1(i, S) to be 1 when item i is ‘related to’

subprofile S, and 0 otherwise. We cannot just use membership (i ∈ S), because

i is a candidate recommendation and therefore will not in general already be a

member of the user’s profile or its subprofiles. Accordingly, in SPAD we define

1(i, S) as follows:

1(i, S) =

1 if i ∈ ⋃j∈S KNN(j)

0 otherwise
(4.4)

where KNN(j) is the set of j’s k-nearest-neighbours in I. In other words, i

must be a neighbour of a member of S. (We have tried a simpler version of Eq.

4.4, where we use similarity more directly but, in preliminary experiments, it

performed less well. We may explore it further in future.)

4.2.2 RSPAD, SSPAD and SRSPAD

Analogously to the relationship between xQuAD and RxQuAD [VCV12], we can

define RSPAD, which is a variant of SPAD, by replacing aspects a by subprofiles

S in Eq. 2.11.

Similarly, we can also define two further approaches, SSPAD and SRSPAD, wh-

ich are analogous to SxQuAD and SRxQuAD (Section 2.3.3.3). SSPAD and

SRSPAD first generate recommendations for each subprofile S ∈ S∗u. Then, they

combine these recommendations in the same way that SxQuAD and SRxQuAD

do this [VC13].

In our experiments, SSPAD and SRSPAD did not work well, so we do not give

any further details, nor do we show their results in this thesis.

In the next section, we explain how we compute the subprofiles.

4.3 Subprofile Detection

In the previous section, we explained how SPAD and RSPAD re-rank a recomme-

ndation set RS generated by a baseline recommender using a user’s subprofiles.

What this does not yet explain is how we compute the subprofiles. Here, we

present eight different subprofile detection methods. We group them into three

and summarize them in Table 4.1. The following sections present the eight

methods in detail.

Subprofile Aware Diversification of
Recommendations

42 Mesut Kaya



4. SUBPROFILE-AWARE DIVERSIFICATION 4.3 Subprofile Detection

Table 4.1: Subprofile detection methods

Description Name
Candidate subprofiles are based on the
nearest-neighbours of u’s liked-item-set

NN-1
NN-2

A recommender generates a set of top-n
recommendations from u’s unrated items. Candidate
subprofiles are explanations for the recommendations

IB+
DAMIB

DAMIB-COVER
A recommender generates a ranked list of u’s unrated
items. Candidate subprofiles are explanations for items
in the ranked list, such that the explanations cover I+

u

IB+cp
DAMIBcp

DAMIB-COVERcp

4.3.1 Subprofile detection from nearest-neighbours of liked

items

The subprofile detection approaches that we explain in this section rest on the

intuition that similar items in a user’s liked-item-set will tend to be in the same

subprofile. We present two approaches that use an item’s nearest-neighbours to

achieve this, referring to them as NN-1 and NN-2.

4.3.1.1 NN-1

For each item in the user’s liked-item-set i ∈ I+
u , we form a candidate subprofile

Siu that contains i itself and any other items j in the user’s liked-item-set j ∈
I+
u , j 6= i that have item i as one of their k-nearest-neighbours:

Siu = {j ∈ I+
u : i ∈ KNN(j) ∧ i 6= j} ∪ {i} (4.5)

KNN(j) contains the top-k items j′ ∈ I whose similarity to j, sim(j, j′), is high-

est. For similarity, sim(j, j′), we use cosine similarity between j and j’s ratings

in R.

It follows that the number of candidate subprofiles is the same as the number

of items in the liked-item-set. But the candidate subprofiles themselves can be

of any length between 1 and |I+
u |.

Let Su be the set of candidate subprofiles. We prune the candidates to obtain

the final set of subprofiles for this user, S∗u. Specifically, we define S∗u to be those

members of Su that do not contain any other members of Su:

S∗u = {S ∈ Su : ¬∃S ′ ∈ Su ∧ S ⊂ S ′} (4.6)
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We obtain S∗u from Su by sorting the elements of Su in descending order of size

and greedily retaining those that are not subsets of any already chosen. This

pruning step is in fact used in all of the subprofile detection approaches that we

explain in this chapter.

4.3.1.2 NN-2

A simple alternative to NN-1 suggests itself. Still taking each i ∈ I+
u in turn,

instead of finding other members of j ∈ I+
u which have i among their nearest

neighbours, we include j in i’s candidate subprofile if j is in i’s nearest neigh-

bours:

Siu = {j ∈ I+
u : j ∈ KNN(i) ∧ i 6= j} ∪ {i} (4.7)

It follows that there is still one candidate subprofile per member of I+
u . But now

the length of a candidate subprofile is at most 1 + k.

The candidates are pruned as before using Eq. 4.6.

Both NN-1 and NN-2 introduce a hyperparameter, namely k, the number of

neighbours to use. This is in addition to, and different from, the hyperparame-

ter k used in the indicator function in Eq. 4.4. To distinguish them, we refer to

the latter using kind and the former by knn.

4.3.2 Subprofile detection from the explanations of top-n re-

commendations

In this section, we present three further approaches to subprofile detection,

which we designate IB+, DAMIB and DAMIB-COVER. They share the follow-

ing intuition: a subprofile can be an explanation of a recommendation. These

approaches generate a set of top-n recommendations for u, each with an ex-

planation. It is important to emphasize that u is not shown these recommen-

dations. Generating these recommendations is simply a step within the process

of detecting subprofiles. Explanations are subsets of u’s liked-item-set. These

explanations are the candidate subprofiles. Finally, they prune the candidate

subprofiles in the same way as NN-1 and NN-2, using Eq. 4.6.

The recommender that IB+, DAMIB and DAMIB-COVER use is an item-based

nearest-neighbours recommender [DK04]. This is chosen because it has a stra-

ightforward way of defining explanations and these explanations are subsets
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of the user’s liked-item-set (see below), which means that we can treat the

explanations as candidate subprofiles.

These three methods introduce two more hyperparameters, namely n and k. n

is the number of recommendations and, since all three methods use item-based

nearest-neighbours recommenders (see below), k is the number of neighbours

used by these recommenders. This is yet another different k. When we need to

distinguish it from the others, we will use kIB.

In these three methods, since there is one candidate subprofile per recommen-

dation, it follows that there will be n candidate subprofiles. Since the candidate

subprofiles are explanations and drawn from the liked-item-set, their length

will be between 1 and |I+
u | inclusive.

We will now present IB+, DAMIB and DAMIB-COVER in turn.

4.3.2.1 IB+

IB+ is an item-based nearest-neighbours recommender for implicit ratings (i.e.

for positive-only ratings) [DK04]. It recommends those candidate items that

are most similar to the items in u’s liked-item-set. Candidate items are ones

that are not in the user’s liked-item-set, I \ I+
u . For each candidate item i, IB+

finds items in the user’s liked-item-set that have the candidate items as one of

their k-nearest-neighbours:

Siu = {j ∈ I+
u : i ∈ KNN(j)} (4.8)

Here, the set Siu is the explanation for why candidate i should be recommended:

items that u likes and that are similar to i.

IB+ scores each candidate by taking the sum of the similarities of the candidate

to the items in Siu:

sIB+(u, i) =
∑
j∈Si

u

sim(i, j) (4.9)

The candidate subprofiles (Su) are the explanations (Siu) for the the n candidate

items whose scores are highest. These are pruned using Eq. 4.6 to give the final

subprofiles (S∗u).
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4.3.2.2 DAMIB

The DAMIB and DAMIB-COVER recommender systems were originally devel-

oped by Verstrepen & Goethals for recommending to shared accounts [VG15].

They assume that a group of people, such as a family, share a single account,

e.g. a single online shopping or TV-streaming account. The user profile for this

account therefore captures the various tastes of several individual family mem-

bers. Informally, the goal of DAMIB and DAMIB-COVER is to recommend a set

of n items that includes recommendations targeted toward subprofiles (corre-

sponding to the different family members) and to avoid recommending items

that are overly general, which might be suitable for the profile as a whole but

which do not suit the individuals who share the account.

What DAMIB and DAMIB-COVER are really doing is recommending to different

subprofiles within a single account. It can be a shared account but it can just as

well be a single-user account. In the case of a single-user account, the different

subprofiles will represent that user’s different tastes or interests, and there will

be recommendations targeted at each of these tastes or interests — as many as

can be accommodated in a top-n recommendation list.

We use DAMIB and DAMIB-COVER in the same way as we use IB+ above, i.e. as

a recommender whose explanations will be the subprofiles that we use in SPAD.

Even though we are re-purposing these two recommender system to use them

for subprofile extraction, we will continue to refer to them here as DAMIB and

DAMIB-COVER.

Consider the powerset of u’s liked-item-set, 2I+
u . This is the set of all of u’s

possible subprofiles. DAMIB computes the relevance of each candidate item

{i ∈ I : ru,i = ⊥} to each member of the powerset S ∈ 2I+
u . It does this in

a similar way to the IB+ recommender: for each item j in S whose set of k-

nearest-neighbours contains candidate item i, the score for i is increased by its

similarity to j:

sDAMIB(S, i) =
∑

j∈S,i∈KNN(j)
sim(i, j) (4.10)

The relevance of a candidate item i to u, sDAMIB(u, i), is then based on the

highest of the sDAMIB(S, i):

sDAMIB(u, i) = max
S∈2I+

u

1
|S|0.75 sDAMIB(S, i) (4.11)
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As can be seen in Eq. 4.11, DAMIB multiplies the scores by 1
|S|0.75 , where the

value 0.75 is chosen based on experimental results in [VG15]. Since p > 0,

this has the effect of penalizing scores that come from larger subprofiles. The

intuition here is to give higher scores to candidates with high similarities to a

few items than to candidates with small similarities to many items. The member

of the powerset that maximizes s(u, i) is the corresponding explanation:

Siu = arg max
S∈2I+

u

1
|S|p

s(S, i) (4.12)

Eq. 4.11 and Eq. 4.12 imply exponential amounts of computation: for each can-

didate item, computing the maximum of 2m scores, where m = |I+
u |. However,

Verstrepen & Goethals use a prefix property to eliminate some of the computa-

tions and prove that it can be computed in O(m logm) time.

DAMIB would recommend the n candidate items with the highest scores, com-

puted as sDAMIB(u, i). We, instead, use their explanations as candidate subpro-

files, which we prune using Eq. 4.6.

4.3.2.3 DAMIB-COVER

Verstrepen & Goethals identify a problem with using the DAMIB algorithm to

recommend items to the users of a shared account. If we recommend the top-

n items with the highest sDAMIB(u, i), it may be the case that this top-n fails

to include any recommendations for some of the users who share the account.

DAMIB-COVER works exactly as DAMIB except, instead of recommending the

n candidates with the highest sDAMIB(u, i), DAMIB-COVER feeds the candidate

items and their scores into a coverage algorithm that attempts to maximize the

number of users who have at least one recommended item in the top-n. In

essence, this part of the system forms a top-n from the candidates by including

an item in the top-n only if its explanation includes at least one item that is not

a member of the unions of the explanations of the higher-ranked items.

As we did with DAMIB, we adapt DAMIB-COVER so that, instead of returning

n recommendations, it returns n candidate subprofiles (which are the explana-

tions for those recommendations). We show how we do this in Algorithm 2. As

usual, the candidate subprofiles (Su) are then pruned using Eq. 4.6 to give the

final subprofiles (S∗u).
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Algorithm 2 DAMIB-COVER(u, n)
Input: u ∈ U , n ∈ N+

Output: n candidate subprofiles from I+
u

1: Use DAMIB to compute sDAMIB(u, i) and Siu for all i for which ru,i = ⊥
2: Produce ranked list t of all i for which ru,i = ⊥ in descending order of s(u, i),

where t[r] refers to the item in position r
3: r ← 1
4: Covered ← {}
5: Su ← {}
6: while |Su| < n do
7: i← t[r]
8: if |Siu \ Covered| ≥ 1 then
9: insert Siu into Su

10: Covered ← Covered ∪ Siu
11: remove i from t
12: if Covered = I+

u then
13: Covered ← {}
14: r ← 1
15: else
16: r ← r + 1
17: if r > |t| then
18: Covered ← {}
19: r ← 1
20: return Su

4.3.3 Subprofile detection using profile coverage

As methods for subprofile detection, IB+, DAMIB and DAMIB-COVER have

the weakness that we must decide in advance the maximum number of candi-

date subprofiles, n, corresponding to the n recommendations. We decided to

design variants of IB+ DAMIB and DAMIB-COVER that would not be con-

strained in this way. These three variants, designated IB+cp, DAMIBcp and

DAMIB-COVERcp, attempt to find candidate subprofiles that cover a certain

percentage of the user’s liked-item-set. This is done by Algorithm 3.

Algorithm 3 takes in four inputs, u, cp, alg and cover . u is the user. cp ∈ (0, 1] is

the parameter that controls how much of the user’s liked-item-set we want the

subprofiles to cover. For example, if cp = 0.5, we want the candidate subprofiles

to contain at least 50% of the items in the liked-item-set. This can be seen in

line 12 of the algorithm: we break from the loop when the subprofiles cover

enough of I+
u . alg determines which method we want to use when scoring the

candidate items, either IB+ (Eq. 4.9) or DAMIB (Eq. 4.11). Finally, cover is
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Algorithm 3 COVER(u, cp, alg, cover)
Input: u ∈ U , cp ∈ (0, 1], alg ∈ {IB+,DAMIB}, cover ∈ {true, false}
Output: candidate subprofiles from I+

u

1: Use alg to compute sDAMIB(u, i) and Siu for all i for which ru,i = ⊥
2: Produce ranked list t of all i for which ru,i = ⊥ in descending order of s(u, i),

where t[r] refers to the item in position r
3: r ← 1
4: Covered ← {}
5: Su ← {}
6: while true do
7: i← t[r]
8: if cover ∧ |Siu \ Covered| < 1 then
9: continue

10: insert Siu into Su
11: Covered ← Covered ∪ Siu
12: if |Covered| ≥ cp× |I+

u | then
13: break
14: r ← r + 1
15: if r > |t| then
16: break
17: return Su

Table 4.2: Subprofile detection using profile coverage

Subprofile detection method Method call
IB+cp COVER(u, cp, IB+, false)

DAMIBcp COVER(u, cp,DAMIB, false)
DAMIB-COVERcp COVER(u, cp,DAMIB, true)

a Boolean which, if true, will additionally apply DAMIB-COVER’s coverage

criterion. This can be seen in line 8 of the algorithm: if cover is true, we ignore

the candidate subprofile if it is not different enough from what has already been

covered. The key point, in summary, is that this algorithm does not have to keep

looping until it finds n candidate subprofiles. It stops as soon as its coverage

criterion is satisfied.

By the way we call Algorithm 3, we obtain our three new detection meth-

ods, IB+cp, DAMIBcp and DAMIB-COVERcp, as shown in Table 4.2. IB+cp,

DAMIBcp and DAMIB-COVERcp replace hyperparameter n by hyperparameter

cp. They produce a number of candidate subprofiles that is not constrained to

be n (unlike IB+, DAMIB and DAMIB-COVER); instead, there can be up to

|I+
u | of them (like NN-1 and NN-2).
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4.4 Comparison of Subprofile Detection Methods

4.4.1 Qualitative comparison

We have presented eight subprofile detection methods. We compare them em-

pirically in Section 4.4.2.2. Here, we compare them in a more qualitative way.

• Algorithmic. Referring to Table 4.1, we can see a major algorithmic differ-

ence: the first two methods (NN-1 and NN-2) use the nearest-neighbours

of items the user likes; the other six methods predict scores using a recom-

mender algorithm (whose recommendation are never shown to the user

but whose explanations are candidate subprofiles). NN-1 and NN-2 are

therefore considerably simpler from an algorithmic point of view and run

faster.

• Methodological. The eight methods differ in their hyperparameters. All

have kind for use by Eq. 4.4. But NN-1 and NN-2 have just one more

hyperparameter, knn, the number of neighbours to use in Eq. 4.5 and

Eq. 4.7 respectively. The other six methods, all of which use an item-

based recommender algorithm, share hyperparameter kIB, which is used

within the recommender algorithm (Eq. 4.8). Then, IB+, DAMIB and

DAMIB-COVER additionally have hyperparameter n, the number of rec-

ommendations to generate (and hence the number of candidate subpro-

files), whereas IB+cp, DAMIBcp and DAMIB-COVERcp have hyperpara-

meter cp, the proportion of I+
u to cover, instead of n.

• Information used. NN-1 and NN-2 compute subprofiles directly from the

user’s liked-item-set and item similarities. The other approaches are indi-

rect since they produce subprofiles from recommendations for items that

are not in the user’s profile. This difference might even result in some

strange behaviour: when a new item is rated by user’s other than u, in the

methods that find subprofiles from recommendations for items unseen by

u, the subprofiles might change, whereas they are less likely to change in

the case of NN-1 and NN-2 (unless item similarities change significantly).

It seems then that, from a qualitative point of view, there is a clear preference

for NN-1 and NN-2.
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Table 4.3: Subprofile statistics

ML1M avg. 51.09 (σ = 61.5) subprofiles per user
avg. len of subprofiles is 7.78 (σ = 6.25)
avg. sim of subprofiles is 0.0379

LFM avg. 134.37 (σ = 161.41) subprofiles per user
avg. len of subprofiles is 30.08 (σ = 28.11)
avg. sim of subprofiles is 0.1045

LT avg. 32.49 (σ = 46.71) subprofiles per user
avg. len of subprofiles is 8.8 (σ = 10.72)
avg. sim of subprofiles is 0.044

4.4.2 Experimental comparison

In this section, we compare the performance of the eight subprofile detection

methods. We explained the experimental setup and evaluation methodology in

detail in Chapter 3. There are many hyperparameters for different subprofile

detection approaches. We show all the hyperparameter values in the Appendix

to this thesis (See Table A.2).

We use three datasets: the MovieLens 1M (ML1M) dataset, the LastFM (LFM)

dataset and the LibraryThing (LT) dataset. For the characteristic of the datasets,

see Chapter 3.

SPAD uses greedy re-ranking, therefore it needs a baseline recommender, whose

recommendation sets are re-ranked. We use the baseline recommenders that we

explained in Chapter 3: probabilistic latent semantic analysis (pLSA) [Hof04], a

fast alternative least-squares matrix factorization recommender (MF) [PZT10],

and a factorization machine that uses Bayesian pairwise loss for ranking (FM-

BPR) [Bay15].

Three baselines paired with nine re-ranking approaches (SPAD with eight dif-

ferent subprofile detection approaches and the baseline itself) gives 27 systems

to compare on each dataset.

4.4.2.1 Subprofile analysis

For each dataset, we extract subprofiles from each user’s liked-item-set and

compute descriptive statistics and plot the distribution graphs. We use NN-1 as

subprofile detection algorithm since, from the discussion we gave in Section 4.4

and the results we will give in Section 4.4.2.2, it is the one we select to use in
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Figure 4.2: Length of subprofiles plots.

the following chapters of this thesis. NN-1 has hyperparameters. We set their

values using the method already described. Specifically, we use the values in

the Table A.2 where MF is the baseline recommender.

Table 4.3 shows the average number of subprofiles per user and the average

length of the subprofiles. In more detail, Figure 4.1 contains histograms for the

number of subprofiles, i.e. how many users have just one subprofile (equal to

the whole liked-item-set), how many have two, how many have three, and so

on. Figure 4.2 is a histogram for subprofile lengths, i.e. how many subprofiles

contain just one item, how many contain two, and so on. We can see that for the

LFM dataset both the number of subprofiles and the lengths of the subprofiles

are greater than for the ML1M and LT datasets. This can be partly explained

by characteristics of the music domain. The time to listen to a piece of music is

typically much less than the time to watch a movie or read a book. Therefore,

users can consume more pieces of music and this appears to remain the case

even when consumption is aggregated by artists, as is the case in the LastFM

dataset. Hence, user profiles are longer in the LFM dataset — see Table 4.3.

Longer user profiles tends to imply longer liked-item-sets, which will tend to
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give rise to more subprofiles and longer subprofiles.

Table 4.3 also shows the average similarity of subprofiles for each dataset. For

a given user u, we compute the all-pairs average similarity of u’s subprofiles:

avg-p-sim(u) =
∑
S∈S∗u

∑
S′∈S∗u,S 6=S′ p-sim(S, S ′)
|S∗u|(|S∗u| − 1) (4.13)

where S∗u is the final set of subprofiles for u and p-sim measures the similar-

ity between two subprofiles. Subprofiles are just set of items (movies, books,

etc.) and so the similarity between two subprofiles that we want here is sim-

ply how much they overlap, for which Jaccard similarity seems appropriate:

p-sim(S, S ′) = |S∩S′|
|S∪S′| . The value in Table 4.3 is the mean avg-p-sim(u) for all

users u.

As the Table shows, LFM subprofiles are more similar to each other than ML1M

and LT subprofiles. Intuitively, this means that while a book or a movie covers a

few different tastes or interests (subprofiles) of a user, a musician covers more

tastes or interests.

We also give an explicit example of the final subprofiles for a user in the ML1M

dataset — Table 4.4. The Table shows the user’s liked-item-set. Then, for each

member of the liked-item-set, the Table shows the corresponding subprofile.

Consider, for instance, the movie Star Wars: Episode IV — A New Hope. The

user likes this movie and it is one of the nearest-neighbours of the movies A
Clockwork Orange, Back to the Future, Indiana Jones and the Last Crusade and

The Matrix, which are also in the liked-item-set. Consider now the movie The
Shining. The Table shows that its corresponding subprofile contains only the

movie itself, which means none of the other members of the liked-item-set has

The Shining as one of their nearest-neighbours.

The twelve subprofiles shown in Table 4.4 are used as the aspects of the user in

SPAD and RSPAD. We regard them as defining the different tastes and interests

of this user. Note that the other thirteen members of this user’s liked-item-

set will also be associated with candidate subprofiles. We did not show these

because they are removed using Eq. 4.6: they are subsets of other candidate

subprofiles.
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Table 4.4: Example subprofiles. These are the final subprofiles of user 5870 in
the ML1M dataset.

User 5870’s liked-item-set
October Sky, Star Wars: Episode IV — A New Hope, Back to the Future, A
Clockwork Orange, Pulp Fiction, Swingers, The Sixth Sense, The Matrix,
Dogma, Alive, Being John Malkovich, The Big Lebowski, Full Metal Jacket,
Fight Club, This is Spinal Tap, The Shining, Rushmore, Fear and Loathing
in Las Vegas, Indiana Jones & the Last Crusade, The Shawshank
Redemption, Fargo, Grosse Pointe Blank, Natural Born Killers, Brazil, Die
Hard, American Beauty
Item Corresponding candidate subprofile
Star Wars:
Episode IV — A
New Hope

Star Wars: Episode IV — A New Hope, A Clockwork
Orange, Back to the Future, Indiana Jones & the Last
Crusade, The Matrix

The Matrix
The Matrix, Star Wars: Episode IV — A New Hope,
The Sixth Sense

The Shining The Shining

Rushmore
Rushmore, Swingers, The Big Lebowski, Being John
Malkovich, Fear and Loathing in Las Vegas, Fight Club

Natural Born
Killers

Natural Born Killers

Brazil Brazil, A Clockwork Orange

Pulp Fiction

Pulp Fiction, Fargo, Swingers, The Big Lebowski,
Being John Malkovich, The Sixth Sense, American
Beauty, Rushmore, Grosse Pointe Blank, The
Shawshank Redemption, Fight Club

American
Beauty

American Beauty, Fargo, Being John Malkovich, Pulp
Fiction, The Sixth Sense, Rushmore, Dogma, The
Shawshank Redemption, Fight Club

This Is Spinal
Tap

This Is Spinal Tap

The Shawshank
Redemption

The Shawshank Redemption, Fargo, Alive, October
Sky, Pulp Fiction, The Sixth Sense, American Beauty

Grosse Pointe
Blank

Grosse Pointe Blank, Swingers, The Big Lebowski,
Dogma

Die Hard
Die Hard, Full Metal Jacket, Indiana Jones & the Last
Crusade

4.4.2.2 Results for different subprofile detection methods

In this section, we compare the performance of the eight subprofile detection

methods.

Results for the ML1M, LFM and LT datasets using MF as baseline recommender
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are shown in Table 4.5. Results for all three datasets using pLSA as baseline

recommender are shown in Table 4.6, and results using FMBPR as baseline

recommender are shown in Table 4.7. In all three tables, we report precision

and α-nDCG for different subprofile detection approaches (each of which are

used to re-rank the a sorted list generated by one of the MF, pLSA or FMBPR

baseline recommenders based on predicted scores). In each block of the tables,

results for the baseline recommenders are presented first, and then results for

each of the re-ranking algorithms are given. The best result for each metric

is highlighted in bold for each block. The value of λ that optimizes α-nDCG
for each baseline and re-ranking strategy is given [WH16]. All of the results

are statistically significant with respect to their baseline (Wilcoxon signed rank

with p < 0.05) except those shown in italics.

The tables show that all of the eight re-ranking algorithms achieve both their

best precision and α-nDCG values using MF as the baseline recommender.

Table 4.5 shows that, when MF is used as the baseline recommendation algo-

rithm, of the eight methods, NN-1 has the highest precision for all but the LT

dataset, where NN-2 has the highest precision. Looking at the diversity met-

ric (α-nDCG), we see that the results are more mixed. For the ML1M dataset,

NN-2 performs the best; for the LFM dataset, it is NN-1; and for the LT, it is

DAMIB-COVERcp.

Looking at the results shown in Table 4.6 for the pLSA baseline recommender,

both precision and α-nDCG results are mixed. For ML1M dataset, DAMIB-CO-

VER has the highest precision and NN-2 has the highest α-nDCG; for the LFM

dataset NN-1 has both the highest precision and α-nDCG; and for the LT dataset

DAMIBcp has both the highest precision and α-nDCG.

Table 4.7 shows that, when FMBPR is used as the baseline recommendation

algorithm, of the eight methods, NN-1 has the highest precision for all but the

LT dataset, where DAMIB has the highest precision. Looking at the diversity

metric (α-nDCG), we see that the results are more mixed. For the ML1M da-

taset, NN-2 has the highest α-nDCG value; for the LFM dataset, NN-1 has the

highest; and for the LT dataset DAMIB-COVERcp has the highest.

On balance, looking at the Tables 4.5, 4.6 and 4.7, it can be seen that NN-1 is

the best-performing method, and NN-2 is the second best-performing method.

Of the nine different configurations (three different baseline recommendation

algorithms tested on three different datasets), NN-1 has the highest precision
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Table 4.5: Precision and α-nDCG for different subprofile detection approaches
for ML1M, LFM and LT datasets using MF as the baseline.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG
ML1M

MF 0.2916 0.3197
NN-1 0.4 0.3005 0.3351 3.03 4.81
NN-2 0.5 0.2982 0.3403 2.27 6.42
IB+ 0.6 0.2947 0.337 1.04 5.39

DAMIB 0.6 0.2952 0.3372 1.23 5.46
DAMIB-COVER 0.6 0.2961 0.3371 1.53 5.44

IB+cp 0.4 0.2953 0.3305 1.27 3.36
DAMIBcp 0.5 0.2934 0.3313 0.62 3.61

DAMIB-COVERcp 0.5 0.2981 0.337 2.21 5.39
LFM

MF 0.4654 0.4244
NN-1 0.2 0.4742 0.4296 1.9 1.24
NN-2 0.2 0.4725 0.4276 1.53 0.76
IB+ 0.3 0.4733 0.429 1.69 1.11

DAMIB 0.2 0.4708 0.4272 1.16 0.68
DAMIB-COVER 0.3 0.4739 0.4288 1.84 1.06

IB+cp 0.2 0.4682 0.4242 0.61 -0.03
DAMIBcp 0.2 0.47 0.4255 1.0 0.27

DAMIB-COVERcp 0.2 0.471 0.4278 1.21 0.81
LT

MF 0.1733 0.2412
NN-1 0.4 0.1896 0.2588 9.4 7.28
NN-2 0.4 0.1924 0.2623 11.05 8.72
IB+ 0.5 0.1849 0.253 6.7 4.89

DAMIB 0.4 0.1895 0.2607 9.38 8.07
DAMIB-COVER 0.4 0.19 0.2623 9.66 8.75

IB+cp 0.4 0.1857 0.256 7.18 6.14
DAMIBcp 0.4 0.1892 0.2601 9.16 7.83

DAMIB-COVERcp 0.5 0.1909 0.2625 10.16 8.82

for 5 out of 9 configurations, and the highest α-nDCG for 3 out of 9. NN-2 has

the highest α-nDCG for 3 out of 9 configurations and has the highest precision

for one configuration.

The qualitative arguments we gave in Section 4.4 also favoured NN-1 and NN-2:

they are simpler, run faster and require that we set fewer hyperparameter val-

ues. Hence, in the following chapters of this thesis, we present results for SPAD

and RSPAD using NN-1.
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Table 4.6: Precision and α-nDCG for different subprofile detection approaches
for ML1M, LFM and LT datasets using pLSA as the baseline.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG
ML1M

pLSA 0.2639 0.2842
NN-1 1.0 0.2803 0.3171 6.2 11.57
NN-2 1.0 0.2775 0.3238 5.14 13.91
IB+ 1.0 0.2783 0.3233 5.44 13.74

DAMIB 1.0 0.2785 0.3234 5.51 13.8
DAMIB-COVER 0.6 0.2813 0.3192 6.6 12.29

IB+cp 0.7 0.2727 0.3088 3.32 8.65
DAMIBcp 1.0 0.2712 0.3095 2.74 8.87

DAMIB-COVERcp 1.0 0.2773 0.3183 5.06 11.99
LFM

pLSA 0.3804 0.3426
NN-1 0.6 0.4299 0.3878 13 13.19
NN-2 0.5 0.421 0.3808 10.67 11.14
IB+ 0.5 0.4199 0.3823 10.37 11.59

DAMIB 0.5 0.4195 0.3819 10.27 11.47
DAMIB-COVER 0.6 0.4196 0.3805 10.28 11.06

IB+cp 0.5 0.4059 0.3673 6.68 7.19
DAMIBcp 0.6 0.4 0.3606 5.15 5.23

DAMIB-COVERcp 0.6 0.4182 0.3795 9.92 10.76
LT

pLSA 0.0965 0.1376
NN-1 0.6 0.1407 0.1937 45.8 40.75
NN-2 0.6 0.1419 0.1959 46.98 42.4
IB+ 0.5 0.1393 0.1937 44.28 40.74

DAMIB 0.5 0.1433 0.1987 48.49 44.39
DAMIB-COVER 0.5 0.1428 0.1983 47.96 44.13

IB+cp 0.5 0.1397 0.1906 44.76 40.73
DAMIBcp 0.6 0.1442 0.1996 49.41 45.09

DAMIB-COVERcp 0.6 0.1436 0.1992 48.78 44.78

4.4.2.3 SPAD vs. DAMIB-COVER

DAMIB-COVER, which is one of the subprofile detection algorithms we have

presented in Section 4.3.2.3, is also a recommender in its own right, and it is

designed to make recommendations to the different tastes exhibited by a user

profile (whether those be the tastes of different users of a shared account or

the different tastes of a single user account). In some sense, then, it tries to

make a diverse set of recommendations, and so in this subsection, we compare
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Table 4.7: Precision and α-nDCG for different subprofile detection approaches
for ML1M, LFM and LT datasets using FMBPR as the baseline.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG
ML1M

FMBPR 0.2655 0.3025
NN-1 0.4 0.2829 0.3219 6.58 6.43
NN-2 0.4 0.2786 0.3233 4.94 6.87
IB+ 0.4 0.2765 0.321 4.16 6.13

DAMIB 0.4 0.2766 0.3205 4.18 5.95
DAMIB-COVER 0.4 0.2772 0.3203 4.41 5.9

IB+cp 0.4 0.2718 0.3141 2.37 3.83
DAMIBcp 0.4 0.2718 0.3136 2.37 3.66

DAMIB-COVERcp 0.4 0.2769 0.3185 4.31 5.31
LFM

FMBPR 0.3737 0.3409
NN-1 0.4 0.4231 0.3864 13.21 13.35
NN-2 0.5 0.4178 0.3792 11.78 11.25
IB+ 0.5 0.4126 0.3793 10.41 11.26

DAMIB 0.5 0.4129 0.379 10.48 11.18
DAMIB-COVER 0.6 0.4149 0.3787 11.01 11.09

IB+cp 0.5 0.3986 0.366 6.65 7.38
DAMIBcp 0.6 0.3893 0.3553 4.17 4.22

DAMIB-COVERcp 0.6 0.4128 0.378 10.44 10.88
LT

FMBPR 0.0829 0.112
NN-1 0.5 0.1275 0.1696 53.78 51.38
NN-2 0.5 0.1288 0.1732 55.36 54.63
IB+ 0.6 0.1214 0.1656 46.41 47.78

DAMIB 0.6 0.1296 0.174 56.36 55.3
DAMIB-COVER 0.5 0.1292 0.1748 55.8 56.01

IB+cp 0.5 0.1243 0.1671 49.98 49.1
DAMIBcp 0.5 0.1294 0.1747 56.08 55.94

DAMIB-COVERcp 0.5 0.1286 0.1753 55.15 56.46

DAMIB-COVER as a recommender with SPAD.

The results of the comparison are given in Table 4.8. The best result for each

metric is highlighted in bold for each block. The value of λ that optimizes

α-nDCG for SPAD is given. Results that are statistically significant with respect

to the +ve-only IB baseline (Wilcoxon signed rank with p < 0.05) are marked

with a. SPAD results are also marked with b if they are statistically significant

with respect to DAMIB-COVER. The baseline here is a positive-only item-based
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Table 4.8: DAMIB-COVER & SPAD results.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG
ML1M

+ve-only IB 0.2205 0.2653
DAMIB-COVER 0.215a 0.255a -2.52 -3.88

SPAD 0.9 0.2219ab 0.2676ab 0.64 0.87
LFM

+ve-only IB 0.2961 0.2865
DAMIB-COVER 0.2877a 0.2705a -2.83 -5.93

SPAD 0.3 0.3113ab 0.299ab 5.14 4.35
LT

+ve-only IB 0.1609 0.2181
DAMIB-COVER 0.146a 0.21a -9.29 -3.9

SPAD 0.1 0.1605b 0.2174ab -0.25 -0.29

recommender, which is the input to DAMIB-COVER; its results are re-ranked by

SPAD, to give a fair comparison. We see that SPAD outperforms DAMIB-COVER

for both accuracy and diversity on all datasets. This justifies the additional

complexity of SPAD’s aspect-aware approach over DAMIB-COVER.

4.5 Conclusions

In this chapter, we have presented Subprofile-Aware Diversification (SPAD) and

its variant Relevance-based SPAD (RSPAD). We have presented eight different

subprofile detection methods for SPAD. We have presented qualitative argu-

ments and experimental results which favour one of the methods, NN-1. Hence,

in the rest of this thesis, when we refer to SPAD and RSPAD, we will be using

NN-1 as the subprofile detection method.

In the next chapter, we give an extensive comparison of SPAD and RSPAD with

existing intent-aware diversification approaches.

Subprofile Aware Diversification of
Recommendations

59 Mesut Kaya



Chapter 5

An Evaluation of Subprofile-Aware
Diversification

In the previous chapter, we presented Subprofile-Aware Diversification (SPAD)

and its variant, Relevance-based SPAD (RSPAD). We presented eight different

subprofile detection methods for SPAD. We presented qualitative arguments and

experimental results that favored one of the methods (designated NN-1).

In this chapter, using NN-1 as the subprofile detection method, we compare

SPAD and RSPAD with other diversification techniques. First, we give the ex-

perimental results. Next, we adapt diversity metrics that use item features to

measure diversity, such that they use user subprofiles instead of item features.

Using these new metrics alongside the existing ones gives a more balanced view

of the performance of the recommender algorithms. Then, we show results

showing relevance/diversity trade-off.

5.1 Comparison of SPAD and Existing Intent-Awa-

re Diversification Methods

In this section, we report our empirical investigation of SPAD, RSPAD and other

approaches to diversification.

We use the same datasets that we have used in the previous chapter: the Movie-

Lens 1M (ML1M) dataset, the LastFM (LFM) dataset and the LibraryThing (LT)

dataset. For the characteristic of the datasets, see Chapter 3.
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5.1 Comparison of SPAD and Existing
Intent-Aware Diversification Methods

We compare SPAD and RSPAD with the other diversification techniques avail-

able in the RankSys library1: MMR [CG98], xQuAD [VCV11], RxQuAD [VCV12]

and c-pLSA [WH16]. We also compare our methods with SxQuAD and SRxQu-

AD [VC13]. Since they are not available in the RankSys library, we implemented

them ourselves.

All of these approaches to diversification use greedy re-ranking, therefore they

need a baseline recommender, whose recommendation sets are re-ranked. We

use the same baseline recommenders that we have used in the previous chap-

ter (again using their RankSys implementations): probabilistic latent semantic

analysis (pLSA) [Hof04], a fast alternative least-squares matrix factorization

recommender (MF) [PZT10], and a factorization machine that uses Bayesian

pairwise loss for ranking (FMBPR) [Bay15].

Three baselines paired with nine re-ranking approaches (the eight above but

also none at all) gives 27 systems to compare on each dataset. However, we

were unable to obtain results for c-pLSA on the LFM and LT datasets because

the implementation is based on the maximum possible item features (71833

user-generated tags in LFM and 4800 in LT), whereas the other re-ranking app-

roaches that use item features only depend on the number of distinct features

that describe the items in Iu.

We divide this section into two: first we give results that compare SPAD and

RSPAD with other re-ranking algorithms; then we show the precision and di-

versity (measured by α-nDCG) results for different values of λ.

5.1.1 Results for different algorithms

For each of the three datasets, we show precision and α-nDCG results in one

table, and the other diversity metrics (ERR-IA, S-recall, EILD and ILD) in an-

other table. In each block of Tables 5.1 and 5.2 (and also Tables 5.3, 5.4, 5.5

and 5.6), results for the baseline recommendation algorithm are presented first,

and then results for each of the re-ranking algorithms. The best result for each

metric is highlighted in bold for each block. For each algorithm, we report the

results using the value of λ that gives the highest α-nDCG on the validation

set [WH16]. All of the results are statistically significant with respect to their

baseline (Wilcoxon signed rank with p < 0.05), except those shown in italics.

1https://github.com/RankSys
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5.1 Comparison of SPAD and Existing
Intent-Aware Diversification Methods

Table 5.1: Precision and α-nDCG results for ML1M dataset.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG
MF 0.2916 0.3197

MMR 0.2 0.2906 0.3243 -0.34 1.43
xQuAD 0.5 0.2739 0.3668 -6.08 14.72

RxQuAD 0.7 0.2629 0.3586 -9.85 12.15
SxQuAD 0.6 0.2743 0.3687 -5.93 15.32

SRxQuAD 0.6 0.2715 0.3658 -6.9 14.39
c-pLSA 0.3 0.2978 0.3292 2.1 2.96
SPAD 0.4 0.3005 0.3351 3.03 4.81

RSPAD 0.7 0.2975 0.3356 2.02 4.97
pLSA 0.2639 0.2842
MMR 0.3 0.2635 0.2913 -0.17 2.47

xQuAD 0.7 0.2456 0.3428 -6.93 20.61
RxQuAD 1.0 0.2452 0.3341 -7.1 17.53
SxQuAD 0.5 0.2686 0.3396 1.76 19.49

SRxQuAD 0.5 0.2676 0.3348 1.38 17.78
c-pLSA 0.5 0.2763 0.3075 3.88 6.12
SPAD 1.0 0.2803 0.3171 6.2 11.57

RSPAD 1.0 0.2824 0.3177 7 11.79
FMBPR 0.2655 0.3025
MMR 0.2 0.2649 0.3068 -0.22 1.42

xQuAD 0.4 0.2534 0.3376 -4.56 11.61
RxQuAD 0.5 0.2429 0.3272 -8.48 8.16
SxQuAD 0.5 0.2313 0.3197 -12.85 5.68

SRxQuAD 0.5 0.2318 0.318 -12.69 5.13
c-pLSA 0.3 0.2754 0.3157 3.75 4.38
SPAD 0.4 0.2829 0.3219 6.58 6.43

RSPAD 0.4 0.2818 0.3221 6.14 6.48

The precision and α-nDCG results for the experiments on the ML1M dataset are

shown in Table 5.1; and the results for the other diversity metrics (i.e. ERR-IA,

S-recall, EILD and ILD) are given in Table 5.2. Consider precision and α-nDCG
first. Either SPAD or RSPAD achieve the highest precision and c-pLSA achieves

either the second or the third best precision scores. For α-nDCG, xQuAD is

the best re-ranking method for all but the MF baseline, where SxQuAD is the

best method. In almost all settings, all variations of xQuAD perform better than

SPAD and RSPAD. SPAD and RSPAD are at a disadvantage since they make no

use of the explicit item features. Indeed, α-nDCG is very similar to what is used

for re-ranking xQuAD and its variations. Even so, SPAD and RSPAD always

have higher diversity than c-pLSA and MMR, and they have higher diversity
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Table 5.2: Diversity metrics except α-nDCG for ML1M dataset.

% change
Metrics over baseline

λ ERR-IA S-recall EILD ILD ERR-IA S-recall EILD ILD
MF 0.2102 0.4783 0.2123 0.7176

MMR 0.2 0.2115 0.5116 0.2217 0.7566 0.61 6.97 4.45 5.44
xQuAD 0.5 0.2232 0.6271 0.2033 0.7592 6.17 31.13 -4.24 5.80

RxQuAD 0.7 0.2369 0.5834 0.1907 0.7405 12.67 21.98 -10.02 3.19
SxQuAD 0.6 0.2297 0.5846 0.2016 0.7353 9.25 22.23 -5.06 2.46

SRxQuAD 0.6 0.24 0.6199 0.2094 0.7768 14.19 29.61 -1.38 8.25
c-pLSA 0.3 0.2174 0.478 0.2171 0.7083 3.44 -0.06 2.27 -1.29
SPAD 0.4 0.2197 0.4957 0.2219 0.7244 4.52 3.63 4.5 0.95

RSPAD 0.7 0.2202 0.5071 0.2211 0.7309 4.74 6.03 4.13 1.86
pLSA 0.1831 0.4664 0.1864 0.7023
MMR 0.3 0.1851 0.5141 0.1978 0.7561 1.1 10.22 6.15 7.66

xQuAD 0.7 0.2041 0.6589 0.1815 0.7706 11.46 41.27 -2.62 9.73
RxQuAD 1.0 0.217 0.5916 0.1769 0.7458 18.53 26.85 -5.06 6.2
SxQuAD 0.5 0.2124 0.5959 0.1987 0.7529 16.01 27.76 6.64 7.21

SRxQuAD 0.5 0.2196 0.5868 0.2023 0.7666 19.93 25.8 8.54 9.16
c-pLSA 0.5 0.2011 0.4754 0.1976 0.6966 9.87 1.93 6.01 -0.81
SPAD 1.0 0.2037 0.5137 0.2055 0.7282 11.26 10.15 10.29 3.69

RSPAD 1.0 0.2048 0.5069 0.2069 0.7274 11.85 8.69 11.02 3.58
FMBPR 0.1982 0.5119 0.1854 0.7166
MMR 0.2 0.1991 0.5563 0.1958 0.765 0.43 8.67 5.6 6.76

xQuAD 0.4 0.206 0.6215 0.1797 0.7404 3.92 21.41 -3.05 3.36
RxQuAD 0.5 0.2146 0.5899 0.1701 0.7395 8.27 15.24 -8.25 3.19
SxQuAD 0.5 0.1999 0.6074 0.1577 0.7201 0.84 18.65 -14.93 0.49

SRxQuAD 0.5 0.2059 0.6151 0.1665 0.7527 3.87 20.15 -10.18 5.04
c-pLSA 0.3 0.2094 0.5087 0.1951 0.7086 5.66 -0.63 5.24 -1.11
SPAD 0.4 0.2107 0.5208 0.2055 0.7337 6.29 1.73 10.84 2.39

RSPAD 0.4 0.2109 0.5222 0.2045 0.7359 6.4 2.01 10.32 2.69

than SxQuAD and SRxQuAD where FMBPR is the baseline. Furthermore, when

we look at precision and α-nDCG together, we see that xQuAD and its variants

achieve their diversity at the expense of the largest decreases in precision.

Next, consider the other diversity metrics shown in Table 5.2. SPAD, RSPAD

and MMR improve all the diversity metrics. But MMR does this at the cost of

lowering precision, whereas SPAD and RSPAD increase precision in comparison

with the baselines. It is surprising in the case of SPAD and RSPAD, since we have

argued that they are at a disadvantage using these diversity metrics. xQuAD

and its variations increase the diversity with one exception only: for EILD,

xQuAD and RxQuAD always decrease the value of the baseline recommenders.

SxQuAD and SRxQuAD also decrease the EILD value of the MF and FMBPR

baselines. Considering Tables 5.1 and 5.2 together, for ML1M dataset, only

SPAD and RSPAD always improve precision and all diversity metrics over the

baselines.

The results for the LFM dataset are in Tables 5.3 and 5.4. Recall that, c-pLSA is

missing from these results because we were unable to run it to completion on a

dataset with so many explicit features (tags). Consider precision and α-nDCG
first, which are shown in Table 5.3. Here, either SPAD or RSPAD achieve the
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5.1 Comparison of SPAD and Existing
Intent-Aware Diversification Methods

Table 5.3: Precision and α-nDCG results for LFM dataset.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG
MF 0.4654 0.4244

MMR 0.3 0.4545 0.4312 -2.35 1.62
xQuAD 0.3 0.4701 0.4354 1.01 2.61

RxQuAD 0.3 0.4654 0.4253 0.01 0.22
SxQuAD 0.2 0.4694 0.4251 0.87 0.17

SRxQuAD 0.3 0.4665 0.427 0.23 0.63
SPAD 0.2 0.4742 0.4296 1.9 1.24

RSPAD 0.4 0.4774 0.4302 2.57 1.38
pLSA 0.3804 0.3426
MMR 0.3 0.3773 0.3499 -0.84 2.13

xQuAD 0.5 0.41 0.3847 7.78 12.28
RxQuAD 0.8 0.3993 0.3631 4.96 5.96
SxQuAD 0.5 0.4053 0.3649 6.54 6.51

SRxQuAD 0.5 0.3968 0.3659 4.29 6.79
SPAD 0.6 0.4299 0.3878 13 13.19

RSPAD 0.6 0.4295 0.3866 12.89 12.83
FMBPR 0.3737 0.3409
MMR 0.1 0.3727 0.3432 -0.27 0.67

xQuAD 0.4 0.3972 0.3758 6.28 10.23
RxQuAD 0.5 0.3856 0.3529 3.17 3.52
SxQuAD 0.5 0.3976 0.3547 6.39 4.06

SRxQuAD 0.5 0.3831 0.3562 2.52 4.49
SPAD 0.4 0.4231 0.3864 13.21 13.35

RSPAD 0.5 0.4247 0.3854 13.65 13.05

highest and second highest precision scores for all baseline recommendation

algorithms. Again, despite making no use of explicit features, SPAD and RSPAD

always increase diversity measured by α-nDCG. Besides, SPAD achieves the

highest α-nDCG with one exception only, where MF is the baseline and xQuAD

achieves the highest α-nDCG. Interestingly, all the re-ranking methods, except

MMR, increase precision (albeit only slightly in the case of RxQuAD where MF is

the baseline) as well as increasing α-nDCG. None increase precision as much as

SPAD and RSPAD, which arguably achieve the best balance between increased

precision and increased α-nDCG.

Next, consider the other diversity metrics, which are in Table 5.4. The diversity

with respect to ERR-IA is increased by all of the re-ranking approaches com-

pared with the baselines. With respect to S-recall, only MMR and xQuAD out-

performs all of the baselines. For EILD, SPAD achieves the highest EILD with
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Table 5.4: Diversity metrics except α-nDCG for LFM dataset.

% change
Metrics over baseline

λ ERR-IA S-recall EILD ILD ERR-IA S-recall EILD ILD
MF 0.2012 6.39E-4 0.3671 0.7638

MMR 0.3 0.2013 7.06E-4 0.378 0.8094 0.06 10.37 2.99 5.97
xQuAD 0.3 0.2067 6.61E-4 0.3779 0.778 2.74 3.4 2.94 1.87

RxQuAD 0.3 0.21 6.34E-4 0.3661 0.7652 4.38 -0.89 -0.25 0.19
SxQuAD 0.2 0.2067 6.26E-4 0.3666 0.7552 2.75 -2.05 -0.12 -1.12

SRxQuAD 0.3 0.211 6.37E-4 0.3689 0.7682 4.91 -0.38 0.49 0.58
SPAD 0.2 0.2036 6.36E-4 0.3734 0.762 1.22 -0.53 1.87 -0.23

RSPAD 0.4 0.2041 6.35E-4 0.3743 0.7624 1.48 -0.71 1.97 -0.18
pLSA 0.1629 6.14E-4 0.2863 0.7424
MMR 0.3 0.1642 6.68E-4 0.298 0.7828 0.82 8.79 4.09 5.44

xQuAD 0.5 0.1829 6.85E-4 0.3296 0.7918 12.33 11.47 15.14 6.65
RxQuAD 0.8 0.1848 6.21E-4 0.3049 0.7606 13.46 1.1 6.51 2.45
SxQuAD 0.5 0.1864 6.06E-4 0.3065 0.7406 14.46 -1.3 7.06 -0.24

SRxQuAD 0.5 0.1872 6.32E-4 0.3087 0.7682 14.96 2.87 7.82 3.47
SPAD 0.6 0.184 6.36E-4 0.3328 0.7601 12.95 3.46 16.26 2.38

RSPAD 0.6 0.1849 6.32E-4 0.3307 0.7586 13.51 2.94 15.54 2.19
FMBPR 0.1614 6.48E-4 0.2868 0.7724
MMR 0.1 0.1615 6.66E-4 0.2906 0.7854 0.04 2.76 1.32 1.69

xQuAD 0.4 0.1742 6.95E-4 0.3216 0.8016 7.94 7.18 12.15 3.78
RxQuAD 0.5 0.1792 6.25E-4 0.2945 0.7694 11.04 -3.5 2.7 -0.39
SxQuAD 0.5 0.1799 6.02E-4 0.2965 0.7409 11.45 -7.19 3.39 -3.82

SRxQuAD 0.5 0.1822 6.35E-4 0.2998 0.7796 12.9 -2.07 4.56 0.93
SPAD 0.4 0.1835 6.51E-4 0.3314 0.7736 13.66 0.42 15.56 0.15

RSPAD 0.5 0.1847 6.44E-4 0.3307 0.7695 14.42 -0.61 15.31 -0.38

one exception only. The exception is the MF baseline, where MMR achieves the

highest EILD. With respect to ILD, MMR, xQuAD and SRxQuAD always outper-

form all baselines; but other re-ranking approaches show a decrease sometimes.

The results for the LT dataset are in Tables 5.5 and 5.6. c-pLSA is missing from

these results for the same reason we explained above for the LFM dataset. First,

consider the results shown in Table 5.5. They are very similar to the ones for

the LFM dataset. SPAD and RSPAD achieve the highest precision and SPAD

achieves the highest α-nDCG for all baselines but MF, where xQuAD achieves

highest α-nDCG. SPAD and RSPAD both increase precision along with α-nDCG.

All of the re-ranking approaches, except MMR, always increase precision along

with α-nDCG. Arguably, SPAD, RSPAD give the best balance between increased

precision and increased α-nDCG.

Finally, the results for the other diversity metrics are presented in Table 5.6.

With a few exceptions, all the re-ranking approaches increase all the diversity

metrics. The exceptions are where MMR is the re-ranking method for the MF

baseline for the ERR-IA metric, and where SxQuAD is the re-ranking method

for the MF and FMBPR baselines for ILD and S-recall. xQuAD achieves the

highest S-recall and ILD. SPAD achieves the highest EILD with one exception

only, for the MF baseline, where xQuAD achieves the highest EILD.
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Table 5.5: Precision and α-nDCG results LT dataset.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG
MF 0.1733 0.2412

MMR 0.1 0.1724 0.2415 -0.53 0.1
xQuAD 0.5 0.1866 0.264 7.7 9.44

RxQuAD 0.7 0.1801 0.2503 3.91 3.76
SxQuAD 0.6 0.185 0.2521 6.75 4.5

SRxQuAD 0.6 0.1819 0.2537 4.97 5.15
SPAD 0.4 0.1896 0.2588 9.4 7.28

RSPAD 0.4 0.1899 0.2576 9.59 6.77
pLSA 0.0965 0.1376
MMR 0.2 0.0969 0.1391 0.33 1.05

xQuAD 0.8 0.1233 0.1816 27.76 31.94
RxQuAD 1.0 0.1190 0.1695 23.27 23.16
SxQuAD 0.6 0.1368 0.1907 41.73 38.62

SRxQuAD 0.6 0.1352 0.1914 40.09 39.08
SPAD 0.6 0.1407 0.1937 45.8 40.75

RSPAD 0.7 0.1416 0.1934 46.7 40.55
FMBPR 0.0829 0.112
MMR 0.1 0.0833 0.1129 0.44 0.8

xQuAD 0.5 0.1161 0.1677 40.04 49.71
RxQuAD 0.9 0.1081 0.1503 30.4 34.12
SxQuAD 0.4 0.0855 0.1158 3.12 3.35

SRxQuAD 0.4 0.0849 0.1163 2.35 3.79
SPAD 0.5 0.1275 0.1696 53.78 51.38

RSPAD 0.6 0.1255 0.1662 51.38 48.33

5.1.2 Results for different values of λ

Here we look at the effect of parameter λ, which controls the balance between

relevance and diversity. The results we have shown so far use whichever values

for λ give highest α-nDCG. Here, instead, we plot precision and α-nDCG on

the test set for different values of λ, for all datasets and all three baselines.

For the ML1M dataset (Figure 5.1 for precision and Figure 5.2 for α-nDCG),

SPAD and RSPAD achieve higher precision than all the other re-ranking appro-

aches and for all values of λ. Indeed, SPAD and RSPAD re-ranking of the pLSA

baseline always has higher precision than the baseline itself. SPAD and RSPAD

drop below the baseline in the case of the MF and FMBPR baselines, but they

do this only in the case of high values for λ. SPAD and RSPAD applied to the

pLSA and MF recommendation lists achieve higher α-nDCG than the baselines
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Table 5.6: Diversity metrics except α-nDCG for LT dataset.

% change
Metrics over baseline

λ ERR-IA S-recall EILD ILD ERR-IA S-recall EILD ILD
MF 0.1143 0.0097 0.1137 0.7577

MMR 0.1 0.1143 0.0099 0.115 0.7687 - 2.44 1.11 1.46
xQuAD 0.5 0.1213 0.0104 0.1314 0.7884 6.19 7.17 15.53 4.05

RxQuAD 0.7 0.1197 0.0097 0.1209 0.7721 4.82 0.51 6.29 1.9
SxQuAD 0.6 0.1195 0.0092 0.1223 0.7441 4.58 -4.9 7.52 -1.79

SRxQuAD 0.6 0.1212 0.0098 0.1257 0.7802 6.1 1.3 10.58 2.97
SPAD 0.4 0.1183 0.0099 0.1302 0.7726 3.57 2.18 14.48 1.97

RSPAD 0.4 0.1178 0.0097 0.128 0.7655 3.07 0.22 12.56 1.03
pLSA 0.0672 0.0085 0.0478 0.698
MMR 0.2 0.0679 0.0089 0.0492 0.7186 0.99 4.57 2.84 2.96

xQuAD 0.8 0.088 0.0106 0.074 0.7955 30.95 25.11 54.72 13.96
RxQuAD 1.0 0.0827 0.0097 0.0662 0.7662 22.96 13.68 38.38 9.77
SxQuAD 0.6 0.0933 0.0093 0.0808 0.7407 38.86 8.97 68.88 6.12

SRxQuAD 0.6 0.0943 0.0094 0.0811 0.7528 40.22 10.98 69.52 7.85
SPAD 0.6 0.0912 0.0094 0.0851 0.7494 35.74 10.81 77.94 7.36

RSPAD 0.7 0.0911 0.0092 0.0838 0.741 35.52 8.27 75.43 6.17
FMBPR 0.0546 0.009 0.0394 0.7179
MMR 0.1 0.0549 0.0095 0.0401 0.7399 0.46 4.6 3.03 3.06

xQuAD 0.5 0.0801 0.0107 0.0683 0.7938 46.72 18.52 73.55 10.57
RxQuAD 0.9 0.0756 0.0091 0.0553 0.7477 38.39 0.32 40.51 4.15
SxQuAD 0.4 0.0576 0.0088 0.0413 0.7069 5.44 -2.47 4.89 -1.53

SRxQuAD 0.4 0.0578 0.0092 0.0423 0.7323 5.86 1.86 7.37 2.01
SPAD 0.5 0.0803 0.0094 0.0742 0.7401 46.98 3.98 88.6 3.1

RSPAD 0.6 0.0792 0.0092 0.0707 0.7344 44.93 2.02 79.58 2.3
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Figure 5.1: ML1M dataset. Precision @10 for varying λ using pLSA, MF and
FMBPR baselines. Precision for each baseline is shown by the dotted line.

for all values of λ. When the baseline is FMBPR, SPAD and RSPAD become

worse than the baseline only for high values of λ. xQuAD and its variations

have higher α-nDCG than SPAD and RSPAD for many values of λ but they soon

suffer from decreases in precision. c-pLSA and MMR, on the other hand, suffer

from decreases in α-nDCG for values of λ of about 0.5 and higher.

The results for LFM can be found in Figures 5.3 and 5.4. Again, for precision,
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Figure 5.2: ML1M dataset. α-nDCG for varying λ using pLSA, MF and FMBPR
baselines. Precision for each baseline is shown by the dotted line.
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Figure 5.3: LFM dataset. Precision @10 for varying λ using pLSA, MF and FM-
BPR baselines. Precision for each baseline is shown by the dotted line.

for all values of λ, SPAD and RSPAD perform better than all other re-ranking

approaches, and they only become worse than the baseline for high values of λ

and only in the case of the MF baseline. MMR always decreases the precision.

xQuAD and its variations increase the precision for smaller values of λ, but

then, with one exception, suffer from decreases. The exception is RxQuAD: for

all values of λ it has higher precision than the baseline in the case where pLSA is

the baseline. For α-nDCG, for all values of λ, SPAD and RSPAD outperform all

other re-ranking approaches where pLSA and FMBPR are the baselines. Only
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Figure 5.4: LFM dataset. α-nDCG for varying λ using pLSA, MF and FMBPR
baselines. α-nDCG for each baseline is shown by the dotted line.
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Figure 5.5: LT dataset. Precision @10 for varying λ using pLSA, MF and FMBPR
baselines. Precision for each baseline is shown by the dotted line.

xQuAD and MMR achieve higher α-nDCG values than SPAD and RSPAD for

some small values of λ, where MF is the baseline. For the LastFM dataset, SPAD

and RSPAD gives the best balance between increased precision and α-nDCG for

almost all values of λ.

LT results are in Figures 5.5 and 5.6. Precision results for SPAD and RSPAD

are similar to those for LFM. One small difference is where MF is the baseline:

for larger values of λ, xQuAD and its variations slightly outperform SPAD and
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Figure 5.6: LT dataset. α-nDCG for varying λ using pLSA, MF and FMBPR
baselines. α-nDCG for each baseline is shown by the dotted line.

RSPAD. For α-nDCG, for almost all values of λ, SPAD and RSPAD perform bet-

ter than all the other re-ranking approaches where pLSA and FMBPR are the

baselines. But where MF is the baseline, xQuAD has higher α-nDCG for almost

all values of λ.

To summarize, the results in this subsection and the previous one indicate that

SPAD and RSPAD perform the best, i.e. they are always the most accurate sys-

tems across all three datasets evaluated in this chapter, and they suffer least

from the relevance/diversity trade-off. They increase relevance as well as the

diversity for even more configurations than the other approaches do. We repeat

the observation too that SPAD and RSPAD are at a disadvantage in the results

for diversity and this may explain why the other approaches sometimes have

higher diversity than SPAD and RSPAD.

5.2 Diversity Measured by Subprofiles

As we have mentioned before, the diversity metrics that we use to evaluate the

systems in the experiments are computed with respect to the item features F .

Since SPAD and RSPAD make no use of the item features at all, they are at a

disadvantage. In this section, we adapt the diversity metrics so that they use

subprofiles instead of item features. We use these in the following subsections

to give results in which SPAD and RSPAD are not at so much of a disadvantage.
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By having both sets of results, we get a more rounded picture of the relative

performance of the SPAD, RSPAD and their competitors.

We divide this section into two. First, we give the definition of the adapted

diversity metrics. Next, we give the diversity results for both versions of the

diversity metrics, i.e. diversity measured by item features and subprofiles.

5.2.1 Modified diversity metrics

We adapt the α-nDCG, ERR-IA, S-recall, EILD and ILD metrics so that they

use subprofiles instead of item features.

For α-nDCG, the adapted version is:

α-nDCG(L) =

1
α-IDCG

∑
i∈L

 1
log2(r(i, L) + 1)

∑
S∈S∗u

rel(i|u, S)
∏
j∈L,

r(j,L)<r(i,L)

(1− α rel(j|u, S))


(5.1)

where we modify the original α-nDCG metric by writing rel(i|u, S) instead of

rel(i|u, f) such that rel(i|u, S) is 1 if item i is related to (See Eq. 4.4) subprofile

S and user u but 0 otherwise. S∗u is the final set of subprofiles for user u. We

will refer to α-nDCG measured by item features as α-nDCGF and α-nDCG
measured by subprofiles as α-nDCGS .

For ERR-IA:

ERR-IA(L) =∑
S∈S∗u

p(S|u)
∑
i∈L

1
r(i, L)p(rel |i, u, S)

∏
j∈L,

r(j,L)<r(i,L)

(1− p(rel |j, u, S)) (5.2)

where we modify the original ERR-IA metric by writing p(rel |i, u, S) instead

of p(rel |i, u, f), such that p(rel |i, u, S) is the probability that user u finds rec-

ommended item i relevant when interested in subprofile S. We will refer to
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ERR-IA measured by item features as ERR-IAF and ERR-IA measured by sub-

profiles as ERR-IAS .

We modify S-recall as:

S-recall(L) = | ∪i∈L Si|
|S∗u|

(5.3)

where Si is the set of subprofiles that item i is related to such that Si ⊆ S∗u and

S∗u is the final set of subprofiles for user u. We will refer to S-recall measured by

item features as S-recallF and S-recall measured by subprofiles as S-recallS .

To adapt EILD and ILD to SPAD, instead of computing dist(i, j) using item

features, we compute dist(i, j) as:

dist(i, j) = |Si ∩ Sj|
|Si ∪ Sj|

(5.4)

where Si, Sj are the set of subprofiles that item i and j are related to such that

Si,Sj ⊆ S∗u and S∗u is the final set of subprofiles for user u. Again, we refer to

ILD and EILD measured by item features as ILDF and EILDF , and ILD and

EILD measured by subprofiles as ILDS and EILDS .

5.2.2 Results for different values of λ

As we have mentioned earlier, SPAD and RSPAD make no use of the explicit

item features. The competitor algorithms do use item features. Hence, SPAD

and RSPAD are at a disadvantage in those experiments where we measure di-

versity, since all the diversity metrics we have used so far are defined in terms

of explicit item features. In the case of ERR-IA, xQuAD has a particular advan-

tage: the probabilities we use when computing ERR-IA are the ones computed

by xQuAD, even we are evaluating an algorithm other than xQuAD.

In the previous subsection, we defined a set of diversity metrics, corresponding

to the original ones, but defined in terms of subprofiles rather than item fea-

tures. These metrics favour SPAD and RSPAD. By showing the values of both

sets of diversity metrics side by side, we obtain a more balanced picture of the

performance of the diversification algorithms.

We will not repeat all results. As baseline algorithm, we select MF, since, as
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Figure 5.7: ML1M dataset. α-nDCG measured using features and subprofiles
for varying λ.

mentioned before, all of the re-ranking algorithms achieve both their best pre-

cision and α-nDCG values using MF as the baseline recommender. We use the

ML1M dataset for the analysis in this section since it is the most widely used

dataset in the literature. The subprofiles we use when computing the new met-

rics are the ones detected by NN-1. The hyperparameters we use for NN-1
are the ones that optimize α-nDCG on the validation set for the MF baseline

recommender; see Table A.2.

Figures 5.7, 5.8, 5.9, 5.10 and 5.11 show α-nDCG, ERR-IA, S-recall, EILD
and ILD measured by item features and measured by subprofiles. We plot the

metrics computed on the test set for different values λ.

For the α-nDCG metric, see Figure 5.7. First consider α-nDCG measured by

item features, α-nDCGF , see Figure 5.7a. SPAD and RSPAD achieve higher val-

ues than the baseline for all values of λ. But, as expected, xQuAD and its vari-

ants have higher α-nDCGF than SPAD and RSPAD for many values of λ. c-pLSA

and MMR, on the other hand, start to suffer from decreases in α-nDCGF for

values of λ from about 0.5, and for many values of λ they perform worse than

SPAD and RSPAD. Next, consider α-nDCG measured by subprofiles, α-nDCGS

shown in Figure 5.7b. As expected, SPAD and RSPAD perform better than all

of the other re-ranking approaches and the baseline for all values of λ. All of

the other approaches start to suffer from decreases in α-nDCGS for values of

λ from about 0.5. SPAD and RSPAD are the only methods that always increase

α-nDCG compared with the baseline, irrespective of whether it is measured
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Figure 5.8: ML1M dataset. ERR-IA measured using features and subprofiles
for varying λ.
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Figure 5.9: ML1M dataset. S-recall measured using features and subprofiles for
varying λ.

using item features or using subprofiles.

Figure 5.8 shows ERR-IA measured by item features and by subprofiles. The

results are quite similar to those for α-nDCG (see Figure 5.7). What differs is

that, for ERR-IAF (Figure 5.8a), xQuAD and SxQuAD start to suffer from de-

creases in ERR-IAF for values of λ from about 0.6. Again, SPAD and RSPAD are

the only methods that always increase the values of ERR-IA over the baseline,

irrespective of whether it is measured by item features or by subprofiles.

The results for S-recall are shown in Figure 5.9. First, consider S-recall measured
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Figure 5.10: ML1M dataset. EILD measured using features and subprofiles for
varying λ.

by using item features, S-recallF shown in Figure 5.9a. With respect to S-recallF ,

all of the re-ranking approaches, except c-pLSA, outperform the baseline for all

values of λ. MMR, xQuAD and its variants perform better than SPAD and RSPAD

for all values of λ. Next, consider Figure 5.9b, which shows S-recall measured by

subprofiles, S-recallS . SPAD and RSPAD improve the value of S-recallS compared

with the baseline for all values of λ. MMR and c-pLSA start to suffer from

decreases for values of λ from about 0.6. xQuAD and its variants increase the

values of S-recallS with respect to the baseline for almost all values of λ.

Figure 5.10 shows the results for EILD. First, consider EILD measured by item

features, EILDF , shown in Figure 5.10a. SPAD and RSPAD increase the values

of EILD with respect to the baseline for almost all values of λ. All of the other

re-ranking approaches start to suffer from decreases in EILDF for values of λ

from about 0.6. Next, consider EILD measured by subprofiles, EILDS , which is

shown in Figure 5.10b. Similar to EILDF , MMR, xQuAD and its variants start to

suffer from decreases in EILD for values of λ from about 0.6. SPAD and RSPAD

again increase EILDS with respect to the baseline for all values of λ, and they

perform better than all of the other re-ranking approaches.

Finally, the results for ILD are shown in Figure 5.11. Looking at Figure 5.11a,

we see that all of the re-ranking approaches increase ILDF with respect to the

baseline for all values of λ with one exception only. The exception is c-pLSA,

where it always suffers from decreases in ILDF . As expected, MMR is the best

performing algorithm. This is not surprising: ILDF is a metric that is very
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Figure 5.11: ML1M dataset. ILD measured using features and subprofiles for
varying λ.

similar to what is used for re-ranking in MMR. When we consider ILD measured

by subprofiles, ILDS (Figure 5.11b), the results are very similar to those for

EILDS (see Figure 5.11b). SPAD and RSPAD increase ILDS over the baseline

for all values of λ, and they perform better than the other algorithms.

The results in this section have confirmed that SPAD and RSPAD are at a dis-

advantage in experiments where diversity metrics use item features. Figures

5.7, 5.8, 5.9, 5.10 and 5.11 show that SPAD and RSPAD improve the diver-

sity metrics with respect to the baseline when measured by subprofiles for all

five diversity metrics and for all values of λ, and they always perform better

than competitor algorithms. This is as expected, since SPAD and RSPAD uses

subprofiles for re-ranking; in this case, it is the other algorithms that are at a

disadvantage since they make no use of subprofiles.

The results showing diversity metrics measured by item features are notewor-

thy, since, even though SPAD and RSPAD make no use of item features, for

almost all five diversity metrics and for all values of λ, they improve the scores

of the metrics with respect to the baseline, and there are configurations where

they perform better than the competitor algorithms. We argue that, this shows

the value of the additional complexity of SPAD and RSPAD’s subprofile-aware

approach over other re-ranking algorithms in terms of diversity.
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Figure 5.12: ML1M dataset. Precision vs. α-nDCG trade-off plots.
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Figure 5.13: ML1M dataset. Precision vs. ILD trade-off plots.

5.3 A Visualization of Trade-offs

In this section, we show the trade-off between relevance and diversity for the

re-ranking approaches. Figure 5.12 show precision against diversity, where

diversity is measured by two versions of α-nDCG, α-nDCGF and α-nDCGS .
The dotted lines show the precision and diversity of the MF baseline, dividing

each subfigure into four quadrants. The ‘sweet spot’ is the top-right quadrant,

where both precision and diversity scores are higher than the baseline. We can

see that, for both α-nDCGF and α-nDCGS , SPAD and RSPAD more often occupy

this ‘sweet spot’ because they are less likely to trade-off precision for diversity.

For α-nDCGS , this is as expected. But, for α-nDCGF , it is noteworthy, since
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SPAD and RSPAD are not using item features.

Figure 5.13 shows the same trade-off, this time by measuring diversity using

two versions of ILD, ILDF (Figure 5.13a) and ILDS (Figure 5.13b). It is worth

showing these results because ILD is in some sense a ‘purer’ measure of diver-

sity compared with α-nDCG, which mixes ranking and diversity. The results are

similar to those shown for α-nDCG in Figure 5.12, in the sense that SPAD and

RSPAD are less prone to the relevance/diversity trade-off.

5.4 Conclusions

In this chapter, we compared SPAD and RSPAD with several existing diversifi-

cation techniques in the literature. We adapted several diversity metrics so that

they are defined in terms of subprofiles instead of item features, and analyzed

the performances of different re-ranking approaches with respect to both ver-

sions of the diversity metrics. We also showed the relevance/diversity trade-off.

All of the results in this chapter indicate that SPAD and RSPAD perform the

best, i.e. they are always produce the most relevant recommendations across

all three datasets evaluated in this chapter; they increase relevance as well

as the diversity (no matter how diversity is measured) for more configurations

than the other approaches do; and they suffer least from the relevance/diversity

trade-off.

In the next chapter, we propose Community-Aware Diversification (CAD), in

which aspects are again subprofiles but are detected indirectly through users

who are similar to the active user.
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Chapter 6

Community-Aware Diversification

Intent-aware methods for recommendation diversification seek to ensure that

the recommended items cover so-called aspects, which are assumed to define

the user’s tastes and interests, to a certain extent. Most typically, aspects are

item features. In chapter 4, we presented a novel intent-aware diversification

method, called Subprofile-Aware Diversification (SPAD). It does not use item

features at all. Instead, aspects are subprofiles of a user’s profile, and subprofiles

are defined in terms of item-item similarities on the items’ ratings vectors, rather

than on item features. The main contribution of SPAD is that, across multiple

datasets, it can improve both accuracy and diversity, and it suffers least from

the relevance/diversity trade-off (see Chapter 5). This is notable because early

approaches to diversification sacrifice accuracy for diversity; even other intent-

aware approaches sometimes sacrifice accuracy for diversity.

In this chapter, we propose Community-Aware Diversification (CAD), in which

aspects are again subprofiles but are detected indirectly through users who are

similar to the active user. It uses user-user similarities on user ratings vectors,

but it still results in subprofiles, each of which is a subset of the items in the

user’s profile. Thus it explores the idea that a user’s community (similar users)

correlates with her tastes or interests (subprofiles).

The rest of this chapter is structured as follows. In the next section, we give

the details of the Community-Aware diversity. Then, in Section 6.2, we report

empirical results of CAD using offline experiments.
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6.1 Community-Aware Diversity

In this section, we explain our new approach to diversification in recommender

systems, which we call Community-Aware Diversification (CAD). It is a greedy

re-ranking approach; it is intent-aware; like SPAD, it uses subprofiles of the

user’s liked-items-set I+
u as aspects; but it identifies subprofiles within I+

u by

using her nearest-neighbours, i.e. other users similar to her, not by using the

item’s neighbours.

We define a candidate subprofile for each item i ∈ I+
u . Hence, the number

of candidate subprofiles is |I+
u |. To simplify, consider user u and one of her

k-nearest-neighbours, v. If item i (which we know to be a member of u’s liked-

item-set) is also a member of v’s liked-item-set (I+
v ), then we take the inter-

section of u’s and v’s liked-item-sets, I+
u ∩ I+

v . Inevitably, this intersection will

contain item i, but it may contain other items too.

We compute I+
u ∩ I+

v for all of u’s neighbours who like i (v ∈ KNN(u), i ∈ I+
v ).

So now we have up to k sets, one for each v ∈ KNN(u) provided i ∈ I+
v . We

aggregate these sets to give a candidate subprofile. More formally, we have

that, for user u, the candidate subprofile that corresponds to item i, Siu, is given

by:

Siu = Fv∈KNN(u),i∈I+
v
I+
u ∩ I+

v (6.1)

But this leaves open how to do the aggregation of the intersections, F.

One possibility it to take their intersection (an intersection of intersection): an

item j is in i’s candidate subprofile if it is liked by all of the users in KNN(u)
who liked i:

Siu =
⋂

v∈KNN(u),i∈I+
v

I+
u ∩ I+

v (6.2)

Instead of using intersection, another possibility is to take the union of the

intersections, as follows:

Siu =
⋃

v∈KNN(u),i∈I+
v

I+
u ∩ I+

v (6.3)

in which case an item j is in i’s candidate subprofile if it is liked by any of the

users in KNN(u) who liked i.

With both approaches there are problems. Eq. 6.2 can result in a lot of single-

ton subprofiles: i might be the only item that the neighbours have in common.
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There is nothing wrong with singleton profiles if they contain idiosyncratic it-

ems. But, in general, our goal is to try to group items into subprofiles that

capture tastes and interests, which Eq. 6.2 may fail to do very often.

On the other hand, taking the union, as in Eq. 6.3, results in large subprofiles,

perhaps even some for which Siu = I+
u . It may place into the same subprofile

items that represent different tastes and interests.

In CAD, we use a unified approach, the q-relaxed set intersection, q ∈ [0, 1]

Siu =
{q}⋂

v∈KNN(u),i∈I+
v

I+
u ∩ I+

v (6.4)

where an item j will be in i’s candidate subprofile if it is liked by a proportion

of at least q of the users in KNN(u) who liked i.

When q = 1.0, Eq. 6.4 is the same as Eq. 6.2, and when q = 1/|{v|v ∈
KNN(u), i ∈ I+

v }|, it gives the same results as Eq. 6.3.

For CAD, q is a hyperparameter, whose value will be set using a validation set

(methodology explained in Chapter 3 ). As we will show, it tends to pick quite

high values for q, between 0.7 and 1.0, so it tends to be closer to Eq. 6.2 than

Eq. 6.3. CAD also has another hyperparameter, number of neighbouring users

(Eq. 6.1), that we refer to as kUB.

What we have at this stage are candidate subprofiles, one per i ∈ I+
u . As in SPAD

(Eq. 4.6), the final step is to prune the candidate subprofiles: we eliminate any

that are subsets of the others. The remaining subprofiles are treated as aspects

in the following equation (the details are given in Section 4.2.1):

divSPAD(i, RL) =
∑
S∈Su

[p(S|u)p(i|u, S)
∏
j∈RL

(1− p(j|u, S))] (6.5)

Before moving on to the experiments, we will mention two other approaches

that did not work and that we discarded. In one of the rejected approaches, in-

stead of using proportion q in Eq. 6.4, we tried an integer threshold θ, requiring

items to be members of least θ of the set intersections. We also tested a varia-

tion of CAD in which aspects were not sets of items (subprofiles of I+
u ); rather,

we used neighbours more directly than is done in Eq. 6.1 — aspects were sets

of users, nearest-neighbours who liked i, Siu = {v ∈ KNN(u) | i ∈ I+
v }. Neither

of these two other approaches worked well enough for us to show their results
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in this chapter.

6.2 Experimental Results

In this section, we report our empirical investigation of CAD using offline ex-

periments.

We use the same datasets that we used in the previous chapter, the ML1M

dataset, the LFM dataset and the LT dataset. We also use the Facebook (FB)

dataset in this chapter. Since we detect a user’s subprofiles from the user’s

community (i.e. similar users), we wanted to investigate the effect of using

user-based subprofiles on a social-networking dataset. For the details of the

datasets see Chapter 3.

We compare CAD with SPAD and one other intent-aware diversification tech-

nique, xQuAD [VCV11], using the implementation which is available in the

RankSys library. We have also compared CAD and SPAD with a number of other

intent-aware diversification methods (RxQuAD [VCV12], SxQuAD & SRxQuAD

[VC13], and c-pLSA [WH16]) and a more classical (non-intent-aware) method,

MMR [CG98], similar to the previous chapter. In this chapter, we only show

the results for xQuAD since, across all datasets, it was the most competitive of

these other techniques.

All of these approaches to diversification use greedy re-ranking, therefore they

need a baseline recommender, whose recommendation sets are re-ranked. We

use the same baseline recommenders that we use in the chapters 4 and 5: prob-

abilistic latent semantic analysis (pLSA) [Hof04], a fast alternative least-squares

matrix factorization recommender (MF) [PZT10], and a factorization machine

that uses Bayesian pairwise loss for ranking (FMBPR) [Bay15]. Three baselines

paired with four approaches to re-ranking (CAD, SPAD, xQuAD and none at all)

gives twelve systems to compare on each dataset.

The experimental setup and evaluation methodology is explained in Chapter 3

of the thesis. We show the hyperparameter values that we used in the Appendix

to this thesis (Section A.3).

We divide this section into five: first we analyze the subprofiles that CAD and

SPAD find in each dataset; second we give results that compare CAD with SPAD

and xQuAD; next, we show the results for different values of λ; then, we show
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Table 6.1: Subprofile statistics

SPAD
avg. 51.09 (σ = 61.5) subprofiles per user
avg. len of subprofiles is 7.78 (σ = 6.25)

ML1M avg. sim of subprofiles is 0.0379

CAD
avg. 60.22 (σ = 76.39) subprofiles per user
avg. len of subprofiles is 34.01 (σ = 25.28)
avg. sim of subprofiles is 0.4007

SPAD
avg. 134.37 (σ = 161.41) subprofiles per user
avg. len of subprofiles is 30.08 (σ = 28.11)

LFM avg. sim of subprofiles is 0.1045

CAD
avg. 52.04 (σ = 29.95) subprofiles per user
avg. len of subprofiles is 16.62 (σ = 35.81)
avg. sim of subprofiles is 0.0523

SPAD
avg. 32.49 (σ = 46.71) subprofiles per user
avg. len of subprofiles is 8.8 (σ = 10.72)

LT avg. sim of subprofiles is 0.044

CAD
avg. 21.55 (σ = 12.41) subprofiles per user
avg. len of subprofiles is 6.1 (σ = 9.85)
avg. sim of subprofiles is 0.059

SPAD
avg. 24.29 (σ = 25.83) subprofiles per user
avg. len of subprofiles is 5.04 (σ = 5.66)

FB avg. sim of subprofiles is 0.0208

CAD
avg. 32.59 (σ = 31.23) subprofiles per user
avg. len of subprofiles is 4.85 (σ = 6.63)
avg. sim of subprofiles is 0.101

the trade-off between precision and diversity; lastly, we show diversity mea-

sures evaluated by using item features vs. subprofiles.

6.2.1 Analysis of the subprofiles

In this section we compare the subprofiles detected by CAD and SPAD on each

dataset. Table 6.1 shows the average number of subprofiles per user and the

average length of the subprofiles. We also show the average similarity of the

subprofiles with each other, which, for user u, is an all-pairs average (see Eq.

4.13).

Consider, the ML1M dataset first. On average, SPAD extracts ∼51 subprofiles

per user and they consist of ∼8 movies. CAD extracts more subprofiles (∼60)

and those subprofiles have a lot more movies (∼34) compared with SPAD’s

subprofiles; CAD’s subprofiles are also much more similar to each other.
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Next, consider the LFM dataset. SPAD extracts an average of ∼134 subprofiles,

having ∼30 artists, per user. CAD extracts fewer subprofiles (∼52) with a little

over half as many artists (∼17). SPAD’s subprofiles are more similar to each

other than CAD’s.

Then, consider the LT dataset. There are on average ∼32 subprofiles per user,

which have ∼9 books, using SPAD. Using CAD gives fewer subprofiles (∼22),

having fewer books (∼6). SPAD subprofiles are not very similar to each other,

and neither are CAD subprofiles.

Finally, consider the FB dataset. Using CAD results in more subprofiles (∼33)

than SPAD (∼24), and they are more similar to each other. The average length

of the subprofiles are almost the same (∼5).

6.2.2 Results for different algorithms

In this section, we compare CAD with SPAD, xQuAD and the baseline algo-

rithms (no re-ranking). For each of the three baselines, for all four datasets, we

show precision and α-nDCG in one table, and other diversity metrics (ERR-IA,

S-recall, EILD and ILD) in another table. Note that the diversity metrics used in

this section are the ones defined in Chapter 3, i.e. they are measured by using

item features. Later, in Section 6.2.4, we present the results for the subprofile-

based diversity metrics as well (see Section 5.2.1 for the definitions). There, we

use superscripts F and S to refer to item-based and subprofile-based diversity

metrics respectively. But in this section, since no ambiguity can arise, to sim-

plify the notation, we do not use superscript F to refer to item-based diversity

metrics.

The best result for each metric is highlighted in bold for each block of the six

tables. The value of λ that optimizes α-nDCG for each baseline and re-ranking

strategy is given. All of the results are statistically significant with respect to

their baseline (Wilcoxon signed rank with p < 0.05), except those shown in

italics. For CAD and SPAD, if improvements over xQuAD are statistically signif-

icant, they are highlighted with N; and if their improvements over each other

are statistically significant, they are marked with 4.

The results for the experiments that use MF as the baseline algorithm are in

Table 6.2, and other diversity metrics are given in Table 6.3. In each block

of the table, results for the MF baseline are presented first, and then results
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Table 6.2: Results using MF as the baseline.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG
ML1M

MF 0.2916 0.3197
xQuAD 0.5 0.2739 0.3668 -6.08 14.72
SPAD 0.4 0.3005 N4 0.3351 3.03 4.81
CAD 0.3 0.2982 N 0.3354 2.27 4.89

LFM
MF 0.4654 0.4244

xQuAD 0.3 0.4701 0.4354 1.01 2.61
SPAD 0.2 0.4742 N 0.4296 4 1.9 1.24
CAD 0.3 0.472 0.4275 1.42 0.75

LT
MF 0.1733 0.2412

xQuAD 0.5 0.1866 0.264 7.7 9.44
SPAD 0.4 0.1896 N 0.2588 9.4 7.28
CAD 0.4 0.1899 N 0.2603 4 9.59 7.92

FB
MF 0.1341 0.1613

xQuAD 0.4 0.13 0.1791 -3.0 10.99
SPAD 0.4 0.1428 N 0.1721 6.53 6.7
CAD 0.4 0.1436 N4 0.1758 4 7.74 8.82

for each of the re-ranking methods are given. For each method, we report the

results using the value of λ that gives highest α-nDCG on the validation set.

Consider precision and α-nDCG, that are shown in Table 6.2 first. For all four

datasets, CAD has higher precision than xQuAD and the MF baseline, and it has

higher precision than SPAD for the LT and FB datasets as well. CAD’s advantage

over the MF baseline is statistically significant in all cases, and its advantage

over xQuAD is also statistically significant in all but the case of LFM. Its preci-

sion is higher than SPAD’s for the LT and FB datasets but this is only statistically

significant for the FB dataset. SPAD, on the other hand, has highest precision

for the ML1M and LFM datasets and, unlike CAD, for all datasets its advantage

over xQuAD is statistically significant. Its advantage over CAD, however, is only

statistically significant for the ML1M dataset.

For diversity, xQuAD has the highest α-nDCG for all datasets. But CAD and

SPAD are at the disadvantage that we have discussed previously. Even so, CAD

and SPAD have statistically significantly higher diversity than the MF baseline

for all datasets. Compared with each other, CAD has higher diversity than SPAD
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Table 6.3: Diversity metrics except α-nDCG using MF baseline.

% change
Metrics over baseline

λ ERR-IA S-recall EILD ILD ERR-IA S-recall EILD ILD
ML1M

MF 0.2102 0.4783 0.2123 0.7176
xQuAD 0.5 0.2232 0.6271 0.2033 0.7592 6.17 31.13 -4.24 5.80
SPAD 0.4 0.2197 0.4957 0.2219N 0.7244 4.52 3.63 4.5 0.95
CAD 0.3 0.2188 0.4988 0.2225N 0.73374 4.06 4.29 4.81 2.25

LFM
MF 0.2012 6.39E-4 0.3671 0.7638

xQuAD 0.3 0.2067 6.61E-4 0.3779 0.778 2.74 3.4 2.94 1.87
SPAD 0.2 0.2036 6.36E-4 0.3734 0.762 1.22 -0.53 1.87 -0.23
CAD 0.3 0.2042 6.39E-44 0.3715 0.76424 1.51 -0.09 1.2 0.06

LT
MF 0.1143 0.0097 0.1137 0.7577

xQuAD 0.5 0.1213 0.0104 0.1314 0.7884 6.19 7.17 15.53 4.05
SPAD 0.4 0.1183 0.00994 0.13024 0.77264 3.57 2.18 14.48 1.97
CAD 0.4 0.11974 0.0098 0.1286 0.7667 4.79 0.87 13.13 1.19

FB
MF 0.018 0.0048 0.1157 0.9708

xQuAD 0.4 0.0219 0.0059 0.1076 0.9657 21.8 22.21 -6.94 -0.53
SPAD 0.4 0.0196 0.0049 0.1254N 0.9711N 8.82 0.67 8.44 0.03
CAD 0.4 0.02024 0.0054 0.1262N4 0.9718N4 12.27 2.4 9.08 0.11

for all but the LFM dataset where SPAD is statistically significantly higher than

CAD.

If we look at the percentage changes, for the ML1M and FB datasets, xQuAD

achieves highest diversity at the expense of a decrease in precision: it trades-off

accuracy for diversity. CAD and SPAD, on the other hand, always increase both

accuracy and diversity. Arguably, for the ML1M and LFM datasets SPAD gives a

better trade-off between precision and diversity compared to CAD. For LT and

FB, it is CAD that gives the better trade-off.

Next, consider the other diversity metrics shown in Table 6.3. xQuAD has the

highest ERR-IA and S-recall for all four datasets, but it achieves this at the cost

of lower precision for the ML1M and FB datasets. It also has the highest ILD for

all datasets with one exception only. The exception is for FB, where CAD has

the highest ILD. For EILD, CAD has the highest EILD values for the ML1M and

FB datasets and xQuAD has the highest EILD for the other two datasets. CAD

and SPAD, surprisingly, almost for all datasets and diversity metrics improve

the performances of their baselines. It is surprising for CAD and SPAD, since

we have argued that they are at a disadvantage using these diversity metrics.

If we look at the relative performances of CAD and SPAD, we can see that CAD

achieves higher diversity values in more cases than SPAD.

The results for the experiments that use pLSA as the baseline algorithm are in

Tables 6.4 and 6.5. Consider precision and α-nDCG first. Comparing Tables 6.4

and 6.2, we see that pLSA has lower precision and α-nDCG than MF on all four
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Table 6.4: Results using pLSA as the baseline.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG
ML1M

pLSA 0.2639 0.2842
xQuAD 0.7 0.2456 0.3428 -6.93 20.61
SPAD 1.0 0.2803 N4 0.3171 6.2 11.57
CAD 0.7 0.2731 N 0.316 3.48 11.19

LFM
pLSA 0.3804 0.3426

xQuAD 0.5 0.41 0.3847 7.78 12.28
SPAD 0.6 0.4299 N4 0.3878 N4 13.0 13.19
CAD 0.5 0.4124 0.3738 8.39 9.09

LT
pLSA 0.0965 0.1376

xQuAD 0.8 0.1233 0.1816 27.76 31.94
SPAD 0.6 0.1407 N 0.1937 N 45.8 40.75
CAD 0.7 0.1423 N 0.1983 N4 47.36 44.1

FB
pLSA 0.1028 0.1217

xQuAD 0.6 0.0996 0.148 -3.19 21.65
SPAD 0.7 0.1201 N 0.1445 16.78 18.76
CAD 0.8 0.1209 N4 0.1501 N4 17.6 23.36

datasets, and in no case does re-ranking pLSA give a higher results than the

corresponding result for MF. Otherwise, the story is very similar. Here, SPAD has

highest precision for the ML1M and LFM datasets, and CAD the second highest.

For the LT and FB datasets, CAD has the highest precision, and SPAD the second

highest. However, for the LT dataset the difference between CAD and SPAD is

not statistically significant. Again, despite making no use of explicit features,

CAD and SPAD always increase diversity and, in fact, now for the LFM dataset

SPAD gives the highest α-nDCG and for the LT and FB datasets CAD gives the

highest α-nDCG. Only in the ML1M dataset does xQuAD achieve the highest

diversity, again at the expense of a decrease in accuracy.

Next, consider the other diversity metrics, which are in Table 6.5. For ERR-IA
and S-recall, for all four datasets, all of the re-ranking approaches increase the

value over the pLSA baseline. SPAD has the highest EILD with one exception

only. The exception is FB, where CAD has the highest EILD. For ILD, xQuAD

has the highest ILD with one exception only. The exception is FB, where CAD

has the highest ILD and xQuAD has lower ILD than the baseline, CAD and

Subprofile Aware Diversification of
Recommendations

87 Mesut Kaya



6. COMMUNITY-AWARE DIVERSIFICATION 6.2 Experimental Results

Table 6.5: Diversity metrics except α-nDCG using pLSA baseline.

% change
Metrics over baseline

λ ERR-IA S-recall EILD ILD ERR-IA S-recall EILD ILD
ML1M

pLSA 0.1831 0.4664 0.1864 0.7023
xQuAD 0.7 0.2041 0.6589 0.1815 0.7706 11.46 41.27 -2.62 9.73
SPAD 1.0 0.2037 0.5137 0.2055N4 0.7282 11.26 10.15 10.29 3.69
CAD 0.7 0.2026 0.524 0.2026N 0.74494 10.66 11.49 8.74 6.07

LFM
pLSA 0.1629 6.14E-4 0.2863 0.7424

xQuAD 0.5 0.1829 6.85E-4 0.3296 0.7918 12.33 11.47 15.14 6.65
SPAD 0.6 0.1844 6.36E-4 0.33284 0.7601 12.95 3.46 16.26 2.38
CAD 0.5 0.1799 6.37E-4 0.3168 0.7614 10.46 3.71 10.67 2.57

LT
pLSA 0.0672 0.0085 0.0478 0.698

xQuAD 0.8 0.088 0.0106 0.074 0.7955 30.95 25.11 54.72 13.96
SPAD 0.6 0.0912N 0.00944 0.0851N 0.74944 35.74 10.81 77.94 7.36
CAD 0.7 0.0942N4 0.0092 0.0854N 0.741 40.12 8.43 78.59 6.15

FB
pLSA 0.0136 0.0048 0.0822 0.9686

xQuAD 0.7 0.0186 0.007 0.0699 0.962 36.01 45.17 -14.9 -0.68
SPAD 0.7 0.0165 0.005 0.0999N 0.9712N 21.11 4.01 21.44 0.27
CAD 0.8 0.01754 0.00514 0.1012N4 0.9727N4 28.3 6.2 23.1 0.43

SPAD. It is noteworthy that, unlike xQuAD, CAD and SPAD improve all the

diversity metrics for all four datasets. Again, similar to the MF baseline, for the

pLSA baseline CAD has higher diversity in more cases than SPAD.

The results for the experiments that use FMBPR as the baseline algorithm are in

Tables 6.6 and 6.7. For precision and α-nDCG, which are shown in Table 6.6,

the results are very similar to those for the pLSA baseline shown in Table 6.4.

SPAD has the highest precision for all the datasets, with one exception only. The

exception is FB, where CAD has the highest precision. Again, despite being at a

disadvantage in terms of diversity, CAD and SPAD always increase α-nDCG over

the baseline algorithm and, in fact, for LFM, SPAD gives the highest α-nDCG
and for the LT and FB datasets CAD gives the highest α-nDCG. Only in the

ML1M dataset, at the expense of a decrease in precision, xQuAD achieves the

highest α-nDCG. If we look at the relative performances of CAD and SPAD,

arguably, SPAD gives better improvement over the FMBPR baseline for both

precision and α-nDCG for all datasets but FB.

For the other diversity metrics, see Table 6.7. All of the re-ranking algorithms

improve ERR-IA over the baseline. SPAD has the highest ERR-IA for all data-

sets with one exception only. The exception is FB, where xQuAD has the highest

ERR-IA. xQuAD has the highest S-recall for all datasets. SPAD has the highest

EILD for all datasets with the exception of FB, where CAD has the highest

EILD. For ILD results are mixed. For the relative performances of CAD and

SPAD, similar to those for the MF and pLSA baselines, CAD has higher diversity
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Table 6.6: Results using FMBPR as the baseline.

% change
Metrics over baseline

λ Precision α-nDCG Precision α-nDCG
ML1M

FMBPR 0.2655 0.3025
xQuAD 0.4 0.2534 0.3376 -4.56 11.61
SPAD 0.4 0.2829N4 0.32194 6.58 6.43
CAD 0.4 0.2715N 0.3205 2.27 5.96

LFM
FMBPR 0.3737 0.3409
xQuAD 0.4 0.3972 0.3758 6.28 10.23
SPAD 0.4 0.4231N4 0.3864N4 13.21 13.35
CAD 0.5 0.397 0.3617 6.24 6.12

LT
FMBPR 0.0829 0.112
xQuAD 0.5 0.1161 0.1677 40.04 49.71
SPAD 0.5 0.1275N4 0.1696N 53.77 51.38
CAD 0.6 0.1239 N 0.1726N4 49.47 54.01

FB
FMBPR 0.107 0.1213
xQuAD 0.4 0.1092 0.1512 2.04 24.63
SPAD 0.4 0.1253N 0.1472 17.12 21.34
CAD 0.4 0.1288N4 0.1547N4 21.75 28.65

values in more cases than SPAD.

6.2.3 Results for different values of λ

In this section, we look at the effect of parameter λ, which controls the balance

between relevance and diversity in Eq. 2.2. The results we have shown so

far use whichever values for λ give highest α-nDCG. Instead, here we plot

precision and α-nDCG on the test set for different values of λ; see Figures 6.1

and 6.2.

In this section and in the following sections of this chapter, we only show the

results for the MF baseline, since all of the re-ranking approaches achieve both

their best precision and α-nDCG values using MF as the baseline recommender.

We see that the results that we discussed in Section 6.2.2 are fairly robust over

different values for λ. For example, for the ML1M dataset (Figure 6.1a), SPAD’s

precision is comparable with, or higher than, CAD’s and xQuAD’s, only becom-
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Table 6.7: Diversity metrics except α-nDCG using FMBPR baseline.

% change
Metrics over baseline

λ ERR-IA S-recall EILD ILD ERR-IA S-recall EILD ILD
ML1M

FMBPR 0.1982 0.5119 0.1854 0.7166
xQuAD 0.4 0.206 0.6215 0.1797 0.7404 3.92 21.41 -3.05 3.36
SPAD 0.4 0.2107N4 0.5208 0.2055N4 0.7337 6.29 1.73 10.84 2.39
CAD 0.4 0.2081N 0.53374 0.1981N 0.7462N4 4.99 4.26 6.87 4.12

LFM
FMBPR 0.1614 6.48E-4 0.2868 0.7724
xQuAD 0.4 0.1742 6.95E-4 0.3216 0.8016 7.94 7.18 12.15 3.78
SPAD 0.4 0.1835N4 6.51E-44 0.3314N4 0.77364 13.66 0.42 15.56 0.15
CAD 0.5 0.1756 6.42E-4 0.3055 0.7672 8.77 -0.9 6.52 -0.68

LT
FMBPR 0.0546 0.009 0.0394 0.7179
xQuAD 0.5 0.0801 0.0107 0.0683 0.7938 46.72 18.52 73.55 10.57
SPAD 0.5 0.0803 0.00944 0.0742N4 0.74014 46.98 3.98 88.6 3.1
CAD 0.6 0.0838N4 0.0091 0.07 0.7289 53.48 0.75 77.89 1.54

FB
FMBPR 0.0134 0.0053 0.0863 0.9722
xQuAD 0.4 0.019 0.0067 0.0857 0.9637 42.19 26.21 -0.74 -0.87
SPAD 0.4 0.0168 0.0052 0.1058N 0.9699N 25.41 -0.97 22.57 -0.23
CAD 0.4 0.0182N4 0.0052 0.1126N4 0.9719N4 36.29 -1.16 30.47 -0.04

ing worse than the baseline for very high values of λ. For α-nDCG (Figure

6.2a), SPAD is competitive with CAD for low values of λ and then outperforms

CAD. xQuAD has high α-nDCG for many values of λ but soon suffers from de-

creases in precision. Results for LFM (Figures 6.1a and 6.2a) are similar but

less marked.

For LT (Figures 6.1c and 6.2a), SPAD and CAD switch places and so it is CAD

that does best across different values of λ, and for higher values of λ, xQuAD is

competitive with CAD since, for these values, it has higher α-nDCG and com-

petitive precision. For FB (Figures 6.1d and 6.2d), xQuAD is not competitive

for any values of λ: even where its α-nDCG is a little higher, this comes at the

cost of large drops in precision. Across different values of λ, SPAD and CAD per-

form quite closely on this dataset, although we know from Section 6.2.2 that,

at λ = 0.4, CAD outperforms SPAD on both metrics.

6.2.4 Diversity measured by subprofiles

Subprofile-Aware Diversification methods make no use of explicit item features.

Therefore, they are at a disadvantage in experiments where we measure diver-

sity using existing metrics, since all those metrics are defined in terms of explicit

item features. CAD is as much at a disadvantage as SPAD in such experiments.

In the previous chapter, we adapted the diversity metrics to create ones that are
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Figure 6.1: ML1M, LFM, LT and FB datasets. Precision values for varying λ
using MF as baseline. Values for MF are shown by dotted lines.

defined in terms of subprofiles rather than item features (see Section 5.2). In

this section, we give a more balanced picture of the performances of the diver-

sification algorithms, including CAD, by showing both sets of diversity metrics

side by side.

Similarly to Section 5.2.2, we use MF as the baseline recommender and we use

the ML1M dataset for the analysis in this section. The hyperparameters we use

for CAD are the ones that optimize α-nDCG on the validation set for the MF

baseline recommender; see section A.3 in the Appendix.

The subprofiles we use when computing the adapted metrics are the ones de-

tected by the subprofile detection part of CAD (see Section 6.1). Note that
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Figure 6.2: ML1M, LFM, LT and FB datasets. α-nDCG values for varying λ
using MF as baseline. Values for MF are shown by dotted lines.

SPAD is at a disadvantage when we measure subprofile-based diversity metrics

by using subprofiles detected by CAD. We did plot adapted diversity metrics by

using subprofiles of SPAD as well. We find that the results are really similar

to the ones that we show in this section by using CAD’s subprofiles. The main

difference is the one we would expect: CAD mostly has better results when the

metric uses CAD subprofiles; SPAD mostly has better results when the metric

uses SPAD subprofiles. Since this difference is to be expected, for simplicity

and clarity, we do not show the results where the adapted metrics uses SPAD’s

subprofiles.

Figures 6.3, 6.4, 6.5, 6.6 and 6.7 show α-nDCG, ERR-IA, S-recall, EILD and

ILD measured by item features and measured by subprofiles. We plot the met-
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Figure 6.3: ML1M dataset. α-nDCG measured using features and subprofiles
for varying λ.
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Figure 6.4: ML1M dataset. ERR-IA measured using features and subprofiles
for varying λ.

rics computed on the test set for different values of λ.

For the α-nDCG metric, see Figure 6.3. For α-nDCGF (Figure 6.3a), xQuAD

and SPAD have higher values than the baseline for all values of λ. But, as

expected, xQuAD has higher α-nDCGF than SPAD and CAD for all values of λ.

For larger values of λ, CAD suffers from decreases in α-nDCGF . For α-nDCGS

on the other hand (Figure 6.3b), as expected CAD and SPAD perform better

than xQuAD and the baseline for all values of λ. xQuAD suffer from decreases

in α-nDCGS for values of λ from about 0.4.
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Figure 6.5: ML1M dataset. S-recall measured using features and subprofiles for
varying λ.

For the ERR-IA metric, see Figure 6.4. The results are quite similar to those for

α-nDCG (Figure 6.3). What differs is that, for ERR-IAF (Figure 6.4a), xQuAD

starts to suffer from decreases in ERR-IAF for values of λ from about 0.7.

The results for S-recall are shown in Figure 6.5. Consider S-recallF (Figure 6.5a)

first. All of the algorithms increase the values of S-recallF for all values of

λ. xQuAD, as expected, performs better than both CAD and SPAD, and CAD

performs better than SPAD for all values of λ. Next, consider S-recallS (Figure

6.5b). CAD and SPAD increase the value of this metric over the baseline for all

values of λ. xQuAD performs better than the baseline for all but large values of

λ, but does not perform as well as CAD and SPAD.

Figure 6.6 shows the results for EILD. First, consider Figure 6.6a, which shows

EILDF . Surprisingly, SPAD and CAD, for all values of λ, perform better than

xQuAD. Next, consider EILDS (Figure 6.6a). For all values of λ, CAD and SPAD,

as expected, perform better than xQuAD and the baseline. xQuAD, on the other

hand, soon suffers from decreases in EILDS .

The results for ILD are shown in Figure 6.7; ILDF in Figure 6.7a, and ILDS in

Figure 6.7b. All of the algorithms increase ILDF over the baseline for all values

of λ. When we consider ILDS , the results are very similar to those for EILDS

(see Figure 6.6b). CAD and SPAD increase ILDS over the baseline for all values

of λ, and they perform better than xQuAD.

The results in this section have confirmed that, similar to SPAD, CAD is at a
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Figure 6.6: ML1M dataset. EILD measured using features and subprofiles for
varying λ.
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Figure 6.7: ML1M dataset. ILD measured using features and subprofiles for
varying λ.

disadvantage in experiments where diversity metrics use item features. They

also show that CAD and SPAD increase the values of the diversity metrics over

the baseline when measured by subprofiles for all five diversity metrics and for

all values of λ, and they always perform better than xQuAD. This is as expected,

since CAD and SPAD use subprofiles for re-ranking; in this case, it is xQuAD that

is at a disadvantage, since it makes no use of subprofiles.

The results showing diversity metrics measured by item features are notewor-

thy, since, even though CAD and SPAD make no use of item features, there are
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Figure 6.8: ML1M dataset. Precision vs. α-nDCG trade-off plots.
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Figure 6.9: ML1M dataset. Precision vs. ILD trade-off plots.

configurations where they perform better than xQuAD. This supports our claim

in Section 5.2.2 that using subprofile-aware approaches to recommendation di-

versification allows a finer-grained representation of tastes and interests and

this additional complexity allows them to perform better than other re-ranking

algorithms.

6.2.5 A visualization of trade-offs

In this section, similar to Section 5.3 of the previous chapter, we show the trade-

off between relevance and diversity for the re-ranking methods CAD, SPAD and

xQuAD. Figure 6.8 and 6.9 plots their precision against diversity, where diver-
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sity is measured by two versions of α-nDCG and ILD respectively. The dotted

lines show the precision and diversity of the MF baseline, dividing each subfig-

ure into four quadrants. Top-right parts of the plots means improved precision

and diversity are over the baseline.

Consider first Figure 6.8. We can see that, for both α-nDCGF and α-nDCGS ,
CAD and SPAD more often improve precision and diversity over the baseline,

because they are less likely to trade off precision for diversity. If we look at

the relative performances of CAD and SPAD, we can see that SPAD more often

improves precision and diversity compared to CAD. Next, consider Figure 6.9,

which shows precision against diversity using two versions of ILD, ILDF and

ILDS . The results are similar to those in Figure 6.8, with CAD and SPAD more

likely to increase both precision and diversity. For both versions of ILD, we can

see that CAD improves diversity over baseline more than SPAD, but it does so

sometimes by trading off precision.

6.3 Conclusions

In this chapter, we have presented a new approach to recommendation set di-

versification, which we call Community-Aware Diversification (CAD). It is an

intent-aware approach and uses subprofiles of the items that the user likes as

its aspects, as does Subprofile-Aware Diversification (SPAD). CAD detects sub-

profiles using a user-user similarity approach, unlike SPAD, which uses an item-

item similarity approach. We compared the performance of CAD to SPAD and

to xQuAD on four datasets. We found that CAD and SPAD produce recommen-

dations that are always the most accurate. We also showed that CAD and SPAD

are less prone to trading-offs accuracy for diversity. In some cases using CAD

subprofiles performs better than using SPAD subprofiles; in other cases, the re-

verse is the case. We conclude that, for some domains, it is meaningful and

useful to define subprofiles indirectly through a user’s community (her nearest

neighbours).

In the next chapter, we compare intent-aware diversification approaches to cal-

ibrated recommendation.
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Chapter 7

A Comparison of Calibrated and
Intent-Aware Recommendations

Calibrated and intent-aware recommendation are recent approaches that have

apparent similarities. Both try, to a certain extent, to cover the user’s tastes and

interests, as revealed by her user profile. The main difference lies in their objec-

tive. Aside from recommendation relevance, the main goal of a calibrated rec-

ommender system is to produce calibrated recommendations, reflecting user’s

interests in the right proportions. A calibrated recommendation set might be

diverse, but diversity is not an explicit goal.1 By contrast, diversity is the main

goal of intent-aware recommender systems. This is achieved by something sim-

ilar to calibration and so a set of recommendations might be calibrated to some

extent. But, intent-aware methods define their equivalent to calibration in a

relevance-based way. We gave detailed explanations of both calibrated and

intent-aware recommendation in Chapter 2.

In this chapter, we compare them in detail. First, we compare them by giving

an informal, motivating example from the music domain. Second, since Steck

has shown the optimality of calibrated recommendation [Ste18], we want to

confirm the same for intent-aware diversification by showing that the greedy

approach to intent-aware diversification used in xQuAD [Var15], and inher-

ited by SPAD and RSPAD, give an approximate optimality guarantee. Third,

we define a new variant of Steck’s calibrated recommender systems, one wh-

ich calibrates with respect to subprofiles, rather than item features. Then, we

define a new variant of the calibration metric, one that measures calibration in

1In fact, Steck defines a diversity-enhanced calibrated recommender system, which includes
diversity as an explicit objective, alongside calibration [Ste18]. We will discuss it in Section 7.4.
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terms of subprofiles, rather than item features. Finally, we present an empirical

comparison of calibrated and intent-aware recommendation.

7.1 Intent-Aware vs. Calibrated

As we have mentioned, there is an apparent similarity between intent-aware

and calibrated recommendation. Both try to cover the user’s different tastes

and interests, as revealed by her profile. Indeed, for the latter, covering the

tastes and interests in the same proportion as they occur in the user’s profile is

the main goal. Intent-aware recommendation may result in calibrated recom-

mendations, but it does not directly aim to cover the user’s interests in the same

proportion as they occur in the user’s profile. As we saw, it modulates coverage

by recommendation relevance. We illustrate this difference with an informal

example.

Consider a user who listens to jazz 70% of the time and to rock music 30% of the

time. Suppose that the goal is to recommend a list of top-10 recommendations.

Calibrated recommendation tries to generate 10 recommendations such that

seven (70%) are jazz and the remaining three (30%) are rock. An intent-aware

approach, such as xQuAD, considers how much an item satisfies a given aspect

(genre in this case) through p(i|u, f). Suppose the first four songs that the

recommender includes in the recommendation list are jazz songs which this

user is likely to choose from a recommendation list, i.e. p(i|u, f = jazz) is high

for each of these songs, i. Now consider adding a fifth piece of jazz to the

recommendation list. It will be penalized because each of the four existing

items j in the recommendation list have high p(j|u, f = jazz): see the factor∏
j∈RL(1 − p(j|u, f)) in Eq. 2.8. A fifth jazz song might only be included if it

can overcome the ‘penalty’ imposed by the songs that have been added to the

recommendation list already. The final top-10 might not have seven jazz songs;

it may even have more rock than jazz. On the other hand, if the first seven

songs to be added to the recommendation list are (informally speaking) not

jazzy enough for this user’s tastes (more precisely, if they have very low values

for p(i|u, f = jazz)), then it is possible that more jazz songs will be added to the

recommendation list. The final top-10 might not have three rock songs; it may

even have no rock at all.
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7.2 The Optimality of Intent-Aware Diversification

In this section we analyze the greedy re-ranking approach to intent-aware di-

versification to show that its objective function is monotone and submodular

and, therefore, although greedy, it has a (1 − 1
e
) optimality guarantee. Do-

ing this confirms that, on this criterion at least, intent-aware and calibrated

recommendation are on a par, since Steck has already shown that calibrated

recommendation enjoys this guarantee.

Our analysis closely follows Agrawal and Gollapodi’s analysis of IA-Select’s

search result diversification objective, which is to maximize the probability

that the average user finds at least one useful result within the top-N result

[AGHI09]. Agrawal and Gollapudi prove the submodularity of their search

result diversification objective, IA-SELECT. We can adapt their proof because

intent-aware diversification is a generalization of IA-Select [Var15].

First, we give some definitions:

Definition 7.2.1. MONOTONICITY Given a finite ground set I, a function
f : 2I 7→ L from sets drawn from I to reals is monotonic if and only if for all sets
X ⊆ I, and i ∈ I \X, it satisfies the following: f(X ∪ {i})− f(X) ≥ 0.
Definition 7.2.2. SUBMODULARITY Given a finite ground set I, a function
f : 2I 7→ L from sets drawn from I to reals is submodular if and only if for all
sets X ⊆ Y ⊆ I, and i ∈ I \ Y , it satisfies the following: f(X ∪ {i}) − f(X) ≥
f(Y ∪ {i})− f(Y ).

The inequality in the definition of submodularity means that adding an item i

to a smaller set X brings a gain that is no smalller than adding it to a larger set

Y .

Definition 7.2.3. MODULAR Given a finite ground set I, a function f : 2I 7→ L
from sets drawn from I to reals is modular if f(X) = ∑

i∈X wi for some weights
w : I 7→ L. Such functions are also referred to as additive or linear. Modular
functions are also submodular. If wi ≥ 0 for all wi, then f is also monotone.

In intent-aware approaches to diversification, such as xQuAD and SPAD, the

goal, for a given user u, is to determine the optimal recommendation set, de-

noted as RL∗, of size N items, such that RL∗ maximizes the following objective

function:

RL∗ = arg max
RL,|RL|=N

(1− λ)s(RL) + λ divIA(RL) (7.1)

where s(RL) = ∑
i∈RL s(u, i), is a modular function.
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When λ = 1 the objective function in 7.1 reduces to finding the optimal set of

items that maximizes the following function:

divIA(RL) =
∑
a∈A

p(a|u)
(

1−
∏
i∈RL

(1− p(i|u, a))
)

(7.2)

which is NP-hard to optimize.

Lemma 7.2.4. Finding the optimal set that maximizes divIA(RL) is NP-hard.

Proof. This follows from a reduction from Max k-Coverage, an NP-hard problem

related to SET COVER [Hoc97]. In the Max k-Coverage problem, one is given

a universe of elements E , a collection C of subsets of E , and an integer k. Each

element e ∈ E has a corresponding weight w(e). The objective is to find a set of

subsets E = {E1, E2, . . . , Ek} ⊆ C, |E| = k, such that the sum of the weights of⋃k
l=1 El is maximized.

We create a mapping between E and a set of aspects A. Then, the collection

of subsets C is mapped to the set of items I, since each item i in our case is

represented as set of aspects i = {a1, a2, . . . , am}. The weight of an aspect a,

w(a) (analogous to w(e)) becomes:

w(a) = p(a|u)
(

1−
∏
i∈RL

(1− p(i|u, a))
)

Since we try to maximize divIA(RL), which can be rewritten as divIA(RL) =∑
aw(a), the optimal solution that maximizes divIA(RL) is optimal for Max k-

Coverage.

Lemma 7.2.5. divIA(RL) is a submodular function.

Proof. Let X, Y be two arbitrary sets of items related by X ⊆ Y . Let i be an

item not in Y . Let us denote X ∪ {i} by X ′ and similarly Y ∪ {i} as Y ′.
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divIA(X ′)− divIA(X) = (7.3)

=
∑
a∈A

p(a|u)
(1−

∏
j∈X′

(1− p(j|u, a)))− (1−
∏
j∈X

(1− p(j|u, a)))


(7.4)

=
∑
a∈A

p(a|u)
∏
j∈X

(1− p(j|u, a))−
∏
j∈X′

(1− p(j|u, a))
 (7.5)

=
∑
a∈A

p(a|u)
∏
j∈X

(1− p(j|u, a))
 p(i|u, a) (7.6)

Similarly, we can establish that:

divIA(Y ′)− divIA(Y ) =
∑
a∈A

p(a|u)
∏
j∈Y

(1− p(j|u, a))
 p(i|u, a) (7.7)

Note that for all a ∈ A given that X ⊆ Y ,

∏
j∈Y

(1− p(j|u, a)) ≤
∏
j∈X

(1− p(j|u, a))

Therefore, we conclude that

divIA(X ′)− divIA(X) ≥ divIA(Y ′)− divIA(Y )

as desired, i.e. the function divIA(RL) is submodular.

Lemma 7.2.6. divIA(RL) is a monotonic function.

Proof. Let X be an arbitrary set of items such that X ⊆ I. Let i be an item not

in X. Let us denote X ∪ {i} by X ′. Following Eq. 7.3, we know the following:
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divIA(X ′)− divIA(X) =
∑
a∈A

p(a|u)
∏
j∈X

(1− p(j|u, a))
 p(i|u, a)

Knowing that probabilities p(a|u) and p(i|u, a) cannot be negative, we conclude

that:

divIA(X ′)− divIA(X) ≥ 0

as desired, i.e., the function divIA(RL) is monotonic.

Now we appeal to the following theorem [NWF78]:

Theorem 7.2.7. For a monotone and submodular function f from sets to reals,
where f(∅) = 0, let S∗ be the optimal set of k elements that maximizes f . Let S ′

be the k-element set constructed by greedily selecting elements one at a time that
gives the largest marginal increase in f . Then f(S ′) ≥ (1− 1

e
)f(S∗)

We already mentioned that, intent-aware diversification approaches use greedy

re-ranking. We have given the proof of submodularity and monotonocity of

divIA(RL), which is the second term of Eq. 7.1. We have also explained that the

first term of Eq. 7.1, s(RL), is modular (and hence also submodular).

This leads to the submodularity of the objective function given in Eq. 7.1, be-

cause it is the sum of a modular function (which is also submodular), s(RL) =∑
i∈RL s(u, i), and a submodular function divIA(RL). Since linear combinations

of submodular functions are also submodular, the objective function given in

Eq. 7.1 is submodular.

We can conclude that the greedy approach to intent-aware diversification app-

roaches is a (1 − 1
e
) approximation of the optimal solution, if s(RL) (Eq. 7.1)

is monotonic, i.e. s(u, i) ≥ 0 for all (u, i) pairs. Note that, when s(RL) is not

monotonic (if there exist some (u, i) pairs for which s(u, i) < 0), one can easily

use a monotone transform, i.e. map all s(u, i) < 0 to 0.

Note that the proof given in this section is a general proof for the intent-aware

approaches using divIA(RL) given in Eq. 7.2: it applies to xQuAD, SPAD and
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their variants.

In this section, we have given the proof that intent-aware approaches using

greedy re-ranking guarantee a (1− 1
e
) approximation of the optimal solution.

7.3 Calibrated Recommendation using Subprofiles

Calibrated recommendations are ones that reflect the user’s tastes and inter-

ests, as revealed by the user’s profile, and Steck defines these in terms of item

features (see Section 2.4 and also [Ste18]). But the subprofile idea that we

present in the previous chapters of this thesis opens an opportunity to define a

new variant of calibrated recommendation, one which uses subprofiles instead

of features, much as SPAD uses subprofiles where xQuAD uses features. We re-

fer to the Steck’s calibrated recommendation, which uses item features, as CRF ;

we refer to our variant, which uses subprofiles instead of item features, as CRS .

In CRS , the distributions p and q (Eqs. 2.14 and 2.15) are defined in the same

way, writing S in place of f :

p(S|u) =
∑
i∈I+

u
wu,ip(S|i)∑

i∈I+
u
wu,i

(7.8)

q(S|u) =
∑
i∈RLwr(i)p(S|i)∑

i∈RLwr(i)
(7.9)

The question is how to define p(S|i), which replaces p(f |i) in these equations.

We use p(S|i) = 1
|Si| , where Si is the set of user u’s final subprofiles that item i

is related to (using Eq. 4.4).

We modify the CKL metric to use subprofiles instead of item features by replac-

ing the distributions p and q over features in Eq. 2.16 with distributions over

subprofiles, much as we did when we defined CRS above. We will refer to CKL

measured by item features as CKL
F and CKL measured by subprofiles as CKL

S .

7.4 Experimental Results

In this section, we compare intent-aware and calibrated recommendations em-

pirically. We want to reveal the extent to which intent-aware approaches do pro-
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duce calibrated recommendations. We also want to evaluate calibrated recom-

mendation more thoroughly than was done in [Ste18]. Steck’s goal in [Ste18]

was just “to illustrate that the proposed approach [i.e. calibrated recommenda-

tion] works as expected”. Hence, he used just one dataset. He did not com-

pare calibrated recommendation with any different recommenders: he simply

compared calibrated recommendation (with different values of λ) with just its

baseline recommender. While he did measure recall (as defined in [SG11]),

his focus was on measuring the calibration metric, CKL. Here, we will use two

datasets; we will compare two forms of calibrated recommendation (CRF and

CRS) to two forms of intent-aware recommendation (xQuAD and SPAD); and

we will measure CKL but also precision and diversity. In the case of diversity,

we will show results for four different metrics, and we will explore the trade-off

the recommenders make between precision and diversity.

We report our empirical comparison of CRF , CRS , xQuAD and SPAD on the

ML20M and TasteProfile datasets (see Chapter 3 for the details of the datasets).

Note that the ML20M and TasteProfiles datasets are different from the datasets

used in the experiments of the previous chapters. We use ML20M, which is

a larger dataset than those used in Chapters 4, 5 and 6, since it is the same

dataset used in [Ste18]. We also use TasteProfile to test on another publicly

available larger dataset. Note also that, as we explain in Chapter 3, for ML20M

and TasteProfile datasets, we use only one data split to create train, validation

and test sets, unlike for the other datasets for which we use 5 data splits. We

show the hyperparameter values that we used in the Appendix to this thesis.

First, we compare the performances of CRF , CRS , xQuAD and SPAD on the two

versions of the calibration metric, CKL
F and CKL

S . Next, we see how they affect

the relevance of the baseline recommender by measuring Precision. Then, we

look at their effect on ‘pure’ diversity metrics, ILDF and ILDS , and relevance-

aware diversity metrics, α-nDCGF and α-nDCGS . Finally, we look at the trade-

off between precision and diversity measured by the ILD metrics.

7.4.1 Calibration results

The calibration results are shown in Figure 7.1. It is important to keep in mind

that for CKL (unlike other results in this thesis) smaller values are better: smal-

ler values mean better coverage of the user’s interests.

Figure 7.1a shows results on the ML20M dataset when calibration is measured
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Figure 7.1: ML20M and TasteProfile datasets. CKL measured using features and
subprofiles for different values of λ. Values for MF are shown by dotted lines.

using item features, CKL
F . CRF performs best: it has the smallest values of

CKL
F for all values of λ. This result is to be expected: CRF re-ranks baseline

recommendations using the CKL
F metric.

We hypothesized that intent-aware approaches would result in calibrated rec-

ommendations to a certain extent. xQuAD tries to cover different user tastes

and interests defined by item features, and so it should do well for this metric.

Indeed, it can be seen in Figure 7.1a that, for all values of λ, xQuAD results in

good calibration: not as good as CRF , of course, but better than CRS and SPAD.

However, for all values of λ, even CRS and SPAD recommendations are more

calibrated than the baseline. This is noteworthy, since CRS and SPAD make no

use of item features, hence they are at a disadvantage.
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Figure 7.2: ML20M and TasteProfile datasets. Precision values for different
values of λ. Values for MF are shown by dotted lines.

Figure 7.1b shows results on ML20M when calibration is measured using sub-

profiles, CKL
S . This time, it is xQuAD and CRF that are at a disadvantage. We

can see that, CRS performs best, as expected. But, for all values of λ, SPAD

performs better than the baseline too. For smaller values of λ, xQuAD and CRF
perform close to the baseline. But for larger values of λ, they perform worse

than the baseline.

Figures 7.1c and 7.1d show calibration results on TasteProfile. The results are

quite similar to those for ML20M. The difference is, when calibration is mea-

sured by subprofiles (Figure 7.1d), CRF only performs close to the baseline for

all values of λ.

Ideally, calibrated recommendations must not harm recommendation relevan-

ce. In the next subsection, we see how the four different re-ranking algorithms

affect the precision of the baseline recommender.

7.4.2 Precision

Figure 7.2a and 7.2b plot precision for different values of λ on the ML20M

and TasteProfile test sets, respectively. Consider ML20M first. CRS and SPAD

perform well. Precision only falls below the baseline for high values of λ: from

0.7 for CRS and from 0.8 for SPAD. CRF and xQuAD do not do so well: for

many values of λ, their precision is lower than that of the baseline’s original

recommended set. CRF suffers even more than xQuAD: its precision falls even
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Figure 7.3: ML20M and TasteProfile datasets. ILD measured using features and
subprofiles for different values of λ. Values for MF are shown by dotted lines.

more sharply as λ grows. These CRF results confirm those reported by Steck:

he found that, for larger values of λ, CRF ’s accuracy drops quickly (although he

measured recall rather than precision) [Ste18]. We see similar results when we

turn to the TasteProfile dataset. The main differences are that, CRS and SPAD

now achieve higher precision than the baseline for all values of λ; and CRF and

xQuAD suffer smaller decreases in precision relative to the baseline than they

did on ML20M. The results presented in this subsection show a clear preference

for approaches that use subprofiles, rather than item features.
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Figure 7.4: ML20M and TasteProfile datasets. α-nDCG measured using features
and subprofiles for different values of λ. Values for MF are shown by dotted
lines.

7.4.3 Diversity results

In this subsection, we measure diversity in different ways, enabling us to see

the extent to which calibrated recommendations are diverse recommendations.

Figure 7.3 shows results for ILD, which is a ‘pure’ diversity metric. Figure 7.3a

shows results on the ML20M dataset when ILD is measured using item features,

ILDF . Surprisingly, CRF , which is not an algorithm that explicitly seeks to

diversify result sets, achieves the highest values of ILDF . CRS and SPAD are at

their usual disadvantage when a metric uses features. But, for all values of λ,

their ILDF exceeds the baseline. xQuAD is another surprise. For all values of

λ, it performs worse than the baseline. This appears to an idiosyncratic result,
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Figure 7.5: ML20M dataset without binarization. ILD values for varying λ.
Values for MF are shown by dotted lines.

specific to this dataset. xQuAD’s ILDF on a number of datasets that contain

explicit ratings, for example, usually exceeds the baseline (e.g. see [Var15] and

also earlier in this thesis), and it exceeds the baseline by a small amount for

most values of λ when we run it on ML20M without binarization (see Figure

7.5).

When ILD is measured using subprofiles, ILDS (Figure 7.3b), CRF and xQuAD

are the ones at a disadvantage. Sure enough, their diversity according to this

metric always falls below the baseline, with CRF worse than xQuAD. On the

other hand, CRF and SPAD are at an advantage. SPAD, the algorithm that

actually seeks to diversify, produces the most diverse results sets, better than

the baseline recommender for all values of λ; CRF , which only seeks to calibrate

its recommendations, produces result sets that are quite similar in diversity to

those produced by the baseline.

Figures 7.3c and 7.3d show ILD results on TasteProfile. Results for ILDS (Figure

7.3d) are similar to those for ML20M. The difference is ILDF (Figure 7.3c). For

all values of λ, all of the re-ranking algorithms, including xQuAD, have higher

values of ILDF than the baseline.

While ILD is a ‘pure’ measure of diversity, α-nDCG is a relevance-aware mea-

sure of diversity. The α-nDCG results are in Figure 7.4.

Figure 7.4a shows results on the ML20M dataset when α-nDCG is measured us-
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ing item features, α-nDCGF . For almost all values of λ, xQuAD performs better

than the other re-ranking algorithms. For small values of λ, CRF is competitive

with CRS and SPAD, but soon suffers from the largest decreases in α-nDCGF .

CRS and SPAD perform similarly to each other. Even though they are at a disad-

vantage, they achieve higher α-nDCGF than the baseline for all but large values

of λ.

Figure 7.4b shows ML20M results for α-nDCGS , where xQuAD and CRF are the

algorithms that are at a disadvantage. SPAD always has higher α-nDCGS than

all the other algorithms, including the baseline. CRS has higher α-nDCGS than

the baseline, except when λ is large. xQuAD and CRF are never better than the

baseline and perform particularly poorly as λ grows.

Figures 7.4c and 7.4d show α-nDCG results on TasteProfile. For α-nDCGS (Fig-

ure 7.4d), results are similar to those for ML20M. The difference is α-nDCGF

(Figure 7.4c). Now, SPAD and CRS are always higher than the baseline, while

xQuAD and CRF are similar to the baseline for small values of λ and fall a little

below the baseline for large values of λ.

The diversity results presented in this subsection show that a set of calibrated

recommendations can be a diverse set of recommendations as well. Re-ranking

approaches that use subprofiles as aspects, CRS and SPAD, perform particularly

well according to the relevance-aware diversity metric, α-nDCG. In fact, SPAD

increases diversity, no matter how it is measured, on both datasets for almost

all values of λ. To aid visualization of the relevance/diversity trade-off better,

the next subsection plots precision and ILD together.

7.4.4 A visualization of trade-offs

Each subfigure in Figure 7.6 is divided into four parts by the dotted lines that

plot the precision and ILD values of the MF baseline. When, for a given value

of λ, a re-ranking algorithm improves both precision and ILD over the baseline,

for example, it appears as a point in the top-right quadrant of the plot.

We can see that across all four subfigures (i.e. for both datasets and both version

of ILD), assuming that we regard precision and diversity as equally important,

SPAD is best by far. It most often increases both precision and diversity. CRS is

second best according to these visualizations. CRF and xQuAD are not compet-

itive.
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Figure 7.6: ML20M and TasteProfile datasets. Precision vs. ILD trade-off plots
measured using features and subprofiles for different values of λ. Values for MF
are shown by dotted lines.

7.4.5 Other results

For completeness, we should mention two other approaches to diversification

whose results we have computed but which we do not show because they clutter

the plots but are not competitive.

The first is the traditional approach to diversification, namely Maximal Marginal

Relevance (MMR) [CG98] and its variants, e.g. [SM01, ZMKL05].

While MMR has some of the highest values for ILD, as one would expect, since

this is close to what it optimizes, it performs poorly on all other metrics, almost

always having the worst values for precision, for example.

The second approach is one proposed by Steck in [Ste18], which we will re-
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fer to here as a diversity-enhanced calibrated recommender, whose goals was to

bring extra diversity to calibrated recommendations [Ste18]. Steck does this

by introducing a diversity-promoting prior, p0(f), to recommend from features

that are not in the user’s profile. Specifically, probability distribution p(f |u) is

replaced by p̃(f |u) = βp0(f) + (1− β)p(f |u). There are no experimental results

in [Ste18]. But we have implemented and evaluated this version of calibrated

recommendation as well. We take p0(f) to be the average p(f |u) over the all the

users [Ste18]. The most useful results were obtained when we optimized β for

α-nDCG rather than for precision or ILD. In this case, we found that, although

the diversity-extended calibrated recommender does improves diversity a little

(measured by ILD), it harms precision and the CKL metrics. Overall, it was not

competitive with the simpler forms of calibrated recommendation.

7.5 Conclusions

In this chapter, we compared calibrated and intent-aware recommendation.

They have apparent similarities in that both try to cover the user’s interests to a

certain extent. First, we analyzed that the greedy approach to intent-aware re-

commendation, including xQuAD, SPAD and RSPAD, enjoy a 1− 1
e

approximate

optimality guarantee, similar to Steck’s calibrated recommendations. We also

defined a new instantiation of calibrated recommendation that uses subprofiles

(CRS) in place of features (CRF).

We find that intent-aware recommendation results in calibrated recommenda-

tions to a certain extent, and calibrated recommendation results in diverse rec-

ommendations to a certain extent. We also see that re-ranking approaches us-

ing features, xQuAD and CRF , harm precision a lot. The re-ranking approaches

that use subprofiles, SPAD and CRS , achieve the highest precision, achieve good

calibration according to both calibration metrics, and achieve good diversity ac-

cording to both α-nDCG metrics. SPAD also achieves good diversity according

to both ILD metrics and suffers least from the relevance/diversity trade-off.

In the next chapter, we apply SPAD to the task of Automatic Playlist Continu-

ation. By applying SPAD to a different task on a larger dataset, we show the

generality of SPAD and its variants.
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Chapter 8

Automatic Playlist Continuation
using SPAD

In this chapter, we take the idea of SPAD and apply it to a task that is different

from the one in the previous chapters of this thesis, namely Automatic Playlist

Continuation (APC). In the previous chapters of the thesis, the main goal was

to improve diversity along with relevancy. In the APC task, the details of which

are explained in the next section, the main goal is not diversity but to accurately

predict tracks that are missing from the playlists.

The emergence of online music streaming services like Spotify, Pandora, Deezer,

Apple Music and Amazon Music has increased the value of research related to

music recommendation. Although music recommender systems often success-

fully recommend songs that satisfy users, in the sense of fitting the users’ pref-

erences, there are still a lot of challenges to be tackled [SZC+18]. Automatic

playlist continuation (APC) is one such challenge. The aim in APC is to help

users to create and extend their own playlists.

In the previous chapters, we show that on several datasets, using subprofiles

as aspects instead of item features results in more accurate and diverse recom-

mendations. In this chapter, we show that, even applied to the task of APC, the

idea of using subprofiles result in more accurate and diverse recommendations.

The ACM RecSys Challenge 2018, organized by Spotify, the University of Mas-

sachusetts and Johannes Kepler University is all about APC. Using datasets of

playlists made available by Spotify, participants build systems to automatically

predict tracks that are missing from test playlists.
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In this chapter, we take the idea of SPAD and apply it to the task of the Chal-

lenge. Our approach to APC is twofold: Cold-Start-APC for short playlists and

SPAD-APC for other playlists. Cold-Start-APC is a rudimentary popularity-based

recommender. SPAD-APC treats playlists as if they were user profiles. It builds

an implicit matrix factorization model to generate initial recommendations. But

it re-ranks those recommendations using SPAD’s intent-aware diversification

method. The SPAD re-ranking method aims to ensure that the final set of rec-

ommendations covers different interests or tastes in the playlists of the users,

which we refer to as subprofiles. We show that such subprofiles do exist within

playlists and we show that the SPAD method achieves higher precision than

matrix factorization alone.

In the rest of this chapter, we give an overview of the Challenge, then describe

our approach to the Challenge in detail. We explain the resources we used and

our experimental methodology, and then give some results.

8.1 Challenge Overview

The Challenge focuses on music recommendation, specifically automatic play-

list continuation (APC) [CLSZ18]. The task is to recommend appropriate tracks

to add to a playlist.

For this task, Spotify released the Million Playlist Dataset1 (MPD), containing

1,000,000 playlists created by Spotify users. Some statistics about the MPD can

be found in Table 8.1. Each playlist is represented by playlist metadata (the

title, description if available, the number of unique tracks, etc.) and the tracks

in the playlist, together with metadata about the tracks (such as the name of

the track, album and artist).

Spotify also released the Challenge Set, comprising 10,000 incomplete playlists

(i.e. some of the tracks are hidden). Specifically, in the Challenge Set, the

number of seed tracks in a playlist has values from the set {0, 1, 5, 10, 25, 100}.
Furthermore, the way in which the seed tracks were chosen (e.g. initial tracks

or random tracks) and the availability of a playlist title mean that there are

10 different categories of playlists, with 1,000 playlists per category. This is

summarized in Table 8.2.

1https://recsys-challenge.spotify.com/
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The task is to recommend 500 tracks to each of the playlists in the Challenge

Set. These recommendations are evaluated by Spotify against the ground-

truth G, i.e. the tracks that were actually hidden. The evaluation metrics are

precision@|G|, NDCG and a bespoke measure called Clicks that is based on rank

within the ground-truth, combined by a Borda count.

However, this RecSys Challenge is split into two sub-challenges. In the Main

Challenge, participants must train their prediction models exclusively on the

MPD. In the Creative Challenge, participants are allowed to use public external

data sources. Although we do not use any external data, we build our model

using the union of the MPD and the Challenge Set. This means that our system

is obliged to compete in the Creative Challenge.2

The Spotify dataset contains no explicit item features (e.g. there are no track

genres). To allow us to use the conventional diversity metrics in the experi-

ments (which, as we have seen, require item features), we crawled music genre

metadata by using Spotipy3, a lightweight Python library for the Spotify Web

API. However, this API does not provide track genres, only artist genres. There-

fore, we indirectly assigned genres to tracks through the genres of their artists.

We check whether the artist that a track belongs to has a genre or not. If the

artist has genre information, we assign the genre information of the artist to the

track that belongs to the corresponding artist. There are 295,860 unique artists

in MPD. For 93,790 of those artists we were able to crawl genre information,

i.e. we have crawled genre information for 31.7% of the artists in MPD. As a

result, 2048 different genres are assigned to the tracks.

As we explain in Section 8.4, due to resource limitations we eliminated all tracks

that appear in only one MPD playlist, cutting the number of unique tracks from

2,262,292 to 1,189,252. 944,973 of those 1,189,252 have been assigned with

genre information, i.e. 79.46% of the tracks used in the experiments have genre

information.

2On the RecSys Challenge forum, in reply to the question “[is it] allowed to include the
information in the challenge set for the model training?”, the reply was: “The rules say that
for the main track you can only use the MPD. The challenge set is not part of the MPD, so
for the main track, the answer is ‘no’. For the creative track you can use publicly available
data and the challenge set qualifies as that — so for the creative track, the answer is ‘yes’.”
https://groups.google.com/forum/#!topic/recsyschallenge-2018/1F-QCl2se4E

3https://spotipy.readthedocs.io/en/latest/
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Table 8.1: MPD statistics

# of playlists 1,000,000
# of tracks 66,346,428

# of unique tracks 2,262,292
# of unique albums 734,684
# of unique artists 295,860
# of unique titles 92,944

# of unique normalized titles 17,381
# of playlists with description 18,760

avg. playlist length 66.3

Table 8.2: Challenge dataset statistics

# of playlists title tracks cold-start
1000 X none X
1000 X first track X
1000 X first 5 tracks X
1000 X first 5 tracks X
1000 X first 10 tracks X
1000 X first 10 tracks X
1000 X first 25 tracks X
1000 X random 25 tracks X
1000 X first 100 tracks X
1000 X random 100 tracks X

8.2 Other Approaches to the Challenge

In this section, we summarize some of the approaches taken by the top-perfor-

ming teams who entered the Creative Track of the Challenge (see Section 8.6.3

for the final leaderboard). For a detailed analysis of the approaches for both

the Main and Creative Tracks, refer to the paper by Zamani et al. [ZSLC18].

Almost all of the top performing teams use the Spotify API to crawl for audio

features as an external data source. One team computed their own audio fea-

tures from the downloaded 30-second samples of the tracks [FBY+18]. Some

of the teams use pre-trained word embeddings as external data to create track

embeddings [KMI18]. In our approach, which we present in next section, un-

like the other teams, we do not use external data such as audio features or

pre-trained word embeddings.

The winning team in both the Main and Creative Tracks used a two-stage ap-

proach to the task [VRC+18]. For the Creative Track, first, they learn lower

dimensional representations of the playlists and tracks by using matrix fac-
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torization. Then they use those representations together with other features

in a gradient-boosting learning-to-rank model, XGBoost [CG16]. Some of the

other features that they use are playlist embeddings learnt by neural-networks,

nearest-neighbours based collaborative filtering models and content-based mu-

sic descriptors of the tracks.

The team that came second in the Creative Track [ABC+18] uses an ensem-

ble of different techniques, including a popularity-based recommender, track &

playlist based collaborative filtering models, and track & playlist based content-

based filtering models. They also use natural language processing techniques

to enhance the playlist titles to be used in the ensemble model. They use track

features acquired from the Spotify API as additional features.

The team that came third in the Creative Track [LKLJ18] use a less complex

approach. They combine nearest-neighbourhood collaborative filtering tech-

niques with a matrix factorization algorithm. They also use audio features as

external data.

Our approach is quite different from all of these. We explain it in detail in the

next section.

8.3 Our Approach

Let I be the set of all items (i.e. tracks) in the union of the MPD Set and Chal-

lenge Set. A playlist, which we will designate by u, is a set of items, u ⊆ I. Let

title(u) be the title of playlist u, if it has one (or ⊥ if it does not have a title).

Let UMPD be the set of playlists in the MPD and UCS be the set of playlists in the

Challenge Set; then U = UMPD ∪ UCS . The candidate items that can be added

to a given playlist u ∈ UCS are all the items in I less those that are already in

u: I \ u. We compute recommendations in one of two ways, depending on the

length of u. The first way we refer to as the Cold-Start-APC; the second we refer

to as SPAD-APC. Our implementation is publicly available.4

We consider playlists u ∈ UCS to be cold-start playlists if they have a title and

either zero or one track; see the last column in Table 8.2. We present Cold-

Start-APC in Section 8.3.1. For the remaining 8,000 playlists in UCS , candidates

are scored by a matrix factorization algorithm and then re-ranked using SPAD

4https://github.com/mesutkaya/SpotifyRecSysChallenge2018
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(see Section 8.3.2).

Before presenting details of the two approaches, we make a few additional ob-

servations. First, we do not, in fact, use the full set of items I. As we explain in

Section 8.4, we exclude some items from I to improve compute-times. Second,

it follows from the formulation given above, that we are not using any meta-

data, except for the title of the playlist, where available (and, in fact, this is

only used by Cold-Start-APC, not by SPAD-APC). Third, since we treat playlists

as sets of items, for this prediction task we are ignoring the ordering of the it-

ems in the playlist. There is some debate about the significance of ordering in

playlists. For example, Schedl et al. think that it is important [SZC+18] and

there are approaches that take it into account (e.g. [BP06]). But according to

Tintarev et al., there is actually little evidence that the exact order of the tracks

matters to users [TLL17]. In any case, in our solution we are not using the

ordering. Fourth, we are, in effect, treating playlists in the way that a regular

recommender would treat a user profile (and this explain why we designate

them by u). In a regular recommender, a positive-feedback-only implicit ratings

profile would just be a set of items: the ones the user likes; in our recommender,

a playlist is just a set of items.

8.3.1 Cold-Start-APC

We use Cold-Start-APC for the 1000 playlists in the Challenge Set that have title

only and the 1000 playlists that have a title and one track (their first).

For each candidate i ∈ I \ u, Cold-Start-APC computes a score, s(u, i), based

on the popularity of i across the playlists in UMPD, and recommends the 500

candidate items that have the highest scores. To improve the scoring, we use

a ‘normalization’ function provided by Spotify which converts track titles to

lowercase and removes punctuation symbols. As shown in Table 8.1, 92,944

different titles become 17,318 unique titles after normalization.

For a cold-start playlist u, the predicted score s(u, i) for a candidate track i ∈ I\u
is computed as follows:

s(u, i) =
∑

v∈UMPD

1(u, i, v) (8.1)
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In the case where u has a title but no tracks:

1(u, i, v) =

1 if i ∈ v and title(u) = title(v)

0 otherwise
(8.2)

In the case where u has a title and one track:

1(u, i, v) =


2 if i ∈ v and u ⊆ v and title(u) = title(v)

1 if i ∈ v and (title(u) = title(v) xor u ⊆ v)

0 otherwise

(8.3)

Note that, for some of the playlists with title only, it can be the case that the

recommender cannot recommend 500 tracks with non-zero scores. In this case,

we fill the rest of the recommendations with the most popular tracks in UMPD.

There is no doubt that our cold-start solution is rudimentary, and there are

many ways it could be improved, perhaps especially by using external data

sources.

8.3.2 SPAD-APC

Our approach for the remaining 8000 playlists in the Challenge Set, having at

least 5 tracks each, is based on the idea of SPAD. The goal of the SPAD and its

variants is to generate a set of recommendations where each recommendation

is relevant but the set of recommendations is diverse. In the APC task, at least

in the way it is formulated by Spotify in the Challenge, relevance is the only

criterion; diversity is not important. This raises the question of why we should

apply the SPAD diversification technique. The answer is that, in Chapter 5 and

6, across multiple datasets, we have found that SPAD and its variants most of

the time improve both precision and diversity. This is notable because many

approaches to diversification trade-off accuracy for diversity.

It is also worth asking: are there reasons for thinking that diversity will be help-

ful for APC in general? Lee et al. report the results of a user study into playlists

that were generated automatically using content-based similarity [LBM11]. A

common concern among the participants in the user study was that consecutive

tracks in the playlists were too similar; they also complained about a lack of

variety in the playlists. Interpretations of ‘variety’ differed from user to user,
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e.g. variety in terms of genres, styles, artists, etc. A tentative implication is that

users like playlists to have some diversity and, if creating their own playlists

(like the ones provided by Spotify), they might aim to give them a level of di-

versity. If this tentative implication is correct, then there are reasons to try a

diversification technique in APC.

As usual, we use NN-1 (see Section 4.3.1.1 for the details) as the subprofile

detection algorithm.

We take the idea of SPAD and apply it to APC. As already mentioned, we treat

each playlist u ∈ U as if it were a user’s profile. Our baseline recommender

(whose recommendations get re-ranked by SPAD) is a fast alternating-least-

squares (ALS) implementation of matrix factorization for implicit and explicit

datasets [PZT10]. We chose this as our baseline because in the previous chap-

ters, for different datasets, it is the most accurate baseline recommender.

Ordinarily, SPAD diversifies a set of recommendations to cover the different

tastes (subprofiles) that we extract from a user’s profile. It is not obvious that

a playlist will similarly contain different tastes and therefore not obvious that

SPAD-style diversification will be of benefit to the APC task. Evidence of the

benefit is given in Section 8.6.

Our approach differs from the other teams’ approaches to the Creative Track

(see Section 8.2). First, unlike the other teams, we do not use any external

data such as audio features at all. Second, as we mentioned before, although

relevance is the only criterion in the challenge, we use a diversification ap-

proach.

8.4 Resources

Some of our decisions were constrained by available resources, which are ex-

plained here.

By the rules of the Challenge, participants could submit only one set of predic-

tions for evaluation per day. We started working (part-time) on the Challenge

in its last three weeks, so this gave us a very small number of opportunities to

test the performance of our approach on the Challenge Set. However, this did

motivate us to create a validation set (see next section) so that we could test

algorithm variants and find good values for hyperparameters. Not only was this
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expedient, we hope that it helped us to avoid overfitting our solution to the

Challenge Set.

We ran our algorithm on a personal laptop with a 2.5 Ghz Intel Core i7 and

24 GiB memory. Running experiments using a laptop for this large dataset

was challenging, especially for the matrix factorization algorithm. It took some

time to prepare a daily submission to the public leaderboard. This in turn con-

strained the size of validation set that we were able to work with (next section).

It also resulted in us making a major decision. Before applying our approach,

we eliminated all tracks that appear in only one MPD playlist. The number of

unique tracks was cut from 2,262,292 to 1,189,252. Of course, this reduction

in the item space improved run-times considerably. But it has a negative effect

on recommendation accuracy: since we can never recommend the eliminated

tracks, we lose out (for resource reasons, rather than algorithmic reasons) if

those tracks ever appear in the ground truth.

8.5 Methodology

The methodology that we follow in this chapter is different from the method-

ology explained in Chapter 3. The main reasons are that the MPD dataset is

larger than other datasets used in the experiments throughout this thesis and

the task of the challenge is a different task. We explain the methodology that

we use for APC in this section.

The baseline matrix factorization algorithm that we use has two hyperparam-

eters: the number of latent factors d and a confidence level α. SPAD also has

its own hyperparameters, which are the number of neighbours while detecting

the subprofiles (knn) and the number of neighbours in Eq. 4.4 (kind). For the

re-ranking in Eq. 2.2, there is λ, controlling the balance between accuracy and

diversity.

To find good values for these hyperparameters, we used a validation set. We

randomly selected 10,000 playlists. We kept 80% of their tracks as part of

the training data and held out 20% as validation data. This is quite a small

validation set (10,000 playlists compared with 1,000,000); it may not be repre-

sentative enough to optimize hyperparameter values. Its size was determined

by the resources we had available (previous section).
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We used a grid search. For d, α, knn, and kind, we tested values from the set

{10, 20, 30, . . . , 100}. For λ, we tested values from {0.1, 0.2, 0.3, . . . , 1.0}. We

selected the values that maximize precision, which were as follows: d = 100,

α = 50, knn = 30, kind = 70 and λ = 0.4.

Notice that, in the other chapters, we had a two-step hyperparameter opti-

mization process. When choosing hyperparameter values for baseline recom-

menders, we optimized precision. But when choosing hyperparameter values

for the re-ranking algorithms (such as SPAD), we optimized α-nDCG. In this

chapter, because the challenge evaluates the playlists only for accuracy, not for

diversity, we use precision to optimize both the hyperparameters of the baseline

recommender (MF) and of SPAD. Hence, we have only a one-step hyperpara-

meter optimization process here.

For the results presented in Section 8.6.2, we train the baseline using its se-

lected hyperparameter values on the 80% of the tracks in the 10,000 playlists

selected as validation set, and, for each of the 10,000 playlists, we generate a

recommendation set RS, where |RS| = 500. Then, we re-rank each RS using

SPAD with its selected hyperparameter values to produce the final set of recom-

mendations. Finally, we measure the evaluation metrics on the remaining 20%

of the tracks of each playlist.

8.6 Experimental Results

We divide this section into three: first we analyze the subprofiles that we found

in the playlists; then we give some experimental results on the validation set;

finally, we use data from the public leaderboards to compare our team’s perfor-

mance with other teams.

8.6.1 Subprofile analysis

We begin by asking: do playlists actually contain sub-tastes? Or, in other words,

do playlists, when treated as if they were user profiles, contain subprofiles? If

they do not, then there is little prospect that SPAD will work well on the APC

task. We show some data here that suggests that playlists do contain sub-tastes

(subprofiles).
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Figure 8.1: Number of subprofiles.

We applied SPAD’s subprofile detection method (explained in Section 8.3.2) to

the 8,000 playlists in the Challenge dataset that have at least 5 tracks. Fig-

ure 8.1 is a histogram showing the frequencies of different numbers of subpro-

files. In other words, it shows how many of the 8,000 playlists contain just one

subprofile, how many contain two subprofiles, how many contain three, and so

on.

If a playlist has just one subprofile, then that subprofile comprises the whole

playlist, and this would be a playlist with no sub-tastes. From the histogram,

we see that the number of playlists that fall into this category (i.e. ones with

just one subprofile) is very small. Perhaps surprisingly, playlists do contain sub-

tastes. Four subprofiles is most frequent, but some playlists have as many as

100.

What also matters is how long these subprofiles are, and this is shown in Fig-

ure 8.2.

From the histogram, we see that some are very short: even a single song where

that song is not a good enough neighbour to other songs in the playlist for it to

join their subprofile. But most subprofiles comprise two or more tracks.
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Figure 8.2: Subprofile length.

8.6.2 Validation set results

Here we show a few validation set results that confirm that SPAD re-ranking

provides an advantage over using just its baseline matrix factorization algo-

rithm.

In Figure 8.3, for all 10,000 playlists in the validation set, we plot Precision

(Figure 8.3a), and diversity measured as α-nDCG (Figure 8.3b), ERR-IA (Fig-

ure 8.3c), S-recall (Figure 8.3d), ILD (Figure 8.3e) and EILD (Figure 8.3f) for

different values of N for top-N recommendations.

It can be seen that re-ranking the matrix factorization recommendations using

SPAD always increases precision over matrix factorization. From the point of

view of the Challenge, this is all that matters. But we will look at the diversity

results too.

We can see in the figures that using SPAD always increases diversity but with

one exception. The exception is the ILD metric: for large values of N , the

MF baseline performs better than SPAD. Interestingly, even when diversity is

measured by S-recall and ILD, which are not relevance-aware metrics, SPAD

performs well. For S-recall, SPAD always performs slightly better than the MF

baseline. For ILD, especially for smaller values of N , SPAD outperforms the MF
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Figure 8.3: Validation set results against the number of recommendations, N .

baseline. It is also noteworthy that SPAD always results in more relevant and

diverse recommendations for higher ranks in the recommendation list, top-5
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and top-10 for example. In Spotify playlists, users are interacting with top-10

recommendations first.

We also look at the values of the metrics for different playlist sizes and for

different numbers of subprofiles. For the 10,000 playlists in the validation set,

Figure 8.4 shows the precision and diversity of the MF baseline and of SPAD for

playlists of up to 5 tracks, from 6 to 10 tracks, 11 to 25 tracks, 26 to 50 tracks,

51 to 100 tracks, and 101 to 200 tracks.

Similarly, Figure 8.5 shows the precision and diversity for the validation set but

this time showing results for playlists that have up to 5 subprofiles, from 6 to

10 subprofiles, 11 to 25, 26 to 50, 51 to 100 and 101 to 200.

The figures show that, usually as the playlist length and the number of subpro-

files increases, the amount by which SPAD outperforms matrix factorization also

increases. The more songs there are in a playlist, the more subprofiles there are,

but also the more precision and diversity measured by α-nDCG, ERR-IA and

EILD benefits from SPAD re-ranking. ILD and S-recall do not follow the same

pattern. They usually benefit from SPAD re-ranking, but when there are more

than 100 tracks in the playlists and playlists have more than 100 subprofiles

SPAD starts to trade-off diversity for precision.

Considering the task of the challenge, which aims to maximize the relevancy of

the recommended tracks to be added to playlists, arguably the figures also show

that for the shortest playlists, precision for both SPAD and matrix factorization

is so low that we might have benefited instead from applying our cold-start

strategy (or a more sophisticated cold-start strategy) to more playlists than we

did.

8.6.3 Leaderboard results

Among 32 teams, our team (teamrozik) came seventh in the Creative Challenge.

Table 8.3 shows the final leaderboard published by the Challenge organizers,

which evaluates the teams on all of the Challenge Set.
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Figure 8.4: Profile length plots.
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Figure 8.5: Number of subprofiles plots.

8.7 Conclusions

In this chapter, we presented our approach to the ACM RecSys Challenge 2018, in

which the task is automatic playlist continuation (APC). For cold-start playlists,
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Table 8.3: Creative Challenge leaderboard

rank team name RPREC RPREC rank NDCG NDCG rank Clicks Click rank Borda
1 vl6 0.2234 1 0.3939 1 1.7845 1 90
2 Creamy Fireflies 0.2197 2 0.3846 2 1.9252 4 85
3 KAENEN 0.209 3 0.3746 3 2.0482 6 81
4 cocoplaya 0.2022 7 0.3656 6 1.8377 2 78
5 BachPropagate 0.2024 6 0.3659 5 2.0029 5 77
6 Trailmix 0.2059 4 0.3703 4 2.2589 9 76
7 teamrozik 0.2055 5 0.3609 7 2.1636 8 73

we used a popularity recommender. For the remainder of the playlists, we built

a model using matrix factorization to generate sets of recommendations. But

our contribution is that we re-ranked those recommendations to increase their

diversity using SPAD. Using a validation set, we showed that SPAD re-ranking

results in more accurate and mostly more diverse recommendations. Our analy-

sis supports the claim that user-generated playlists do contain subprofiles cor-

responding to different interests or tastes, and trying to cover those subprofiles

in the final set of recommendations produces more accurate recommendations.

Due to resource limitations (Section 8.4), we excluded a large number of songs

from the dataset on which we built our model. Being unable to recommend

those songs will have negatively affected our precision results. Furthermore, in

the time that we allowed ourselves for working on the Challenge, we were not

able to improve the method we use for cold-start playlists. Our method is quite

rudimentary and easily improved, e.g. to use string similarity instead of exact

matching of playlist titles.

While SPAD has proven successful for the APC task, it is designed for making

recommendations in general. A music streaming service, such as Spotify, could

apply it to whole user profiles (instead of playlists), in which case it should pro-

duce accurate and diverse sets of recommendations, covering different tastes

and interests within the user’s profile.

In the next chapter, we conclude the thesis by giving a brief overview of the

contributions that we have made and offering ideas for future work.
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Chapter 9

Conclusions & Future Work

In this thesis, we have addressed the question of how best to produce a rel-
evant but diverse set of recommendations. First, we have proposed a form of

intent-aware diversification approach, Subprofile-Aware Diversification (SPAD),

that diversifies with respect to subprofiles that we mine from the user’s profile,

rather than with respect to item features.

Throughout this thesis, using different datasets, we found that SPAD and its

variants almost always result in relevant and diverse recommendations, i.e.

they suffer less from the relevance/diversity trade-off than other state-of-the-art

approaches to recommendation diversification. This is true even when SPAD is

applied to a completely different task, Automatic Playlist Continuation (Chapter

8). This is noteworthy, since it supports the generality of SPAD. Our findings

addresses the main goal of this thesis: "producing relevant but diverse set of

recommendations."

In this chapter, we present the conclusions derived from the main contributions

of this thesis and we give some ideas for future work.

9.1 Conclusions

In this section, we summarize the main conclusions of this thesis.
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9.1.1 Subprofile detection methods

In Chapter 4, we have presented and compared eight different ways to extract

subprofiles from a user’s profile. We grouped them into three: methods that

use the nearest-neighbours of liked items; methods that use the explanations

of top-n recommendations; and methods that consider profile coverage. The

methods that use the nearest-neighbours of liked items have several advantages

over the others, and the empirical comparison on three datasets shows that one

of these methods (designated NN-1) also most often performs better than the

others in terms of recommendation accuracy and diversity. We have analyzed

the subprofiles extracted by NN-1 for each of the three datasets with descriptive

statistics and distribution graphs to better understand how extracted subprofiles

differ from dataset to dataset.

9.1.2 SPAD & RSPAD

In Chapter 4, we have proposed a new approach to recommendation diversifi-

cation that we refer to as SPAD, and its variant RSPAD. Unlike other approaches

to recommendation diversification, which use item features to model user tastes

and interests, in SPAD and RSPAD we have modeled user tastes and interests

by using subprofiles of the user’s profile. By doing so, we obtain a more fine-

grained representation of the user tastes and interests than those obtained by

item features.

In chapter 5, using subprofiles detected by NN-1, we have compared SPAD and

RSPAD against several existing intent-aware diversification methods, ones that

use item features as aspects. Empirical results on three datasets show that

SPAD and RSPAD always result in the highest precision; they increase both

precision and diversity in almost all settings; and they suffer even less from the

relevance/diversity trade-off. These are noteworthy results because all existing

intent-aware methods may have an advantage with respect to our measures of

diversity since both the methods and the metrics uses item features.

9.1.3 Adaptation of diversity metrics to subprofiles

SPAD and its variants make no use of item features at all in their objective

functions. Since all of the diversity metrics that we use in the experiments
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are computed with respect to the item features, SPAD and its variants are at a

disadvantage. In Chapter 5, we have adapted the diversity metrics α-nDCG,

ERR-IA, S-recall, EILD and ILD so that they use subprofiles instead of item

features. Experimental results showing diversity metrics by item features and

subprofiles side-by-side confirm that, indeed, SPAD and its variants are at a dis-

advantage. They also show the additional complexity of SPAD and its variants

over other re-ranking algorithms in terms of diversity, because they always have

the highest diversity values when measured by subprofiles, and they also usu-

ally improve the score of the diversity metrics, measured by item features, with

respect to their baselines.

9.1.4 Community-Aware Diversification

In Chapter 6, we defined an alternative way to detect subprofiles, that we refer

to as Community-Aware Diversification (CAD). CAD detects subprofiles using a

user-user similarity approach, unlike SPAD, which uses an item-item similarity

approach.

We find that, similar to SPAD, CAD produces recommendations that are usually

the most accurate. We show that, again similar to SPAD, CAD is less prone to

trading-offs accuracy for diversity. We also find that in some cases using CAD

subprofiles performs better than using SPAD subprofiles; in other cases, the

reverse is the case. We conclude that, for some domains, it is meaningful and

useful to define subprofiles indirectly through a user’s community (her nearest

neighbours).

9.1.5 Intent-aware vs. calibrated recommendation

In Chapter 7, we have given a comparison between intent-aware and calibrated

recommendation. Calibrated recommendation is strongly related to intent-

aware recommendation in that both try to cover the user’s interests to a certain

extent.

We adapted the calibration metric, which uses item features, to give a variant

that it is defined with respect to subprofiles instead. We have also defined a

new instantiation of calibrated recommendation that aims to cover subprofiles,

instead of item features.
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We have found that intent-aware recommendation results in calibrated recom-

mendations to a certain extent, and calibrated recommendation results in di-

verse recommendations to a certain extent. We have also found that calibrated

recommendation, which aims to cover user interests with their exact propor-

tions in the user’s profile, harms relevancy (measured by precision) a lot. Be-

sides, re-ranking approaches using subprofiles achieve the highest precision,

and good calibration according to both calibration metrics, and usually achieve

good diversity. They also suffer less from the relevance/diversity trade-off.

9.1.6 Submodularity of intent-aware approaches

By giving the proof that the main goal of intent-aware approaches, to find an

optimal recommendation set RL∗ of size N items, is NP-hard, and giving the

proof of submodularity and monotonicity of the objective function, we have

confirmed the proof of (1 − 1
e
) optimality guarantee of intent-aware approac-

hes that use xQuAD’s objective function (See Eq. 7.1), including SPAD and its

variants.

9.1.7 Applying SPAD to Automatic Playlist Continuation

In this thesis, the main goal of SPAD and its variants is diversification. As we

already mentioned, the main advantage of SPAD and variants is that they in-

crease both precision and diversity. In chapter 8, we apply SPAD to the task of

Automatic Playlist Continuation (APC), where precision, rather than diversity,

is the main goal. We showed that SPAD re-ranking results in more accurate rec-

ommendations. We confirm that user-generated playlists do contain subprofiles

corresponding to different interests or tastes, and trying to cover those subpro-

files in the final set of recommendations produces more accurate and diverse

recommendations.

9.2 Future Work

Our contributions in this thesis have introduced new ways to diversify recom-

mendations. Mainly, we have focused on developing approaches that can pro-

duce relevant but diverse recommendations. We believe that we have covered
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many angles on the main research topic. But our work is open to further exten-

sions. In this section, we try to give a brief overview of some of these possible

extensions.

9.2.1 Interpretability of SPAD

In the future, we could explore the interpretability of SPAD’s recommendations:

we might be able to explain SPAD’s recommendations in terms of subprofiles.

Since subprofiles are just sets of items, we can take inspiration from the work

on item-based explanations (as used, for example, in amazon.com), which has

been proven to produce effective explanations [BD14, BM05].

9.2.2 Perceived diversity

Nearly all work on recommender set diversification, including our own, is eval-

uated using offline experiments. But there is the question of how users perceive
diversity [GDBJ10]. It would be valuable to conduct user studies to measure

how users perceive the recommendations generated, e.g. by SPAD.

9.2.3 Using temporal aspects in SPAD

We could explore temporal aspects in detecting the subprofiles. In this thesis,

subprofile detection treats the user profile and accordingly user tastes and in-

terests as a static set. It does not consider the order, nor the actual timestamps,

of the items in the user’s profile. It might be beneficial to take this into account.

For instance, we could take the idea of Evolutionary Collaborative Filtering

[LZXY10], which assumes that older preferences of the users are generally less

correlated with a user’s current interests.

9.2.4 Using subprofiles in the cost functions

It might be possible to use subprofiles directly in the cost function that is opti-

mized by a recommender system, instead of using them for re-ranking. Indica-

tive of how this might work are set-oriented approaches, e.g. [SYCY13].
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9.2.5 SPAD for task of recommendation to shared accounts

We could use the idea of using subprofiles for recommendation diversification

for the task of recommending to shared accounts. We have used algorithms

that were originally developed to recommending to shared accounts [VG15]

as subprofile detection approaches. Our motivation to do so was the fact that

DAMIB and DAMIB-COVER recommend to different subprofiles within a single

account. Now that we have a wider range of subprofile detection methods

(developed in this thesis), we could see which of these is most competitive in

the task of recommending to shared accounts.

9.2.6 Further subprofile detection methods

In Chapter 4, we presented eight different subprofile detection methods. We

also present alternative subprofile detection methods in chapter 6. We could

develop yet further methods. For example, since subprofile detection can be

viewed as a clustering task, perhaps existing clustering algorithms could be

used to detect subprofiles as well. Notice that, usually, clustering algorithms

partition a set of objects into clusters, hence each object is assigned to exactly

one cluster (e.g. see k-means clustering [KMN+02]). Our current subprofile

detection methods allow subprofiles to overlap: an item can belong to more

than one subprofile. It is possible that overlapping clustering algorithms would

be a better choice to use to detect the subprofiles (e.g k-means for overlapping

clustering [Cle08]).

9.2.7 SPAD for cold-start users

Intent-aware approaches diversify a set of recommended items produced by a

baseline recommender with respect to the tastes or interests revealed by a user’s

profile. The user’s tastes or interests are defined as a probability distribution

over a set of aspects. In xQuAD, for example, aspects are item features, whereas

in SPAD, aspects are the items in the user’s profile, referred to as subprofiles.

Intent-aware diversification approaches may fail to give diverse results to cold-

start users, since their profile may not yet reflect all their tastes or interests.

Only once their profiles have matured to include a wider range of tastes or

interests will these techniques be effective.
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Indeed, in Chapter 8, albeit for the APC task, we show that, usually, as the

playlist length (user’s profile size) and the number of subprofiles increases, the

amount by which SPAD outperforms the baseline recommender also increases.

For the smaller playlists (users with smaller profile size), the performance of

SPAD and the baseline recommender are really close to each other.

These findings open a line of future work for cold-start users. In part, this

may be about how to diversify recommendations for cold-start users, despite

their small profiles. On the other hand, the solution may not be about directly

about diversification. The solution may be getting a user to build her profile

using active learning or extending her tastes or interests through serendipitous

recommendations.
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Appendix A

Hyperparameter Values

A.1 Hyperparameter values for baseline recomme-

nders

Table A.1 shows optimized hyperparameter values of each baseline recommen-

dation algorithm on each dataset. Unless explicitly indicated, we use the values

shown in Table A.1 to train the baseline recommenders in the following chap-

ters.

A.2 Hyperparameter values for different subpro-

file detection methods

Here, we show the hyperparameter values for different subprofile detection

methods that are used in the experiments of Chapter 4. We select the values of

kind , knn and kIB from V = {10, 30, 50, . . . , 290, 310} and we select the value of

cp from the set [0.5, 0.6, . . . , 1.0]. See Table A.2 for the hyperparameter values.
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A. HYPERPARAMETER VALUES

A.2 Hyperparameter values for different
subprofile detection methods

Table A.1: Hyperparameter values for each baseline recommender.

MF pLSA FMBPR
d α d d lr regW regM

ML1M 30 1 50 190 0.01 0.01 0.01
LFM 30 1 30 10 0.01 0.01 0.001
LT 330 1 270 270 0.01 0.01 0.01
FB 50 10 30 190 0.01 0.01 0.01

ML20M 40 6 - - - - -
TasteProfile 100 20 - - - - -
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A.2 Hyperparameter values for different
subprofile detection methods
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A. HYPERPARAMETER VALUES

A.3 Hyperparameter values for different
diversification algorithms

A.3 Hyperparameter values for different diversifi-

cation algorithms

This section presents the hyperparameter values we use in Chapters 5, 6 and 7.

We select the values of kind , knn and kUB from the set V that we show in the

previous section. However, for the FB dataset, we found we needed a greater

range of candidate values and so we tested with values up to 1500. For CAD’s

additional hyperparameter q, used in relaxed intersection, we select its values

from the set [0.1, 0.2, . . . , 1.0].

The values selected for the MovieLens dataset are:

• pLSA: knn = 10, kind = 50 for SPAD; kUB = 150, kind = 10, q = 0.7 for CAD.

• MF: knn = 10, kind = 30 for SPAD; kUB = 170, kind = 10, q = 0.7 for CAD.

• FMBPR: knn = 10, kind = 10 for SPAD; kUB = 150, kind = 10, q = 0.8 for

CAD.

The values selected for the LastFM dataset are:

• pLSA: knn = 30, kind = 10 for SPAD; kUB = 130, kind = 10, q = 0.9 for CAD.

• MF: knn = 50, kind = 10 for SPAD; kUB = 130, kind = 10, q = 1.0 for CAD.

• FMBPR: knn = 10, kind = 10 for SPAD; kUB = 90, kind = 10, q = 0.8 for

CAD.

The values selected for the LibraryThing dataset are:

• pLSA: knn = 10, kind = 10 for SPAD; kUB = 150, kind = 10, q = 1.0 for CAD.

• MF: knn = 30, kind = 10 for SPAD; kUB = 170, kind = 10, q = 0.8 for CAD.

• FMBPR: knn = 10, kind = 10 for SPAD; kUB = 150, kind = 10, q = 1.0 for

CAD.

The values selected for the Facebook dataset are:

• pLSA: knn = 10, kind = 10 for SPAD; kUB = 1500, kind = 10, q = 0.8 for

CAD.

• MF: knn = 10, kind = 10 for SPAD; kUB = 1500, kind = 10, q = 0.8 for CAD.

• FMBPR: knn = 10, kind = 10 for SPAD; kUB = 1500, kind = 10, q = 0.8 for

CAD.
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A. HYPERPARAMETER VALUES

A.3 Hyperparameter values for different
diversification algorithms

The values selected for the ML20M and TasteProfile datasets are:

• MF: knn = 10, kind = 10 for SPAD and CRS .
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