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Abstract 

Onion (Allium cepa L.) is an important vegetable crop with an annual production of 

around 66 million tonnes worldwide. Onion and its by-products have the highest 

amount of quercetin content compared to other fruits and vegetables, which makes it 

a good free radical scavenging ability, contributing to its antioxidant capacity. 

Phytochemicals and antioxidants of onion are predominantly important for human 

health since phytochemicals have multiple compounds, including phenolics, 

flavonoids, anthocyanins, and quercetin. The total phenolic content of onions is not 

only higher than its fellow allium vegetables, such as garlic and leeks, but also higher 

than that of other common vegetables, such as carrots and red bell pepper. 

The main objective of this study was to investigate phenolic contents and antioxidant 

activity of different onion varieties by using different pre-harvest (soil, sunlight, 

climate, and fertiliser) and post-harvest (processing and storage) methods. In order to 

achieve this, several experiments have been designed and carried out among different 

onion varieties, particularly between organic and conventional ones. 

The first experimental chapter aimed to compare the total phenolic contents, total 

flavonoid contents, and antioxidant activity in onions grown under organic, 

conventional, and mixed cultivation practices in a multi-year experiment. ‘Hyskin’ 

and ‘Red Baron’ varieties had significantly higher phenolic contents and antioxidant 

properties in organic than in conventional production in most years. This study 

further investigated storage potential of organic and conventional onions at different 

storage conditions (-20 oC, 5 oC, and 25 oC with 60–75% relative humidity) for 10 

weeks in the second experimental chapter. The findings suggested the fresh 

conventional onions were stored at -20 oC and 5 oC showed no significant quality 

(total phenolics, total flavonoids, flavonol, and antioxidant activity) loss. Meanwhile, 

the quality of dried organic onions remained stable during 10 weeks at -20 oC and 5 

oC.  



  

xiv 

 

Moreover, the third and fourth experimental chapters aimed to evaluate the effects of 

food thermal processing technologies on organic onions nutritional (the levels of 

phenolic compounds, colour and antioxidant properties). More specifically, this study 

firstly investigated the quality change in onions dried by different drying methods 

(freeze-drying, hot-air drying, vacuum oven drying, and oven drying) in comparison 

with fresh samples. Results indicated that the dried onion showed significantly 

higher total phenolic contents and antioxidant activity than those of undried onions. 

In order to reduce the energy involved and reducing the drying time in onion drying 

methods, blanching as a pre-treatment method optimizes the onion drying process. 

Therefore, the combination of a fast blanching and hot-air oven drying (60 ºC) as a 

pre-treatment may be favorable since the application of heat treatment is the most 

common strategy for stabilising foods due to its capacity of destroying 

microorganisms and inactive enzymes. Since thermal processing, particularly 

blanching for a long time can negatively affect levels of phytochemicals in onions by 

experiencing a thermal breakdown or leakage of components, there is a growing 

interest in identifying new non-thermal strategies for the food industry.  

Finally, the last part of this thesis aimed to investigate the effects of ultrasonic pre-

treatment (non-thermal) and blanching prior to hot-air or freeze-drying of onions on 

the retention of phenolic compounds. These results showed that ultrasound pre-

treatment is a potential alternative to conventional blanching pre-treatment in the 

different drying onion slices. It may be used in a combination with other processing 

techniques to obtain high nutritive dehydrated onions compared to that of the 

products dried without the pre-treatment.  

In general, the research conducted in this thesis makes a notable contribution to the 

existing knowledge because it gives insights into pre and post- harvest conditions 

that contribute to high phenolic content and antioxidant activity in onions. The pre-

harvest treatments and the novel approach to the post-harvest processing methods 

(blanching and ultrasound) can serve as ‘recommendations and guidelines’ for the 
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industry or the agriculture authorities at a national level. 
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1.1 Introduction  

The onion (Allium cepa L.) originated in central Asia and is one of the oldest 

cultivated plants, with cultivation records dating back to more than 4000 years. It is 

one of the most widely cultivated vegetable crops worldwide, after tomatoes, with an 

annual production estimated to be around 66 million tonnes (FAO, 2009), with 5.7 

million tonnes of onions produced in Europe in 2013 (Eurostat, 2014). Onion 

bioactive compounds (i.e., phenolics) contribute to specific biological properties of 

onions. Table 1.1 highlights some of these biological properties. 

When onions grow to an appropriate stage of maturity, they are harvested. The stage 

of maturity depends on the planting season, cultivar, market price, and conditions of 

the crop. Before harvest, onion bulbs along with their tops are pulled/lifted from 

under the soil in order to stop growth, and are usually kept/cured in the field for a 

few days to remove excess moisture from the outer skin and neck to reduce 

shrinkage, allowing for the colour development during storage. These fresh onions 

can then be directly supplied to the market, or further processed into different forms, 

for example, dried powders or flakes (Khan et al., 2016; Choi et al., 2017). 

Particularly, processing and storage steps deserve a pivotal relevance, since minor 

differences in the chemical and bioactive compounds of onions can lead to profound 

changes in their bioavailability and bioactive natural matrices (Pérez-Gregorio et al., 

2014; Martins, Petropoulos, & Ferreira, 2016). Onion flavonoid effects of domestic 

treatments such as slicing chopping, shredding, peeling (Cantos et al., 2003; Berno et 

al., 2014; Islek et al., 2015), cooking (Rodrigues et al., 2009; Harris et al., 2015), or 

frozen (Ewald et al., 1999; Pérez-Gregorio et al., 2011b) were also investigated by a 

number of studies. Furthermore, onions could also be industrially processed. 

Industrial processing not only includes all domestic treatments but also includes 

thermal processing (roasting or boiling), freezing, drying, and packaging. The 

influence of these treatments on the onion flavonoid contents and profile will be 

further discussed in this thesis. It has been reported that the growing international 
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market for onion products has been developed with dehydrated methods such as 

powder, frozen, or canned onions (Arslan & Özcan, 2010). One of the drives to 

further process fresh onions into other forms was to reduce product loss (20% - 30%) 

during storage. Additionally, dehydrated products possess medicinal features, for 

containing higher concentrations of beneficial compounds than fresh onions 

(Lanzotti, 2006). 

The food industry offers commercial onion powder as a nutraceutical or as a dietary 

supplement (Debnath, Hemavathy, & Bhat, 2002). Onion powders as spices may 

contain phenolic compounds and contribute to the intake of natural antioxidants, 

which can produce positive effects combining with other food (improve the 

antioxidant capacity and flavor) (Arslan & Özcan, 2010; Mitra, Shrivastava, & Rao, 

2012; Sharma et al., 2015a). 
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Table 1.1 Reported bioactivity of phenolic in onions. 

Reported bioactivities References 

Preventing cardiovascular diseases  Lamson and Brignall (2000); Ly et al. (2005); 

Siddiq et al. (2013); Pérez-Gregorio et al. 

(2014); Sharma et al. (2015a) 

Antioxidant 

Anti-inflammatory Hanahan and Weinberg (2000) 

Gee, Hara, and Johnson (2002) 

Yang et al. (2004) 

Ly et al. (2005) 

Russo et al. (2012) 

Lisanti et al. (2016) 

Sharma et al. (2016a) 

Valentová et al. (2016) 

Fredotović et al. (2017) 

Wang, Li, and Bai (2017) 

Murayyan et al. (2017) 

Bahram-Parvar and Lim (2018) 

Anti-proliferative 

Anti-angiogenic 

Pro-apoptotic 

Activating Immune destruction 

Tumor promoting inflammation 

Senescence induction and telomerase inhibition 

Preventing the growth of tumors 

Apoptosis autophagy Hanahan and Weinberg (2011) 

Reducing the risk of death from coronary heart disease Hertog et al. (1993a); Arshad et al. (2017) 

Against arteriosclerosis Kleemann et al. (2011) 

Antimicrobial activity against fungal, bacterial and viral 

infections. 

Rose et al. (2005); Wu et al. (2005); Santas, 

Almajano and Carbo (2010) 

Anticarcinogenic and antimutagenic activities  Singh et al. (2009) 

Anti-hypertensive effect and reduce blood pressure  Sanchez et al. (2007) 

Anti-hyperglycemic or anti-diabetic potential and prevent 

advanced glycation of collagens, which contribute to the 

development of cardiovascular complications in diabetic 

patients  

Urios, Grigorova-Borsos, and Sternberg 

(2007); Akash, Rehman, and Chen (2014) 
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1.2 Phenolic compounds in onions  

Common fruits and vegetables that are abundant in phenolics include most berry 

crops, many tree fruit crops and onions. Onion was reported as one of the vegetables 

that contains the greatest amount of flavonoids, contributing to human daily diet 

(Hertog, Hollman, & Katan, 1993b). 

Phenolic compounds comprise a wide variety of molecules that have a polyphenol 

structure (i.e., several hydroxyl groups on aromatic rings). Polyphenols are divided 

into several classes according to the number of phenol rings that they contain and the 

structural elements that bind these rings to each other (D’Archivio et al., 2007). They 

are important natural bioactive compounds found in onions and are widely 

recognized for their health benefits (Tiwari & Cummins, 2013). The total phenolic 

content is usually higher in red onions compared to white varieties. 

1.2.1 Flavonoids in onions 

Flavonoids are important polyphenols in foods and they are categorised by their 

chemical structure, namely: flavonols, flavones, flavanones, isoflavones, flavanols 

and anthocyanidins (Rice-Evans, 1995; Ignat, Volf, & Popa, 2011; Pérez-Gregorio et 

al., 2014) (Figure 1.1). Many studies have investigated the presence of flavonoids in 

onions (Pérez-Gregorio et al., 2010; Pérez-Gregorio et al., 2014; Arshad et al., 2017). 

At least 25 different flavonols have been characterized in onions (Slimestad, Fossen, 

& Vagen, 2007). There are seven major flavonol compounds in onions. They are (i) 

quercetin aglycone, (ii) quercetin monoglucoside, (iii) quercetin diglucosides, (iv) 

isorhamnetin, which is a methyl ether of quercetin, (v) isorhamnetin monoglucoside, 

(vi) rutin and (vii) kaempferol (Park & Lee, 1996). Kaempferol is detectable in 

certain onion varieties but it presents in much smaller quantities than quercetin (Bora 

& Sharma, 2009). 
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Figure 1.1 Chemical structures of flavonoids (Source: Ignat, Volf, & Popa, 2011) 

Even though anthocyanins do not constitute a major flavonoid content in onions, they 

have frequently been reported to be presented in red onions. Slimestad, Fossen, and 

Vagen (2007) reported that there are at least 25 different anthocyanins in red onions, 



Chapter 1 Literature Review  

7 

 

with the quantitative content being approximately 10% (39 - 240 mg/kg fresh weight) 

of the total flavonoid content. Bystricka et al. (2013) also showed that many varieties 

of red onions covered red anthocyanins in the form of glycosides of cyanidin, 

peonidin, and pelargonidin. Anthocyanins are also reported to be a source of 

antioxidant activity (Geetha et al., 2011). Anthocyanin pigments, concentrated in the 

outer shell/skin of red onions, are only minor constituents of the edible portion.  

Little has been known for the total amount of anthocyanins in red onions. Although 

some researchers (Ferreres, Gil, & Tomás-Barberán, 1999; Clifford, 2000) found 

about 250 mg/kg anthocyanins in red onions, however, they did not address which 

part of the onion they used, the edible part or the whole onion. Statistically, the 

amount of anthocyanins was found on the dry skin of red onions, ranging from a 

minimum 109 mg/100 g to a maximum 219 mg/100 g (Donner, Gao, & Mazza, 

1997). 

 1.2.1.1 Quercetins in onions  

Quercetin is the aglycone form of a number of flavonoid glycosides, such as rutin 

found in onions (Juergenliemk et al., 2003). Glycosides can be classified by the 

glycone, by the type of glycosidic bond, or by the aglycone. The aglycone part is the 

non-sugar group of a glycoside. Many plants store chemicals in the form of inactive 

glycosides. They can be activated by enzymatic hydrolysis, which causes the sugar 

part to be broken off, making the chemical available for use (Brito-Arias, 2007).  

Quercetin diglucoside (Qdg) and monoglucoside (Qmg) account for up to 93% of the 

total flavonol content in onions (Lombard, Geoffriau, & Peffley, 2002). Sellappan 

and Akoh (2002) also reported that quercetin is the major flavonoid found in onion, 

present in the conjugated form, quercetin 4’ glucoside (4’Qmg), quercetin 3,4’ 

diaglucoside (3,4’Qdg), and quercetin. Slimestad, Fossen, and Vagen (2007) also 

agreed that quercetin and its derivatives were the most dominant flavonols found in 

studied onion cultivars. Similarly, Lombard et al. (2005) reported that 4’Qmg and 
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3,4’Qdg are the main flavonols present in onions, accounting for about 80 to 95% of 

the total flavonol content. Quercetin levels, to some extent, represents the flavonol or 

phenolic compounds present in onions. 

1.3 Variation of phenolic contents among different crops and onion cultivars 

Onions have the highest quercetin compounds among many other vegetables and 

fruits (Galdón, Rodríguez, & Romero, 2008). Onions contain 300 mg quercetin/kg 

fresh weight compared to 100 mg/kg fresh weight in kale, 40 mg/kg fresh weight in 

blackcurrants, and 30 mg/kg fresh weight in broccoli and apples (Mogren, Olsson, & 

Gertsson, 2006). However, the levels of phenolic compounds vary considerably 

between different onion cultivars. Onions provide a good example of the importance 

of a vegetable genotype on the content of phenolic compounds (Marotti & Piccaglia, 

2002). 

Colour is a phenotypical attribute and is closely related to the content of flavonols in 

onions (Lachman et al., 2003). Total flavonols contents in onions are usually higher 

in red onions, and lower in yellow or white varieties (Desjardins, 2008; Tedesco et 

al., 2015). In a detailed study of 55 onion cultivars, the level of quercetin was found 

to be the highest in red, pink, and yellow onion varieties (in the range of 54 – 286 

mg/kg fresh weight (FW), whilst white onions contained low levels of quercetin 

(Patil, Pike, & Hamilton, 1995). Similarly, Dalamu et al. (2010) found that the 

quercetin content ranged from 22 to 895 mg/kg FW in 34 onion genotypes and hence 

it can be clearly seen that the quercetin content in onions varieties (Slimestad, Fossen, 

& Vagen, 2007).  

However, colour may not be the only influencing factor affecting the total quercetin 

contents in different onion varieties (Patil & Pike, 1995). Crozier, Lean, McDonald, 

and Black (1997) reported that only 201 mg/kg FW quercetin was found in some 

parts of red onions, but a much higher quercetin content was observed in the whole 
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white onions (185-634 mg/kg FW). Marotti and Piccaglia (2002) also found higher 

levels of total flavonoids in golden onion varieties compared with red onions. 

Long-day cultivars and short-day onion cultivars were studied by Okamoto et al. 

(2006), Yoo, Lee, and Patil (2010) and Petropoulos et al. (2015), who reported 

differences in quercetin content in these two cultivars. Lombard, Geoffriau, and 

Peffley (2004) also pointed out that the total quercetin content in long-day cultivars 

was also documented to be higher than in short-day cultivars and this difference did 

not depend on growing locations. Effects of onion bulb size on quercetin content 

were also investigated by some researchers. Lee et al. (2008) reported that small 

onions had higher flavonoid contents than larger onions. However, Patil, Pike, and 

Hamilton (1995) demonstrated that bulb size did not show any effect on the quercetin 

level. Mogren, Olsson, and Gertsson (2006) also reported that minor or no 

differences in quercetin glucoside content were observed between small- and large-

sized onions.  

1.3.1 Flavonoids distribution in onion tissue  

Flavonoids in onions, mainly consisting of quercetins, accumulate to varying in plant 

tissues and levels determined in different plant parts are dependent upon 

environmental conditions (Hichri et al., 2011). Onion bulb skin (the non-edible dry 

peel) is richer in total flavonoids compared to the edible flesh (Hirota, Shimoda, & 

Takahama, 1998; Gulsen, Makris, & Kefalas, 2007; Nemeth & Piskula, 2007; 

Slimestad & Vagen, 2009; Pobłocka-Olech et al., 2016). Grzelak et al. (2009) 

determined a three-fold difference in flavonols present in the fresh outer scales of the 

studied onion compared to any other onion part. Lee et al. (2008) reported a decrease 

in the content of flavonoids in onion from the first to the seventh scale. Mogren, 

Olsson, and Gertsson (2006) claimed that about 90% of the total flavonols was 

concentrated and confined to epidermal tissue. Nemeth and Piskula (2007) and 

Slimestad and Vagen (2009) suggested that the higher flavonol contents in the outer 



Chapter 1 Literature Review  

10 

 

bulb scales, compared to in the inner scales, is due to cell aging. However, Beesk et 

al. (2010) found that the total flavonoid content in onions ranked as follows: middle 

layers > outer layers > inner layers.  

Anthocyanin contents in onions were also studied and reported to be rich in the dry 

skin of onion bulbs (particularly in red and pink onion varieties). It is noteworthy that 

63% of red onion anthocyanins are presented in the dry skin, which means that, after 

bulb peeling, only 27% of the total anthocyanins of red onion will be consumed 

(Gennaro et al., 2002). 

1.4 Bioactivity of phenolic compounds in onions  

Phenolic compounds are responsible for the major organoleptic characteristics of 

plant-derived foods, and also contribute to the nutritional qualities of fruits and 

vegetables (Parr & Bolwell, 2000). Phenolic compounds are known for their ability 

to provide a defence against the oxidative stress of oxidizing agents and free-radicals 

(Slusarczyk, Hajnos, Skalicka-Wozniak, & Matkowski, 2009). Oxidative stress is 

caused by an imbalance between the production of reactive oxygen species (ROS) 

and the antioxidant capacity of the cell, which can also be seen as a disturbance of 

the balance between oxidants and antioxidants caused by different factors such as 

aging, drug actions and toxicity and inflammation (Prakash, Singh, & Upadhyay, 

2007). ROS can cause damage to important biomolecules, such as DNA, proteins, 

lipids, and carbohydrates, resulting in a variety of diseases (Prakash, Singh, & 

Upadhyay, 2007). Oxygen is a reactive species that has the ability to become part of 

potentially harmful or damaging molecules (free radicals). Free radicals cause 

healthy body cells to lose their function and structure. When the antioxidant capacity 

is limited, this damage can accumulate which leads to several diseases (Özyürek et 

al., 2014). 

Antioxidants are natural substances (phenolics can act as reducing agents, metal 

chelators and singlet oxygen quenchers) that may prevent or delay some types of cell 
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damage and therefore protect the human body from free radicals. There are several 

species or molecules, which can be endogenous (internally synthesised) or 

exogenous (consumed), that are important in antioxidant defence and are considered 

as a biomarker of oxidative stress. Antioxidants can be regarded as either chain 

breaking antioxidants or preventive antioxidants (Özyürek et al., 2014). Antioxidants 

contribute to the suppression of oxidative stress and it is considered to be an effective 

way in preventing diseases caused by oxidative stresses (Özyürek et al., 2014). They 

are widely recognized for their health benefits, which include antioxidant, anti-

inflammatory, antimicrobial and anticancer bioactivities (Ly et al., 2005; Paredes-

Lopez et al., 2010; Tiwari & Cummins, 2013) and their protective effects against 

different degenerative pathologies such as cardiovascular and neurological diseases, 

and other dysfunctions based on oxidative stress (Griffiths et al., 2002).  

Additionally, anthocyanins not only have strong biological functions such as anti-

inflammatory and antioxidant activities (Kong et al., 2003), which are linked to the 

prevention of a number of degenerative diseases, but also provide sources of natural 

food dyes (Bleve et al., 2008). 

Quercetin occurs at high levels in onions (Tiwari & Cummins, 2013). It is an 

effective scavenger of free-radicals and is also associated with antiviral, anti-

inflammatory, antibacterial and muscle-relaxing properties (Jan et al., 2010). Table 

1.1 lists some studies which have reported the potential health benefits of quercetin 

from onions. The same authors reported that there was substantial evidence 

demonstrating the chemo-preventive properties of quercetin against certain types of 

cancers, including; bladder, ovarian, breast, colon, stomach intestinal and lung 

(Harris et al., 2015). Quercetin has been shown to be a most effective inhibitor of 

peroxidation of membrane lipids, and thus can positively affect atherosclerosis 

(O’Reilly et al., 2001). Increased consumption of quercetin is associated with a 

reduced risk of prevalence of cardiovascular and other degenerative diseases 

(Erdman et al., 2007). Although quercetins have medicinal, pharmaceutical, and 
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nutritional properties (Hichri et al., 2011), it should also be noted that, at excessive 

doses, quercetins may be toxic to human health, as quercetins can also act as 

mutagens. Mutagens are pro-oxidants that can generate free-radicals, and act as 

inhibitors of key enzymes involved in hormone metabolism.  

An integral part of the human diet is flavonols which are consumed daily by humans 

and for the determination of flavonol levels few efforts have been made. Intake of 

flavonoid varies from 2.6 to 68.2 mg daily as shown in the “Seven Countries Study” 

(Arshad et al., 2017). The daily intake of quercetin in the diet has been estimated to 

be about 5-40 mg/day (Hertog et al., 1995), although these levels can increase up to 

200-500 mg/day in individuals who consume high quantities of fruits and vegetables 

(e.g., apples, onions, or tomatoes), which are rich in flavonols (Harwood et al., 2007). 

With regards to quercetin bioavailability, Hollman et al. (1995) showed that 

quercetin was indeed absorbed by the human body. The glycosides of quercetin (52%) 

are more efficiently absorbed than quercetin itself (24%) (Graefe et al., 2001) and the 

nature of the sugar residues in the glycosides appears to influence the extent of 

absorption. However, quercetin aglycone was absorbed more readily than glycosides 

(Wiczkowski et al., 2008). Quercetin aglycone seems to be more bioavailable than its 

glucosides (Hidalgo, Sanchez-Moreno, & de Pascual-Teresa, 2010). 

1.4.1 Antimicrobial activity of onions 

Pszczola (2002) highlighted the fact that onions have been used for centuries in 

several societies against fungal, bacterial and viral infections. Phenolic compounds in 

onions were reported to contribute to these activities (Griffiths et al., 2002). Due to 

the great antimicrobial activity that onions appear to possess, it is then not surprising 

that onion-derived phenolic compounds have been investigated for their 

antimicrobial properties, especially owing to the fact that these compounds appear to 

be relatively stable. Santas, Almajano, and Carbo (2010) investigated the 

antimicrobial activity of flavonol standards and ethyl acetate subfractions of 
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methanolic extracts of three Spanish onion varieties against three different bacterial 

strains. Among the onion extracts tested, ethyl acetate sub-fractions alone showed 

microbial inhibition. 

It was reported that the major onion flavonoids possessed antiviral activity and 

enhanced the bioavailability of some antiviral drugs (Wu et al., 2005). Chen et al. 

(2011) found that shallots presented the highest antiviral activities, followed by 

onions. Given the high content of quercetin in onion, it was suspected that quercetin 

and its derivatives affected antiviral action. 

Zohri, Abdel-Gawad, and Saber (1995) reported that onion extracts are effective 

against many yeast species, and their essential oils inhibit dermatophytic fungi. De 

Souza et al. (2010) demonstrated a relationship between the levels of total phenolics 

in onion and the antifungal activity tested against Rhizopus oryzae. 

1.4.2 Antioxidant activity of onions 

Antioxidants have the ability to protect organisms from diseases associated with 

oxidative stress, including cancer, cardiovascular diseases, inflammation, and other 

degenerative disorders (Ames, Shigenaga, & Hagen, 1993). Onions have shown 

antioxidant properties due to the presence of polyphenols (Stajner & Varga, 2003). 

Therefore, it is not surprising that onions are associated with health promoting 

properties and risk-reduction in terms of preventing human diseases (Sanderson, 

Mclauchlin, & Williamson, 1999). The antioxidant activity of phenolics in onions are 

principally derived from quercetin and its glycosides (Pérez-Gregorio et al., 2010). 

Owing to their redox properties, quercetin and its glycosides act as reducing agents, 

hydrogen donors, singlet oxygen quenchers and metal chelators (Rice-Evans et al., 

1995). Their antioxidant activity is generally based on the number and location of 

hydroxyl groups present, as well as the presence of a 2-3 double bond (Rice- Evans 

& Miller, 1998). 
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Some research has highlighted the variation that occurs in antioxidant activity in 

onions, owing to the fluctuation in onion total phenolic content. Gokce et al. (2010) 

suggested that red onions had higher antioxidant activities than yellow and white 

onions. Bora and Sharma (2009) indicated that the dry outer layers of onion 

contained large amounts of quercetin, quercetin glycoside and their oxidative 

products, which are effective antioxidants against non-enzymatic lipid peroxidation 

and oxidation of low-density lipoproteins. 

A good source of antioxidant polyphenols can be found in onion waste and by-

products (Choi et al., 2015). Singh et al. (2009) pointed out that extracts from red 

onion peel contained large amounts of antioxidant polyphenols. Benite et al. (2011) 

reported a higher content of total phenolics and flavonoids from brown skin and tops-

bottoms of industrial onion wastes had high antioxidant activity, among other 

bioactive compounds, and hence the wastes could be used as functional ingredients. 

A by-product developed by Roldan et al. (2008) derived from two Spanish onion 

cultivars that were stabilised by thermal treatments as shown to possess good 

antioxidant activities measured by the DPPH assay.  

The antioxidant activities of onion extracts are influenced by onions selected, 

processing treatments used and extraction methods employed. Singh et al. (2009) 

used several methods to extract polyphenols and found that ethyl acetate (EA) extract 

obtained large amounts of polyphenols, and hence displayed a stronger antioxidant 

capacity. Roldan et al. (2008) found that processing of onion wastes to obtain a paste, 

followed by applying mild pasteurisation, were the best combination of processes to 

obtain an interesting stabilised onion by-product with good antioxidant activities. 

According to Lee et al. (2007), the levels of active compounds in onions increased 

after heating, since the antioxidant activities of the ethyl acetate fraction were higher 

in onions heated at 120 oC, 130 oC or 140 oC than in raw onions and the higher the 

processing temperature employed, the greater was the radical and nitrite scavenging 

activities observed. Similar results were found by Woo et al. (2007), who indicated 
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that the optimal heating time and temperature were 2 h at 130 oC. In contrast, Khaki 

et al. (2009) employed acidified water/ethanol-based solvent extraction systems and 

reported that optimal extraction yields occurred at 6 h, whereas increasing 

temperature from 40 oC to 60 oC had a negative effect on yields. 

1.4.3 Anticarcinogenic and antimutagenic activities 

As highlighted previously, quercetin and its derivatives have been shown to exhibit 

anticancer properties, including activity against prostate, breast, skin, lung and liver 

cancers (Arung et al., 2011). Jeong et al. (2009) reported different anticancer 

activities from extracts from flesh and peel of white, yellow and red onion as a 

function of their total phenolics and flavonoids, as quercetin. In general, onion peel 

with the highest amounts of total phenolics and flavonoids inhibited the growth of 

several human cancer cell lines, including cells from both the stomach and colon, 

breast and prostate (Jeong et al., 2009), more efficiently than fresh onion flesh. 

Likewise, several studies have reported that quercetin enhanced the bioavailability of 

some anticancer drugs, such as Tamoxifen, a non-steroidal antiestrogen for the 

treatment and prevention of breast cancer, by promoting its intestinal absorption and 

reducing their metabolism (Wu et al., 2005). 

1.4.4 Hypotensive and bradycardic effects 

A study with several rat models of hypertension has indicated that quercetin and its 

methylated metabolite isorhamnetin, can reduce blood pressure (Sanchez et al., 2007). 

Moreover, Edwards et al. (2007) investigated the efficacy of supplementation of 

quercetin, rich in onions, on lowering blood pressure in hypertensive humans and 

demonstrated that 730 mg of quercetin per day could reduce systolic blood pressure 

by 7 mm Hg, diastolic blood pressure by 5 mm Hg, and mean arterial pressure by 5 

mm Hg in hypertensive patients. Egert, Bosy-Westphal, and Plachta-Danielzik (2009) 

also found that quercetin reduced systolic blood pressure and plasma oxidised low-
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density lipoproteins concentrations in overweight subjects with a high-CVD risk 

phenotype. 

1.4.5 Anti-hyperglycemic and anti-diabetic potential 

An investigation of the effects of quercetin on human diabetic lymphocytes showed 

an association between an increase in the protection against DNA damage from 

hydrogen peroxide at the tissue level and the number of consumed flavonols (mostly 

quercetin) from onions (Lean et al., 1999). Likewise, it has been reported that long-

term absorption of quercetin could be useful to prevent advanced glycation of 

collagen, which contributes to the development of cardiovascular complications in 

diabetic patients (Urios, Grigorova-Borsos, & Sternberg, 2007). 

1.4.6 Anti-platelet effect 

Quercetin and its derivative showed their beneficial effects on cardiovascular health 

because of their antioxidant and anti-inflammatory activities (Kuhlmann et al., 1998), 

through the inhibition of lipid peroxidation and endothelial cell damage, which are 

involved in the early development of atherosclerosis (Kaneko & Baba, 1999). An in 

vitro study carried out by Janssen et al. (1998) showed that 2500 μmol/L quercetin 

isolated from onions inhibited platelet aggregation by 95-97%. However, an in vivo 

assay from the same authors with 18 human subjects ingesting 114 mg quercetin/day 

showed no significant effects. They finally concluded that necessary concentration 

levels of quercetin for the beneficial effects were too high to be obtained enough in 

daily dietary. 

1.5 Factors and treatments influencing the phenolic compounds in onion 

production 

Besides intrinsic characteristic such as the variety itself, many other factors influence 

the level of flavonoids and quercetin in onions, for example environmental 

conditions (e.g., soil type, sun exposure, and rainfall) and agronomic conditions (e.g., 
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culture in greenhouses or fields, biological culture, hydroponic culture). Table 1.2 

lists some factors and their effects on the quercetins content of onions during 

growing and storage.  
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Table 1.2 Studied factors to the content of quercetins during pre-harvest in onions. 

Factors     Effect on quercetins content    References 

 

Variety of onion        

Rank of quercetins content: 

Red ˃ Yellow ˃ White     

Lachman et al. (2003); Lombard et al. (2005) 

Kaur, Joshi, and Kapoor (2009); Yoo, Lee, 

and Patil (2010); Lu et al. (2011); Nile and 

Park (2013); Cheng et al. (2013); Lee, Patil, 

and Yoo (2015); Nayak, Liu, and Tang 

(2015); Kwak et al. (2017) 

Rank of quercetins content: 

small ˃ large     

Mogren, Olsson, and Gertsson (2006); Lee et 

al. (2008)         

Bulb parts   Rank of quercetins content: 

dry outer skins ˃ inner skins   

Slimestad et al

Nencini et al., (2007); Kaur, Joshi, and 

Kapoor (2009); Grzelak et al. (2009); 

Benitez et al. (2011); Lee and Mitchell 

(2011); Albishi et al. (2013); Cheng et al. 

(2013); Yoo, Lee, and Patil (2013); Burri et 

al. (2017) 

Organic/Conventional    

varieties onions  

Rank of quercetins content: 

organic ˃ conventional   

Ren, Endo, and Hayashi (2001); Faller and 

Fialho (2010) 

 

 

 

Light      

Rank of quercetins content:  

Exposure to sun light during  

production period> less sun 

light during production period 

of onion 

UV light lamps after 

harvest>no UV treated onion 

Fluorescent light after harvest 

˃ no UV treated onion 

 

Rodrigues et al. (2011) 

 

Higashio et al. (2005) 

 

Lee et al. (2008) 

 

Curing 

Rank of quercetins content: 

after curing ˃ at lifting       

Lee et al. (2008) 

Rank of quercetins content: 

Field field curing ˃ dark 

environment   

Mogren, Olsson, and Gertsson (2006)                                                                                                                                                     

Rodrigues et al. (2009) 

Lifting     Rank of quercetins content: 

late lifting time ˃ early lifting   

time 

Mogren, Olsson, and Gertsson ( 2007)                                                                                                                                                        

Downes, Chope, and Terry (2009) 
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The environmental factors that affect quercetin content in onions include sunshine 

radiation, temperature and climatic conditions within a geographical location (Riggi 

et al., 2013; Sharma et al., 2013; Tiwari & Cummins, 2013). Patil, Pike, and 

Hamilton (1995) showed that meteorological factors (including temperature and 

rainfall patterns) had a stronger influence on quercetin concentration in onion 

cultivars than soil factors or plant maturity. Mogren, Olsson, and Gertsson (2007) 

indicated a strong correlation between total radiation during lifting stages and the 

quercetin glucoside content of onions. However, Patil, Pike, and Hamilton (1995) 

reported no correlation between onion growth stage and quercetin content in onions. 

On the other hand, they showed a relationship between the quercetin content of 

onions and environmental factors such as location and soil type, which played a 

major role in affecting the levels of quercetins. 

1.5.1 Light 

Light can influence genetic expression that is relevant to enzymes participating in the 

phenylpropanoid pathway (Rodrigues et al., 2009). Light conditions during plant 

development and/or storage (in light or darkness) could play an important role in the 

total phenolic content (Rodrigues et al., 2009). Quercetins are strong UV-absorbing 

compounds, and can be accumulated mainly in the epidermal cells of plant tissues 

after UV-induction (Jaakola et al., 2004). Light stimulates the synthesis of quercetins, 

and L-phenylalanine ammonia-lyase (PAL) is the major inducible enzyme (Dioxn & 

Paiva, 1995). The formation of the quercetin glucoside (QG) is normally induced by 

UV light, which induces PAL activity up to 30-fold (Parr & Bolwell, 2000).  

Yoo, Lee, and Patil (2013) exposed onions under different lights, and found that the 

synthesis of QG compounds is enhanced by UV light and, to a lesser extent, by 

visible light. In the sprouting leaves, 4’Qmg and 3,4’Qdg concentrations increased 

the most when exposed to UV light and, to a less extent, when exposed to visible 
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light; however, even the samples in dark conditions showed a slight increase in QG 

compounds. 

Onions grown in full sunlight have been reported to contain higher levels of 

flavonoids (Rodrigues et al., 2011). A five-year study which examined the effect of 

climatic conditions on flavonoid contents in two Portuguese landrace onion varieties, 

total quercetin levels varied significantly between years, with highest levels 

quercetins observed in dry years (Rodrigues et al., 2011).  

Mogren, Olsson, and Gertsson (2006) proposed that global radiation rather than 

temperature is the determining factor for quercetin glucoside biosynthesis in onions. 

Rodrigeus et al. (2011) pointed out that global radiation at the end of the onion 

production period seemed to be one of the major determinants of annual quercetin 

glucoside content in the onions. Mogren, Olsson, and Gertsson (2006) reported that, 

during a four-year study, the month with the lowest global radiation corresponded to 

the lowest levels of quercetin glucosides. Higashio et al. (2005) found that quercetin 

content in onion could be doubled after harvest using UV light lamps to irradiate the 

onion. Lee et al. (2008) conducted a similar study where they exposed onions to 

fluorescent light for 24 and 48 h, and showed that this induced time-dependent 

increases in quercetins content. 

Light can also cause a stress signal enhancing flavonoid synthesis in some fresh cut 

foods (Cisneros-Zevallos, 2003). Under the light, an increase of flavonols (Lee et al., 

2008) and quercetin (Higashio et al., 2007) has also been found in fresh-cut onions. 

Pérez-Gregorio et al. (2011a) also found that, with the light, total flavonoids in fresh-

cut onions were increased by 58% and anthocyanins were increased by 39%. 
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1.5.2 Soil status 

Patil, Pike, and Hamilton (1995) observed higher amounts of quercetin in onions 

grown in both clay and sandy loams soils with nitrogen limitation. However, the 

correlation between nitrogen stress and flavonols synthesis could not be verified due 

to the different growth stages of onions during experiments. On the other hand, they 

concluded that the site of growth, more so than the growth stage and soil type, is a 

major environmental factor in determining quercetin concentration in onion.  

Application of fertiliser is one of the most dominant factors affecting the level of 

quercetins in onions (Mogren et al., 2008). Nitrogen, phosphorus and potassium are 

three major fertilisers required for optimum growth of plants, however, the amount 

and the method of fertiliser application also influence the level of quercetins. A 

decrease in soil nitrogen concentration may be associated with an increase in total 

quercetin concentration (Price, Bacon, & Rhodes, 1997), and a limited nitrogen 

supply was also reported to be associated with higher levels of phenolics in plants 

(Parr & Bolwell, 2000). However, either high or low levels of nitrogen fertilisers 

during growth of onions did not result in differences in quercetin content after field 

curing (Mogren et al., 2008).  

Fertiliser application method and nitrogen source (organic and conventional 

fertilisers) can significantly affect bulb size, however without affecting total yield 

and quercetin content of dry bulbs (Mogren et al., 2008). 

1.5.3 Agronomic conditions 

Agronomic practices such as sowing date, fertilisation, irrigation, and subsequent 

harvesting would affect quercetins content in onions. Previous studies showed that 

organically grown onions had higher levels of flavonols and antioxidant capacity 

than conventionally grown onions (Ren et al., 2001; Faller & Fihlho, 2010). 
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However, Søltoft et al. (2010) found no significant differences between the 

conventionally and the organically grown onions in terms of quercetin content.  

1.6 Changes in contents of the phenolic compounds in onions after cultivation 

Onion bulbs are normally sown in March and generally mechanically harvested from 

late August to mid-September. Before harvest, they are lifted to stop their growth and 

cured by air drying at 25-28 oC and 65-75 % RH for ten days to six weeks in the UK 

and Ireland (Reilly et al., 2013).  

Onion bulbs are ready for harvest as soon as the leaves of the plants (‘top’) start to 

recline (‘fall’). The usual practice is to harvest when 25-80% of tops have fallen, 

with consequently a significant effect on storage susceptibility and quality of the 

bulbs. Harvest stage can be essential for sprout incidence, since early lifting can 

result in lower sprouting percentage and better storage without negative effects on 

the initial quercetin content, which remains unchanged during storage (Mogren, 

Olsson, & Gertsson, 2006). 

Quercetin content in onions increases after lifting and the lifting time would affect 

the increase. Mogren, Olsson, and Gertsson (2007) pointed out that an early lifting 

time of onions resulted in a reduced level of quercetin content in onions, probably 

due to low sprouting and lighter colour in the early lifted onions. On the other hand, 

late lifting (80% fallen leaves) resulted in up to 45% higher concentrations of 

quercetin glucosides compared to early lifting (50% fallen leaves).  

1.6.1 Effect of curing on the phenolic compounds 

Straight after harvest, bulbs have to be subjected to a drying process (‘curing’) in 

order to have their outer scales hardened and reduce skin cracks, and allow the necks 

to become narrower, thus inhibiting pathogen infections. Curing method (field curing 

or forced air curing) and conditions (temperature and relative humidity), as well as 

growing conditions and harvest stage, can be of major importance for maximum 
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quality of dry bulbs and minimum losses due to water losses and pathogen infections 

(Eshel et al., 2014). 

Curing may result in an increase of flavonols in onions, although this phenomenon 

depends on the year and cultivars (Sharma et al., 2015b). Patil, Pike, and Hamilton 

(1995) indicated that onions cured in the field could accumulate more flavonols. 

Traditionally, in hot dry climates, onions can be left to cure in the field in windrows 

or mesh bags and this has been reported to be associated with the increase of 

quercetin content (Mogren, Olsson, & Gertsson, 2006). Rodrigues et al. (2009) also 

reported that field curing increased 4’Qmg and 3,4’Qdg (33–40%) content compared 

to levels at lifting, particularly when the flavonol concentrations were low at lifting. 

Light conditions (light or dark condition) during curing, however, did not affect 

flavonol and anthocyanin contents, regardless of skin colour and cultivar (Rodrigues 

et al., 2009). 

The effect of cold storage combined with curing or post-curing treatment was studied 

by many researchers. Downes, Chope, and Terry (2009) cured two types of yellow 

onion and one kind of red onion at 20 oC, 24 oC or 28 oC for six weeks and then 

stored the onions at 1 oC for seven months. They found that levels of flavonols in 

Red onions cured at 20 oC decreased during cold storage for seven months. 

The evolution of onion flavonols during storage after post-curing heat treatment at 36 

oC for 24 or 96 hours was studied by Olsson, Gustavsson, and Vagen, (2010). Three 

onion varieties were cured in the field for two weeks and then heat treated, followed 

by subsequent cold storage at 2 oC for up to eight months. The levels of Q 3,4’ D 

increased in the 24-hour. A lower content of total flavonols was found in the three 

onion varieties after eight months of cold storage following the 96-hour heat 

treatment, possibly due to negative effects of heat treatment on onion metabolism. 

Price and Rhodes (1997) investigated levels of flavonols of two onion varieties (‘Red 

Baron’ and ‘Crossbow’) cured at 28 oC for ten days and stored for six months at ≤ 4 
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oC in dark, and found no change in the flavonols levels for the two varieties after 

storage. 

1.6.2 Evolution of the phenolic compounds when sprouting 

Post-harvest sprouting in onions would occur after long-term storage. Onions may be 

kept in cold storage at around 1-4 oC in the dark to induce dormancy and prevent 

sprouting, however, sprouting commonly initiates within one to three weeks after 

removal from cold storage (Sorensen & Grevsen, 2001). Benkeblia and Shiomi (2004) 

indicated that TPC in onions began to reduce when internal sprouting began, which 

can be caused by the temperature change (from cold to room temperature) during 

storage. In their study, the reduction also happened to onions stored in control 

conditions (in refrigerators) when internal sprouting began, after seven weeks of 

storage. Benkeblia et al. (2000) also reported that there was an inverse relationship 

between total phenolic content and sprout development. 

However, conflicting results were reported by Sharma et al. (2014), who investigated 

the evolution of total flavonoid content (TFC) of onions during storage (post-storage) 

at room temperature and relatively humidity (RH) 60% - 80%, subsequent to a cold 

storage for eight months. They found that internal sprout was started within the 1st 

week of post-storage, but TFC increased during the post-storage time, and reached a 

maximum between the 4th and 8th weeks. 

1.6.3 Evolution of the phenolic compounds during storage 

Phenolic contents can be changed during storage (Dozio et al., 2015; Petropoulos et 

al., 2016; Petropoulos et al., 2017). Kevers et al. (2007) argued that, 23 days after 

purchasing, both antioxidant activity and the total flavonols of onions increased 

during storage and became 10 times higher than on purchase from the market. 

Sharma et al. (2014) also reported increased TPC and TFC during storage at room 

temperature after cold storage. However, due to sprouting and decay after four weeks 
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post-storage, they suggested the onions thereafter should be used only for, e.g. 

extraction of nutraceuticals. Rodrigue et al. (2010) stored Portuguese red and white 

onions after harvest for seven months under refrigeration (at 2 oC and 65% relative 

humidity) or under traditional bulk storage in the field. TFC in both of the two 

varieties increased up to 64% after six or seven months of storage, especially in the 

first three months (58% increase), irrespective of the storage temperature. Regarding 

anthocyanins, after seven months in both conditions (refrigeration and traditional 

treatment), the anthocyanin content was reduced by more than 40%. Elhassanneen 

and Sanad (2009) reported significant differences in flavonol content between white 

and red Egyptian onion varieties, with red varieties having a higher content of total 

flavonols, quercetin and quercetin glucosides after storage of three months period. 

Quercetin glycosides are not significantly affected by storage, however, the fact that 

these compounds are present mostly in the outer scales, which are severely affected 

by storage and usually discarded after the peeling of bulbs, could affect nutritional 

values and their intake on a daily basis (Lee & Mitchell, 2011).  

It is believed that the phenolic compounds in onions could be influenced by storage 

conditions (Tiwari & Cummins, 2013). Storage conditions, like storage time, 

temperature and light have effects on the synthesis, retention or breakdown of 

quercetins. Sharma et al. (2015c) examined the effect of storage under aerobic and 

anaerobic conditions at ambient temperature, reporting that quercetin content 

increased significantly during anaerobic condition and that total phenolic and 

flavonoid contents were positively correlated with antioxidant activity. Light 

conditions and light quality during storage may affect quercetin and quercetin 

glucosides profile. Ko et al. (2015) examined the effect of five light wavelengths 

(dark, white, red, blue and UV-A light) for three days as a post-harvest treatment and 

found that white light treatment significantly increased quercetin glucoside content in 

peeled onion bulbs, as well as in bulb skins. 
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1.6.4 Effect of temperature during storage on phenolic compounds 

The effects of storage temperature on phenolic compounds in onions have been 

investigated by a number of researchers. Patil, Pike, and Hamilton (1995) stored 

onion at 5 oC, 24 oC or 30 oC for up to five months, and an initial rise followed by a 

decline of quercetin levels. Changes were most pronounced under 24 oC treatment. 

They finally concluded that onion bulbs did not change in levels of quercetin content 

over the 5-month storage under controlled atmosphere (low temperature and low 

oxygen to ensure the least metabolism). Yoo, Lee, and Patil (2013) also reported that 

storage at 30 oC and 24 oC resulted in an increase of 3,4’Qdg, accompanied by a 

reduction of 4’Qmg. They did not observe significant changes in quercetin 

glucosides when bulbs were stored under controlled atmospheres; however, storage 

at 30 oC resulted in the increase by about 50% after three months of storage (Yoo, 

Lee, & Patil, 2013). Benkeblia (2000) evaluated total phenolics in onion bulbs during 

storage at 4 oC and 20 oC and observed a regular change in phenolics at both 

temperatures. Lachman et al. (2003) observed an increase in total flavonoids, 

especially at higher temperatures after 36 weeks of storage with red and yellow onion 

varieties. Ethylene was accumulated during onion storage which can stimulate the 

activity of PAL, a key enzyme in biosynthesis of phenolic compounds and 

accumulation of phenolic constituents (Benkeblia, 2000; Leja, Mareczeka, & Benb, 

2003), which is in line with Rodrigues et al. (2010) who justify the significant 

increase in flavonols observed during storage. Benkeblia (2000) reported a positive 

relationship between PAL activity and total phenolic variations in long-term stored 

onion bulbs. 

Most of the above mentioned studies were performed at elevated temperatures. On 

the other hand, the low temperature would minimise the growth of pathogens in the 

onions and also maintain bulb dormancy to delay physiological changes. Cold 

storage of onions was reasonably employed and its effect on phenolic compounds in 

onions (Gubb & MacTavish 2002; Brewster, 2008). Swedish onions showed a slight 
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decrease in QG during 1 oC storage (Mogren, Olsson, & Gertsson, 2007), while 

Polish onions stored at 1 oC maintained a nearly constant QG level (Grzelak et al., 

2009). The QG concentration during storage showed different results. The level of 

4’Qmg did not show any consistent changes, while 3,4’Qdg increased by 30-51% 

during eight months of storage at 2 oC in onions (Olsson, Gustavsson, & Vagen, 

2010). In addition, Sharma et al. (2014) subjected onion bulbs after a storage period 

of eight months. From the results of their study it was supported that although under 

cold storage most physiological and enzymatic activities were delayed, a succession 

of internal changes was triggered, such as an increase in quercetin and quercetin 

glycoside contents, antioxidant activity and total phenolics (Sharma et al., 2014). 

These changes may be attributed to high respiration rates of bulb tissues, whereas 

infection by pathogens and sprouting incidence could play an important role in 

chemical composition changes (Chope, Terry, & White, 2007). Gennaro et al. (2002) 

investigated the effect of cold storage on total anthocyanins, and reported a total 

decrease of anthocyanins in red onions during the storage, with higher levels of loss 

of anthocyanins at 2 oC and 65% relative humidity. 

Some researchers studied onion as a whole while others studied it as chopped one.  

Martinez et al. (2005) studied the effect of cold storage on chopped onions. They 

revealed that total quercetin (TQ) content increased by about 20% between 5 and 15 

days at 4 oC but, after 30 days, the TQ content was similar to that of the control 

group. Similarly, chopped onions packed in polystyrene cups showed 28% and 58% 

increases in 3,4’Qdg and 4’Qmg in the dark and in the light, respectively, after 16 

days at 1-2 oC (Pérez-Gregorio et al., 2011a).  

All the aforementioned studies of cold storage of onions were above 0 oC. Pinho et al. 

(2015) evaluated the evolution of flavonoids of two Portuguese onion cultivars 

(Branca da Póvoa, white; and Vermelha da Póvoa, red) during storage below 0 oC, 

simulating domestically freezing conditions (–18 oC). Frozen portions of onions with 

different periods of domestic storage (3-5 months) at ambient temperature resulted in 
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increased flavonoid content when compared with the ones before freezing (portions 

from the same onions at room temperature). These results suggested that frozen 

storage of onions pieces positively affected flavonol metabolism. The authors 

therefore concluded that domestic freezing of onion portions extended onions shelf 

life and can be a good alternative to prevent the loss of unused fresh onions, 

preserving their antioxidant capacity. 

1.6.5 Other storage technologies 

Besides temperature and time control, many other storage technologies are employed 

to prolong onions or its products shelf life (Javier Moreno et al., 2006; Berno et al., 

2014; Zudaire et al., 2017). Some studies have been carried out to investigate the 

effects of these technologies on the levels of phenolics, mainly flavonoid compounds, 

in onions during storage.  

Drying technological developments are driven by consumers who demands for 

healthy, fresh-like, and convenient food. Hence, the effect of dehydration on onion 

quality was studied (Sahoo et al. 2015; Khan et al., 2016). Drying can prolong the 

shelf life of onions, and onions can be marketed as dried powder intended for 

culinary uses, by applying various drying processes (Alezandro et al. 2011; Mitra, 

Shrivastava, & Rao, 2015). Pérez-Gregorio et al. (2011a) pointed out that freeze-

drying, as an innovative drying technique, used to dry chopped onions could prolong 

the shelf life of dried powder at room temperature for up to six months without 

significant quality losses in terms of antioxidant compounds (flavonols and 

anthocyanins), provided that they are stored under dark conditions and within air-

tight containers. The freeze-drying process produces the highest-quality dried food 

product since the food structure is not damaged during sublimation, hence, it was 

verified that onion flavonoid content increases after the freeze-drying process (Pérez-

Gregorio et al., 2011b). The stability of flavonoids of freeze-dried onion after long-

term storage was mainly due to the inactivation of various enzymes, as well as 
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ethylene activity (Rodrigues et al., 2010). Moreover, the implementation of the 

freeze-drying technique itself resulted in an increase of the extractable flavonoids by 

32 and 25% for flavonols and anthocyanins, respectively, because of the structural 

changes of bulbs tissues that made flavonoids more readily available (Pérez -

Gregorio et al., 2011b). 

The type of package could also be important for preserving fresh-cut onion slices’ 

quality during storage. Pérez-Gregorio et al. (2011a) reported that storage in 

transparent polystyrene cups under light conditions resulted in increased total 

flavonols content, mostly due to the increased ethylene activity and the stimulating 

effect of the oxygen content of cups on the phenylalanine ammonia lyase activity. 

Marta et al. (2013) reported two different package systems for onion storage: the 

normal atmospheres (NA) and controlled atmosphere (CA) of the 4 compositions: (1) 

5% CO2 + 5% O2, (2) 5% CO2 + 2% O2, (3) 2% CO2 + 5% O2, (4) 2% CO2 + 2% O2. 

They found that CA storage influenced the content of flavonoids in the bulbs. The 

highest contents of 3,4’Qdg and 4’Qmg showed increasing tendencies and the 

highest amounts of flavonoids in onion after storage at the gas composition of 5% 

CO2 + 5% O2. 

Islek, Nilufer-Erdil, and Knuthsen (2015) investigated optimised storage conditions 

for sliced or fried onions, in terms of flavonoid in the onions during the storage. The 

studied conditions included atmospheric conditions (air, nitrogen and vacuum), 

temperature (ambient, +5 and -18 oC) and light (dark and light). They found that for 

sliced onions, dark conditions, in general, showed better flavonoids retain ability 

than light conditions for all atmospheric conditions, and that a nitrogen atmosphere 

gave the smallest losses of flavonoids. As for fried onions, they suggested vacuum 

drying storage conditions, as it caused a higher TFC, irrespective of light or dark 

conditions. 
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1.7 Variation of phenolic compounds during onion processing 

Different processing treatments cause chemical and biochemical reactions in onion 

tissue. Such reactions could have an impact on the flavonoid structure, resulting in 

changes in the bioavailability and activity of these compounds (Rohn et al., 2007). In 

general, cooking of onions led to a decrease in total flavonol content in onions (Ioku 

et al., 2001), but these losses vary depending on the treatment conditions (Rodrigues 

et al., 2009). At the same time, quercetin in onion bulbs is remarkably resistant to 

degradation during many normal processing operations. 

1.7.1 Minimal food processing 

Many food processes like peeling, trimming, chopping, slicing, crushing, pressing 

and sieving of flavonoid-rich foods were studied (Ioannou et al., 2012). Processing is 

expected to affect content, activity and availability of bioactive compounds (Nicoli, 

Anese, & Parpinel, 1999). Table 1.3 lists the results of some studies on the effects of 

different minimal food processing on flavonoids and quercetins in onions. Ewald et 

al. (1999) pointed out that major losses of flavonoids took place during the pre-

processing steps when parts of the product were removed, for example, onion 

trimming can result in 39% flavonoids loss and a 21% loss of total quercetin 

glucoside was found in onions after peeling (Gennaro et al., 2002). The similar trend 

(reduced to 29% – 36%) was found for the total antioxidant activity during minimal 

processing. Furthermore, Rodrigues et al. (2009) reported that chopping followed by 

refrigerated storage did not cause much change in the total levels of flavonols. 

Similar results were shown by Makris and Rossiter (2001), investigating flavonol 

content with the chopping of onion tissues. They, however, showed a loss of flavonol 

content ranging from 10.7% to 17.7% during prolonged maceration (5 h) of the onion 

bulb. However, that cutting increased flavonol content in fresh-cut onions (Pérez-

Gregorio et al., 2011a). This could be caused by the fact that wounding enhances 

flavonol biosynthesis through the induction of Phenylalanine ammonia-lyase (PAL) 
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which is related to the wound-healing process in order to fight pathogen attack after 

tissue wounding (Tudela et al., 2002). 

Table 1.3 Different minimal food processing and their effects on flavonoids content. 

Minimal processing                            Effects on flavonoids                                                                                    References 

Peeling              Reduction of 21% quercetins                                                                       Gennaro et al. (2002) 

Chopping       No significant impact on 

quercetins content                                                  

Makris and Rossiter (2001); Rodrigues et al. 

(2009)    

Maceration (5 h)           Loss of quercetins 

between10.7% to 17.7%                                                     

Makris and Rossiter (2001)                              

Cutting Induction of flavonol 

biosynthesis                                                                  

Pérez-Gregorio et al. (2011a); Ioannou et al. 

(2012); Bernaert et al. (2013) 

Trimming         Losses of 39% flavonoids                                                                                        Ewald et al. (1999) 

1.7.2 Thermal processing 

Heating can result in the oxidation, thermal degradation, and leaching of bioactive 

compounds of fresh vegetables (Kalt, 2005). Different heating conditions (e.g. 

heating duration and temperatures) have different effects on the antioxidant 

properties of vegetables. To obtain maximum health benefits, Faller and Fialho (2009) 

suggested that raw onions or moderately cooked onions are preferred 

Tiwari and Cummins (2013) suggested that heating duration also had a strong 

influence on the stability of quercetins in onions. However, both losses and gains in 

phenolic compounds after heat treatment of onions have been reported by many 

researchers (Ewald et al., 1999; Makris & Rossiter, 2001; Rodrigues et al., 2009; 

Ozyurt et al., 2013; Harris et al., 2015; Islek et al., 2015; Juániz et al., 2016). 

Thermal processing procedures including boiling, frying, microwave heating and 

steam cooking could significantly degrade quercetin contents in onions (Juániz et al., 

2016). Table 1.4 shows the influence of thermal processes on quercetin content of 

onions. 
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Table 1.4 Influence of thermal processes on quercetins content of onions.  

Thermal processing                                       Effects on quercetins                                                References 

Mild-heat for 1 min at 60°C                                 20% increase                                             Siddiq et al. (2013) 

Griddled for 5 mins at 110°C 57.35% increase Juániz et al. (2016) 

Boiling for 5 mins at 100°C 18% decrease   Lombard et al. (2005) 

Boiling for 10 mins at 100°C more than 20% decrease   Gorinstein et al. (2009) 

Boiling for 60 mins at 100°C                          more than 20% decrease                                  Makris and Rossiter 

(2001)   

Blanching for 1.5 mins at 

100°C 

10-25% decrease Gorinstein et al. (2009) 

Baking for 15 mins                                         7-30% decrease                Rodrigues et al. (2009)        

Microwave cooking for 1 min no significant effects on quercetins                                Lee et al. (2008) 

Microwave cooking (750w) 

for 4 mins                   

16-20% decrease                   Lombard et al. (2005)                                                                                                                          

Rodrigues et al. (2009)      

Frying for 5 or 15 mins at 

180°C                                   

23-30% decrease                                           Price, Bacon, and Rhodes 

(1997)                                  

Oven roasting for 15 or 30 

mins at 180°C         

No modification of the total levels of 

quercetins             

Rodrigues et al. (2009)      

Steaming                                No significant effect on the content of 

quercetins                              

Lee et al. (2008)                           

Sautéing for 3 mins                                no significant difference on quercetin                                Lee et al. (2008) 

Sautéing for 5 mins                                25% increase                                       

21% decrease                                                                                

Lombard et al. (2005)                                                                             

Lee et al. (2008)     

Rodrigues et al. (2009) reported that moderate microwave heating (450 W for 4 mins) 

did not affect flavonol contents, but intense microwave treatment (750 watts 4 mins) 

caused flavonol losses of 16% and 18% for 3,4’Qdg and 4’Qmg, respectively. Ewald 

et al. (1999) found that, after microwave cooking of onion with water, quercetin 

levels decreased considerably. In contrast, Ioku et al. (2001) revealed that microwave 

roasting without water was more favourable for the retention of quercetins in onion 

tissues. 
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Lee et al. (2008) reported that frying (180oC) decreased onion quercetins content by 

25% to 33%. Price, Bacon, and Rhodes (1997) showed that 15 mins frying (180 oC) 

reduced levels of quercetin conjugates by 23% to 29%. Ewald et al. (1999) also 

found that frying (180 oC) for 5 mins in butter and rapeseed oil resulted in 24% and 

39% losses of quercetin in onions, respectively. However, Rodrigues et al. (2009), in 

contrast, pointed out that frying with olive oil did not change the total levels of 

3,4’Qdg and 4’Qmg. 

Rodrigues et al. (2009) showed that oven roasting (180 oC) without water did not 

change the total levels of 3,4’Qdg and 4’Qmg. Rohn et al. (2007), on the other hand, 

observed that onion roasting for 60 mins at 180 oC led to the removal of sugar moiety 

resulting in the formation of 3,4’Qdg and 4’Qmg. They suggested that the sugar 

moiety attached at 3-position was more susceptible to thermal degradation compared 

to the sugar moiety attached at 4-position.  

Boiling in water (100 oC) could cause a great loss of quercetins in onions as water 

soluble quercetins would migrate into cooking water during the boiling procedure 

(Rodrigues et al., 2009). Moreover, the level of quercetins in onions would decrease 

significantly with boiling time (Rodrigues et al., 2009). Boiling onions for 30 mins 

led to losses of quercetin glycosides, during which 37% 3,4’Qdg and 29% 4’Qmg 

leached to the boiling water without being degraded. A reduction of about 53% and 

44% of 3,4’Qdg and 4’Qmg were reported during 60 mins of boiling of onions. 

Lombard et al. (2005) also reported 18% – 75% quercetin losses in onion boiled for 3 

to 60 mins. Even though boiling onions would cause leach of the compounds,  

treating fresh-cut onion slices with hot water (50 oC) prior to storage resulted in 

lower weight losses and higher total phenolics comparing to a control to which no 

heat treatment was applied (Siddiq et al., 2013).  

Steaming did not significantly affect quercetin contents of onions (Lee et al., 2008). 

Conversely, baking was found to increase quercetin glucosides in onions, as these 

compounds were concentrated in the tissues (Lombard et al., 2005). For 

anthocyanins, Rodrigues et al. (2009) suggested the level of decrease caused by 

cooking treatments was in the following order: frying > boiling > microwave 

roasting > oven roasting. 
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Sharma et al. (2015a) further investigated the effect of temperature on phenolic 

content and flavonoids in onion powders with different varieties. The heating 

temperature was scanned at 80 oC, 100 oC, 120oC, and 150 oC for 30 mins each. The 

powders from all the varieties studied showed the same pattern in the heating effect: 

quercetin and its glucoside contents increased up to a certain temperature (e.g. 120 

oC for the studied red-skinned variety) and then decreased at the highest temperature 

(e.g. 150 oC for the red-skinned variety).  

The impact of cooking treatments (frying in olive oil, frying in sunflower oil and 

griddled) on phenolic compounds of onion was evaluated by Juániz et al. (2016). 

They found that all cooking treatments increase the concentration of flavonoid 

compounds in the onions. This is because thermal destruction of cell walls and sub 

cellular compartments during the cooking process released these compounds of 

onions. Griddle has a higher temperature in comparison with the frying process 

during treatment, and showed the highest amounts of phenolic compounds, by 57.35% 

compared to raw onions.   

1.7.3 Non-thermal treatments 

1.7.3.1 Ultraviolet (UV) 

UV irradiation is currently used as a post-harvest treatment for sterilisation to inhibit 

sprouting and delay maturity (Higashio et al., 2007). Also, UV light could be used as 

a treatment in peeled or cut onions to increase quercetin content. Higashio et al. 

(2005) found that UV could not only reduce the incidence of spoilage moulds and 

survival of human pathogens, but also increase levels of quercetin and quercetin 

glucosides to fresh-cut onions. Rodov et al. (2010) found an increase in flavonol 

content of peeled onions treated with low (1.2 KJ/m2) and medium (6.0 KJ/m2) UV 

doses but a decrease in quercetin with high does (12 KJ/m2).  

1.7.3.2 High pressure 

High pressure is more cost-efficient and environmental friendly with beneficial 

effects on bioactive content than other non-thermal treatment (Vikram, Ramesh, & 

Prapulla, 2005). Eduvigis et al. (2009) investigated the effects of high pressures 

(100–400 MPa) at (5-50 oC) for 5 mins on levels of flavonols content of onions. It 
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showed that processing onions at 400 MPa/5oC could increase total phenol and 

flavonol by 33% Q 4’ G compared to untreated onions.  

1.7.3.3 Chemical treatment of onions 

Kamal et al. (2008) found that onion plants treated with benzothiadiazole (Bion) and 

dipotassium phosphate showed higher phenylalanine ammonia lyase (PAL) activity, 

PO activity, and phenolic contents than the untreated ones. They concluded that the 

application of simple chemical solutions could enhance phenolic compounds in 

onion plants.  

Rodrigues et al. (2009) reported that ethylene treatments did affect the flavonol 

content of the edible portion of onions, with a significant increase. Heredia and 

Cisneros-Zevallos (2009) also found similar effects of exogenous application of 

ethylene on flavonol contents in two varieties of Portuguese onions. It was suggested 

that the significant increase in flavonols during storage could be caused by the action 

of ethylene (Leja, Mareczeka, & Benb, 2003). Ethylene can stimulate the activity of 

PAL, a key enzyme in the biosynthesis of flavonoid compounds (Leja, Mareczeka, & 

Benb, 2003), which is in response to biotic and abiotic stresses (Naoumkina et al., 

2010). 

1.8 Extraction of phenolic compounds from onions 

Onions are a good resource of phenolic compounds, in particular, quercetin and its 

derivatives. The extraction of these compounds has been explored in a number of 

studies (Santas, Almajano, & Carbo, 2010; Sharma et al., 2016a; Singh, Krishan, & 

Shri, 2017; Viera et al., 2017). On the other hand, Sharma et al. (2014) suggested 

possible uses of sprouted and decayed onions as a source of quercetin and its 

glucosides. They further explained that, during post-storage, sprouted and decayed 

onions occurred in post-storage are usually unappealing to consumers and hence 

dumped as waste, however, during this period, there is an increase in the content of 

quercetin and its glucosides. Food-processing industry has further suggested the 

exploitation of onion waste as a food ingredient (Roldán et al., 2008), due to its 

associated health benefits (Corzo-Martínez, Corzo, & Villamiel, 2007; Manousaki, 

Jancheva, Grigorakis, & Makris, 2016).  
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The conventional way to extract flavonoids from plant material is SLE (solid liquid 

extraction) using organic solvents such as ethanol and methanol, either pure or mixed 

with water, although ethyl acetate, acetone and hexane have also been used to extract 

the compounds from the solid materials into the liquid solvents (Stalikas, 2007; 

Khiari, Makris, & Kefalas, 2008). Other normal physical measurements such as 

heating, boiling, pressing, blending, maceration, and mechanical fragmentation could 

be employed to assist the extraction, accelerating the extraction rate or increasing 

extraction ratio (Gorinstein et al., 2008). Rijke et al. (2006) employed ultrasonication, 

with water, methanol or acetonitrile, as a simple and easy method for flavonoids 

extraction. Those conventional methods could result in the degradation of some 

chemically sensitive phenols due to intensive mechanical disruption. In addition, the 

involvement of long extraction periods, severe heating and extensive use of organic 

solvents in the conventional extraction methods could lead to the release of oxidative 

enzymes that promote degradation (Zill-e-Human et al., 2011). Furthermore, the use 

of organic solvents, which are harmful both for the environment and for the persons 

working with them (Adekunte et al., 2010; Lindahl et al., 2013). Takahashi and 

Shibamoto (2008) reported extraction by steam distillation from onion sprouts and 

Singh et al. (2009) used a Soxhlet method for extraction from onion peel. An 

increased risk of degradation owing to long extraction times, and samples exposed to 

light and oxygen facilitates the degradation of flavonoids (Liazid et al., 2007).   

In recent years, the use of new extraction techniques has increased, such as 

pressurised liquid extraction (PLE), microwave-assisted extraction (MAE), 

supercritical fluid extraction (SFE), and pressurised hot water extraction (PHWE) 

(Ekman et al., 2013; Kumar et al., 2014). Table 1.5 lists some novel methods used in 

the extraction of phenolic compounds from onions. These novel methods are 

advantageous in comparison with conventional methods as the former requires 

shorter extraction periods and less organic solvents (Zill-e-Human et al., 2011). 

PLE, as a novel method for extraction of flavonoids from onions, shows several 

advantages: simultaneous extraction, highly automated, small amounts of solvents 

are used, provide the cleanest extracts, and allow oxygen-sensitive flavonoids to be 

carried out in an inert atmosphere protected from light, however it can be time 

consuming (Søltoft et al., 2009). 
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Pressurised hot water extraction (PHWE) is an extraction technique that uses liquid 

water as extraction solvent at temperatures above the atmospheric boiling point of 

water (100 oC /273 K, 0.1 MPa), but below the critical point of water (374 oC /647 K, 

22.1 MPa). PHWE has been used to extract quercetins from onion (Turner et al., 

2006; Lindahl et al., 2013). 

Lindahl et al. (2013) combined PHWE and enzymatic hydrolysis methods to exploit 

a continuous way of extraction of quercetin from onions. The optimised combined 

method achieved slightly higher extraction yield of quercetin within a much shorter 

period of time, compared to conventional methanol extraction. Compared to 

conventional extraction with acid-catalysed hydrolysis, the new method is more 

accurate. The continuous method combined extraction with hydrolysis in one step, 

which greatly reduced laboratory work.  

Zill-e-Huma et al. (2009) used a microwave to assist extraction of polyphenols from 

onions. They regarded this novel method as a green technology. Chemat and 

Lucchesi (2006) suggested that microwaves accelerated the diffusion of secondary 

metabolites by increasing tissue softness and cell permeability. Microwaves also 

enhanced cell disruption due to their high penetration capacity, thereby increasing 

mass transfer within and outside the plant tissues. 

Ultrasound processing on its own or in the combination with heat or pressure is an 

effective processing tool, which reduced processing time, achieved higher throughput, 

and lower energy consumption (Zenker, Heinz, & Knorr, 2003). Chemat, Zill-e-

Huma and Khan (2011) reported that the application of ultrasound waves resulted in 

an increased yield of total phenolic content. Ultrasound-assisted extraction led to a 

yield of gallic acid equivalents (TPC) of 121±3.8 mg GAE/g dry weight, over 20% 

more than the yield by conventional maceration method (89.6 ± 2.3 mg GAE/g dry 

weight), in 30 mins of extraction. 
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Table 1.5 Previous studies on the use of novel techniques for extraction of onion bioactive compounds. 

Extraction 

techniques 

plant material Extraction 

flavonoids 

Solvent Comments References 

ASE Onion bulb sample  flavonoids Methanol Rapid, automatic, protected from light  and no filtration necessary and low 

solvent consumption but possible degradation of compounds  

Søltoft, 

Christensen, 

Nielsen, and 

Knuthsen (2009) 

MAE Edible of Yellow onion  Flavonoids  No water or 

solvent  

Easy to handle and green, economical rapid produce, less energy but get a 

good percentage of yield, however extraction solvent must absorb microwave 

energy. 

Zill-e-Huma et al. 

(2009); Zill-e-Huma et 

al. (2011); Kumar et al. 

(2014) 

PHWE-EEH Edible of Yellow onion Quercetin 

glycosides  

Water and 

ethanol  

Higher quercetin extraction yield with short period of time and reduce the 

laboratory work and environmental impact. It is milder and more accurate.  

Lindahl et al. (2013) 

PLE The edible portion of 

onion 

Quercetin Methanol Allow extraction of oxygen sensitive flavonoids, highly automated method but 

limited application in the food industry due to the use of solvent 

Søltoft, Christensen, 

Nielsen, and Knuthsen 

(2009) 

SFE Skins of red and yellow 

onions 

Quercetin 

aglycone  

Ethanol Controlled pressure and temperature conditions for alternative of conventional 

methods, rapid , low solvent consumption but high cost and long extraction, 

many parameters to optimize 

Martino and Guyer 

(2004) 

SWE  Wastes of red and 

yellow onion  

Onion skin 

Quercetin 

Isorhamnetin 

Water More green procedure as water but the temperature might cause degradation of 

compounds in onion  

Turner et al. (2006) 

Ko et al. (2011);  

Lee et al. (2014); 

Tomšik et al. (2017); 

Munir et al. (2018) 
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UAE 

 

 

PLP 

Onion by-products 

 

 

Onion by-products 

Flavonols  

 

 

Flavonoids 

Water   

 

 

Water 

Easy to use but high solvent consumption  

 

 

Environmentally friendly technologies capable of providing high-quality and 

high-activity extracts without any solvent toxicity. 

Chemat et al. (2011); 

Jang et al. (2013); 

Katsampa et al. (2015) 

Manohar et al. (2017) 

 

Note: ASE - Accelerated solvent extraction, MAE - microwave assisted extraction, PHWE-EEH - Pressurized hot water extraction-extraction-enzymatic hydrolysis, PLE - 

pressurized liquid extraction, SFE - supercritical fluid extraction, SWE - subcritical water extraction, UAE - Ultrasound assisted extraction, PLP- Pressurized low polarity 

water extraction.
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Subcritical water extraction (SWE) is increasingly used in the preparation of 

environmental samples, and the extraction of natural products from herbs, plants, and 

foodstuffs (Plaza et al., 2010). Subcritical water, also called pressurised (hot) water 

refers to water at a temperature between 100 and 374 oC and a pressure which is high 

enough to maintain the liquid state (below the critical pressure of 22 MPa) 

(Karakama, 2011). Ko et al. (2011) employed this technology to achieve quercetin 

yield over eight-, six-, and four-fold higher than those obtained by conventional 

extraction methods using ethanol, methanol and water at the boiling point, 

respectively. These results indicated that SWE is a highly efficient method for 

recovering a valuable flavonoid, and quercetin from onion skin and it is a potentially 

useful technique for the extraction of other flavonoids to be used in nutraceuticals. 

1.9 Conclusions 

Onion, as an important crop in the Allium family, contains a high amount of 

phenolics compounds, which to a great extent attributes to human overall dietary 

intake. Furthermore, it also contributes to human health for its antioxidant, anti-

inflammatory, and anticancer features. The outer layers of the onion bulb are not 

edible and normally removed before the thermal treatment, however, it contains a 

wide range of flavonoid compounds. It is worth noting that the content of the 

flavonoid compounds can be different in different onions, but the most 

predominantly difference can be found in different cultivars. For example, red onion 

cultivars generally contain the highest level of flavonoids. In addition, agronomic 

practices (sowing date, fertilisation, and harvesting time) can also affect the 

flavonoid content in onions. 

The storage of onions is a complex process that can be influenced by many factors. 

In general, these factors can be divided into three categories: pre-harvest conditions, 

post-harvest conditions, and its physiology. Pre-harvest conditions that affect 

storability of onion bulbs are related to genetic background and growing conditions 
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include cultivar, fertilisers, and harvest stage. In addition, storage condition (time, 

temperature, relative humidity, controlled atmospheres) are post-harvest factors, 

which are important for retaining the high quality of bulbs as well as prolonging 

postharvest life of onions. Optimised storage condition can subsequently be 

employed after processing to further reduce the loss of phenolics content in raw and 

processed onions. Some new techniques such as different drying methods 

(microwave, vacuum oven), which are applied in onion production have benefits in 

retaining quality, and bioactive compounds and increasing storage potential during 

storage.  

For food processors, food processing operations can be the most effective and 

efficient way to reduce the loss of flavonoid compounds in onions. Onions should be 

cooked (thermal processing) under a suitable time and temperature, which can cause 

enzyme inactivation, leading to a reduction in the degradation of flavonoids. 

However, overcooking should be avoided since it can result in the destruction of 

flavonoids. Moreover, several non-thermal techniques such as ultrasound/sonication, 

ultraviolet (UV), and different packaging techniques have been mostly investigated 

regarding the enhanced extraction method of flavonoid compounds from onions.   

Extraction of the phenolics compounds in onions is interested by many researchers, 

due to their potential health benefits. The new extraction techniques (pressurized 

liquid extraction, microwave assisted extraction, and supercritical fluid extraction) 

have been used in the extraction of phenolic compounds from onions. These novel 

methods are advantageous in comparison with conventional methods as the former 

requires a shorter extraction period and less organic solvents. Most of the studies so 

far have been performed at a laboratory scale, but further research is necessary to 

apply the knowledge to the industry needs, assessing the viability of the extraction 

methods economically. 
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Abstract 

Onions contain a number of bioactive compounds, in particular polyphenols. They 

are a rich source of such compounds in the human diet and offer significant health 

benefits to the consumer. Demand for organic crops is steadily increasing partly 

based on the expected health benefits of organic food consumption. The current 

study examines the influence of organic and conventional crop management 

practices on the phenolic content of onion. We examined the effect of conventional, 

organic, and mixed cultivation practices on the content of total phenolics, total 

flavonoids and antioxidant activity in two varieties of onion grown over four years in 

a split-plot factorial systems comparison trial. Levels of total phenolics and total 

flavonoids showed a significant year on year variation and were significantly 

different between organic and conventional production systems. The levels of total 

phenolics, total flavonoids and antioxidant activity in general were significantly 

higher (p<0.05) under fully organic compared to fully conventional management. 

                                                                                   

Keywords: Onion (Allium cepa L.); Organic; Conventional; Phenolics; Flavonoids; 

Antioxidants. 
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2.1 Introduction 

The demand for organic food products has increased rapidly during recent years, 

(FiBL, 2013) partially due to the notion that health benefits are linked with the 

consumption of organic foods. Organic food is perceived to be more nutritious, better 

tasting, and environmentally friendlier compared to conventionally grown crops 

(Wang et al., 2008). Organic crop production in Europe is controlled by EU Council 

Regulation No 834/2007. Certified organic producers must follow interpretations of 

the guiding EU legislation set down by, and inspected by, National certification 

bodies. In Ireland the main organic certification bodies are IOFGA (Irish Organic 

Farmers and Growers Association) and the  Organic Trust, Dublin. Broadly organic 

crops cannot be genetically engineered, or treated with synthetic fertilisers, or 

synthetic pesticides. This raises a question if these restrictions of cultivation practices 

have any impact on plant metabolites, particularly secondary metabolites. Scientific 

studies have shown that organic cultivation directly impacts on the levels of 

secondary metabolites, mainly polyphenols, in fruits and vegetables (Asami et al, 

2003; Barański et al., 2014). In addition to organic practices, the concentration of 

polyphenols in edible plants is affected by other factors such as cultivar and variety 

selection (Vågen & Slimestad, 2008), tissue maturity and damage at harvest: stress 

(pathogen infection and pest attack) (Dixon & Paiva, 1995; Ren et al., 2001), climate 

and soil microenvironment, fertiliser regime, temperature, irradiation, and post-

harvest treatment (Manach, Scalbert, & Morand, 2004). Relative to conventional 

systems, organic systems may increase the exposure of crops to such stresses, thus 

inducing the synthesis of secondary metabolites (Manach, Scalbert, & Morand, 2004; 

Faller & Fialho, 2010). The polyphenols are ‘natural antioxidants’ and have received 

huge attention in recent times due to their diverse health enhancing properties by 

preventing oxidative damage to cellular macromolecules and organelles (Benbrook, 

2005; Conklin, 2000; Zhou & Yu, 2006; Lee, Patil, & Yoo, 2015). Given that 

increasing evidence indicates a role for plant phenolics especially flavonoids in 

human health, efforts need to be directed in understanding the relationship between 

cultivation practices and phenolic levels in crops (Asami et al., 2003). There is a 

volume of scientific data in a relatively large number of studies showing the impact 

of the organic cultivation on the concentration of secondary metabolites with 

antioxidant activity, including a wide range of nutritionally desirable phenolics in 
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edible plants (Hallmann & Rembiałkowska, 2006; Cooper et al., 2011; Hajslova et 

al., 2013; Średnicka-Tober et al., 2013; Pérez-Gregorio et al., 2014; Barański et al., 

2014; Valverde et al., 2015). The higher concentrations of a wide range of phenolics 

found in organic crops/crop-based foods may indicate the greatest potential 

nutritional benefits (Barański et al., 2014). However, there is  little information on 

the impact of various cultivation practices on the production of secondary 

metabolites in onions, which are a major source of polyphenols in the human diet, 

and are globally an important  agricultural product with annual production of 82.82 

MT (FAO, 2012). It has been reported that onions (Allium cepa L.) make the greatest 

contribution of antioxidant flavonoids to the Western European diet by virtue of their 

content and their frequency of consumption (Hertog, Hollman, & Katan, 1992) and 

bioactive phenolic compounds found in onions are widely recognized as beneficial to 

health with the potential to protect the body from some degenerative diseases (Yin & 

Cheng, 1998; Sing et al., 2009; Pérez-Gregorio et al., 2010; Lu et al., 2011; Tiwari & 

Cummins, 2013; Wang, Li, & Bai, 2017). Many reports have indicated that onions 

have a wide range of beneficial properties for human health, such as anti-

cholesterolaemic (Yin & Cheng, 1998; Bahram-Parvar & Lim, 2018), anti-mutagenic 

(Singh et al., 2009; Sharma et al., 2016a) and antioxidant capacity (Pérez-Gregorio et 

al., 2010; Lu et al., 2011; Sharma et al., 2015a). There is an increasing attention on 

the antioxidant content of onion because regular consumption of onions is associated 

with a reduced risk of neurodegenerative disorders, many forms of cancer, and 

cataract formation (Roldán et al., 2008). 

The objective of this study was to compare the total phenolic contents, total 

flavonoid contents and antioxidant activity in onions grown under organic, 

conventional and mixed cultivation practices in a multi-year experiment.  The onion 

trials described here are from a long-term systems comparison trial with samples 

harvest from research plots in 2010 to 2013 collection. 

2.2 Materials and methods 

2.2.1 Field trial experiments 

Dr. Kim Reilly, Dr. James Grant, and Dr. Leo Finn designed the trial and cultivated 

the onion samples for over four years, taking into account of different factors such as 
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the climate change. They aimed to investigate the association between two different 

production systems (organic and conventional). Components such as soil 

management and pest control were measured in order to compare between organic 

and conventional systems on phytochemical accumulation, bioactive compounds, 

phenolic profile, and antioxidant activity. This experimental chapter was, therefore, 

developed from this previous research design. The onions analysed were from the 

systems field trial carried out at Teagasc, Kinsealy (53 25N, 6 10W), Dublin, 

Ireland. The soil type at this location was loam to clay loam (altitude, 28m O.D.; 

slope, 1; moderately well drained). The field trial was a factorial split plot design 

with four replicates (n=4) and followed commercial vegetable production practices in 

Ireland. There were two levels of soil treatment, namely (i) organic soil treatment 

(OS) and (ii) a conventional soil treatment (CS); and two levels of pest-control, 

namely (i) an organic pest-control treatment (OP) and (ii) a conventional pest-control 

treatment (CP). Two varieties (V1=Hyskin, V2=Red Baron) of each crop were grown 

every year (Appendix 1). Within each replicate (n=4) each crop was grown under 

eight possible treatment combinations (V1+OS+OP, V1+OS+CP, V1+CS+OP, 

V1+CS+CP, V2+OS+OP, V2+OS+CP, V2+CS+OP, V2+CS+CP) giving a total of 

32 plots per crop per year. The trial was set up in spring 2009 on land that had 

previously been under long standing grass for more than 10 years. Organic 

cultivation practices used were in compliance with EC1990/92, EC834/200719 and 

as described previously (Reilly et al., 2013). The organic soil (OS) treatments 

consisted the use of certified organic fertilisers; a 4-year horticultural crop rotation 

including a fertility building red clover ley (Trifolium pratense); and use of winter 

cover crops. In contrast the conventional soil (CS) treatment used mineral fertilisers 

and no set crop rotation (crops randomly allocated each year) with no winter cover 

crop. Equivalent rates of nitrogen (N), phosphorus (P) and potassium (K) were 

applied to both CS and OS treatments following a spring soil test and the rates 

applied were according to Teagasc recommendations for the crop (Coulter & Lalor, 

2008). The fertiliser was applied as a mixture of calcium ammonium nitrate, single 

super-phosphate and sulfate of potash for the CS treatment; or Greenvale fertiliser 

(4.5:3:3) and ProKali (3:0:14) for the OS treatment. Conventional pest-control (CP) 

treatments comprised pesticide applications against weeds, pests and diseases typical 

of commercial vegetable production and in accordance with Alexander (2011, 2013). 
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Organic pest-control (OP) treatments comprised mechanical weed and pest-control 

methods, certified treatments of biological origin if required and provision of a 

refuge area to encourage beneficial insects. Applied inputs for onion cultivation in 

2010-2013 are shown in Table 2.1 Additional information on the field trial layout is 

available at http://www.ipfn.ie/publications/agronomic.    

For experimental plots, onions bulbs were harvested at commercial maturity stages 

from the internal rows with guard rows excluded. After harvesting, three disease free 

onions of similar size were taken as a composite sample from each plot. Samples for 

analysis were immediately refrigerated and then frozen at -20 oC within 24 hours of 

harvest. Frozen samples were freeze-dried in a large scale freeze drier (Cuddon 

Frozen Dry, Blenhein, New Zealand). Once freeze-dried, samples were vacuum 

packed in polypropylene bags and kept at -20 oC until analysis. 

 

 

  

http://www.ipfn.ie/publications/agronomic
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Table 2.1 Specific pest-control and soil treatment inputs used in the Teagasc Kinsealy 

Systems Comparison trial for onion cultivation 2010-2013. 

PEST-CONTROL 

TREATMENT 

Organic Pest-control (OP) Mechanical weeding (hand hoeing). 

*Serenade3 (10 L/ha) 

 

 Conventional  Pest-control 

(CP) 

*Proplant2 (10ml m2   modular drench) , 

Roundup1 (4L/ha) , Stomp1 (3.3L/ha), CICP1 

(4.2L/ha), Defy1 (3.3L/ha), *Totril1 (1.8L /ha), 

Stratos Ultra1 (4 L/ha), Penncozeb2 (4.4 

kg/ha). 

Folio Gold 2 (2L/ha), Amistar2 (1L/ha). 

SOIL 

TREATMENT 

 

Organic Soil (OS) Previous crop – broccoli  

 

Fertiliser (adjusted to)   N 70 kg/ha 

                                       P 20 kg/ha 

                                       K 215 kg/ha 

 

Applied as Greenvale plant food (4.5:3:3) 

(pelleted chicken manure + calcified seaweed) 

and ProKali (3:0:14).  A top dress equivalent 

to 35 kg/ha N, and contributing 25 kg/ha P and 

24 kg/ha K was applied in June or July. 

 

 

 

Conventional Soil (CS) Previous crop – broccoli / carrot / lettuce 

 

Fertiliser (adjusted to)  -  N 70 kg/ha 

                                         P 20 kg/ha 

                                         K 215 kg/ha 

 

Applied as CAN (27% N), single 

superphosphate (7.8%P) and sulphate of 

potash (42% K). A top dress equivalent to 35 

kg/ha N, 25 kg/ha P and 24 kg/ha K was 

applied in June or July. 

1 Herbicide, 2 Fungicide.  3 Fungicide (certified organic).  * Not applied in all years. Treatment codes: 

OP= organic pest-control, CP= conventional pest-control, OS=organic soil treatment, 

CS=conventional soil treatment. 

2.2.2 Extraction and analysis of phenolic compounds 

In each drying replicate, 100 g of onion slices were distributed uniformly as a thin 

layer onto stainless steel trays of size 20 × 10 cm and were dried by Freeze-drying. 

Freeze-drying was carried out in a Cuddon freeze-drier (FD80, Cuddon Freeze Dry, 

Blenheim, New Zealand) at a temperature of 40 oC and a pressure of 0.064 mBar for 

72 h, according to the procedure described by Hossain et al. (2010). 

Freeze-dried onions were milled using a kitchen blender (Kenwood Limited, Havant, 

UK). The powdered onions (1 g) were mixed with 10 ml of 80% methanol and 

homogenized with an Omni-prep multisample homogeniser (Omni International, GA, 

USA) at 24,000 rpm (Appendix 2). The homogenised sample suspension was shaken 
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8 hours with a V400 Multitude Vortexer (Alpha laboratories, North York, On, 

Canada) at 1500 rpm at room temperature. The sample suspension was then 

centrifuged for 20 mins at 3000 g (MSE Mistral 3000i, Sanyo Gallenkamp, 

Leicestershire, UK) and filtered through 0.22 μm polytetrafluoroethylene filters. The 

extracts were kept at -20 oC for subsequent analysis. 

2.2.3 Analysis of total phenolics 

Total phenolics were determined using a modification of the Folin-Ciocalteau 

method (Singleton, Orthofer, & Lamuela-Raventós, 1999). Briefly 100 μL of 

methanolic extract, 100 μL of MeOH, 100 μL Folin-Ciocalteau reagent and 700 μL 

of Na2CO3 were added to 1.5 mL microcentrifuge tubes and the samples were 

vortexed. The tubes were then left in the dark for 20 mins at room temperature. 

Following this, the samples were centrifuged (Eppendorf, Centrifuge 5417R, 

Hamburg, Germany) at 17,900 g for 3 mins. The absorbance of the sample was read 

at 735 nm by a spectrophotometer (Shimadzu UV-1700, Shimadzu Corporation, 

Kyoto, Japan) using aqueous gallic acid (10-400 mg/L) as a standard (Appendix 3). 

Results are expressed as milligrams of gallic acid equivalents per gram on a dry 

weight basis (GAE mg/g DW). All measurements were carried out in triplicate. 

2.2.4 Analysis of total flavonoids 

Total flavonoid content was determined using the method described by Lin and Tang 

(2007). Briefly, 100 μL of methanolic extract was mixed with 300 μL of 95% ethanol, 

40 μL of 10% AlCl3, 40 μL of 1.0 M potassium acetate and 520 μL of distilled water. 

After incubation at room temperature for 40 mins, the absorbance of the reaction 

mixture was measured against blank at 415 nm using a spectrophotometer (Shimadzu 

UV-1700, Shimadzu Corporation, Kyoto, Japan). Quercetin was used to develop a 

standard calibration curve (Appendix 3) and the total flavonoid content was 

expressed as milligrams of quercetin equivalents per gram dry weight (QE mg/g 

DW). All measurements were carried out in triplicate. 
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2.2.5 Analysis of antioxidant activity  

2.2.5.1 Ferric reducing antioxidant power (FRAP) assay 

The FRAP assay was carried out according to the method of Stratil, Klejdus, and 

Kuban (2006) with slight modification. The FRAP solution was freshly prepared on 

the day of use, by mixing acetate buffer (pH 3.6), ferric chloride solution (20 mM) 

and TPTZ solution (10 mM TPTZ in 40 mM HCl) in a proportion of 10:1:1, 

respectively. Following this, the FRAP solution was heated, while protected from 

light, until it had reached a temperature of 37 oC. Appropriate dilutions of onion 

methanolic extracts were prepared by diluting 10-fold in methanol. 100 μL of the 

diluted sample extract or for blank (100 μL methanol) and for Trolox standard curves 

100 μL Trolox of appropriate concentration and 900 μL of FRAP solution were 

added into a micro-centrifuge tube (Appendix 3). The tubes were vortexed and left at 

37 oC for exactly 40 mins, and the absorbance was measured at 593 nm using 

spectrophotometer (Shimadzu UV-1700, Shimadzu Corporation, Kyoto, Japan). The 

antioxidant activity of the samples was expressed in milligram Trolox equivalents 

per gram dry weight sample (TE mg/g DW). All measurements were carried out in 

triplicate. 

2.2.5.2 DPPH antioxidant power assay 

The DPPH scavenging activity assay was performed as per the method described by 

Goupy et al. (1999) with a slight modification. 2, 2-diphenylpicrylhydrazyl (DPPH) 

was dissolved in methanol to a concentration of 0.238 mg/mL in a conical flask. The 

reagent was prepared 2 hours prior to use, to ensure that the DPPH has fully 

dissolved and stabilised. The flask containing DPPH solution was covered with 

aluminium foil to protect from the light and stored in the refrigerator. For the actual 

measurement a 1 in 5 dilution of the DPPH stock was made using 10 ml of stock and 

making up to the 50 ml with methanol. Trolox (1-10 μg/mL) dissolved in methanol 

in appropriate dilution was used to make the standard curve (Appendix 3). This 

experiment was carried out in three replicates for both samples and standard. In each 

replicate, 500 μL from the appropriately diluted sample extract was added to 500 μL 

DPPH solutions. Experiments were carried out to determine the exact dilutions 

required. In the control, 500 μL of methanol was added in place of sample extract 

with an equal volume of DPPH solution. As for blank, 500 μL sample extract was 
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mixed with 500 μL methanol. The absorbance was measured at 515 nm by 

spectrophotometer (Shimadzu UV-1700, Shimadzu Corporation, Kyoto, Japan). The 

radical scavenging activity was expressed in terms of mg Trolox equivalent per gram 

of dry weight (TE mg/g DW). All measurements were carried out in triplicate. 

2.2.6 Statistical analysis 

Statistical analysis was carried out using SAS 9.1 (Cary, NC). Total phenolic, total 

flavonoid, FRAP and DPPH data were analysed using an ANOVA mixed model 

containing a contrast code to compare the fully organic (OS+OP) and fully 

conventional (CS+CP) treatments as well the individual treatments and interactions. 

Pearson correlation coefficients were calculated between total phenolics, flavonoids 

and antioxidant activity using SAS 9.1 software. 

2.3 Results and discussion 

2.3.1 Total phenolic and total flavonoid content 

The present study investigated the free phenolics of onion, as they constitute 

approximately 90% of the total onion polyphenols (Acosta-Estrada, Gutiérrez-Uribe, 

& Serna-Saldívar, 2014). Levels of total free phenolics (TPC) in the year 2010 were 

considerably higher in ‘Red Baron’ with values ranging from 6.36±0.02 GAE mg/g 

DW to 7.75±0.1 GAE mg/g DW than ‘Hyskin’ which had TPC values in the range of 

5.49 ±0.10 GAE mg/g DW to 7.21±0.01 GAE mg/g DW (Table 2.2). ‘Red Baron’ 

consistently maintained higher levels of TPC across treatments and years ending in 

2013. The levels of total phenolics and flavonoids reported here are in agreement 

with levels found in onion varieties in other studies  (Shon et al., 2004; Rodrigues et 

al., 2010). The finding of consistently higher levels of polyphenols in ‘Red Baron’ is 

of relevance from a health perspective. ‘Red Baron’ is a deep red coloured onion 

while ‘Hyskin’ is a brown skinned, white fleshed onion. Thus, it is expected that 

‘Red Baron’ would contain higher levels of anthocyanins (phenolic compounds) than 

its counterpart ‘Hyskin’. This reflected in the higher levels of total flavonoid content 

(TFC) values in ‘Red Baron’ than ‘Hyskin’ (Table 2.3). Although ‘Red Baron’ had 

higher TPC values than ‘Hyskin’ across the four years, the TPC data among the years 

in both the varieties were inconsistent. Data indicated that in the year 2010, a poor 

year for crop growth, total phenolic contents of ‘Red Baron’ across in treatments and 
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OS+CP treatment ‘Hyskin’ were higher than those of the year 2011. We ascribe this 

result to increased stress (low temperature and higher humidity) which might have 

caused a generalised increase in total phenolic content through up-regulation of the 

phenylalanine ammonia lyase (PAL), the key entry point enzyme for synthesis of 

phenolic compounds. This enzyme is well known to be up-regulated by stresses 

including UV light, low temperature, nutrient deficiency, wounding and pest or 

pathogen on attack (Winkler et al., 2007). Following the year in 2011, the TPC 

values of both the varieties had increased significantly in the year 2012 and 2013, 

with the highest values in the year 2012 and 2013. This could be attributed to 

increased production of phenolics in response to stress caused by heavy rainfall and 

associated water logging of soils (Table 2.4). These data showed the complexity of 

regulation of levels of bioactive compounds in crop plants, which may be affected by 

genotype and also respond differently to the plant’s environment.  

Mixed model ANOVA showed that total phenolics content in general was 

significantly (p<0.05) higher in samples grown under fully organic treatment 

(organic soil and organic pest-control; OS+OP) compared to samples grown under 

completely conventional treatment (CS+CP) except in 2010. This was expected as 

the organically grown onions were probably more exposed to pest stress than the 

conventionally grown ones. However, the responses of the onions in the year 2010 

were different due to poor environmental conditions of the year. The environmental 

stress might have outweighed the pest stress giving irregular patterns in their 

phenolic contents in the year 2010. As shown in Tables 2.2 and 2.3 significant 

interactions among varieties (V), soil (S) and pesticide (P) types (VxP, VxS, SxP and 

VxSxP) were observed but were not consistent across years. In contrast, significant 

main effects for variety and soil treatment were observed in all years, with significant 

pest-control treatment effects observed in most years. These data indicated that  

variety and soil treatment have a major influence on total phenolic and flavonoid 

content in onion, with the increased levels found in the red variety ‘Red Baron’ and 

when onions are grown under the organic soil (OS) treatment. In our study, 

equivalent rate of nitrogen (N) was applied to both CS and OS treatments in order to 

minimise any nutrient stress effects in the OS treatment.  However, it is important to 

note that mineral feriliser is more immediately available to the crop, as organic 

fertilzer requires a breakdown by soil processes and therefore may show slower 



Chapter 2 Organic and Conventional Onions    

53 

 

availability. The actual difference perceived by the crop between the CS and OS 

treatments include differences in plant available N, P and K; differences in the soil 

microbiome as well as other unknown differences that may be present.  A number of 

other studies have shown that total flavonoid decreased with increasing N application. 

For example, Stewart et al. (2001) found decreasing concentration of flavonoids 

when increasing N levels were applied in Arabidopsis. Groenbak et al. (2014) also 

found a decrease in flavonoids with increased N for kale. Sander and Heitefuss (1998) 

also reported that increasing mineral N fertilization resulted in reduced 

concentrations of phenolic compounds in wheat leaves. There is increasing evidence 

that differences in fertilization regimens between organic and conventional 

production systems are associated with significantly higher phenolic concentrations 

in organic crops (Rühmann et al., 2002); however, it is not clear if this is simply a 

nutrient stress effect or if other factors including effect of the soil microbiome or 

other factors, are involved. In onions, an extensive previous study found that 

fertiliser type (mineral vs organic) and placement of fertiliser in onion had little 

effect on quercetin production (Mogren, Olsson, & Gertsson, 2006; Mogren et al., 

2008). A number of previous studies have indicated a significant genotype effect on 

total phenolic content and total flavonoids content profile in onion (Tiwari & 

Cummins, 2013; Reilly et al., 2014). The two onion varieties in this study showed a 

different quantitative behaviour with regards to total phenolics and total flavonoids 

content under the same meteorological conditions. The content of these secondary 

metabolites are highly variable, not only depending on the meteorological conditions 

and production, but also the cultivar and post-harvest practices. Hallmann and 

Rembiałkowska (2006) demonstrated that red onions grown organically contained 

more flavonoids compared with conventional samples. Ren et al. (2001) reported that 

organically grown Welsh onions had higher levels of flavonols and antioxidant 

activity than conventionally farmed ones. Faller and Fihlho (2010) reported that 

organic onion pulp had a higher antioxidant capacity than onions produced using 

conventional practices. Some research studies have also shown a slight yet 

significantly higher content of polyphenols in organic vegetables (Mitchell et al., 

2007). Organic black currants and tomatoes contained significantly more compounds 

with antioxidant properties in comparison with currants grown under the 

conventional system (Hallmann, 2012; Kazimierczak et al., 2008). The concepts of 
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measures of plant defense and photosynthesis explain two prominent mass-balance 

based hypotheses of secondary metabolite production and they are carbon-nutrient 

balance hypothesis (CNBH) and the growth-differentiation balance hypothesis 

(GDBH). Both hypotheses were based on the assumption that excess resources (i.e. 

nutrients and carbon) in plants were transferred into defences as the growth was 

restricted before photosynthesis. In addition, a key postulate of the CNBH and the 

GDBH is that defences will also be increased even under limited conditions of 

growth when photosynthesis continues to function at normal levels (Massad, Dyer, & 

Vega, 2012). Hypotheses for higher content of these compounds in organic products 

include the Growth-Differentiation Balance Hypothesis (GDBH), the Carbon 

Nutrient Balance Hypothesis (CNBH) which imply that organically grown plants 

will produce more bioactive compounds, including phenolics, than plants grown 

conventionally (Caris-Veyrat et al., 2004; Massad, Dyer, & Vega, 2012) and the 

Cost-Benefit Hypothesis-CBH and the Resource Availability Hypothesis-RAH also 

designed by Growth Rate Hypothesis-GBH (Coley, Bryant, & Chapin, 1985; Herms 

& Mattson, 1992; Barton, 2008). The growth is limited by deficiencies in carbon (C) 

or nitrogen (N) while rates of photosynthesis remain unchanged. The subsequent 

reduced growth results in the more abundant resource being invested in increased 

defense. Most support for these hypotheses comes from work with phenolics 

(Massad, Dyer, & Vega, 2012). Recently, a new quality concept for organic produce 

- the inner quality concept (IQC) – based on the balance between plant growth and 

differentiation has been discussed in the literature. The hypothesis of the IQC is that 

where growth and differentiation are optimally balanced or “integrated”, integration 

results in higher crop quality including nutrient and  bioactive content (Bloksma et 

al., 2007).    

Brandt and Mølgaard (2001) had initially proposed that it was natural for plants 

cultivated organically to contain more phenolics and other secondary metabolites as 

defensive compounds. However, the opposite tendencies of higher contents of 

polyphenols in conventional products have also been observed (Anttonen & 

Karjalainen, 2006). Søltoft et al. (2010) also found no significant differences 

between conventionally and organically grown onions in the content of flavonoids. 
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Table 2.2 Onion total phenolic content under different management practices between 2010 

and 2013. 

Total phenolic content in 2 varieties of onion grown under different management practices. Data 

shown are mean and standard error of the mean (n=4). Since the difference between years was 

significant data for individual years is shown separately.Treatment codes: V1= ‘Hyskin’, V2= ‘Red 

Baron’ OS=organic soil treatment, CS=conventional soil treatment, OP=organic pest-control, 

CP=conventional pest-control ANOVA P values in bold type are significant at p<0.05. 

  

 2010 2011 2012 2013 

Treatment  GAE mg/g DW GAE mg/g DW GAE mg/g DW GAE mg/g DW 

V1+OS+OP 5.49±0.10 6.31±0.29 7.52±0.01 6.96±0.03 

V1+OS+CP 7.21±0.01 6.42±0.07 7.13±0.02 7.09±0.01 

V1+CS+OP 5.79±0.03 6.00±0.13 7.34±0.02 6.48±0.21 

V1+CS+CP 5.64±0.07 5.29±0.18 7.21±0.03 6.37±0.27 

V2+OS+OP 6.71±0.14 6.55±0.28 8.42±0.23 9.74±0.23 

V2+OS+CP 7.75±0.01 6.49±0.24 8.34±0.02 9.55±0.05 

V2+CS+OP 6.36±0.02 6.26±0.21 8.16±0.02 9.15±0.11 

V2+CS+CP 7.08±0.03 5.82±0.11 7.65±0.03 9.33±0.05 

Statistical 

significance 

ANOVA P value 

    

Rep 0.0372 0.0794 0.1465 0.9677 

Variety <0.0001 <0.0001 0.0005 0.0005 

Soil <0.0001 <0.0001 0.0006 0.0002 

Pest 0.0001 0.1638 0.0104 0.9979 

Variety*soil 0.0582 0.2541 0.0026 0.3487 

Variety*pest 0.1123 0.8219 0.7943 0.9750 

Soil*pest <0.0001 0.0084 0.4691 0.7659 

Variety*soil*pest <0.0001 0.2873 0.0125 0.1645 

Fully 

conventional vs. 

fully organic 

<0.0001 <0.0001 <0.0001 0.0077 
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Table 2.3 Onion total flavonoid content under different management practices between 2010 

and 2013. 

Total flavonoid content in 2 varieties of onion grown under different management practices. Data 

shown are mean and standard error of the mean (n=4). Since the difference between years was 

significant data for individual years is shown separately. Treatment codes: V1= ‘Hyskin’, V2= ‘Red 

Baron’ OS=organic soil treatment, CS=conventional soil treatment, OP=organic pest-control, 

CP=conventional pest-control ANOVA P values in bold type are significant at p<0.05. 

Table 2.4 Climate conditions during onion crop production in growing season from March 

to September between 2010 and 2013.  

Year T TM Tm PP V RA/SN H 

2010 10.0 12.4 4.1 465.5 17.4 153 81.9 

2011 11.7 13.8 6.0 351.3 20.7 163 76.2 

2012 11.2 12.9 5.7 560.0 19.9 156 76.9 

2013 11.2 13.1 5.7 438.7 20.3 165 78.0 

T = Mean temperature ( ℃ ), TM = Mean maximum temperature ( ℃ ), Tm = Mean minimum 

temperature (℃), PP = Total monthly precipitation amount (mm), V = Mean wind speed (Km/h), RA 

= Daily indicator for occurrence of rain or drizzle (total days), SN =Indicator for occurrence of snow 

or ice Pellets. H = Mean humidity (%). (Source from Climate Dublin Airport)   

The red onion ‘Red Baron’ did accumulate lower amounts of flavonoids in 2010, the 

year with the lowest temperature. Temperature is one of the most important factors 

affecting flavonoid accumulation in plants. Low temperature results in a reduction in 

photosynthesis, which reduces the soluble sugar content of tissues and leads to a 

repression of genes that encode enzymes of the flavonoids biosynthetic pathway and 

to a reduction in substrates for flavonoid biosynthesis (Ubi, 2004). Our results show 

that variety, soil management and meteorological factors have a marked influence on 

 2010 2011 2012 2013 

Treatment  QE  mg/g DW QE mg/g DW QE mg/g DW QE mg/g DW 

V1+OS+OP 2.70±0.03 3.68±0.08 4.19±0.03 3.70±0.40 

V1+OS+CP 2.80±0.07 3.59±0.07 3.92±0.12 4.15±0.15 

V1+CS+OP 2.42±0.03 3.27±0.07 4.06±0.04 3.07±0.15 

V1+CS+CP 2.70±0.06 3.02±0.04 3.79±0.04 3.30±0.08 

V2+OS+OP 2.83±0.06 4.70±0.14 4.54±0.06 4.48±0.40 

V2+OS+CP 3.17±0.30 4.65±0.12 4.26±0.08 4.24±0.06 

V2+CS+OP 2.65±0.10 4.60±0.02 4.24±0.11 4.00±0.17 

V2+CS+CP 2.97±0.50 4.64±0.03 3.89±0.12 4.16±0.03 

Statistical significance 

ANOVA P value 

    

Rep 0.4437 0.4830 0.0652 0.1858 

Variety 0.0021 0.0005 <0.0001 0.0001 

Soil <0.0001 0.0001 <0.0001 <0.0001 

Pest 0.0061 0.0159 0.0001 0.0788 

Variety*soil 0.9666 0.0008 <0.0001 0.0015 

Variety*pest 0.0110 0.1406 0.0940 0.0055 

Soil*pest 0.1451 0.7251 0.1235 0.4751 

Variety*soil*pest 0.0714 0.2615 0.1852 0.0177 

Fully conventional vs. 

fully organic 

0.1315 <0.0001 <0.0001 0.0005 
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the content of flavonoids in onions. Total flavonoids varied significantly among 

seasons, with higher levels in 2011, which was warmer and drier than 2010, 2012 

and 2013 (Table 2.3). We hypothesise that since environmental conditions in 2011 

were more favourable (higher average temperature, less rainfall days and less 

humidity), PAL was not up-regulated, and this a greater proportion of phenolic 

synthesis would have shunted towards flavonoid synthesis. The higher levels of total 

flavonoids in 2012 and 2013 could be the result of higher temperature levels and 

lower humidity. Variability in total phenolic and total flavonoids content data is 

normally considered as the response of crops to different climatic conditions. 

Differences in onion total phenolic and total flavonoids content due to environmental 

conditions in particular temperature and humidity have been reported in other studies 

(Rodrigues et al., 2011). In the four seasons reported here, humidity and daily 

indicator for occurrence of rain or drizzle (total days), were similar in both years, but 

rainfall levels were higher in the year 2010 and 2012 relative to the year 2011 and 

2013. The higher levels of flavonoids observed in 2011 are probably related to the 

lower rainfall and humidity during the growing season, as onion plants are exposed 

to sunlight longer that may have triggered the increased production of flavonoids. 

Vegetables grown in full sun have been reported to contain higher levels of 

flavonoids, and exposure to sunlight is known to enhance production of flavonols in 

onion (Rodrigues et al., 2011). These meteorological conditions can enhance 

secondary metabolism, favouring the synthesis of flavonoids. In contrast, in the years 

with the lowest soil and air temperatures, higher relative humidity and higher soil 

water availability (2010), onions accumulated less flavonoids. 

Table 2.4 shows the climatic conditions for both years, with 2011 being on average 

slightly warmer and less humid with total monthly precipitation amount (mm) in 

rainfall (351.3) over 8 months in growing season. Responses to environmental effects 

seem to be variable depending on varieties. ‘Red Baron’ showed differences in total 

phenolic content in 2012 and 2013, while ‘Hyskin’ showed little difference between 

2012 and 2013. In other crops, studies in controlled growing environments have 

found that heat stress increases the total flavonoids content, with diverse results 

reported for low temperatures (Nitithamyong et al., 1999). Drought stress seems to 

increase the total flavonoid content (Bejarano et al., 2000). Accumulation of 

phenolics and higher activity of biosynthetic enzymes in response to drought stress 
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have also been reported in other plants. Chaves, Escudero, and Gutierrez-Merino 

(1997) demonstrated that drought and high temperatures are correlated with the 

increase of the more methylated flavonoids. In water-stressed plants, there is a 

general increase in the levels of phenolic compounds (Abreu & Mazzafera, 2005). 

Wang and Zheng (2001) found a strong correlation between temperature and 

production of phenolic in strawberry fruits. 

2.3.2 Antioxidant activity 

As shown in Tables 2.5 and 2.6, FRAP and DPPH scavenging activities were 

generally significantly higher under fully organic cultivation (OS+OP) than fully 

conventional cultivation (CS+CP) except for DPPH in 2010. Significant interactions 

(VxP, VxS, SxP and VxSxP) were observed but were not consistent across years. In 

contrast significant main effects for variety (V) and soil treatment (S) were observed 

in all years, with significant pest control treatment (P) observed in most years. We 

therefore postulate that, in addition to variety, soil treatment has a strong influence 

on antioxidant activity in onions. 

Prior et al. (1998) reported that flavonoid compounds play an important role in the 

antioxidant capacity as compared to other phenolics compounds. However, due to the 

complex nature of phytochemicals, the total antioxidant activities of vegetables 

cannot be evaluated by a single method (Chu, Chang, & Hsu, 2000). Thus, it has 

been recommended that two or more methods should always be employed to 

evaluate the total antioxidant activity of vegetables (Dalamu et al., 2010). 

Accordingly we have employed two methods to measure the antioxidant activity: the 

FRAP and DPPH assays. There was a positive correlation between antioxidant 

activity and values of total phenolics and total flavonoids in onion samples. The 

antioxidant activity values as measured by DPPH assay were always less than those 

obtained from FRAP. Similar findings were observed in previous studies (Hossain et 

al., 2010; Hossain et al., 2014). According to Wang, Cao, and Prior (1996), the 

content of a single specific antioxidant compound is important, but it is better to 

analyse the total antioxidant activity for the overall health potential. Wang, Cao, and 

Prior (1996) indicated that the antioxidant activity is strongly affected by the 

cultivars within a species, but it can also be affected by the cultivation condition of 

the plant for example, environmental and cultivation techniques. Individual 
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parameters are very important for further understanding and establishing the 

relationships among antioxidant activity, total phenolics and flavonoids. Therefore, 

the coefficient of correlation was also calculated. The positive correlation between 

phenolic contents, flavonoids content and antioxidant activity suggests that plant 

phenolics are primarily responsible for the antioxidant activity in onion. This is 

similar to previous results obtained by Santas et al. (2008) which showed a relatively 

strong positive correlation r2 =0.78 between FRAP and total phenolics for two 

cultivated onions varieties. Similarly, Nencini et al. (2007) reported r2 =0.46 between 

FRAP and total phenolic content, determined across several Allium species. Table 

2.7 shows correlation analysis for total phenolics, total flavonoids, FRAP and DPPH 

indicating that antioxidant activity correlated well with total phenolics and 

flavonoids.  

Table 2.5 Total antioxidant capacity (FRAP assays) under different management practices 

between 2010 and 2013. 

Antioxidant activity (FRAP) in 2 varieties of onion grown under different management practices. Data 

shown are mean standard error of the mean (n=4). Since the difference between years was significant 

data for individual years are shown separately. Treatment codes: V1= ‘Hyskin’, V2= ‘Red Baron’ 

OS=organic soil treatment, CS=conventional soil treatment, OP=organic pest-control, 

CP=conventional pest-control ANOVA P values in bold type are significant at p<0.05. 

 

 

 2010 2011 2012 2013 

Treatment  Trolox mg/g DW Trolox mg/g DW Trolox mg/g DW Trolox mg/g DW 

V1+OS+OP 7.70±0.04 8.55±0.47 10.96±0.18 11.01±0.05 

V1+OS+CP 9.32±0.09 9.12±0.15 10.40±0.06 11.86±0.07 

V1+CS+OP 7.63±0.02 8.20±0.07 10.69±0.04 11.06±0.06 

V1+CS+CP 9.18±0.06 7.40±0.26 10.45±0.03 10.86±0.02 

V2+OS+OP 8.09±0.03 9.81±0.38 11.61±0.22 12.11±0.15 

V2+OS+CP 10.40±0.05 10.20±0.20 10.92±0.02 11.96±0.01 

V2+CS+OP 8.04±0.08 8.51±0.51 10.79±0.02 10.98±0.07 

V2+CS+CP 10.00±0.06 8.22±0.19 10.60±0.03 11.62±0.16 

Statistical 

significance 

ANOVA P value 

    

Rep 0.6652 0.6763 0.5858 0.6688 

Variety <0.0001 0.0180 0.0004 <0.0001 

Soil 0.0476 <0.0001 0.0150 0.0014 

Pest <0.0001 0.8870 0.0145 0.0349 

Variety*soil 0.2931 0.1872 0.0093   0.0520 

Variety*pest <0.0001 0.7392 0.8313 0.5457 

Soil*pest 0.0628 0.0331 0.0180 0.2996 

Variety*soil*pest 0.2330 0.3971 0.5745 <0.0001 

Fully conventional 

vs. fully organic 
<0.0001 <0.0001 <0.0001 0.0043 
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Table 2.6 Total antioxidant capacity (DPPH assays) under different management practices 

between 2010 and 2013. 

Antioxidant activity (DPPH) in 2 varieties of onion grown under different management practices. Data 

shown are mean standard error of the mean (n=4). Since the difference between years was significant 

data for individual years is shown separately. Treatment codes: V1= ‘Hyskin’, V2= ‘Redbaron’ 

OS=organic soil treatment, CS=conventional soil treatment, OP=organic pest-control, 

CP=conventional pest-control ANOVA P values in bold type are significant at p<0.05. 

 2010 2011 2012 2013 

Treatment Trolox mg/g DW Trolox mg/g DW Trolox mg/g DW Trolox mg/g DW 

V1+OS+OP 2.87±0.08 3.06±0.09 4.97±0.04 4.11±0.10 

V1+OS+CP 3.78±0.03 2.85±0.13 3.96±0.05 4.83±0.11 

V1+CS+OP 2.80±0.09 2.83±0.03 4.33±0.19 3.52±0.11 

V1+CS+CP 3.05±0.09 2.54±0.12 3.93±0.08 3.55±0.11 

V2+OS+OP 3.39±0.05 3.78±0.13 5.01±0.06 5.13±0.12 

V2+OS+CP 4.03±0.05 2.97±0.16 4.52±0.01 5.19±0.09 

V2+CS+OP 3.10±0.04 2.95±0.05 4.43±0.01 4.53±0.07 

V2+CS+CP 3.03±0.03 2.90±0.02 2.73±0.16 5.11±0.10 

Statistical 

significance 

ANOVA P value 

    

Rep 0.9781 0.8512 0.9912 0.4616 

Variety 0.0089 0.0415 0.2407 0.0032 

Soil <0.0001 <0.0001 <0.0001 <0.0001 

Pest 0.0036 0.0253 0.0013 0.0044 

Variety*soil 0.0195 0.1998 <0.0001 <0.001 

Variety*pest 0.0064 0.2066 0.0146 0.5960 

Soil*pest <0.0001 0.0243 0.0537 0.4602 

Variety*soil*pest 0.8102 0.00071 <0.0001 <0.0001 

Fully conventional 

vs.fully organic 

0.1859 

 
<0.0001 <0.0001 0.0009 
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Table 2.7 Correlation analysis for total phenolics, total flavonoids, FRAP and DPPH with 

‘Red Baron’ and ‘Hyskin’ varieties. 

2010 Red Baron Total flavonoids DPPH   FRAP 

Total phenolics 0.9815 0.6044 0.8259 

Total flavonoids    ------- 0.5183 0.8338 

DPPH     ------ 0.2161 

2011 Red Baron Total flavonoids DPPH   FRAP 

Total phenolics 0.5841 0.3578 0.8195 

Total flavonoids    ------- 0.7272 0.6846 

DPPH     ------ 0.2305 

2012 Red Baron Total flavonoids DPPH   FRAP 

Total phenolics 0.8822 0.9657 0.7645 

Total flavonoids    ------- 0.9263 0.8356 

DPPH     ------ 0.5961 

2013 Red Baron Total flavonoids DPPH   FRAP 

Total phenolics 0.9495 0.6058 0.9313 

Total flavonoids    ------- 0.5224 0.8421 

DPPH     ------ 0.8356 

2010 Hyskin Total flavonoids DPPH   FRAP 

Total phenolics 0.2874 0.9144 0.3786 

Total flavonoids    ------- 0.5617 0.5256 

DPPH     ------ 0.5949 

2011 Hyskin Total flavonoids DPPH   FRAP 

Total phenolics 0.9502 0.8790 0.7812 

Total flavonoids    ------- 0.9078 0.8887 

DPPH     ------ 0.6541 

2012 Hyskin Total flavonoids DPPH   FRAP 

Total phenolics 0.6510 0.8348 0.9430 

Total flavonoids    ------- 0.8305 0.8437 

DPPH     ------ 0.9564 

2013Hyskin Total flavonoids DPPH   FRAP 

Total phenolics 0.8302 0.8441 0.515 

Total flavonoids    ------- 0.9545 0.6347 

DPPH     ------ 0.8078 
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2.4 Conclusions                                                                                                                        

Although there have been several studies analysing fruits and vegetables produced 

under organic and conventional production systems, relatively few robustly designed 

field trial studies have compared phenolic content and antioxidant content in onion 

crops grown under conventional, organic and mixed systems. This study measured 

levels of total phenolics, total flavonoids and antioxidant activity in onions grown 

over four years using either conventional (CS+CP), organic (OS+OP) or mixed 

(OS+CP, CS+OP) treatments. Our data indicated that total phenolic and flavonoid 

content in onion was generally higher in ‘Red Baron’ red onions and was 

significantly higher in organic (OS+OP) compared to conventional (CS+CP) 

production in both varieties in most years. Significant year to year variation was also 

observed which we attribute to altered regulation of phenolic synthesis in different 

years due to meteorological conditions.      
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Abstract  

The objectives of this experiment were to investigate storage potential of organic 

onions and conventional ones under different storage conditions (-20 oC, 5 oC and 25 

oC with 60–75% relative humidity). Quality changes (dry matter, phenolic 

compounds, colour and antioxidant activity) of onion bulb were investigated.  

In the first experiment, after storing for 10 weeks at -20 oC and 5 oC, the quality of 

fresh conventional onions showed no significant loss. The phenolic compounds in 

fresh conventional onions increased significantly stored at 5 oC and they were found 

higher than in fresh organic onions at 5 oC. In the second experiment, the storage 

stability of dried onions was assessed. Compared to the dried conventional onions, 

the quality of organic ones was more stable during storage and it can be evidenced 

that the quality parameters (phenolics compounds and antioxidant activity) of dried 

organic onions stored after 10 weeks were observed at about the same level as the 

original ones, particularly at -20 oC. 

 

Keywords: Antioxidant activity; Storage conditions; Colour; Phenolic compounds; 

Organic and Conventional onions. 
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3.1 Introduction  

Onion is one of the most essential cultivated crop, which has been consumed 

globally. The worldwide production of onion has increased by 25% over the past 

decade with now the total production of 83 million tonnes, considering the second 

most important horticultural crop after tomatoes (FAO, 2013). Due to its storage 

characteristics and durability for shipping, onion has been traded more widely than 

any other vegetables (Griffiths et al., 2002). Therefore, onion (Allium cepa L.) 

storage has become an important issue mainly for providing products for fresh 

market, export, and processing. With an efficient storage technique, customers can 

benefit from having the same quality of onion throughout the year. The quality of 

onion after storage is of high importance for consumers and hence several factors 

have been considered for optimum quality by researchers, such as genotype, and pre-

harvest and post-harvest conditions. However, the present study investigated the pre-

harvest and post-harvest practices that have been adopted by large growers and food 

companies in order to maintain the onion quality during storage. A change in the 

quality of stored onions is generally due to high catabolism of substrates, primarily 

carbohydrates, and other phytochemicals (Mogren, Olsson, & Gertsson, 2007). The 

quality is highly affected by water loss, sprouting, and rooting incidence and changes 

in chemical composition. Sprouting and rooting are the main factors that limit their 

storage period causing storage losses and the decrease of the quality of stored onion 

bulbs (Adamicki, 2005; Ilić, Milenković, Djurovka, & Trajković 2009; Sharma et al., 

2015d). Storage conditions play an important role in controlling sprouting, rooting, 

and transpiration rate of onion bulbs, which ultimately affect the physiology and 

phytochemical properties of onions (Adamicki, 2005). Moreover, according to 

Grevsen and Sorensen (2004), genotype and pre-harvest conditions such as 

propagation method and harvest stage can reduce sprouting after storage. 

Storage of onion bulbs can affect chemical composition during storage, and many 

changes have been reported, such as changes in content of flavonols (Price, Bacon, & 

Rhodes, 1997; Coolong, Randle, & Wicker, 2008; Grzelak et al., 2009; Pérez-

Gregorio, García-Falcón, & Simal-Gándara, 2011; Pérez-Gregorio, Regueiro, 

González-Barreiro, Rial-Otero, & Simal-Gándara, 2011; Sharma et al., 2014; Dozio 
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et al., 2015; Sharma & Lee, 2016b) and antioxidant activity (Gennaro et al., 2002; 

Kevers et al., 2007; Pinho et al., 2015).  

To the best of our knowledge, very little work has been done relating to the stability 

of chemical composition with respect to the quality of fresh and dried organic and 

conventional onions upon storage. The integrated studies including production 

systems, postharvest handling practices (storage temperature), and levels of bioactive 

compounds with antioxidant activity in onion have not been studied comprehensibly. 

Apart from the proper storage condition, the selection of the production systems is 

crucial in the food industry and for the retailers of onion for retaining high quality 

until the product reaches the consumers. The aim of this study was to evaluate the 

effect of storage conditions applied to fresh and dried organic and conventional 

onions quality and health-promoting bioactive compounds with antioxidant activity. 

The three storage temperatures used in this study (-20 oC, 5 oC and 25 oC) are 

commonly used in onion production systems. Changes in concentration of bioactive 

compounds, antioxidant activity and quality features during onion storage were 

periodically monitored. 

3.2 Materials and methods 

3.2.1 Sampling 

Organically and conventionally grown onions (variety Red Baron) were obtained 

from the Horticulture Development Department in Teagasc, grown as part of the 

Kinsealy systems experiment, based in Kinsealy, North Dublin, Ireland. The 

experiments were divided into two parts. The first experiment (E1) was conducted 

under different temperature conditions. Organic and conventional onions in two 

separate net bags of 20 kg in each were transported to the lab, and bulbs in a weight 

range of 150–250 g with no visible defects were chosen for the study. They were 

stored in dark storage rooms at -20 oC, 5 oC, and 25 oC with 60-75% relative 

humidity, respectively. The onions were tested at 0, 1, 3, 5 and 10 weeks after after 

harvest (upon their arrival at the lab). For each test, three organic and three 

conventional onions were randomly sampled, weighed, and labelled. Weight loss and 

dry matter were measured in each bulb at 0, 1, 3, 5 and 10 weeks during storage. All 

measurements were carried out in triplicate. 
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In the second experiment (E2), three organic onion bulbs and three conventional 

onion bulbs were randomly selected to produce two types of freeze-dried powder 

samples, which were then weighed into tightly closed pouches, sealed and stored at 

−20 oC, 5 oC, and 25 oC for 10 weeks. Samples were removed for analysis on 0, 1, 3, 

5 and 10 weeks. All measurements were carried out in triplicate. 

3.2.2 Dry matter content  

The percentage of dry onion bulbs was determined by drying chopped samples (1 cm 

long × 1 cm wide and thickness of approximately 5 mm) of approximately 25 g in an 

oven with air circulation first at 80 oC for 24 h and then at 105 oC for 2 h. All 

determinations were made in triplicate. 

3.2.3 Preparation of extracts from dried onions  

The methods of solid/liquid extraction have been described in section 2.2.2. 

3.2.4 Total phenolic content (TPC) 

The methods of total phenolics have been described in section 2.2.3. 

3.2.5 Total flavonoid content (TFC) 

The methods of total flavonoids have been described in section 2.2.4. 

3.2.6 Analysis of antioxidant activity 

3.2.6.1 Ferric reducing antioxidant power (FRAP) assay 

The methods of antioxidant activity as measured by FARP assay have been described 

in section 2.2.5.1. 

3.2.6.2 DPPH antioxidant power assay  

The methods of antioxidant activity as measured by DPPH assay have been 

described in section 2.2.5.2. 

3.2.7 Quercetin and its glycosides  

Reversed phase high performance liquid chromatography (RP-HPLC) of the filtered 

sample extracts was carried out according to the method of Tsao and Yang (2003) 
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using HPLC-DAD system (Shimadzu SPD-M10A). Flavonols were separated on a 

ZORBAX SB-C18 column, 4.6 mm x 150 mm, 5 μm particle size (Agilent 

Technologies, CA, USA) and the target compounds were detected at 360 nm. The 

mobile phase consisted of HPLC grade water with 0.05% trifluoroacetic acid (TFA) 

(solvent A) and acetonitrile with 0.05% TFA (solvent B). The gradient involved a 

linear increase in the amount of solvent B (%B), which was set as follow: 0-15 mins, 

12-21%; 15-25 mins, 21- 100%; and re-equilibrated to 12% B for the last 25-35 mins 

at a flow rate of 1 mL/min. Samples (10 μL) were injected and the separation of 

analytes achieved at 30 °C. The data were processed using SHIMADZU EZ START 

Version 7.3 software and concentrations of quercetin and various quercetin 

glucosides were calculated against authentic calibration standards (Q 3 G, Q 4’ G, Q 

3,4’ D and Q) (Appendix 4-6). All measurements were carried out in triplicate. 

3.2.8 Colour  

Three onion slices were randomly selected from fresh onions to determine their 

colour. The colour at both sides (internal and external) of each slice was measured at 

room temperature using a Hunter Lab D25A DP-9000 colorimeter (Hunter Lab, 

Reston, VA, USA) calibrated against a white and a black tile (illuminant D65 and 

100 observer angle). Colour variables (L*, a* and b*) were recorded: brightness 

coordinate L* represents the whiteness value of a colour and ranges from black at 0 

to white at 100; chromaticity coordinate a* indicates red when positive and green 

when negative; and b* indicates yellow when positive and blue when negative 

(Doymaz, Tugrul, & Pala, 2006). For colour differences during storage, total colour 

change, ∆E, was given by the equation below (Vega-Gálvez et al., 2012):  

∆E=√(𝐿∗ − 𝐿0
∗ )2 + (𝑎∗ − 𝑎0

∗)2 + (𝑏∗ − 𝑏0
∗)22

                                                  

where 𝐿0
∗ , 𝑎0

∗ , and 𝑏0
∗ are the values for raw onion samples. 

According to Chen and Mujumdar (2009) ∆E values within the range of 0–0.5 

indicate trace colour differences, ∆E = 0.5–1.5 slight colour differences, ∆E = 1.5–

3.0 noticeable colour differences, ∆E = 3.0–6.0 appreciable colour differences, ∆E = 

6.0–12.0 large colour differences, and ∆E > 12.0 very obvious colour differences. 
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3.2.9 Statistical analysis 

Statistical analysis was carried out using SAS 9.1 (SAS Institute, Cary, NC, USA). 

To test the effect of factors (storage temperature, treatment system, and time) and 

their interactions on each measured parameter, the data were analysed by analysis of 

variance (ANOVA). Significant differences were accepted at the minimum 

probability level of p<0.05. The data for the total phenolics, total flavonoids, 

quercetin and its derivatives are reported as mean values ± standard deviation, and 

comparisons among the mean values were evaluated by the Tukey’s test. All 

measurements were carried out in triplicate of each sample. Correlation between 

variables and factors were also analysed by Principal Component Regression (PCR) 

using the Unscrambler Software, Version 10.3 (CAMO ASA, Oslo, Norway) to 

achieve an overview of the correlation between variables and their contribution to the 

variation of temperature, treatment and time. 

3.3 Results and discussion 

3.3.1 Weight loss and dry matter (DM) during storage of onion bulbs 

In our experiments, onion bulb weight decreased during storage at -20 oC, 5 oC, and 

25 oC respectively and the weight loss was observed to be the most significant at 25 

oC (Table 3.1). This can be caused by desiccation, respiration and sprouting, which 

are all related to temperature. It is believed that higher storage temperatures result in 

higher activity of water and hence lead to quality loss. Similar results have been 

found in several studies (Kamerbeek, 1962; Ward, 1976; Ilić, Milenković, Djurovka, 

& Trajković 2009; Sharma et al., 2015b; Sharma and Lee, 2016b).  

The bulbs remained intact and healthy until the 3rd week, when visible signs of 

sprouting and decay started to appear. From the 3rd to the 7th week, intense 

sprouting occurred and parallel to its signs of decay also became more evident. By 

the 10th week, the decay process reached its peak level and the onion bulbs lost their 

spherical shape and were reduced to roughly half of the initial size. 

The weight loss during the 25 oC storage was higher than in cold storage (-20 oC and 

5 oC) mainly due to the lower relative humidity and desiccation at 25 oC. As seen in 

Table 3.1, the weight losses during storage for organic onions in E1 were 0.4% to 1.0% 
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at -20 oC, 1.2% to 2.6% at 5 oC and 2.1% to 6.1% at 25 oC. The weight losses for 

conventional onions at -20 oC, 5 oC and 25 oC in E1 were 0.4% to 1.1%, 1.1% to 

2.7%, and 2.0% to 6.3%, respectively, similar to the rates found for organic onions. 

In general, the percentage weight loss was 2 to 4 times higher for the storage at 25 oC 

comparing to -20 oC and 5 oC, regardless the onion type (conventional or organic). 

High temperatures promoted sprouting incidence, resulting in rapid water loss and 

quality degradation. Sprouting was observed at all storage temperatures, but the time 

and rate of sprouting were different for each temperature. Adamicki (2005) have 

reported that storage potential of dry onion bulbs is dependent on storage conditions, 

whereas Gubb and MacTavish (2002) and Ilić, Milenković, Djurovka, and Trajković 

(2009) suggested that apart from storage conditions, genotype could also affect 

storage potential. 

In the present study, there were no drastic changes in DM in organic and 

conventional onions during storage at three different temperatures. Only relatively 

small DM fluctuations were observed at 25 oC (Table 3.1) due to the dormancy 

breakage, which is indicated by the onset of inner sprouting. Similarly, Chope, Cools, 

Hammond, Thompson, and Terry (2012) and Sharma and Lee (2016b) reported that 

the storage conditions have a small impact on the DM change, however, cultivar (i.e. 

genotypes) and physiological parameters (dormancy and sprout of onion) can have a 

greater influence in DM. 
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Table 3.1 Changes in the dry matter (DM) and cumulative percentage weight loss in onion bulbs stored at -20 ℃, 5 ℃ and 25 ℃. 

Onion Treatment Week DM % at -20 ℃ Weight Loss % at -20 ℃ DM % at 5 ℃ Weight Loss % at 5 ℃ DM % at 25 ℃ Weight Loss % at 25 ℃ 

 

 

OSOP 

0 11.1±0.6a -- 11.1±0.6a -- 11.1±0.6a -- 

1 11.1±0.4a 0.4±0.1ab 11.1±0.3a 1.2±0.2b 11.0±0.3a 2.1±0.3d 

3 11.1±0.3a 0.6±0.1ab 11.1±0.3a 1.4±0.1b 10.8±0.3a 3.4±0.8c 

5 11.0±0.3a 1.0±0.1a 11.3±0.1a 1.9±0.2ab 9.6±0.3b 4.7±1.1b 

10 11.0±0.3a 1.0±0.2a 11.4±0.9a 2.6±0.3a 10.7±0.4a 6.5±0.7a 

 

 

CSCP 

0 11.1±0.6a -- 11.1±0.6a -- 11.1±0.6a -- 

1 11.2±1.2a 0.4±0.1ab 11.2±1.2a 1.1±0.2b 11.0±0.8a 2.0±0.1d 

3 11.2±1.1a 0.6±0.1ab 11.3±0.9a 1.4±0.3b 11.1±0.9a 3.3±0.4c 

5 11.1±1.0a 1.1±0.2a 11.5±1.0a 2.2±0.1ab 10.5±1.0ab 4.3±0.9b 

10 11.1±1.0a 1.1±0.3a 11.3±1.1a 2.7±0.3a 11.0±1.0a 6.3±0.2a 

Organic onion (OSOP): Organic Soil (OS) + Organic Pest control (OP); Conventional onion (CSCP): Conventional Soil (CS) + Conventional Pest-control (CP). Values are 

expressed as mean ± standard deviation for triplicates (n=3). For each column, values followed by the same letter are not statistically different at p<0.05.  
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3.3.2 Changes in total phenolic compounds of fresh organic and 

conventional onions during storage  

In E1, TPC was significantly different at 0 days after harvest in organic and 

conventionally grown onions (Table 3.2). Although the TPC degradation was 

minimal in both organic and conventional onions during storage at -20 oC, 5 oC and 

25 oC (Table 3.2), these losses were significantly higher at 25 oC than at other 

temperatures (-20 oC and 5 oC). 

Variability in TPC degradation and accumulation is a very common phenomenon 

observed during storage. In plants, TPC is the first line of defence against oxidative 

stress occurring due to increased respiration during storage. 

In E1, TPC increased immediately in the first week of storage for the conventional 

onion (CSCP). However, the TPC levels returned to the original concentrations by 

the 10th week of storage. Prolonged storage periods would in theory decrease the 

TPC due to excessive free radical accumulation as a result of increased respiration. 

The results of this study demonstrated that the TPC in onions is highly influenced by 

various factors including production system and storage time and temperature. 

Onions grown under a conventional system had higher TPC than organic onions after 

harvest (Table 3.2). In the case of organic samples, TPC decreased at 25 oC during 

10 weeks, but it was relatively stable at -20 oC and 5 oC. Similar result was reported 

by Benkeblia (2000), suggesting that the phenolic content of onion decreased during 

storage at 20 oC due to sprouting. 

3.3.3 Changes in total flavonoid compounds of fresh organic and 

conventional onions during storage  

For the fresh conventional onions (CSCP) stored at all temperatures, total flavonoids 

content (TFC) have a similar trend to TPC: conventional onions showed a steep TFC 

increase followed by a decrease and then an increase in the final week of storage 

(Table 3.2). The total flavonoids fluctuates in fresh conventional onions during 

storage, and the reasons for the fluctuation can be the distribution of different 

glucosidases in different parts of onion, which change as per the storage temperature. 

The total flavonoids in conventional onion (CSCP) during storage was higher 
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compared to the fresh (harvest) one. This could be a result of the reduction of sugar 

content that can serve as substrates for the synthesis of phenolic compounds and 

hence an increased level of flavonoids is expected (Al-Weshahy, El-Nokety, Bakhete, 

& Rao, 2013). For the fresh organic onions (OSOP), storage at all temperatures 

showed no significant increase in total flavonoids, which can be ascribed to 

morphogenesis (sprouting) and external decay (microbial, fungal attack) of bulbs.  
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Table 3.2 Changes in total and individual phenolic compounds of organic and conventional onions during 10 weeks of storage. 

Storage at -20 ℃ Week TPC TFC Storage at 5 ℃ Week TPC TFC Storage at 25 ℃ Week TPC TFC 

 

 

 

OSOP 

0 7.37±0.42b 2.65±0.28c  

 

 

OSOP 

0 7.37±0.42cd 2.65±0.28c  

 

 

OSOP 

0 7.37±0.42b 2.65±0.28bc 

1 7.35±0.40b 2.64±0.30c 1 7.71±0.12c 2.95±0.23c 1 6.69±0.09c 2.14±0.09cd 

3 7.30±0.34b 2.63±0.28c 3 6.72±0.17d 2.69±0.05c 3 6.26±0.16cd 2.03±0.10cde 

5 7.33±0.42b 2.65±0.28c 5 6.49±0.39de 2.56±0.08cd 5 6.03±0.31d 1.73±0.32de 

10 7.31±0.42b 2.65±0.28c 10 7.30±0.40cd 2.70±0.30c 10 5.56±0.14e 1.46±0.26e 

  

 

 

CSCP 

0 8.72±0.17a 3.73±0.05b  

 

 

CSCP 

0 8.72±0.17b 3.73±0.05b  

 

 

CSCP 

0 8.72±0.17a 3.73±0.05b 

1 8.90±0.11a 4.78±0.09a 1 9.14±0.08a 4.92±0.05a 1 8.82±0.11a 4.82±0.09a 

3 7.88±0.23b 3.96±0.13b 3 8.54±0.16b 4.71±0.06a 3 8.29±0.12a 3.90±0.11ab 

5 7.51±0.16b 3.75±0.07bc 5 7.74±0.28bc 3.83±0.05b 5 7.35±0.21b 3.63±0.07bc 

10 8.88±0.10a 4.85±0.10a 10 9.10±0.10a 4.90±0.15a 10 8.79±0.01a 4.80±0.10a 

Organic onion (OSOP): Organic Soil (OS) + Organic Pest control (OP); Conventional onion (CSCP): Conventional Soil (CS) + Conventional Pest-control (CP). TPC: Total 

phenolics content (mg of gallic acid equivalents per g of dry weight). Total flavonoids content (mg of quercetin equivalents per g of dry weight). Values are expressed as 

mean ± standard deviation on a dry weight basis in triplicate (n=3). For each column, values followed by the same letter are not statistically different at p<0.05.
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3.3.4 Changes in flavonols (quercetin and its glucosides) of fresh organic and 

conventional onions during storage 

The flavonols (quercetin and its glucosides) changes for organic onions (OSOP) 

stored at 5 oC and 25 oC can also be divided into two stages. At the first stage (from 

the time of harvest to 1st week), the flavonols levels gradually decreased and there 

was no sprouting. At the second stage, from 3rd to 10th weeks, the onion decaying 

intensified and the flavonols content decreased continually. Gennaro et al. (2002) 

reported that the flavonoid in red onion tends to decrease after 6 weeks storage 

especially at 20 °C and 30 °C. However, the storage at -20 oC prevented changes in 

flavonols levels, remain unchanged from harvest until 10 weeks of storage (Figure 

3.1). In addition, low temperatures positively affect the biosynthesis of phenolic 

compounds and induce flavonoid accumulation in response to a biotic stress 

(Cisneros-Zevallos, 2003; Cantos et al., 2003). 

For the fresh conventional onion (CSCP) stored at all temperatures, the content of 

flavonols (total quercetin and its derivatives) in general increased in the initial weeks 

and then decreased during the later weeks of post-storage. Benkeblia and Shiomi 

(2004) reported the levels of total phenolics increase during the 5 week-storage, and 

decrease after 7 weeks when internal sprouting began. 

Based on our results, we can divide the post-storage changes of conventional onion 

bulbs (CSCP) into two stages. The first stage starts at the 1st week, with the 

flavonols levels increasing gradually with a simultaneous increase in total phenolics 

and flavonoids and the onion bulb remaining intact. The internal sprouting was 

observed within the 1st week and visible signs of sprouting appeared after the 3rd 

week. The second stage starts from the 10th week, during which sprouting becomes 

more intense and the maximum level of total phenolics and flavonoids with high 

antioxidant activity occurred. That is why end consumers prefer to use onion bulbs at 

the first stage of post-storage, after which onion bulbs are discarded as waste due to 

sprouting and decay. However, from the second stage, these waste conventional 

onions can be used as raw material for commercial flavonols extraction, as the onion 

bulbs exhibit the highest level of flavonols during this period. The findings showed 

an increase in the content of flavonols during post-storage, suggesting the possible 

use of sprouted and decayed onion as a source of quercetin and its glucosides.  
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(a) 

 

(b) 

 

Figure 3.1 

a - Effect of storage time at different temperatures on flavonols (quercetin and its glucosides) 

for storage fresh organic onion (OSOP). 

b - Effect of storage time at different temperatures on flavonols (quercetin and its glucosides) 

for storage fresh conventional onion (CSCP). 
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3.3.5 Colour changes in fresh organic and conventional onions during storage 

Organic and conventional onions in general were not significantly different regarding 

flesh and skin colour. Conventional onions had a slightly brighter red coloured flesh 

compared to organic onions. ∆E colour values before and after the 10 weeks storage 

changed significantly, with flesh and skin colour differences being higher at 25 oC 

compared to -20 oC and 5 oC. According to Chen and Mujumdar (2009), such colour 

differences were visually obvious (∆E values: > 12.0) (Table 3.3). Furthermore, 

Downes, Chope, and Terry (2009) suggested that skin colour is highly prone to 

change when high storage temperatures applied, since flavonols content in skin may 

change. However, Eshel et al. (2014) did not found significant changes in hue angle 

values on skin of onion colour after five months of storage. 

3.3.6 Influence of storage temperature and time on phenolic compounds in 

freeze-dried onions 

Degradation of TPC was observed in E2 for dried conventional onions stored at all 

temperatures, while TPC remained more stable in organic onions (except 25 oC). In 

E2, dried organic onions showed significantly higher levels of TFC over 

conventional onions after harvest (Table 3.4). The TPC and TFC levels of dried 

onions decreased immediately in the first week of storage, but then reached stable 

concentrations afterwards until the 10th week.  

Initial decrease in the phenolic compounds may be related to their stability during 

storage. Due to oxidative and enzymatic effects, polyphenols can easily breakdown 

to subunits. The decrease in phenolic compounds was related to temperature, with 

the maximum decrease at 25 oC. This suggests that the breakdown process in onions 

is prominent at higher temperatures. An increase in phenolic compounds during 

storage has been also reported in many vegetables and fruits including red beet, 

carrot, onion, and potato (Kevers et al., 2007; Koca & Karadeniz, 2008; Rodrigues et 

al., 2010; Al-Weshahy, El-Nokety, Bakhete, & Rao, 2013). The increase in phenolic 

compounds can be considered a response to the stress caused during storage. 
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Table 3.3 Flesh and skin colour of fresh organic and conventional onions during 10 weeks of storage at -20 ℃, 5 ℃ and 25 ℃. 

Storage at Flesh Skin Storage at Flesh Skin Storage at Flesh Skin 

-20 ℃ ∆E ∆E 5 ℃ ∆E ∆E 25 ℃ ∆E ∆E 

OSOP 7.48±0.20a 13.10±0.51a OSOP 14.70±1.02b 10.17±0.74a OSOP 22.05±0.06a 21.34±3.22a 

CSCP 5.65±0.07b 12.85±1.95ab CSCP 15.05±0.30ab 9.85±0.55ab CSCP 17.48±0.10b 16.79±0.73b 

Organic onion (OSOP): Organic Soil (OS) + Organic Pest control (OP); Conventional onion (CSCP): Conventional Soil (CS) + Conventional Pest-control (CP).  

∆E = colour change (dimensionless). Values are expressed as mean ± standard deviation for triplicates (n=3). 

For each column, values followed by the same letter are not statistically different at p<0.05.  

  



Chapter 3 Storage    

79 

 

Table 3.4 Changes in total and individual phenolic compounds of dried organic and conventional onions during 10 weeks of storage at -20 ℃, 5 ℃ and 25 ℃. 

Organic onion (OSOP): Organic Soil (OS) + Organic Pest control (OP); Conventional onion (CSCP): Conventional Soil (CS) + Conventional Pest-control (CP). TPC: Total 

phenolics content (mg of gallic acid equivalents per g of dry weight) Total flavonoids content (mg of quercetin equivalents per g of dry weight). Values are expressed as mean 

± standard deviation on a dry weight basis in triplicate (n=3). For each column, values followed by the same letter are not statistically different at p<0.05. 

 

 

 

 

 

  

 

Storage at -20 ℃ Week TPC TFC Storage at 5 ℃ Week TPC TFC Storage at 25 ℃ Week TPC TFC 

 

 

 

OSOP 

0 7.07±0.12a 3.57±0.02a  

 

 

OSOP 

0 7.07±0.12a 3.57±0.02a  

 

 

OSOP 

0 7.07±0.12a 3.57±0.02a 

1 6.03±0.40c 3.19±0.10c 1 6.29±0.30bc 3.32±0.11bc 1 6.59±0.21b 3.15±0.09bc 

3 6.07±0.34c 3.21±0.07c 3 6.30±0.30bc 3.37±0.13bc 3 6.59±0.21b 3.16±0.10bc 

5 6.10±0.41c 3.25±0.09c 5 6.33±0.31bc 3.39±0.19bc 5 6.51±0.11b 3.19±0.15bc 

10 7.07±0.12a 3.57±0.02a 10 6.64±0.29ab 3.48±0.09ab 10 6.45±0.20b 3.20±0.05bc 

 

 

 

CSCP 

0 7.0±0.20a 3.60±0.08a  

 

 

CSCP 

0 7.0±0.20a 3.6±0.08a  

 

 

CSCP 

0 7.0±0.20a 3.6±0.08a 

1 5.24±0.32d 2.30±0.19d 1 5.80±0.40c 3.07±0.05d 1 5.36±0.15c 2.36±0.31d 

3 5.24±0.32d 2.30±0.19d 3 5.85±0.47c 3.10±0.06d 3 5.39±0.17c 2.46±0.22d 

5 5.20±0.30d 2.33±0.21d 5 5.81±0.41c 3.0±0.03d 5 5.40±0.11c 2.40±0.30d 

10 6.57±0.21b 3.41±0.27b 10 6.14±0.28bc 3.25±0.03bcd 10 5.30±0.10c 2.31±0.20d 
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An increase in phenylalanine ammonialyase (PAL) activity may result in an 

increased level of phenolic compounds in dried onions at -20 oC (Shetty, Randhir, & 

Shetty, 2005). The increase of PAL leads to a low level of polyphenol oxidase 

activity, which may reduce the oxidation of phenolic substrates to quinines, and 

hence the levels of these compounds during storage increase (Leja, Mareczek, & Ben, 

2003). In our study, we used freeze-dried onion samples, meaning that most of the 

water had been removed previously. However, it is possible that the residual 

moisture was sufficient to maintain the enzyme activity, leading to an increase in 

TFC. A similar result was observed in the storage of dehydrated plum, berries and 

potato (Del Caro et al., 2004; Michalczyk, Macura, & Matuszak, 2009; Al-Weshahy, 

El-Nokety, Bakhete, & Rao, 2013).   

3.3.6.1 Long-term stability of quercetin and its glucosides 

Freeze-dried onion powders were stored at -20 oC, 5 oC and 25 oC to investigate the 

stability of flavonols (quercetin and its glucosides) during storage. The levels of 

flavonols in dried organic and conventional onions significantly decreased during the 

first week of storage, which may due to the possible breakdown of the phenolic 

compounds at an early stage. At the third week of storage, the result further indicates 

that the flavonols become stable in dried organic and conventional onions for more 

than 5 weeks at room temperature (25 oC) and refrigerated temperatures (5 oC). 

Interestingly, the levels of flavonols increased significantly at the 10th week at -20 

oC particularly in dried organic onion (Figure 3.2). It might be that the enzymes 

maintain their activity during storage and result in an increase in TFC, despite that it 

was at −20 °C and the moisture level was very low in the freeze-dried samples.  
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(a) 

 

(b) 

 

Figure 3.2 

a - Effect of storage time at different temperatures on flavonols (quercetin + quercetin 

glucoside) for dried organic onion (OSOP). 

b - Effect of storage time at different temperatures on flavonols (quercetin + quercetin 

glucoside) for dried conventional onion (CSCP). 
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3.3.7 Antioxidant activity of freeze-dried samples during storage  

Principal component regression (PCR) of the whole data set shows that temperature 

and storage time affects the behaviour of the phenolic compounds (Figure 3.3).  

 

Figure 3.3 Principal Component Regression (PCR) biplot of PC1 versus PC2 for storage 

fresh onion. The model was derived from total and individual phenolics, flavonoids and 

antioxidant activity in the X-matrix, and temperature, time and treatment (organic (OSOP) 

and conventional (CSCP)) in the Y-matrix. Total phenolic content (TPC); Total flavonoid 

content (TFC); Total flavonol content (TF); Antioxidant activity (DPPH and FRAP); 

Organic soil (OS); Conventional soil (CS); Organic pest-control (OP); Conventional pest-

control (CP). 

The two onion treatments were placed in the diagonally opposite quadrant, indicating 

their opposite relationship of response to some parameters. The antioxidant 

capacities (DPPH and FRAP) of CSCP (conventional treatment) onions stored at 5 

oC were located in the same quadrant and thus were considered positively correlated 
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with each other. CSCP (conventional treatment) onions stored at 5 oC were 

negatively correlated with OSOP (organic treatment) onions stored at 25 oC, which 

were located in diagonally opposed quadrants. The levels of flavonols located close 

to CSCP onions in the plot had a positive association with said samples at 5 oC. 

Temperature plays an important role on the flavonoid content and antioxidant 

capacity of the onions, particularly at 5 oC storage.  

The second principal component distinguished the freeze-dried onions according to 

treatment (OSOP and CSCP) and also storage temperature and time. PC1 and PC2 

explained 100% of the X matrix’s variance and 20% of the Y matrix’s variance 

(Figure 3.4). When the PCR was applied separately to all storage temperatures and 

times, the differences between organic and conventional dried onion samples could 

be easily observed. As noted previously, some individual flavonoids had higher 

concentrations at certain storage conditions for the fully organic treatment (OSOP). 

The contents of bioactive compounds and antioxidant activities were placed between 

the inner and outer ellipses, indicating that the antioxidant activity correlated well 

with total phenolics in E2. 

In E2, the antioxidant activity of freeze-dried organic onion samples decreased after 

one week of storage and then remained unchanged until the 10th week followed by a 

significant increase at -20 oC and 5 oC. Due to the synergistic interaction between 

antioxidant activity and phenolic content, (Leo et al., 2008), the increase in 

antioxidant activity up to 10 weeks storage might be attributed to the production of 

phenolics in response to stress caused during -20 oC and 5 oC storage. 
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Figure 3.4 Principal Component Regression (PCR) biplot of PC1 versus PC2 for freeze-

dried onions. The model was derived from total and individual phenolics, flavonoids and 

antioxidant activity in the X-matrix, and temperature, time and treatment (dried samples with 

organic (OSOP) and conventional (CSCP), respectively) in the Y- matrix. Total phenolic 

content (TPC); Total flavonoid content (TFC); Total flavonol content (TF); Antioxidant 

activity (DPPH and FRAP); Organic soil (OS); Conventional soil (CS); Organic pest-control 

(OP); Conventional pest-control (CP). 
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3.4 Conclusions  

The aim of the present study was to evaluate the effects of storage conditions for 

fresh and dried organic onions in comparison with conventional onions on their 

quality, chemical composition and antioxidant activity. Three storage conditions 

were tested: storage temperature, time, and cultivar, which can influence the quality 

of the onion samples.  

This study suggested that organic and conventional onion as a valuable source of 

phenolic compounds and antioxidant properties requiring proper storage conditions (-

20 oC and 5 oC) to maintain the best quality for marketability. The results showed that 

phenolic contents and antioxidant activity were higher in fresh conventional onions 

than in fresh organic onions during storage at different temperatures (-20 oC, 5 oC and 

25 oC). 

After stored for 10 weeks, the percentage of flavonols in dried organic onions was 

remained the same at refrigerated (-20 oC). This is attributed to the enzymatic 

inactivation resulting from the freeze-drying process. Hence, freeze-drying is a good 

alternative to produce onion powder with an extended shelf-life and high nutritional 

quality.   

Furthermore, significant differences in the parameters assessment have been found in 

fresh and dried organic and conventional onions. This may bring values to the food 

industry to adjust onion production systems for producing different onion products.  
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Abstract  

The effects of four drying treatments (freeze-drying, hot air-drying, oven drying and 

vacuum oven drying) on bioactive compounds (total phenolics, total flavonoids and 

quercetins), colour and antioxidant capacity of organic and non-organic onions of 

two varieties (Red Baron and Hyfort) subjected to two agronomic treatments 

(organic and conventional) were investigated. The average final dry weight of the 

samples was 9.82 ± 0.41 %. After drying, there was a significant increase in total 

phenolics, total flavonoids and total quercetin and antioxidant capacity in comparison 

with fresh onion samples, which suggested that drying can improve the extractability 

of phenols and accordingly the antioxidant activity of onions. Different drying 

techniques also resulted in different fractions of individual quercetins. Dried organic 

onions had higher levels of bioactive compounds and antioxidant capacity than dried 

non-organic onions for a same variety. The highest antioxidant capacity displayed by 

freeze-dried and hot air-dried organic Red Baron onion is in agreement with their 

higher phenolic and flavonoid contents compared to all other samples.  

 

Keywords: Antioxidant; Bioactive compounds; Colour; Drying methods; Organic 

onions. 
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4.1 Introduction  

Onions correspond to the third world’s highest production amongst the seven major 

vegetables consumed worldwide. The four major onion producing countries are 

China, with the largest production of 3.93 million tonnes, followed by India with 

3.35 million tonnes, the USA with 2.45 million tonnes and Turkey with 1.55 million 

tonnes (Kumar, Hebbar, & Ramesh, 2006). 

Onions are a good source of polyphenols such as flavonoids. It has been reported that 

onions are one of the vegetables which make the greatest contribution of antioxidant 

flavonoids to the Western European diet by virtue of their high content and 

frequency of consumption (Hertog, Hollman, & Katan, 1992; Arslan & Özcan, 2010). 

Many reports have indicated that onions have a wide range of beneficial properties 

for human health, such as anti-cholesterolaemic (Yin & Cheng, 1998), anti-

mutagenic (Singh et al., 2009), and antioxidant capacity (Wang et al., 2011; Pérez-

Gregorio et al., 2011; Russo et al., 2012; Sharma et al., 2015a; Valentová et al., 

2016). There is an increasing attention on the antioxidant content of onions because 

the regular consumption is associated with reduced risk of neurodegenerative 

disorders, many forms of cancer, and cataract formation (Roldán, Sánchez-Moreno, 

de Ancos, & Cano, 2008). Phenolic compounds, important natural bioactives found 

in onions, are widely recognized for their health benefits regarding the potential to 

protect the body from some diseases (Tiwari & Cummins, 2013). 

Conventional agricultural practices utilize high-yield crop cultivars, chemical 

fertilisers and pesticides, irrigation, and mechanization. Although conventional 

practices result in reliable high-yield crops, there is concern regarding the negative 

biological and environmental consequences and long-term sustainability associated 

with these practices. Organic food is perceived to be more nutritious, better tasting, 

and environmentally friendlier compared to conventionally grown crops. Relative to 
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conventional systems, organic systems may increase the exposure of crops to stresses, 

thus inducing the synthesis of secondary metabolites (Asami et al., 2003). 

Onions are widely used in both fresh and dried forms. Dried onions, a product of 

considerable importance in world trade, can be marketed in several forms: flaked, 

minced, chopped and powdered (Sarsavadia, 2007; Arslan & Özcan, 2010; Sahoo et 

al., 2015; Khan et al., 2016). They are used as a flavour additive in a wide variety of 

food formulations such as comminuted meats, sauces, soups, salad dressings and 

pickle relishes, dry soup mixes, cheeses, crackers and other snacks and special food 

products (Arslan & Özcan, 2010; Mitra, Shrivastava, & Rao, 2012). Drying is one of 

the most widely used methods for vegetable preservation. It can inhibit enzymatic 

degradation and limit microbial growth (Doymaz & İsmail, 2011). Drying can also 

prolong shelf life, and reduce packaging cost, shipping weights and environmental 

impacts. Dried foods can be easily reconstituted without substantial loss of flavour, 

taste, colour and aroma (Sarsavadia, 2007; Pérez-Gregorio et al., 2011b). Effective 

drying of onion not only prolongs the shelf life of the final product but also stabilises 

its healthy compounds.  

Several commercial drying technologies can be used to dry onions. The objective of 

this study was to investigate variations of quality regarding colour, antioxidant 

capacity and content of bioactive compounds (such as phenolics, flavonoids and 

quercetins) in onions dried by different drying methods (freeze-drying, hot-air drying, 

vacuum oven drying and oven drying) in comparison with fresh samples. The 

information obtained can aid food professionals in choosing the most appropriate 

drying technology to minimize quality degradation in terms of the investigated 

parameters. 
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4.2 Materials and methods 

4.2.1 Agronomic practices 

Two different varieties of onion (Red Baron and Hyfort) were used. They were 

cultivated by Teagasc, Kinsealy located in the North County Dublin, Ireland. 

Essentially agricultural management was composed of two aspects – soil treatment 

(how the soil is fertilized and managed) and pest-control (how biological pests such 

as weeds, insects, and microbial diseases are managed). Therefore, conventional 

agriculture consists of conventional soil (CS) treatment with conventional post-

control (CP); while organic agriculture consists of organic soil treatment (OS) with 

organic pest-control (OP). Thus, two agronomic treatments were employed (OSOP 

and CSCP) to obtain completely organic and non-organic onions.  

As published in detail by Reilly et al. (2013) the organic soil (OS) treatments 

comprehended the use of certified organic fertilisers, winter cover crops, and a 4- 

year horticultural crop rotation including a fertility building red clover ley (Trifolium 

pratense L.). In contrast, the conventional soil (CS) treatment used mineral fertilisers 

and no set crop rotation (crops randomly allocated each year) with no winter cover 

crop. Equivalent rates of nitrogen (N), phosphorus (P) and potassium (K) were 

applied to both CS and OS treatments following a spring soil test and the rates 

applied were according to Teagasc recommendations for the crop. The fertiliser was 

applied as a mixture of calcium ammonium nitrate, single super-phosphate and 

sulfate of potash for the CS treatment Greenvale fertiliser (4.5:3:3) and ProKali 

(3:0:14) were used in the OS treatment. Conventional pest-control (CP) treatments 

comprised pesticide applications against weeds, pests and diseases typical of 

commercial vegetable production and in accordance with Alexander (2011, 2013). 

Organic pest-control (OP) treatments comprised mechanical weed and pest-control 

methods, certified treatments of biological origin if required, and provision of a 

refuge area to encourage beneficial insects.  
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4.2.2 Drying  

After harvest, healthy, disease-free onions of six replicates were chosen for each 

variety and each treatment. The onions were peeled, had both ends removed, and 

were cut into slices of approximately 1 cm long × 1 cm wide and thickness of 

approximately 5 mm. 

In each drying replicate, 50 g of onion slices were distributed uniformly as a thin 

layer onto stainless steel trays of size 20 × 10 cm and were dried using one of the 

following four drying methods: freeze-drying, vacuum drying, hot air drying or oven 

drying. Freeze-drying was carried out in a Cuddon freeze-drier (FD80, Cuddon 

Freeze Dry, Blenheim, New Zealand) at a temperature of 40 oC and a pressure of 

0.064 mBar for 72 h, according to the procedure described by Hossain et al. (2010). 

Vacuum drying was performed at 60 oC and 600 mBar for 16 h in a vacuum oven 

(VD 115, Binder, UK). Hot air drying was conducted in a constant air temperature 

oven (SG96⁄06⁄333, Gallenkamp, UK) at 60 oC for 16 h at an air velocity of 0.3 m/s. 

To determine the final moisture content, samples were oven dried (VD 53, Binder, 

UK) at 60 oC for 8 h, following the AOAC method 920.87. 

4.2.3 Colour measurement 

Three onion slices were randomly selected from fresh or dried samples to determine 

their colour. Instrumental colour at both (internal and external) sides of each slice 

was measured using a Hunter Lab D25A DP-9000 (Hunter Lab, Reston, VA, USA) 

calibrated against a white and a black tile (illuminant D65 and 100 observer angle). 

All onion samples from each triplicate were evaluated for colour at room 

temperature. Colour variables (L*, a* and b*) were recorded. The colour brightness 

coordinate L* indicates the whiteness of a sample and ranges from black at 0 to 

white at 100. The chromaticity coordinate a* indicates redness when positive and 

greenness when negative, while b* indicates yellowness when positive and blueness 
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when negative (Doymaz, Tugrul, & Pala, 2006). Colour change, ∆E, was given by 

the equation below (Vega-Gálvez et al., 2012): 

 ∆E=√(𝐿∗ − 𝐿0
∗ )2 + (𝑎∗ − 𝑎0

∗)2 + (𝑏∗ − 𝑏0
∗)22

                                                (1) 

where 𝐿0
∗ , 𝑎0

∗ , and 𝑏0
∗ are the values for raw onion samples. 

Browning of samples was assessed using the Browning Index (BI), which was 

calculated using the equations below (Ruangchakpet & Tanaboon, 2007):  

 BI= 100(𝑥 − 0.31) 0.17⁄                                                                                (2) 

where  

x= (𝑎∗ + 1.75𝐿∗) (5.645𝐿∗ + 𝑎∗⁄ − 0.3012𝑏∗)                                              (3) 

4.2.4 Preparation of extracts from fresh and dried onions  

Extracts from fresh or dried onions were prepared for further total phenolics content, 

total flavonoids content, and antioxidant analyses. The fresh onions were chopped 

into small pieces and then blended into semi-paste by a kitchen blender (BL335, 

Kenwood Limited, UK). As for the dried onions, they were blended directly with 

the kitchen blender. The blended samples (1 g) were immediately mixed with 10 

mL of methanol (80%) and homogenised at 24,000 rpm using an Omni-prep multi-

sample homogeniser (Omni International, USA). The homogenized sample 

suspension was shaken overnight with a V400 Multitude Vortexer (Alpha 

laboratories, North York, Canada) at 1500 rpm at room temperature. The sample 

suspension was then centrifuged (MSE Mistral 3000i, Sanyo Gallenkamp, 

Leicestershire, UK) at 3000 g for 15 mins and immediately filtered through 0.22 μm 

polytetrafluoroethylene filters. The extracts were kept at -20 oC until further 

analysis. 
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4.2.5 Analysis of total phenolics (TPC) 

The methods of total phenolics have been described in section 2.2.3. 

4.2.6 Analysis of total flavonoid content (TFC) 

The methods of total flavonoids have been described in section 2.2.4. 

4.2.7 Analysis of antioxidant activity 

4.2.7.1 Ferric reducing antioxidant power (FRAP) assay 

The methods of antioxidant activity as measured by FARP assay have been described 

in section 2.2.5.1. 

4.2.7.2 DPPH antioxidant power assay 

The methods of antioxidant activity as measured by DPPH assay have been 

described in section 2.2.5.2. 

4.2.8 Assessment of quercetin and its glycosides  

Separation and quantification of flavonoid were carried out by RP-HPLC using the 

method, as outlined previously in section 3.2.7. 

4.2.9 Statistical analysis 

All analytical measurements were made in triplicate. The data were analysed using 

the general linear models (GLM) procedure of SAS 9.1 (Cary, NC, USA). The model 

included the fixed effects of variety, treatment, drying method and their interactions. 

Multiple comparisons were adjusted by the Tukey-Kramer test with a 95% 

significance level (p<0.05). Pearson’s correlation coefficients between TPC, TFC, 

individual quercetin content, antioxidant capacity (FRAP and DPPH) and scale 

colour parameters were calculated using the CORR procedure from SAS 9.1. 
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4.3 Results and discussion 

4.3.1 Effect of drying methods on TPC and TFC 

Drying is a frequently used method for conserving food. During drying of onions, 

retaining their phenolic contents is a significant issue because phenolic complexes 

play an important role in human health. Drying at temperatures higher than 60 oC is 

regarded as unfavourable due to the possibility of inducing oxidative condensation or 

decomposition of thermo labile compounds (Asami et al., 2003). As hot air and oven 

drying at 60 oC are recommended to dry onions to obtain a finished product of 

acceptable quality (Mitra, Shrivastava, & Rao, 2015), 60 oC was set as the drying 

temperature in all experiments except freeze-drying. The onion slices were dried 

from around 90% to 10% w.b. As shown in Table 4.1, there was a low variation of 

dry weight between different onion varieties and drying methods. The average dry 

weight (of all samples/treatments) was 9.82 ±0.41 % w.b. The results of antioxidant 

capacity, total phenolic content and flavonoids content were all calculated by dry 

weight.   

TPC of fresh Red Baron (OSOP, CSCP) and Hyfort (OSOP, CSCP) was 6.85 ± 0.12, 

5.76 ± 0.16 mg/g DW and 5.68 ± 0.14, 5.54 ± 0.38 mg/g DW, respectively. Figure 

4.1 shows a considerable increase of TPC in dried samples in relation to their fresh 

counterparts, which is ascribed to the concentration effect caused by the water 

removal and also by the liberation of phenolic compounds from the matrix during the 

drying process. The differences attributed to different drying methods were 

significant (p<0.05) according to the three-way ANOVA analysis. Red Baron onions 

clearly had higher TPC than Hyfort onions dried by the same method, and OSOP 

treated onions showed higher TPC in comparison with their CSCP treated 

counterparts. According to the ANOVA analysis, the two differences were 

significant (p<0.05). Organically grown onions were produced without or with very 

little pesticides, causing higher pathogenic pressures, which may explain the higher 
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total phenolic content levels found in the OSOP samples. Higher TPC in onions 

cultivated by organic agronomic treatment than by conventional treatment was also 

reported by Asami et al. (2003).    

Drying may enhance the release of bound phenolic compounds as a result of the 

breakdown of cellular constituents (Alfaro et al., 2014; Suna et al., 2014). Drying of 

the onion samples rendered the plant tissue more brittle, which in turn resulted in 

increased and faster cell wall breakdown during the blending and homogenisation 

steps of the extraction procedure. These broken cell walls could release and liberate 

more phenolic compounds from the matrix into the solvents during the overnight 

extraction process (Hossain et al., 2010; Suna et al., 2014), lead to a higher 

extractability of polyphenols. Serratosa et al. (2011) also found an increase of 

phenolic contents of red grape due to drying, and proposed that the increase was a 

result of (a) water evaporation, (b) improved extraction from skins, and (c) 

compound hydrolysis and biosynthesis. Hossain et al. (2010) suggested another 

possible reason; they proposed that the fresh samples might lose antioxidant 

compounds due to enzymatic degradation during processing as the enzymes are still 

active in fresh samples. The dried samples avoided this loss, as the enzymes were 

inactivated due to decreased water activity and thus were retained high antioxidant 

capacity and total phenols in the extracts. The total phenolic contents of the dried 

samples of Red Baron (OSOP), for instance, were 10.54 ± 0.72, 10.48 ± 0.48, 10.20 

± 0.31 and 9.08 ± 0.21 mg/g DW for freeze-drying, hot-air drying, vacuum oven 

drying and oven drying, respectively. The TPC difference between fresh and dried 

onions was similar to the range reported by Arslan and Ozcan (2010) and Priecina 

and Karklina (2014). The TPC varied from 2.23 mg/g DW to 3.69 mg/g DW, with an 

increase of 1.46 mg/g DW. As for the Red Baron onion with CSCP treatment, the 

increase varied more than the OSOP counterpart, from 1.02 to 4.46 mg/g DW 

(variation of 3.46 mg/g DW). For the Hyfort (OSOP, CSCP) onions, the increase 

variations were even greater, from 0.53 to 4.34 mg/g DW (variation of 3.81 mg/g 
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DW for OSOP) and from 0.35 to 4.10 mg/g DW (variation of 3.75 mg/g DW for 

CSCP), respectively. A larger variation means a greater effect of the drying method 

on the TPC increase. In general, the variation for Red Baron onions, irrespective of 

the agronomic treatment, was smaller than for the Hyfort onions. This means that the 

effects caused by different drying methods depend on the variety, which implies that 

there is an interaction between drying method and vegetable variety as confirmed by 

the statistical analysis (p<0.05). The results also imply that TPC in the dried Red 

Baron onions were more stable than in the Hyfort onions, given the lower variation 

ascribed do different drying methods. Furthermore, it is evidence that the Red Baron 

onions are suitable for drying in terms of availability of TPC in the final dried 

products irrespective of the drying method used. There were significant differences 

(p<0.05) of TPC between freeze-dried, hot-air dried, vacuum-oven dried and oven 

dried samples. Among these drying methods, TPC in the dried samples followed the 

order: freeze-drying > hot air drying > vacuum oven drying > oven drying. The 

highest TPC in freeze-dried samples could be ascribed to the development of ice 

crystals within the plant matrix during the freezing step. Ice crystals could result in a 

greater rupturing of plant cell structure, which may allow for better solvent access 

and extraction (Keinänen & Julkunen-Tiitto, 1996). Wojdyło, Figiel, and Oszmiański 

(2009) analysed phenolics in strawberries dehydrated by different methods and found 

that the freeze-dried samples showed the highest concentration of phenolic 

compounds.  

As for the total flavonoids content (TFC), its variation was similar to TPC, as shown 

in Figure 4.2. TFC of fresh Red Baron (OSOP, CSCP) and Hyfort (OSOP, CSCP) 

was 1.96 ± 0.09, 1.36 ± 0.04 mg/g DW and 1.18 ± 0.05, 1.14 ± 0.03 mg/g DW, 

respectively. TFC in Red Baron onions were significantly higher (p<0.05) than in the 

Hyfort counterparts. OSOP had higher TFC than CSCP. There were clear significant 

increases of TFC (p<0.05) as a result of drying in comparison with their fresh 

counterparts. Different drying techniques had different effects on the TFC of dried 
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onions.  The variations for the Red Baron onions (OSOP, CSCP) were 2.27 and 2.76 

mg/g DW, respectively. As for the Hyfort (OSOP, CSCP) onions, the variations were 

much smaller, 1.4 and 1.28 mg/g DW, respectively, which implies an interaction 

between drying methods and onion variety on the increase of TFC. However, 

contrary to the variation for TPC, TFC in Red Baron onions revealed a lower 

stability during drying than in the Hyfort onions.  

It is worthwhile mentioning that the TPC and TFC increase is not a result of moisture 

removal only, since the final weight – and accordingly moisture content – of all 

samples was very similar (Table 4.1), and all determinations were compared in dry 

weight, while the increment of total phenolics and total flavonoids was significantly 

different depending on the drying method (Figures 4.1 and 4.2). This implies that 

each drying technique has a different effect on the extractability of phenolic 

compounds and flavonoids, which in turn depends strongly on the type of damage 

caused to the plant tissue. 

 

Table 4.1 Dry weight percentage (%) of onion slices after freeze-, hot air-, vacuum oven-, 

and oven drying. 

Sample Freeze-drying Hot-air Drying Vacuum drying Oven drying 

Red Baron OSOP 9.70±0.23a  10.05±0.31a 9.85±0.35a 10.29±0.36a 

Red Baron CSCP 9.40±0.26a 9.53±0.34a 10.02±0.37a 10.07±0.31a 

Hyfort OSOP 9.27±0.37b 9.38±0.42a 10.17±0.41a 9.96±0.45a 

Hyfort CSCP  10.02±0.45a 9.53±0.40a 9.62±0.36a 9.72±0.48a 

For each row, values followed by the same letter are not statistically different at p<0.05. Values are 

expressed as mean ± standard deviation on dry weight (%) for n=6.  
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Figure 4.1 TPC increase as a result of drying for a different variety of onions cultivated 

under OSOP and CSCP agronomic treatments. 

*TPC = Total phenolics content (mg of gallic acid equivalents per g of dry weight). TPC of fresh Red 

Baron (OSOP, CSCP) and Hyfort (OSOP, CSCP) was 6.85 ± 0.12, 5.76 ± 0.16 mg/g DW and 5.68 ± 

0.14, 5.54 ± 0.38 mg/g DW, respectively. 

 

 

Figure 4.2 Effect of drying method on the increase of TFC in dried onions for different 

varieties and agronomic treatments. 

*TFC = Total flavonoids content (mg of quercetin equivalents per g of dry weight). TFC of fresh Red 

Baron (OSOP, CSCP) and Hyfort (OSOP, CSCP) was 1.97 ± 0.09, 1.36 ± 0.04 mg/g DW and 1.19 ± 

0.05, 1.14 ± 0.03 mg/g DW, respectively. 
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4.3.2 Quercetin content in fresh and dried onions  

The HPLC results for quercetin and their statistical analysis are listed in Table 4.2A 

and 4.2B. The total content of quercetin in onion was as high as 300 mg/kg, 

considerably higher than in many other fruits and vegetables (Hollman & Arts, 2000). 

In dried red onion, the concentration of quercetin was found to be as high as 2.1% 

w/w. In our study, the content of total quercetin varied from 448 to 14,086 mg/kg 

sample. Quercetin and its derivatives were reported as main antioxidant components 

in onions (Benítez et al., 2011). Some authors previously identified Q 3,4’ D and Q 4’ 

G as the major quercetin derivatives in the mature onion bulb; these components 

account for about 93% of the total flavonols (Pérez-Gregorio et al., 2011b). 

Flavonols are also found in the flesh scale tissue, where they account for a yellow 

colour if their concentrations are high enough. In the present study, similar results 

were observed. Total quercetin content could be regarded as the sum of the three 

components (Q 4’ G, Q 3,4’ D and Q). Contents of quercetin varied from one 

component to another for the same sample. Q 4’ G showed a much higher level than 

Q 3,4’ D, and Q often occupied a very small percentage (0.07%-15.06%) of the total 

quercetin content.  

The quercetin content depended especially on variety, and Red Baron showed a 

considerably higher total quercetin content than the Hyfort onion. For a same variety 

of onion dried by the same method, organic treatment (OSOP) generally resulted in a 

significantly higher content than the conventional treatment (CSCP) regarding the 

same quercetin component. The higher contents were ascribed to the high pathogenic 

pressure of the plants in the organic agronomic environment.  
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The statistical analysis showed a significant effect (p<0.05) of the drying methods on 

the quercetin content, as indicated in Table 4.2A and 4.2B. Drying resulted in 

considerably higher total quercetin in comparison with fresh onions, which is in 

agreement with the results of TPC aforementioned. The individual quercetin 

compounds also varied according to the different drying technologies. The content of 

Q 4’ G varied significantly, irrespective of the onion variety, in a similar order: hot-

air drying (60 °C) > freeze-drying > vacuum drying (60 °C) > oven drying (60 °C) > 

fresh. Nonetheless, the contents of Q 3,4’ D followed a different order: freeze-

drying > hot-air drying (60 °C) > vacuum drying (60 °C) > oven drying (60 °C) > 

fresh. It is interesting that the contents of quercetin generally varied in a different 

order: freeze-drying < vacuum drying (60 °C) < fresh < hot-air drying (60 °C) < oven 

drying (60 °C). From the above results, it can be seen that different drying methods 

lead to varying responses of Q 3,4’ D, Q 4’ G and Q.  

The highest Q 4’ G contents occurred in hot-air drying, while oven drying resulted in 

the highest Q contents in comparison with the other drying methods. Fu (2004) also 

observed similar results when comparing the contents of Q 4’ G, Q 3,4’ D and Q 

between freeze-dried, vacuum dried and hot air dried onions. The author suggested 

that the prolonged heating during hot-air drying activated hydrolytic enzymes that 

led to a higher level of quercetin aglycone in hot-air drying; this enzyme activity was 

confirmed by many other researchers (Fu & Huang, 2003). However, the activated 

hydrolytic enzyme cannot explain why the content of Q in freeze-dried and vacuum-

dried onions was even lower than in fresh onions (Table 4.2A and 4.2B). A possible 

reason is related to the porous structure of the dried onions generated during vacuum 

oven drying or freeze-drying. After drying under vacuum, when the vacuum was 

broken, oxygen could have filled into the pores in the dried onions, which would 

accelerate oxidation, in particular of sensitive components, during storage of the 

samples before quercetin determination. 
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Table 4.2A Quercetin content in fresh and dried onions (Red Baron). 

Variety  Treatment Drying method 
Q 4’ G 

(µg/g sample) 

Q 3’4 D 

(µg/g sample) 

Q 

(µg/g sample) 

Red Baron 

OSOP 

Fresh 160.23±40.60e 53.73±5.70e   10.24±0.60d 

Freeze-drying 903.83±60.67a 503.42±10.35a 1.41±0.02d 

Hot-air drying 954.26±69.97a 403.19±20.39b   26.72±2.85c 

Vacuum oven  512.40±70.46c 222.89±12.46c 3.75±0.43d 

Oven drying 678.67±32.33b 42.63±1.59ef  97.21±8.93a 

CSCP 

Fresh 96.70±7.34ef 53.75±7.03e 1.10±0.07d 

Freeze-drying  585.97±22.36bc 473.97±14.64a 1.20±0.02d 

Hot-air drying 624.57±33.6b 178.83±11.92d 9.80±0.50d 

Vacuum oven  236.35±11.64d 177.98±5.96d 1.20±0.05d 

Oven drying 265.13±92.15d 19.88±0.71f   50.50±5.72b 

For each column, values followed by the same letter are not statistically different at p<0.05. Values 

are expressed as mean ± standard deviation on a dry weight basis for n=6. Q 4’ G = Quercetin 

4’glucoside; Q 3’4 D = Quercetin 3,4’ diglucoside; Q = Quercetin. 

  

Table 4.2B Quercetin content in fresh and dried onions (Hyfort). 

Variety Treatment Drying method 
Q 4’ G 

(µg/g sample) 

Q 3’4 D 

(µg/g sample) 

Q 

(µg/g sample) 

Hyfort 

OSOP 

Fresh 58.32±3.11e 19.20±1.39f 7.80±0.04c 

Freeze-drying 351.22±32.81a 210.83±10.15bc 0.48±0.03f 

Hot-air drying 197.19±8.72cd 246.05±12.46ab 2.35±0.71d 

Vacuum oven 223.65±23.54bc 223.18±10.56ab 2.08±0.12de 

Oven drying  150.39±11.56d 30.68±1.63f 19.89±1.10a 

CSCP 

Fresh 38.41±1.68e 55.09±1.44de 0.93±0.03ef 

Freeze-drying 290.40±11.73ab 190.09±12.09c 0.35±0.02f 

Hot-air drying 243.41±12.99bc 279.69±13.09a 8.11±0.70c 

Vacuum oven  198.15±6.03cd 52.14±2.05de 0.55±0.06f 

Oven drying 134.15±10.53d 64.35±2.88d 17.02±0.58b 

For each column, values followed by the same letter are not statistically different at p<0.05. Values 

are expressed as mean ± standard deviation on a dry weight basis for n=6. Q 4’ G = Quercetin 

4’glucoside; Q 3’4 D = Quercetin 3,4’ diglucoside; Q = Quercetin. 

  



Chapter 4 Drying   

102 

 

Quercetin aglycones are the more active compounds (Abascal, Ganora, & Yarnell, 

2005), so they would be more readily oxidized in comparison with glycoside. On the 

other hand, oven drying and hot-air drying would lead to structure collapse, which 

avoids the accelerated oxidation occurring in the porous dried onions. The 

accelerated oxidation of Q in freeze-dried and vacuum oven dried samples probably 

led to the lower level of Q found. This implies that in order to retain as much 

aglycone as possible, onions dried by freeze-drying or vacuum oven drying should be 

kept away from contact with oxygen after drying. This could be done using nitrogen 

in the vacuum chamber during breakage of the vacuum, thus reducing the presence 

of oxygen in the pores.  Another solution would be to vacuum pack the dried product. 

4.3.3 Effects of drying methods on antioxidant assay 

Several analytical methods have been developed to determine the antioxidant 

capacity of natural substances in vitro. However, the antioxidant activity of plant 

extracts cannot be evaluated using one method due to the complex composition of 

the phytochemical and oxidative processes (Inchuen, Narkrugsa, & 

Pornchaloempong, 2010). In fact, the antioxidant activity may be attributed to 

different mechanisms, such as prevention of chain initiation, decomposition of 

peroxides, prevention of continued hydrogen abstraction, free radical scavenging, 

reducing capacity, and binding of transition-metal ion catalysts (Mao et al., 2006). 

Therefore, at least two methods should be employed to evaluate the total antioxidant 

activity (Inchuen, Narkrugsa, & Pornchaloempong, 2010). In our study, DPPH 

radical scavenging and ferric-reducing antioxidant potential (FRAP) methods were 

used to evaluate the antioxidant activity (results summarized in Table 4.3A and 4.3B). 

All the studied extracts (from fresh and dried onion samples) were able to scavenge 

the DPPH free radical to different extents. Table 4.3A and 4.3B shows that almost all 

dried onions displayed higher antioxidant capacities, in terms of DPPH and FRAP, 

than their fresh counterparts, irrespective of the drying method employed.  
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Table 4.3A Antioxidant activity determined as per DPPH and FRAP assays in fresh and 

dried onions (Red Baron). 

Variety Treatment Drying method 
FRAP 

(mg TE/g DW) 

DPPH  

(mg TE/g DW) 

Red Baron 

OSOP 

Fresh 10.96±0.09e 7.82±0.14e 

Freeze-drying 14.43±0.11a 11.35±0.04a 

Hot-air drying 14.27±0.14ab 11.32±0.08a 

Vacuum oven 13.95±0.22b  11.12±0.10ab 

Oven drying 13.21±0.10d 10.80±0.21bc 

CSCP 

Fresh 10.72±0.12e 6.83±0.05g 

Freeze-drying 14.03±0.24ab 11.26±0.01a 

Hot-air drying 13.83±0.15bc 10.67±0.15c 

Vacuum oven 13.43±0.19cd 10.18±0.09d 

Oven drying 10.67±0.12e 7.29±0.18f 

For each column, values followed by the same letter are not statistically different at p<0.05. Values 

are expressed as mean ± standard deviation on a dry weight basis for n=6. 

 

Table 4.3B Antioxidant activity determined as per DPPH and FRAP assays in fresh and 

dried onions (Hyfort). 

Variety Treatment Drying method 
FRAP 

(mg TE/g DW) 

DPPH  

(mg TE/g DW) 

Hyfort 

 

OSOP 

Fresh 10.23±0.26d 6.73±0.04f 

Freeze-drying 13.91±0.19a 11.06±0.13a 

Hot-air drying 13.20±0.25b 10.53±0.17b 

Vacuum oven 11.13±0.24c 8.36±0.09d 

Oven drying 10.11±0.21d 7.07±0.16f 

CSCP 

Fresh 9.13±0.13e 4.67±0.20h 

Freeze-drying 13.53±0.26ab 10.21±0.15b 

Hot-air drying 13.03±0.12b 9.58±0.07c 

Vacuum oven 10.85±0.16c 7.64±0.03e 

Oven drying 9.75±0.03d 5.11±0.19g 

For each column, values followed by the same letter are not statistically different at p<0.05. Values 

are expressed as mean ± standard deviation on a dry weight basis for n=6. 
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TPC results aforementioned revealed that drying could effectively increase 

extractability of phenolic compounds from onions and their resultant apparent TPC, 

in comparison with fresh onions. Polyphenols are one of the main antioxidant 

compounds in onions. Higher TPC in the dried onions reasonably increased the 

antioxidant activity of the dried onions. Table 4.3A and 4.3B also indicate that the 

different drying methods result in significantly different antioxidant capacity (DPPH 

and FRAP) of onion (p<0.001). The antioxidant activity of flavonoids is generally 

governed by its chemical structure. The activity increases with increasing the number 

of hydroxyl (OH-) groups replaced on the B ring, especially at C-3’, and decreases 

rapidly as the number of hydroxyl groups decreases (Ratty & Das, 1988). 

The antioxidant capacities in terms of DPPH or FRAP in the dried onions were in the 

order freeze-drying> hot-air drying > vacuum drying > oven drying, which is similar 

to the trend found for TPC, TFC and quercetin content. FRAP and DPPH results 

were significantly correlated with TPC (correlation coefficients 0.98 and 0.99, 

respectively) and TFC (correlation coefficients 0.86 and 0.83, respectively). The 

tendency observed for the total flavonoid content had an association with TPC 

because flavonoids belong to the phenolic group. Likewise, the effect of different 

drying conditions on the total flavonoid content was similar to TPC since flavonoids 

belong to an assembly group of natural compounds with variable phenolic structure 

(Nijveldt et al., 2001). In addition, Q 4’ G and Q 3,4’ D were significantly and 

positively correlated with FRAP and DPPH (r2 = 0.77, 0.76, and 0.77, 0.75 

respectively). Significant correlations between TPC and FRAP were reported for 

both cultivated and wild onions. Santas et al. (2008) reported a correlation coefficient 

(r2) of 0.78 between FRAP and phenolic content in two cultivated onions. Similarly, 

Nencini et al. (2007) reported r2 = 0.46 between FRAP and phenolic content 

determined for several Allium species (A. neapolitanum Cyr., A. roseum L., A. 

subhirsutum L). Not only the drying methods exhibited effects on antioxidant 

capacities of dried onions, but also variety and agronomic treatment showed 
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significant influence, as shown in Table 4.3A and 4.3B. As expected, Red Baron 

onions had higher antioxidant capacity than Hyfort onions, and the OSOP treatment 

resulted in a higher capacity than CSCP. As a consequence, Red Baron onions with 

agronomic treatment OSOP were the richest sources for antioxidants among the four 

different types of raw material. On the other hand, both variety and agronomic 

treatment interacted with the drying method (Table 4.3A and 4.3B), which implies 

that the extent of the effect of drying method varied depending on the variety and 

treatment. 

4.3.4 Colour assessment  

The chromatic coordinates L* (brightness-darkness), a*(redness-greenness) and b* 

(yellowness-blueness) have been widely used to describe colour during thermal 

processing of food products as they can reflect information on some specific 

chemical components present (Bahloul et al., 2009). 

The colour of onions at their internal side (Table 4.4A and 4.4B) was considerably 

different from the external one (Table 4.5A and 4.5B). Therefore, the colour 

parameters for both sides of fresh and dried onion must be measured to avoid 

introduction of variation into the data, hindering the statistic conclusions. 

For the external side of onion samples, the difference between the cultivars was 

found to be significant (p<0.001) (Table 4.5A and 4.5B), as expected. L* means 

varied from 43.09 to 46.68 for Red Baron onions, and from 75.19 to 76.36 for Hyfort 

onions. The a* values varied from 16.1 to 17.34 for the Red Baron onions, and -5.30 

to -5.31 for Hyfort onions. The b* values ranged from -4.73 to -5.63 (Red Baron 

onions), and 20.41 to 20.45 (Hyfort onions). These results were similar to the values 

reported by Gokce et al. (2010). Significant differences (p<0.001) were also found 

for the internal side. As for the agronomic treatment, its effect on the colour of dried 

samples was also significant (p<0.001), as revealed in Tables 4.4 and 4.5. 
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Table 4.4A Effects of different drying methods on the colour of onion slices (Red Baron) at their internal side. 

Variety Treatment Drying method ∆E L* a* b* 

Red Baron 

OSOP 

Fresh --- 63.14±0.31e 0.51±0.02f 1.76±0.04g 

Freeze-drying 16.70±1.02b 77.70±0.53b -1.15±0.05g 3.13±0.05f 

Hot-air drying 13.82±0.14d 73.91±0.01c 1.51±0.01d  10.23±0.03b 

Vacuum oven 7.49±0.21e 57.29±0.25f 1.34±0.03e 6.37±0.02d 

Oven drying 12.56±0.05d 55.44±0.02g 7.14±0.01a 8.76±0.05c 

CSCP 

Fresh --- 62.41±0.25e 0.65±0.01f 2.72±0.04g 

Freeze-drying 19.08±0.47a 81.43±0.90a -1.67±0.03h 5.73±0.11e 

Hot-air drying 13.08±0.25d 53.23±0.10g 2.08±0.01c  12.74±0.06a 

Vacuum oven 5.65±0.07f 67.07±0.06d 0.75±0.01f 5.28±0.12e 

Oven drying 16.75±0.55b 47.60±0.05h 6.10±0.01b 8.50±0.09c 

For each column, values followed by the same letter are not statistically different at p<0.05. Values are expressed as  

mean ± standard deviation for n=6. ∆E = colour change. 
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Table 4.4B Effects of different drying methods on the colour of onion slices (Hyfort) at their internal side. 

Variety Treatment Drying method ∆E L* a* b* 

Hyfort 

OSOP 

Fresh --- 58.37±0.25c -0.53±0.04e 3.34±0.12e 

Freeze-drying 29.46±0.15a 87.43±1.05a -2.63±0.12f 6.90±0.26d 

Hot-air drying 7.84±0.00g 55.76±0.01c  2.03±0.04c 9.47±0.90c 

Vacuum oven 22.60±0.02b 79.00±0.01b  0.39±0.01d  11.19±0.03b 

Oven drying 16.50±0.02d 49.44±0.01d  6.39±0.07a  15.42±0.02a 

CSCP 

Fresh --- 54.48±0.30c -0.34±0.02e 2.99±0.04e 

Freeze-drying 27.76±0.41a 82.25±0.13a -1.36±0.01f 6.86±0.01d 

Hot-air drying 13.31±0.12f 56.79±0.10c 0.16±0.02d 16.05±0.02a 

Vacuum oven 18.14±0.00c 70.53±0.08b -0.31±0.01e 10.59±0.01b 

Oven drying 14.98±0.01e 55.20±0.01c  3.64±0.02b 17.19±0.01a 

For each column, values followed by the same letter are not statistically different at p<0.05. Values are expressed as  

mean ± standard deviation for n=6. ∆E = colour change.  
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Table 4.5A Effects of different drying methods on the colour of onion slices (Red Baron) at their external side. 

Variety Treatment Drying method ∆E L* a* b* 

Red Baron 

OSOP 

Fresh --- 46.68±3.25b 16.1±0.97a -5.63±0.48g 

Freeze-drying 8.75±0.74e 47.21±2.34a 5.40±0.38e -4.84±0.45f 

Hot-air drying 11.68±6.15c 41.93±2.51d 7.87±0.32d 1.17±0.79c 

Vacuum oven 13.10±0.51b 43.07±0.09c 5.83±0.71e 1.56±0.08c 

Oven drying 17.98±3.22a 34.19±3.16f 13.30±1.29b 7.00±0.70a 

CSCP 

Fresh --- 43.09±2.76c 17.34±1.56a -4.73±0.44f 

Freeze-drying 8.71±2.17e 43.67±1.08c 8.69±0.10c -3.86±1.10f 

Hot-air drying 9.85±0.55d 39.71±2.38e 9.27±0.11c -0.56±0.07d 

Vacuum oven 11.85±1.95c 40.05±0.05d 6.05±0.05e -2.62±0.05e 

Oven drying 17.19±0.73a 36.04±1.31f  14.66±0.58b 4.38±0.08b 

For each column, values followed by the same letter are not statistically different at p<0.05. Values are expressed as  

mean ± standard deviation for n=6. ∆E = colour change. 
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Table 4.5B Effects of different drying methods on the colour of onion slices (Hyfort) at their external side. 

Variety Treatment Drying method ∆E L* a* b* 

Hyfort 

OSOP 

Fresh --- 76.36±0.71b -5.30±0.53g 20.45±1.99e 

Freeze-drying 12.96±0.94d 82.75±0.5a -10.08±0.26h 30.67±0.96c 

Hot-air drying 18.94±2.85b 70.31±0.55c 5.64±0.60c 33.79±2.60b 

Vacuum oven 20.63±1.96b 69.48±0.67c 0.92±0.02f 38.38±0.60a 

Oven drying 38.87±2.87a 40.76±0.26f 7.98±0.15b 15.42±0.64f 

CSCP 

 

Fresh --- 75.19±1.15b -5.31±0.36g 20.41±1.06e 

Freeze-drying 12.08±1.94d 80.20±2.36a -11.37±0.60h 29.37±0.35c 

Hot-air drying 18.39±1.09b 61.27±1.18e 4.57±0.70d 27.25±1.58d 

Vacuum oven 17.50±0.05c 64.38±0.73d 3.43±0.05e 31.24±0.26c 

Oven drying 39.30±2.88a 40.66±2.82f  11.06±0.07a 13.71±0.39f 

For each column, values followed by the same letter are not statistically different at p<0.05. Values are expressed as  

mean ± standard deviation for n=6. ∆E = colour change. 
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Tables 4.4 and 4.5 show that freeze-drying generally resulted in significant higher 

lightness, lower yellowness b* and lower a* values than the other drying methods. 

L* values of fresh onion slices decreased due to drying (except freeze-drying), for 

both external and internal sides. Oven dried samples had the lowest L* value, which 

means they were the darkest ones among all dried onions. This may be ascribed to 

the high temperature during oven drying (Sumnu, Turabi, & Oztop, 2005). The oven 

drying method resulted in the highest a* value (redness) on both internal and external 

sides when compared to the other drying methods. Pott et al. (2005) reported that 

high temperatures resulted in a noticeable increase in redness in mango slices. The 

dried samples Red Baron OSOP and CSCP exhibited dark colour, and the oven-dried 

onions showed a darker colour (a*) than all others. The highest darkness and redness 

of the oven-dried onions is associated with caramelization during the Maillard 

reaction, enzymatic degradation and pigment loss during drying (Arslan & Özcan, 

2010). 

In most dried products, product colour is preferred to remain unchanged after drying, 

and higher L* values are usually desirable in the dried products (Doymaz, Tugrul, & 

Pala, 2006). All dried onions had lower luminosity (L*) than fresh samples, except 

the freeze-dried onions, which displayed the highest brightness (L*). The total colour 

change (∆E) (external side) for freeze-drying was the smallest among all drying 

methods tested, probably due to the reduction of the intensity of browning reactions, 

thus minimizing the colour damage (Krokida & Maroulis, 1999). Unlike ΔE for the 

external side, the largest ΔE for the internal colour was observed in freeze-dried 

samples, in comparison with onions dried by the other drying methods (p<0.05). The 

large ΔE is a result of the considerable increase of L* value of the freeze-dried 

onions, as shown in Table 4.5A and 4.5B. López et al. (2010) reported that the colour 

changes ascribed to the thermal treatment may be caused not only by the non-

enzymatic browning reaction, but also by the destruction of pigments present in the 

food. 
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In most red fruits and vegetables, the intensity of red tone is a good indicator of high 

antioxidant capacity, as redness implies a high concentration of anthocyanins (Çelik 

et al., 2008; Özgen, Serçe, & Kaya, 2009). Most of the colour parameters did not 

show a significant correlation (p>0.05) with the antioxidant capacity (DPPH and 

FRAP). However, the internal L* value was significantly (p<0.05) correlated with 

the antioxidant capacities, even though the relationships were not strong, with 

correlation coefficients of 0.47 and 0.48 for ΔDPPH and ΔFRAP, respectively (Table 

4.6).  

Table 4.6 Correlation coefficients (r) for colour coordinates, TPC, TFC, quercetins (Q 4’ G, 

Q 3’4 D and Q) and antioxidant capacity (FRAP and DPPH) of onion. 

Analysis LI aI LE aE bE ∆BII ∆BIE ∆EI 

TPC 0.49* -0.27 -0.09 -0.06 -0.16 -0.56* -0.67* -0.72* 

TFC 0.56* -0.32 -0.22 0.01 -0.44* -0.52* -0.72* -0.52* 

Q 4 G 0.29 0.03 -0.33 0.17 -0.31 -0.1 -0.45 -0.30 

Q 3’4 D 0.71 -0.45* 0.02 -0.10 -0.22 -0.64 -0.6 -0.43* 

Q -0.37 0.77*** -0.45* 0.51* -0.16 0.79* 0.59* 0.22 

∆FRAP 0.48* -0.29 -0.23 -0.02 -0.15 -0.65* -0.37 -0.65* 

∆DPPH 0.47* -0.33 -0.18 -0.13 -0.19 -0.64* -0.35 -0.67* 

LI, aI, bI stand for internal L, a and b coordinates, respectively; LE, aE, bE means stand for external L, a 

and b coordinates; ∆BII = Internal Browning Index change; ∆BIE = External Browning Index change; 

∆EI = Internal colour change. 

The results given in Table 4.6 show that the change of browning index (ΔBII and 

ΔBIE ) is highly correlated with quercetin, with coefficients of 0.79/0.59 in the two 

sides of the onion slices. The high levels of quercetin after drying are correlated with 

browning degree in dried samples, thus suggesting that quercetin concentration might 

contribute to the colour of onion. In addition, there was a negative correlation 

between ΔBII and ΔBIE with TPC and TFC, which leads to the assumption that the 

brown index is highly related to a lower phenolic concentration in dried onions. The 

correlations between a* values (for both internal and external sides) and quercetin 

aglycone were high as well. Gokce et al. (2010) also correlated onion colour with 

total phenolics. Although significant (p<0.05), the correlations did not rise above 
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0.50 (Table 4.6). The lack of strong correlations could be attributed to the fact that 

the total phenolic content in onions covers not only quercetin but also isorhamnetin, 

kaempferol, and other phenolic acids, such as gallic acid and ferulic acid. These 

compounds probably do not contribute to colour changes of dried onion slices 

(Georgé et al., 2005). In our results, a significant negative correlation (-0.65/-0.64) 

was found between ΔIBI, ΔFRAP and ΔDPPH, which is an evidence that the 

variation of colour in onion slices indicates a change in antioxidant activity. 

4.4 Conclusions 

Drying of onion has been found to be a very useful technique for increasing the 

phenolic compounds and antioxidant capacity of the extracts. All four drying 

methods exhibited strong influences on the colour, total phenolic content, quercetin 

content, flavonoid content and antioxidant capacity of dried samples. Among the 

drying techniques tested, freeze-drying and hot-air-drying were found to be the best 

methods, which showed higher total phenolics and levels of quercetins as determined 

by HPLC. Therefore, freeze-drying and hot-air drying are the best techniques in 

terms of extractability of phenolic compounds from different varieties of onion. 

Although freeze-drying had a better performance than the other drying methods 

regarding the preservation of the phenolic bioactive compounds, it is a costly 

procedure, which limits its usage in the food industry. The use of adequate (60 oC) 

temperature for hot-air drying may also ensure the preservation of these compounds, 

which can be applicable due to the acceptable final levels of bioactive compounds 

and its low cost. The different drying methods showed a positive effect on the 

antioxidant activity due to the increase in both extractability and concentration of 

phenolic compounds, which have a strong correlation with antioxidant activity. 

Higher levels of bioactive compounds were found in organically grown onions (Red 

Baron and Hyfort) dried with different drying methods as compared to those 

produced by conventional cultivation.  
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Abstract  

This study investigated the effect of blanching (60 ºC, 70 ºC and 80 oC for 1, 3, 5 and 

10 mins) combined with oven drying at 60 oC on the phenolic compounds, 

antioxidant activity and colour, and on the thin layer drying characteristics (drying 

time, drying rate constant, effective moisture diffusivity and activation energy) of 

onion slices. Blanching at lower temperature and shorter time provided a better 

preservation of phenolics, flavonoids and colour. The loss of antioxidant activity and 

bioactive compounds might be related to the migration or leaching of components 

into the water. Blanching at 60 oC for 3 mins or at 70 oC for 1 min prior to drying 

onion slices increased their levels of bioactive compounds and antioxidant activity in 

comparison with the control samples and other blanching temperatures and times. 

Eighteen thin layer drying models were evaluated. The goodness of fit was assessed 

based on the coefficient of determination (R2), root mean square error (RMSE) and 

reduced chi- square error (χ2). Modified Page and Two-term exponential models 

were found to best represent the drying data. The effective diffusivity ranged from 

3.32 × 10-11 m2/s (control sample) to 5.27 × 10-11 m2/s, 5.01 × 10-11 m2/s, and 

4.74×10-11 m2/s for onions blanched at 60 oC, 70 oC and 80 oC, respectively. The 

activation energy ranged from 2.367 to 9.779 kJ/mol. The higher activation energy 

was observed for the control (unblanched) sample with 9.779 kJ/mol and slightly 

lower values (2.367 kJ/mol and 2.832 kJ/mol) were found for 1 min and 3 mins-

blanched samples, confirming the higher drying efficiency as a result of the 

blanching pre-treatment. 

Keywords: Antioxidant; Blanching; Colour; Phenolic compounds; Drying efficiency. 
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5.1 Introduction  

Onion (Allium cepa L.), one of the most widely grown and consumed vegetables in 

the world, is known to contain high levels of bioactive with protective effects against 

different degenerative diseases (Pérez-Gregorio et al., 2011b; Bahram-Parvar & Lim, 

2018). Dried onions are used as a food ingredient in various food formulations 

including soups, sauces, salad dressings, sausage and other convenience foods 

(Kaymak-Ertekin & Gedik, 2005; Arslan & Özcan, 2010; Mitra, Shrivastava, & Rao, 

2012; Sharma et al., 2016a).  

Hot water blanching is commonly used in the food processing industry as an 

essential thermal treatment carried out prior to many preservation processes such as 

drying, canning and freezing, and largely determines the product quality. The main 

objectives of blanching are: to inactivate enzymes to prevent possible deterioration 

reactions, to reduce microbial load to prolong shelf-life, eliminate air in the 

intracellular space to increase the rate of heat and mass transfer, and prevent 

oxidation (Behsnilian & Mayer-Miebach., 2017; Wang et al., 2017). The quality of 

blanched products depends significantly on the blanching time and temperature, and 

also on the physical and chemical properties of the vegetable to be blanched. 

Industrial blanching processes involve treating fruits and vegetables with steam or 

hot water for 1 to 10 mins at temperatures ranging from 70 to 95 oC (Morales, 

Chandia, & Cisneros, 2002).  

Drying of materials with high moisture content involves complex processes of 

simultaneous heat and mass transfer. A number of studies have been conducted on 

drying kinetics of various fruits and vegetables, so that preservation can be achieved 

by reducing the moisture content with minimal loss in nutrients. Several phenomena 

related to heat and mass transfer is involved in drying processes. The kinetics of 

mass transfer (mainly water) during drying depends on temperature, relative 

humidity, air flow rate, product thickness, load density and product shape (Olivas et 
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al., 1999). The predominant mechanism in food drying processes is the diffusion of 

water from as well as within the food to the surface in contact with the drying air. 

Modelling of the drying process is an efficient tool in the prevention of product 

deterioration, energy consumption, equipment stress and product yield (Olivas et al., 

1999; Mitra, Shrivastava, & Rao, 2012; Sahoo et al., 2015). A number of empirical 

equations have been proposed to describe drying processes, modelling kinetics and 

design of drying systems (Kiranoudis, Maroulis, & Marinos-Kouris, 1992). These 

equations derive a direct relationship between the change in moisture content and the 

drying time, and are strongly related to Fick’s second law of diffusion (Akpinar, 

2006).  

There is a dearth of literature on the effect of the combination between blanching 

temperature and blanching time on the phenolic compounds, antioxidant activity, 

colour and drying of onions. There are also few reports concerning the drying 

characteristics of onions pretreated by blanching. Therefore, the main objective of 

this study was to investigate the effect of blanching temperature-time combinations 

on the bioactive compounds and the overall quality of onion slices. 

In spite of onions’ high phenolic content and antioxidant properties (Gökçe et al., 

2010; Pérez-Gregorio et al., 2014; Sharma et al., 2015a), these properties have not 

been studied in freshly cut onion thin slices. As a survey of literature shows that the 

interest in the role of antioxidants in human health has been increasing, it is 

important to test appropriate processing such as blanching and drying to thinly sliced 

onions. Onion slices are highly susceptible to oxidation, therefore a pretreatment 

before drying is necessary to reduce the changes in the phytochemicals to obtain a 

stable product.  

The present study investigated the thin layer drying characteristics of onion slices in 

a tray dryer regarding the effect of blanching temperature and time. The best 

mathematical models to obtain the characteristic drying curves were selected. The 
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effect of temperature and blanching time on the diffusion coefficient, activation 

energy, phenolic content, antioxidant activity and colour was also evaluated. 

5.2 Materials and methods 

5.2.1 Materials 

Organically grown onions (variety Red Baron) were obtained from the Horticulture 

Development Department in Teagasc, grown as part of the Kinsealy systems 

experiment, based in Kinsealy, North Dublin, Ireland. The onions were grown to 

organic standards, according to the methodology previously described in Reilly et al. 

(2013). Fresh onion slices (1 cm long × 1 cm wide and thickness of approximately 5 

mm, total 2 kg) were prepared. A sample of 50 g was blanched in 100 mL of distilled 

water in a beaker using a temperature controlled water bath (DK-420 Glufex Medical 

and Scientific, England). The samples were blanched at 60 ºC, 70 ºC and 80 oC for 1, 

3, 5 and 10 mins. After they were removed from the water bath, the samples had the 

excess water removed with tissue paper. A further 50 g of unblanched sliced onions 

were used as a control. All measurements were carried out in triplicate. 

Control and blanched onion slices were dried in an oven at 0.3 m/s and 60 oC for 8 h. 

The hot air-drying operation temperature (60 oC) was chosen based on the literature 

(Mitra, Shrivastava and Rao, 2012) and preliminary experiments, for a better 

preservation of sensory and nutritional properties. Samples were weighed at intervals 

of 1 h during drying until the equilibrium moisture content was obtained about (7.0 ± 

0.4%) for all the samples (blanched and unblanched/control), hence the dry weight 

was the same for all samples (blanched and control). The moisture contents of both 

fresh and dried samples were determined according to AOAC (2005) (protocol 

number 930.15). All measurements were carried out in triplicate. 

5.2.2 Preparation of extracts from dried onions  

The methods of solid/liquid extraction have been described in section 2.2.3. 
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5.2.3 Total phenolic content (TPC) 

The methods of total phenolics have been described in section 2.2.3. 

5.2.4 Total flavonoid content (TFC) 

The methods of total flavonoids have been described in section 2.2.4. 

5.2.5 Total anthocyanin content (TAC) 

The total anthocyanin content in onion was determined by the pH differential method 

of Huang et al. (2009) with some modifications. In summary, 1 mL of onion extract 

samples were dissolved in a 0.2 mol/L potassium chloride buffer, pH 1.0, making up 

to 25 mL. Then, another 1 mL of anthocyanin extract was dissolved in a 0.2 mol/L 

sodium acetate buffer, pH 4.5, up to 25 mL. Sample spectral absorbance 

measurements (OD) were read at 525 and 700 nm. The total anthocyanin content of 

the diluted samples was then calculated as follows:  

𝑇𝐴𝐶 (
𝑚𝑔

𝐿
) =  [(𝑂𝐷525 − 𝑂𝐷700)𝑝𝐻1.0 − (𝑂𝐷525 − 𝑂𝐷700)𝑝𝐻4.5] × 449.2 ×

1000

26900
×

𝐷𝐹                                                                                                                     (1) 

where: 449.2 is the relative molecular mass of cyanidin-3-glucoside, 26900 is the 

molar absorptivity, and DF is the dilution factor. 

5.2.6 Analysis of antioxidant activity 

5.2.6.1 Ferric reducing antioxidant power (FRAP) assay 

The methods of antioxidant activity as measured by FARP assay have been described 

in section 2.2.5.1. 

5.2.6.2 DPPH antioxidant power assay  

The methods of antioxidant activity as measured by DPPH assay have been 

described in section 2.2.5.2. 
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5.2.7 Assessment of quercetin and its glycosides in the extract using HPLC  

Separation and quantification of flavonoid were carried out by RP-HPLC using the 

method, as outlined previously in section 3.2.7. 

5.2.8 Colour measurement 

The colour was measured using the method described in section 3.2.8.  

5.2.9 Drying kinetics 

Eighteen commonly used empirical models were evaluated to describe the drying 

kinetics of onion slices. In these models, MR represents the dimensionless moisture 

ratio, which is defined as: 

𝑀𝑅 =
𝑀−𝑀𝑒

𝑀0−𝑀𝑒
                                                                                                     (2) 

where M is the moisture content (kg/kg d.b.) of the product after time t (h), M0 is the 

initial moisture content of the product (kg/kg d.b.) and Me is the equilibrium 

moisture content (0.08 kg/kg d.b).  

The regression analysis was performed using a procedure of SPSS 20.0. The fitness 

of each model was evaluated based on the root mean square error (RMSE), chi-

square (χ2) and correlation coefficient (R2), which are the major criteria used for 

selection of the best model to describes drying data. The predicted moisture ratio was 

compared to the experimental moisture ratio using root mean square error and chi-

square as shown below (Addo, Bart-Plange, & Boakye, 2009). 

In order to evaluate the goodness of fit of the simulation provided by the models, 

different statistical parameters are used. In this study, the reduced chi-square 

(Doymaz, 2007) was calculated, where N is the total number of observations, Z is the 

number of model parameters, i MRexpi are the experimental moisture ratio values 

and MRpred,i are the predicted moisture ratio values. These modules have been used 
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in the literature to evaluate the goodness of fit of different mathematical models 

(Başlar et al., 2014). 

RMES =√
1

N
∑ (MRexp,i − MRpred,i)2N

i=1                                                           (3) 

X2 =
∑ (MRexp,i−MRpred,i)

2N
i=1

N−z
                                                                              (4) 

5.2.10 Determination of moisture diffusivity 

Fick’s second law of diffusion, which characterizes moisture migration during thin 

layer drying of food materials, was used to calculate the effective moisture 

diffusivity, where 𝐷eff is the effective moisture diffusivity (m2/s) and 𝐿 is half the 

thickness of the sample (m) (Gupta et al., 2014): 

MR =
8

π2 exp(-
π2 𝐷𝑒𝑓𝑓𝑡

4𝐿2 )                                                                                     (5) 

5.2.11 Activation energy 

The Arrhenius equation was used to describe the temperature dependence of the 

effective diffusivity: 

Deff=D0exp(-
Ea

RT
)                                                                                               (6) 

where 𝐷0  is the pre-exponential factor of the Arrhenius equation (m2/s), 𝐸𝑎 is the 

activation energy (kJ/mol), R is the universal gas constant, 8.314 J/mol·K, and T is 

the absolute temperature (K). The activation energy is determined from the slope of 

the Arrhenius plot, ln (Deff) vs. 1/T (Gupta et al., 2014). 

5.2.12 Statistics  

All measurements were carried out in triplicate and the results are presented as 

means ± standard deviation. The data were analysed using the general linear models 

(GLM) procedure of SAS 9.1 (Cary, NC, USA). Tukey-Kramer test was applied for 

multiple comparisons among means at a 95% significance level (p<0.05). 
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5.3 Results and discussion 

5.3.1 Effects of blanching temperature and time on phenolic components  

TPC in the onion slices was significantly affected (p<0.05) by both blanching 

temperature and time (Table 5.1).  

Table 5.1 Phenolic content, flavonoid content, anthocyanin content and antioxidant activity 

of blanched and unblanched onion slices. 

Blanching 

temperature 

(oC) 

Blanching 

time  

(min) 

TPC TFC TAC FRAP DPPH 

Control 0 7.59±0.37b 2.26±0.04bcd 1.15±0.20c 12.40±0.12bc 8.00±0.23b 

60 

1 7.60±0.20b 2.84±0.13ab 0.88±0.19d 12.43±0.12bc 8.09±0.26b 

3 9.31±0.19a 3.01±0.49a 1.55±0.14b 13.69±0.11a 8.76±0.07a 

5 7.08±0.11bc 2.76±0.33ab 0.77±0.06d 11.98±0.11cd 7.36±0.14cd 

10 5.79±0.30de 1.84±0.06cde  0.51±0.04de 11.29±0.16def 7.20±0.10d 

70 

1 9.65±0.29a 3.21±0.05a 1.98±0.05a 13.53±0.15a 8.62±0.23a 

3 8.91±0.21a 2.86±0.17ab 0.75±0.15d 12.33±0.13bc 7.92±0.15b 

5 7.43±0.42b 2.38±0.09bc 0.58±0.08de 11.82±0.11cde 7.26±0.11d 

10 5.91±0.20de 1.67±0.15de 0.47±0.05de 11.19±0.13ef 7.03±0.17d 

80 

1 7.07±0.16bc 2.28±0.22bcd 1.08±0.17c 12.03±0.23cd 8.02±0.24b 

3 6.46±0.29cd 1.72±0.13de 0.85±0.06d 11.33±0.24def 7.80±0.19bc 

5 5.55±0.40ef 1.79±0.11cde 0.54±0.13de 10.58±0.32g 7.13±0.46d 

10 5.11±0.19f 1.51±0.17e  0.53±0.15de 10.57±0.34g 6.50±0.37e 

The results are expressed in mean ± standard deviation for analysis triplicates (n=3). Means in the 

same columns with different superscript letters are significantly different according to the Tukey’s test 

(p<0.05). TPC: Total phenolic content (mg GAE/g DW); TFC; Total flavonoid content (mg 

Quercetin/g DW); TAC: Total anthocyanin content (mg cyanidin/g DW); Antioxidant activity: FRAP 

(mg Trolox/g DW); Antioxidant activity: DPPH (mg Trolox/g DW). 
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The blanching of onion slices for 3 mins at 60 ºC and for 1-3 mins at 70 ºC 

significantly (p<0.05) increased the TPC compared to the control sample. The TPC 

increase at the conditions mentioned might be attributed to the inactivation of 

oxidative enzymes and the induced structural changes leading to improved release of 

extractable and non-extractable phenolic compounds (Renard, 2005). Wolfe and Liu 

(2003) reported similar findings for the short-time (10 s) blanching of apple peels 

with subsequent drying, which resulted in better retention of phenolic compounds.  

However, a higher blanching temperature (80 ºC) and longer blanching times (5-10 

mins) at any temperatures were detrimental to the TPC. Jaiswal, Gupta and Abu-

Ghannam, (2012) reported similar conclusions about the effects of blanching time on 

the degradation of the total phenolic content of York cabbage. Amin and Lee (2005) 

applied blanching methods for red, green, mustard, Chinese and Chinese white 

cabbage for 5, 10 and 15 mins. A significant (p<0.05) reduction in the total phenolic 

content was observed irrespective of cabbage type. Losses in phenolic content are 

attributed to the disruption of the plant tissue due to the heating effect, leading into 

polyphenols leaching out into the blanching water environment (Gonçalves et al., 

2010; Martínez et al., 2013). Furthermore, the reciprocal inter conversion of 

insoluble phenolics into more soluble forms can also occur, which may lead to 

additional losses in polyphenols. The phenolic content losses upon blanching could 

also be attributed to their respective solubility and stability, which are highly 

influenced by the type of blanching environment (hot water) and sample: blanching 

environment volume ratio. It is also worth noting that free polyphenols leach out 

faster in water as compared to bound polyphenols (Abu-Ghannam & Jaiswal, 2015).  

In this work, the maximum loss of phenolics was observed at 80 ºC for 10 mins, with 

the TPC reduced by 34.23%. In fact, high temperatures and long blanching times can 

lead to loss of phenolic compounds due to thermal degradation, leaching or diffusion 

of components into water and enzymatic oxidation (Gonçalves et al., 2010). 

Enzymes such as phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) 
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play an important role during the phenol synthesis in plants. PAL is the first key 

enzyme in the biosynthesis of phenolic components. The increased activity of PAL 

leads to an increase in the synthesis of phenolics (Luo et al., 2012). As these 

enzymes get inactivated during heat treatments, there should be a consequent 

reduction in the phenolic components after heat treatments. However, there is a 

series of factors affecting the TPC of blanched samples, not only related to 

enzymatic activity. In our results, blanched onion slices in general showed lower 

TPC than control samples, except at 60 ºC for 3 mins and at 70 ºC for 1-3 mins. This 

result can be explained by several possibilities: the release of high amounts of 

antioxidant compounds (total phenolic content) due to thermal destruction of cellular 

and sub-cellular compartment walls, production of strong antioxidants and radical 

elimination by thermal chemical reaction, suppression of oxidation capacity of 

antioxidants due to thermal inactivation of oxidative enzymes, and/or the production 

of new non-nutrient antioxidants or the formation of new compounds such as 

Maillard reaction products with antioxidant capacity (dos Reis et al., 2015). 

The total flavonoid content (TFC) in the onion slices was also significantly affected 

(p<0.05) by the blanching time and temperature (Table 5.1). The TFC increased after 

1-5 mins of blanching at 60 ºC and 70 ºC, which can be attributed either to the better 

extractability of flavonoids as a result of the cell disruption or to the reduced rate of 

polyphenol degradation. On the other hand, blanching at 80 ºC reduced the TFC, 

similarly to what occurred to the phenolic compounds. 

The anthocyanin content significantly increased after blanching at 60 ºC for 3 mins 

and at 70 ºC for 1 min. All the other conditions led to a TAC reduction. Although 

anthocyanins degrade with blanching at high temperatures, the drying air temperature 

of 60 ºC was reported as the optimum for the retention of most phenolic compounds 

(Katsube et al., 2009; Wiriya, Paiboon, & Somchart, 2009). Mild heat treatments (at 

approximately 60 ºC) can inactivate degradation enzymes such as polyphenol 

oxidase and glycosidase resulting in higher rates of polyphenols. Anthocyanins, 
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phenolic compounds and flavonoids degrade enzymatically, which catalyse the 

hydrolysis of anthocyanins to yield free sugars and aglycone (Lohachoompol, 2007). 

However, blanching may also cause excessive leaching of this pigment. In addition, 

heating can also encourage cellular fluids containing phytochemicals to diffuse from 

the plant cell to the water media. Thus, the anthocyanin content after blanching is the 

net result of combined increased in extractability, degradation and leaching. 

Wahyuningsih (2008), for instance, recorded a decreased in the anthocyanin content 

of red turi (Sesbania grandiflora (L.) Pers.) flower, which was ascribed to the 

leaching of anthocyanin into the blanching media. Khanal, Howard and Prior (2010) 

found that the anthocyanin content was significantly degraded at high drying 

temperatures (more than 60 ºC) in grape and blueberry pomace. Generally, drying 

processes can induce undesirable effects on the profiles of plant phytochemicals. 

Therefore the importance of optimizing drying processes and pre-treatments of plant 

materials destined to the recovery of bioactive compounds (Dai & Mumper, 2010). 

5.3.2 Effects of blanching temperature and time on individual phenolic 

compounds 

The concentration of individual phenolic compounds significantly increased after 

blanching at 60 ºC for 3 mins and 70 ºC for 1 min followed by drying when 

compared with unblanched samples. Dried blanched onion slices featured a 

significant increase in the concentration of individual phenolic compounds such as 

quercetin and its glucosides, since they are sub-groups of phenolic compounds, 

which was probably caused by the inactivation of degradation enzymes such as 

polyphenol oxidase and peroxidase (Renard et al., 2001).  

Blanching of dried onion slices at 60 ºC for 3 mins and 70 ºC for 1 min caused a 

significant increase in most of the analysed quercetin compounds compared to the 

control (Table 5.2). Both blanching temperature and time influence the contents of Q, 

Q 4’ G and Q 3,4’ D. While blanching is detrimental to Q 3,4’ D regardless of its 
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conditions, blanching temperatures of up to 70 ºC applied for 1-5 mins increase the Q 

4’ G levels. The quercetin content, for its turn, is benefited from the application of 

blanching at any temperature and time duration, with optimum results at 70 ºC for 1-

3 mins. 

Table 5.2 Quercetin content of blanched and unblanched onion slices. 

Blanching 

temperature (℃) 

Blanching 

time (min) 
Q 4’ G Q 3,4' D Q 

Control 0 812.08±97.80c 1090.17±200.53a 25.40±2.39f 

60 

1 936.51±34.60b 87.80±1.97b 139.42±25.60c 

3 1124.32±97.73a 114.75±14.43b 226.20±24.29b 

5 961.53±29.97ab 77.79±6.81b 141.96±14.23c 

10 310.49±17.18ef 11.01±2.61b 46.96±3.38ef 

70 

1 981.50±16.91ab 180.06±4.64b 392.31±23.51a 

3 940.73±44.16b 175.75±14.72b 362.03±24.85a 

5 826.29±44.28bc 145.83±30.87b 228.79±34.38b 

10 346.77±83.01e 63.65±14.18b 46.38±10.44ef 

80 

1 740.90±123.48cd 100.98±17.17b 126.25±10.94cd 

3 625.57±42.51d 83.75±6.91b 181.14±14.09bc 

5 339.49±44.11e 49.22±13.22b 77.74±11.82de 

10 294.87±42.38ef 30.93±6.15b 45.49±15.46ef 

The results are expressed in mean ± standard deviation for triplicates (n=3). The data is expressed as 

µg/g expressed on a dry weight basis (DW). Means in the same columns with different superscript 

letters are significantly different according to the Tukey’s test (p<0.05). 
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There were no significant changes in the Q 3,4’ D of onions during different 

blanching treatments followed by drying. After further heating, the values of Q 3,4’ 

D decreased compared to the control samples. This phenomenon is ascribed to the 

leaching of Q 3,4’ D into the water. Due to the enhanced water solubility, the 

additional hydroxyl group is assumed to support leaching of the former compound 

into the blanching water. Accordingly, the lesser gain of some phenolic compounds 

upon extended water-blanching compared to the control may be attributed to 

enhanced leaching of Q 3,4’ D into the blanching water. Therefore, the leaching 

effect of blanching is assumed to be more decisive than the degradation or release of 

the phenolic compounds. On the other hand, the increases observed in the Q 4’ G and 

Q contents appeared to occur at the expense of Q 3,4’ D, which is in agreement with 

the study by Price and Rhodes (1997), where decreases in Q 3,4’ D were 

quantitatively explained by increases in the Q 4’ G and quercetin contents. This was 

as result of the conversion of Q 3,4’ D in Q 4’ G and further breakdown of Q 4’ G in 

quercetin aglycon by enzymatic hydrolysis of glucosides during blanching (Pérez-

Gregorio et al., 2010).  

5.3.3 Effects of blanching temperature and time on antioxidant activity  

The antioxidant activity of fresh and blanched samples is presented in Table 5.1. The 

blanching pre-treatment in general lowered the antioxidant activity of the onion 

slices, especially as blanching temperature and time increased (p<0.05). However, 

onions blanched at 60 ºC for 3 mins and 70 ºC for 1 min after drying resulted in a 

significant increase of the antioxidant activity in comparison with the control. 

Similar conclusions on drying and blanching of apple pomace were published by 

Heras-Ramírez et al. (2012) who reported that blanched apple pomace showed higher 

antioxidant activity than the unblanched peels. The increase in total phenolic 

contents and antioxidant capacities during blanching may be mainly ascribed to the 

increase of the contents of individual phenolic compounds. Furthermore, synergistic 

and additive effects of phenolic compounds may enhance the antioxidant activity 
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(Eberhardt, Lee, & Liu, 2000). In fact, some studies have reported an increase in the 

antioxidant content derived from structural changes in tissues that may release bound 

antioxidant polyphenols (Renard, 2005), resulting in an increase of antioxidant 

activity despite the thermal treatments applied to the food materials (Xu & Chang, 

2009). On the other hand, thermal processes may also induce chemical changes of 

phenolics resulting in the formation of degradation products, which may retain or 

even feature a higher antioxidant activity (Buchner et al., 2006). Chantaro, 

Devahastin,  and Chiewchan  (2008), for instance, observed that the drying of carrot 

peels led to the reduction of antioxidant capacity with correlation to the loss of 

phenolic. 

5.3.4 Colour analysis 

The colour parameters of fresh and blanched onion slices are shown in Table 5.3. 

Blanching temperature and time had a significant effect on the colour of the 

dehydrated onion slices (p<0.05). All the blanched-dried samples had a lower 

luminosity compared to the unblanched-dried samples (Table 5.3), which decreased 

further as blanching time and temperature time increased. The same trend was 

observed for the a* and b* coordinates, meaning that higher temperatures and 

blanching times result in slightly greener/yellower onion slices rather than 

redder/bluer. At 80 ºC for 10 mins, excessive loss in the natural pigments and 

decreased lightness were observed. This might be the result of the non-enzymatic 

browning and caramelization due to the high temperature, similarly to the results 

found in carrots by Gonçalves et al. (2010). 

5.3.5 Effects of blanching temperature and pretreatment time on drying kinetics 

of onion slices 

The moisture ratio (MR) of the blanched and unblanched onion slices decreased 

continuously with drying time (Figures 5.1a-d). This continuous decrease in moisture 

ratio indicates a diffusion controlled internal mass transfer. This is in agreement with 
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the observations of Kingsly et al. (2007) regarding the drying properties of blanched 

onion, figs and peach. The blanching pre-treatment increased the drying rate of onion 

samples. The drying rates of unblanched and blanched onions were initially high as a 

result of the great initial amounts of free water, but decreased rapidly to almost the 

same rate in the course of drying. 

Table 5.3 Effect of blanching temperature and time on luminosity (L*) and colour 

coordinates (a* and b*) of onion slices. 

Blanching 

temperature 

Blanching 

time 

(min) 

L* a* b* 

Control 0 46.70±3.45a 7.34±1.33a -0.29±0.42g 

60 oC 1 42.57±1.33b 6.28±0.55b 2.34±0.48f 

3 40.99±1.12c 5.69±0.12cd 3.10±0.08e 

5 40.90±1.82c 5.40±0.99cd 3.39±0.12de 

10 39.57±1.11c 4.62±0.32e 3.53±0.72d 

70 oC 1 40.27±1.32c 5.82±0.04c 6.27±1.77b 

3 38.64±2.31d 5.39±0.19cd 6.62±0.50b 

5 37.79±1.91d 5.24±0.30cd 8.17±0.03a 

10 35.52±4.20e 4.38±0.69ef 8.37±0.43a 

80 oC 1 38.88±1.33d 5.80±0.99c 4.55±0.35c 

3 35.70±1.55e 5.39±0.89de 6.29±0.42b 

5 34.27±1.26ef 4.11±0.84f 8.31±0.37a 

10 32.83±1.97g 4.08±1.49f 8.42±0.22a 

L* ranges from 0 (black) to 100 (white), a, from -60 (green) to 60 (red), and b, from -60 (blue) to 60 

(yellow). The results are expressed in mean ± standard deviation for triplicates (n=3). Means in the 

same columns with different superscript letters are significantly different according to the Tukey’s test 

(p<0.05). 
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Figure 5.1 Moisture content versus drying time of onion slices blanched for: (a) 1 min, (b) 3 

mins, (c) 5 mins, and (d) 10 mins.  
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At any blanching temperature (60 ºC, 70 ºC, 80 ºC), the initial drying rate increased 

as the blanching time increased from 3 to 10 mins. However, there was a progressive 

drop in the drying rate at a higher blanching time than at a lower blanching time, 

resulting in a longer drying time. This drop in the drying rate at a higher blanching 

time may be ascribed to the gelatinization of carbohydrates (Maté et al., 1998), 

which increased as blanching time increased, thus leading to lower rates of moisture 

transport from inside the blanched onions to their surface during drying. 

In addition, at all each blanching times (1, 3, 5 and 10 mins), the initial drying rate 

increased as the blanching temperature increased from 60 to 80 ºC (Figures 5.1a-d). 

However, there was a more gradual decrease in the drying rate for samples blanched 

at higher temperatures, probably due to the greater extent of the carbohydrate 

gelatinization, which seems to affect the mobility of water during the drying and 

reduced water diffusively of onion slices (Maté et al., 1998).  

5.3.6 Evaluation of the models 

The purpose of testing different models was to compare the drying efficacy between 

unblanched (control) and blanched samples. The experimental moisture content 

obtained during the drying experiments was converted to moisture ratio (MR) and 

then fitted to the 18 different models (Table 5.4). Based on the statistical results of 

reduced chi-square (χ2), root mean square (RMSE) and correlation coefficient (R2), 

the Two-term model had the best performance for the unblanched samples (Table 

5.5), while the Modified Page and the Two-term exponential model had the best fit 

for the blanched onions (Table 5.6). According to Table 5.6, the χ2 and RMSE values 

were very low for all blanching conditions, with R2 value between 0.927 and 0.999, 

indicating an excellent fit. Table 5.7 shows the constants of the two models 

aforementioned.  
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Table 5.4 Drying models proposed by various authors and tested in this work. 

Model Expression Reference 

Newton MR=exp(-kt) Wang et al. (2007) 

Page MR=exp(-ktn) Akoy (2014) 

Modified page MR=exp(-(kt)n) Vega et al. (2007) 

Henderson and Pabis MR=aexp(-kt) Hashim et al. (2014) 

Logarithmic MR=aexp(-kt)+c Kaur and Singh (2014) 

Two-term MR=aexp(-k1t)+bexp(-k2t) Sacilik (2007) 

Two-term exponential MR=aexp(-kt)+(1-a)exp(-kat) Yaldiz and Ertekin (2001) 

Midilli and others MR=aexp(-kt)+bt Ayadi et al. (2014) 

Parabolic MR=a+bt+ct2 Daghbandan et al. (2006) 

Wang and Singh MR=1+at+bt2 Omolola et al. (2014) 

Verma and others MR=aexp(-kt)+(1-a)exp(-gt) Akpinar (2006) 

Modified Midilli and others MR=aexp(-kt)+b Gan and Poh (2014) 

Demir and others MR=aexp(-kt)n+b Demir et al. (2007) 

Approximation of diffusion MR=aexp(-kt)+(1-a)exp(-kbt) Yaldyz and Ertekyn (2007) 

Silva and others MR=exp(-at-bt) Pereira et al. (2014) 

Peleg model MR=1-t/(a+bt) Da Silva et al. (2015) 

Hii and others MR=aexp(-k1t2)+bexp(-k2t2) Kumar et al. (2012) 

Aghbashlo and others MR=exp(k1t/1+k2t) Aghbashlo et al. (2009) 
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Table 5.5 Goodness of fit of different drying models applied to unblanched dried onion 

slices. 

Model  χ2 RMSE R2 

Newton  1.20E-03 0.033 0.990 

Page  5.30E-02 0.203 0.893 

Modified Page 1.38E-04 0.010 0.999 

Henderson and Pabis  1.26E-03 0.031 0.990 

Logarithmic  9.61E-02 0.253 0.993 

Two-term  2.90E-05 0.004 0.999 

Two-term exponential  1.37E-03 0.033 0.990 

Midilli and others  3.58E-03 0.049 0.993 

Parabolic 9.19E-01 0.783 0.972 

Wang and Singh 6.54E+01 7.134 0.990 

Verma and others  1.57E-02 0.102 0.994 

Modified Midilli and others 1.92E-03 0.036 0.993 

Demir and others model 6.62E-02 0.192 0.664 

Approximation of diffusion 1.47E-03 0.038 0.950 

Silva and others  6.00E+01 5.100 0.939 

Peleg  5.74E+01 2.134 0.949 

Hii and others  3.90E-05 0.054 0.980 

Aghbashlo and others  7.98E-05 0.040 0.980 

Reduced chi square (χ2); Root mean square error (RMSE); Regression coefficient (R2). 
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Table 5.6 Goodness of fit of the best models evaluated in this work to describe the dying 

kinetics of blanched dried onion slices. 

Model 
Blanching 

time (min) 

Blanching 

temperature 

(oC) 

χ2 RMSE R2 

Modified 

Page 

MR=exp(-

(kt)n) 

1 

60 1.29E-04 0.010 0.999 

70 1.35E-03 0.032 0.991 

80 3.90E-03 0.055 0.993 

3 

60 8.61E-05 0.008 0.999 

70 3.70E-04 0.017 0.998 

80 5.04E-04 0.020 0.997 

5 

60 8.28E-04 0.025 0.984 

70 4.16E-03 0.057 0.995 

80 1.12E-03 0.029 0.99 

10 

60 1.63E-04 0.011 0.999 

70 4.73E-04 0.019 0.997 

80 4.36E-03 0.058 0.991 

Two-term 

exponential 

MR=aexp(-

kt)+(1-

a)exp(-kat) 

1 

60 1.52E-04 0.011 0.999 

70 1.37E-03 0.033 0.990 

80 8.59E-03 0.082 0.927 

3 

60 6.16E-05 0.007 1.000 

70 3.47E-04 0.016 0.997 

80 3.88E-04 0.017 0.998 

5 

60 4.71E-04 0.019 0.997 

70 1.93E-03 0.039 0.988 

80 6.30E-03 0.070 0.948 

10 

60 1.88E-04 0.012 0.999 

70 4.52E-04 0.019 0.997 

80 8.82E-04 0.026 0.992 

Reduced chi square (χ2); Root mean square error (RMSE); Regression coefficient (R2). 
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Table 5.7 Constants of the Modified Page model and the Two-term exponential model 

applied to blanched dried onion slices. 

Modified Page 

Blanching temperature 

(℃) 

Blanching time 

(min) 
k n 

Control 0 0.562 1.267 

60 

1 0.573 1.248 

3 0.643 1.230 

5 0.524 1.184 

10 0.638 1.196 

70 

1 0.679 0.927 

3 0.611 1.106 

5 0.563 1.100 

10 0.549 1.095 

80 

1 0.640 0.830 

3 0.643 0.837 

5 0.489 0.821 

10 0.467 0.800 

 
Blanching temperature 

(℃) 

Blanching time 

(min) 
k a 

Two-term 

Exponential  

Control 0 0.608 1.058 

60 

1 0.858 1.832 

3 0.969 1.848 

5 0.573 1.889 

10 0.895 1.736 

70 

1 0.819 0.626 

3 0.799 1.609 

5 0.704 1.847 

10 0.687 1.555 

80 

1 0.401 1.051 

3 2.450 0.208 

5 0.375 1.057 

10 0.778 0.519 

k, n, a are empirical coefficients retrieved from drying experimental data.   
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5.3.7 Effective moisture diffusivity and activation energy 

The effective moisture diffusivity (Deff) during drying and the activation energy were 

determined by the Fick’s diffusion model and the Arrhenius model, respectively, and 

the results are shown in Table 5.8. The effective diffusivity ranged between 3.32 × 

10-11 m2/s to 5.27 × 10-11 m2/s, 5.01 × 10-11 m2/s, and 4.74×10-11 m2/s for the samples 

blanched at 60 ºC, 70 ºC and 80 ºC, respectively. The effective diffusivity was higher 

for longer blanching times. An increase in moisture diffusivity was observed for all 

blanched samples in comparison to the control (unblanched). Agarry, Durojaiye and 

Afolabi (2005) reported that blanching prior to drying improves the effective 

moisture diffusivity as a result of the high draining of additional water absorbed 

during blanching. An Arrhenius-type equation was used to calculate the activation 

energy. The natural logarithm of Deff as a function of the reciprocal of absolute 

temperature was plotted for the blanched samples (Figure 5.2). The activation energy 

ranged from 2.367 to 9.779 kJ/mol. The highest activation energies were observed 

for the control (unblanched) sample (9.779 kJ/mol). The slightly lower activation 

energy of pre-treated onions compared to untreated samples is an indication that less 

energy is used during drying of onions subjected to blanching. The fact that water 

travels faster in pre-treated samples indicates that blanching can be used as a pre-

treatment to optimize the drying process of onion in terms of energy demand (Maté 

et al., 1998). The cell wall rupture ascribed to blanching results in high internal mass 

transfer during drying and thus had higher moisture diffusivities. In fact, it has been 

reported that blanching generally increases water diffusion from within the product 

to its surface during drying of fruits (Kingsly et al., 2007) Similar results of the 

influence of blanching pre-treatment on moisture diffusivity during air drying were 

reported in apricots (Pala, Mahmutoǧlu, & Saygi, 1996). 
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Table 5.8 Kinetic parameters of unblanched and blanched dried onion slices. 

Blanching temperature ( oC) Blanching time (min) Deff (m2/s) Ea (KJ/mol) 

Control 0 3.32E-11 9.779 

60 

1 

4.69E-11 

2.367 70 4.57E-11 

80 4.47E-11 

60 

3 

4.97E-11 

2.832 70 4.78E-11 

80 4.67E-11 

60 

5 

5.27E-11 

5.194 70 5.01E-11 

80 4.74E-11 

60 

10 

5.03E-11 

5.212 70 4.81E-11 

80 4.52E-11 

Deff: Effective diffusivity; Ea: Activation energy 
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Figure 5.2 Arrhenius plot of the activation energy for blanched samples from 1 to 10 mins.
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5.4 Conclusions 

Hot water blanching is currently the most preferred pre-treatment for fruits and 

vegetables due to the low capital costs and blanching uniformity. Short-time water-

blanching was found to be a suitable initial step in the production of onion slices. 

Blanching affects individual phenolic compounds, the total phenolic content and the 

antioxidant capacity, and proved to be a suitable method regarding the retention of 

polyphenols and antioxidant capacity, since minor destruction of tissue may better 

protect secondary metabolites from degradation. 

Pretreatments such as blanching are effective in retarding the oxidation reactions by 

native enzymes present in onion slices. This method increases the phytochemical 

constituents of the onion slices responsible for its antioxidant activity and total 

phenolics. From the current study, it can be deduced that blanching at 70 ºC for 1 

min and at 60 ºC for 3 mins followed by drying are the optimum process conditions. 

The combination of blanching and hot air oven drying treatments led to a higher 

recovery of phenolic compounds and enhanced the antioxidant capacity. For better 

recovery of bioactive phenolic compounds from onion slices, the combination of 

blanching with short time and hot air oven drying (60 ºC) as a pre-treatment may be 

favourable. 

The use of blanching as a pretreatment during drying of onions is also recommended 

because it reduces the time and rate of drying. Reduction in time and rate of drying 

results in dried products of higher quality. In addition, since the use of blanching as a 

pretreatment optimizes the drying process of onions in terms of energy utilization, it 

is recommended for use by local processors in order to reduce the energy demand 

involved in onion drying. Energy reduction during drying will reduce the production 

cost, which will accordingly result in higher earnings by the processors. 
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Abstract 

The aim of this study was to investigate the effect of ultrasonic pre-treatment and 

blanching prior to hot-air or freeze-drying of onions on the retention of bioactive 

compounds (total phenolics, total flavonoids, and quercetin). Onion slices were 

treated with ultrasound at 20 kHz or blanching with hot water at 70 oC for 1, 3 or 5 

mins. The colour change was similar between blanched and US-treated dried onions. 

The ultrasound treatment improved the retention of bioactive compounds (especially 

quercetin) and accordingly the antioxidant activity in onion slices dried either by 

freeze-drying or hot-air drying. The US-freeze-dried onions had a higher retention of 

quercetins compared to the US-hot air dried ones. Blanching for 1 min also resulted 

in a substantial increase of phenolic content and antioxidant activity in comparison to 

control dried onion slices. These results are ascribed to the destruction of the original 

tissue structure and thus higher extraction ability of the studied phytochemicals due 

to blanching and ultrasound. The short time ultrasound treatment provides valuable 

co-products in water because phenolic and soluble plant material are transferred from 

onion into the water. This study shows that ultrasound pretreatment is a potential 

alternative to conventional blanching treatment in the different drying of onion slices. 

 

 

Keywords: Ultrasound treatment; Thermal blanching; Antioxidant activity; Colour.  
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6.1 Introduction 

Onions find widespread usage in both fresh and dried forms. Dried onions are a 

product of considerable importance in the world trade. They are found in different 

forms: flaked, minced, chopped and powdered, which are of extensive demand in 

several parts of the world, such as UK, Japan, Russia, Germany, Netherlands, and 

Spain (Sarsavadia et al., 1999; Arslan & Özcan, 2010).  

Sonication is a promising non-thermal technology in the food industry (Tiwari et al., 

2010; Jang et al., 2013; Katsampa et al., 2015). Ultrasound treatment (US treatments) 

are used to induce desirable chemical and physical changes in foods and can support 

several processes, such as drying, osmotic dehydration, extraction, mixing, 

emulsification, filtration, crystallization, thawing and freezing (Marcuzzo et al., 

2010). Ultrasonic waves cause rapid compressions and expansions to plant cells, 

which leads to the formation of bubbles in the sonicated sample and its surroundings. 

The resulting rapid and short pressure and temperature shifts in the product lead to 

changes of viscosity and surface tension, destroying cell walls, forming microscopic 

channels and free radicals, and producing sonochemicals. Scientific evidence exists 

to support both the positive and the negative impacts of US on the retention of 

bioactive compounds in various fruit and vegetables, although the particular effect 

depends on the process conditions and specificity of the material involved (Gamboa-

Santos et al., 2014; Mieszczakowska-Frąc, Dyki, & Konopacka, 2016). Advantages 

of power ultrasound include a reduction in processing time, the effective removal of 

occluded oxygen in juices, and lower energy consumption (Knorr et al., 2004). 

The responses of plants to abiotic stresses, such as US, associated with the 

production of stress signalling molecules (i.e. reactive oxygen species – ROS) 

activate the expression of genes involved in the primary and secondary metabolism 

of the plant (Jacobo-Velázquez, González-Agüero, & Cisneros-Zevallos, 2015). 

These genes are associated with an increase in the activity of enzymes related to the 
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biosynthesis of secondary metabolites and with the accumulation of secondary 

metabolites (Jacobo-Velázquez, González-Agüero, & Cisneros-Zevallos, 2015). For 

this reason, US can be used as an approach to increase the extractability of bioactive 

compounds (Nowacka & Wedzik, 2016; Rombaut et al., 2014), for instance, found a 

12.5% higher extractability of carotenoid from carrots after the application of US at 

21 kHz. Ultrasound has also shown higher extraction rates of phenolic compounds 

from carrot pomace and strawberries (Jabbar et al., 2015). Power ultrasound has also 

potential as a means of preservation due to the microbial inactivation ascribed to 

cavitation, as the resulting pressure shifts contribute to cell disruption. Ancillary 

chemical effects, such as the formation of free radicals as a consequence of the 

sonochemical reaction, also contribute to the microbial cell disruption (Kadkhodaee 

& Povey, 2008).  

The most popular drying methods for onions are hot-air drying and freeze-drying. 

Hot-air drying involves exposure of the product to be dried to a continuously flowing 

hot air stream. It produces dehydrated products with a shelf life of up to one year, but 

their quality is usually lower than that of the original foodstuff (Ratti, 2001). Freeze-

drying is based on dehydration by sublimation of water from a frozen product. Due 

to the absence of liquid water and the low temperatures required for freeze-drying, 

most of the deterioration and microbiological reactions are retarded resulting in a 

final product of high quality (Rawson et al., 2011). However, the quality of a 

dehydrated product depends also on the pre-treatments employed before drying 

(Negi & Roy, 2000). Hot-water blanching (heating of a product with hot water for a 

short period) has also been reported to lower drying time up to a certain operation 

temperature. Similarly to other thermal processes, blanching affects the concentration 

of some bioactive compounds in vegetables (Rawson et al., 2011). 

Give the possible detrimental effect on blanching on the quality of onions, there is a 

need to develop alternative pre-treatment method such as: ultrasound treatment, 
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which is an emerging and promising alternative technology for food processing to 

possible replace blanching. Despite the fact that power ultrasound has been 

extensively reviewed in fruit, their effects on quality parameters have not been 

extensively studied in onions. 

The present study investigated the effect of ultrasonic and blanching pre-treatments 

prior to hot-air drying and freeze-drying on the retention of bioactive compounds 

(total phenolics, total flavonoids, individual flavonoids, colour and antioxidant 

activity) of onions. 

6.2 Materials and methods 

6.2.1 Sample preparation 

Organically grown onions (variety: Hyskin) were obtained from the Horticulture 

Development Department in Teagasc, grown as part of the Kinsealy systems 

experiment, based in Kinsealy (53° 25N, 6° 10W), Dublin, Ireland and stored at 4 oC 

prior to analysis. Fresh organic onions (variety: Hyskin) in net bags of 20 kg were 

transported to the lab (2015). Several organic onion bulbs with no visible defects 

were chosen by myself. The organic onions were grown to organic standards 

(Organic cultivation practices used were in compliance with EC1990/92, 

EC834/200719), according to trial previously described in experimental chapter 1. 

After hand-peeling, onions were vertically sliced (5 mm thickness) using a Berkel 

800 meat slicer (Berkel company, Indiana, USA).  

6.2.2 Ultrasound and blanching pre-treatments 

One kg of fresh organic onion slices (1 cm long × 1 cm wide and thickness of 

approximately 5 mm) were obtained from onion bulbs (variety: Hyskin). In each 

treatment, 50 g of onion slices were mixed with 100 mL of distilled water at 70 oC in 

a 200 mL beaker.  
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Ultrasound (20 kHz) was irradiated to 50 g of onion slices mixed with 100 mL of 

water at 70 oC with an ultrasonic probe (Ø19 mm) connected to an ultrasonic 

generator (VC 1500, Sonics and Materials Inc., USA). The energy input was 

controlled by setting the amplitude of the sonicator probe. Extrinsic parameters of 

amplitude (power output of 40%, 60% and 80%, equivalent to 24.4, 42.7 and 61.0 

µm) and processing time (1, 3 and 5 mins) were varied with a pulse duration of 5 s 

on and 5 s off. Ultrasound conditions have been chosen in parameters of amplitude 

(power output of 40%, 60% and 80%, equivalent to 24.4, 42.7 and 61.0 µm) in the 

last experiment chapter. Due to the range of amplitude chosen at the minimum, 

middle and maximum, it is much clearer to observe and compare the variation among 

individual flavonoids with ultrasound conditions. The ultrasound probe was 

submerged to a depth of 25 mm into the sample. All treatments were carried out in 

triplicate. The ultrasound densities ranged between 0.06 and 0.59 W/mL.  

For the blanching pre-treatment, carried out alternatively to the-US treatment, 50 g of 

onion slices were mixed with 100 mL of distilled water at 70 oC for 1, 3 and 5 mins. 

All treatments were carried out in triplicate. 

6.2.3 Preparation of extracts from dried onions  

Control, sonicated and blanched slices were either freeze-dried or hot-air dried. Hot-

air drying of sonicated, blanched and untreated (control) samples was carried out in a 

laboratory scale hot-air dryer (SG96⁄06⁄333, Gallenkamp, UK) at 60 oC and 0.3 m/s 

for 8 h. Pre-treated and control samples of 50 g were placed in a perforated basket 

(300 x 400 mm; perforation size of 5 x 5 mm), which was inserted in the drying 

chamber. Each sample was dried separately. Freeze-drying was carried out in a 

Cuddon freeze-drier (FD80, Cuddon Freeze Dry, Blenhein, New Zealand) at 0.064 

mbar for 72 h. After freeze-drying or hot-air drying, the samples were vacuum-

packed in polypropylene bags and stored at -20 oC until analysis. 
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The leaching water resulting from the ultrasound and blanching pre-treatments were 

also freeze-dried or hot-air dried, according to the drying method selected for the 

onion slices. The dry weights were used to calculate the transfer of material from the 

onions into the cooking water. For this, the dried onions were blended by a kitchen 

blender (Kenwood Ltd, Havant, UK). Then, 1 g of the blended sample was mixed 

with 10 mL of methanol (80%) and homogenised at 24,000 rpm using an Omni-prep 

multi-sample homogeniser (Omni International, USA). The homogenized sample 

suspension was shaken overnight with a V400 Multitude Vortexer (Alpha 

laboratories, North York, Canada) at 1500 rpm at room temperature. The sample 

suspension was centrifuged (MSE Mistral 3000i, Sanyo Gallenkamp, Leicestershire, 

UK) at 3000 g for 15 mins and immediately filtered through 0.22 μm 

polytetrafluoethylene filters. The extracts were kept at -20 oC until further analysis. 

6.2.4 Analysis of total phenolics (TPC) 

The methods of total phenolics have been described in section 2.2.3. 

6.2.5 Analysis of total flavonoid content (TFC) 

The methods of total flavonoids have been described in section 2.2.4. 

6.2.6 HPLC analysis of the extracts 

Separation and quantification of flavonoid were carried out by RP-HPLC using the 

method, as outlined previously in section 3.2.7. 

6.2.7 Colour  

The colour was measured using the method described in section 3.2.8.  
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6.2.8 Analysis of antioxidant activity 

6.2.8.1 Ferric reducing antioxidant power (FRAP) assay 

The methods of antioxidant activity as measured by FARP assay have been described 

in section 2.2.5.1. 

6.2.8.2 DPPH antioxidant power assay  

The methods of antioxidant activity as measured by DPPH assay have been 

described in section 2.2.5.2. 

6.2.9 Statistical analysis 

All experiments were carried out in triplicate and average values were reported as 

means ± standard deviation. The experimental data were statistically analysed using 

the software SAS V.9.1 (SAS Institute, NC, USA). The Tukey-Kramer test was 

applied for multiple comparisons among means at a 95% significance level (p<0.05). 

6.3 Results and discussion  

6.3.1 Change of total phenolics content  

The ultrasound and blanching treatments influenced the total phenolic content (TPC) 

of onion slices (Table 6.1). Blanching applied for 1 min and ultrasound applied for 1-

3 mins in general increased the TPC of dried onions. After 3 mins of ultrasound 

treatment at 42.7 μm and 61.0 μm, for example, there was a 17%-21% TPC increase 

in freeze-dried onions (p<0.05). Samples treated by ultrasound at 61.0 μm for 1 min 

followed of hot-air drying had a 10% increase (p<0.05) in relation to the untreated 

dried samples. The application of sonication techniques to assist in the extraction of 

bioactive compounds is widely reported (Keenan et al., 2012). 

Samples subjected to UFD (ultrasound + freeze-drying) at 24.4 µm for 3 mins and 

UHD (ultrasound + hot-air drying) at 61.0 µm for 1 min resulted in greater retention 
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of phenolics than samples blanched for the same time. Also, blanching caused 

phenolics to leach into the cooking water nearly 1-3 times more than during the 

ultrasound treatment (Table 6.1). In agreement with this finding, Rawson et al. (2011) 

reported higher retention of carotenoids and polyacetylenes in dried carrots subjected 

to a 10 mins-pre-treatment with a US-probe under pulsed mode than in dried carrots 

blanched at 80 oC for 3 mins. The blanched freeze-dried (BFD) and blanched hot-air 

dried (BHD) (3 and 5 mins) samples had lower retention of phenolics compared to 

the control (p<0.05). Turkmen, Sari, and Velioglu (2005) also reported that 

blanching decreased the total phenolics in squash, peas and leek.  

Since all samples were hot-air dried under the same condition (60 oC and 0.3 m/s), 

blanching led to a major loss of phenolics by leaching than ultrasound, but there were 

minor losses during dehydration. Lower amounts of phenolics were detected after 

drying since the prior blanching and the 3 mins-ultrasound treatment were very 

severe. The main mechanism involved in the loss of phenolics during US treatment 

might be the formation of microchannels during cavitation, which facilitates the 

transport of food constituents, especially soluble nutrients (Mothibe et al., 2011). In 

fact, Opalić et al. (2009) reported that prolonged US pre-treatment in samples with 

the same geometry led to a decrease in total phenolics and flavonoids and 

accordingly in the antioxidant capacity of dried apples. The degradation trend during 

ultrasonic processing may be also related to the formation of free radicals, resulting 

in a potential increase in the oxidation pathways (Pétrier, Combet, & Mason, 2007). 

The degradation observed in the present study may point to additional contributory 

factors. Due to the relatively high temperature and longer holding time (after 5 mins-

ultrasound treatment) lead to oxidative and thermal degradation. Furthermore, the 

ultrasound probe had direct contact with the sample, with the vessel opened to the 

atmosphere (i.e., it was not a closed system). Therefore, oxidation could freely occur 

at the liquid ⁄ atmosphere interface during processing. This effect would be increased 

in samples processed for longer periods. 
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Table 6.1A Influence of ultrasound and blanching treatments followed of drying on the total phenolics content (TPC), total flavonoid content (TFC) and 

antioxidant activity of onion slices. 

Freeze-Drying TPC Retention (%) TFC Retention (%) FRAP Retention (%) DPPH Retention (%) 

Control 9.21±0.82cdef --- 4.10±0.08bcd --- 11.05±0.99c --- 4.42±0.82bc --- 

UFD 24.4 µm 1 min 9.65±0.24bcd 104.87% 4.19±0.18abc 102.08% 11.58±0.29bc 104.87% 5.21±0.84abc 117.98% 

UFD 42.7 µm 1 min 9.48±0.40bcde 102.99% 4.13±0.07abcd 100.59% 11.38±0.48bc 102.99% 5.12±0.83abc 115.87% 

UFD 61.0 µm 1 min 9.31±0.37cdef 101.13% 4.15±0.03abcd 101.15% 11.17±0.44bc 101.13% 5.03±0.8abc 113.78% 

Blanching 1 min  9.22±0.10cdef 100.18% 4.16±0.10abcd 101.27% 11.07±0.12c 100.18% 4.98±0.84b 112.71% 

UFD 24.4 µm 3 mins 11.18±1.27a 121.41% 4.47±0.15a 108.93% 13.41±1.52a 121.41% 6.04±0.89a 136.59% 

UFD 42.7 µm 3 mins 10.81±0.43ab 117.48% 4.42±0.24ab 107.65% 12.98±0.52a 117.48% 5.84±0.88ab 132.16% 

UFD 61.0 µm 3 mins 9.76±0.56abc 106.06% 4.27±0.56abc 104.06% 11.72±0.68bc 106.06% 5.27±0.85abc 119.32% 

Blanching 3 mins  8.19±0.11defg 88.96% 3.81±0.11bcde 92.83% 9.83±0.14d 88.96% 4.40±0.76bc 100.08% 

UFD 24.4 µm 5 mins 8.09±0.07efg 87.91% 3.76±0.06cdef 91.71% 9.71±0.09d 87.91% 4.37±0.75abc 98.90% 

UFD 42.7 µm 5 mins 7.68±0.06g 83.45% 3.49±0.10ef 84.96% 9.22±0.07de 83.45% 4.15±0.70c 93.88% 

UFD 61.0 µm 5 mins 7.33±0.14g 79.61% 3.15±0.06f 76.75% 8.79±0.17e 79.61% 3.96±0.63c 89.56% 

Blanching 5 mins 7.86±0.15fg 85.41% 3.57±0.30def 86.98% 9.43±0.18de 85.41% 4.25±0.71c 96.08% 

For each column, values followed by the same letter are not statistically different at p<0.05. Values are expressed as mean ± standard deviation in dry weight (%) for 

triplicates (n=3). TPC = Total phenolics content (mg of gallic acid equivalents per g of dry weight). TFC = Total flavonoids content (mg of quercetin equivalents per g of dry 

weight). FRAP and DPPH = Antioxidant activity (Trolox mg/g DW). 

*Blanching was carried out at 70 oC, Hot-air drying at 60 oC and 3 m/s for 8 h, and Freeze-drying at 0.04 mbar for 72 h.  
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Table 6.1B Influence of ultrasound and blanching treatments followed of drying on the total phenolics content (TPC), total flavonoid content (TFC) and 

antioxidant activity of onion slices. 

Hot-Air Drying TPC Retention (%) TFC Retention (%) FRAP Retention (%) DPPH Retention (%) 

Control 7.76±0.39abc --- 3.34±0.36bcde --- 9.31±0.47b --- 3.82±0.67bc --- 

UHD 24.4 µm 1 min 6.50±0.37def 83.84% 3.35±0.20bcde 100.12% 7.80±0.45ef 83.84% 3.36±0.70de 87.93% 

UHD 42.7µm 1 min 7.67±0.47abc 98.88% 3.66±0.18bc 109.43% 9.20±0.56bc 98.88% 3.96±0.73b 103.70% 

UHD 61.0 µm 1 min 8.58±0.44a 110.65% 4.34±0.27a 130.04% 10.30±0.53a 110.65% 4.43±0.87a 116.05% 

Blanching 1 min 7.93±0.14ab 102.24% 3.90±0.31b 116.71% 9.52±0.17b 102.24% 4.09±0.78ab 107.23% 

UHD 24.4 µm 3 mins 6.69±0.65cde 86.26% 3.45±0.34bcd 103.15% 8.03±0.78e 86.26% 3.45±0.69cd 90.47% 

UHD 42.7 µm 3 mins 7.34±0.26bcd 94.58% 3.79±0.35bc 113.57% 8.80±0.31cd 94.58% 3.79±0.76bc 99.19% 

UHD 61.0 µm 3 mins 7.74±0.27abc 99.83% 3.83±0.14ab 114.63% 9.29±0.33b 99.83% 4.00±0.79b 104.70% 

Blanching 3 mins 6.23±0.17def 80.27% 3.10±0.33cdef 92.67% 7.47±0.21fg 80.27% 3.21±0.62de 84.19% 

UHD 24.4 µm 5 mins 5.50±0.37f 70.94% 2.70±0.17f 80.85% 6.60±0.45h 70.94% 2.84±0.54f 74.40% 

UHD 42.7 µm 5 mins 6.34±0.26def 81.69% 2.88±0.08def 86.35% 7.60±0.3ef 81.69% 3.27±0.58de 85.67% 

UHD 61.0 µm 5 mins 7.25±0.23bcd 93.46% 3.34±0.27bcde 100.11% 8.70±0.27d 93.46% 3.74±0.68bc 98.02% 

Blanching 5 mins 5.93±0.14ef 76.46% 2.77±0.32ef 82.84% 7.12±0.17g 76.46% 3.06±0.55ef 80.19% 

For each column, values followed by the same letter are not statistically different at p<0.05. Values are expressed as mean ± standard deviation in dry weight (%) for 

triplicates (n=3). TPC = Total phenolics content (mg of gallic acid equivalents per g of dry weight). TFC = Total flavonoids content (mg of quercetin equivalents per g of dry 

weight). FRAP and DPPH = Antioxidant activity (Trolox mg/g DW). 

*Blanching was carried out at 70 oC, Hot-air drying at 60 oC and 3 m/s for 8 h, and Freeze-drying at 0.04 mbar for 72 h.  
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6.3.2 Change of total flavonoids content 

There was a significant difference of TFC (p<0.05) between ultrasound-treated and 

blanched onions after drying compared to dried samples without pre-treatment, 

considering either freeze-dried or hot-air dried (Table 6.1). 

TFC in dried (freeze-drying and hot-air drying) onion slices treated with ultrasound 

for 1-3 mins in general increased compared to the control dried samples. Lower 

ultrasound amplitudes (24.4 μm) with freeze-dried samples and highest amplitude 

(61 μm) with hot air dried samples resulted in better retention of TFC compared to 

other no other ultrasound treatment or no pre-treatment dried samples (Table 6.1). 

This increase in the retention of TFC may arise from an increase in the extractability 

of the compounds. Improved extraction efficiency following sonication has been 

attributed to the propagation of ultrasound pressure waves, induced cavitation and 

high shear forces resulting in increased mass transfer (Rawson et al., 2011). There 

was also a significantly (p<0.05) higher retention of flavonoids in UFD (24.4 μm for 

3 mins) and UHD (61.0 μm for 1 min) than BHD (1, 3 and 5 mins) samples. 

Regarding blanching, the higher the process time, lower was the retention of 

flavonoids.  

6.3.3 Changes of quercetin and quercetin glucosides  

The levels of the 3 major quercetins – quercetin 3,4’diglucoside (Q 3,4’ D), quercetin 

4’glucoside (Q 4’ G), and quercetin (Q) – in dried onions are presented in Figure 6.1-

6.3. 

In general, the retention levels of Q 3,4’ D and Q for US-freeze-dried and US-hot air 

dried samples were higher compared to the samples dried without any pre-treatment. 

This can be ascribed to the increased extractability induced by cavitation of US-

treated samples (Rawson et al., 2011). 

In BFD and BHD onions slices (1 min), the retention levels of Q were higher 

compared to the control (p<0.05). Blanching in fact does not always result in the 

destruction of bioactive compounds. In some cases, thermal treatments can induce 

the formation of novel compounds and improve the antioxidant capacity (Xu & 
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Chang, 2008). Bunea et al. (2008) suggested that the increase in the concentrations of 

certain bioactive compounds after thermal treatment may be explained either by their 

better release from the food matrix as a result of breakdown of supramolecular 

structures containing functional groups or their thermal stability. However, in BFD 

and BHD samples (3 and 5 mins), the retention levels of Q were lower compared to 

the control (p<0.05). This is most likely due to the relatively high temperatures 

required for blanching (70 oC sustained for 3-5 mins), which could lead to oxidative 

and thermal degradation (Rawson et al., 2010).  

Regarding the freeze-drying, the ultrasound treatment at 24.4 µm for 3 mins resulted 

in significantly higher retention levels of Q 3,4’ D and Q compared to BHD (1-5 

mins) samples. With regard to the hot-air drying, there were significantly higher 

retention levels of Q 4’ G and Q after US treatment at 61.0 µm for 1 min compared 

to BHD (1-5 mins) samples.  
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(a) 

 

(b) 

 

 

Figure 6.1 Retention of Quercetin 3,4’ Diglucoside in different pretreatment with (a) freeze-

drying and (b) hot-air drying. 

  

100.0%

69.1%

84.8%

72.3%
90.0%

133.2%

87.5%

77.4%

84.4%
75.8%

64.5%
62.1%

68.6%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

160.0%

%
 r

et
en

ti
o

n

100.0%

80.3%

114.8% 109.1%

101.7%

81.7%

118.8%
111.8%

83.3%

72.3%

85.4% 93.1%

61.6%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

%
 r

et
en

ti
o

n



Chapter 6 Ultrasound and Blanching Pre-treatments

   

154 

 

 

(a) 

 

(b) 

 

 

Figure 6.2 Retention of Quercetin 4’Glucoside in different pretreatment with (a) freeze-

drying and (b) hot-air drying. 
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(a) 

 

(b) 

 

 

Figure 6.3 Retention of Quercetin in different pretreatment with (a) freeze-drying and (b) 

hot-air drying. 
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6.3.4 Change of antioxidant activity during pre-treatment  

The antioxidant activity of pre-treated and untreated (control) dried onion slices are 

presented in Table 6.1. Sonicated samples processed at the highest amplitude (61.0 

µm) for the longest time (5 mins) and then freeze-dried as well as sonicated samples 

processed at the lowest amplitude (24.4 µm) for 5 mins and then hot-air dried had the 

lowest (p<0.05) antioxidant activity. Generally, onions sonicated at lower amplitudes 

followed of freeze-drying had the highest antioxidant activity (FRAP and DPPH), 

while longer US-times reduced the antioxidant activity (Table 6.1).  

The DPPH and FRAP values were similar and indicate that blanching generally 

resulted in lesser preservation of antioxidant compounds compared to fresh and 

sonicated samples. The exception was the 1 min-blanching, which resulted in 

enhanced antioxidant activity. Some studies have suggested that blanching is 

generally regarded as being destructive to antioxidant components (Krishnaswamy & 

Raghuramulu, 1998). On the contrary, Halvorsen et al. (2006) reported increased 

antioxidant activity for several vegetables such as carrots, spinach, mushroom, 

asparagus, broccoli and cabbage after thermal treatment. Dewanto, Xu and Liu (2002) 

found similar results in thermally processed tomatoes compared with fresh controls. 

These authors hypothesised that higher antioxidant activities may be related to an 

increase in extractability of antioxidant components following thermal processing.  

6.3.5 Phenolic compounds and antioxidant activity in water  

Blanching retained greater amounts of phenolic compounds than ultrasound (p<0.05). 

The losses could be attributed to water soluble phenolics leaching into the cooking 

water as well as breakdown of phenolics during thermal processing. These 

significant losses could be attributed to water soluble phenolics leaching and 

transferred into the cooking water as well as breakdown of phenolics during thermal 

processing, which rendered water a good source of dietary phenolics (Table 6.2). 

However, degradation of phenolics in onion slices may be a more serious problem 

than leaching. The percentage of phenolics undergoing degradation during the US-

treatment was higher than the percentage loss to the cooking water. These results 

suggest that the degradation of phenolics after sonication was greater than the losses 
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due to leaching. Some authors have indicated that pressure-cooking enhanced the 

antioxidant composition and palatability of vegetables (Xu & Chang, 2009). 

However, higher power could result in greater degradation (Hiemori, Koh, & 

Mitchell, 2009).  
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Table 6.2 Effect of ultrasound and blanching treatments followed by drying on the bioactive compounds and antioxidant activity of the leaching water 

from onion slices. 

Treatment TPC TFC Q 3,4’ D Q 4’ G Q FRAP DPPH 

UFD 24.4 µm 1 min 0.66±0.03e 0.22±0.01b 10.43±0.31def 55.56±5.42de 4.42±0.71cd 0.81±0.04d 0.47±0.03abcd 

UFD 42.7 µm 1 min 0.96±0.01d 0.24±0.01b 11.83±0.13de 61.97±1.24d 4.58±0.26cd 0.79±0.06d 0.46±0.11bcd 

UFD 61.0 µm 1 min 1.31±0.07c 0.26±0.00b 17.67±0.04d 92.31±1.31c 4.71±0.47c 0.78±0.05d 0.45±0.12bcd 

Blanching 1 min 1.52±0.02a 0.71±0.29a 225.05±3.00a 408.37±2.50a 63.00±0.92a 1.10±0.05a 0.60±0.08a 

UFD 24.4 µm 3 mins 0.43±0.02g 0.06±0.01c 3.67±0.15gf 32.31±2.20f 1.24±0.12cde 0.78±0.18d 0.45±0.16bcd 

UFD 42.7 µm 3 mins 0.53±0.01f 0.06±0.00c 3.83±0.31gf 35.6±5.94f 1.58±0.83cde 0.93±0.06bc 0.54±0.12ab 

UFD 61.0 µm 3 mins 0.63±0.02e 0.09±0.01c 7.43±0.02efg 41.97±1.84ef 1.67±0.14cde 0.91±0.08c 0.53±0.15abc 

Blanching 3 mins 1.35±0.02b 0.24±0.01b 208.38±3.60b 325.03±12.43b 38.05±3.38b 0.98±0.07b 0.53±0.12abc 

UFD 24.4 µm 5 mins nd nd nd nd nd nd nd 

UFD 42.7 µm 5 mins nd nd nd nd nd nd nd 

UFD 61.0 µm 5 mins nd nd nd nd nd nd nd 

Blanching 5 mins 1.34±0.03c 0.21±0.00b 175.5±1.60c 310.70±19.10b 35.1±1.58b 0.94±0.10bc 0.51±0.06abc 

For each column, values followed by the same letter are not statistically different at p<0.05. Values are expressed as mean ± standard deviation in dry weight (%) for 

triplicates (n=3). TPC = Total phenolics content (mg of gallic acid equivalents per g of dry weight). TFC = Total flavonoids content (mg of quercetin equivalents per g of dry 

weight). Q 3,4’ D = quercetin 3,4’glucoside (µg/g); Q 4’ G = quercetin 4’glucoside (µg/g); Q = quercetin (µg/g). 

*Blanching was carried out at 70 oC, Hot-air drying at 60 oC and 3 m/s for 8 h, and Freeze-drying at 0.04 mbar for 72 h.  
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6.3.6 Flavonoids in water  

The total flavonoid content in the cooking water revealed a trend similar to that 

described for the TPC (Table 6.2). The flavonoid losses could be a result of 

degradation or decomposition of flavonoids (Ioannou et al., 2012). The ultrasound 

treatment resulted in a higher percentage of flavonoids being degraded than retained 

in the cooking water (p<0.05). There was a transfer of especially Q 3,4' D and Q 4' G 

from onions to water. This suggests that the decrease of flavonoid during ultrasound 

was predominantly caused by the breakdown of flavonoids rather than their leaching. 

Higher ultrasound amplitudes and longer time resulted in greater leaching of 

flavonoids. 

6.3.7 Quercetin and its glucosides in water  

The amounts of quercetin 3,4’ diglucoside and quercetin 4’ glucoside were also 

measured in water after ultrasound and blanching treatments (Table 6.2). In the 

blanching water, about half of the quercetin 3,4’ diglucoside was in the form of 

quercetin 4’ glucoside. In the US-treatment water, the quercetin 4’glucoside fraction 

was greater than the quercetin 3,4’ diglucoside one. Hirota, Shimoda, and Takahama 

(1998) observed that the monoglucoside derivative was oxidized more rapidly than 

its diglucoside form during cooking, and that the difference in the stability between 

mono and diglucoside was due to the presence or absence of a hydroxyl group at the 

C-3 position in the glucosides. As the antioxidant power of flavonols substantially 

depends on the catechol group in the B-ring and on the 3-hydroxyl group (Rodrigues 

et al., 2009), the monoglucoside is likely to have a higher antioxidant capacity than 

the diglucoside, since in the latter these two basic functions are blocked. In this work, 

there was a lower content of flavonols in water, which was however enriched with 

antioxidant monoglucoside forms. 

Free quercetin was found in the onion slices but only in very small amounts in the 

cooking water (Table 6.2), which may correspond to its poor solubility in water 

and/or stronger binding to plant structures than its glycoside forms. Quercetin was 

not detected in water after the 5 mins-ultrasound treatment, indicating that this 

compound is not prone to leaching.  
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6.3.8 Antioxidant activity in water  

The blanching water had high antioxidant (Table 6.2), especially for the 1 min-

treatment, followed by 3 mins. The cooking water from US-treated onions had low 

values of antioxidant activity according to both assays. The sum of antioxidant 

activity of the cooked onion and cooking water is different from the antioxidant 

activity of fresh samples, which may suggest losses in the antioxidant activity due to 

breakdown or degradation of antioxidant compounds. 

6.3.9 Effects of ultrasound and blanching on colour  

Colour has a major impact on the acceptance of a product by the consumer (Kalt, 

2005). Fresh onions were characterized by high luminosity (L* = 74.24 ± 2.15), with 

a tendency to green and yellow (a* = -6.23 ± 0.53 and b* = 22.79 ± 2.8, respectively) 

(Table 6.3). The L* of dried samples ranged from 58.3 to 93.74, b* varied from 23.7 

to 33.98, and a* varied from -9.73 to -4.36, indicating the dried onions had more 

intense green and yellow tones than the fresh ones. All dried samples were 

characterized by high ΔE values, regardless of the ultrasound and blanching 

conditions (Table 6.3). 

Although luminosity was similar for fresh, blanched-dried and US-dried onions, 

sonicated samples had a higher colour difference (E) than blanched ones (p<0.05). 

The longer the sonication time (and blanching time as well), the higher was the 

colour difference, regardless of the ultrasound amplitude. The use of ultrasound as a 

pre-treatment to onions contributed to a significant colour change. UFD and UHD 

(highest amplitude applied for 5 mins) samples showed significantly (p<0.05) higher 

ΔE compared to other amplitudes and to BFD and BHD samples. These changes can 

be explained by the formation of free radicals and sonochemicals as a result of 

cavitation (Bermúdez-Aguirre, Mobbs, & Barbosa-Cánovas, 2011), which may 

influence the food  properties. The change of coordinate a*, in specific, can be linked 

to the formation of colour compounds (Vadivambal & Jayas, 2007) related to non-

enzymatic browning during treatment. The greatest colour change for the samples 

treated by ultrasound is also ascribed to the presence of air during processing, 
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leading to enzymatic browning. In the case of blanching, the colour was better 

preserved as the contact between samples and air was limited. 

The colour of vegetables is determined by natural colour compounds that can be 

oxidized during the pre-treatment, and the most important factor accelerating 

degradation is high temperature and presence of oxygen. Enzymatic browning also 

plays an important role in colour change due to the brown pigments formed from 

colourless polyphenols (Maskan, 2001). Table 6.4 shows that the b* chroma was 

correlated to TPC and Q 4’ G at 5% significance (Table 6.4) in the hot-air drying, but 

the colour coordinates had no correlation with the bioactive compounds in freeze-

drying.  
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Table 6.3A Colour of freeze-dried and hot-air dried onion slices subjected to blanching and 

ultrasound pre-treatments. 

For each column, values followed by the same letter are not statistically different at p<0.05. Values 

are expressed as mean ± standard deviation in dry weight (%) for triplicates (n=3). *Blanching was 

carried out at 70 oC, Hot-air drying at 60 oC and 3 m/s for 8 h, and Freeze-drying at 0.04 mbar for 72 h.  

 

Table 6.3B Colour of hot-air dried onion slices subjected to blanching and ultrasound pre-

treatments. 

For each column, values followed by the same letter are not statistically different at p<0.05. Values 

are expressed as mean ± standard deviation in dry weight (%) for triplicates (n=3). *Blanching was 

carried out at 70 oC, Hot-air drying at 60 oC and 3 m/s for 8 h, and Freeze-drying at 0.04 mbar for 72 h.  

 

  

Freeze-Drying L* a* b* ΔE 

Control 74.24±2.15e -6.23±0.53a 22.79±2.80c --- 

UFD 24.4 µm 1 min 80.80±0.60cd -8.84±0.62ef 31.07±2.17a 10.88±1.13g 

UFD 42.7 µm 1min 81.51±1.21bcd -9.21±0.19fg 29.78±1.66ab 11.51±1.02g 

UFD 61.0 µm 1min 92.41±0.66a -9.01±0.43fg 29.25±0.78ab 19.47±0.50c 

Blanching 1 min 86.51±0.38bc -7.08±0.05b 25.72±0.60c 12.64±0.47e 

UFD 24.4 µm 3 mins 81.5±1.54bcd -8.98±0.83ef 31.80±1.09a 11.90±1.15fg 

UFD 42.7 µm 3 mins 82.35±1.32bcd -9.32±0.21gh 29.98±0.93ab 12.27±0.82ef 

UFD 61.0 µm 3 mins 92.41±0.30a -8.21±0.13de 29.25±0.06ab 19.31±0.16c 

Blanching 3 mins 89.34±0.61bc -7.28±0.18bc 27.61±0.50ab 15.97±0.43d 

UFD 24.4 µm 5 mins 91.85±0.45a -9.30±1.04hi 32.80±2.07a 20.49±1.19b 

UFD 42.7 µm 5 mins 91.51±1.18ab -9.73±0.63i 33.97±5.83a 20.87±2.55b 

UFD 61.0 µm 5 mins 93.74±0.11a -7.97±0.45cd 33.82±4.76a 22.47±1.74a 

Blanching 5 mins 88.06±0.80ab -7.44±0.20bc   29.93±0.60abc 15.60±0.53d 

Hot-air Drying L* a* b* ΔE 

Control 74.24±2.15c -6.23±0.53b 22.79±2.80de --- 

UHD 24.4µm 1 min 85.80±1.61b -7.84±0.51cd 30.07±0.98a 10.06±1.03k 

UHD 42.7 µm 1 min 82.50±0.36b -8.21±0.08d 28.78±0.16ab 10.74±0.20i 

UHD 61.0 µm 1 min 90.41±0.09a -6.18±0.08b 28.25±0.51ab 17.06±0.23c 

Blanching 1 min 59.10±0.34e -6.04±0.29b 23.71±0.78de 15.50±0.45f 

UHD 24.4 µm 3 mins 85.98±0.88b -7.98±0.48cd 30.51±0.65a 10.46±0.67j 

UHD 42.7 µm 3 mins 82.85±1.02b -8.62±0.03de 28.98±0.91ab 10.87±0.65h 

UHD 61.0 µm 3 mins 90.94±1.37a -6.43±0.51bc 28.52±0.76ab 17.66±0.88b 

Blanching 3 mins 58.29±0.46e -5.85±0.22b 25.60±0.22bc 15.70±0.33e 

UHD 24.4 µm 5 mins 86.28±0.95b -8.40±0.28d 31.05±1.86a 14.76±1.03g 

UHD 42.7 µm 5 mins 83.15±0.86b -8.82±0.38de 29.28±1.29a 15.72±0.84e 

UHD 61.0 µm 5 mins 91.34±2.36a -6.74±0.05bcd 28.85±1.18ab 18.15±1.20a 

Blanching 5 mins 64.40±0.88d -4.36±0.38a 29.29±1.10ab 15.93±0.79d 
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Table 6.4 Correlation matrix of colour and chemical indices of freeze-dried and hot-air dried 

onion slices.  

Chromameter describes colour in three coordinates: L, lightness, from 0 (black) to 100 (white); a, 

from -60 (green) to 60 (red); and b, from -60 (blue) to 60 (yellow). TPC = Total phenolics content (mg 

of gallic acid equivalents per g of dry weight); TFC = Total flavonoids content (mg of quercetin 

equivalents per g of dry weight); Q 4’ G = quercetin 4’glucoside (µg/g); Q 3,4’ D = quercetin 

3,4’glucoside (µg/g); Q = quercetin (µg/g). * Represents significance at 5%. 

  

Freeze- 

Drying 

 

TPC 

 

TFC Q 3,4’ D Q 4’ G Q L a b 

TPC 1.00 0.83 0.63 0.58 0.21 -0.55 -0.06 -0.23 

TFC 
 

1.00 0.52 0.66 0.34 -0.50 -0.03 -0.33 

Q 3,4’ D 
  

1.00 0.19 0.09 -0.57 -0.01 -0.31 

Q 4’ G 
   

1.00 0.47 -0.22 -0.20 -0.04 

Q 
    

1.00 -0.11 -0.13 -0.08 

L* 
     

1.00 -0.07    0.45* 

a* 
      

1.00  -0.54* 

b*        1.00 

Hot-air 

Drying 
TPC TFC Q 3,4’ D Q 4’ G Q L a b 

TPC 1.00 0.79 0.75 0.83 0.75 0.17 0.05   0.46* 

TFC  1.00 0.68 0.81 0.64 0.23 -0.05 -0.27 

Q 3,4’ D   1.00 0.77 0.67 0.30 -0.25 -0.23 

Q 4’ G    1.00 0.65 0.01 -0.05   0.52* 

Q     1.00 0.51 -0.17 -0.06 

L*      1.00  -0.44* 0.64 

a*       1.00 -0.32 

b*        1.00 
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6.4 Conclusions  

Blanching and ultrasound treatments significantly affected the colour, TPC, TFC, 

individual phenolic compounds and antioxidant activities of onion slices dried either 

by freeze-drying or hot-air drying. In this work, ultrasound has been identified as an 

alternative pre-treatment to blanching regarding the enhancement of functional 

properties in onions. The ultrasound-treatment applied for 1 min at any amplitude 

(24.4-61.0 µm) increased (1%-20%) the content of phytochemicals and the 

antioxidant activity of freeze-dried and hot-air dried onions. Sonicated samples with 

short time showed higher retention of phenolic compounds, flavonoids and quercetin, 

and thus featured higher antioxidant activity than blanched ones. However, 

sonication with longer time (5 mins) had a deleterious effect (more than 10% 

degradation) on bioactive compounds and antioxidant activity. As the leaching water 

from onions treated with ultrasound and blanching contained high amounts of 

antioxidants, it may be considered a valuable co-product for the food industry. 

Further research is required to optimize retention of bioactive by varying ultrasonic 

processing parameters such as power level, treatment time and temperature, which is 

to be successfully implemented and important implications in the food industry.
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General Discussion and Conclusions 

An increasing awareness of health issues is driving the onion market where the 

growth of the onions and their diversification have been significantly increased 

worldwide. A large amount of onions has been consumed every year due to its 

numerous benefits for human health and its taste. Onions have been perceived as 

healthier and having more nutritional functions than other mainstream equivalent 

vegetables. In this regard, the main objective of this thesis was to investigate the 

development of onion products and a wide range of enhanced onion products that can 

reflect the market and consumers’ needs. The current research encompasses 

information on several parameters including productions systems, temperature, and 

storage conditions, which can influence onions’ bioactive compounds. This study 

also provides a comprehensive profiling of the chemical compounds during the 

storage of onions. Further experiments aim to research a cost-effective extraction 

method for quercetin and other relevant compounds that would ensure a minimum 

wastage of onions in the industry as well as in the market. In addition, the underlying 

mechanisms that cause these phenolic variations were due to plant nutrition, 

environmental factors, biotic, and abiotic stress, plant growth, and the association 

between them need to be addressed in further studies. The thesis was broadly divided 

into two sections. The first section, which consists of chapters 2-3, aimed to 

investigate how pre-harvest (agronomics) affects the bioactive content in onions. The 

second section focused on how processing affects onion quality, which can be found 

in chapters 4-6.  

More specifically, in experimental chapters, the results on agronomic practices are 

useful for different stakeholders, for example, onion farmers who want to grow 

organic onions with enhanced levels of phytochemicals or quality; consumers who 

are interested in buying onions perceived as ‘healthier’; onion breeders who aim to 

produce new onion varieties with higher levels of some particular compounds 

meanwhile maintaining the levels of phenolics; government and professional parties 

who are marketing added-value for onion varieties. The environmental effects were 

partially explained in some cases by climate data and soil characteristics, but other 

factors considered in this study can also influence variation among trial sites, such as 
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pressure from pests or pathogens. Besides environmental factors, post-harvest 

treatments had important effects on the data presented here. These treatments 

included storage, handling, and other processing methods such as blanching and 

ultrasound treatments. These treatments influence the final phytochemical and 

nutritional content of consumed onions, depending on the particular types of 

compounds that need to be considered, as outlined in the introduction chapter. More 

specific discussion of each experimental chapter is introduced below: 

In Chapter 2,’Hyskin’ and ‘Red Baron’ (modern commercially grown varieties) were 

selected as the main samples to develop bioactive enriched crops, as they are an 

excellent source of flavonoids. Although there are several studies on the analysis of 

fruits and vegetables produced under organic and conventional production systems, 

relatively few robustly designed field trial studies have compared phenolic contents 

and antioxidant contents in onion crops grown under conventional, organic, and 

mixed systems. This study measured levels of total phenolics, total flavonoids, and 

antioxidant activity in onions grown over four years using either conventional 

(CS+CP), organic (OS+OP) or mixed (OS+CP, CS+OP) treatments. Our data 

indicated that total phenolic and flavonoid contents in onion was generally higher in 

red onion ‘Red Baron’ and was significantly higher in organic (OS+OP) compared to 

conventional (CS+CP) production in both varieties in most years. Significant year to 

year variation was also observed, which is attributed to altered regulation of phenolic 

synthesis in different years due to meteorological conditions. Nowadays, organic 

agriculture is increasing in terms of the area of production and number of operators. 

A wide set of solutions have been proposed which, although valid with respect to 

organic certification standards, still need scientific assessment concerning claims of 

sustainability and high quality production. More in-depth analyses may relate the 

organic vs. conventional comparison to the more general issue of pre-harvest effects 

on postharvest performance of onions. In this respect, the balance between secondary 

metabolic pathways seems to be an important aspect resulting from the complex 

connection among genotype, environment, and agricultural practices which lead to 

differences in quality and postharvest performance of different types of onions. 

Organic onions are mainly purchased for their safety and absence of synthetic 

pesticide residues. Furthermore, a diet based on organic products claims to provide 
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health benefits due to the high nutritional compounds that are more concentrated in 

organic products compared to conventional ones. Possible explanations for the 

effects of organic farming practices on nutritional quality and postharvest 

performance are the following: (i) organic amendments provide a high input of 

exogenous organic matter and of nutrients for a long period; in contrast, mineral 

fertilisers, allowed only in conventional farming systems, are highly concentrated in 

nutrients that are directly available for root uptake in a shorter time period; (ii) the 

use of synthetic pesticides (only possible in conventional agriculture) slows down 

defence mechanisms against pathogens, with the consequence of favoring secondary 

metabolism. 

In Chapter 3, in this study the storage period was extended up to the time point where 

bulbs were unmarketable due to early sprouting, however, if the storage was for short 

terms and stored at either -20 ºC or 5 ºC, onion bulbs’ shelf life can be prolonged. On 

the other hand, there are several other parameters could influence onion quality 

during storage, which can be optimized to allow onions to exhibiting a particular set 

of characteristics. The result showed that the conventional onions can be considered 

as a ‘‘storage” onion by retaining its marketability and nutritional quality for up to 10 

weeks, significantly longer than the organic onion. But in the E2 experiment, one of 

the interesting observations was that the quality parameters (phenolics compounds 

and antioxidant activity) of dried organic onion powder were at the same level to the 

one stored for 10 weeks at -20 oC. It was suggested that breakdown products (powder) 

may have potential antioxidant properties, which can keep the product quality during 

storage but this remains to be confirmed by future studies. 

For the post-harvest treatments, with an easier management of the equipment, 

thermal processing (blanching, hot-air drying) has been favored by the important 

technological developments over the last few years. However, heat processing 

particularly under extreme conditions, may lead to onions’ chemical and physical 

changes that impair the organoleptic properties and reduce the content or 

bioavailability of some bioactive compounds. Therefore, there is a demand for 

adopting mild processing technologies such as power ultrasound. In the past decade, 

novel technologies such as ultrasound treatment have become established. In addition 
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to their possible beneficial effects on nutritional and bioactive content, many of these 

novel technologies are more cost-efficient and environmental friendly for obtaining 

premium quality foods and this has led to their revival and commercialization. On 

the other hand, this study also assessed the effects of common manufacturing 

techniques on the retention of bioactive compounds in onion products in order to 

recommend practices and protocols to maximize their retention. Many investigations 

into the effect of thermal processing of the content of well-known phytochemicals 

such as polyphenols have been carried out. However, relatively little is known about 

the effect of new and well-established processing methods on onion bioactive 

compounds. 

Dried onions are considerably important in the world trade and are made in several 

forms: flaked, minced, chopped and powdered. They are used as flavor additives in a 

wide variety of food formulations such as comminuted meats, sauces, soups, salad 

dressings and pickle relishes (Kumar, Hebbar, & Ramesh, 2006). In Chapter 4, the 

drying of onions was found to be a very useful technique for increasing the number 

of phenolic compounds and antioxidant capacity of the extracts. All four drying 

methods (freeze-drying, hot-air drying, vacuum oven drying and oven drying) were 

tested and they exhibited a different level of influence on the colour, total phenolic 

content, quercetin content, flavonoid content and antioxidant capacity. Among the 

drying techniques tested, freeze-drying and hot air-drying were found to be the best 

techniques in terms of extractability of phenolic compounds from different varieties 

of onion. Although freeze-drying had a better performance than the other drying 

methods regarding the preservation of the phenolic bioactive compounds, it is a 

costly procedure, which limits its usage in the food industry. The use of adequate (60 

ºC) temperature for hot-air drying may also ensure the preservation of these 

compounds, which can be applicable due to the acceptable final levels of bioactive 

compounds and its low cost. The different drying methods showed a positive effect 

on the antioxidant activity due to the increase in both extractability and concentration 

of phenolic compounds, which have a strong correlation with antioxidant activity. 

With the use of different drying methods, higher levels of bioactive compounds were 

found in organically grown onions (‘Red Baron’ and ‘Hyfort’) than in conventional 

cultivation. In addition, the fresh samples had the lowest values for all the parameters 
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tested and enzymatic degradation of polyphenols and poor efficiency of extraction 

from the fresh samples could be responsible for these results. 

In Chapter 5, thermal pre-treatments, such as blanching, showed to be effective in 

retarding the oxidation reactions by native enzymes presented in onion slices. Onions 

are often sold as ingredients in other products, in particular dehydrated soups. They 

could also be sold in a dehydrated form as a healthy snack. To offset enzyme-

induced quality loss, onion slices are blanched prior to drying. This blanching step is 

usually performed using simple water immersion. From the current study, it 

suggested that blanching at 70 ºC for 1 min and at 60 ºC for 3 mins, followed by 

drying are the optimum process conditions. A short-time water-blanching was found 

to be a suitable initial step in the production of dried onion slices. Blanching affected 

the total phenolic content, individual phenolic compounds and the antioxidant 

capacity, and proved to be a suitable method regarding the retention of polyphenols 

and antioxidant capacity at some operational conditions, since minor destruction of 

tissue may better protect secondary metabolites from degradation. The combination 

of blanching and hot air oven drying treatments (60 ºC) with a short time as a pre-

treatment may be favoured, which led to a higher recovery of phenolic compounds 

and enhanced the antioxidant capacity. The use of blanching as a pre-treatment in the 

drying of onions is also recommended because it reduces the drying time and the 

energy demand involved in onion drying. This will lower the production cost and 

result in higher profits by the processors. 

Most food processors do not have access to the sophisticated analytical equipment to 

determine levels of phenolics and optimize their procedures for the compounds 

retention. In this study, mathematical modelling and graphical model performance 

indices indicated a good predictive performance on phenolic levels. The models 

could aid food processors in the optimization of critical operation parameters for 

desired product quality attributes. The model has a high R2 value and low RMSE 

values indicating a good correlation with the experimental data at 95% confidence 

level. The findings suggested that Modified Page and Two-term exponential model 

distribution could be employed to describe the changes in the levels of phenolics 

during blanching of onions. 



Chapter 7 General Discussion and Conclusions 

   

171 

 

In Chapter 6, results in the same onion varieties showed that blanching and 

ultrasound treatments significantly affected the colour, TPC, TFC, individual 

phenolic compounds and antioxidant activities of onion slices dried either by freeze-

drying or hot-air drying. The ultrasound has emerged as a promising technique for 

retaining bioactive components. With an increasing knowledge on the possible 

negative impact brought by traditional thermal processing techniques on thermally-

labile, health-promoting compounds, a range of non-thermal alternative processing 

strategies have emerged. A decrease in the levels of polyphenols during thermal 

treatment may be due to heat-induced chemical oxidation and leaching of water-

soluble polyphenols during blanching. The fact that levels of total phenols and the 

majority of individual polyphenols decrease are correlated with antioxidant activity 

values. It suggests that phenolics may be the major contributor to the total 

antioxidant activity of the samples tested. Indeed this technology is now the most 

widely employed in the industry. As suggested by various authors, improved 

extraction efficiency following sonication can be attributed to the propagation of 

ultrasound pressure waves, including cavitation resulting in increased mass transfer 

(Vilkhu et al., 2008). Some authors have suggested that the degassing effect observed 

under sonication can enhance diffusion into pores on the surface and may explain the 

enhanced extractability (Simal et al., 1998). The research in this thesis has shown 

that ultrasound pre-treatment is a potential alternative to conventional blanching 

treatment in the preparation of desiccated forms of onions to enhance the functional 

properties. The US-treatment that applied for 1 min or 3 mins at any amplitude (24.4-

61.0 µm) increased the content of phytochemicals and the antioxidant activity of 

freeze-dried and hot-air dried onions. Sonicated samples showed a higher retention 

of phenolic compounds, flavonoids, and quercetin, and thus featured higher 

antioxidant activity than blanched ones. At last, the leaching water from onions 

treated with ultrasound and blanching contained high amounts of antioxidants and it 

may be considered as a valuable co-product for the food industry. 

To sum up, this thesis has shown some of the possibilities for a new generation of 

processed onion products. Onions are known as an excellent source of phenolics 

including important phytochemicals such as flavonoids. It has been demonstrated 

that onion products can be used as carriers for functional ingredients and that 
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processing techniques, especially non-thermal, may offer alternatives to traditional 

heat treatments. In summary, the research reported in this thesis has shown that 

phenolic compounds are significantly affected by different types of processing. 

Novel processing technology, such as ultrasound, has a great potential to retain the 

levels of these important compounds in processed onions. Processing treatments, in 

particular non-thermal techniques, such as ultrasound processing, applied in this 

thesis may be of interest to producers who are looking for exploiting the future 

market. The emergence of non-thermal processing technologies has given processors 

the option to produce shelf stable products while preserving heat labile components.  

Phenolic compounds and flavonoids were found to contribute to the antioxidant 

activity of onions. A strong correlation was found among phenolic and antioxidant 

activity, which suggest that the large contribution of phenolic compounds in the 

samples to the full antioxidant presented by onion extracts. Thus, phenolic 

compounds can be regarded as determinants of the antioxidant activities of onion 

powder. The correlation found between phenolics and antioxidant activity implies 

that onion varieties with higher levels of phenolics become more popular due to 

perceived ‘healthy’ properties. This must also be considered by scientists aiming at 

increasing the phenolic content of onions, either through breeding or genetic 

engineering. Furthermore, one of the features of the onions is to control certain 

diseases. This notion has been supported by some epidemiological studies 

demonstrating that fruits and vegetables are associated with various health benefits.  

In addition, future optimisation of the processed onion products may be required to 

maximise their quality, which could be adopted in the food industry. These new 

approaches and techniques included in this thesis showed the accumulation of many 

years of research and development in this field. Many of them are not only used in 

the laboratory context, but also are able to be applied in the pilot- or full- scale 

industrial operations. This study offers the consumer a new range of healthier and 

convenient onion products that can be purchased on the market. 
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Limitations of This Study  

This thesis aimed to study the effects of pre-harvest and post-harvest treatments on 

onion phenolic compounds and antioxidant activity (in vitro studies) in order to 

increase or maintain those contents in the onion products. The study found a strong 

correlation between phenolic and antioxidant activity, suggesting that onion varieties 

with higher levels of phenolics have higher antioxidant activity. Higher antioxidant 

activity, therefore, can bring potential health benefits and nutritional values to human. 

However, there were some limitations: 

 One of the main limitations was that the DPPH and FRAP antioxidant methods used 

in this study were both based on electron transfer assays. However, there are some 

disadvantages in choosing the methods that share the same mechanism due to the 

single approach.  

If different antioxidant assays with different mechanisms were used in the 

experiments, different fractions of the antioxidant molecules reacting were able to be 

observed. It can be a more holistic approach for measuring onion antioxidant 

capacity. For example, the Oxygen Radical Absorbance Capacity (ORAC) and Total 

Radical Trapping Antioxidant Parameter (TRAP) assay are based on hydrogen atom 

transfer, which has a different mechanism with DPPH and FRAP. The use of ORAC 

and TRAP can enrich the antioxidant capacity assay in the future study.  

 The DPPH, FRAP ORAC, and TRAP were widely used in conventional in vitro 

antioxidant assays since they are easy to use and have high reliability. However, 

there is a lack of studies adopting them in vivo antioxidant assays and they are 

criticised for the following reasons.  

Conventional in vitro antioxidant assays measure chemical reactions only, and these 

reactions cannot be equal to the activity in vivo, as the former cannot account for the 

bioaccessibility and bioavailability and metabolism of the antioxidant compounds 

under physiological conditions.  

The best in vivo antioxidant measures should come from animals or human bodies; 

however, they can be of high cost and time consuming, hence they are not ideal for 

initial antioxidant screening of foods. Alternatively, in vitro methods for simulating 
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human digestive tract have been extensively used since they are rapid, safe and easy 

to perform. In vitro methods, simulating the digestion and absorption processes and 

measuring the concentration of a nutrient (e.g. phenolics or flavonoid) from the 

onion extract that has been digested and absorbed (Kamiloglu, Boyacioglu, & 

Capanoglu, 2013).  

 This thesis lacks knowledge of the bioaccessibility and bioavailability of the 

concentration of phenolics (e.g. flavanols, anthocyanins, or organosulfur compounds) 

from onion extracts. The bioaccessibility and bioavailability can be evaluated using 

cell lines, Caco-2 as the most commonly used one, which is obtained from a human 

colon carcinoma (Gonçalves et al., 2019). Caco-2 cell cultures model provides a 

cost-effective and relatively fast approach to address issues of uptake and transport 

of various antioxidants and metabolism (Kamiloglu et al., 2013; Hithamani, 

Kizhakayil, & Srinivasan, 2017).  

 In addition, different drying methods (freeze-drying, hot-air, oven, and vacuum oven) 

were used to generate onion slices and this study only compared phenolic 

compounds and antioxidant activity. The optical examination could be further used 

to evaluate microstructure in onion slices.  
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Suggestions for Future Work 

Health care has gained much attention worldwide, food scientists, medical experts, 

and biologists have been trying to investigate further on how onions can benefit 

human’s health. The use of advanced technology in developing functional and new 

onion products has great prospects. This section introduces four future research 

directions: 

 Due to the single approach used by DPPH and FRAP in this study, future work can 

focus on the use of ORAC and TRAP assays. Comparative studies of DPPH, FRAP, 

ORAC and TPRA assays for the determination of antioxidant activity in organic and 

conventional onions will be evaluated.  

 This study was limited to conventional in vitro antioxidant assays. Future work could 

develop a cellular antioxidant activity (CAA) assay in onion study. It has been served 

as a more appropriate method to measure antioxidant activity than the conventional 

antioxidant activity methods to assess the absorption and mechanism of antioxidants 

in cells (Wolfe & Liu, 2007). In addition to antioxidant capacity, it is also important 

to evaluate the bioaccessibility and bioavailability of antioxidant compounds such as 

phenolics, flavonoids, and quercetins present in onion products. This will provide 

valuable data to indicate the biological relevance of these compounds with nutrition 

uptake and human health in the future. Furthermore, the impact of the 

bioaccessibility and bioavailability of the phenolic compounds from onions will be 

evaluated. Specifically, future research will focus on the intestinal uptake 

performance of phenolics using Caco-2 human intestinal cells and mimick human 

digestion to assess phenolics (flavonoid and quercetin) absorption with fresh organic 

and conventional onions. 

 Little has been known on the changes in bioaccessibility and bioavailability of 

phenolics (flavonoids and quercetins) and antioxidant activity during onions 

processing in previous studies. Processing onions into different products may bring 

changes in bioaccessibility and bioavailability of onion antioxidants. In the future, 

we will first investigate the effects of different food processing techniques (thermal, 

non-thermal) on the bioaccessibility and bioavailability of dried onions compared to 

fresh ones. Secondly, phenolics and organosulfur compounds from conventional and 
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novel extracted onions will be compared regarding their bioaccessibility and 

bioavailability. 

Moreover, processing conditions could be further optimised in order to obtain 

studied compounds with the highest yield and purity. It can reduce industrial cost. 

Also, to understand how processing affects the concentrations and activity of these 

compounds, providing emphasis on the bioaccessibility and bioavailability of these 

valued onion products. 

 With regard to the measurement of phenolics content and antioxidant activity, future 

studies could compare the effect of non-thermal technology such as high-pressure 

processing (HPP) with other traditional processing technologies (thermal 

technologies) and secondly, compare HPP and non-thermal processing technologies 

(ultrasound). Different processing methods can damage onion tissues, causing cell 

shrinkage and wrinkles on the onion surface. Future studies could compare firstly 

between untreated raw and treated onion samples and secondly among different 

processing methods, to evaluate the extent to which the microstructure of onions has 

been changed after the treatments. 
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Appendices 

Appendix 1. Influence of Variety on Phenolic Composition and Antioxidant Capacity: A Study on Different Onion Cultivars.  

The varietal survey in 26 bulb onion varieties for phenolic content and antioxidant activity were evaluated (the content is from my paper manuscript ‘Influence 

of variety on phenolic composition and antioxidant capacity: A study on different onion cultivars.’). This experiment was conducted to justify the use of 

‘Hyskin’ and ‘Red Baron’ varieties as the commercial bulb onions used in the following experimental chapters for comparing among different processing 

treatments. 

 

Figure 1A FRAP of bulb onions in 2009 and 2010. *Represents heritage and traditional varieties.  + Represents modern and commercial varieties. 
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Figure 1B DPPH of bulb onions in 2009 and 2010. *Represents heritage and traditional varieties.  + Represents modern and commercial varieties.
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Appendix 2. The optimisation of different solvents, different solvent concentration, and 

different extraction time used for the extraction of phenolic, flavonoids, and 

antioxidant activity was carried out. 

In order to select the best solvent combination for the extraction of phenolic compounds 

from onions, a preliminary solid–liquid extraction was carried out in onion samples by using 

different solvent combinations, i.e. (i) 100% distilled water, (ii) 100% methanol-water (10%, 

20%, 40%, 60%, 80% and 100% methanol), (iii) ethanol–water (10%, 20%, 40%, 60%, 80% 

and 100% ethanol), and (iv) acetone–water (10%, 20%, 40%, 60%, 80% and 100% acetone). 

For the second experiment, 40%-80% methanol were selected to extract dried onion samples 

for different times (0.5 h, 1 h, 2 h, 4 h, 8 h, 18 h, 24 h). 

The result of this study showed that the total phenolic content (TPC), total flavonoid content 

(TFC) and antioxidant activity (AA) were maximised using the 80% methanol for eight 

hours as the extraction solvent. This has been applied in the solvent that I chose in ‘material 

and methods’ throughout all chapters in my thesis. (The content is from my paper manuscript 

‘Effect of different solvents on the extraction of phenolic compounds and antioxidant 

capacities from onions’). 

Principal component regression of the whole data set shows that the most common pattern in 

phenolics and antioxidant reflecting the differences between types of solvent and percentage 

of solvent (Figure 2A). Antioxidant capacity (DPPH and FRAP) with 60% and 80% were 

located in the same quadrant of plot and were considered positively correlated with each 

other while they were negatively correlated with 10 % and 20%, which were located in 

diagonally opposed quadrant of plot probably due to the low antioxidant capacity. TPC and 

TFC with methanol were located in the same quadrant of plot and were considered positively 

correlated with each other while they were negatively correlated with acetone and water, 

which were located in diagonally opposed quadrant of plot probably due to the low content 

of the studied components. Secondly, almost no distinction could be made between the 

methanol and ethanol, with the exception of water and acetone. It appears that acetone and 

water were not as efficient as methanol for the extraction of phenolic compounds given their 

physical distance from the phenolic variables seen in Figure 2A. 
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Figure 2A Principal Component Regression (PCR) biplot of PC1 versus PC2. The model was derived 

from total phenolic, flavonoids, antioxidant activity in the X-matrix and different solvents and 

percentage in the Y-matrix. Total phenolic content (TPC); Total flavonoid content (TFC); Antioxidant 

Activity (FRAP and DPPH). 
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The different percentage (40%-80%) of methanol onion extract and time were evaluated on 

the context of antioxidant activity and phenolic compounds. Figure 2B was formed by 

different extracts according to different time. It was possible to discriminate methanol–water 

mixtures (40%-80%) and extraction time (0.5-24 hours). TFC with 80% methanol at 

extraction 8 hours were located in the same quadrant of plot and were considered positively 

correlated with each other, due to their higher values of TFC and antioxidant capacity by 

DPPH and FRAP assays.  

 

 

Figure 2B Principal component regression of onion in different methanol percentage and extraction 

time. The model was derived from total phenolic content (TPC), total flavonoids content (TFC), 

antioxidant activity (FRAP and DPPH) in the X-matrix and different methanol percentage and 

extraction time in the Y-matrix. 
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Appendix 3. Calculation of Total Phenolic Content, Total Flavonoid Content and 

Antioxidant (FRAP and DPPH) Assay. 

The absorbance of the onion extract was compared with standard curves for estimating the 

concentration of total phenolic content (TPC), total flavonoid content (TFC) and antioxidant 

activity (FRAP and DPPH) in the onion samples. Based on different standard curves, the 

content of TPC, TFC and antioxidant activity (FRAP and DPPH) can be calculated in the 

onion samples, respectively. 

 

Figure 3A The TPC of the onion samples were quantified according to the gallic acid standard curve 

(y = 0.0092x + 0.0779; R2 = 0.9942) and expressed as milligrams of gallic acid equivalents per gram 

dry weight sample (GAE mg/g DW). 

 

Figure 3B The TFC of the onion samples were quantified according to the quercetin standard curve (y 

= 0.0096x + 0.0132; R2 = 0.9944) and expressed as milligrams of quercetin equivalents per gram dry 

weight sample (QE mg/g DW). 
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Figure 3C The FRAP of the onion samples were quantified according to the trolox standard curve (y = 

4.4045x - 0.0727; R2 = 0.9903) and expressed as milligram of trolox equivalents per gram dry weight 

sample (TE mg/g DW). 

 

Figure 3D The DPPH of the onion samples were quantified according to the trolox standard curve (y = 

-10.99x + 0.6047; R2 = 0.9996) and expressed as milligram of trolox equivalents per gram dry weight 

sample (TE mg/g DW). 
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Appendix 4. Parameters of the Calibration Curve, Regression Equation, Correlation 

Coefficient (R2) of Individual Flavonoids for HPLC Method Validation. 

The concentration of individual flavonoid compounds in onion samples was determined by 

the equation obtained from individual flavonoids standard curve. Based on different standard 

curves, individual flavonoids contents were calculated in the onion samples respectively. 

 

Figure 4A The content of Q 3, G in the onion samples were quantified according to the standard curve 

(y = 21517x; R2 = 0.9972) and expressed as microgram per millilitre dry weight sample (μg/g DW). 

 

Figure 4B The content of Q 4’ G in the onion samples were quantified according to the standard curve 

(y = 10825x; R2 = 0.9824) and expressed as microgram per millilitre dry weight sample (μg/g DW). 
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Figure 4C The content of Q 3,4’ D in onion samples were quantified according to the standard curve 

(y = 16880x; R2 = 0.9975) and expressed as microgram per millilitre dry weight sample (μg/g DW). 

 

Figure 4D The content Q in the onion samples were quantified according to the standard curve (y = 

41354x; R2 = 0.9968) and expressed as microgram gram per millilitre dry weight sample (μg/g DW). 
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Appendix 5. High-Performance Liquid Chromatography of Flavonoids in Onion 

Extracts. The Compounds Quantified were Quercetin 3 4’ Diglucoside (Q 3,4’ D), 

Quercetin 3 Glucoside (Q 3, G), Quercetin 4’ Glucoside (Q 4’ G), Quercetin (Q). 

The individual flavonoid compounds were separated in high-performance liquid 

chromatography (HPLC) according to different polar in onion extracts. Based on different 

retention time shown on HPLC, individual flavonoids can be identified. 
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Appendix 6.  Method validation for analytical methods on phenolic compounds and 

antioxidant activity 

The limit of detection (LOD) and relative standard deviation (RSD) of the TPC, TFC, 

individual TFC and antioxidant activity methods were calculated. The results show the LOD 

and RSD have good precision to analyse the extract of samples for phenolic compounds and 

antioxidant activity. 

The first table shows the parameters of detected at wavelength, retention time and regression 

coefficient (R2) of individual flavonoids for HPLC method validation.  

The second table shows the parameters of limit of detection (LOD) and relative standard 

deviation (RSD) of phenolic compounds and antioxidant activity.   

a) 

Name of the Standard  Detected at 

Wavelength 

λ nm 

Retention 

Time 

(min) 

Regression 

Coefficient 

(R2) 

LOD 

(μg/mL) 

RSD (%) 

Quercetin 3,4’ Glucoside 360 9.80 0.99 0.001 0.1 

Quercetin 4’ Glucoside 360 18.86 0.98 0.002 0.4 

Quercetin 3 Glucoside 360 14.86 0.98 0.003 0.2 

Quercetin 360 19.50 0.99 0.003 0.6 

 

b) 

Name of the Standard  LOD (mg/L) RSD (%) 

Total Phenolic Content  0.01 0.8 

Total Flavonoid Content  0.01 0.5 

Antioxidant Activity Assay LOD (mg/L) % RSD 

FRAP 0.01 0.23 

DPPH 0.01 0.9 
 

The precision of phenolic compounds and antioxidant activity was determined from six replicates 

carried out for each validation level. The precision (measured as the percentage relative standard 

deviation (%RSD)) was less than 1% for all phenolics compounds and antioxidant activity assay, 

which provided good precision to analyse the extract of samples. 


