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Chapter 0

Prologue

Quantum dot (QD) technology is no longer novel and according to Ref [1], global QDs market is

estimated to be valued at ≈ $27.5 billion by 2030. A vast majority of this figure is attributed to

the optoelectronic industries where QD displays are potentially outpacing organic light emitting

diode (OLED) displays with a compound annual growth rate of ≈ 37% [2]. This trend is also

visible from a report by IHS markit [2] which mentions that over 6.5 million QD TVs have

been ordered to be shipped in 2020 which is 0.5 million more than the units of OLED TVs

ordered. Given this technological revolution, more and more research has been focused on QDs

lately [3, 4].

In addition to the above-mentioned display technologies, QDs have been used in a wide variety

of applications [5–7] such as producing images of cancer tumours [5], humidity and pressure sen-

sors [6], to treat antibiotic resistant infections [8], non-toxic low cost solar cells [9], catalysts [10]

and so on. Over recent years, QDs have also attracted considerable interest due to their po-

tential for non-classical light emitters such as single- and entangled-photon sources [7, 11, 12].

These non-classical light emitters are the cornerstone for quantum cryptography and quantum

computing applications [11].

In this thesis, we target QD structures based on a semiconductor material known as “indium

gallium nitride” (InGaN) with an aim to achieve efficient single and entangled photon emit-

ters. Here, we investigate the electronic and optical properties of InGaN QDs as a function

of crystallographic growth angle. Especially, we focus on InGaN QD structures grown along

a so-called nonpolar direction of the underlying crystal structure. As we will show later, this

novel approach not only allows us to keep the benefits of the nitride system (large band offsets)

but at the same time allows for distinct new features such as circumventing basically the strong

electrostatic built-in fields. The common problem of growing these structures is an increased

probability of defect generation due to the lack of high quality nonpolar GaN buffer layers [13].

Additionally, the much-lower In incorporation efficiency in nonpolar planes present difficulties
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Prologue 2

for strain-driven Stranski-Krastanov growth of these dots [13]. Despite the challenges, there has

been recent progress in the growth of nonpolar InGaN QDs [13–15]. Yang et al [13] successfully

grew nonpolar InGaN QDs by introducing aluminium gallium nitride (AlGaN)/aluminium ni-

tride (AlN) interlayers prior to the GaN buffer layer. In another report, Zhu et al [14] used a

modified droplet epitaxy method for the growth of high quality nonpolar InGaN QDs. Given

these recent advances in the growth of nonpolar QDs, a detailed theoretical understanding of

the electronic and optical properties is of essential importance. This thesis aims to provide a

comprehensive understanding of these systems and is structured as follows.

Overview of the thesis

After a general introduction of nitride systems and semiconductor QDs in Chapter 1, we present

an overview of the theoretical models utilized in this thesis to calculate the electronic and optical

properties of these QDs in Chapter 2. In this chapter, we describe the well established k · p
and tight-binding model followed by a brief introduction to group theory which is very useful

in predicting different electronic properties. The influence of spin-orbit interaction, strain

effects arising from the lattice mismatch of constituent materials, and piezoelectricity on the

electronic structure theories are presented. Finally, we describe many-body theories which are

crucial for the analysis of optical properties in these systems. Here, the excitonic structure and

fine structure splitting of different QD systems are also explained.

In Chapter 3, we focus on the excitonic, biexcitonic properties and radiative lifetime of the

nonpolar QDs with an aim to achieve high speed single-photon emission. In addition to the

single-photon emission, we also target entangled photon emission by tuning the exciton and

biexciton transitions. Furthermore, quantum cryptography applications also require single

photon sources to be highly polarized in nature and at the same time realistic scalable on-

chip applications require operation of dots at elevated temperatures. Therefore, in Chapter 4,

we study the polarization properties of these systems as a function of temperature. In these

analyses, we study the influence of various parameters e.g. QD geometry and composition

on the single-particle properties. The results obtained from our theoretical analysis has been

validated by comparison with experiments.

Additionally, the theoretical studies in nitride-based QDs have been mainly restricted to first-

order piezoelectric effects till now. In contrast, for other III-V QD systems, e.g. InGaAs, it has

been demonstrated that second-order effects are crucial for a complete and realistic description

of built-in fields and the connected electronic and optical properties [16]. Such an analysis is

missing in nitride-based QDs especially when grown on non-c-plane substrates. Therefore in

Chapter 5, we discuss the impact of second order piezoelectric effects on the electronic and

optical properties of QDs as a function of crystallographic growth angle.



Prologue 3

Turning back to non-classical light emitters, in Chapter 6, our calculations are directed towards

understanding the impact of random alloy fluctuations on electronic and optical properties of

c-plane InGaN/GaN QDs. Here we address this question by means of a fully atomistic many-

body theoretical framework. The related excitonic structure and fine structure splitting values

are also calculated. This study is essential to explore the potential benefit of nitride-based QDs

for entangled photon emitters.

Finally, summary of the thesis and an outlook are given in Chapter 7.





Chapter 1

Introduction and Motivation

As pointed out in the prologue, semiconductor QDs have attracted considerable interest within

past few decades due to their broad spectrum of applications ranging from high-efficiency op-

toelectronic devices, such as light emitting diodes [17, 18], laser diodes [19–22] to non-classical

light emitters such as single- and entangled-photon sources for quantum computing applica-

tions [11, 12, 23–26]. Traditionally, ultra-pure non-classical light sources have been realized by

using standard III-V materials such as indium arsenide (InAs) and gallium arsenide (GaAs)

material systems [7, 27, 28]. Due to low cost and less toxicity, arsenide based QDs are pop-

ular among the research community [29]. However, due to narrow band gap of both GaAs

(Eg,GaAs ≈ 1.518 eV) and InAs (Eg,InAs ≈ 0.413 eV) [30], the typical emission wavelengths of

these devices are in the range of few µm [30]. On the other hand, QDs based on III-Nitride

compounds (GaN, AlN, InN) and their connected alloys (InGaN and AlGaN) can span almost

the entire spectrum e.g. infrared (IR) [31] to ultraviolet (UV) [32] due to their band gap tun-

ability ranging from 0.69 eV (InN) [31], 3.51 eV (GaN) [31] to 6.0 eV (AlN) [33]. Apart from

light emission, due to these wide band gap and high breakdown field (Ebr,GaN ≈ 4 MV/cm,

Ebr,AlN ≥10 MV/cm) [33], GaN and AlN are also suitable for high power and high frequency ap-

plications such as military communication satellites and high frequency transistors [33]. When

compared to a GaAs based system, the output power density of GaN based devices are ≈5-10

times larger [34].

Due to these enormous advantages, nitride systems have generated much interest over the last

few decades [35]. However, there remain still several open questions. For instance, realization

of high-quality light emitting devices at longer wavelengths requires growth of InGaN alloys

with high indium content. One of the main roadblocks in achieving this is the large lattice

mismatch between InN and GaN (≈10%) [36] which incorporates huge strain while growing

high In content structures and results in misfit dislocations degrading optical properties [37].

As we will show later, another important issue which affects device efficiencies when nitride

heterostructures grown along c-axis is the presence of electrostatic built-in fields. This arises

5



Chapter 1: Introduction 6

from spontaneous and piezoelectric polarization fields present in nitride heterostructures [38].

Even though other III-V materials exhibit piezoelectric properties, nitride systems incorporate

both polarization fields [39].

Given the unique features of nitride material systems, the aim of this chapter is to analyze

these fundamental properties and highlight the differences to other material systems. That

will include discussions of the underlying crystal structure, different growth planes as well as

the electrostatic built-in field leading to the so-called quantum confined stark effects (QCSE).

We will also outline the challenges in the modeling of nitride QD systems. To achieve this we

proceed in the following way. In Sec. 1.1 we start with a brief overview of the fundamental

aspects of QDs including growth mechanisms in different material systems. We then turn to

nitride systems in Sec. 1.2, and discuss differences in terms of crystal structure for instance

to the standard arsenide systems in Sec. 1.2.1. Finally, in Sec. 1.2.2, we will turn to the

polarization effects and discuss its consequences for the electronic structure.

1.1 Quantum dots

Quantum dots are formed when carriers are confined along all three directions with physical

dimensions in the order of de-Broglie wavelength. This quantum confinement can be achieved

by several means, for instance, in a solution [40] or by growing epitaxial layers on other

semiconductor materials [41, 42], called as nanocrystallites and self-assembled QDs respectively.

In this thesis, we will only focus on self-assembled QDs which are formed when a semiconductor

structure with a given band gap is embedded in a matrix of semiconductor with a large band

gap [41, 42]. Due to quantization of energy along all three directions, QDs exhibit discrete

energy spectrum like atoms. Therefore, QDs are often refereed to as “artificial atoms”. Due to

this loss of translational symmetry along all three directions, QDs exhibit delta-like density of

states. However, they possess several different characteristics as compared to atoms and bulk

semiconductor structures [43]. Especially, their tunable optical characteristics where emission

wavelength in principle can be changed easily by varying material composition and/or dot

geometry.

Several techniques for the preparation of semiconductor QD structures have been reported [43]

in the literature. They can be realized for instance by using lithography [7, 43], metal organic

chemical vapour deposition (MOCVD) [14, 44] or molecular beam epitaxy (MBE) [17, 21, 45].

Using lithographic methods, fragments of well defined size and shapes can be etched from

bulk semiconductors to realize QDs. The other possibility that has recently gained interest is

the formation of QDs by self-assembled clustering through Stranski-Krastanow (S-K) growth

[45, 46] or droplet epitaxy method [14, 47]. S-K growth is driven by the strain originating

from the lattice mismatch between the dot and the barrier material. When a semiconductor
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material A is grown epitaxially on top of another semiconductor material B, the initial growth

happens to be a quasi-two-dimensional layer-by-layer growth of material A on top of the B

surface. When the growth exceeds a certain critical thickness [46], the strain energy stored in

the system due to lattice mismatch between the material A and material B is reduced through

the formation of three-dimensional objects called QDs. A self-assembled QD grown through S-K

method is shown schematically in Fig. 1.1. The shape of the QD structures grown through this

method usually depends on several parameters such as the underlying crystal lattice, growth

temperature, and growth rate.

On the other hand, in droplet epitaxy method, formation of QDs do not require elastic strain

between the dot and the barrier material [48, 49]. Here the growth takes place through vapour-

liquid-solid mechanism [48] where the supersaturation of the liquid droplets occur via interac-

tion with the species carried by the beams in the vapour phase [49]. For instance, in droplet

epitaxy of III-V systems, first nano-meter sized metallic droplets (Group-III) are formed on the

growth surface through sudden annealing [14] which then react with group-V beams to form

QDs. As pointed out earlier, we will only deal with QDs formed through the above mentioned

self-assembled processes in this thesis. Typical dimension of QDs in a quantum dot ensemble

Figure 1.1: Schematic diagram of a self-assembled QD where a semiconductor material B is
embedded inside a semiconductor material A

scatter in the range of 3 nm and 30 nm which contains around 104–106 atoms. Using the above

described methods, high quality QDs have been produced in both arsenide and nitride material

systems. Since in this thesis we are mainly interested in the nitride systems, we turn to the

discussion of basic features in these materials in the next section.

1.2 Basic properties of III-N materials

One of the several particularities of III-N system is the underlying crystal structure which has

far reaching consequences in the electronic band structure [50]. For instance, as pointed out

earlier, this unique crystal structure gives rise to polarization fields which in turn leads to
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the so-called QCSE affecting the device performance [51]. Therefore, we start this section by

discussing the underlying crystal structure where we outline how III-N structures are grown

along different crystallographic directions in current state-of-the-art devices and subsequently

turn to the polarization properties.

1.2.1 Crystal structure

III-Nitrides (GaN, InN, AlN) and their connected alloys (InGaN and AlGaN) crystallize pref-

erentially in the wurtzite (WZ) crystal phase whereas other typical arsenide-based materials

crystallize in the zincblende (ZB) phase [30]. Fig. 1.2 illustrates a WZ crystal structure where

a and c corresponds to the lattice constants along the basal plane and height of the unit cell,

respectively. An ideal WZ crystal can be thought of as two interpenetrating hexagonal close-

packed (hcp) lattices offset along the c-axis by 5/8 of the c lattice constant. The layers in a

WZ structure show an ABABAB- type stacking sequence and alternate between anions and

cations. The atoms indicated in red represent cations (Ga,In,Al) whereas blue denotes anions

PA
p

p
p

P
B

p

p
p

PC

P
D

p
p

p
p

x

yz

a

c

Figure 1.2: Wurtzite unit cell [52]

(N). The primitive unit cell of a WZ structure contains four atoms, two anions and two cations.

In Fig. 1.2 the atoms inside the primitive unit cell are given by filled symbols. The atomic
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(0001) (112̄0) (11̄00)

(202̄1) (112̄2)

Figure 1.3: Different planes of a wurtzite crystal structure

positions inside the primitive unit cell are given by,

rA = (0, 0, 0) ,

rB = (0, 0, u0c) ,

rC =
(
a/2,

√
(3)a/6, c/2

)
,

rD =
(
a/2,

√
(3)a/6, (1/2 + u0)c

)
,

(1.1)

where u0 is an internal parameter of the WZ structure; for an ideal WZ structure, u0=3/8 [50].

The Cartesian coordinates are also indicated in the figure.

III-Nitride WZ heterostructures as we will discuss in later chapters are grown along different

crystallographic planes and the following notations are used to denote them. In general, lattice

planes and directions in a crystal are defined by Miller indices [53], which are denoted by (hkl)

and [hkl], respectively. Here h,k,l are the reciprocal values of the intersection of a plane with

the Cartesian axis in a direct lattice. However, to denote planes and directions in hexagonal

lattices like WZ, Miller-Bravais indices [50] are used, which contain an extra index i such that

i = −(h + k). In other words, the crystal planes in a WZ structure are denoted as (hkil).

Using this notation, schematic illustrations of different planes of a WZ structure are shown in

Fig. 1.3. Here, we have used the same orientation of the Cartesian coordinates as in Fig. 1.2.
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In standard convention, the plane normal to the z-direction of the WZ structure is regarded as

the c (0001)-plane and the axis parallel to z-direction is labelled as c ([0001])-axis.

It is to note that c-direction is the most widely used growth direction [38]. The planes for

which the c-axis lies within the growth plane are defined as a (112̄0)- and m (11̄00)-planes.

Additionally, we also show two other experimentally relevant planes [54], (112̄2) and (202̄1) in

Fig. 1.3 which are at an angle θ = 58◦ and θ = 75◦ to the c-axis.

These planes are often classified as polar, semi- and nonpolar planes. The c-plane is polar

whereas a- andm- planes are nonpolar planes. All other planes are called semipolar planes. This

originates from the unique features of WZ materials which are spontaneous and piezoelectric

polarization and is discussed in detail in the following section.

1.2.2 Polarization: Spontaneous and Piezoelectric

Semiconductor materials with a lack of inversion symmetry exhibit an electric polarization

under applied stress [38, 55–57]. This strain mediated electric polarization is the so-called

piezoelectric polarization. The piezoelectric polarization (Ppz) vector field in a semiconductor

material can be written, up to second-order, using Voigt notation as [57]:

Ppz,µ = PFO
pz,µ + P SO

pz,µ =

6∑
j=1

eµjεj +
1

2

6∑
j,k=1

Bµjkεjεk . (1.2)

Here PFO
pz,µ =

∑6
j=1 eµjεj is the first-order contribution and P SO

pz,µ = 1
2

∑6
jk=1Bµjkεjεk is the

second-order part. The first-order piezoelectric coefficients are denoted by eµj and Bµjk are

second-order ones. The strain tensor components (in Voigt notation) are given by εj . In

III-N heterostructures, most widely only first-order contributions to the polarization field are

used [39]. For WZ semiconductors the well known first-order contribution PFO
pz has only three

independent piezoelectric coefficients, namely e33, e15 and e31 [58]. Turning to second-order

terms, initial studies on second-order piezoelectricity have been performed by several groups

[55, 57, 59] for III-N WZ systems. We will present a detailed study and explicit expressions

for the first and second-order piezoelectric polarization vectors for a WZ structure in later

chapters.

In both ZB and WZ structures, each atom has four nearest neighbours which are arranged in

a tetrahedral manner. Due to difference in electronegativity between atoms, each bond has a

certain dipole moment. In ZB structures, these dipole moments cancel each other and the net

dipole moment is zero due to the crystal symmetry [60]. However, in III-N WZ structures, due

to the underlying symmetry and electronic distributions, certain directions (0001) present net

dipoles even without application of strain [38, 58]. We call this as spontaneous polarization

(Psp) where polarization is defined as net dipole moment per unit volume. Thus in a standard
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c-plane description, where the c-axis is usually parallel to the z-axis of the coordinate system,

the spontaneous polarization vector field Psp reads: [58]

Psp =


0

0

Psp

 . (1.3)

As stated earlier, Psp is a unique feature of WZ structures and is not present in materials

having a ZB crystal structure. Typical spontaneous polarization values of GaN, InN and AlN

wurtzite structures are -0.040, -0.049 and -0.091 C/m2 [61], respectively. However, it should be

noted that a variety of different values has been reported in the literature [62]. The sign of the

spontaneous polarization is negative assuming that the polarization is defined by the direction

from the anion (N) to the cation (Ga/In/Al) along the [0001] direction. The magnitude of Psp

depends on c
a ratio and the difference of electronegativity between the constituent atoms [63].

The direction of Psp is illustrated in Fig. 1.4 where similar to Fig. 1.2 red denotes cations (Ga,

Al, In) and blue denotes the anions (N).

P
P

P

P

PP
P

P

[0001]Psp

Figure 1.4: A stick and ball diagram representing the direction of spontaneous polarization.
Red denotes cations (Ga, Al, In) and blue denotes anions (N).

Overall, the total polarization vector field PTot in a WZ system is the sum of piezoelectric and

spontaneous polarization vector fields, PTot = Psp + PFO
pz + PSO

pz .

From electrodynamics, we know already that when we have a discontinuity in the polariza-

tion vector field, these give rise to a electrostatic built-in field [64]. Accordingly, when WZ

heterostructures are grown along c-axis, the polarization differences in the dot and matrix ma-

terials gives rise to a built-in electric field. This field results in the QCSE which tilts the energy

band structure and leads to the localisation of electron and hole wave functions on the opposite

sides of the structure. QCSE is much stronger in case of III-N WZ systems as compared to ZB

systems due to the presence of both spontaneous and piezoelectric contributions. In Fig. 1.5,

we outline a schematic band structure depicting the electron and hole wave functions with

and without built-in field for a semiconductor material B embedded inside a semiconductor

material A. As discussed above, the electrostatic built in field have a detrimental effect on the
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(a) (b)

Figure 1.5: One dimensional band diagram (a) excluding (b) including the internal electro-
static built-in field created by piezoelectric and spontaneous polarizations for a semiconductor
material B (e.g. InGaN) embedded inside a semiconductor material A (e.g. GaN) [65]. Electron
and hole wave functions are denoted by red and green respectively.

optical properties of the system. Therefore focus shifted to growth on the non- and semipolar

planes [54, 66, 67], which have been introduced in the previous section. If we now look back at

the semi- and nonpolar planes, we have a situation in the nonpolar system, where the c-axis

lies in the growth plane which can ideally circumvent discontinuities in the polarization vector

field. We will discuss this in more detail in the next chapter.

Having discussed the fundamental aspects of both QDs and nitride systems, we now move

to the question how to theoretically model these systems. A key requirement here is the

calculation of electronic band structure for a QD system of an arbitrary shape. From our

previous discussions, it is immediately clear that modeling nitride QD systems is challenging

as we are dealing here with very large (104–106 atoms) systems. At the same time, due to loss

of translational invariance, QDs lack fundamental symmetry properties of bulk systems which

makes the calculations considerably more difficult. Finally, we also have to take into account

the inherent properties of nitride systems, such as polarization fields. Therefore, to account for

all the ingredients, we need a theoretical model that allows us to calculate electronic structure,

not only for the bulk system as well as for the QDs, which is the topic of the next chapter.



Chapter 2

Theory of electronic and optical

properties of wurtzite

heterostructures

Having discussed the fundamental properties of III-N bulk as well as QDs in Chapter 1, we

now turn our attention to the calculation of electronic and optical properties of these systems.

In Fig. 2.1, we present a schematic workflow outlining different steps to achieve this task. The

electronic properties of a material system is usually specified in terms of its electronic band

structure. Therefore, in the first step, we need an underlying electronic structure theory (cf.

Fig. 2.1) which will be used to calculate single-particle states and energies. As discussed in the

last chapter, one also needs to account for strain and built-in potential effects in the electronic

structure theory. The type of strain and built-in field calculations to use is usually determined

by the underlying electronic structure theory. Together with strain, built-in potential and an

appropriate electronic structure theory, one can solve one-particle Schrödinger equation and ob-

tain single-particle energies and eigenstates of the system. Additionally, if we are interested in

optical properties such as entangled photon emission, this is inherently a many-body problem.

Therefore, as we will show later, one needs to consider many-body effects to accurately describe

optical properties of these systems [29]. Accordingly, we discuss different electronic structure

theories in Sec. 2.2. In the next step, in Sec. 2.3, we describe how to incorporate strain in dif-

ferent models and subsequently, outline various methods to calculate strain, namely continuum

elasticity method, surface integral method and valence force field method in Sec. 2.4. Equipped

with the underlying strain theories, we then describe the procedure to calculate piezoelectric

potential in Sec. 2.5. Finally, we introduce different many-body theories in Sec. 2.6. All these

approaches are fully numerical in nature. But group theory has been used over the years to

predict fundamental properties such as optical selection rules, degeneracy of eigenvalues, phase

13
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Electronic structure theory
Strain field
calculations

Built-in field
calculations

1-Particle
Schrödinger’s equation

Many-body theories

Single-particle eigen-
states and energies

Optical properties

Figure 2.1: General workflow for the calculation of electronic and optical properties

transitions [53] without doing explicit calculations and is also a powerful tool to check our nu-

merical results. Given these advantages, before we start with the numerical aspects, we present

a brief introduction to group theory, which will later help us to benchmark our results.

2.1 Introduction to group theory and its application to the WZ

band structure

In this section, we will deal with the practical use of group theory and illustrate the power

of using group theory and tensor algebra in explaining and to draw conclusions for electronic

properties of a semiconductor with a WZ crystal structure. We will not cover derivations of the

fundamental postulates or advanced aspects of this topic. Detailed discussions on this topic

can be found elsewhere [68, 69].

In a first step, we introduce few group theoretical concepts required for our analysis. Group

theory [53] transforms many complex symmetry operations of a crystal into simple linear alge-

bra. This begs the question what exactly is the symmetry ? The symmetry group of a crystal

consists of all operations that transforms the crystal structure into itself. In a crystal lattice,

these include translation group, point group, and space group symmetries. The translation

group corresponds to a set of translations which keeps the system unchanged. The point group

involve symmetry operations/elements (g) such as rotations, reflections, inversion or combina-

tions of these operations around one point in the lattice. On the other hand, the space group

involves a combination of a point group symmetry operation and a translation. The commonly

used symmetry operations in this thesis are:

• E: Identity. This operation corresponds to doing nothing to the structure and every group

has at least this element.
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• Cn: N-fold axis of rotation. Here, a rotation by 360◦

n leaves the system unchanged. Here,

n is an integer. Rotations are counter-clockwise by convention.

• σ: Mirror planes of symmetry. σv denotes vertical mirror planes passing through faces

and σd denotes mirror planes passing through vertices.

• i: Inversion of the structure through a single point called as the inversion center.

To denote point and space groups, Schoenflies notation has been used in this thesis [70]. In

this notation, the point groups are denoted by a letter symbol and a subscript. For instance,

the symbol Cnv denotes a point group with n-fold rotation axis. v indicates that this group has

additional n mirror planes parallel to the axis of rotation. The Schoenflies notation has several

advantages. First, the general features of the group, e.g. the symmetry elements are contained

in the notation itself. Secondly, this notation is the widely used in spectroscopy [70]. In this

notation, within each point group, space groups are simply numbered in the order in which

they appear in the International Tables for Crystallography (IUCR). This number is written

as a superscript to the point group notation. For instance, a space group corresponding to the

C6v point group is C4
6v. Usually, the symmetry elements (g) contained in the point and space

groups are grouped into classes. As an example, we have listed all the symmetry elements

and classes belonging to the C6v point group in Appendix A. As we will show later, this is the

point group with which we will be dealing later in this chapter. Therefore, we are focussing

on the C6v point group. For each of the symmetry elements g in a group, one can construct

a transformation matrix, Γ(g) which is called a representative of the corresponding symmetry

operation. The complete set of transformation matrices form the matrix representation of the

group. These transformation matrices act on basis functions of our choice and as a result, the

representation depends on the chosen basis. However, several important aspects of a symmetry

group can already be obtained from the traces of the matrix representation. The trace (Tr)

of a matrix is the sum of the matrix elements on the diagonal, and is also called the character

of the representation. The character gives a short hand version of the matrix representation.

Often, the matrix representation of a group is simplified into smaller matrices. For instance, if

the representation matrix R can be expressed in a block diagonal form such that

R =


R1 0

R2

0 R3

 ,
then, R1, R2 and R3 are said to be irreducible representations (IRR) of the group. In the

Appendix A, as an example, we have summarized irreducible representations for the C6v point

group in a x, y, z coordinate basis. If all of the possible IRRs of a group are summarized

in a table, we call this a character table. As an illustrative example, the character table of a

C6v point group is shown in Table 2.1. In the character table, the first entry in the first row
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Table 2.1: Character table of C6v point group

C6v E 2C6 2C3 C2 3σd 3σv Basis functions

A1 1 1 1 1 1 1 1,z
A2 1 1 1 1 -1 -1 Rz
B1 1 -1 1 -1 -1 1
B2 1 -1 1 -1 1 -1
E1 2 1 -1 -2 0 0 (x, y), (Rx, Ry)
E2 2 -1 -1 2 0 0 (xy), (x2 − y2)

E1/2 2
√

3 1 0 0 0

E3/2 2 0 -2 0 0 0

E5/2 2 -
√

3 1 0 0 0

is the name of the point group, here C6v. The first row (except last element) corresponds to

the symmetry operations assembled into different classes. Thus for instance, C6v point group

contains six different classes. On the other hand, the first column excluding the first entry

gives different IRRs of the group. We can see here that some of the IRRs are marked in bold.

These IRRs are the so-called double group representations. When an extra degree of freedom

(e.g. spin) is introduced in the system, this introduces extra symmetries and subsequently

additional IRRs have to be considered accounting for symmetry operations in spin space. More

discussions on this will follow in later sections. The final column lists a number of functions

that transform as the IRR of the group after applying a symmetry operation. These can be

coordinate axes (x, y, z), rotations (Rx) etc. The rest of the table denotes how the characters

of the IRR transform under each of the symmetry operations. The column corresponding to the

identity element (E) gives the dimensionality of the IRR [53, 70]. This is because E denotes

identity matrix of the IRR and leaves it unchanged. As seen from Table 2.1, there are only 1-

and 2-dimensional IRR in the C6v point group.

These group theoretical aspects can not only be applied to spatial properties but also to quan-

tum mechanics. The eigenfunctions and eigenstates of a particle originating from the solution

of time-independent Schrödinger’s equation is usually governed by symmetry considerations

and since group theory can transform many complex symmetry operations to simple mathe-

matical concepts, it has direct applications in quantum mechanics. As pointed out in detail by

Dresselhaus [68], some of such applications include using IRRs of a group to classify different

wave functions and predicting degeneracy of a system. The dimensionality of a group can be

directly related to possible degeneracies in the system (neglecting the rare accidental degenera-

cies) due to the fact that this is the number of times a state belonging to that particular IRR

appears in the system [53, 68]. Additionally, as we will show later, for an accurate description

of semiconductors, relativistic effects like “spin-orbit” coupling (SOC) should be included in

the analysis which can affect these degeneracies. From a group theoretical point of view, SOC

can be included in the description by representing spin-dependent wave functions by double
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group IRRs. Equipped with these group theoretical concepts, we now move to the discussion

of the band structure of a WZ crystal.

2.1.1 Wurtzite band structure

In the following, we are mainly interested in the electronic structure of III-N WZ structures,

such as InN and GaN, which have a direct band gap. In these materials, the top of the valence

band (VB) and the bottom of the conduction band (CB) are situated at the same k-point in

the first Brillouin Zone. This is one of the high symmetry points of the first Brillouin zone,

commonly referred to as the Γ point which corresponds to k=0 . The region around this point is

of major importance for the optical properties of these systems [53]. Therefore, we will analyze

symmetry properties of the electronic bands of a WZ system in the vicinity of the Γ point.

The space group for a WZ structure is C4
6v [53]. Since we are mainly interested in the Γ point,

we have to find the operations of the point group associated with the space group C4
6v which

transforms this point to itself plus a reciprocal lattice vector. In case of the WZ structures,

the corresponding point group is the C6v group. The character table for this point group has

already been presented in Table 2.1 [71].

We now utilize the group theoretical concepts developed in the last section to study the elec-

tronic band structure of a WZ crystal. Through this, we can classify electronic wave function

according to different IRRs of C6v. In principle, the electronic wave function (ψ) is made up

of a spatial (φ) and a spin part (ξ). ψ behaves differently depending on the presence of spin.

Without taking spin into account in the description, ψ is a scalar function where as with spin,

the ψ is a spinor [72]. Furthermore, as stated earlier, with the inclusion of spin we have to

deal with double group and its corresponding IRRs. Therefore, we will separately discuss the

electronic band structure of a WZ crystal in the absence and in the presence of SOC.

Without spin-orbit coupling (∆so = 0)

The time-independent Schrödinger equation does not include terms that act on the spin [73].

Therefore, in the absence of SOC (∆so = 0), we can decouple the spatial (φ) and spin (ξ)

components of the wave function. We first study the spatial part φ of the electronic states

and will move to the spin discussions later. To label different electronic bands according to

the IRR of the point group C6v, the symmetry properties of the bands is required. In other

words, the underlying basis functions need to be known. Since crystals are made up of atoms,

our starting point is to look at the atomic orbitals of the constituent atoms. When we look

at the atomic orbitals of the individual atoms that constitute a III-N structure, we know that

cations (Ga,In,Al) belong to group-III elements of the periodic table and anions are group-V (N)

elements. Therefore, typically the valence electrons occupy s and p orbitals [63]. For instance,
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the electronic configuration of Ga: [Ar] 3d10 4s2 4p1 and N: [He] 2s2 2p1. When individual

atoms belonging to group-III and group-V are brought together, these partially filled s and p

orbitals combine to form tetrahedral bonds through sp3 hybridization [74]. In this process, they

form filled bonding and unfilled antibonding molecular orbitals. Once these atoms merge to

form a crystal, the corresponding molecular orbitals coalesce to form energy band structure of

the material. The bonding molecular orbitals primarily form filled VBs and antibonding states

form the unfilled CBs. Typically, one finds that for WZ semiconductors, at the Γ point, the CB

is predominantly s-like (antibonding) while the VB states are predominantly p-like (bonding)

in character [75]. Having discussed the orbital characters of different bands, we can now label

E
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A1(1, 2∗)

A-VB

E1(2, 4∗)

C-VB

A1(1, 2∗)

∆cf
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E3/2(2)
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E1/2(2)∆1
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Figure 2.2: Schematic band structure of a WZ crystal with one CB and three VBs (a) in the
absence and (b) in the presence of SOC. The different bands are labelled according to group
representation notations as discussed in the main text. The degeneracies of the bands are given
in brackets. “∗” denotes spin degeneracies.

them according to the IRR of C6v. As described earlier, in the absence of SOC e.g. where

spin is a good quantum number, one has to deal with IRRs belonging to the single groups C6v.

Looking at the basis functions in the different IRR of the point group C6v given in Table 2.1, we

find that the s-like CB transforms according to the A1 representation. On the other hand, one

finds that px- and py-like functions belong to the E1 IRR while a pz-like function transforms

as A1. Therefore, for the VB states, one should expect a doubly degenerate band belonging to

E1 and a non-degenerate band corresponding to A1 since E1 is a 2-D IRR while A1 is an 1-D

IRR. For our analysis, we denote the doubly degenerate band and the non-degenerate band by

A- and C-VB, respectively.

However, it is to note that group theory can not provide insights into the energetic ordering

of these states. In WZ structures, the energetic ordering between A- and C-VB arises from

the crystal field splitting (∆cf) which is due to the anisotropy between a- and c-axis [50] of the

WZ structure. This is reflected in group theory by the fact that px and py orbitals belong to
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Γ A1 A2 B1 B2 E1 E2

Γ⊗D1/2 E1/2 E1/2 E5/2 E5/2 E1/2 ⊕ E3/2 E3/2 ⊕ E5/2

Table 2.2: Direct product of single group IRRs Γ with spin IRR D1/2

different IRR than the pz orbital in the C6v point group. This is different to ZB semiconductors

for instance, where all of the p orbitals (px, py and pz) belong to same IRR [76]. A schematic

illustration of the band structure of a bulk WZ crystal with ∆cf ≥ 0 is illustrated in Fig. 2.2.

The degeneracies are given in brackets. In our discussions above, we have only treated the

spatial part through its IRR. We can now include the spin separately in this description. It

is known that a spin wave function in a WZ crystal transforms as the IRR D1/2 [68] which

is two-dimensional in nature [68]. 1 This introduces an additional double degeneracies in the

structure. Correspondingly, A-VB will be four-fold (originating from E1 and D1/2) and the

CB, C-VB will be two-fold degenerate (originating from A1 and D1/2). The extra degeneracies

due to spin states are denoted by the symbol “∗” symbols in the Fig. 2.2 (a). Having discussed

the electronic band structure without SOC, in the following, we discuss how group theory can

be applied to study the electronic band structure in the presence of SOC for a WZ structure.

With spin-orbit coupling (∆so 6= 0)

With the inclusion of SOC, as stated earlier, one has to consider double groups [68, 76] to

classify different states where the wave function ψ can no longer be written as a simple product

of φ and χ. If we denote the single group IRRs by Γ, the IRRs of the double group are obtained

from the direct product of the single group representations Γ with spin representation D1/2.

The result is given in Table 2.2 for the C6v point group. Here “⊗” denotes direct product

between two IRRs.

From this table, we see that the CB and C-VB belong to the E1/2 representation. Each of

these states are doubly degenerate since E1/2 is a 2-D representation (cf. Table 2.1). On the

other hand, the direct product E1 ⊗ D1/2 = E1/2 ⊕ E3/2. Therefore, the A-VB splits into

two doubly degenerate states due to SOC which we denote as A- and B-VBs. A schematic

illustration of lower most CB and three topmost VBs with SOC near the Γ point is now given

in Fig. 2.2 (b) where the degeneracy of the bands is given in brackets. In summary, we have

described the bulk band structure of WZ structures in the presence and absence of SOC by

using group theory. The combined effect of crystal field splitting and SOC leads to a three-edge

VB structure for WZ bulk systems. It has been found that the crystal field splitting energy for

1D1/2 is deduced from the full rotational symmetry of a free atom. For a rotation around an angle α, the
elements of the representation matrix Dj are exp(−imα) where −j ≤ m ≤ j. Correspondingly, the character of
this group are found as

Tr(Dj) = exp(−ijα) + ....+ exp(ijα) =
sin(jα)

sin(jα/2)
(2.1)

The dimension of a Dj state is (2j)+1 and therefore, D1/2 is two dimensional in our case.
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AlN is negative (≈ −169 meV [62]) while for InN and GaN they are positive and of the order

of 10-40 meV [62]. However, it is found that the spin-orbit splitting energies in III-N structures

are very small (5-20 meV) when compared to As based materials such as GaAs and InAs where

spin-orbit splitting energies are found to be 294 meV and 310 meV respectively [77].

In conclusion, group theory is a powerful tool for predicting the character of different bands

or degeneracies present in the electronic band structure without an explicit numerical calcu-

lation. Therefore, it is extremely useful to benchmark numerical calculations with respect to

for instance, predicted degeneracy of states. However, group theory is unable to provide any

insight into the energetic ordering or energetic separation of different band states (∆1,∆2 etc).

Thus, it can not replace explicit numerical calculations which can be used not only to calculate

energetic separation of different bands but also optical spectra and emission wavelength [68].

Therefore, we need a suitable electronic structure theory to determine these features which is

the topic of the next section.

2.2 Electronic structure theory

In this section, we outline various theoretical approaches to calculate the electronic band struc-

ture for WZ semiconductor bulk system and how it can be applied to study QDs. Electronic

band structure methods are usually grouped into ab-initio [78, 79] and semi-empirical [80–82]

methods. Ab-initio methods like density functional theory (DFT) are in principle free from

empirical fitting parameters and present an atomistic approach to determine electronic band

structure [79]. DFT is suitable for the calculation of bulk band structures, however, fail for

large structures like QDs due to its computational expense [83] since it involves calculation of

≈ 104 − 106 atoms as discussed in the introduction. As a result, the focus shifted to semi-

empirical methods such as k ·p theory [84, 85], empirical pseudopotential methods [86, 87] and

tight-binding (TB) methods [81, 82]. k · p theory is a relatively simple method for calculating

the electronic structure of both bulk as well as QDs which operates on a continuum level. This

model works very well if the atomistic details of the underlying structures are negligible [56, 88].

On the other hand, empirical pseudopotential methods and TB models can describe the mi-

croscopic details of the underlying crystal structures while at the same time being scalable to

large systems [89]. In this chapter, we will only discuss k · p and TB methods which have

been employed in this work to investigate the electronic structure of III-N QDs. Here, we start

with a discussion of k ·p methods and TB approaches for bulk systems followed by procedures

to extend these methods to QDs. It is to note that in both these methods, we work in the

Born-Oppenheimer [53] and single-electron approximations [53] where, respectively (i) the ionic

motions are neglected so that atomic nuclei can be assumed to be fixed at their equilibrium

positions and (ii) interactions with other electrons are combined into a effective potential so
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that a given electron can be treated independently of all other electrons. As a result, we use

one electron Schrödinger equation to evaluate electronic eigenstates of the crystal.

2.2.1 Electronic structure theory for bulk materials

In the following, we start with a discussion of k·p theory where we present the bulk Hamiltonian

for a WZ crystal structure. Subsequently, we introduce general aspects of the TB method and

outline procedures to obtain a TB Hamiltonian for a bulk WZ crystal.

2.2.1.1 k · p theory

k ·p theory is a perturbative approach to solve the time-independent Schrödinger equation [84].

Within this method, the band structure is calculated in the vicinity of a chosen k point [53, 85].

The bulk k · p Hamiltonian for WZ structures was first introduced by Chuang and Chang [90]

back in 1996 to calculate their band structures. The Hamiltonian used in this thesis is based

on the above work. The Chuang and Chang WZ k · p Hamiltonian is a modification of the

Luttinger-Kohn model [91] which is a popular method for studying electronic and optical prop-

erties of bulk and QW structures [91, 92]. Here, the general concept is that the bands of

primary interest are considered exactly, usually denoted as class-A bands, and energetically

remote bands are treated as a perturbation, usually denoted as class-B bands using Löwdin’s

perturbation theory [93]. In the following, we briefly describe this procedure for a bulk WZ

system.

The time-independent Schrödinger equation in a periodic crystal at a particular wave vector k

is expressed as [53]:

Ĥ0ψnk(r) = En(k)ψnk(r) , (2.2)

where Ĥ0 is given by

Ĥ0 = − ~2

2m0
∇2 + V (r) . (2.3)

Here, n is the band index, En(k) is the energy of nth band at wave vector k and ψnk(r) is

the corresponding electronic wave function. The first and second term of the Hamiltonian Ĥ0

corresponds to kinetic and potential energy respectively. Since electron moves in a periodic

potential, we have V (r) = V (r+R) where R = n1a1 +n2a2 +n3a3 is a lattice vector; a1,a2,a3

are the basis vectors, and n1, n2 and n3 are integers. Due to this periodic nature of the crystal

potential, the electron wave function ψnk(r) can be expressed as Bloch functions [53]:

ψnk(r) = eik·runk(r) , (2.4)
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where unk(r) is the periodic part of the Bloch function. Here, the band index n includes spin

components. Depending on the material system under investigation, relativistic corrections

such as the SOC may have to be included in the description [94] which originates from the in-

teraction between spin angular momentum and orbital angular momentum of an electron [53].

Here, SOC is included in the analysis by adding a spin-orbit operator Ĥso to the bulk Hamil-

tonian Ĥ0. More details on how to derive this correction can be found in Ref. [76]. When

including SOC, the bulk Hamiltonian is now given by,

Ĥ =

Ĥ0︷ ︸︸ ︷
− ~2

2m0
∇2 + V (r) +

Ĥso︷ ︸︸ ︷
~

4m2
0c

2
(∇V × p) · σ , (2.5)

where, σ is the tensor of the Pauli spin matrices [53]. Now, using the Hamiltonian Ĥ and

plugging the Bloch wave function, Eq. (2.4), into the Schrödinger Eq. (2.2) one is left with
Ĥ0︷ ︸︸ ︷

− ~2

2m0
∇2 + V (r) +

Ĥso︷ ︸︸ ︷
~

4m2
0c

2
(∇V × p) · σ+

Ĥ′︷ ︸︸ ︷
~
m0

k · p +
~2k2

2m0
+

~2

4m2
0c

2
(∇V × k) · σ

unk(r)

= En(k)unk(r) .

(2.6)

The last term on the left hand side of the Eq. (2.6) is a k-dependent spin-orbit perturbation term

(crystal momentum) and is much smaller compared to p-dependent spin-orbit terms (electron-

momentum) [92]. For this reason, the last term on the left hand side is usually neglected and

we follow this approach here. The occurrence of k · p term is the reason why this model is

called k · p perturbation theory. Since in this work our aim is to calculate the electronic and

optical properties of a semiconductor material with a direct gap, we focus here on the Γ point

(k = 0) where both CB-edge and VB-edges coincide. At Γ point, the above functions satisfy

Ĥ(k = 0)un0(r) = En(0)un0(r) . (2.7)

Once the terms En(0) and un0(r) are known, one can solve Eq. (2.6) by treating the k-dependent

terms perturbatively. Thus assuming that we know a system of band-edge functions un′0(r) (

n′ = 1, 2, . . . N) one can expand the eigenfunctions of the system unk(r) by:

unk(r) =

N∑
n′

an′(k)un′0(r) . (2.8)

Now, the coefficients an′(k) can be obtained by putting the expansion defined in Eq. (2.8) in

Eq. (2.6) and multiplying from the left by a complex conjugate of an arbitrary Bloch state
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un0(r) [92]. In this process, we have to solve a system of linear equations as

N∑
n′

(
Ĥnn′ − En(k)δnn′

)
an′(k) = 0 . (2.9)

To solve Eq. (2.9), we will use Löwdin’s perturbation method [93] where the index n′ is divided

into two sets, namely j and γ such that j belongs to states of interest (class-A) and γ belongs

to energetically higher lying states (class-B) which introduce perturbation to class-A states. In

our case, states of interest are the states which are energetically closer to the CB- and VB-edge.

With this framework, we rewrite Eq. (2.8) as

unk(r) =

A∑
j

aj(k)uj0(r) +

B∑
γ

aγ(k)uγ0(r) . (2.10)

Löwdin [93] showed that within this ansatz, one can express Eq. (2.9) as follows:

A∑
j′

(
ĤLK
jj′ − En(k)δjj′

)
aj′(k) = 0 , (2.11)

where
(
ĤLK
jj′

)
is the so-called Luttinger-Kohn Hamiltonian, which is given by

ĤLK
jj′ = ĤA

jj′ +

B∑
γ

Ĥ ′jγĤ
′
γj′

E0 − Eγ
. (2.12)

Here j,j′ ∈ A and γ 6= j, j′. The first term describes coupling between class-A states and second

term is the effect of class-B states on class-A states. Now, we need to evaluate the Hamiltonian

ĤLK
jj′ in terms of available basis states, uj′0. For this reason, we now switch to bra and ket

notations. The term ĤA
jj′ is evaluated as:

ĤA
jj′ = 〈uj0|Ĥ0 + Ĥso|uj′0〉︸ ︷︷ ︸

Hjj′(k=0)

+
~2k2

2m0
δjj′ +

〈
uj0

∣∣∣∣ ~
m0

k · p
∣∣∣∣uj′0〉 . (2.13)

The term
〈
uj0

∣∣∣ ~
m0

k · p
∣∣∣uj′0〉 is neglected since j, j′ ∈ A and this perturbation has no effect

on class-A states [93]. To evaluate second term of ĤLK
jj′ in Eq. (2.12) we now introduce the

following notation:

Ĥ ′jγ
∼=
〈
uj0

∣∣∣∣ ~
m0

k · p
∣∣∣∣uγ0〉 =

∑
α

~kα
m0

pαjγ , (2.14)
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where α = x, y, z, γ ∈ B and pαjγ = 〈uj0 |pα|uγ0〉. Therefore, the second term can be written

as:
B∑
γ

Ĥ ′jγĤ
′
γj′

E0 − Eγ
=

~2

m0

B∑
γ

∑
α,β

kαkβp
α
jγp

β
γj′

m0 (E0 − Eγ)

=
~2

2m0

B∑
γ

∑
α,β

kαkβ
pαjγp

β
γj′ + pβjγp

α
γj′

m0 (E0 − Eγ)
.

(2.15)

Here, we have used the relation:∑
α,β

(pαjγp
β
γj′ + pβjγp

α
γj′) =

∑
α,β

〈uj0 |pα|uγ0〉
〈
uγ0 |pβ|uj′0

〉
+
∑
α,β

〈uj0 |pβ|uγ0〉
〈
uγ0 |pα|uj′0

〉
=
∑
α,β

2pαjγ′p
β
γj′ .

(2.16)

Combining Eq. (2.13) and Eq. (2.15) we get the full Hamiltonian:

ĤLK
jj′ = Ĥjj′(k = 0) +

~2k2

2m0
δjj′ +

~2

2m0

B∑
γ

∑
α,β

kαkβ
pαjγp

β
γj′ + pβjγp

α
γj′

m0 (E0 − Eγ)
. (2.17)

We can rework Eq. (2.17) in a way that all k-dependent terms are accumulated into a single

term so that ĤLK
jj′ can be expressed as:

ĤLK
jj′ = Ĥjj′(k = 0) +

∑
α,β

Dαβ
jj′kαkβ , (2.18)

with

Dαβ
jj′ =

~2

2m0

{
δjj′δαβ +

B∑
γ

pαjγp
β
γj′ + pβjγp

α
γj′

m0 (E0 − Eγ)

}
. (2.19)

Here, j, j′ ∈ A, γ ∈ B and α, β = x, y, z. Equipped with these equations, one can evaluate

Hamiltonian matrix elements for both CB and VBs. Depending on the number of bands taken

into account, different Hamiltonians are found in the literature [95]. Standard approaches for

III-V materials utilize for example, 8-band Hamiltonian which includes three VBs and one CB

per spin [88]. However, there exists more sophisticated models which utilize even higher number

of bands [95]. A widely used model for wide band gap systems is the 6+2 band Hamiltonian

where the VB- and CB-Hamiltonians are considered separately. Since we are dealing with

InxGa1−xN materials for low x values (0.20−0.30), the band gaps of these materials are large.

Therefore, we follow this approach and neglect the coupling between CB and VBs. In the

following, we present a 1-band Hamiltonian for the CB and a 6-band Hamiltonian to describe

VBs. The following Hamiltonian is derived under the assumption that in the coordinate system,

z-axis is parallel to the c-axis of the WZ structure.
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• 1-band model for conduction band

Here, we use band-edge wave function of S symmetry as the bases for class-A states such that

|uj0〉=|u10〉= |S; ↑〉. Now, we can derive the CB Hamiltonian in the |S; ↑〉 basis using Eq. (2.18)

and Eq. (2.19) as:

ĤCB = Ec +
1

m∗e,‖
(k2
x + k2

y) +
1

m∗e,⊥
k2
z , (2.20)

where m∗e,‖ and m∗e,⊥ are the in- and out of- c-plane effective mass of the CB and is expressed

as

1

m∗e,‖
=

~2

2m0
+

~2

m2
0

B∑
γ

∣∣∣pxSγ∣∣∣2
Ec − Eγ

(2.21)

1

m∗e,⊥
=

~2

2m0
+

~2

m2
0

B∑
γ

∣∣∣pzSγ∣∣∣2
Ec − Eγ

.

All other terms vanish due to parity considerations [92]. While evaluating the CB Hamiltonian

we have neglected SOC and have used following relations.
〈
S
∣∣∣Ĥ0

∣∣∣S〉 = Ec and
∣∣∣pxSγ∣∣∣2 =

∣∣∣pySγ∣∣∣2
due to in-plane symmetry of the WZ structure [50, 90]. However, due to an asymmetry between

a and c axis of the WZ structure,
∣∣∣pxSγ∣∣∣2 =

∣∣∣pySγ∣∣∣2 6= ∣∣∣pzSγ∣∣∣2. In the following, we have made an

isotropic effective mass approximation [96] for the CB and assumed that m∗e,⊥= m∗e,‖. This is a

widely used approximation made in the literature [62, 96]. The CB effective mass parameters

used in thesis for different materials are summarized in Table B.2 of Appendix B.

• 6-band Model for valence band

Turning to the VB, we use band-edge wave functions of X, Y , Z symmetry as the bases for

class-A states. Thus we are left with six basis states so that |uj0〉 is given by,



|u10〉
|u20〉
|u30〉
|u40〉
|u50〉
|u60〉


=



|X; ↑〉
|Y ; ↑〉
|Z; ↑〉
|X; ↓〉
|Y ; ↓〉
|Z; ↓〉


. (2.22)
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The k-independent VB-edge Hamiltonian in this basis can be written as [96]

Ĥjj′(k = 0) =



Ev + ∆cf −i∆so
3 0 0 0 ∆so

3

i∆so
3 Ev + ∆cf 0 0 0 −i∆so

3

0 0 Ev −∆so
3 i∆so

3 0

0 0 −∆so
3 Ev + ∆cf i∆ 0

0 0 −i∆so
3 −i∆so

3 Ev + ∆cf 0
∆so

3 i∆so
3 0 0 0 Ev


, (2.23)

where ∆so and ∆cf are the SOC and crystal-field splitting energies respectively. Diagonalizing

the Hamiltonian matrix Eq. (2.23), we find the following doubly degenerate VB-edge energies

as [90]:

E1 = Ev + ∆cf + ∆so
3 ,

E2 = Ev + ∆cf
2 −

∆so
6 +

√
(∆cf + ∆so)2 − 8

3∆cf∆so ,

E3 = Ev + ∆ cf
2 − ∆so

6 −
√

(∆cf + ∆so)2 − 8
3∆cf∆so .

(2.24)

As expected from our group theoretical analysis presented in Sec. 2.1, we find here a three-

edge VB structure. However, from Eq. (2.24), we can now also calculate the splitting of the

different bands. Once the values for the spin-orbit coupling and crystal field splitting energies

are known, we obtain [76, 90]:

∆1,2 =
1

2
(∆cf + ∆so ∓

√
(∆cf + ∆so)2 − 8

3
∆cf∆so) ,

where ∆1 = E1 − E2 and ∆2 = E1 − E3.

We will now evaluate the D matrix which is a 3×3 matrix per spin state. Before doing this,

we use notation from Ref. [90] below which reflects the asymmetry between the x- and the z-

axis of the WZ structure [50]:

L1 = Dxx
XX = Dyy

Y Y ,

L2 = Dzz
ZZ ,

M1 = Dyy
XX = Dxx

Y Y ,

M2 = Dzz
XX = Dzz

Y Y ,

M3 = Dxz
XX = Dyy

ZZ ,

N1 = 2Dxy
XY ,

N2 = 2Dxz
XZ = 2Dyz

Y Z .

(2.25)

In the above, we have assumed that due to Hermiticity
(
Dαβ
jj′

)∗
= Dβα

j′j . Equipped with the

above, we now calculate as an example two different terms of the D matrix.

(1) Case 1: j = j′
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As an illustrative example, we derive the matrix element j = j′ = |X〉.∑
αβ

Dαβ
XXkαkβ = Dxx

XXk
2
x + 2Dxy

XXkxky +Dyy
XXk

2
y + 2Dxz

XXkxkz +Dzz
XXk

2
z + 2Dyz

XXkykz

= Dxx
XXk

2
x +Dyy

XXk
2
y +Dzz

XXk
2
z

= L1k
2
x +M1k

2
y +M2k

2
z .

(2.26)

In the above evaluation, several terms vanish due to the parity considerations [92].

(2) Case 2: j 6= j′

Here, as an example, we derive the matrix element for j = |X〉 and j′ = |Y 〉.∑
αβ

Dαβ
XY kαkβ = Dxx

XY k
2
x +Dxy

XY kxky +Dyx
XY kykx +Dyy

XY k
2
y + 2Dxz

XY kxkz +Dzz
XY k

2
z + 2Dyz

XY kykz

= Dxy
XY kxky +Dyx

XY kykx

= N1kxky .

(2.27)

Using the above rules, we can evaluate all other terms and consequently, the D3×3 matrix

becomes [90, 96]:

D3×3 =


L1k

2
x +M1k

2
y +M2k

2
z N1kxky N2kxkz

N1kxky M1k
2
x + L1k

2
y +M2k

2
z N2kykz

N2kxkz N2kykz M3

(
k2
x + k2

y

)
+ L2k

2
z

 . (2.28)

The full D6×6 matrix taking into account spin (cf. Eq. (2.22)) therefore reads [90]:

D6×6 =

(
D3×3 0

0 D3×3

)
. (2.29)

Here D3×3 is the complex conjugate of D3×3. Finally, the Hamiltonian ĤVB describing three

energetically highest lying VB states is obtained by adding Eq. (2.23) and (2.29, following

Eq. (2.17) as:

ĤVB = Ĥjj′(k = 0) + D̂ . (2.30)

This is the full 6-band k · p bulk Hamiltonian for VB states. To evaluate this Hamiltonian

for a particular material, one needs to know the values of L1, L2, M1, M2, M3, N1 and N2.

In literature, these parameters are usually expressed in terms of Luttinger-like effective mass

parameters, Ai. The relation between the above parameters Lj and Luttinger-like parameters

Ai [96] is given by: L1 = (A2 +A4 +A5), L2 = A1,M1 = (A2 +A4 −A5),M2 = (A1 +A3),

M3 = A2, N3 = 2A5, N2 =
√

2A6. In this thesis, the VB effective mass parameters of different

materials are given in terms of Ai and is summarized in Table B.2 of Appendix B .
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Figure 2.3: Crystallographic growth angle θ for a rotation around y-axis

As stated earlier, the model discussed till now is only applicable when the growth direction (z-

axis) of the structures is parallel to the c-axis of the WZ structure. However, as described in the

previous sections, there is a strong interest in structures grown along different crystallographic

directions. Therefore, we will briefly demonstrate how to modify the Hamiltonian as a function

of the crystallographic growth angle θ around the y-axis (cf. Fig. 2.3). To achieve this, we

have to rotate and express the k · p Hamiltonian as a function the of growth angle θ. This is

performed in three steps.

• Step 1: Rotate the basis functions: This involves transformation of the basis functions

to a new coordinate system. In general, one has to simultaneously transform spatial and

spin parts of the basis states. However, we have neglected the rotations of spin part of

the basis functions here given that SOC effects are small in III-N systems as compared to

other III-V materials [97]. For instance, the basis functions in a new coordinate (primed)

is related to the old basis functions (unprimed) by

[
|X ′; ↑〉, |Y ′; ↑〉, |Z ′; ↑〉, X ′; ↓〉, |Y ′; ↓〉, |Z ′; ↓〉

]T
=[

U 0

0 U

]
× [|X; ↑〉, |Y ; ↑〉, |Z; ↑〉, |X; ↓〉, |Y ; ↓〉, |Z; ↓〉]T ,

(2.31)

where U is a unitary rotation matrix around the y-axis of the original coordinate system

for the spatial coordinates and is defined as

U =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 . (2.32)

• Step 2: Replace the wave vector k of the un-rotated system by the rotated ones. This is

performed by following transformations:

k′i =
∑
α

Uiαkα . (2.33)

• Step 3: Re-express the matrix in terms of modified basis states.
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Since the basis vectors are related by U |ψ〉 = |ψ′〉 , the Hamiltonian can be written in

the new basis as, Ĥ ′ = UĤU−1.

Using these three steps we can define the Hamiltonian as a function of θ. It is to note that this

approach can be generalized by considering a second rotation described by the angle ϕ around

the z-axis. In this more general case, relevant for instance in nanowire systems [98] or basal

plane stacking faults where WZ and zincblende phase (oriented along the [111]-direction) are

mixed [99], a rotation matrix Ũ reads [100]:

Ũ =


cos θ cosϕ cos θ sinϕ − sin θ

− sinϕ cosϕ 0

sin θ cosϕ sin θ sinϕ cos θ

 . (2.34)

Further generalization can be achieved by considering a third angle (Euler angles). Rotation

matrices for that case are given for example in Ref. [101]. However, for all our studies here we

are using ϕ = 0 where Ũ reduces to U defined in Eq. (2.32).

In summary, we have presented and discussed the derivation of a k · p Hamiltonian for a

bulk WZ structure. Additionally, we have outlined the procedure to modify the Hamiltonian

as a function of growth angle θ. Overall, k · p perturbation theory is a continuum-based

method which gives insight into the bound electron and hole states. However, this model can

not describe the atomistic details of the underlying crystal structure. Therefore, when we are

interested in the microscopic description of the low-dimensional systems, an atomistic approach

such as TB is suitable which is the topic of the next section.

2.2.1.2 Tight-binding model

In this section, the general aspects of TB theory are explained in detail, including a discussion

of the widely used two-center approximation. The procedure how to include SOC in the TB is

also outlined.

General aspects

As the name suggests, this electronic band structure theory is based on the principle that

electrons are tightly bound to their respective atoms. The starting point for this method is

an isolated atom. Subsequently, the analysis is extended to a crystal. The time-independent

Schrödinger equation for an isolated atom located at Rn is given by

Ĥat|n, b,Rn〉 = Eat|n, b,Rn〉 ,
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with

Ĥat = − ~2

2m0
∇2 + Vat (Rn, b) ,

where |n, b,Rn〉 denotes a localized atomic-like basis state centered at an atom of type b with

a orbital type n at a position Rn; Eat denotes atomic orbital energies and Vat denotes the

atomic potential of the corresponding atom. When we consider a crystal, we have thousands of

atoms arranged in a periodic manner determined by the crystal structure. Due to interactions

between the orbitals on different atoms, the electronic wave functions are modified and the new

Hamiltonian can be expressed as:

Ĥbulk = Ĥat +
∑
i6=n
b′

Vat

(
Ri, b

′) .
Here, Ĥat is the Hamiltonian of an isolated atom and

∑
i 6=n
b′
Vat (Ri, b

′) is the potential generated

by all other atoms in the lattice. As described in the previous sections, crystal wave vector k

is a good quantum number in the bulk system due to the periodicity of the crystal. Thus, we

can classify the basis states according to k and accordingly, the equation we have to solve is

Ĥbulk|k〉 = E(k) . (2.35)

The above equation can be solved through the following steps.

1. Construction of Bloch-type basis states

The first step is to construct basis states by the superposition of the atomic orbitals of

isolated atoms. Due to the periodicity of the crystal, a wave function that fulfils Bloch’s

theorem can be constructed via:

|n, b,k〉 =
1√
N

∑
i

eik·(Ri+tb)|n, b,Ri〉 , (2.36)

where the atoms are located at vector positions Ri + tb in the unit cell Ri. We can

have more than one atoms per unit cell. The basis vector tb denotes the positions of

atoms inside the unit cell. Similar to before, n, b denotes the orbital type and atom

type respectively. N is the total number of unit cells included in the system, and the

summation is performed over all unit cells of the crystal.

2. Writing crystal eigenstates as a linear combination of constructed basis states

Now, in a crystal, one can construct such ansatz for each atomic orbital of an atom

and each atom in the unit cell of the crystal. This introduces
∑

n and
∑

b respectively.

Therefore, we get

|k〉 =
∑
n,b

|n, b,k〉 . (2.37)
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3. Expanding Hamiltonian in terms of the ansatz

The Schrödinger equation can now be expressed in terms of Bloch type basis states by

substituting Eq. (2.37) into Eq. (2.35) and multiplying from the left by the complex

conjugate of an arbitrary atomic orbital |m, b′,k〉. This leads us to

∑
n,b

[〈m, b′,k|Ĥbulk|n, b,k〉 − E(〈m, b′,k|n, b,k〉)] = 0 . (2.38)

Now the task is to evaluate overlap matrix elements (〈m, b′,k|n, b,k〉) and Hamiltonian matrix

elements 〈m, b′,k|Ĥbulk|n, b,k〉. Keeping in mind the basic assumptions of a TB model [80] that

electrons are tightly bound to the nucleus, a widely used assumption is overlap matrix element

between second nearest neighbors, third nearest neighbors and so on, are small. Nonetheless,

the basis states with respect to their nearest neighbors might not fully orthogonal to each

other. However, one can use localized basis states that can be orthogonalized with Löwdin-

transformation [93] with respect to all the sites. These Löwdin orbitals preserve the symmetry

of the atomic orbitals (e.g. s, px) from which they are derived. Accordingly, one obtains

〈m, b′,k|n, b,k〉 = δn,mδb,b′ .

Turning to the Hamiltonian, by using Eq. 2.36, 〈m, b′,k|Ĥbulk|n, b,k〉 can be written as

〈m, b′,k|Ĥbulk|n, b,k〉 =
1

N

∑
j,i

eik·(Rj+t′b−Ri−tb)〈m, b′,Rj |Ĥbulk|n, b,Ri〉 . (2.39)

The above summation is performed over N unit cells. Here, Ri and Rj ranges over the unit

cells. The matrix elements in the Hamiltonian 〈m, b′,Rj |Ĥbulk|n, b,Ri〉 can be divided into

two contributions. If real space lattice vectors Ri=Rj and tb = t′b, the matrix elements

are “on-site” and represent atomic orbital energies. On the other hand, if Ri and Rj are

not equal (orbitals are situated at different sites), we obtain hopping matrix elements. They

describe the probability for an electron to hop from a site Rj with orbital m and atom type

b′ to a site Ri having orbital n and atom type b. If (Rj + t′b) − (Ri + tb) is the distance

between atoms, these matrix elements are called first nearest neighbor elements, second next

neighbor elements and so on. These integrals decay rapidly with the distance between the

atoms [29, 76, 102]. Therefore, typically one restricts the interactions to nearest neighbor

matrix elements and occasionally to second nearest neighbors [81, 102, 103] even though these

matrix elements are expected to be smaller than the nearest neighbors. The number of hopping

matrix elements can be further reduced by assuming a two-center approximation of Slater and

Koster [104]. In general, off-site matrix elements are three-center integrals, which involves

orbital m at site Rj , orbital n at site Ri and potential energy as part of the Hamiltonian on

a third site, let’s say, Rk. However, according to Slater and Koster’s approach [104], one can

neglect in a first approximation these three-center integrals and consider two-center integrals

where the potentials are only considered for the atoms at which orbitals are located. Using
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these approximations, hopping matrix elements between different orbitals can be derived in

terms of the directional cosines which is described in detail elsewhere [76].

So far, we have not discussed how these TB matrix elements can be calculated. There are

different approaches [76, 103] to deal with this problem. Using DFT based TB methods [103,

105, 106], one could directly calculate the overlap and Hamiltonian matrix elements. The other

widely used approach is the empirical TB model where the matrix elements are treated as

parameters and fitted to the known bulk band structure values [81, 89, 102, 103]. In this thesis,

empirical TB models are employed [76, 102].

The size of the TB Hamiltonian is the number of atomic orbitals considered as basis states

multiplied by the number of atoms in the system. If atomic orbitals are labelled as s, p, d

etc. according to their symmetry properties, different TB models can be specified as scp
3
a (one

s-like orbital on the cation and three p-like orbitals on the anion) [107], sp3 (one s-like and

three p-like orbitals on each atom) [102, 103], sp3s∗ (s∗ accounts for energetically higher lying

orbitals) [108] and so on. Depending on the characteristics of the underlying band structure,

different TB models can be employed [103]. More details on the TB model used in this thesis

is presented in Chapter 6.

Inclusion of spin-orbit coupling

As described in previous sections, the inclusion of SOC effects is very often necessary for an

accurate description of the electronic structure of semiconductors. Usually, SOC is included in

the TB model by following the approach proposed by Chadi [109], which has the benefit of not

increasing the basis states numbers. Similar to the k · p approach, the spin-orbit Hamiltonian

Ĥso is added to the bulk Hamiltonian Ĥbulk as:

Ĥ = Ĥbulk + Ĥso , (2.40)

where the atomic spin-orbit operator Ĥso = 1
2m2c2

1
r
∂Vatom
∂r L̂ · ŝ. Here, Vatom is the atomic

potential, L̂ is the angular momentum operator and ŝ is the spin operator. In this work, the

SOC is assumed to couple only p orbitals at the same atom. In general, SOC interactions for

nearest neighbors can also be included in a TB model [110], however it has been found that

for III-nitrides [111], interaction among on-site p-like orbitals are sufficient to reproduce the

splitting in the VB structure at the Γ point. It is to note that s-like state (angular momentum

number l = 0) is not affected by SOC since it has constant angular part. Following discussions
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presented in Ref. [111], the only non-zero matrix elements of the spin-orbit Hamiltonian are,

〈px;±|Ĥso|pz;∓〉 = ±λ ,

〈px;±|Ĥso|py;±〉 = ∓iλ ,

〈py;±|Ĥso|pz;∓〉 = −iλ .

(2.41)

For convenience, we have denoted the states | ↑〉 and | ↓〉 by |+〉 and |−〉 respectively. λ is a

free adjustable parameter that can used to reproduce splittings in the VB near the Γ point and

is tabulated in Table B.3 of Appendix B.

2.2.2 Electronic structure theory for QDs

Having described k · p model and TB model for bulk systems in general and in particular for

WZ structures, we now move towards extending the model to heterostructures. Since we are

mainly interested in QDs, we will outline the changes required to adopt the models to calculate

the electronic structure of QDs.

2.2.2.1 k · p theory for QDs

The k · p model described in the last section to describe the electronic structure of WZ bulk

semiconductors makes use of Bloch’s theorem which originates from crystal periodicity. Due

to this periodicity, k is a good quantum number in bulk binary systems. However, this peri-

odicity no longer exists since quantum confinement breaks the translational symmetry in the

heterostructure. Therefore, we have to make changes to the developed formalism to be able to

use it for describing the electronic structure of a heterostructure. For a QD, the confinement

occurs along all three spatial directions. The standard approach is now to use the following

substitutions [112, 113]:

kx → k̂x = −i ∂∂x ,
ky → k̂y = −i ∂∂y ,
kz → k̂z = −i ∂∂z .

(2.42)

Additionally, in QDs, the material parameters become spatially dependent and vary through

out the structure. Hence, care must be taken when introducing the substitution (cf. Eq. (2.42))

that operators are still Hermitian [112, 113]. Therefore, to retain Hermiticity, symmetrization

of individual element of the Hamiltonian matrix [112, 113] is performed as:

Tkx → 1
2

(
T k̂x + k̂xT

)
,

Tkxky → 1
2

(
k̂xT k̂y + k̂yT k̂x

)
,

(2.43)
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where T represents any material parameter of the bulk k · p model. For instance, the term

L1k
2
x in the D3×3 matrix is replaced by

(
− ∂
∂xL1

∂
∂x

)
.

2.2.2.2 Tight-binding model for QDs

Similar to k · p models, bulk TB models can also be extended and modified to calculate the

electronic structure of heterostructures and of interests for us here are QDs. As stated in

the last section, since Bloch’s theorem is no longer applicable due to the loss of translational

symmetry, matrix elements at each lattice site are set according to the occupying atom. The

TB wave function |φ〉 for a QD can be expressed in terms of localized orbitals |n, b,Ri〉 as,

|φ〉 =
∑
n,b,i

cn,b,Ri
|n, b,Ri〉 . (2.44)

The time-independent Schrödinger equation can therefore be written as,

∑
n,b,i

〈
m, b′,Rj |Ĥ|n, b,Ri

〉
cn,b,Ri

− Ecm,b′,Rj
= 0 , (2.45)

where E is the corresponding energy eigenvalue and usually for the different matrix elements〈
m, b′,Rj |Ĥ|n, b,Ri

〉
TB parameters of the bulk materials are used.

In this thesis, we mainly deal with InGaN QDs embedded within a GaN matrix, where the

nearest neighbor environment of the nitrogen atom will be Ga and/or In atoms. Determining

on-site matrix elements for cations is not problematic since each cation (Ga/In) is surrounded

by four nearest neighbor N atoms. Therefore, one can directly extend bulk TB parameters

for cations to nanostructures [114]. However, due to the (potential) variations in the nearest

neighbor environment, the nitrogen on-site energy values can not unambiguously be determined

[114]. Additionally, due to differences in the band gap of InGaN and GaN, the relative position

of the CB- and VB-edges need to be taken into account. This is incorporated in the model by

shifting the diagonal matrix elements by the VB offset between dot and matrix material which

we denote by ∆Ev. Accordingly, the matrix elements of the Hamiltonian in the QD region is

modified as:〈
m, b′,Rj |Ĥ|n, b,Ri

〉
=
〈
m, b′,Rj |Ĥbulk|n, b,Ri

〉
+ ∆EvδRi,Rjδb,b′δm,n . (2.46)

From the above discussion, we see that TB matrix elements in principle depends on the distance

between the atoms. Therefore, in a heterostructure of two materials having different lattice

constants (e.g. InN and GaN), the distance between two lattice sites will be different from

the corresponding values in the bulk system. Therefore, for an accurate description of the

electronic structure, one needs to include strain effects in the analysis which is the topic of the

next section.
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2.3 Strain effects

In this section, we first outline procedures to incorporate strain effects into k ·p theory and TB

model. Subsequently we discuss three different approaches to calculate the strain field which

is present in the nanostructure.

2.3.1 Incorporation of strain effects in k · p model

To introduce strain effects into a k · p model, we follow the approach developed by Pikus and

Bir [115]. This is achieved by adding an extra term to the unstrained Hamiltonian ĤLK
jj′ (cf.

Eq. (2.17)) as

Ĥk·p = ĤLK
jj′ + Ĥε . (2.47)

It has been shown that [90, 92] Ĥε can be obtained from ĤLK
jj′ by replacing kαkβ by εαβ.

Accordingly, the matrix elements of the Hamiltonian Ĥε can be written as:(
Ĥε

)
jj′

=
∑
α,β

(
D̂ε

)αβ
jj′
εαβ . (2.48)

Here, D̂ε is the deformation potential operator. According to the type of k · p Hamiltonian

employed in the electronic structure theory, strain Hamiltonian Ĥε can be 6× 6, 8× 8, and so

on. As described in the last section, in this thesis, we have used a 6-band model for VBs and a

1-band model for the CB in electronic structure calculations. Therefore, we present now 1× 1

and 6× 6 strain Hamiltonians to incorporate strain effects in CB and VBs respectively.

• Strain Hamiltonian for the conduction band :

The strain contributions to the CB is obtained using here again |S〉-like basis states as:

Ĥε,CB = ac,‖ (εxx + εyy) + ac,⊥εzz . (2.49)

Here, ac,‖=
〈
S
∣∣∣D̂xx

ε

∣∣∣S〉 =
〈
S
∣∣∣D̂yy

ε

∣∣∣S〉 and ac,⊥ =
〈
S
∣∣∣D̂zz

ε

∣∣∣S〉 are the CB deformation po-

tentials parallel and perpendicular to the c-axis respectively. Different deformation potentials

stems from the previously described asymmetry between a and c axis. All other terms vanish

due to parity considerations [92].

• Strain Hamiltonian for the valence band

The strain Hamiltonian Ĥε for the VB states can be derived in the (|X〉, |Y 〉, |Z〉) basis in-

troduced above. Following Ref [90, 96], the strain Hamiltonian for the VBs can be written
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as:

(
Ĥε

)
3×3

=


l1εxx +m1εyy +m2εzz n1εxy n2εxz

n1εxy m1εxx + l1εyy +m2εzz n2εyz

n2εxz n2εyz m3 (εxx + εyy) + l2εzz

 .

(2.50)

The coefficients l1, l2, m1, m2, m3, n1, n2 can be obtained in the same manner as the pre-

viously described L1, L2, M1, M2, M3, N1, N2 parameters by replacing D̂ by D̂ε. Similar

to Luttinger-like effective mass parameters Ai, these coefficients is related to measurable VB

deformation potentials Di [90, 96] by, l1 = (D2 +D4 +D5), l2 = D1,m1 = (D2 +D4 −D5),

m2 = (D1 +D3),m3 = D2, n3 = 2D5, n2 =
√

2D6. The full
(
Ĥε,VB

)
6×6

strain Hamiltonian

taking into account spin (cf. Eq. (2.22)) therefore reads [96]:

(
Ĥε,VB

)
6×6

=


(
Ĥε

)
3×3

0

0
(
Ĥε

)
3×3

 . (2.51)

Here
(
Ĥε

)
3×3

is the complex conjugate of
(
Ĥε

)
3×3

.

2.3.2 Incorporation of strain in Tight-binding model

The TB Hamiltonian should also include corrections from strain effects for a realistic descrip-

tion of electronic and optical properties. In a microscopic picture, the strain field is induced

in a heterostructure due to different bond lengths of the constituting atoms. Therefore, atoms

in the nanostructure are displaced from their original positions in an unstrained bulk lattice.

In general, strain effects can be included in the TB description as bond angle and bond length

corrections to the inter-site matrix elements of the TB Hamiltonian [116, 117]. Even more

sophisticated models account for strain corrections to the on-site energies [118]. In these meth-

ods, the different deformation potentials are evaluated through a fitting procedure [118] which

might not be able to produce all deformation potentials correctly. Furthermore, in this ap-

proach especially when introducing on-site corrections in addition to bond length and bond

angle corrections, a large number of free adjustable parameters have to be determined [118]. In

this work, we use a different approach which is entirely based on the on-site-corrections [119].

As we will discuss in more detail, we use a sp3 basis where on-site corrections can be included

via Pikus-Bir Hamiltonian [115]. With this approach, Γ point deformation potentials can be

inputted directly without the need of any fitting procedure [119] and correspondingly, the en-

ergetic splitting of different bands are correctly described [119]. It should be noted that this

model is only fitted to the Γ point and therefore, different band parameters can not be repro-

duced at the boundary of the first Brillouin zone. However, as described before, we are mainly

interested in the properties of a material system near Γ point. Additionally, for instance in



Chapter 2: Theory of wurtzite heterostructures 37

InN, energies of M and A k-points are energetically far away from the CB edge [61]. Therefore,

this approach should be sufficient for our purpose. The deformation potential required for the

calculations of different matrix elements can either be extracted from the experimental data or

can be calculated by DFT [61, 120].

Having outlined the procedure to incorporate strain effects in a k · p and TB model, we have

to calculate the strain tensor components εij that go into the strain corrections for the total

Hamiltonian. Therefore, we present different methods to calculate strain fields in the next

section.

2.4 Calculation of strain fields

As already indicated above, there are different approaches to calculate strain fields in a sys-

tem [103, 121, 122]. Since QDs involve million of atoms, calculation of strain using ab-initio

methods fail due to this huge problem size [123]. We outline three different methods used in

this thesis to calculate strain fields in a QD system namely, (a) a surface integral method (b) a

continuum elasticity based approach and (c) an atomistic valence force field approach (VFF).

In general, the model for calculating the strain field should match the underlying electronic

structure theory. In other words, if we are using a continuum-based k · p theory the corre-

sponding strain field should also be calculated in a continuum frame. Therefore, depending on

the electronic structure theory, we can choose the appropriate strain field calculations.

2.4.1 Surface integral method

The surface integral method presented here is a simple real space model that for certain dot

geometries (e.g. cuboid) can give analytic results for strain fields in and around a dot. This

method uses surface integrals to evaluate strain values. The shortcoming of this method is

the use of same elastic constant inside and outside of the dot. However, there are several

advantages associated with this approach. In this method it is assumed that the QD is buried

in an infinite system; therefore, boundary condition will not play a role. Furthermore, we can

utilize this method with any arbitrary underlying grid which makes it attractive for use in both

continuum and atomistic electronic structure theory. Overall, this method is a good starting

point for calculating strain field of a QD for an arbitrary shape.

Here, we only provide expressions for calculating the strain field around a QD structure. De-

tailed derivation of this method is given by Williams et al [124]. In this method, the strain is

calculated via [124]:

εij(r) = δijε0χQD +
ε0A

4π

∫
QD

(xi − x′i)
|r− r′|3

n̂j · dS′ , (2.52)
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where (x1, x2, x3) = (x, y, z) and points on the surface of the dot are denoted by primed symbols.

The integral is taken over the surface of the dot. n̂j is the unit vector in the j direction, and

A = (1 + ν)/(1− ν) where ν is Poisson’s ratio. For a WZ system, ν = C13/ (C11 + C12) where

Cij are the elastic constants of the dot material. χQD is the characteristic function of the dot

such that χQD = 1 inside the dot and zero outside. dS′ is the elemental surface area vector

normal to the dot surface. Finally, the isotropic misfit strain ε0 is defined by,

ε0 =
1

3
(2ε0a + ε0c) ,with

ε0a =
aM − aQD

aQD
, ε0c =

cM − cQD

cQD
.

where aQD/M and cQD/M are lattice constants of QD/matrix material along x and z-axis (c-

axis), respectively.

2.4.2 Continuum elasticity approach

To circumvent the problem of using the same elastic constants between the dot and barrier

material, we move to another continuum-based strain approach. This model is based on the

assumptions that two crystals have a similar crystal structure and match perfectly at the

interface forming a coherent interface. In other words, the lattice mismatch of the active region

and its surrounding material is sufficiently small and can be accommodated by an elastic strain.

This is consistent with previously assumed infinitesimal strain theory in the Pikus-Bir model

and therefore, is a widely used approach to evaluate strain fields for use in continuum-based

k · p models [90, 96]. Without such interface, misfit dislocations and defects are generated

in the system, and the continuum elasticity model cannot be applied directly. We have used

formalism developed by Povolotskyi et al [125] and Marquardt et al [126] to calculate strain

fields in this study.

In this method, first, it is assumed that the bulk crystal structures of the materials forming

the heterostructure are similar to a particular “reference” lattice structure and they can be

transformed into the reference lattice structure by applying a small strain. Due to coherent

nature of interfaces, this transformation is a diagonal tensor and is described by [125, 126],

ε0
ij =


arx−a0x
a0x

0 0

0
ary−a0y
a0y

0

0 0 arz−a0z
a0z

 , (2.53)

where arx,ary, a
r
z are the lattice constants of the reference structure with the condition that we

have coherent interfaces and a0
x, a0

y, a
0
z are the lattice constants of unstrained bulk material

that is strained here to a reference lattice constant. In our case of hexagonal WZ crystals, this
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strain tensor is defined by ε0
xx = ε0

yy = ar−a0
a0

and ε0
zz = cr−c0

c0
. This is since the lattice constant

along the c-direction is different from in-plane lattice constants, as discussed already above.

If we define a displacement vector field u with respect to the reference lattice such that u =

r-r′, where r′ and r are coordinates of a point before and after deformation, the complete strain

tensor now can be defined in terms of this displacement fields as [125, 126]:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+ ε0

ij . (2.54)

Therefore, in order to find the strain tensor components εij that go into the Hamiltonian Ĥε

(cf. Eq. (2.48)), we have to determine the displacement field. The displacement field can be

obtained by minimizing the elastic energy F which is in general given by:

F =
1

2

∫
Ω0

Cijkl(r)εij(r)εkl(r)d3r , (2.55)

where Cijkl is the elastic stiffness tensor and Ω0 is volume of the cell. The above minimization

with respect to the displacement field u leads us to a set of partial differential equation as [125,

126]:
δF [ux, uy, uz]

δuj
=

∂

∂ri

(
Cijkl

(
∂uk
∂rl

+ ε0
kl

))
= 0, j = x, y, z . (2.56)

From Eq. (2.56), we can now determine the displacement field, and subsequently, strain tensor

components can be evaluated by using Eq. (2.54).

2.4.3 Atomistic valence force field method

Continuum-based strain approaches such as the surface integral method or the continuum

elasticity method are extremely fast and give first quantitative insights into the strain effects in

large sized systems, such as QDs. However, these approaches might not be able to capture the

symmetry properties of the underlying lattice. This is well known for instance in InAs/GaAs

QD systems where the predicted symmetry from a continuum-based model is C4v while the

real symmetry of the QD system is C2v. These microscopic effects can be accurately captured

in an atomistic model and also complements underlying atomistic electronic structure theory

such as the TB model. Therefore, in structures where atomistic details are necessary, we need

alternate atomistic approaches for evaluation of strain.

For this purpose, we briefly describe here an atomistic valence force field (VFF) approach which

gives a basic description of crystal elasticity on the basis of forces acting among the individual

atoms in the nearest neighbor environment. This method uses an interaction potential to

calculate the relaxed atomic coordinates. There are quite a number of VFFs used in literature

for different compounds [127–129]. In this study, we have used Martin’s VFF method [129]
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Figure 2.4: Valence force field interaction terms contributing to Eq. (2.57). From left to right:
bond stretch, kr; bond bending, kθ; bond-bond, krr; bond-angle, krθ. Taken with permission
from D. Tanner [130]

which includes electrostatic interactions in the system explicitly and reproduces attributes of

a real WZ system such as c/a ratios and internal parameters u. In the here used model, the

total energy of an atom i [119] is given by,

Ui =
1

2

∑
j 6=i

1

2
kr
(
rij − r0

ij

)2
+
∑
j 6=i

∑
k 6=i,k>j

{
1

2
kiθr

0
ijr

0
ik

(
θijk − θ0

ijk

)2
+ kirθ

[
r0
ij

(
rij − r0

ij

)
+ r0

ik

(
rik − r0

ik

)] (
θijk − θ0

ijk

)
+ kirr

(
rij − r0

ij

) (
rik − r0

ik

)}
+

′∑
j 6=i

Z∗i Z
∗
j e

2

4πεrε0rij

− 1

2

∑
j 6=i

1

4
αM

Z∗i Z
∗
j e

2

4πεrε0r0
ij

2

(
rij − r0

ij

)
.

(2.57)

Here i refers to the atom under consideration while j and k run over all the possible nearest

neighbors for each i except the term marked with a prime symbol. The term containing primed

symbol corresponds to long-range Coulomb interaction and runs over the whole crystal. In the

case of our WZ system, each primitive cell contains four atoms. Therefore, for the unit cell

our evaluation includes 16 bond lengths and 24 bond angles. The different force constants are

denoted by kr, k
i
θ, k

i
rθ, and kirr and the interactions they are describing are shown schematically

in Fig. 2.4. The term kr and kθ describes the resistance to changes in bond length and bond

angle when the atom moves away from its equilibrium position. Similarly, the term kirr measures

the response in a particular bond to changes occurring in its neighboring bond ; kirθ refers to

the interaction between the angle between two bonds, and the bonds themselves. For instance,

bond lengths will increase with a decrease in the bond angle. The term rij denotes the bond

length between atom i and j and θijk gives the angle between the bonds rij and rik and can be

defined by cos−1
(

rij ·rik
|rij ||rik|

)
. The equilibrium bond lengths and bond angles are denoted by r0

ij

and θ0
ijk, respectively. Z∗i denotes the effective charge of atom i in a point charge model [119].

The elementary charge, permittivity of the vacuum , dielectric constants of the materials are

given by e, ε0 and εr respectively. αM is the Madelung constant. Finally, a factor 1/2 is
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introduced to the bond-stretching terms to avoid double counting in the same unit cell. Here

described force constants are adjustable parameters and they are obtained by fitting to the

elastic constants and lattice constants [119] of the material under investigation. It is to note

that the model used in this work is different for instance to the model proposed by Camacho

and Niquet [131] which does not include electrostatic interaction explicitly and accounts for the

deviation of the c/a ratio of real WZ structures by considering different force constants along

the c-axis and in-plane directions. The VFF model described above has been implemented in

the software package LAMMPS [114, 132].

After relaxation of atomic positions through the VFF method, the local strain tensor εij can

be found out as [61]:


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 =


R0

12,x R0
23,x R0

34,x

R0
12,y R0

23,y R0
34,y

R0
12,z R0

23,z R0
34,z


−1

×


R12,x R23,x R34,x

R12,y R23,y R34,y

R12,z R23,z R34,z

− I . (2.58)

Here, R0
12, R0

23, and R0
34 are the tetrahedron edges before strain and R12, R23, and R34 are the

distorted tetrahedron edges. I corresponds to the 3 × 3 identity matrix.

Additionally, the strain present in the structures can induce piezoelectricity in the system as

discussed already in Sec. 1.2.2. Therefore, piezoelectric effects need to be considered when

calculating the electronic structure of III-N heterostructure and correspondingly discussed in

the next section.

2.5 Piezoelectricity

In this section, we discuss how to include piezoelectric effects in k ·p and TB theory followed by

outlining different methods to calculate the same. In the introduction, we have already outlined

that III-V nitrides experience a polarization vector field which is the sum of spontaneous and

piezoelectric polarization. As we will show later, this polarization vector field can induce an

electrostatic potential energy Vp(r) in a heterostructure. Similar to the strain Hamiltonian Ĥε,

Vp(r) can be added as an additional contribution to the k · p Hamiltonian [96]. On the other

hand, Vp(r) can be added as an on-site correction to the TB Hamiltonian [76] to incorporate

effects of piezoelectricity in a TB model.

Here, we will restrict this general discussion to the widely used first-order piezoelectricity. The

second-order piezoelectricity will be discussed in later chapters. To first-order, the magnitude of

piezoelectric response is connected to strain εj (Voigt notation) via the first-order piezoelectric

tensor eµj . This first-order ansatz is linear in strain. For systems with a WZ crystal structure

one is left with 18 first-order coefficients eµj of which only three are independent quantities,
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namely e33, e15 and e31 [58, 133]. Taking this into account and considering only first-order

contributions in Eq. (1.2) one is left with the widely used and well-known c-plane piezoelectric

polarization vector field PFO
pz [58]:

PFO
pz =


2e15εxz

2e15εyz

e31(εxx + εyy) + e33εzz

 . (2.59)

Please note, in Eq. (2.59) we have used the Cartesian notation for the strain tensor εij ; in

Eq. (1.2) Voigt notation εj has been applied. The connection between these notations is

given by ε1 = εxx, ε2 = εyy, ε3 = εzz, ε4 = (εyz + εzy) = 2εyz, ε5 = (εxz + εzx) = 2εxz,

ε6 = (εxy + εyx) = 2εxy [133]. More details on the connection between Voigt and Cartesian

notation can be found in Ref. [133]. From Eq. (2.59) it is clear that x- and y-components are

determined by shear strain εij (Cartesian notation), with i 6= j, and the first-order piezoelectric

coefficient e15. The z-component is determined by the diagonal parts of the strain tensor εii

and the two piezoelectric coefficients e31 and e33.

Depending on the underlying strain theory, one can calculate Vp(r) in different ways. We

present in the following three different methods to calculate piezoelectric potential.

Built-in potential from surface-integral methods

Since total polarization vector field in a WZ structure consists of spontaneous and piezoelectric

polarization, we evaluate these different contributions to the total electrostatic built-in field sep-

arately. Similar to the strain field calculations, the surface integral method can also be applied

to the electrostatic built-in potential due to spontaneous polarization. For the spontaneous

polarization induced potential in a heterostructure, one is left with:

ϕsp(r) =
Psp, QD − Psp, M

4πεrε0

∫
QD

n̂3 · dS′

|r− r′|
, (2.60)

where εr is the dielectric constant of the QD region, n̂3 is the unit vector along the growth

direction. dS is the elemental area with the vector normal to the QD surface. Psp,QD/M

are the spontaneous polarization components for QD/matrix. The built-in potential due to

piezoelectric polarization can be obtained by:

ϕpz(r) = J

∫
QD

(x3 − x′3)2

|r− r′|3
n̂3 · dS′ +K

∫
QD

1

|r− r′|
n̂3 · dS′ , (2.61)

where

J =
−ε0A (2e15 − e33 + e31)

8πε0εr
(2.62)

K =
ε0

8πε0εr
[4e31 + 2e33 −A (2e15 + e31 + e33)] . (2.63)
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Here, e15, e31 and e33 are the first-order piezoelectric polarization coefficients as discussed

already above. x3 is the component of r along growth direction. The derivation of these

equations can be found somewhere else [134]. Finally, the total electrostatic potential energy

is given by,

Vp(r) = −e(ϕsp(r) + ϕpz(r)) . (2.64)

Built-in potential from continuum elasticity theory

With the knowledge of total polarization vector PTot(r) in a heterostructure, the electrostatic

potential ϕTot (r) can be obtained by solving the Poisson’s equation

4πε0∇ (εr(r)∇ϕTot (r)) = ρp(r) , (2.65)

where ε0 and εr are the vacuum dielectric constant and relative permittivity of the material.

ρp(r) is the polarization charge density and is equal to −∇PTot(r). Correspondingly, the

electrostatic built-in potential energy is given by,

Vp(r) = −e(ϕTot(r)) . (2.66)

Built-in potential from VFF model

The macroscopic polarization theories described in the above cannot account for the microscopic

features of the underlying atoms under strain, for instance the change in bond lengths and

bond angles around the atoms [52]. Therefore, to consider the effect of local strain on electric

polarization, a local polarization theory is required [61]. In this theory, the total polarization

vector is divided into macroscopic and microscopic contributions. Correspondingly, the local

polarization vector field at an atomic site 0 is written as :

Pi =
6∑
j=1

e
(0)
ij εj + P sp

i −
e

V0

Z0
i

N0
coor

N0
coor∑
α=1

`αi −
3∑
j=1

(δij + εij)

N0
coor∑
α=1

`αj,0

 , (2.67)

where the first term is the macroscopic piezoelectric contribution and is called as the “clamped-

ion” term where the ionic coordinates are not allowed to relax. εj is the macroscopic strain

components in Voigt notation and e
(0)
ij are the clamped-ion piezoelectric coefficients. The local

contribution, on the other hand, is evaluated at each atomic site and involves the deformation of

the nearest neighbor environment around the atom under consideration which is denoted as “0”.

P sp
i is the contribution arising from spontaneous polarization. Through local contributions, we

can define a dipole moment for each tetrahedron of the entire cell. δij is the Kronecker delta and

V0 is the volume of the tetrahedra comprising an atomic site and all of its nearest neighbors. e

is the elementary electronic charge, Z0
i is the Born effective charge tensor of the atom for which

the local polarization is being computed and N0
coor is the number of nearest neighbors. The
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P
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0

P2
P4

P3

l1

Figure 2.5: Different tetrahedron edges in a first nearest-neighbor environment. The bond
vector pointing from atom 0 towards atom α is denoted lα

parameter `αi , `αj,0 is the bond vector pointing from the central atom towards atom α before

and after strain respectively. One of such bond vectors is presented in Fig. 2.5. It is to note

that all parameters except the strain (εj) and bond vectors (`α) are system independent and

can be obtained from DFT calculations [61, 119].

Utilizing the polarization vector field P, the built-in potential can be calculated by solving

Poisson’s equation. In an atomistic framework, a straight forward implementation of Poisson’s

equation is difficult due to abrupt changes in the polarization vectors and that the lattice after

relaxation is highly asymmetric. Therefore, we make use of a point dipole method as described

in [61] where the electrostatic potential is calculated at a desired position r due to the presence

of a point dipole at another point, let’s say r0. This method is described in detail in Ref [52].

Equipped with the here presented electronic structure theories and how to calculate and include

strain and piezoelectricity effects, one can solve one-particle Schrödinger equation and obtain

single-particle properties such as energies and wave functions for a QD system for instance.

These results are often used to describe physical behavior of the QD systems since they capture

all structural properties such as size and shape of the dot, strain profile and piezoelectricity.

However, it is only applicable for a single charge carrier occupying the dot. In reality, QDs

contain more than one charge carrier and therefore, in experiments many-particle interactions

determine the electronic and optical properties [29] which is the topic of discussion of the

following section.

2.6 Many-body states

To calculate many-particle properties, it is necessary to account for Coulomb interaction be-

tween the charge carriers [135, 136]. In this section, we introduce two different approaches,

namely Hartree approximation [88, 137] and Configuration Interaction method [135, 138] to

include Coulomb interactions between the carriers. Finally, we will close this chapter with a
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discussion on excitonic fine structure splitting (FSS) which is of great interests for quantum

entanglement [139].

The many-body Hamiltonian in a crystal for an interacting electron system usually takes the

form

Ĥ =
∑
i

Ĥ (ri) +
1

2

∑
i

∑
j
i 6=j

V̂ (ri − rj) , (2.68)

where the first term is a summation of the single-particle Hamiltonians Ĥ and V̂ is the interac-

tion operator between the particles. The position of a particle is denoted by rα where α denotes

the particle and takes the values 1, 2, . . . , N . The interaction operator is multiplied by 1
2 since

the double summation over i and j counts each pair twice. Now, to obtain the eigenstates of

such system we have to solve many-particle Schrödinger equation:

ĤΨ (r1, r2, . . . , rN ) = EΨ (r1, r2, . . . , rN ) , (2.69)

where Ψ (r1, r2, . . . , rN ) is the many-particle wave function. Due to the presence of ≈ 1028

electrons in a solid, it is not possible to find exact solutions to the Schrödinger equation for

many electron atoms. Therefore, one must look for approximations that render the Schrödinger

equation tractable to a numerical solution.

2.6.1 Hartree Approximation

We start with a simple approximation, namely the Hartree approximation to solve the many-

body problem. In this approach, fundamentally we make the assumption that many-body wave

function is a simple product of single-particle states such that,

Ψ (r1, . . . , rn) = ψ1 (r1)ψ2 (r2) . . . ψn (rn) . (2.70)

In spite of the numerical tractability of Hartree approach, this crude approximation fails to

capture essential physics [140, 141]. For instance, due to fermionic nature of electrons, the

many-body electron wave function should be antisymmetric with respect to interchange in

electronic coordinates. This condition cannot be satisfied with the approach presented in

Eq. (2.70). However, for the cases where we are only interested in the energetic corrections in

the energy spectrum and charge density redistributions due to Coulomb effects, this approach

is sufficient. We will come back to the discussion of other sophisticated approaches in the next

section.

In this thesis, we are mainly interested in excitonic and biexcitonic properties of the sys-

tem. Therefore, we present here the implementation of Hartree’s approximation for the spe-

cific case of an exciton (1 electron, 1 hole) and a biexciton (2 electrons, 2 holes). According
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to Eq. (2.70), the initial ansatz is that the excitonic wave function ΨX(r1 = re, r2 = rh)

is described as a direct product of electron ψe and hole ψh single-particle ground states.

(ΨX(re, rh) = ψe(re)ψh(rh)) [88]. The idea is now that of a mean field approximation so that

the electron and holes are separately treated and their energies and wave functions are modified

due to the presence of the other particles. Therefore, within this ansatz the Hamiltonian can

be written as [88]:

[Ĥ + Ve]ψh = EXh ψh , (2.71)

[Ĥ + Vh]ψe = EXe ψe ,

where Ĥ is the single-particle (empty-dot) Hamiltonian while Ve and Vh are the potentials

generated by the presence of the electron and hole in the dot, respectively. Here, in the first

step, we neglect the presence of other particles. The resulting wave functions now serve as

initial guess to the excitonic wave function, and their effect on the potential is calculated by

solving

− e|ψe|2 = ε0εr∆Ve , e|ψh|2 = ε0εr∆Vh , (2.72)

where εr is the dielectric constant and ε0 the vacuum permittivity. In general, εr is position

dependent, however in our calculations, since we are dealing with QDs having low In content

(15%-30%) and that the wave functions are mainly localized in the dot region, we have taken

the εr value to be position independent and have assumed, εr =εr,dot. Using this potential, we

then calculate new wave functions for the carriers and the process is repeated until the desired

level of self-consistency is achieved. The convergence criteria of the self-consistency loop is set

to 0.1 meV, meaning that convergence is reached once energies of successive iterations differ

by no more than 0.1 meV. In doing so we account for the attractive Coulomb interaction

between the carriers in the dot and the related deformation of the wave functions. The exciton

recombination energy EX and binding energy EbX are calculated via [113]

EX = EXe − EXh + Jeh , (2.73)

EbX = Ee − Eh − EX , (2.74)

where Ee and Eh are single-particle electron and hole energies of the empty dot. EXe and EXh

are obtained from Eq. (2.71). The Coulomb matrix element Jeh is calculated via:

Jeh = (〈ψh |Ve|ψh〉 − 〈ψe |Vh|ψe〉) /2 . (2.75)
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Note that Jeh is included in Eq. (2.73) to avoid double counting of the Coulomb interaction.

Similarly to the exciton, the biexciton (2 electron, 2 hole) ground state is obtained from [88]

[Ĥ + 2Ve + Vh]ψh = EXXh ψh , (2.76)

[Ĥ + 2Vh + Ve]ψe = EXXe ψe , (2.77)

with the biexciton recombination energy EXX and the biexciton binding energy EbXX defined

as [88]

EXX = (2EXXe − 2EXXh + 4Jeh − Jee − Jhh) (2.78)

−(EXe − EXh + Jeh) ,

EbXX = 2EX − (2EXXe − 2EXXh + 4Jeh − Jee − Jhh) . (2.79)

Here, the biexciton recombination energy EXX is defined as the energetic difference between

the biexciton ground state energy (2EXXe − 2EXXh + 4Jeh − Jee − Jhh) and the exciton ground

state energy (EXe − EXh + Jeh). The repulsive electron-electron Jee and hole-hole interaction

Jhh is calculated via:

Jee = 〈ψe |Ve|ψe〉 , (2.80)

Jhh = −〈ψh |Vh|ψh〉 . (2.81)

The here presented Hartree approximation is sufficient to establish trends in excitonic and

biexcitonic properties of a QD system. However, as stated earlier, this approach fails to preserve

the antisymmetric nature of the fermion wave functions under exchange of particles. The

simplest assumption for reflecting the fermionic character of an electrons/hole wave function is

a Slater determinant which leads to Hartree-Fock equations [113] as:

Ψ (r1, r2, . . . , rN ) =
1√
N
det(ψ (r1)ψ (r2) . . . ψ (rN )) . (2.82)

In this approach, the Fock terms deal with the exchange requirement of the fermions ex-

actly [113]. However, in an interacting electron system, the full many-body ground state

cannot be described by a single Slater determinant. In other words, these equations neglect

correlation effects arising due to many-body interactions. Therefore, to successfully incorporate

the effects of both exchange and correlation in the many-body problem, we discuss in the next

section a sophisticated approach, the so-called “Configuration Interaction” (CI) scheme.
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2.6.2 Configuration Interaction Method

In full CI method, the many-body Hamiltonian is expanded in the basis of uncorrelated many-

particle states. In a QD picture, these uncorrelated basis states are constructed by using

for instance bound single-particle states. In the CI approach, the Coulomb interaction is

treated exactly among the states taken into account. However, if all of the bound states are

considered, it becomes computationally expensive. Previous studies [142] have reported that it

is not always necessary to include all of the bound states for the properties we are interested

in. The contribution of the higher lying states to the CI depends on the energetic separation

between the different states. Usually, the calculation of excitonic effects are restricted to a

smaller number of bound states where these configurations are treated exactly in a restricted

Hilbert space [142]. We follow this approximation here.

Now, we turn to the many-particle CI Hamiltonian. In the last section, we discussed many-

body problem in the language of “first quantization”. As discussed above, when working in

this formalism, we work with Slater determinants. However, it is more convenient to deal with

the many-particle interactions in the formalism of “second quantization” or the occupation-

number representation [143]. Since identical particles are indistinguishable, instead of focusing

on individual state of particles (ψ1⊗ψ2⊗· · ·⊗ψN ), we can use a basis that describes number of

particles occupying each state in a set of single-particle states. In this basis, instead of a wave

function ψn, we use Dirac state |n〉. For instance, in a N -particle system, the state vectors are

then represented as |n1, n2, n3, . . . 〉 where
∑

j nj = N . Here, n1 particles occupy state 1, n2

particles occupy state 2 and so on. It is to note that ni can only take values 0 or 1 for fermions.

This formalism involves the use of so-called creation and annihilation operators [143]. The

creation operator λ†i creates a particle in state i and acts on the state vectors as,

λ†i |n1, n2, . . . , ni, . . .〉 = (−1)
∑
µ<i nµ (1− ni) |n1, n2, . . . , 1i, . . .〉 , (2.83)

where (−1)
∑
µ<i nµ is a phase factor. On the other hand, the annihilation operator λi removes

a particle from state i and acts on the state vectors as:

λi|n1, n2, . . . , ni, . . .〉 = (−1)
∑
µ<i nµni|n1, n2, . . . , 0i, . . .〉 . (2.84)

In this method, the antisymmetry properties of fermions is automatically ensured by the char-

acteristics anti-commutation relation of these operators [143]. For instance,

λiλj |n1, n2, . . . , ni, . . . , nj , . . .〉 = (−1)
∑
µ<i nµ(−1)

∑
µ<j nµninj |n1, n2, . . . , 0i, . . . , 0j . . .〉 ,

λjλi|n1, n2, . . . , ni, . . . , nj , . . .〉 = (−1)
∑
µ<i nµ(−1)

∑
µ<j nµ−1ninj |n1, n2, . . . , 0i, . . . , 0j . . .〉

= −λiλj |n1, n2, . . . , ni, . . . , nj , . . .〉 .
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In other words, the Slater determinants of single-particle states in first quantization turns

into products of creation operators acting on a vacuum state in second quantization [143].

Here, vacuum state |0〉 corresponds to a state containing no fermions. In general, the many-

particle Hamiltonian of a system of interacting electrons and holes in the above presented

second quantization formalism is given by [136],

Ĥ =
∑
i

(
Eei e

†
iei + Ehi h

†
ihi

)
+

1

2

∑
ijkl

V ee
ijkle

†
ie
†
jekel +

1

2

∑
ijkl

V hh
ijklh

†
ih
†
jhkhl −

∑
ijkl

V eh,dir
ijkl e†ih

†
jhkel +

∑
ijkl

V eh,ex
ijkl e†ih

†
jhlek︸ ︷︷ ︸

Ĥc

.

(2.85)

Here, Eei and Ehi are single-particle electron and hole energies of state i, respectively. The

creation operator λ†i creates an electron (λ†i = e†i ) or hole (λ†i = h†i ) in the single-particle state i

while the annihilation operators λi removes an electron (λi = ei) or hole (λi = hi) from state i.

The Coulomb interaction between the particles in the states i, j, k, l is described by the terms

V λλ′
ijkl . These terms can be divided into four categories such as electron-electron, hole-hole,

electron-hole direct interaction and electron-hole exchange interaction, respectively. The first

two terms of Ĥc correspond to repulsion between two carriers of same charge. Here, electrons

and holes are annihilated in states k, l and correspondingly created in states i and j. The third

term corresponds to the direct Coulomb attraction between electron and hole where an electron

and hole is annihilated in the states k and l and then created in states i and j, respectively.

The last term corresponds to the electron-hole exchange interaction which is a pure quantum

mechanical effect and has no classical analogue. The factor 1
2 is included in the e− e and h−h

interaction to avoid double counting arising due to indistinguishability of particles.

Now, we will turn to the calculation of the Coulomb matrix elements Vijkl. In this work, we

are only interested in excitonic (1-electron and 1-hole) properties of the system, therefore, we

will not discuss terms corresponding to e− e interaction (V ee
ijkl) and h− h interactions (V hh

ijkl).

The remaining direct and exchange Coulomb matrix elements can be calculated by

V eh,dir
ijkl =

∫
dr

∫
dr′ψ∗e,i(r)ψ∗h,j

(
r′
)
V
(
r− r′

)
ψh,k(r

′)ψe,l (r) , (2.86)

V eh,ex
ijkl =

∫
dr

∫
dr′ψ∗e,i(r)ψ∗h,j

(
r′
)
V
(
r− r′

)
ψe,k(r

′)ψh,l (r) ,

where ψe,α(r) and ψh,β(r) are the single-particle electron and hole wave functions for state α

and β respectively. The screened Coulomb potential is given by,

V
(
r− r′

)
=

e2
0

4πε0εr |r− r′|
. (2.87)
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In the above, e0 denotes the electron charge, ε0 is the vacuum dielectric constant, and εr is

the dielectric constant of the dot region. In general, εr is position dependent. However, as

discussed earlier, since we are dealing with low In content QDs plus that the wave functions are

mainly localized in the dot, we have assumed εr= εdot for the whole structure. When discussing

TB theory in Sec 2.2.2.2, we had pointed out that the wave function ψi(r) can be expressed in

terms of localized orbitals as:

ψi(r) =
∑
Rα

ciRαφRα(r) . (2.88)

Putting the expansion defined in Eq. (2.88) into Eq. (2.86), Vijkl can be reformulated as:

Vijkl =
∑

R1R2R3R4

∑
αβγδ

ci∗R1αc
j∗
R2β

ckR3γc
l
R4δ

·
∫
d3rd3r′V

(
r− r′

)
φ∗αR1

(r)φ∗βR2

(
r′
)
φγR3

(
r′
)
φδR4(r) .

(2.89)

However, it has been shown previously that [76], due to the long range nature of the direct

Coulomb interaction, instead of using full wave functions ψi(r), one can approximately calculate

the Coulomb matrix elements from the TB coefficients ciRα as [76]:

Vijkl =
∑

RR′
∑

αβ c
i∗
Rαc

j∗
R′βc

k
R′βc

l
RαV (R−R′) ,

with V (R−R′) =
e20

4πε0εr|R−R′| for R 6= R′

and V (0) = 1
V 2
uc

∫
uc d

3rd3r′
e20

4πε0|r−r′| ≈ Vc .
(2.90)

Here, Vuc is the unit cell volume and we have neglected screening for the on-site term. The

validity of the above approximations can be found elsewhere [76]. After calculating these

Coulomb matrix elements, the CI Hamiltonian can be constructed in terms of the uncorrelated

basis states by diagonalizing the many-body Hamiltonian, Ĥ, Eq. (2.85). Subsequently, we

obtain the interacting many-particle states. A detailed description of this method can be

found in Refs [135, 138, 142]. However, we can have a qualitative understanding of the problem

by analysing it for a simple exciton system, which is presented in the next section.

2.6.3 Example of a CI calculation

In this section, we present a simple example for calculating the exciton problem (1 electron

and 1 hole) using the CI method. Here, we are mainly interested in how the excitonic spectra

can be evaluated using the CI method. Therefore, we have to only focus on the last two terms

of the many-body Hamiltonian Ĥc (cf. Eq. (2.85)). In other words, for an exciton,

Ĥc = −
∑
ijkl

V eh,dir
ijkl e†ih

†
jhkel︸ ︷︷ ︸

Ĥc,dir

+
∑
ijkl

V eh,ex
ijkl e†ih

†
jhlek︸ ︷︷ ︸

Ĥc,ex

. (2.91)



Chapter 2: Theory of wurtzite heterostructures 51

In our simple case, we take only electron and hole ground states into account. One can now

include spin in each of these states. The ground state of electron and holes is two fold degenerate

due to spin degeneracy. If we include SOC in the description, the spin is no longer a good

quantum number. Also, in a QD system, due to band mixing effects, even the total angular

momentum is not a good quantum number. However, these states are still doubly degenerate

due to time reversal symmetry [76] 2. Therefore, to include spin and taking into account SOC

in the description, we assume two possible basis states for both electrons and holes such that

|ne1, ne2, nh1, nh2〉 are the occupation numbers for the electrons occupying states ne1 or ne2 and

the holes occupying states nh1 or nh2. In such a scenario, we can have four possible states,

|1, 0, 1, 0〉, |1, 0, 0, 1〉, |0, 1, 1, 0〉, and |0, 1, 0, 1〉, thus giving a 4×4 CI problem. For convenience,

we denote the above four state vectors as |c1v1〉, |c1v2〉, |c2v1〉 and |c2v2〉, respectively where

the excitonic state |civj〉 indicates which state is occupied by the electrons/holes.

As an example, we will evaluate one matrix element, i.e. 〈c1v2|Ĥc|c1v2〉 in this basis. The

matrix element for the direct term Ĥc,dir is given by,

〈c1v2|Ĥc,dir|c1v2〉 =〈c1v2|
∑
ij

V eh,dir
ij21 e†ih

†
jh2e1|c1v2〉

=〈c1v2|V eh,dir
1121 e†1h

†
1h2e1|c1v2〉+ 〈c1v2|V eh,dir

1221 e†1h
†
2h2e1|c1v2〉

+ 〈c1v2|V eh,dir
2121 e†2h

†
1h2e1|c1v2〉+ 〈c1v2|V eh,dir

2221 e†2h
†
2h2e1|c1v2〉

=〈c1v2|V eh,dir
1121 |c1v1〉+ 〈c1v2|V eh,dir

1221 |c1v2〉+ 〈c1v2|V eh,dir
2121 |c2v1〉+ 〈c1v2|V eh,dir

2221 |c2v2〉

=V eh,dir
1221

(2.92)

Similarly, the matrix element for the exchange term Ĥc,ex is give by,

〈c1v2|Ĥc,ex|c1v2〉 =〈c1v2|
∑
ij

V eh,ex
ij12 e†ih

†
jh2e1|c1v2〉

=〈c1v2|V eh,ex
1112 e†1h

†
1h2e1|c1v2〉+ 〈c1v2|V eh,ex

1212 e†1h
†
2h2e1|c1v2〉

+ 〈c1v2|V eh,ex
2112 e†2h

†
1h2e1|c1v2〉+ 〈c1v2|V eh,ex

2212 e†2h
†
2h2e1|c1v2〉

=〈c1v2|V eh,ex
1112 |c1v1〉+ 〈c1v2|V eh,ex

1212 |c1v2〉+ 〈c1v2|V eh,ex
2112 |c2v1〉+ 〈c1v2|V eh,ex

2212 |c2v2〉

=V eh,ex
1212

(2.93)

2 The time reversal symmetry is a non-geometrical symmetry which introduces additional degeneracies in the
system. In general, when the time reversal operator acts on a state, we obtain another state that is degenerate to
it and is the complex conjugate of the original state accompanied by a spin flip. This degeneracy is the so-called
Kramer’s degeneracy in quantum mechanics.
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When evaluating the above, we have used the relation that the terms 〈civj |ckvl〉 are only non-

zero if i = k and j = l. Similarly other matrix elements of the Ĥc can be found as[
Ĥc

]
4×4

=
[
Ĥc,dir

]
4×4

+
[
Ĥc,ex

]
4×4

=


V eh,dir

1111 V eh,dir
1121 V eh,dir

1112 V eh,dir
1122

V eh,dir
1211 V eh,dir

1221 V eh,dir
1212 V eh,dir

1222

V eh,dir
2111 V eh,dir

2121 V eh,dir
2112 V eh,dir

2122

V eh,dir
2211 V eh,dir

2221 V eh,dir
2212 V eh,dir

2222

+


V eh,ex

1111 V eh,ex
1112 V eh,ex

1121 V eh,ex
1122

V eh,ex
1211 V eh,ex

1212 V eh,ex
1221 V eh,ex

1222

V eh,ex
2111 V eh,ex

2112 V eh,ex
2121 V eh,ex

2122

V eh,ex
2211 V eh,ex

2212 V eh,ex
2221 V eh,ex

2222

 ,
(2.94)

Using time reversal symmetry [76] properties, the only non-zero terms for the direct-Coulomb

matrix elements are, V eh,dir
1111 = V eh,dir

1221 = V eh,dir
2112 = V eh,dir

2222 = C ∈ R. Using similar argu-

ments, the number of independent elements for exchange matrix elements can be reduced to:

V eh,ex
1111 = V eh,ex

2222 = C1 ∈ R,

V eh,ex
1112 = (V eh,ex

1211 )∗ = (−V eh,ex
2221 )∗ = −V eh,ex

2122 = C2 ∈ C,

V eh,ex
1121 = (V eh,ex

2111 )∗ = (−V eh,ex
2212 )∗ = −V eh,ex

1222 = C3 ∈ C,

V eh,ex
1122 = (V eh,ex

2211 )∗ = C4 ∈ C,

V eh,ex
1212 = V eh,ex

2121 = C5 ∈ R,

V eh,ex
1221 = (V eh,ex

2112 )∗ = C6 ∈ C.

Therefore, the matrix representation of the CI Hamiltonian for the lowest four exciton states

in the presence of SOC in the CI basis {|c1v1〉 , |c1v2〉, |c2v1〉 , |c2v2〉} is given by,

[
Ĥc

]
4×4

=


C 0 0 0

0 C 0 0

0 0 C 0

0 0 0 C

+


−C1 −C2 −C3 −C4

−C∗2 −C5 −C6 C3

−C∗3 −C∗6 −C5 C2

−C∗4 C∗3 C∗2 −C1

 , (2.95)

where the first matrix corresponds to the electron-hole direct Coulomb interaction and the

second matrix represents electron-hole exchange interaction.

Once we know the Coulomb matrix elements, we can diagonalize the Hamiltonian and get the

interacting many-particle states and the excitonic energy spectrum. These matrix elements

crucially depends on the model we use to calculate them (e.g. atomistic or continuum) and

also on the symmetry of the underlying system. To get a first insight into the exciton energy

levels, we investigate a special case where we have no SOC in the system.

Special case: As stated earlier, in the absence of SOC we can decouple the spatial and spin

parts. Therefore, the single-particle basis states can be classified as |ne1, ne2, nh1, nh2〉 ≡
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|ne↑, ne↓, nh↑, nh↓〉 where |ne↑〉(|nh↑〉) corresponds to an electron (hole) ground state with spin-

up whereas state |ne↓〉(|nh↓〉) corresponds to an electron (hole) ground state with spin-down.

Since spin is now a good quantum number, this causes certain terms namely, C2, C3, C4 and

C5 to vanish due to the orthogonality of the spin states. Additionally, we get C1=C6, due

to identical orbital parts of the electron (hole) ground state wave functions. Therefore, the

Hamiltonian Ĥc further restricts to,

Ĥc =


C 0 0 0

0 C 0 0

0 0 C 0

0 0 0 C

+


−C1 0 0 0

0 0 −C1 0

0 −C1 0 0

0 0 0 −C1

 . (2.96)

If we diagonalize the Hamiltonian analytically, we obtain triply degenerate triplet state (E =

C − C1) and a non-degenerate singlet state (E = C + C1). Therefore, from this simple model,

we conclude that electron-hole exchange effects split the energy of singlet and triplet states

by 2C1. If there is no exchange effects in the system, the second term of Ĥc vanishes and we

get a four-fold degenerate exciton state. This situation is illustrated schematically in Fig. 2.6

and the level splitting due to electron-hole exchange is usually refereed to as the excitonic fine

structure. In general, an exciton state can now be labelled as bright or dark according to its

optical activity. Therefore, the energetic splitting between two exciton states can be bright-

bright, dark-dark or bright-dark splittings [144]. These splittings are usually referred to as fine

structure splitting (FSS). In the said case, due to spin conservation, the singlet state and one

of the triplet states is dark while the two other triplet states are bright. Accordingly, we obtain

a bright-dark FSS between the singlet and triplet state in this simple example.

It is to note that FSS is an important characteristics of many-body states and has crucial

impact for instance on the generation of entangled photon emission [12]. In the next section,

we will therefore discuss in more detail the FSS and its connection to entangled photon emission.

Since the FSS depends on the symmetry of the underlying system, we will also provide a group

theoretical analysis of the expected FSS in different systems.

2.6.4 Excitonic structure and Fine structure splitting

As already pointed out, the excitonic FSS has recently drawn a lot of attention for quantum en-

tanglement [139]. QDs in principle can generate polarization entangled photon pairs when they

exhibit zero bright-bright FSS in the energy spectrum of the excitonic structure. One way of

achieving this is to use the biexciton-exciton cascade. One of such scheme is outlined in Fig. 2.7

(a) where the biexciton first decays into the exciton by creation of a either left (σ+ ) or right

(σ− ) circularly polarized photon. In the subsequent step, the exciton decays to ground state
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Without Exchange With Exchange

C + C1 (1x)
−−−−−−−

Dark
C(4x)

−−−−−−−
Dark (1x)
Dark (1x)

Bright (2x)
C − C1(3x)
−−−−−−−

Dark (1x)
Bright (2x)

Figure 2.6: Schematic illustration of energy structure without spin orbit coupling in the
absence (left) and in the presence (right) of the electron-hole exchange interaction for the
exciton ground state.

by emission of a photon with opposite polarization to the first branch. Correspondingly, the

emission spectra of photons from different cascades overlap due to degeneracies of intermediate

excitonic states and removes the “which-path” information creating polarization entanglement

of the emitted photons [145]. When the intermediate bright exciton ground states differ by

Figure 2.7: Transition Scheme for biexciton-exciton decay for (a) Zero FSS, entanglement
is achieved and the transitions emit circularly (σ) polarized light (b) Non zero FSS, all four
possible transitions correspond to different energies.

a small amount of energy, typically greater than their respective linewidth [29], we obtain a

non-zero FSS. Such a case is illustrated in Fig. 2.7 (b) where the emitted photons are linearly

polarized and different transitions labelled with Hi (Vi) with i=1,2 emit horizontally (verti-

cally) polarized light with respect to a given axis. Here, the different energies of the possible
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transitions allow to distinguish between photons originating from the left and right cascade

which destroys the polarization entanglement of photons.

As pointed out in the last section, the excitonic fine structure and as a result, the FSS in a QD

depends on the underlying crystal symmetry and the magnitude of electron-hole exchange

interaction between the carriers. Therefore, in the first step we analyze the effect of the

underlying crystal symmetries on the FSS with the help of group theoretical concepts presented

in Sec. 2.1. Special attention will be paid to the effect of exchange interaction on the energetic

structure. Through this analysis, we can easily show the application of group theory to get

first insights into the FSS. We start with the well studied InAs/GaAs system such that we can

use this analysis to compare and highlight differences to the III-N system which has a different

underlying crystal symmetry. Equipped with the insights from As systems, we will move to

the discussion of III-N systems in the next step. Overall, the outcome of this analysis will help

us to benchmark our numerical results which will be presented in later chapters.

InAs/GaAs QDs

In (001) InAs/GaAs QDs, for ideal QD geometries (lens shaped, rectangular truncated struc-

tures) the Td symmetry of the ZB crystal reduces to a C2v symmetry [100] since inversion is

no longer a symmetry operation of the system. We will discuss here how this reduction in

symmetry leads to a non-vanishing FSS in ZB (001) QDs [144]. For a simplified discussion, we

take into account only the ground state electron (e0) and hole (h0) states in the CI expansion

defined in Sec. 2.6.2. The lowest four excitonic states without and with SOC is presented in

Fig. 2.8 and 2.9 respectively. We start our analysis without SOC, where the orbital and spin

parts can be decoupled and treated independently. It has been observed that in this case,

electron ground state (e0) has a dominant s-like character and the hole ground state (h0) has

either a px- or py-like character [146]. As stated in the group theory section, in the absence of

SOC, the electronic states of the orbital part can be described by single group representations

of C2v. The character table and direct product of different IRRs for a C2v point group is

presented in Table 2.3 and Table 2.4 respectively. Here, the double group IRRs are denoted

in bold. Following Table 2.3, we find that e0 state transforms according to A1 while h0 state

transforms as either B1 or B2 [146]. Since excitonic states in our case can be obtained by pair-

ing single-particle electron (ei) and hole ground states (hj), their symmetry can be expressed

as

ΓX = Γe ⊗ Γh , (2.97)

where Γe and Γh are IRR of electron (ei) and hole (hj) states and “⊗” corresponds to direct

product. Accordingly, here following Table 2.4, the orbital part of the ground state exciton

transforms according to A1 ⊗B1(B2) = B1(B2), which is a 1-D representation.
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Table 2.3: Character table of C2v point group.

C2v E C2 σx σy Basis functions

A1 1 1 1 1 1,z
A2 1 1 -1 -1 Rz
B1 1 -1 -1 1 x, Ry
B2 1 -1 1 -1 y, Rx
E1/2 2 0 0 0

Table 2.4: Direct products of representation for a C2v point group.

C2v A1 A2 B1 B2 E1/2

A1 A1 A2 B1 B2 E1/2

A2 A1 B2 B1 E1/2

B1 A1 A2 E1/2

B2 A1 E1/2

E1/2 A1 ⊕A2 ⊕B1 ⊕B2

Now turning to the spin part, similar to the orbital case, the spin components of an exciton state

(DX) can be represented by a direct product of spin wave function representations of electron

(De) and holes (Dh) as DX = De⊗Dh. As discussed earlier, the spin wave function transforms

according to the D1/2 IRR which is doubly degenerate. Correspondingly, we get DX = D1/2 ⊗
D1/2 = D0 ⊕ D1 [147]. Since the degeneracies of a Dj-symmetric state is (2*j+1) [147],

the addition of spin can form a one-dimensional singlet state and a three dimensional triplet

state. It is important to note that group theory gives only insight into the general aspects

of the symmetry of the different exciton states, but not on the energy ordering or energy

separations (e.g. magnitude of singlet-triplet splitting). To gain insights into this for instance,

CI calculations are required [135, 138]. As described in our example of the CI model, in

the absence of exchange interaction, the exciton ground state is four-fold degenerate. Here, by

combining orbital (B1/B2) and spin (D0⊕D1) parts we get the same conclusion. With exchange

effects, the four-fold degenerate state splits into singlet (B1/B2⊗D0) and triplet (B1/B2⊗D1)

states. Turning to selection rules, one can find the singlet state is dark and in the triplet,

one state is dark and two states are bright [140]. The polarization of the bright states can be

predicted following Table 2.3 where a B1/B2 exciton is allowed to emit x/y-polarized radiation.

In summary, for this case, the singlet exciton state is dark whereas two of the triplet exciton

state can emit x/y-polarized light and one is dark. This finding is schematically illustrated in

Fig. 2.8. In the presence of SOC effects, spin is no longer a good quantum number. Therefore,

the single-particle states transform according to double groups of C2v [148]. As described

before, the representations in this group is obtained from the direct product of single C2v

group and spin D1/2 group. Accordingly, the IRR labelling of the ground electron (A1⊗D1/2)

and hole states (B1 ⊗ D1/2) will be E1/2 since the C2v double group has only one IRR. As

a consequence, we can determine the symmetry labels of the ground state exciton between

e0 and h0 using the direct product Table 2.4 as E1/2 ⊗ E1/2 = A1 ⊕ B1 ⊕ B2 ⊕ A2. When
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Figure 2.8: Schematic evolution of excitonic structure for a C2v exciton without spin or-
bit coupling in the absence (left) and in the presence (right) of the electron-hole exchange
interaction.
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exchange effects are included, all of these states are non-degenerate and therefore, the four

exciton ground state could be expected. However, it is to note that the splitting will depend

on the system under consideration. Moving to the selection rules, following Table 2.3 we find

that A2 state is dark, and B1, B2, A1 are polarized along x, y and z direction respectively.

This condition is schematically illustrated in Fig. 2.9. Since two linearly polarized photons (x

and y) have unequal energies, we have non-zero bright-bright FSS in a C2v symmetric ZB QD

and this leads to the above discussed effect that polarization entanglement is lost.

Figure 2.9: Schematic evolution of excitonic structure for a C2v exciton with spin orbit cou-
pling in the absence (left) and in the presence (right) of the electron-hole exchange interaction.
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III-Nitride QDs

In the next step, we move to the discussion of (0001) WZ QDs. In this case, for an idealized

system, the C6v point group symmetry of a bulk WZ system is reduced to a C3v symmetry

[100, 136]. Similar to the previous case, we start our analysis with the case of neglecting SOC

effects. Thus, we can treat the orbital and spin parts separately. Here, electronic states of

the orbital part can be described by the C3v single group representations. For a WZ QD

with C3v symmetry, the symmetry of the electron ground state e0 is usually of dominant s-

like character [136, 148] and correspondingly transforms as A1 (cf. Table 2.5). On the other

hand, the hole ground state h0 can be formed by any linear combination of px- and py-like

states [136, 148]. Therefore, h0 state transforms according to E representation of C3v single

group (cf. Table 2.5). Since E is a 2-D representation, this state will be a doubly degenerate

state. More details on the character of single-particle states for a C3v QD are presented in

the result section. Following Table 2.6, which shows the direct product of different IRRs, the

Table 2.5: Character table of C3v point group.

C3v E 2C3 3σv Basis functions

A1 1 1 1 1,z
A2 1 1 -1 Rz
E 2 -1 0 (x, y)
E1/2 2 1 0
1E3/2 2 -1 i
2E3/2 2 -1 -i

Table 2.6: Direct products of representation for a C3v point group.

C3v A1 A2 E E1/2
1E3/2

2E3/2

A1 A1 A2 E E1/2
1E3/2

2E3/2

A2 A1 E E1/2
2E3/2

1E3/2

E A1 ⊕ {A2} ⊕ E E1/2 ⊕ 1E3/2 ⊕ 2E3/2 E1/2 E1/2

E1/2 A1 ⊕ {A2} ⊕ E E E
1E3/2 A2 A1
2E3/2 A2

orbital part of the exciton states obtained through e0-h0 transition transforms as A1 ⊗ E =

E. Here, the corresponding exciton state is doubly degenerate since E is a 2-D IRR. Coming

to the spin components, similar to the C2v case, the spins of an electron and hole can form a

singlet or triplet states. Now, combining orbitals and spin parts together, each of these states

will be doubly degenerate due to the E symmetry arising from the orbital part. In the absence

of exchange interaction, the exciton ground state is eight-fold degenerate. When exchange

interaction is included in the analysis, we get a two-fold degenerate state stemming from E

symmetry of the orbital part and the 1-D D0 IRR of the spin part and a six-fold degenerate

state stemming from E symmetry of the orbital part and the 3-D D1 IRR of the spin part.
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Since E is allowed to emit (x, y)-polarized light, we find that the two-fold degenerate exciton

state is dark while the six-fold degenerate exciton state consists of four bright ((x, y)-polarized)

and two dark states. The excitonic structure for a C3v exciton without SOC is presented in

Fig. 2.10. In the next step, we include SOC in the analysis. As stated before, we now have to

Figure 2.10: Schematic evolution of excitonic structure for a C3v exciton without spin or-
bit coupling in the absence (left) and in the presence (right) of the electron-hole exchange
interaction.
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deal with the C3v double group. Following the discussion of the C2v case, the electron ground

state transforms according to (A1 ⊗D1/2 = E1/2) [148]. On the other hand, the hole ground

state transforms according to E ⊗ D1/2 = E1/2 ⊕ E3/2 [148]. This immediately gives us the

result that the doubly degenerate state represented by E splits into states of E1/2 and E3/2

symmetry in the presence of SOC. Following Table 2.5, we find these states are also doubly

degenerate.

Figure 2.11: Schematic evolution of excitonic structure for a Type-I C3v exciton with spin
orbit coupling in the absence (left) and in the presence (right) of the electron-hole exchange
interaction.
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Therefore, one can possibly find two types of excitons in the system, namely type-I and type-II

depending on the IRR that describes the hole state (e.g. E1/2 and E3/2). The excitonic levels
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Figure 2.12: Schematic evolution of excitonic structure for a Type-II C3v exciton with spin
orbit coupling in the absence (left) and in the presence (right) of the electron-hole exchange
interaction.
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for a type-I and type-II exciton with SOC are presented in Fig. 2.11 and Fig. 2.12, respectively.

As described previously, the symmetry labels of the exciton states are determined by using the

direct product representation Table 2.6. For type-I excitons, E1/2⊗E3/2 = E⊕E, where E is a

2-D IRR. Following Table 2.5, we find two doublets of bright exciton states which are polarized

along (x, y) direction, thus perpendicular to c(z)- axis. If there is no exchange interaction

between electron and hole states, this excitonic state is four-fold degenerate. However, when

exchange interaction is included, splitting is introduced between the two E-symmetric states.

Going back to the biexciton-exciton cascade, we now have a non-zero bright-bright FSS between

two pairs of E states. However, more importantly, we have also zero bright-bright FSS for each

pair of doubly degenerate E states. Therefore, for each of these pairs, we get back the situation

of Fig. 2.7 (a) where due to the degeneracies of the bright E states both left and right cascades

emit circularly polarized light and polarization entanglement is achieved. In this case, each of

the doubly degenerate bright states can produce polarization entangled photon pairs.

Moving to type-II excitons, we obtain E1/2⊗E1/2 = A1⊕A2⊕E. Following Table 2.5, we find

an excitonic state transforming according to A1 can emit a z-polarized light, E related exciton

states (doubly degenerate) emit (x, y)-polarized light and the state transforming according toA2

is dark. Without electron-hole exchange interactions, all of these states are degenerate. When

exchange effects are included, we obtain non-zero bright-bright (A1-E) and bright-dark(A1-

A2, A2-E) FSSs. However, like the previous case, the doubly degenerate (x, y) polarized E

states results in zero FSS (bright-bright) and we should find the situation of Fig. 2.7 (a) where

polarization entanglement is achieved for a light incident perpendicular to the QD sample.

In summary, we find that through the group theoretical analysis presented above, one can

predict the behavior of excitonic fine structure for III-N QD systems. This is extremely useful

in the sense that we can benchmark our numerical results against the predicted optical spectra.

Symmetry of the underlying crystal structure plays an important role in determining the FSS
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in a material system. We conclude that due to differences in the crystal structure of As (ZB)

and III-N (WZ) systems, the excitonic fine structure of these systems are entirely different.

Therefore, one can not simply carry over the analysis in one material system to the other. We

find that in principle, zero bright-bright FSS is possible in case of ideal (0001) WZ QDs having

C3v symmetry whereas such feature is not present in C2v symmetric (001) ZB QDs. It is also

to note that when growing InAs/GaAs QDs on (111) substrates, one is also left with a C3v

symmetry [100]. Recent measurements on (111) grown InGaAs1−δNδ/GaAs(δ � 1) QDs have

also revealed vanishing FSS in these systems [149]. Therefore, it is highly attractive to grow

dots of C3v symmetry ((0001) WZ or (111) ZB) for entangled photon emission in contrast to

C2v symmetric (001) ZB systems.

Overall, in this chapter we presented different electronic structure theories such as k ·p theory

and TB model for the calculation of single-particle energies and wave functions. We then

outlined the procedure to incorporate strain and piezoelectricity effects in the models and the

ways to evaluate them. Subsequently, we introduced theory for calculation of many-particle

properties within the Hartree and CI approach. Special attention was paid to the excitonic fine

structure for III-V WZ structures. Having equipped with the theoretical framework, we will

now apply all these models to calculate electronic and optical properties of QD systems and

that will be the topic of the next section.





Chapter 3

Excitonic and biexcitonic properties

of nonpolar InGaN/GaN QDs

As stated in the introduction, due to large band offsets, QDs based on group III-N have been

demonstrated as single-photon emitters near room temperature [24, 150]. For instance, Holmes

and co-workers [24] have demonstrated single-photon emission from GaN/AlGaN QDs, grown

along the crystallographic c-axis, up to 350 K. However, when discussing the basic properties of

III-N WZ systems in Sec. 1.2, we had stressed that when growing nitride-based heterostructures

along c-direction, the optical properties of these systems are significantly affected by the pres-

ence of very strong electrostatic built-in fields (order of MV/cm) [51]. The presence of these

fields leads to large radiative recombination lifetimes τ of the order of several ns [151, 152]

and consequently results in single-photon emission with a low repetition rate. Furthermore,

using pure GaN QDs produces single-photon emission in the UV spectral regime, while com-

mercial single-photon detectors operate in the blue spectral range [153]. Thus to circumvent

these problems, InGaN/GaN dots grown on nonpolar planes offer in principle the advantage

that (i) built-in fields should be strongly reduced compared to c-plane systems [154], (ii) their

electronic and optical properties should be far less affected by extended defects when compared

to nonpolar InGaN/GaN QWs and (iii) by changing the In content in the dot, the emission

wavelength can be tuned into the blue spectral region. In terms of entangled photon emission,

even though the combined symmetry of QD system and underlying crystal lattice in a nonpo-

lar system prevents using the biexciton-exciton cascade for such an application [155, 156], the

time reordering scheme [157] could be applied. In this scheme excitonic and biexcitonic transi-

tions are brought in resonance (“color coincidence”) [158]. Such a situation can potentially be

achieved in a nonpolar InGaN/GaN QD by changes in dot size and shape.

Thus for all these applications, a detailed understanding of the inter-relationship between the

QD geometrical features and the electronic and optical properties is required. However, in
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comparison to QW systems, far less theoretical studies have focused on the properties of non-

polar InGaN/GaN dots [159–162]. Hong et al. [159] focused mainly on the impact of the

material parameter choice and the growth plane on the electronic properties of these sys-

tems. Initial calculations on excitonic properties have also been performed. Schuh, Barthel

and co-workers [161, 162] accounted for excitonic effects in the framework of sophisticated CI

calculations, further confirming that Coulomb effects are important for an accurate descrip-

tion of the optical properties of nonpolar systems. However, these calculations [161, 162] have

been performed for pure InN/GaN dots, thus the impact of changes in the In content are not

investigated. Additionally, both Ref. [159] and Refs. [161, 162] do not study in detail how

dot size affect quantities such as radiative lifetime when compared with c-plane dots, given its

importance for the repetition rate of single-photon emission from these structures. Further-

more, biexcitonic effects are not addressed in Refs. [159, 161, 162], which present an essential

ingredient to understand the optical properties of nonpolar InGaN/GaN QDs. Especially with

respect to the time reordering scheme [157], it is of central importance to gain initial insights

into the combined effect of how changes in In content, dot size and shape impact excitonic and

biexcitonic properties of nonpolar InGaN/GaN QDs.

Here, we address these questions by means of a symmetry adapted k ·p model (cf. Sec. 2.2.1.1)

connected with self-consistent Hartree calculations (cf. Sec. 2.6). The chapter is organized as

follows. In the following section, the ingredients of our theoretical framework are described. In

Sec. 3.2 available experimental data for nonpolar InGaN/GaN QDs are reviewed and the here

assumed model geometries are introduced. Our results are presented in Sec. 3.3. In a first step,

in Sec. 3.3.1, we analyze the impact of dot size and shape anisotropies on the built-in potential.

This analysis is followed by a study of excitonic and biexcitonic properties, in Sec. 3.3.2. After

that, we turn to the calculations of oscillator strength f and radiative lifetime τ in Sec. 3.3.3

where we compare our theoretical data with experiments performed in the group of Prof. R.

A. Taylor (University of Oxford, UK) and available literature results. Finally we summarize

our results in Sec. 3.4.

3.1 Theoretical Framework

In this chapter, the electronic and optical properties of a-plane InGaN/GaN QDs have been

addressed by means of a continuum based 6+2 band k·p model discussed in detail in Sec. 2.2.1.1.

The model has been implemented in the plane wave-based software library S/Phi/nX [126, 163]

and a schematic illustration of the numerical implementation is given in Fig. 3.1. The model

uses analytic expressions for the stiffness tensor, the piezoelectric and spontaneous polarization

vector fields, as a function of the incline angle θ to the WZ c-axis, which can be derived using

the procedure presented in Sec. 2.2.1.1. Here, the strain field is modeled in the framework of

continuum elasticity by minimizing the total elastic energy of the whole system with respect to
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Figure 3.1: Schematic illustration of the work-flow in S/Phi/nX [160].

the displacement field as described in Sec. 2.4.2. Moving to the input parameters, it is important

to note that there is still a large degree of uncertainty in several key material parameters

such as piezoelectric coefficients, band offsets, deformation potentials and especially how these

parameters change with composition [36, 160, 164–166]. Even though most material parameter

sets predict similar trends for polar and nonpolar growth planes, absolute numbers might

depend on the accurate knowledge of the material parameters and could therefore vary between

different sets [167]. The material parameters used in this study are summarized in Table B.2

of Appendix B.

The k ·p model allows us to evaluate the QD single-particle states. To account for excitonic ef-

fects, the k ·p model is connected to self-consistent Hartree calculations as detailed in Sec. 2.6.

We use here equations outlined in the said section (cf. Eq. (2.73), (2.74), (2.78), (2.79)) to

calculate exciton (biexciton) recombination energies, EX (EXX) and exciton (biexciton) bind-

ing energies, EbX (EbXX). Furthermore, we are also interested in the analysis of the radiative

lifetime τ of nonpolar InGaN/GaN QDs and how this quantity compares to c-plane systems.

In general τ can be calculated from [168]

τ =
2πε0m0c

3~2

ne2(EX)2f
, (3.1)

where ε0,m0,c,~ denote the vacuum permittivity, the free electron mass, the vacuum speed of

light and Planck’s constant (divided by 2π). Furthermore, to evaluate Eq. (3.1), information

about the excitonic recombination energy EX, the oscillator strength f and the refractive index

n of the matrix material is required. To determine n we apply a Sellimeier type law [169, 170],

allowing us to calculate n as a function of the wavelength λ via n(λ) =
√
an + bnλ2/(λ2 − c2

n)
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(a) (b)

Figure 3.2: (a) top-view (b) side-view of the here used lens shaped InGaN/GaN a-plane dot
with the respective co-ordinate system.

with an = 5.15 nm, bn = 0.35 nm and cn = 339.8 nm. Here, λ is calculated from EX using the

relation λ = hc/EX, where h is Planck’s constant. The procedure to calculate EX has already

been described earlier (cf. Eq. (2.73)). Equipped with the knowledge about EX and the ground

state electron ψe and hole ψh wave functions, the oscillator strength f is calculated via [168]

f =
2~2

m0EX

∑
α

∣∣∣∣∫ ψ∗e (r)(a · k)ψαh (r)d3r

∣∣∣∣2 . (3.2)

Here, a is the light polarization vector of the incident light and k = −i∇. α denotes hole wave

functions representing the same degenerate hole energy level EX
h . Making use of the fact that

electron and hole wave functions can be casted as linear combinations of the product of Bloch

functions |ui〉 and envelope functions |φi〉, ψ =
∑

i |ui〉|φi〉, the integral can be expressed in

terms of the Kane matrix element Ep and is proportional to 〈s|ki|pj〉 = δi,j

√
m0EP

2~2 . In the

following we have used EP = (2EP‖+EP⊥)/3 [151], and the values for EP‖ and EP⊥ have been

taken from Refs. [36, 171]. The light polarization vector a is always chosen to be perpendicular

to the sample surface (a = 1
2(1, 1, 0)T ).

Having briefly summarized the theoretical framework, the QD geometry and size is required

as further input to the model. Thus we review in the following section the available literature

data for nonpolar InGaN/GaN QDs and discuss the model geometry assumed in our theoretical

study.
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3.2 Nonpolar InGaN/GaN quantum dot geometries

The electronic and optical properties of a QD system crucially depend on the geometrical

features of the dot [172]. Experimentally it presents an extremely challenging task to obtain

detailed information on these quantities, especially after the dots are capped [173, 174]. An

additional complication for the here studied nonpolar a-plane InGaN/GaN QDs is the growth

of these systems in general. Only recently, these structures have successfully been grown [175].

Atomic force microscopy (AFM) studies of uncapped a-plane InGaN dots have revealed struc-

tures with a height of 7±3 nm [14]. Typical base diameters in the case of nonpolar GaN/AlGaN

QDs are of the order 20 nm-30 nm [176]. Previous theoretical works on nonpolar InGaN/GaN

QDs have assumed lens-shaped geometries [161, 162]. It should be noted that usually after

capping of these structures the dot dimensions are reduced [173], and consequently in-plane

(base length/base diameter) and out-of growth plane (height of the dot) features are not well

known. To account for this we proceed in the following way.

In our calculations, we have two different scenarios. For both of these steps, our starting point

is a lens-shaped dot. In the first set of calculations presented in Sec. 3.3.1 and Sec. 3.3.2, we

are mainly interested in how changes in In content, different dot parameters (shape, size) affect

built-in potential, exciton and biexciton properties of nonpolar dots and how these properties

can be tuned in an aim to achieve entangled photon emission via the time-reordering scheme.

Therefore, here we assume that both the height as well as the in-plane dimensions of this dot

structure can vary. As a result, the height is varied between 2 and 5 nm and the base diameter

between 30 and 5 nm. To be sensitive to changes in the in-plane symmetry, we keep one axis,

dx, fixed at 30 nm and the perpendicular direction, dy, is varied between 30 nm and 5 nm.

Thus the base of the QD can either be circular symmetric (dx = dy = 30 nm) or highly elliptic

(dx = 30 nm; dy = 5 nm). To measure this asymmetry by one parameter, we introduce the

in-plane aspect ratio α, defined as α = dx/dy. Thus, α varies between 1 and 6. Furthermore,

as we will show later, our calculations show that such a deformation of the dot gives trends in

the biexciton binding energies EbXX that are in good agreement with experimental data [177].

To account for changes in In content, the In content is varied between 15% to 25%.

However, in the next set of calculations presented in Sec. 3.3.3 we are mainly interested in

the general trends of the oscillator strength f and as a result the radiative lifetime τ in these

nonpolar dots and how these quantities compare with c-plane dots. To study the impact of

dot size on the results, we assume here two different cases. First, the diameter (dx = dy) of

the nanostructure is varied between 6 nm and 24 nm, while keeping the dot height h constant

at 2.5 nm. Second, the diameter (dx = dy) is kept fixed at 24 nm and h is now allowed to

vary between 2 nm and 5 nm. It is to note that in this set of calculations, we assume only

symmetric dots having α = 1 and denote the diameter as d (dx=dy). The change in the in-

plane aspect ratio α might affect the result as well, but we are mostly interested in how changes
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in the dot volume affect the general trends in τ values, which is effectively captured by the

above discussed assumptions. In this case, to investigate how the growth plane affects τ , all

geometric QD features are carried over to calculations for c-plane dots. Thus when we compare

c- and a-plane InGaN/GaN QDs in our theoretical studies, changes in the calculated quantities

arise entirely from the difference in the growth plane and not due to variations in QD geometry.

It should be noted that even though we carry over geometries and sizes based on assumptions

for nonpolar InGaN dots to describe c-plane systems, these assumptions, especially for the dot

size, should give a good first approximation of realistic c-plane QDs [178]. With respect to the

In content, we have chosen a value of 15% in this set of calculations. We will discuss the impact

of the In content on the results in more detail when we compare our results with experiment

in Sec. 3.3.3.

In our coordinate system the z-axis has been chosen to be parallel to the a-axis (growth di-

rection), while the x-axis is parallel to the c-axis. The y-axis is aligned along the m-axis. A

schematic illustration of top and side-view of the assumed geometry is given in Fig. 3.2. Re-

garding the numerical aspects of the study, all calculations have been performed on a supercell

with dimension 50 × 50 × 30 nm3, using periodic boundary conditions. For efficient calcula-

tions, a step size of 0.25 nm and 0.5 nm are employed along growth and in-plane direction,

respectively. This accounts for the fact the that the minimum dot height is only 2 nm while

the base diameter is at least 5 nm.

3.3 Results

Having introduced the theoretical framework and the QD model geometry, we here present the

results of our calculations. We start in Sec. 3.3.1 with a detailed analysis of the electrostatic

built-in potential of nonpolar InGaN/GaN QDs. Excitonic and biexcitonic properties are dis-

cussed in Sec. 3.3.2. Finally, in Sec. 3.3.3 we evaluate radiative lifetime values and compare

our theoretical results with experimental data from Prof. R. A. Taylor’s group (University of

Oxford, UK) on nonpolar InGaN/GaN QDs and also the literature.

3.3.1 Built-in potential

The aim of this section is to provide a detailed analysis of the built-in potential in lens-shaped

nonpolar InGaN/GaN dots. Special attention is paid to the impact of the dot shape and size

on the results.

In a first step we focus our attention on a lens-shaped dot with a circular base (dx = dy = 30

nm) and a height of h = 2.5 nm. The In content is 25%. To gain insight into the benefit of using

nonpolar InGaN/GaN dots in terms of the built-in potential, we compare the total (spontaneous
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(a) (b)

Figure 3.3: Contour plot of total (spontaneous + piezoelectric) built-in potential for a cut
through the centre of a lens shaped In0.25Ga0.75N/GaN QD grown along the (a) a-axis and (b)
c-axis.

(a) (b) (c)

Figure 3.4: Contour plot of the total (spontaneous + piezoelectric) built-in potential for a
slice through the centre of the lens shaped In0.25Ga0.75N/GaN a-plane dot with dx = 30 nm
and dy = 30 nm in the x-z plane. The results are shown for (a) height h = 2 nm, (b) height
h = 3 nm and (c) height h = 4 nm.

+ piezoelectric) built-in potential of the nonpolar dot with the built-in potential of an identical

c-plane dot. Using the same QD geometry allows us to flesh out effects originating entirely

from the change in the growth plane. The results are displayed in Fig. 3.3 for a slice through

the centre of the dot in the x− z plane. Note that in the c-plane system the c-axis is parallel

to the z-axis, while in the nonpolar case the c-axis is parallel to the x-axis. One can infer

from Fig. 3.3 that the built-in potential of the here studied a-plane InGaN dot is significantly

reduced compared to its c-plane counterpart (note the different potential scales). However, it

should be noted that the nonpolar system is not field free. This originates from the fact that

the nonpolar QD is a three-dimensional object and thus still exhibits c-axis oriented facets.

This finding is consistent with the results obtained by different groups [154, 161, 162]. Given

that we are still left with facets oriented along the c-axis, the magnitude and the profile of the

built-in potential will change with changes in the QD geometrical features. Depending how

strongly the built-in potential varies with changes in the dot geometry, electronic and optical

properties might or might not be strongly affected by the built-in field. Thus, before turning

to the analysis of the excitonic and biexcitonic properties, we establish here how the built-in

potential changes with changes in the dot geometry.
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(a) (b) (c)

Figure 3.5: Contour plot of the total (spontaneous + piezoelectric) built-in potential for a
slice through the lens shaped In0.25Ga0.75N/GaN a-plane QD at z = 1.25 nm. The height of
the dot is h = 2.5 nm and the in-plane aspect ratio α is (a) α = 1, (b) α = 2 and (c) α = 6.

In a first step we study the impact of the QD height on the built-in potential. For this

investigation we use a circular symmetric base (dx = dy = 30 nm). Figure 3.4 shows a slice

through the centre of the nonpolar In0.25Ga0.75N/GaN dot in the x− z plane for a QD height

of (a) h = 2 nm, (b) h = 3 nm and (c) h = 4 nm. As one can see, with increasing QD height

the magnitude of the built-in potential increases since the surface area oriented along the c-axis

increases. Consequently, the spatial separation between the electron and hole wave functions

should be affected by this effect. We will come back to consequences of the QD height on the

electronic and excitonic properties in the following sections.

In a second step we analyze the impact of the in-plane aspect ratio α on the built-in potential

profile and magnitude. In Fig. 3.5 the built-potential profile in the x− y plane for a dot with

height of h = 2.5 nm is presented for different values of α, namely (a) α = 1, (b) α = 2 and

(c) α = 6. The slice shown here is at 1.25 nm above the base of the QD. Several interesting

features can be inferred from Fig. 3.5. When comparing the α = 1 case, Fig. 3.5 (a), with the

situation where α = 2, Fig. 3.5 (b), we observe that the magnitude of the built-in potential

increases with increasing α. However, when increasing α further, see Fig. 3.5 (b) and (c), this

increase is less pronounced. Additionally, when comparing Fig. 3.5 (a) and (b), we find that

not only the magnitude of the built-in potential is affected but also the positions of the maxima

and minima values. While in the α = 1 case the extrema of the potential are located mainly

outside the dot, the maxima and minima are located inside the QD for α = 2. Thus, not only

does the built-in potential increase when changing from α = 1 to α = 2, the wave functions will

also be even more strongly exposed to the deeper potential energy pockets introduced by the

built-in potential. To shed more light on the behavior of the potential magnitude and the profile

when changing α from 1 to 2, we have decomposed the total built-in potential into its different

components. Figure 3.6 shows line-scans through the QD along the x-axis (c-axis) at z = 1.25

nm and y = 25 nm. The QD interfaces are indicated by vertical lines. Figure 3.6(a) depicts

the total built-in potential for the chosen line-scan and reflects the data shown in Fig. 3.5.

The red circles correspond to α = 1 while the black squares depict the data for α = 2. As

discussed above, with increasing α the magnitude of the built-in potential is increased and as
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(a) (b)

(c) (d)

Figure 3.6: Built-in potential of a lens shaped In0.25Ga0.75N/GaN dot for a line scan at
y = 25 nm and z = 1.25 nm above the dot base along x-axis for α = 1 (red circles) and α = 2
(black squares). The total (spontaneous + piezoelectric) potential φtotal is displayed in (a)
while (b) shows the axial contribution φax (e15 = Psp = 0, e31 6= 0, e33 6= 0). The contribution
φsp arising entirely from the spontaneous polarization (e15 = 0, Psp 6= 0, e31 = 0, e33 = 0)
is shown in (c) and (d) depicts the shear strain related part φe15 (e15 6= 0, Psp = 0, e31 = 0,
e33 = 0).

well as the potential extrema are shifted. To decompose the total built-in potential into its

different components, we start with the axial contribution φax. In this case we have set the

shear strain related piezoelectric coefficient e15 and the spontaneous polarization Psp to zero

so that only e31 and e33 contribute to the built-in potential. The axial contribution φax is

shown in Fig. 3.6 (b), revealing that there is a significant difference in φax when changing α.

Compared to α = 1, φax is strongly increased in the α = 2 case. Additionally, φax for α = 1 is

significantly reduced inside the QD when compared to α = 2 case. We attribute this to changes

in the strain tensor components εxx and εyy. In a second step we turn to contributions arising

from the spontaneous polarization only (e33 = e31 = e15 = 0), which we denote by φsp. The

data are shown in Fig. 3.6 (c). In the case of φsp, the absolute numbers are smaller for α = 2

when contrasted with the data for α = 1. However, it should be noted that φsp is opposite in

sign to φax. Finally we look at the shear strain related contribution φe15 (Psp = e33 = e31 = 0),

which is shown in Fig. 3.6 (d) for the two α values. In comparison with the spontaneous part

φsp, φe15 is again opposite in sign but comparable in magnitude. Thus large parts of φe15 and
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(a) (b)

Figure 3.7: Isosurface plots of the electron (red) and hole (green) ground state charge den-
sities (a) without and (b) with Coulomb effects included in the calculations. The light (dark)
isosurface corresponds to 5% (50%) of the maximum value.

φsp might cancel each other.

Overall this analysis shows that the built-in potential in a nonpolar InGaN/GaN dot is very

sensitive to the actual geometry and one is left with a complicated interplay of different compo-

nents as indicated above. Having discussed that the residual built-in field depends strongly on

the QD geometry, we now turn to study its impact on the excitonic properties of the system.

3.3.2 Excitonic and biexcitonic properties

Equipped with the knowledge about the changes in the built-in potential when the structural

properties of the lens-shaped nonpolar InGaN/GaN QD change, we focus our attention in a

first step on the excitonic properties of these structures. Before looking at the excitonic recom-

bination and binding energies, we start with the analysis of the combined effect of attractive

Coulomb interaction and built-in potential. In Fig. 3.7 (a) isosurface plots of the single-particle

(no Coulomb effect included) electron ψ0
e (red) and hole ψ0

h (green) ground state charge den-

sities are displayed. The light (dark) isosurfaces correspond to 5% (50%) of the maximum

values. The results are shown for the nonpolar In0.25Ga0.75N/GaN dot with dx = dy = 30

nm and h = 2.5 nm. When looking at Fig. 3.7 (a), one observes that the charge densities are

slightly spatially separated along the x-direction (c-axis). This behavior can be attributed to

the presence of the residual built-in potential discussed in the previous section and shown in

Fig. 3.3 (a). When including the attractive Coulomb interaction in the calculation, we find that

this effect overcomes the spatial separation of the charge carriers due to the residual built-in

field, as shown in Fig. 3.7 (b). It should be noted that this compensation of the built-in field due

to the Coulomb effect is in strong contrast to c-plane systems, where the electronic and optical

properties are dominated by the built-in field. Coulomb effects, in terms of the wave function

overlap, are therefore of secondary importance in c-plane dots [141, 179]. Consequently, our

calculations predict much smaller radiative lifetimes in a-plane QDs when compared to c-plane

counterparts, due to the larger wave function overlap in the a-plane systems. More details on

the comparison of radiative lifetimes in c- and a-plane QDs is presented in Sec. 3.3.3.

Having discussed the impact of the Coulomb interaction on the wave function overlap, we

study now its effect on the emission energy. Here we compare the single-particle ground state
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Figure 3.8: Single-particle ground
state transition energy ESPGS and the exci-
ton recombination energy EX as a func-
tion of the QD height h and for different
In concentrations.

Figure 3.9: Exciton binding energy EbX
as a function of the QD height h and for
different In concentrations.

transition energy, ESPGS = Ee−Eh (no Coulomb effects) with the excitonic recombination energy

EX , given by Eq. (2.73). The results are depicted in Fig. 3.8 as a function of the dot height

h. In general we find that EX is shifted to lower energies when compared to ESPGS . This

effect arises from the attractive Coulomb interaction between electron and hole. Looking at

the impact of the dot height h on the recombination energies in more detail, we find that the

impact of the Coulomb interaction between the carriers is more pronounced for smaller dot

heights (h = 2 nm) when compared to the taller dots (h = 4 − 5 nm). This behavior is also

reflected in the exciton binding energies EbX , which is displayed in Fig. 3.9 as a function of

the dot height h and can be attributed to changes in the built-in potential. As discussed in

Sec. 3.3.1, with increasing dot height the magnitude of the built-in potential increases and

consequently the spatial separation of the electron and hole ground state wave functions. This

leads then to a reduction of the Coulomb matrix element |Jeh| and thus to reduced excitonic

binding energies. With increasing In content the effect becomes more pronounced since the

strain dependent piezoelectric contribution is increased. Consequently, even though the built-

in potential is strongly reduced in a nonpolar InGaN/GaN QD when compared to the polar

system, changes in built-in potential due to changes in the structural properties can affect the

optical properties significantly. For instance, in the 25% In case (blue triangles), the exciton

binding energy EbX drops by approximately a factor of two when going from h = 2 nm to h = 4

nm (cf. Fig. 3.9).

We now turn to study in a second step the impact of the in-plane aspect ratio α on the emission

energy. Figure 3.10 displays ESPGS and EX as a function of α. The results are shown for In

contents of 15%, 20% and 25%, respectively. Here all calculations have been performed for a

dot height of h = 2.5 nm. When increasing α, we find an increase in both ESPGS and EX . This
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Figure 3.10: Ground state single-
particle transition energy ESPGS and exci-
ton recombination energy EX as a func-
tion of the in-plane aspect ratio α and
for different In concentrations.

Figure 3.11: Excitonic binding energy
EbX as a function of the in-plane aspect
ratio α and for different In concentra-
tions.

results from the fact that with increasing α the volume of the QD is reduced and therefore the

band gap is increased. To shed more light on the impact of α on the excitonic properties, we

investigated also the excitonic binding energy EbX as a function of α. The results are displayed

in Fig. 3.11. When looking at EbX as a function of α, we observe here an unusual behavior, with

EbX decreasing first before it increases. From a naive QW picture one could have expected that

with decreasing dot volume, the electron and hole wave function overlap should initially increase

before it starts to decrease since wave functions leak into the barrier material. With increasing

(decreasing) wave function overlap the EbX should increase (decrease). Thus one could have

expected that EbX increases first with increasing α before it starts to decrease when α is further

increased. This trend is also normally observed in QW structures [180–182]. However, here

we observe the opposite. For instance, in the 25% In case (blue triangles) EbX drops by more

than 10 meV when changing α from 1 to 2. Additionally, when looking at the results in more

detail, the initial drop in EbX is more pronounced for higher In contents, suggesting that the

built-in field is responsible for this unusual trend. We have already discussed in Sec. 3.3.1

that the built-in potential of the dot changes with changes in α. To shed more light onto the

behavior of a first decreasing and then increasing EbX with increasing α, we have performed an

additional calculation for 25% In in which we neglect the built-in potential. The results of this

analysis are depicted in Fig. 3.12 and reveals that indeed the residual built-in field significantly

modifies EbX . In absence of the field (red circles), EbX increases with increasing α as one would

have expected from the nonpolar QW analysis discussed above.

So far we have discussed only excitonic properties of nonpolar InGaN/GaN QDs. For a de-

tailed understanding of the optical properties of these systems, biexcitonic features are also of

interest. Especially with respect to applications targeting entangled photon emission via the
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Figure 3.12: Excitonic binding energy EbX as a function of in-plane aspect ratio α. The
calculations have been performed in the presence (black squares) and the the absence (red
circles) of the built-in field. An In content of 25% has been assumed.

time reordering scheme [157] this question is of interest. Therefore we study in the following

sections the impact of the QD geometry on the biexcitonic recombination EXX and binding

energy EbXX . We start with EXX and turn to EbXX in Sec. 3.3.2 where we compare this

quantity with available experimental data.

To understand the impact of the QD shape on the biexcitonic properties we have analyzed

EXX both as a function of the dot height h (cf. Fig. 3.13) and the in-plane aspect ratio α

(cf. Fig. 3.14). In general we find similar trends as in the excitonic recombination energy EX

shown in Figs. 3.8 and 3.10, respectively. For instance, similarly to Fig. 3.8 for the excitonic

recombination energy EX , EXX decreases with increasing height h. Also, EXX increases with

increasing α, again similar to EX (cf. Fig. 3.10).

Figure 3.13: Variation of biexcitonic
recombination energy EXX as a function
of dot height h. The results are displayed
for different In concentrations.

Figure 3.14: Biexcitonic recombina-
tion energy EXX as a function of in-
plane aspect ratio α and for different In
concentrations.
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The analysis of the biexciton binding energy EbXX and how it changes with QD geometry is

presented in the following section. Here we also compare our theoretical results with available

experimental data.

Comparison with experimental data

In this section, we relate our theoretical results to available experimental literature data. J.T.

Griffiths et al. [67] presented an experimental study of photoluminescence and cathodolumines-

cence characteristics of a-plane InGaN/GaN QDs. The experimentally reported recombination

energies for these structures range from 2.63 to 2.72 eV. For 25% In, our theoretically predicted

EX values are close to 2.7 eV, cf. Fig. 3.8. This indicates that the here chosen dot geometries

and higher In contents give a reasonable first approximation of these structures, given that

almost no detailed experimental information on their shape and size is available.

Furthermore, B. P. L. Reid and co-authors [177] have measured the biexcitonic binding energies

EbXX of these dots. Their experimental studies showed an anti-binding biexciton with EbXX ≈-

36 meV. As discussed above, to calculate EbXX very accurately, one would have to go beyond

the here used self-consistent Hartree calculations, since this approach neglects exchange and

correlation effects [183]. However, since we are interested in general trends and effects caused

by changes in the QD geometry, the applied approach should be sufficient to address these

questions. Moreover, it is important to note that the experimentally obtained EbXX is quite

large, indicating that the direct Coulomb interaction between the carriers should dominate over

exchange and correlations effects [140].

In general we find that for the chosen dot geometries and the higher the In content, the

better the agreement with the experimentally reported exciton recombination energies. Thus,

to compare our data with experimental data, we have focused in the following on dots with

25% In. We study here again how geometrical dot features affect EbXX . In the first step, we

analyze the impact of the dot height h on EbXX . The results are shown in Fig. 3.15. One

can infer that EbXX decreases with increasing height h. We attribute this behavior to the fact

that with increasing height h the built-in field inside the dot increases (cf. Sec. 3.3.1) leading

to a stronger confinement of the charge carriers at the QD interfaces and thus the electron

and hole wave function overlap will be decreased. Overall this will give rise to a reduction in

the magnitude of the attractive Coulomb interaction Jeh while the repulsive contributions Jee

and Jhh both increase. This effect is consistent with previous theoretical studies of c-plane

InGaN/GaN QDs [141]. The combination of these factors leads to the observed decrease in

EbXX .

So far we have assumed a circular base, and thus α = 1. We turn now to study the impact

of the in-plane aspect ratio α on EbXX . Figure 3.16 presents the results of this analysis. In
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Figure 3.15: Biexcitonic binding en-
ergy EbXX as a function of the dot height
h. The In content is 25%.

Figure 3.16: Biexcitonic binding en-
ergy EbXX as a function of the in-plane
aspect ratio α for an In content of 25%.

the first step we focus on the results for h = 2.5 nm (red circles). The data shows that

α can slightly modify the value of EbXX . For instance when α changes from 1 to 3, EbXX

drops by approximately 10 meV. It should be noted that this probably is the upper limit for

the drop in EbXX since exchange and correlation effects will increase EbXX and one might be

left with the situation of a binding (EbXX > 0) biexciton, especially for α = 1. Similarly to

EbX , we observe here that with increasing α, EbXX decreases first and then starts to increase

before attaining a constant value. We attribute this behavior to the changes in built-in field

discussed in Sec. 3.3.1 and 3.3.2. Even though we cannot predict the transition between binding

and anti-binding biexciton, our calculations show that small nonpolar InGaN/GaN QDs are

promising candidates to achieve a degeneracy of excitonic and biexcitonic transitions (“color

coincidence”). As discussed above, this is a prerequisite for entangled photon emission from

these structures via the time reordering scheme.

On the other hand, the theoretically predicted minimum biexciton binding energy EbXX for

h = 2.5 nm and an In content of 25% is -18 meV for α = 3, which is much smaller in magnitude

than the experimentally reported value in Ref. [177] (-36 meV). Thus, to analyze trends in

EbXX that would result in values close to the experimentally measured value, we have increased

the QD height h to h = 5 nm. The results are shown in Fig. 3.16 (black squares) and it is

found that EbXX decreases from -12 meV to -62 meV when α changes from 1 to 2. Again we

attribute this behavior to the increase in the built-in potential for h = 5 nm when compared to

h = 2.5 nm. EbXX continues to decrease till α = 4 before attaining a constant value (For α = 6,

EbXX ≈ −82 meV). This analysis reveals that the QD geometry, as expected, has significant

impact on EbXX , indicating that further combined experimental and theoretical studies are

required to shed more light on the geometrical dot features. Nevertheless, the here presented

study gives already first insights into the dependence of EbXX on dot size and shape.
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Having investigated the built-in potential, the excitonic and biexcitonic properties of a-plane

InGaN/GaN QDs, in the next step, we move to the calculation of radiative lifetime in a plane

InGaN QDs and how they compare with c-plane dots.

3.3.3 Radiative lifetime

Here, we start with an analysis of the oscillator strength f in a- and c-plane dots and how this

quantity is affected by changes in dot size. Having established these general trends in f , we

study in a second step how τ changes with QD size. The theoretical results presented in this

section are also complemented by experimental data from our collaborators.

Analysis of oscillator strength f

Here, we study the oscillator strength f as a function of the dot diameter d and the dot height

h. It is to remind the reader that we have performed our calculations on symmetric dots here

where dx = dy = d. We start with d and vary this quantity between 6 nm and 24 nm, while h

is kept constant at 2.5 nm. To compare the increase or reduction in f when changing the dot

geometry more easily, we work in the following with the relative oscillator strength f̃β(d) for

c- (β = c) and a-plane (β = a) InGaN/GaN QDs. We define this quantity as:

f̃β(d) =
fβ(d)

fβ(6)
. (3.3)

Here, fβ(6) denotes the oscillator strength calculated from Eq. (3.2) for a dot with height

h = 2.5 nm and a base diameter of d = 6 nm. fβ(d) is the oscillator strength calculated as

a function of d. Thus f̃β(6) = 1. The results of this analysis are depicted in Fig. 3.17 with

and without Coulomb interaction for both polar and nonpolar dots. Looking at f̃β(d) without

Coulomb effects, we find that in the nonpolar case (open circles), f̃a(d) decreases by a factor

of 2 to a value of f̃a(24) = 0.46 when d changes from 6 nm to 24 nm. A similar behavior

is observed for the polar case (open squares), however, here the effect is more pronounced,

showing that for d = 24 nm f̃ c(24) ≈ 0.30. This behavior can be explained by the following

factors. For both c- and a-plane systems, the increase in d leads to an increase in the QD

volume and consequently to an increase in the magnitude of the built-in field [160], which

results in a stronger localization of the charge carriers at the interfaces. Therefore, the spatial

separation between the carriers is increased, leading to a reduction in f̃β. This brings us to

another factor that affects f in the nonpolar case. Even though the built-in field is reduced

in the a-plane QD, when compared with the c-plane structures, we are left with an increased

distance between the two QD interfaces oriented along the c-axis. Consequently, the charge

carriers can spatially be separated over a larger distance in the a-plane structure. However, the
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stronger reduction in f̃β(d) for the c-plane QDs, when compared to the nonpolar structures,

is attributed to the fact that the built-in fields are much stronger in the c-plane case. This

dominates over the larger spatial extension of the dot along the c-axis in the nonpolar case.

Thus, to a first approximation, when neglecting the Coulomb interaction in the system, both

a- and c-plane dots show similar trends in terms f̃β(d).

Figure 3.17: Relative oscillator
strength f̃β(d) of polar and nonpolar
In0.15Ga0.85N/GaN QDs as a function
of the base diameter d with and without
Coulomb effect. The height h of the
dots is kept fixed at 2.5 nm.

Figure 3.18: Relative oscillator
strength f̃β(h) of polar and nonpolar
In0.15Ga0.85N/GaN QDs as a function
of the dot height h with and without
Coulomb effect. The base diameter d of
the dots is kept fixed at 24 nm.

This situation is completely changed when including Coulomb effects in the calculations, as

depicted in Fig. 3.17. Here we find that the attractive Coulomb interaction between electrons

and holes overcomes the residual built-in field in the nonpolar case (filled circles), resulting in

an almost constant value of f̃a(d). It is also evident that the Coulomb effect has very little

impact on f̃ c(d). Thus the oscillator strength f in the polar case (filled squares) is mainly

dominated by the electrostatic built-in field, while the Coulomb effects dominate the wave

function overlap in the nonpolar case.

To further analyze the impact of the QD size on the results, we have also performed calculations

with varying dot heights h. Similar to the above discussions, we define here the relative oscillator

f̃β(h), where f̃β(h) is normalized to the oscillator strength of a dot with height h = 2 nm. The

dot diameter d is kept constant at d = 24 nm. Figure 3.18 shows the variation of f̃β(h) with

and without Coulomb effect for both polar and nonpolar InGaN/GaN dots. In comparison to

Fig. 3.17 where we have varied the dot diameter d, we observe here similar trends in f̃a(h).

Again, due to the reduced built-in fields in the a-plane dot when compared to the c-plane

structures in the absence of Coulomb effects, f̃a(h) (open circles) is always larger than f̃ c(h)

(open squares). For the largest system studied here, d = 24 nm and h = 5 nm, f̃ c ≈ 0 while

f̃a ≈ 0.18.
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(a) (b)

Figure 3.19: (a) Recombination lifetime τ as a function of QD base diameter d. The dot
height is kept fixed at h = 2.5 nm (b) Recombination lifetime τ as a function of QD height h.
The base diameter of the dot is 24 nm. The inset shows nonpolar data (red circles) separately
from the polar data (black squares) to visualize trends more clearly.

When taking Coulomb effects into account, we find again that the oscillator strength f̃ c in

the polar structures (filled squares) is dominated by the built-in field, while in the nonpolar

system (filled circles) Coulomb effects become important. In the nonpolar case, this results in

the situation that f̃a is almost independent of h.

Overall, our analysis reveals that for nonpolar InGaN/GaN QDs variations in the dot size

are of secondary importance for the (relative) oscillator strength since the attractive Coulomb

effect is dominant. Thus for an accurate theoretical description of the optical properties of

these systems, Coulomb effects have to be included. So far we have only studied the relative

oscillator strength without directly comparing to experimental measurements of the exciton

lifetime. We therefore study the radiative recombination lifetime τ and how this quantity

changes with variations in the dot geometric features in the next section. The comparison

between theory and experiment is addressed in Sec. 3.3.3.

Calculation of radiative lifetime τ

Equipped with the knowledge about changes in the oscillator strength f with QD size, the

variation of the radiative lifetime τ , Eq. (3.1), in polar and nonpolar InGaN/GaN dots is

studied here. We start our analysis by looking at the impact of the dot diameter d on τ . For

this study the height of the dot is chosen to be h = 2.5 nm, while the base diameter varies

between 6 nm and 24 nm. The calculated lifetimes are displayed in Fig. 3.19 (a) for the polar

(black square) and nonpolar (red circle) InGaN/GaN dots. For the polar QDs we observe that

τ increases with increasing dot diameter d. In contrast to this, τ stays approximately constant
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for the nonpolar system, at least when compared with the polar case. This observation is

consistent with the behavior of the oscillator strength discussed in the previous section and

displayed in Fig. 3.17, since τ is inversely proportional to f , cf. Eq. (3.1). Thus larger values

of f lead to smaller values of τ . Looking at the absolute values of τ for both the polar and the

nonpolar dots, we find here that for the c-plane dots, values in the range of several nanoseconds

are obtained, consistent with literature experimental data [184, 185]. For the nonpolar dots,

also displayed in the inset of Fig. 3.19 (a), our calculated τ values are in the range of 435 ps

to 465 ps. It should be noted that this variation, even though f̃a(d) is approximately constant,

arises from the fact that EX varies when the dot volume increases. In this case, EX is shifted

to smaller energies resulting in an increase of τ , given that τ is inversely proportional to EX,

cf. Eq. (3.1).

In the second step, we investigate the impact of the QD height h on τ . In these calculations the

dot height ranges from 2 nm to 5 nm. The base diameter for these studies is kept constant at

d = 24 nm. In the case of the nonpolar dots, the τ values change only slightly from around 450 ps

to approximately 500 ps when h changes from 2 nm to 5 nm (see inset of Fig. 3.19 (b)). This

finding is consistent with the observation that the oscillator strength f stays approximately

constant when changing h (cf. Fig. 3.18). Again the variation in EX leads to the slight

increase in τ , as displayed in Fig. 3.19 (b) for the nonpolar dot. For the polar dots, τ increases

exponentially with increasing height h, stemming from the fact that f decreases dramatically

with increasing dot height h (cf. Fig. 3.18). This results from both the increase in the built-in

potential and the accompanied shift in EX to lower energies, and thus contributing to the

increase in τ .

Overall our theoretical calculations show that the radiative recombination lifetimes in c-plane

systems strongly depend on the nanostructure size. However, this is not the case, at least when

compared to the c-plane systems, for nonpolar InGaN/GaN dots. In the next section we will

summarize the theoretical results and compare them to the experimental data obtained by our

partners in Oxford and literature values.

Experimental results and comparison with experiment

Growth and optical characterization of self-assembled nonpolar a-plane (112̄0) InGaN/GaN

QDs were carried out by our collaborators at the University of Cambridge and Oxford, respec-

tively. The samples were grown by modified droplet epitaxy (MDE), a metal-organic vapour

phase epitaxy (MOVPE) method originally developed for the fabrication of c-plane QDs [44],

but adapted to the growth of a-plane QDs by Zhu et al. [14]. The micro-photoluminescence

(µPL) experiments of the samples were carried out under two-photon excitation which sup-

presses the relative strength of emission from the underlying QWs (formed due to growth

routine) making the investigation and analysis of the QD emission more efficient and accurate.
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Figure 3.20: Recombination lifetime τ
obtained experimentally as a function of
the QD emission energy. The error bars
are also indicated in the figure.

Figure 3.21: Recombination lifetime τ
as a function of exciton recombination
energy EX.

The QD PL can then be directed to a photomultiplier tube (PMT) for time-correlated single-

photon counting (TCSPC) from which the radiative lifetime of the QD nanostructures can be

measured. More details on the growth and optical characterization can be found elsewhere [186].

The radiative lifetime data of 10 typical a-plane InGaN QDs are shown in Fig. 3.20 as a function

of QD emission energy. In general, lifetimes obtained from TRPL measurements range from 150

to 500 ps with the majority around 250-300 ps. These values are indeed an order of magnitude

smaller than values found in c-plane systems [184, 185]. Other studies of nonpolar QDs grown

by both MDE and an alternative method show radiative lifetimes [14, 67] around 500 ps to

600 ps. Furthermore, these studies observe a vague trend that with decreasing QD emission

energy the radiative lifetime τ increases. To achieve a better statistical average, this analysis

has to be extended to a much large number of dots. However, this is beyond the scope of

the present study. Overall, the experimental data demonstrates that the use of the nonpolar

a-plane reduces the undesired QCSE, increasing the exciton oscillator strength and producing

much shorter lifetimes, when compared to c-plane systems.

As discussed in the previous section, for the here chosen geometries and In content of 15% we

find τ values in the range of 435 ps to 500 ps. So far we have presented our theoretical data

for τ as a function of the dot height or diameter. To compare theory with experiment more

easily, we have re-plotted the theoretical data shown in Fig. 3.19 (b) for τ as a function of the

exciton recombination energy EX. The re-plotted data is displayed in Fig. 3.21. Comparing

these results with the experimental values given in Fig. 3.20, several features are of interest.

Firstly, we observe that for the geometry and In content assumed here, the τ values obtained

from theory are similar in magnitude to the experimental ones, but higher. It should also be

noted that the exciton recombination energies are larger than the experimentally measured
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QD emission energies. Thus with increasing the In content above 15%, the excitonic transition

energies would be shifted to values closer to the experimentally observed values. However, in

doing so, since τ is inversely proportional to EX as discussed before, τ should increase further,

resulting in a larger disagreement between theory and experiment on τ . Conversely, when

reducing the In content below 15%, the agreement in τ between theory and experiment is

improved, but the theoretical exciton recombination energies would be shifted to higher values.

Therefore, further theoretical and experimental studies are required to extend this analysis. For

instance, experimental insight into the In content and the QD geometry is of central importance,

since it is a crucial ingredient for our modeling. From a theoretical perspective, as discussed

already in Sec. 5.1, uncertainties in the material parameters and their alloy dependence affect

the calculated values. Moreover, as shown in nonpolar InGaN/GaN QWs [187], random alloy

fluctuations lead to strong carrier localization effects which also affect radiative lifetimes. These

alloy fluctuations inside a nonpolar InGaN/GaN QD could therefore also be important for a

detailed understanding of the electronic and optical properties of a-plane QDs.

However, whilst the dots analyzed for this paper present shorter lifetimes than those pre-

dicted by theory, our former analysis of other, similar structures, suggests somewhat longer

lifetimes [14, 67]. Values between 500-600 ps have for example been quoted in Refs. [14] and [67],

which are in good agreement with the here presented theoretical data. Furthermore, the trend

observed in the calculations that with decreasing EX the radiative lifetime τ increases (cf.

Fig. 3.21), is also vaguely visible in the experimental data (cf. Fig. 3.20). However, it should

be noted that in the experiment the variations in lifetimes might also be affected by a com-

bination of variations in In content and dot size. Furthermore, in-plane shape asymmetries in

a-plane QDs can also give rise to a spread in exciton energies due to changes in the QD volume

and connected modifications in the built-in potential. The in-plane anisotropies have not been

considered in the theoretical modeling of the oscillator strength and the radiative lifetime. Nev-

ertheless, the theoretical description presented gives radiative lifetimes which are comparable

in magnitude to the experimental data obtained here and in previous studies, and forms now

a good starting point for future combined experimental and theoretical investigations.

3.4 Conclusion

In summary, we have investigated the built-in potential, the excitonic, biexcitonic properties

and the radiative lifetime of a-plane InGaN/GaN QDs. Our analysis reveals that the built-

in fields in nonpolar InGaN/GaN QDs are strongly reduced when compared to their c-plane

counterparts. However, it should be noted that these systems are not field free and changes

in the dot geometry significantly affect these fields. We find here also a complicated interplay

between axial, shear strain and spontaneous polarization contributions when the dot geometry

changes.
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In contrast to c-plane systems, we find that the attractive Coulomb interaction between elec-

tron and hole compensates the spatial separation of the carriers due to the residual built-in

field. However, the analysis also reveals, even though the built-in field is strongly reduced, it

significantly affects the excitonic properties. For instance, when changing the in-plane dot ge-

ometry, the exciton binding energy changes in an unusual way in comparison to nonpolar QWs.

We have shown that these changes are related to changes in the built-in field, highlighting that

built-in fields in nonpolar InGaN/GaN dots are important for a detailed understanding of the

optical properties. In the next step, our theoretical data is compared with available experimen-

tal literature results. The analysis of the biexciton binding energies indicated for instance that

the experimentally realized dots are relatively large with high In content (≥ 25%). Further-

more, the investigation of the biexciton binding energy EbXX allowed us also to establish trends

in EbXX when QD geometrical features change. This gave initial insight into potential use of

nonpolar InGaN/GaN QDs for entangled photon emission via the time reordering scheme.

Finally, we presented a combined theoretical and experimental study of the radiative recombi-

nation lifetimes in a-plane (112̄0) InGaN/GaN QDs. Our calculations show that for an accurate

description of the optical properties of the here studied nonpolar InGaN QD systems, Coulomb

effects play a central role. For instance, we find here that the oscillator strength in a nonpo-

lar system is almost unaffected by changes in the QD size, which is in contrast to its c-plane

counterpart. While in the c-plane system the wave function overlap is dominated by the elec-

trostatic built-in field, in the nonpolar case the attractive Coulomb interaction compensates

the spatial separation of the charge carriers due to the residual built-in field. This leads to the

situation that the radiative lifetime in the nonpolar system is one order of magnitude smaller

when compared to the c-plane system. The calculated radiative lifetimes are in good agreement

with literature data and comparable in magnitude to the here measured ones.

Overall our results indicate that nonpolar QDs are promising candidates for next generation

visible wavelength single-photon emitters where the repetition rate compared to c-plane systems

can be improved dramatically.
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Engineering the polarization

properties of nonpolar InGaN QDs

at elevated temperatures

In last chapter, we discussed the excitonic and biexcitonic properties as well as the radiative

lifetime of the nonpolar InGaN dots with the aim to target entangled photon emission and high

speed single photon emission. Here, we explore another important characteristics of QD sys-

tems namely light polarization properties which is essential for a number of optoelectronic and

quantum information applications, such as QD liquid crystal displays [188], optical quantum

computing [189], and quantum key distribution [190–192]. As described earlier, these 0D nanos-

tructures possess a delta function-like density of states similar to atoms, whilst being thousands

of times larger. Since their size and shape can be manipulated in the solid-state, QDs offer an

easier path towards integration and development on semiconductor platforms than other compa-

rable systems, such as atoms [193], molecules [194] and 2D nanostructures [195, 196]. However,

in most QD systems, polarized light output can only be achieved using an external polarization

filter to define a desired polarization state. Such configurations can be cumbersome and will

incur a loss of at least 50%. To mitigate these undesired losses, direct polarization control from

the light source would be desirable. More importantly, for realistic scalable on-chip applica-

tions, one challenge that a QD system will inevitably face is the operation at temperatures

high enough to reach the regime of on-chip electronic temperature regulation by thermoelectric

cooling. Commercial Peltier coolers can maintain a stable temperature difference of ∼100 K,

allowing devices to work at ∼190 K. As such, it is important not only to demonstrate QD

properties, such as polarization control, under cryogenic conditions, but also to investigate

their performance and behaviour at thermoelectrically cooled temperatures. In this respect, as

discussed earlier, nitride-based heterostructures are suitable for operation at such high temper-

atures due to their large band offsets and exciton binding energies [197]. As such, there have

85



Chapter 4: Polarization properties 86

been several reports of polarized QD emission in conventional c-plane nitrides [198–204] at

cryogenic temperatures. However, due to the stochastic process of QD formation, the resultant

extent and direction of anisotropy are completely random, giving rise to uncertain degrees of

optical linear polarization (DOLP) along arbitrary directions that are less than desirable in

polarization-based applications. A few attempts have been made to control the strain state

of the QDs, including dots in nanowires [205–207], elliptical nanowires [25], and asymmetric

pyramidal QDs [208]. Although the direction has been defined, the geometries of the structures

make electrical contacting challenging. As such, a simpler and more practical method is needed

to achieve polarization control, for the realization of on-chip polarized single-photon generation

and related applications.

To this end, in this chapter, we investigate the robustness and temperature sensitivity of the

optical polarization properties of nonpolar InGaN QDs and compare our results with exper-

imental studies performed by our collaborators at the University of Oxford in the group of

Prof. R. A. Taylor. The chapter is organised as follows. We start in Sec 4.1 with the the-

oretical framework used for the calculations, followed by the discussion of the here assumed

QD geometry. Subsequently, we move to the results and discussions in Sec. 4.2. Here, we first

present the results of the DOLP at cryogenic conditions in Sec. 4.2.1. Thereafter, the analysis

is extended to pelter cooled temperatures in Sec. 4.2.2. Furthermore, it is well known that for

InGaAs/GaAs QDs shape anisotropies have a significant effect upon the optical polarization

properties of QDs [172]. Therefore, this raises the question of how strongly shape anisotropies

affect the optical properties of self-assembled a-plane InGaN/GaN QDs, and thus how robust

these QDs might be in generating highly polarized photons against shape deformations. Hence,

we also provide an investigation of the effect of dot geometry on the DOLP of a-plane InGaN

QDs. Finally, in Sec. 4.3 we compare our findings to insights from statistically significant

experimental data.

4.1 Theoretical framework and QD geometry

In general, the DOLP of a light is the ratio of the intensity of the polarized part of the light to

its total intensity [209, 210]. The DOLP [209, 210] is usually defined as:

ρ = (I⊥ − I‖)/(I⊥ + I‖) (4.1)

where I⊥ and I‖ denotes the averaged intensities measured perpendicular and parallel to the

WZ c-axis in our case. Theoretically, the intensity of a light can be related to the spontaneous

emission rate Rsp and therefore, the temperature dependence of the ρ has been addressed in
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this thesis on the basis of Rsp [18] as:

Rsp(T ) =

∫
d(~ω)

2e2n~ω
m2

0ε0c
3~2

∑
i,j

|a · pi,j |2
1√
2πσ

exp

[
−(∆Ei,j − ~ω)2

2σ2

]
fe(Eei )f

h(Ehj ) . (4.2)

Here e, ε0, m0, c, ~, n denote elementary charge, vacuum permittivity, free electron mass,

vacuum speed of light, Planck’s constant (divided by 2π) and the refractive index, respectively.

The energetic separation between the electron state i and the hole state j is given by ∆Ei,j .

The inhomogeneous broadening parameter is denoted by σ. Experimentally, the values of full

width at half maximum for the here studied nonpolar InGaN/GaN QDs are of the order of

0.5-3 meV [211]. Given these extremely small numbers compared to nonpolar InGaN/GaN

QWs [187], inhomogeneous broadening is neglected here. The momentum matrix element

between electron state i and hole state j is given by |a · pi,j |2, and can be calculated via

|a · pi,j |2 =
∑
c,v

|〈uc |a · p|uv〉|2
∣∣〈φic|φjv〉∣∣2, (4.3)

where a is the polarization of the incident light, uα denote the Bloch functions; φα are the

envelope functions. The subscripts α = c and α = v denote conduction (electron) and valence

(hole) states, respectively. Details on the calculation of these quantities are given in Ref. [88].

The Fermi-functions for electrons and holes are denoted by fe and fh, respectively and are

given by,

fe(Eei ) =
1

1 + exp[(Ei − Efn)/kBT ]
,

fh(Ehj ) =
1

1 + exp[(Efp − Ej)/kBT ]
.

Here Efp and Efn are quasi-Fermi levels obtained from the injected carrier density [18]. The

electron and hole energies for state i and j are denoted by Eei and Ehj , respectively. To obtain

the quasi-Fermi levels for electrons and holes up to 300 K, we include 10 electron and 30 hole

states (neglecting the Kramers degeneracy of each state) in the calculations. These Fermi

functions account for the effect that with increasing temperature T excited electron and hole

states are populated.

Given that Rsp depends on the light polarization vector a and the temperature T via the

Fermi-functions, we can now define the temperature dependence of the DOLP ρ via

ρ(T ) =
R⊥sp(T )−R‖sp(T )

R⊥sp(T ) +R
‖
sp(T )

. (4.4)

The spontaneous emission rates for a light polarization vector a perpendicular and parallel

to the WZ c-axis are denoted by R⊥sp and R
‖
sp respectively. This approach is similar to the

approach used in Ref. [212] for non c-plane InGaN/GaN QWs.
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(a) (b)

Figure 4.1: (a) Schematic illustration of the c-plane bulk band structure in the absence of the
spin-orbit coupling. (b) Schematic illustration of the energy level ordering of an a-plane system
with confinement along the a-axis. Selection rules for the electric field E (light polarization
vector a) parallel to the c- and m-axis are also indicated by the dashed arrows. The orbital
character of different bands according to our convention is denoted in brackets.

As input for Rsp(T ) the energy levels for electrons Eei and holes Ehj and the momentum matrix

element |a · pi,j |2 from the electron and hole states i and j are required. Consequently, insights

into the electronic structure of nonpolar InGaN/GaN dots is of central importance. To this

end, we have performed k · p-based framework introduced in the previous chapter.

To calculate the DOLP ρ(T ), Eq. (4.4), information about the QD geometry is required. Based

on the discussions presented in the last chapter, we have assumed as a model geometry a lens

shaped dot with a base diameter of 30 nm and a height of 2.5 nm. It should be noted that

previous calculations on nonpolar InGaN/GaN QDs have made similar assumptions for the

dot geometry [161, 162]. All calculations were performed on a 50×50×30 nm3 supercell with

periodic boundary conditions. In this study, we discuss the results on the basis that the z-axis

of our coordinate system is parallel to the crystal a-axis.

4.2 Results and discussion

Equipped with the theoretical framework and geometry of the QD structures, we turn now to

present the results of our analysis. In a first step, we examine the polarization properties of

a-plane QDs under cryogenic conditions, meaning our calculations are carried out at a temper-

ature T of T = 0 K. Here, we are mainly interested in investigating the DOLP ρ as a function

of In content and deformations in the QD shape. After that, we move to the calculations of

the DOLP as a function of temperature T and explore ways to engineer QD properties with

the aim to achieve highly polarized emission at thermoelectrically cooled temperatures.
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4.2.1 Theoretical calculations of DOLP at cryogenic conditions

Before turning to the calculated ρ values, it is important to discuss and understand general

band structure features of nonpolar WZ InGaN/GaN heterostructures, given that ρ depends

on the orbital character of the involved electron and hole states i and j [cf. Eq. (4.2) and (4.4)].

Here, we start with a general discussion of a c-plane system using the standard convention that

the c-direction is assumed to be parallel to the z-axis and the in-plane axes are the x (a)- and

y (m)-axes. In this convention, as described in Sec. 2.1.1, Chapter 2, |X〉– and |Y 〉–like states

are energetically degenerate [90] at k = 0, neglecting the weak SOC. Due to the positive crystal

field splitting energy in InN and GaN, [62] the |Z〉–like state is shifted to lower energies. To

understand how confinement effects affect the band structure of InGaN/GaN heterostructures,

the effective masses of |X〉–, |Y 〉– and |Z〉–like states near k = 0 are of central importance.

Whilst the energy bands associated with |X〉– and |Z〉–like states have low effective masses

along kx- and kz-directions, respectively, the |Y 〉–like state has a light-hole mass along the

ky-direction [62, 213]. A schematic illustration of the situation is given in Fig. 4.1. Thus, for

a system with a strong confinement along the c-axis, as for instance in c-plane InGaN/GaN

QWs, |Z〉–like states are shifted to lower energies with respect to the valence band maximum.

Therefore, the topmost valence band state in such a system is predominately |X〉– and |Y 〉–like

in character with little |Z〉–orbital character. In the case of c-plane QDs additional confinement

effects are introduced by the lateral/in-plane confinement in the c-plane. Given the differences

in the effective masses of |X〉– and |Y 〉–like states, QD shape anisotropies will significantly affect

band mixing effects and thus the orbital character of the QD hole states [172]. Consequently,

the DOLP will be affected.

Turning now to a nonpolar system, the situation is different. Since the growth is along the

a-axis, perpendicular to the c-axis, the symmetry between |X〉– and |Y 〉–like states is broken

given the strong confinement along the a-axis (x-axis). This results in the situation that the

|X〉–like state is shifted to lower energies with respect to the |Y 〉–like state. Consequently, the

topmost valence state is entirely |Y 〉–like in character, taking into account that the |Z〉–like

state is already shifted to lower energies due to the positive crystal field splitting energy. A

schematic illustration of the general valence band ordering in a system with confinement along

the a-axis (x-axis) is given in Fig. 4.1. Please note that the above discussion is based on the

c-plane convention for the coordinate system, meaning that the a-direction is assumed to be

along x-axis.

However, in our k · p framework, growth of the nanostructures is always assumed along the

z-axis, meaning now that the a-direction is parallel to the z-axis of the rotated coordinate

system. In this case, the c-axis is parallel to the x-axis and the m-axis is parallel to the y-axis.

As one can see, in our convention, x- and z- axes are interchanged when compared to the usual

c-plane convention. Therefore, a |X〉–like state in the conventional notation corresponds to a
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(a) (b)

Figure 4.2: (a) DOLP ρ as a function of the in-plane aspect ratio α and In content of a lens-
shaped a-plane InGaN/GaN QD. The inset shows the coordinate system, the definition of θ as
the in-plane angle away from the crystal c-axis (same as that defined in the experimental setup),
and the definitions of dy and dx as the in-plane dimensions of a QD used in the theoretical
investigation. α is defined as α = dx/dy. (b) ρ as a function of α, size, and geometry of a QD.

|Z〉–like state in our notation and vice-versa. The orbital character of different bands according

to the convention used in this work is denoted in brackets in Fig. 4.1. Overall, using the above

discussion, we expect that the hole ground state in an a-plane InGaN/GaN QD with a circular

symmetric base is predominately |Y 〉–like in character. However, depending on the in-plane

QD shape anisotropies, band mixing effects are expected to play an important role which are

key for the DOLP calculations.

Equipped with a knowledge of the basic features of the band structure, we now turn to the

calculation of DOLP in a nonpolar InGaN dot. In this section, we only analyze DOLP values

at T= 0 K. Here, our main aim is to explore the robustness of DOLP in these systems against

shape deformations at cryogenic conditions. The outcome of our k.p calculations for an a-plane

InGaN QD with a circular base is predicted to have a ρ value of 0.96 (96%) indicating that the

emitted light should be polarized perpendicular to the c-axis (along the m-axis). This result is

in stark contrast with theoretical studies of c-plane InGaN QDs, where ρ, due to the c-plane

symmetry, is 0 for dots with no in-plane anisotropies [201, 214].

However, it is important to note that self-assembled QDs are unlikely to be perfectly symmet-

rical given the difference in the underlying c- and a- lattice constants [62], and the stochas-

tic self-assembly formation process. Results on both InGaAs QDs [172] and c-plane InGaN

QDs [201, 214] reveal that dot shape anisotropy plays an important role and affects their prop-

erties quite significantly due to band mixing effects. Anisotropy affects the degree of quantum

confinement, which causes energetic shifts in the |X〉–, |Y 〉–, and |Z〉–like state and thus their

contribution to the band mixing effects in the hole ground state. It is therefore important to

study how significant this effect is in our QDs by modifying the dot geometry in the simulation.
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Similar to Sec. 3.2, we define the in-plane aspect ratio α as α = dx/dy, where dx and dy are the

in-plane dimensions of the dot base along c (x) and m (y)-directions respectively. Please note

we are working here in a rotated simulation frame. Therefore, for a circular base, dx = dy =

30 nm, and α = 1. A schematic illustration of the convention is given in the inset of Fig. 4.2.

A smaller dimension, and thus stronger confinement effects, along the x-direction will further

increase the DOLP as it approaches unity. This is attributed to the lower effective mass of the

|X〉–like states along this direction and results in an increase in the energetic separation of |Y 〉–
and |X〉– like states. Correspondingly, the more interesting situation is what happens if the

dot geometry is modified along the y- direction. Such an anisotropy should affect states with a

high |Y 〉–like orbital contribution more strongly, again due to the fact that |Y 〉–like (|X〉–like)

states exhibit a low (high) effective mass along the y-direction [213]. Hence, calculations were

performed at dy = 30, 15, 7, 6 and 5 nm, as the QD base becomes more elliptical. To account

for the change in In content, the In content is varied between 15% and 25%. The results for ρ

as a function of α and In content are shown in Fig. 4.2. We see that ρ is almost constant for α

values between 1 and 2, and decreases only slightly for α = 3, independent of In content. It is

important to note that α = 3 already presents a significant “deformation” of the dot (dx = 30

nm, dy = 10 nm). Consequently, the calculations show that in a-plane InGaN QDs, the DOLP

ρ is very insensitive against shape anisotropies and In composition changes. It should be noted

that, in principle, Coulomb effects can mix contributions from excited (single-particle) states

into the excitonic ground state [136]. However, our calculations reveal that the first few excited

hole states are all almost entirely |Y 〉–like in character. Thus, mixing of different hole states

via Coulomb effects will not affect the orbital character discussed here. A detailed discussion

of excited states and how this affects the DOLP at elevated temperatures is presented in the

next section.

To strengthen the argument that the DOLP in nonpolar InGaN/GaN QDs is extremely robust

against shape anisotropies, we have also varied the geometry and size of the dot. Firstly, to

study the impact of the QD size on the DOLP, we have kept the geometry to be lens-shaped

but reduced the in-plane dimensions of the system. Here, for the symmetric dot, dx = dy = 24

nm. To consider the same range of in-plane aspect ratios α, dy has been varied between 24 and

4 nm. The results of this study are shown in Fig. 4.2 (red circles), revealing that the change

in the QD in-plane dimensions affects the DOLP only very slightly.

To further extend this analysis, we have also investigated the influence of the QD geometry on

the DOLP. To this end, we have drastically changed the QD geometry from a lens-shaped dot

to a cuboid. The length and width of the cuboid is assumed to be of 24 nm with a height of

2.5 nm. Fig. 4.2 (b) shows the data (black squares) of the DOLP as a function of α for the

cuboidal dot. As one can infer from this study, in comparison with the lens shaped systems,
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the reduction of the DOLP only happens at higher α values (α = 5). Consequently, the DOLP

in cuboid-shaped dots would even be more robust against shape anisotropies.

As such, our theoretical studies predict high experimental DOLP values, with very small vari-

ations caused by QD shape anisotropies, In content variations, size and geometry differences.

A detailed comparison of our simulation results with the experimental findings is presented in

later sections. Having discussed the robustness of DOLP values at cryogenic temperatures, we

now turn to analyze the temperature dependence of the DOLP ρ in nonpolar InGaN QDs.

4.2.2 Theoretical study on the impact of temperature and QD geometry on

DOLP

Here, we start our analysis with a symmetric dot (α = 1) and calculate DOLP as a function of

temperature T . For these calculations, the In content is set to 20%. The corresponding data

for ρ are given by the red circles in Fig. 4.3. For low temperatures [T . 20 K] the DOLP value

is extremely high [ρ(20) ≈ 0.96]. In line with the discussions presented in the last section, the

hole ground state is found to be predominately |Y 〉–like in character. Furthermore, given the

low temperature of T = 20 K, contributions from excited states are negligible. Consequently a

high DOLP ρ is expected, consistent with the calculated value of 0.96. We observe here that ρ

stays approximately constant up to 80 K. Over this temperature range mainly hole states with

a large percentage of |Y 〉–like orbital character are populated and thus, R⊥sp � R
‖
sp. Above

80 K we observe that contributions from states with a higher percentage of |X〉–like character

become important. This results in the situation that R⊥sp decreases with increasing temperature

T while at the same time R
‖
sp starts to increase. Consequently, based on Eq. (4.4), ρ starts to

decrease with increasing temperature T . At 200 K ρ is reduced to approximately 0.82 and at

300 K this values drops to 0.71.

As already mentioned above, such a symmetric dot is unlikely. Since we are interested in how

different anisotropies affect the DOLP values at high temperatures, the in-plane geometry of

the QD has been varied. We first investigate temperature dependence of the DOLP for a

lens-shaped dot characterized by α = 2 (dx = 30 nm, dy = 15 nm). Based on our previous

discussions, in such a situation band mixing effects between |Y 〉– and |X〉–like states are ex-

pected to be increased. This originates from the fact that states with a larger |Y 〉–like orbital

contribution should be much more strongly affected by the increased confinement effect along

the y-axis when compared with predominately |X〉–like states. Consequently, in comparison

to the symmetric QD (α = 1), one could expect that at low temperatures the DOLP ρ is

reduced, accompanied by an earlier onset of the reduction in ρ with increasing temperature.

This behaviour is indeed reflected in the calculated values for ρ(T ) of this dot, which are given

by the blue triangles in Fig. 4.3. In comparison to symmetric QDs (red circles), we find already
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Figure 4.3: DOLP ρ as a function of the temperature T in a lens-shaped In0.2Ga0.8N/GaN
dots for three different in-plane aspect ratios (α).

lower DOLP values at low temperatures (T . 20 K). Additionally, ρ starts to decrease rapidly

at much lower temperatures (T & 40 K). At 200 K, ρ drops to 0.54.

Making use of the insight gained into the band structure and how the QD geometry affects the

temperature dependence of the DOLP, we can now provide a potential way forward to improve

the temperature stability of ρ(T ) further. Given the positive crystal field splitting energy and

taking into account the light-hole mass of predominately |X〉–like states along the c-axis (x-

axis), greater confinement along the c-axis should decrease band mixing effects between |Y 〉–
and |X〉–like states, which would be especially relevant for excited hole states. Consequently,

by reducing the dimension of the QD along the c-axis, ρ should stay approximately constant

over a wider temperature range when compared to cases of α = 1 and α = 2. Also, the DOLP

ρ should be larger at low temperatures in comparison with the symmetric dot, for instance.

To verify this prediction, we have performed calculations for a QD having α=1/2 (dy = 30 nm

and dx = 15 nm). In Fig. 4.3 the green squares show the corresponding DOLP ρ values as

a function of the temperature T . As expected from our analysis above, ρ(T ) for α = 1/2 is

always higher than in the case of α = 1 (red square) and α = 2 (blue triangle). Furthermore,

for α = 1/2, up to 200 K the drop in ρ(T ) is strongly reduced in comparison to α = 2 and

still clearly reduced with respect to α = 1 . Moreover, for α = 1/2, ρ(T ) stays approximately

constant (ρ ≈ 0.98) up to 100 K, before it starts to slightly decrease over the temperature range

of 100 K to 200 K. At T = 200 K we find here a value of ρ(200) ≈ 0.90. Even up to room

temperature (T = 300 K), strongly polarized emission is observed (ρ(200) ≈ 0.77).



Chapter 4: Polarization properties 94

Our theory thus provides a guideline to target asymmetric QD structures for achieving emit-

ters with a further improved temperature stability of the DOLP ρ. For example, with QDs

squeezed along the c-axis (elongation along m-axis), we would be able to achieve even higher

polarization degrees at ambient conditions. Having discussed the robustness of DOLP against

shape deformations in a-plane InGaN QDs from a theoretical perspective, in the next section,

we compare our theoretical results with the experimental findings obtained by our collaborators

through optical characterization of a-plane InGaN/GaN QDs.

4.3 Comparison with experiment

The a-plane InGaN QD samples were grown by our collaborators at University of Cambridge,

UK in the group of Prof. R. A. Oliver using a modified droplet epitaxy method [14]. Subse-

quently, polarization resolved micro photoluminescence (PL) of the grown samples were carried

out using a two-photon excitation method by our collaborators at University of Oxford, UK in

the group of Prof. R. A. Taylor. The DOLP values were obtained using Eq. (4.1) where I⊥

and I‖ are the PL emission intensities perpendicular and parallel to c-axis respectively. More

details on the growth and optical characterization of the samples can be found elsewhere [215].

We start this section by analysing experimental DOLP values at cryogenic temperatures and

subsequently will move to the discussion of temperature sensitivity of the DOLP ρ.

4.3.1 QD emission at cryogenic temperatures: Theory experiment compar-

ison

In order to achieve statistical significance, the absolute DOLP values of 180 QDs were studied

experimentally by our collaborators. The distribution of |ρ| for these QDs is shown in Fig. 4.4.

All |ρ| data of QDs fall in the range between 0.60 to 1.00. The high mean |ρ| of 0.90 provides

direct evidence that nonpolar a-plane InGaN QDs are strongly polarized photon emitters. The

spread of the values in Fig. 4.4 is attributed to variations of QD size, shape, and In content.

There are 23 QDs for which DOLP was found to be unity. As explained in the theoretical

simulation, this could be caused by a compression of the QD geometry along the c-direction.

Those with DOLP values lower than average could be attributed to a compression along the

m-axis (cf. Fig. 4.2). Furthermore, the calculated standard deviation is only 0.08, which

signifies very small fluctuations around the high average DOLP. As such, the robustness of

DOLP against changes in size, shape anisotropy, and In content have been demonstrated both

theoretically and experimentally. The data in Fig. 4.4 indicate that there are no discernible

correlations between QD energy and DOLP, thus a-plane InGaN QDs emit highly polarized

photons across all attainable wavelengths.
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Figure 4.4: 180 a-plane InGaN/GaN QD DOLP variation with emission energy. The statis-
tical distributions have been fitted with Gaussian profiles. The means and standard deviations
of the Gaussian distributions are 0.90 ± 0.08

In the next step, the alignment of the polarization axis during the polarization measurement

was also studied. It was found that 91% of the QDs exhibit polarization aligned along the

m-axis, which agrees well with the simulation results. However, 9% of the studied QDs emit

light polarized along the c-axis. In our theoretical framework, this would mean that the hole

ground state is predominantly |X〉–like in orbital character. From Fig. 4.2, one can infer

that ρ drops significantly for α > 3, and more so with higher In content, as the confinement

effects due to increased band offsets become stronger, making asymmetries in the QD geometry

more prominent. Producing a predominant |X〉–like hole ground state would hence require an

extreme deformation of the QD (dx = 30 nm, dy = 6 nm) and very high In content. It is

also to note that in addition to strong shape anisotropies, alloy fluctuation effects might also

contribute to the observed behavior [187]. However overall, our experimental and theoretical

data show that a-plane InGaN/GaN QDs are able to achieve efficient linearly polarized photon

emission with consistently high DOLP values and a deterministic polarization axis.

4.3.2 Statistical study of DOLP as a function of temperature: Theory ex-

periment comparison

In the next step, to assess temperature dependence of the polarization properties, temperature-

dependent polarization-resolved µ-PL experiments were carried out in Oxford. The temperature

dependence of the DOLP for an arbitrary QD in 20 K steps up to 200 K is shown in Fig. 4.5

(a). By using polarization formula, Eq. (4.1), a polarization degree of 0.93 at 5 K was obtained

in the experimental studies. As we can see from Fig. 4.5 (a), the measurements show that
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(a) (b)

Figure 4.5: (a) DOLP of the studied QD at 5 K, and from 20 to 200 K at 20 K intervals.
With a slight reduction at higher temperatures, the DOLP always remained at 0.80 and above.
(b) Statistical study of the DOLP variation (open circles) with temperature. Also shown is the
average DOLP (filled diamonds) with standard error at each temperature step, which stays
above 0.75.

the polarization degree stays fairly constant up to 100 K. The DOLP then starts to decrease

slowly at higher temperatures, reaching 0.85 at 200 K. This small decrease of 8%, and the

consequent insensitivity to changes in temperature indicate that the studied a-plane InGaN QD

is indeed a reliable polarized photon emitter even at thermoelectrically cooled temperatures.

This experimental ρ data for the studied QD is in good agreement with the DOLP values

obtained for QDs having α = 1 and α = 2 in Sec. 4.2.2. In order to achieve statistical

significance for this finding, the polarization properties of 200 individual QDs with no selection

bias at different temperatures have been studied in the experiment. An average DOLP (filled

diamonds) with standard error at each temperature was evaluated and is displayed with the

DOLP data for individual QDs (open circles) in Fig. 4.5 (b). The average stays above 0.85 and

remains relatively constant from 5 to 120 K, before small drops occur beyond this temperature

range. In fact, around half of the measured QDs have a DOLP of 0.9 or higher for T ≤ 100

K. It is worth noting that several QDs had a DOLP of 1, and a few more very close to 1

at each temperature step was measured. Conversely, QDs with lower DOLP values were also

found. This difference in DOLP values can be attributed partly to the previously described

differences in shape anisotropies which might be present in these dots. Additionally, recent

atomistic calculations [187] on m-plane InGaN/GaN QDs have revealed that alloy fluctuations

might cause band mixing effects and accordingly, a reduced DOLP. Therefore, different alloy

microstructures can also contribute to the spread in DOLP values here. The larger spreads

observed at higher temperatures are indicative of the presence of lower DOLP for some QDs

in this temperature range. In addition to the shape anisotropies, this may be caused by the

above discussed band mixing effects in the excited states. Nonetheless, all average DOLP data

remain at or above 0.77, indicating statistically high DOLP up to 200 K, comparable even
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to most low-temperature QD DOLP reports from the literature [198, 199, 216, 217]. In line

with our theoretical findings, the direction of polarization of these QDs also coincides with the

crystal m-axis (perpendicular to the c-axis) at all temperatures studied here.

4.4 Conclusion

In summary, our theoretical studies combining Fermi-Dirac Statistics and k · p theory have

demonstrated high DOLP values for a-plane InGaN QDs. These high DOLP values are rel-

atively insensitive to both QD anisotropies and temperature changes, thanks to the reduced

band mixing effect caused by the change in symmetry in a-plane structures compared to a

c-plane case. Statistically significant experimental investigations by our collaborators demon-

strate highly polarized emission with an average DOLP of > 0.9 at T ≤ 100K which agrees

very well with our theoretical results. Additionally, the polarization axis has been theoretically

and experimentally determined to be mostly along the crystallographic m-axis direction, with a

small (9%) minority along the c-axis. The results presented in this work as a whole shows that

efficient polarization control in on-chip temperatures can be achieved in solid-state QDs, a step

forward for the development or related optoelectronic and quantum information applications.

This work also leads to the fact that one can achieve linearly polarized single photon emission

from these dots up to elevated temperatures [215] as demonstrated (not shown here) by our

experimental collaborators.





Chapter 5

Impact of second-order

piezoelectricity on built-in fields,

electronic and optical properties of

c- and non-c-plane heterostructures

In previous chapters, the piezoelectric polarization vector field in WZ InGaN/GaN QDs has

been calculated by taking into account linear piezoelectric contributions only. For several years,

a similar first-order approach has been used to describe piezoelectric fields in ZB heterostruc-

tures such as InAs/GaAs QDs [56, 137]. But, in recent years, several groups have reported

that in addition to first-order piezoelectric contributions, second-order effects, quadratic in

strain, play an important role for an accurate description of the piezoelectric vector fields and

thus connected electronic and optical properties of these systems [57, 172]. These second-order

piezoelectric effects have been widely neglected in WZ III-N materials. Only recently second-

order piezoelectric coefficients for GaN, AlN and InN have been reported [218–220]. Based on

these coefficients, electric fields in c-plane nitride-based QWs have been studied, showing that

when including second-order piezoelectricity, in general, a better agreement between theory

and experiment is achieved [59, 218, 220]. However, there exist no detailed analysis of how

second-order piezoelectricity affects the built-in field in semipolar QWs and/or polar, semi-

and nonpolar QDs. Especially, given that first-order piezoelectric effects are strongly reduced

in semi- and nonpolar systems, it is still an open question how important second-order contri-

butions are for the total built-in field. This question is significant not only from a fundamental

physics perspective; it is also essential from an application point of view, given the interest in

these semi- and nonpolar nitride-based heterostructures for optoelectronic devices.

99
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Moreover, it is also important to understand how the change in built-in field due to second-

order piezoelectricity affects the electronic and optical properties such as wave function overlaps

and oscillator strength in III-N QDs. Especially, as we will show later, given the recent drive

for InxGa1−xN QD based light emitters with high In contents (x ≈ 0.4) for high-performance

red-emitting laser diodes [21, 22], the question of how vital second-order piezoelectric effects

are for an accurate description of red emitting systems.

In this chapter, we address these questions by means of the continuum-based framework dis-

cussed in Sec. 3.1. The present chapter is organized as follows. Sec. 5.1 gives a general overview

of the theoretical framework used here. After that, we move to present the results of our stud-

ies in Sec. 5.2. In Sec. 5.2.1 we show how built-in fields in different systems are affected by

second-order piezoelectricity. We start, in Sec. 5.2.1.1, with WZ III-N QWs before turning to

QD structures in Sec. 5.2.1.2 where we focus on GaN/AlN and InGaN/GaN QD systems grown

on different substrate orientations. In the next section, Sec. 5.2.2 we only focus on InGaN/GaN

QDs and analyze how changes in the built-in field affect the electronic and optical properties

of these dots. Finally, in Sec. 5.2.3, we investigate the electronic and optical properties of the

red emitting c-plane InGaN/GaN QDs and discuss how second-order piezoelectric effects affect

the emission wavelength and radiative lifetime of these dots when the In content in the dot is

varied .

5.1 Theory

We start in Sec. 5.1.1 with a brief overview of the second-order piezoelectric polarization vector

field in III-N systems. This is followed by a summary of the theoretical framework applied.

5.1.1 Polarization vector fields in WZ III-N semiconductor nanostructures

As described in the introduction, Sec. 1.2.2 (cf. Eq. (1.2)) the total piezoelectric polarization

vector field in a WZ system can be expressed as a sum of first- and second-order contribu-

tions [57]. In Sec. 2.5, we have already discussed the widely used first-order contribution,

PFO
pz,µ. In this section, we focus our attention on the second-order piezoelectric contribution,

P SO
pz,µ = 1

2

∑6
jk=1Bµjkεjεk, cf. Eq. (1.2). In general, it should be stressed that the second-order

piezoelectric effect is not just a second-order term in a polynomial expansion of the piezoelectric

response of a material. Pal et al. [218] pointed this already out for III-N materials. Additionally,

Beya-Wakata et al. [221] and Caro et al. [222] highlighted in their work on ZB III-V materials

that in certain materials second-order effects can dominate over first-order contributions, even

for small strain. Fundamentally different factors contribute to first- and second-order piezo-

electricity, for example, linear and nonlinear contributions to internal strain parameters and
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the material electronic response [222]. Furthermore, similar to first-order piezoelectric coeffi-

cients, the symmetry of the underlying crystal structure of the material under consideration

determines the number of non-vanishing and independent second-order piezoelectric coefficients

Bµjk. [55]

Based on symmetry considerations, for instance given by Grimmer [55], one can show that for

systems with a WZ crystal structure Bµjk has 17 non-vanishing components of which 8 are

independent. Using this information and Eq. (1.2), for a c-plane system where the z-axis of

the coordinate system is parallel to the WZ c-axis, different components of the second-order

piezoelectric polarization vector field PSO
pz is given by:

P SO
pz,x = 2B115(εxxεxz + εxyεyz) + 2B135εzzεxz − 2B125(εxyεyz − εyyεxz);

P SO
pz,y = 2B115(εyyεyz + εxyεxz) + 2B135εzzεyz + 2B125(εxxεyz − εxyεxz);

P SO
pz,z =

B311

2
(ε2
xx + ε2

yy + 2ε2
xy) +B312(εxxεyy − ε2

xy) +B313(εxxεzz + εyyεzz)

+ 2B344(ε2
yz + ε2

xz) +
1

2
B333ε

2
zz .

(5.1)

Please note, like Eq. (2.59), the Cartesian notation for the strain tensor εij has been used

here. In comparison to the first-order piezoelectric polarization vector field, cf. Eq. (2.59), the

interplay of the different strain contributions is far more complicated. The x- and y-components

no longer just depend on shear strain components εij with i 6= j. Here, also products of

shear strain parts and diagonal components εii arise. Furthermore, the z-component is now

not only dependent on diagonal parts of the strain tensor εii, also shear strain components

become important. Moreover, the increased number of second-order piezoelectric coefficients

Bµjk, especially related to shear strains, presents also a significant difference compared to the

first-order piezoelectric component. This means that one could expect in systems where shear

strain contributions are significant, e.g. semipolar WZ QWs, second-order piezoelectricity

is important for an accurate description of the connected electrostatic built-in fields in these

systems. Using the expressions given in Eq. (1.3), Eq. (2.59) and Eq. (5.1), the total polarization

vector field PTot can be calculated as PTot = PSP + PFO
pz + PSO

pz . Subsequently, the connected

electrostatic built-in potential φp in III-N heterostructures can be evaluated by solving Poisson’s

equation as described in detail in Sec. 2.5.

In order to study the effect of second-order piezoelectricity on the built-in potential of WZ III-N

heterostructures, such as QWs and more challenging QDs, grown on different crystallographic

planes one has to rotate the expressions for the polarization vector fields and strain tensors

according to the methodology discussed in Sec. 2.2.1. In nitride-based QWs and for first-order

piezoelectricity this is a widely used approach [65, 223–225]. However, all these works do not

account for second-order piezoelectric effects. But, once the analytic expression for PSO
pz as

a function of θ is known, it can be easily implemented in existing symmetry adapted QW



Chapter 5: Second-order effects 102

codes. We provide this expression for PSO
pz , along with the one for PFO

pz , in Appendix C. When

treating the QW as a one-dimensional system, only the z-component of the total polarization

vector field is required for calculating the built-in potential. For QD systems, due to their

three-dimensional confinement, the x-, y- and z-components are relevant. Thus the expressions

provided here allow for the calculation of electrostatic built-in potentials of both QD and QW

systems grown along arbitrary crystallographic directions characterized by the incline angle θ.

So far we have introduced general aspects of the polarization vector fields and connected elec-

trostatic potentials in WZ semiconductor heterostructures up to second-order piezoelectricity.

In the next step, we briefly discuss the theoretical framework in which our calculations have

been carried out.

5.1.2 Theoretical Framework and Material input parameters

Equipped with the analytic expressions for spontaneous, first- and second-order piezoelectric

polarization vector fields as a function of θ, cf. Appendix C, these terms have been implemented

in the highly flexible plane-wave based software library S/Phi/nX [126, 163]. As described

earlier in Sec. 3.1, S/Phi/nX in general allows for defining arbitrary elastic and piezoelectric

tensors as well as k · p Hamiltonians.

In the first step, we study the impact of second-order piezoelectric effects on the electrostatic

built-in fields in nitride-based QW and QD structures grown along different crystallographic

directions. In Sec. 2.5, we have already outlined how to calculate the electrostatic built-in

potential φp once the polarization vector field is known. However, as further input, the (position

dependent) strain tensor εij of the system under consideration is required. Here, we use a

continuum-based approach detailed in Sec. 2.4.2 to calculate the strain tensor components.

Having calculated the strain field and built-in potentials, in a second step, a 6+2 band k · p
Hamiltonian is employed to obtain the electronic structure of the here considered QD systems.

This Hamiltonian is already described in Sec. 2.2.1.1. The strain effects are included via the

Pikus-Bir Hamiltonian as described in Sec. 2.3.1. The built-in potential enters the Hamiltonian

as a diagonal correction (cf. Sec. 2.5).

Finally, we account for excitonic corrections by using the k · p wave functions as input for

self-consistent Hartree calculations [172]. The details of Hartree calculations employed in this

work can be found in Sec. 2.6. In addition to the QW dimensions and QD geometries, which

will be discussed below, material parameters are required as input. In the following we focus

our attention on systems based on InN, GaN, AlN and their respective alloys. Table B.2 of

Appendix B, summarizes the here used material parameters for the binary materials. While

there are several reports on first-order piezoelectric coefficients, only very few studies have been
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performed to extract second-order piezoelectric coefficients Bµjk for WZ III-N systems [218–

220]. In the following we use the parameter set by Prodhomme et al. [220] since it contains

for the material systems InN, GaN and AlN values for all non-vanishing coefficients Bµjk.

Thus it provides a consistent parameter set for our study here. Overall, our main focus is to

gain insight into trends of how second-order piezoelectric effects affect the electrostatic built-in

fields, and as a result electronic and optical properties of nitride-based nanostructures grown on

different substrate orientations. Therefore, to describe alloys we assume a linear interpolation

for all material parameters except the spontaneous polarization, where we apply the bowing

parameters bSP from Ref. [226]. Further, more detailed calculations, looking at impact and

importance of different material parameter sets and the choice of bowing parameters, can be

performed in a straightforward way once these quantities are known. However, this is beyond

the scope of the present study where we are interested in general effects. Having established

the theoretical framework, we now present the results of our analysis in the next section.

5.2 Results

Here, in a first step, in Sec. 5.2.1, we focus on how the built-in potential of III-N heterostructures

grown along different crystallographic directions is affected by second-order piezoelectricity. In

the next step, in Sec. 5.2.2, the impact of second-order piezoelectric effects on the electronic and

optical properties of III-N InGaN/GaN QD systems is studied in detail. Finally, in Sec. 5.2.3,

we analyze how second-order piezoelectricity affects the emission wavelength and radiative

lifetime of c-plane InGaN/GaN QDs as a function of the In content.

5.2.1 Built-in potential in III-N heterostructures grown along different crys-

tallographic directions

This section is organized as follows. In Sec. 5.2.1.1, we focus on QW structures and study

polarization fields for different material combinations and growth directions. In Sec. 5.2.1.2,

we turn our attention to the built-in potential in GaN/AlN and InGaN/GaN QD systems grown

on different substrate orientations.

5.2.1.1 Impact of second-order piezoelectricity on built-in fields in III-N QWs

An ideal QW structure can be treated as a one-dimensional system since quantum confinement

is present along one direction only. We use this approximation here and start from c-plane

structures where the c-axis is parallel to the z-axis of the coordinate system. In the follow-

ing, the QW growth direction is always the z′-axis of the rotated coordinate system. In this
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one-dimensional problem discontinuities in the polarization vector field P occur only along the

growth direction. Therefore, only the z-component of P is relevant for a QW structure. The

situation is more complex for a QD system where the three-dimensional confinement of the dot

comes into play and the full polarization vector field needs to be considered. This question will

be addressed in Sec. 5.2.1.2 and 5.2.1.2. Here, to gain insight into the interplay of second-order

piezoelectricity and growth plane, we start with the most extreme cases by studying GaN/AlN,

InN/AlN and InN/GaN systems. Figure 5.1 displays the z-component of the different contri-

butions to the full piezoelectric response, PFO
pz,z′ + P SO

pz,z′ , as a function the incline angle θ for

GaN/AlN (Fig. 5.1 (a)), InN/AlN (Fig. 5.1 (b)) and InN/GaN (Fig. 5.1 (c)). To shed light

onto the importance of the second-order piezoelectric contribution, results are shown for (i)

“standard” first-order terms only, PFO
pz,z′ (red circles), (ii) taking only second-order piezoelectric

effects into account, P SO
pz,z′ (black squares), and (iii) the sum of first- and second-order compo-

nents PFO
pz,z′ +P SO

pz,z′ (blue triangles). The vertical dashed lines in Fig. 5.1 indicate some of the

experimentally relevant growth planes for semi- and nonpolar nitride-based QWs [45, 224, 227–

229]. Overall, for the three systems under consideration, the second-order contribution (black

squares) is smaller than the first-order contribution (red circles). Furthermore, we find that

for certain planes, for instance the (101̄3)-plane, second-order piezoelectricity has a negligible

effect on the z-component of the total piezoelectric polarization vector field. This originates

from the fact that the second-order contribution is changing sign around this angle (θ ≈ 30◦).

However, for c-plane systems and structures grown on planes described by θ values in the

range of 55◦ ≤ θ ≤ 80◦ and 105◦ ≤ θ ≤ 120◦, the magnitude of the total piezoelectric polar-

ization (blue triangles) is clearly increased by second-order piezoelectricity. More specifically,

for the polar c-plane structures (θ = 0◦) of the three different systems studied here, the full

piezoelectric polarization values increase by 11%-14% when taking second-order piezoelectric

effects into account. It should be noted that this increase is consistent with the c-plane re-

sults presented in Ref. [218] where a different first- and second-order piezoelectric coefficient

set has been used. However, the c-plane data presented in Ref. [220], applying a slightly dif-

ferent first-order parameter set eµj but the same second-order parameter set Bµjk, indicated

a decrease in PFO
pz,z′ + P SO

pz,z′ for InN/GaN systems when compared to PFO
pz,z′ only. Based on a

closer inspection of the results in Ref. [220] we relate the observed reduction in PFO
pz,z′ + P SO

pz,z′

to differences in the applied Poisson ratio/biaxial coefficient. In our case we assume for all the

systems studied here a homogenous biaxial strain along the z′-axis. For a c-plane system this

results in εzz = −2C13
C33

εxx. As input we use the parameters given in Table B.2 of Appendix B.

Turning to the semipolar planes, where the magnitude of PFO
pz,z′ is reduced compared to the c-

plane system, the impact of the second-order piezoelectric effect is even larger. For example, at

θ = 75◦, the (202̄1)-plane, the magnitude of the overall piezoelectric response changes by 33%,

44% and 32% for GaN/AlN, InN/AlN and InN/GaN systems, respectively, when second-order

piezoelectric effects are included.
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(a) GaN/AlN (b) InN/AlN (c) InN/GaN

Figure 5.1: z-component of piezoelectric polarization vector fields in (a) GaN/AlN, (b) In-
N/AlN and (c) InN/GaN systems as a function of the incline angle θ to the wurtzite c-axis.
The contributions arising from first-order piezoelectricity are denoted by (red) circles. Con-
tributions entirely stemming from second-order piezoelectricity are given by (black) squares.
The total piezoelectric polarization, which includes first- and second-order piezoelectric po-
larization, is given by (blue) triangles. Dashed vertical lines indicate selected experimentally
relevant growth planes.

Based on these general trends we discuss now how second-order piezoelectric effects affect

the built-in electric field in nitride-based QWs grown on different substrate orientations. For

this analysis we focus on two material systems, namely GaN/AlN and InGaN/GaN-based

QWs. Such structures have been studied experimentally in the literature for different substrate

orientations [14, 45, 175, 227, 228]. To be able to compare our theoretical results to experimental

literature data, we calculate the built-in field inside a multi-QW (MQW) system via [218]

Fp(θ) = −

[
PBsp,z′(θ)− PWsp,z′(θ)

]
+
[
PBpz,z′(θ)− PWpz,z′(θ)

]
εWr + εBr (tW /tB)

. (5.2)

Here tW (tB) is the QW (barrier) thickness and PWsp,z′(θ) (PBsp,z′(θ)) is the angle dependent

spontaneous polarization in the well (barrier). The angle dependent piezoelectric polarization

in the well (barrier) is denoted by PWpz,z′(θ) (PBpz,z′(θ)).

Equipped with Eq. (5.2) and the analytic expressions given in Appendix C, we can now compare

calculated and measured built-in electric fields. The results are summarized in Table 5.1. It

should be noted that only a few experimental reports on built-in fields in QW structures

grown on semipolar planes are available in the literature [228]. To highlight the impact of

the second-order piezoelectric polarization, calculations using Eq. (5.2) have been performed in

the absence and in the presence of second-order contributions. In the absence of second-order

piezoelectricity, PWpz,z′ = PFO
pz,z′ , only first-order piezoelectric coefficients eµj are relevant. In the

presence of first- and second-order effects, PWpz,z′ = PFO
pz,z′ + P SO

pz,z′ , P
W
pz,z′ is determined by the

combined contributions of both eµj and Bµjk. Overall, as expected from our discussion above,

when including second-order effects in the calculations, the magnitude of the electric field is

increased when compared to a standard first-order only calculation for both GaN/AlN and
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Table 5.1: Built-in electric fields in GaN/AlN and InGaN/GaN multi-quantum well struc-
tures. The well (barrier) thickness is denoted by tw (tb). The growth plane, and thus the
incline angle to the c-axis, is given by θ. Experimental data taken from the literature is de-
noted by Fexp. Our theoretical data including only first-order piezoelectricity and spontaneous
polarization, is given by FFO+SP

theo . The results of the full calculation, including second-order

piezoelectric effects, is denoted by FFO+SO+SP
theo .

Material tw (nm) tb (nm) θ(◦) Fexp

(kV/cm)
FFO+SP

theo

(kV/cm)
FFO+SP+SO

theo

(kV/cm)

GaN/AlN 2.6 100 0 1020 [230] 957 1004
GaN/AlN 2.5 6 0 800 [231] 710 744
GaN/AlN 2.3 1.9 0 504 [232] 465 488
GaN/AlN 1.4 1.9 0 607 [232] 586 614

In0.12Ga0.88N/GaN 3 6 0 1600 [229] 1530 1620
In0.12Ga0.88N/GaN 4 30 58 -575±150 [228] -397 -444
In0.15Ga0.85N/GaN 4 30 118 840±150 [228] 587 666
In0.06Ga0.94N/GaN 3 3 0 610 [229] 593 610
In0.22Ga0.78N/GaN 3 8 0 3090 [229] 2940 3220
In0.09Ga0.91N/GaN 3 3 0 1000 [229] 880 920

InGaN/GaN systems, cf. Table 5.1. One can also conclude from Table 5.1 that the second-

order piezoelectric contributions have a larger impact on the magnitude of the built-in field in

semipolar structures and changes of 12%-14% in magnitude are observed. The experimental

reports presented here are not direct measurements of the built-in fields, rather they are deduced

from the variation of the PL emission energy with well-width [229, 230]. Additionally, the PL

peak position could also be affected by alloy disorder effects in addition to the QCSE [114].

Nonetheless, in general, when comparing the calculated fields to the experimental data, we find

that with first-order piezoelectricity only the theoretical values underestimate the magnitude

of the electric field in the respective structures. When including second-order piezoelectricity,

an improved agreement between theory and experiment is observed.

(a) (b) (c)

Figure 5.2: Built-in electric field in InGaN/GaN multi-QWs (MQWs) as a function of the
incline angle θ to the wurtzite c-axis. Results for MQW systems with 12% In (black square),
15% In (red circle) and 22% (blue triangle) are displayed. More details about the systems
are given in Table 5.1 and in the text. (a) Only first-order piezoelectricity and spontaneous
polarization components are taken into account. (b) First- and second-order piezoelectricity as
well as spontaneous polarization are included in the calculations. (c) Relative changes in the
electric field due to second-order piezoelectric effects.
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To study the impact of the second-order piezoelectric effect on the electric field in more detail

and how the growth plane contributes to this, Fp(θ) (cf. Eq. 5.2) is shown as a function of

the incline angle θ for different InxGa1−xN/GaN QW systems in Fig. 5.2. The electric field

Fp(θ), Eq. (5.2), has been calculated for three different In contents x, namely 12%, 15% and

22%. For the 12% and 15% In system we use the experimental results in terms of well and

barrier thickness given in Ref. [228] based on (112̄2)- and (101̄1)-oriented MQWs. Applying

the experimental findings of Ref. [228], well and barrier thickness are chosen to be tW = 4

nm and tB = 30 nm, [228] respectively. For the 22% In MQW system the settings reported

by Hangleiter et al. [229] for a (0001)-oriented system have been used (tW = 3 nm; tB = 8

nm) [229]. When varying the incline angle θ in our calculations the barrier and QW thicknesses

of the here considered structures have been kept constant to achieve a consistent comparison.

Figure 5.2 (a) displays the calculated electric field in the absence of second-order contributions

to the piezoelectric polarization in PWpz,z′ , cf. Eq. (5.2). Given the strain dependence of the

piezoelectric polarization, the total electric field is largest in the sample with the highest In

content (blue triangle). Independent of the In content, at θ ≈ 45◦ and θ = 90◦ the electric field

changes sign. When including second-order piezoelectric contributions in the calculations, cf.

Fig. 5.2 (b), this behavior of zero electric field and sign change is approximately unaffected.

However, the magnitude of the electric field, independent of the incline angle θ, is always

increased. To flesh out this effect even more clearly, Fig. 5.2 (c) depicts the electric field

increase in percent obtained from the difference between the results displayed in Fig. 5.2 (a)

(no second-order contributions) and (b) (with second-order effects). The data further confirms

that especially for semipolar planes, where fields are significantly reduced compared to the

c-plane structures, second-order effects can play an important role for an accurate description

of the built-in fields in these structures. More specifically, for the (202̄1)-plane (θ = 75◦) the

magnitude of the electric field increases by 11%, 13%, 18% for an In content of 12%, 15% and

22%, respectively, due to second-order piezoelectricity.

Having presented a detailed analysis of the impact of second-order piezoelectric effects on the

electric built-in fields in nitride-based QWs grown along different crystallographic directions,

we turn now to discuss nitride-based QDs. The results of this analysis are presented in the

following section.

5.2.1.2 Impact of second-order piezoelectricity on built-in potential in wurtzite

III-N QDs

In this section we focus our attention on the impact of the second-order piezoelectric effect on

the electrostatic built-in potential in nitride-based QDs. Again, special attention is paid to the

impact of the growth plane on the results. To focus entirely on changes arising from second-

order piezoelectric effects and the growth plane, we keep the QD geometry fixed throughout
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this study. A detailed analysis of the impact of the QD geometry is beyond the scope of the

present analysis. Furthermore, given the three-dimensional QD geometry, the built-in poten-

tial and thus the electric field inside and around the nanostructure are position dependent.

Thus, and in contrast to the QW systems discussed above, these quantities cannot be char-

acterized by a single number. Therefore, instead of varying the incline angle θ continuously,

we focus on selected experimentally relevant growth planes. In addition to c-plane InGaN/-

GaN and GaN/AlN QD systems, QD growth on the (112̄2)-plane has also been reported in

the literature [17, 45, 227]. This plane is schematically shown in Fig. 1.3. Also, as described

in previous chapters, both InGaN/GaN and GaN/AlN QDs have been grown on the nonpolar

a-plane [14, 174–176, 215, 233]. In the following, we have directed our attention towards these

three planes. For these studies we have assumed a lens-shaped dot geometry, which has also

been considered in other theoretical works [161, 162, 234]. A QD base diameter of 14 nm and

a height of 3 nm has been used in all calculations. These values are in the range of experi-

mentally reported dimensions for dots grown on different planes [174, 235]. Moreover, for the

InGaN/GaN QD systems studied in this section, we consider an In content of 20%, inline with

several experimental reports on c- and nonpolar systems [14, 175, 185].

Starting from this information, the calculated built-in potentials for GaN/AlN and In0.2Ga0.8N/GaN

QDs grown on different substrate orientations are discussed in the following.

Built-in potentials in GaN/AlN QDs

Figure 5.3 shows contour plots of the electrostatic built-in potential φp in GaN/AlN QDs

grown along different crystallographic directions. The first row displays the results for the

c-plane case (θ = 0◦), the middle one for the semipolar (112̄2)-system (θ = 58◦), and the lowest

row depicts data for the nonpolar structure (θ = 90◦). Here, a slice through the QD center

in x′ − z′-plane is chosen where the z′-axis is always parallel to the growth direction. The

(blue) dashed lines indicate the QD geometry. In the left column, Fig. 5.3 (a), the results of

the calculations in the absence of second-order piezoelectric contributions are depicted. Thus

only “standard” first-order piezoelectric effects and the spontaneous polarization are taken into

account. The middle column, Fig. 5.3 (b), shows the second-order piezoelectric contribution on

its own. This means that calculations in the absence of spontaneous and first-order piezoelectric

polarization have been performed. The results of the full calculation, including first- and

second-order piezoelectricity as well as the spontaneous polarization, are displayed in Fig. 5.3

(c), right column. We start our analysis by looking at Fig. 5.3 (a), thus neglecting second-order

piezoelectricity. In the case of the c-plane system, upper part of Fig. 5.3 (a), we observe the

well-known, very strong potential drop across the nanostructure along the growth direction.

This particularity of the potential profile has the effect of spatially separating electron and hole

wave functions along the growth direction and results in strongly increased radiative lifetimes
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c-plane (θ = 0◦)

(112̄2)-plane (θ = 58◦)

nonpolar-plane (θ = 90◦)

(a) (b) (c)

Figure 5.3: Contour plots of the electrostatic built-in potential of lens-shaped GaN/AlN
QDs grown on c- (upper row), (112̄2)- (middle row) and nonpolar a-planes (lower row). The
contour plots are shown for a slice through the center of the QD in the x′ − z′-plane where
the z′-axis is parallel to the different growth directions considered here. (a) Built-in potential
stemming from first-order piezoelectricity and spontaneous polarization. (b) Built-in potential
arising from second-order piezoelectricity only. (c) Total built-in potential, originating from
spontaneous polarization, first- and second-order piezoelectricity.

when compared to situations without such a field [236]. Turning to the semipolar case, middle

part of Fig. 5.3 (a), we find, as expected from our discussion above, a strongly reduced built-in

potential. This stems from the fact that the c-axis describes now a non-vanishing angle with

the growth direction. Thus, the potential drop does not occur along the growth direction but

still along the direction of the c-axis. Finally, when turning to the nonpolar case, lower part of

Fig. 5.3 (a), we find that the built-in potential is not zero as in the QW. This is attributed to

the fact that the QD still exhibits facets oriented along the c-axis [154, 237]. Interestingly, for

the dot geometry chosen here, the magnitude of the built-in potential in the nonpolar case is

comparable to the magnitude of the built-in potential in the semipolar system. Thus, in terms

of the built-in potential magnitude, our calculations do not indicate a significant improvement

when moving from the (112̄2)-system to the nonpolar growth plane. However, it should be

noted that this feature could be related to the particular QD geometry chosen here. When
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considering different QD geometries, which could and probably will vary between the two

growth planes, the situation might be different. We will come back to the question of the QD

geometry further below.

We now turn to discuss second-order piezoelectric effects. To do so, we neglect spontaneous

polarization and first-order piezoelectricity and focus on the second-order piezoelectric contri-

bution only. The data of this investigation is shown in Fig. 5.3 (b). Before looking in detail

into the results, please note the different potential scales between Fig. 5.3 (a) and (b). When

comparing Fig. 5.3 (a) and (b), we clearly observe that for GaN/AlN QDs second-order piezo-

electric effects, at least for the chosen dot geometry, are significantly smaller when compared to

the combined spontaneous and first-order piezoelectric polarization response. The second-order

piezoelectric contribution is at least a factor of order 10 smaller. This finding is independent of

the growth plane. Thus our calculations indicate that for GaN/AlN dots, second-order piezo-

electric effects are of secondary importance for the total built-in potential. This is confirmed

by the fact that the total built-in potential displayed in Fig. 5.3 (c) is basically unchanged in

comparison to Fig. 5.3 (a), where second-order piezoelectric effects are absent.

Even though our results signal that second-order piezoelectric effects are small in GaN/AlN

QDs, it should be noted that independent of the growth plane, this contribution is of the same

symmetry as the combined response of first-order piezoelectric and spontaneous polarization.

Therefore, if the second-order piezoelectric response would be larger, an increase in the total

built-in potential is expected when accounting for these effects. This is in contrast to the

situation in InGaAs/GaAs QDs, where first- and second-order piezoelectric contributions are

opposite in sign [57]. This effect might even lead to a complete cancelation of first- and second-

order built-in potentials and consequently to a field free situation [57]. We find a similar

situation for InGaN/GaN QDs grown on certain crystallographic planes, as we show in the

following section. Also, we will discuss in more detail, the origin of the observation that the

second-order piezoelectric effect for the here studied GaN/AlN dots is of secondary importance

and how this compares to InGaN/GaN systems.

Built-in potentials in InGaN/GaN QDs

Following the GaN/AlN QD analysis, Fig. 5.4 displays the electrostatic built-in potential for

lens-shaped In0.2Ga0.8N/GaN QDs grown along the c- (θ = 0◦, upper row), the [112̄2]- (θ = 58◦,

middle row) and the nonpolar a-axis (θ = 90◦, lower row), respectively. The QD geometry is

indicated by the (white) dashed lines. The contour plots are again shown for a slice through

the center of the dot in the x′-z′-plane, where the z′-axis is parallel to the respective growth

axes. The left column, Fig. 5.4 (a), depicts the “standard” calculation accounting for first-order

piezoelectricity and spontaneous polarization but not second-order piezoelectricity. The middle

column, Fig. 5.4 (b), shows the second-order contribution only (no first-order piezoelectric and
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c-plane (θ = 0◦)

(112̄2)-plane (θ = 58◦)

nonpolar-plane (θ = 90◦)

(a) (b) (c)

Figure 5.4: Contour plots of the electrostatic built-in potential of lens-shaped
In0.2Ga0.8N/GaN QDs grown on c- (upper row), (112̄2)- (middle row) and nonpolar planes
(lower row). The contour plots are shown for a slice through the center of the QD in the
x′−z′-plane where the z′-axis is parallel to the different growth directions considered here. (a)
Built-in potential stemming from first-order piezoelectricity and spontaneous polarization. (b)
Built-in potential arising from second-order piezoelectricity only. (c) Total built-in potential,
originating from spontaneous polarization, first- and second-order piezoelectricity.

no spontaneous polarization) for the respective systems. The results of the full calculation,

accounting for first- and second-order piezoelectricity as well as spontaneous polarization, are

displayed in the right column, Fig. 5.4 (c).

Similarly to the GaN/AlN QD data, when looking at Fig. 5.4 (a) first, the semi- (θ = 58◦)

and nonpolar (θ = 90◦) systems exhibit a strongly reduced built-in potential compared to the

c-plane structure (θ = 0◦). In the c-plane system, upper part of Fig. 5.4 (a), the potential

drop occurs along the growth direction. In the semipolar case the built-in potential exhibits an

extremely complicated profile. For the nonpolar structure we observe a potential drop along

the x′-axis, which is parallel to the WZ c-axis. It should be noted that in the nonpolar system,

even though the built-in potential is not zero, the maxima and minima are located outside the

nanostructure. Thus inside the QD the built-in potential is almost zero, resulting in a strong
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electron and hole wave function overlap in contrast to a c-plane system, as we will discuss in

later sections. Furthermore, the potential profiles and magnitudes of the built-in potential are

also different to the GaN/AlN dot systems studied in Fig. 5.3. We attribute this in part to the

fact that the spontaneous polarization response for InGaN/GaN systems is much smaller when

compared to GaN/AlN [124, 238]. While in GaN/AlN systems the spontaneous polarization

contributes approximately 50% to the total built-in potential, in InGaN/GaN systems it is

mainly dominated by the strain dependent piezoelectric contributions [124, 238]. We come

back to this point further below.

We now turn to discuss second-order piezoelectric effects. Comparing the upper parts of Fig. 5.4

(a) and (b) for the c-plane In0.2Ga0.8N/GaN dot system first, we find that the second-order

piezoelectric contribution is significantly smaller than the potential arising from the combina-

tion of first-order piezoelectricity and spontaneous polarization. Again, please note the different

potential scales. Thus for the here considered c-plane system with 20% In the second-order

contribution is of secondary importance. This is also confirmed by the result of the full cal-

culation shown in Fig. 5.4 (c), top figure. However, it is important to stress here that with

increasing In content in c-plane InGaN/GaN QDs the effects of second-order piezoelectricity

might change. A detailed analysis of the built-in potential in c-plane InGaN/GaN QDs as a

function of In content will be presented in Sec. 5.2.3.

Turning to the QD structure grown on the (112̄2)-plane, Fig. 5.4 (b), we find that the second-

order piezoelectric effect is still noticeable smaller than the combined first-order piezoelectric

and spontaneous polarization contribution, cf. Fig. 5.4 (a), middle row. For the here considered

lens-shaped In0.2Ga0.8N/GaN QD system the second-order piezoelectric contribution is a factor

of order 5 smaller. Again it should be noted that for larger In contents, similar to the c-plane

system, stronger second-order contributions are expected. So further studies on these systems

with different In contents shall be targeted in future work. Also, and this is in contrast to

the GaN/AlN QD system, the built-in potential stemming from first-order piezoelectric and

spontaneous polarization has a slightly different symmetry than the second-order piezoelectric

contribution. This affects the overall built-in potential, cf. Fig. 5.4 (c) (middle row), both in

and around the QD. Thus, our results here give already first indications that a more complicated

interplay of first- and second-order piezoelectric effects in InGaN/GaN QDs grown on semipolar

planes could be expected especially for higher In contents and for different QD geometries.

The effect of built-in potential profile changes due to second-order piezoelectricity is even more

pronounced for the nonpolar case, cf. Fig. 5.4 (lower row). When comparing Fig. 5.4 (a) and

(b) for the nonpolar system, we observe that the built-in potential arising from spontaneous

and first-order piezoelectric polarization (Fig. 5.4 (a)) has a similar symmetry than the second-

order piezoelectric contribution (Fig. 5.4 (b)). However, and in contrast to Fig. 5.4 (a) where

the maxima and minima are located outside the nanostructure, the second-order piezoelectric
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contribution has its maxima and minima near the interfaces inside the dot. Furthermore, and

most importantly, we find that inside the dot the magnitude of the built-in potential due to

second-order piezoelectricity is comparable to the magnitude of the built-in potential stemming

from spontaneous polarization and first-order piezoelectricity; but these contributions are op-

posite in sign. Consequently, the magnitude of the resulting total built-in potential is reduced

compared to a situation where only first-order piezoelectricity and spontaneous polarization

are accounted for. The total built-in potential is shown in Fig. 5.4 (c). Thus, for the here con-

sidered nonpolar lens-shaped In0.2Ga0.8N/GaN QD not only the built-in potential magnitude

is reduced, also the potential profile is modified both in and around the nanostructure.

In summary, we find here that for the considered semi- and nonpolar QD systems the second-

order piezoelectric contribution is of secondary importance for GaN/AlN. This is in contrast

to the InGaN/GaN system, even though the same QD geometry and approximately the same

lattice mismatch has been chosen (ε
In0.2Ga0.8N/GaN
xx ≈ 2.2%; ε

GaN/AlN
xx ≈ 2.4%). The observed

difference in the significance of the second-order piezoelectric effect originates mainly from the

importance/unimportance of the spontaneous polarization in both systems as mentioned al-

ready above. Thus the considered GaN/AlN QDs are dominated by spontaneous polarization

effects while in InGaN/GaN dots a complex interplay of first-, second-order and spontaneous

polarization contributions is observed, particularly for semi- and nonpolar QDs. In the next

section, we focus only on InGaN/GaN QDs and address the question how this change in the

built-in field due to second-order piezoelectric effects will affect the electronic and optical prop-

erties along different crystallographic directions.

5.2.2 Electronic and optical properties of InGaN/GaN QDs grown along

different crystallographic directions

Equipped with the knowledge about the variation of the built-in potential with growth plane,

we analyze here the behavior of the electronic and optical properties of the polar, semi- and

nonpolar lens-shaped In0.2Ga0.8N/GaN QDs considered above with and without second-order

effects. We start this section by considering only spontaneous and first-order piezoelectric

polarization effects followed by a discussion on the impact of second-order piezoelectric effects.

5.2.2.1 Impact of first-order piezoelectricity and spontaneous polarization on elec-

tronic and optical properties

We start with data in the absence of excitonic effects, thus with the single-particle results. The

electron (red) and hole (green) ground state charge densities for the three different QD systems

are depicted in the upper row of Fig. 5.5 as isosurface plots. The light (dark) isosurfaces

correspond to 5% (25 %) of the maximum charge density values. The data are shown for a
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Without Coulomb effects

With Coulomb effects

(a) (θ = 0◦) (b) (θ = 58◦) (c) (θ = 90◦)

Figure 5.5: Isosurface plots of the electron (red) and hole (green) ground state charge densities
at 5% (light surface) and 25% (dark surface) in the absence (first row) and presence (second
row) of Coulomb effects. Here, only first-order piezoelectricity and spontaneous polarization is
included in the calculations. The quantum dot geometry is indicated by the dashed lines. (a)
polar (θ = 0◦); (b) semipolar (θ = 58◦); (c) nonpolar (θ = 90◦).

slice through the center of the QD in the x− z-plane, where z is always parallel to the growth

direction. The QD geometry is indicated by dashed lines.

In a first step we turn to the c-plane (polar) system, Fig. 5.5 (a). Due to the strong electrostatic

built-in field along the c-axis (z-axis), as discussed in Sec. 5.2.1.2, the well known spatial

separation of the ground state electron and hole charge densities along this direction is observed.

This result is consistent with the analysis presented in Sec. 3.3.1.

Focussing on the semipolar (112̄2)-system (θ = 58◦) in a second step, Fig. 5.5 (b), we also

observe a spatial separation of the electron and hole ground state charge densities in this

system. Two factors are now important when comparing the electronic properties of the c-

plane and the semipolar dot. First, the built-in potential in the semipolar case is significantly

reduced compared to the polar system (cf. Fig. 5.4 (b)). Second, while in the c-plane system the

wave functions are separated along the growth direction, in the semipolar QD they are mainly

separated in the growth plane. Thus, even though the built-in field is reduced in the semipolar

case, the wave functions are separated over a larger distance (dot height h=3 nm; dot diameter

d=14 nm). Therefore, it is not directly obvious if this system leads to an improvement in the

wave function overlap and thus the oscillator strength in comparison to a c-plane dot of the

same In content and the same geometry. Similar arguments hold for the nonpolar case. Here

the built-in field is strongly reduced compared to the c-plane system (cf. Fig. 5.4), but ground

state electron and hole wave functions are also separated in the growth plane (cf. Fig. 5.5

(c)). An interesting feature here is that the positions of electrons and holes are swapped in the

nonpolar case in comparison to the semipolar QD (cf. Fig. 5.5 (b)). We attribute this effect to
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(a) (b)

Figure 5.6: Oscillator strength f of the lens-shaped In0.20Ga0.80N/GaN QD for different
growth planes in the presence (red) and absence (black) of Coulomb effects. (a) Results when
including first-order piezoelectricity and spontaneous polarization; (b) Same as in (a) including
second-order piezoelectricity.

differences in the built-in potential profile in and around the two systems (cf. Fig. 5.4 (b) and

(c)).

To gain initial insight into the question if growth of semi- and nonpolar QD structures is

beneficial in terms of the wave function overlap when compared to the same c-plane system,

the oscillator strength f of the three different structures in the absence of Coulomb effects

has been calculated, using Eq. (3.2). The results are shown by the black bars in Fig. 5.6 (a).

As one can infer from this figure, f increases from fFO+SP
polar = 0.258 to fFO+SP

semipolar = 0.442 when

moving from the c-plane system to the semipolar dot. In the nonpolar case, we find an oscillator

strength of fFO+SP
nonpolar = 0.410. We attribute the slightly lower value in f when comparing the

nonpolar with the semipolar system to the above discussed effect that the built-in potential

profiles between the semi- and the nonpolar structures are slightly different.

However, so far we have neglected the attractive Coulomb interaction between electron and hole

in the calculations. Given that electrostatic built-in fields in the semi- and nonpolar dots are

significantly reduced compared to the c-plane QD, the resulting spatial separation of electron

and hole wave functions could be compensated by excitonic effects. The outcome of the self-

consistent Hartree calculation in terms of the renormalized charge densities are shown in the

lower row of Fig. 5.5, with (a) depicting the results for the polar dot (θ = 0◦), (b) the data for the

semipolar structure (θ = 58◦) and (c) the results for the nonpolar QD (θ = 90◦). We infer from

the comparison of upper (no Coulomb effect) and lower (with Coulomb effect) row of Fig. 5.5

that in the c-plane structure no significant change in the charge densities is observed due to

excitonic effects. Thus, still a strong spatial separation along the growth direction is observed.

The situation changes for the semi- and nonpolar system. Due to the presence of the attractive
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Without Coulomb effects

With Coulomb effects

(a) (θ = 0◦) (b) (θ = 58◦) (c) (θ = 90◦)

Figure 5.7: Isosurface plots of the electron (red) and hole (green) ground state charge densities
at 5% (light surface) and 25% (dark surface) of the maximum charge density values. The data
are shown in the absence (first row) and the presence (second row) of Coulomb effects. Here,
spontaneous polarization as well as first-and second-order piezoelectricity are included in the
calculations. The quantum dot geometry is indicated by the dashed lines. (a) polar (θ = 0◦);
(b) semipolar (θ = 58◦); (c) nonpolar (θ = 90◦).

Coulomb interaction between electron and hole, charge densities are now strongly overlapping

in space (cf. lower row of Fig. 5.5 (b) and (c)), when comparing this to the single-particle results

(cf. upper row of Fig. 5.5 (b) and (c)). Thus, the Coulomb interaction compensates the spatial

separation of electron and hole, here originating from spontaneous and first-order piezoelectric

polarization induced built-in fields. This is also reflected in the calculated oscillator strength

f as shown in Fig. 5.6 (a) (red bars). Focussing on the c-plane results first, the data confirms

that the excitonic effect is of secondary importance for the oscillator strength/wave function

overlap in the here studied system. In this case, f increases only from fFO+SP
polar = 0.258 (No

Coulomb; black bars) to fFO+SP,C
polar = 0.284 (Coulomb; red bars). The situation is significantly

different for the semi- and nonpolar QDs (cf. Fig. 5.6 (a)). In the semipolar case, f increases

from fFO+SP
semipolar = 0.442 (No Coulomb; black bars) to fFO+SP,C

semipolar = 1.590 (Coulomb; red bars) due

to the attractive Coulomb interaction between electron and hole. Turning to the nonpolar QD,

fFO+SP
nonpolar = 0.410 (No Coulomb; black bars) increases to fFO+SP,C

nonpolar = 1.623 (Coulomb; red bars).

The strong increase in the oscillator strength due to Coulomb effects in the semi- and nonpolar

dot goes back to the above-discussed reduction in built-in field when moving away from c-plane

growth. Thus we find here that Coulomb effects are essential for an accurate description of the

optical properties of the here studied semi- and nonpolar dot systems. Also, this study reveals

that in terms of the wave function overlap, there is almost no difference between the semi-

and nonpolar system, at least when geometry and In content are kept the same. However,

our analysis in Sec. 5.2.1.2 indicates already that in the nonpolar case first and second-order

piezoelectric effects can cancel each other inside the dot, while in the semipolar case it is less

clear cut. We address the impact of second-order piezoelectricity on the electronic and optical

properties in the following section.
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5.2.2.2 Impact of second-order piezoelectric effects on the electronic and optical

properties

In this section, we discuss the electronic and optical properties of the above QDs when second-

order piezoelectricity is included in the calculations. Again special attention is paid to the

impact of excitonic effects on the wave function overlap thus the oscillator strength f and the

radiative lifetime τ .

We start our analysis here by looking at the electron (red) and hole (green) ground state

charge densities, calculated when taking second-order piezoelectric effects into account but

neglecting Coulomb effects. These calculations include now spontaneous polarization, first-

and second-order piezoelectric fields. Isosurface plots of the ground state electron and hole

charge densities are presented in the upper row of Fig. 5.7. Here, the c-plane (θ = 0◦) data

is presented in Fig. 5.7 (a), (b) displays the results for the semipolar (θ = 58◦) dot while (c)

shows the nonpolar (θ = 90◦) case. When comparing these results with the outcome of the

calculations in the absence of second-order piezoelectric effects (cf. Fig. 5.5 (a)-(c), upper row),

at a first glance no major differences are observed. To quantify the impact of the second-order

piezoelectric effect in more detail, Fig. 5.6 (b) displays the oscillator strength f (black bars)

for the polar (fTot
polar), semi- (fTot

semipolar) and the nonpolar (fTot
nonpolar) QDs in the absence of

Coulomb effects. Comparing the data of the polar and the semipolar system when including

second-order piezoelectric effects, in terms of the oscillator strength the results are not vastly

different (fTot
polar = 0.208; fTot

semipolar = 0.281). In fact, when analyzing these results with respect

to the data in the absence of second-order piezoelectricity (black bars in Fig. 5.6 (a)), second-

order piezoelectricity has a detrimental effect on f in the semipolar case and reduces fsemipolar

from fFO+SP
semipolar = 0.442 to fTot

semipolar = 0.281. We attribute this to the increase in the built-in

field due to second-order piezoelectric effects, as discussed in Sec. 5.2.1.2.

For the nonpolar case, a very strong increase in f is observed when second-order piezoelectricity

is taken into account. Compared to the nonpolar case in the absence of the second-order

piezoelectric contribution, f increases by a factor of 3.34, (fFO+SP
nonpolar = 0.410 vs. fTot

nonpolar =

1.372). We trace this behavior back to the effect that first- and second-order piezoelectric

contributions almost cancel each other inside the nonpolar dot (cf. Sec. 5.2.1.2).

In a second step, we now account for excitonic effects. The charge densities are plotted in

the lower row of Fig. 5.7, with (a) depicting the c-plane (θ = 0◦), (b) the semi- (θ = 58◦)

and (c) the nonpolar dot (θ = 90◦). For c-plane the Coulomb effect has again a negligible

impact on the charge densities; this is also confirmed by the fact that the oscillator strength

is unaffected by the Coulomb effect (black vs. red bars in Fig. 5.6 (b)). This behavior is

expected given that, in terms of the wave function overlap, already the built-in field arising

from spontaneous polarization and first-order piezoelectricity dominate over the excitonic effect.
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Second-order piezoelectricity leads to a further increase of the built-in field in the c-plane

QD. For the nonpolar case, keeping in mind that the second-order piezoelectric effect cancels

basically spontaneous and first-order piezoelectric polarization contributions inside the dot,

the Coulomb effect leads to a significant increase in the wave function overlap. Therefore, the

corresponding f value increases significantly (fTot
nonpolar = 1.372 vs. fTot,C

nonpolar = 2.077; black vs.

red bars in Fig. 5.6 (b)). Turning to the semipolar system, here the Coulomb effect strongly

increases the wave function overlap, as one can infer from the charge density plots in Fig. 5.7 (b)

and also the oscillator strengths shown in Fig. 5.6 (b) (fTot
semipolar = 0.281 vs. fTot,C

semipolar = 1.413;

black vs. red bars in Fig. 5.6 (b)).

Overall, we find here that for the wave function overlap, excitonic effects are of secondary

importance for the here studied c-plane In0.2Ga0.8N/GaN QD. The situation is very different

for the equivalent semipolar system analyzed here. Here, Coulomb effects are essential to

achieve an accurate description of the oscillator strength of the structure. We also find that

second-order piezoelectric effects, at least for the here studied In content and dot geometry,

are of secondary importance for wave function overlap of the semipolar system when Coulomb

effects are included. The situation is more complicated in the nonpolar dot. When neglecting

second-order piezoelectric effects and also Coulomb effects, the wave function overlap in the

nonpolar dot is very similar to the semipolar system (Fig. 5.6 (a)). However, when including

second-order piezoelectric effects, already in a single-particle picture, the wave function overlap

and therefore the oscillator strength in the nonpolar case is significantly increased (black bars

in Fig. 5.6 (a) and (b)). Coulomb effects further increase the oscillator strength (red bars in

Fig. 5.6 (b)). Therefore, in the nonpolar case a calculation neglecting the Coulomb effects but

including second-order piezoelectricity will give a reasonable approximation of a full calculation

(including second-order piezoelectricity and excitonic effects), in contrast to the semipolar

system.

Having calculated the oscillator strength f , we can use this information now to study the

radiative lifetime τ of the different systems. This allows us also to compare our theoretical

data with literature experimental values. Here, we find that for the c-plane QD, τ increases

from τFO+SP,C
polar = 4.60 ns to τTot,C

polar = 5.79 ns in the presence of second-order effects. This is

traced back to the slight increase in f in the presence of second-order effects. For the here

studied semipolar dot, we find that second-order piezoelectricity leads to an increase in τ since

second-order piezoelectric effects result in a slight reduction in fTot,C
semipolar when compared to

fFO+SP,C
semipolar . More specifically, the calculated τ value increases from τFO+SP,C

semipolar = 699 ps (no

second-order piezoelectric effect) to τTot,C
semipolar = 787 ps (with second-order piezoelectricity).

This corresponds to an increase of about 12%. For the nonpolar system the calculated τ

value decreases when including second-order piezoelectricity in the calculations. Here, we find
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τFO+SP,C
nonpolar = 675 ps (no second-order piezoelectric effect) and τTot,C

nonpolar = 525 ps (with second-

order piezoelectricity). This originates from the fact that due to second-order piezoelectricity

f increases in the nonpolar system.

The calculated radiative lifetime τ for the c-plane QD is consistent with the measured τ values

in the literature which are in the range of few nano seconds [184, 185]. Additionally, few

experimental studies have also reported τ values for semi- and nonpolar InGaN/GaN QDs [14,

67, 186, 199]. For instance, Gačević et al. [199] performed measurements on semipolar QDs

grown along the [101̄1] (θ ≈ 62◦) crystallographic direction which is similar to the semipolar

(112̄2 (θ ≈ 58◦)) plane considered in this work. They found τ values in the range of 600-900 ps.

The semipolar QDs studied in Ref. [199] have also been characterized in terms of their In content

in Ref. [239]. This analysis revealed that the semipolar InGaN/GaN dots exhibiting radiative

lifetimes between 600-900 ps, have an In content of 10%. Our here calculated radiative lifetime

for a semipolar dot with 20% In (including second-order piezoelectric effects) is τTot,C
semipolar = 787

ps. Given that when reducing the In content the built-in field will be reduced, we expect

that our calculated value will be reduced. Overall, the here obtained radiative lifetimes in the

semipolar system are in good agreement with the literature values from Ref. [199].

Similarly, there are several reports on τ values for nonpolar InGaN/GaN systems [14, 67, 199].

All of these works quote radiative lifetimes in the range of 400-600 ps in nonpolar InGaN/GaN

QDs. Again, these numbers are consistent with the value calculated in this work (525 ps).

Another study [186] on nonpolar InGaN/GaN QDs revealed even shorter lifetimes in the range

of 250-300 ps. However, it is important to note that these values will strongly depend on the

dot geometry and the In content in the dot. A detailed theory experiment comparison is beyond

the scope of this work, since it will require a detailed study of the interplay between In content,

dot geometry and second-order piezoelectricity. Nevertheless, the here presented initial results

show already that the calculated values for τ are in good agreement with reported experimental

values on semi- and nonpolar InGaN/GaN dots.

Finally, from the analysis of the built-in field presented in Sec. 5.2.1.2, it is expected that

with increasing In content, the second-order piezoelectric effect is likely to become even more

important in InGaN/GaN QDs. These high In content structures are important since with

increasing the In content, emission can in principle be moved into the red spectral regime.

Recently, Frost and co-workers [21] were able to grow high-efficiency red emitting lasers using

c-plane In0.4Ga0.6N/GaN QDs. Therefore, it is also important to investigate how second-order

piezoelectric effects affect the optical properties of c-plane InGaN/GaN QDs as a function of

the In content. In the course of this discussion, we will mainly focus on the emission wavelength

λ and the radiative lifetime τ which are two important optical properties while targeting red

emission from c-plane InGaN/GaN QDs. This is the topic of the next section.
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5.2.3 Impact of second-order piezoelectricity on emission wavelength and

radiative lifetime as a function of In content

Figure 5.8 shows the emission wavelength λ of the here considered c-plane InxGa1−xN/GaN QD

for In contents varying between 10% and 50%. The black squares (λFO+SP) denote the results

in the absence of second-order piezoelectric contributions [only first-order (FO) piezoelectricity

and spontaneous (SP) polarization], while the red circles (λTot) show the data when including

also second-order piezoelectric effects. Again, it should be noted that for emitters operating

in the red wavelength regime, In contents of 40% have been reported in the literature [21],

so that the here studied In content range is relevant to recent experimental studies. From

Fig. 5.8 one can infer that for lower In contents (up to 20%), the second-order piezoelectric

contribution has little effect on λ. In fact in this case the difference in the emission wavelength

∆λ = λTot−λFO+SP, obtained from a calculation with spontaneous and first-order piezoelectric

polarization only, λFO+SP, and a calculation including second-order piezoelectric effects, λTot, is

less than 10 nm. To show this effect more clearly, the inset in Fig. 5.8 depicts ∆λ as a function

of the In content x. Between 30% and 40% In, second-order piezoelectric effects lead to a

noticeable difference, resulting in ∆λ values of approximately 20 nm to 50 nm, respectively. At

50% In we observe a wavelength shift of ∆λ = 120 nm. Overall, the wavelength shift is almost

equally distributed between electron and hole ground state energy shifts. We attribute this to

the combined effect of differences in electron and hole effective masses and the asymmetry in

the magnitude of the built-in potential between the upper and lower QD interface. Moreover,

the change in the confinement potential due to second-order piezoelectricity might also affect

the Coulomb interaction between the carriers and can lead to further contributions to the

wavelength shift discussed here in the single-particle picture. Overall, our calculations reveal

two things. First, when targeting QD-based emitters operating in the red spectral regime (≈
650 nm), second-order piezoelectric effects can play a significant role. Furthermore, the second-

order piezoelectric contribution shifts the emission to longer wavelength. Thus, when designing

emitters operating in this long wavelength regime, the required In content predicted from a

model including second-order effects would be lower as expected from a “standard model”,

which accounts for first-order piezoelectric effects and spontaneous polarization only.

Even though our analysis indicates that lower In contents are sufficient to reach emission at

longer wavelength, the increase in the built-in potential responsible for this effect will have a

detrimental effect on the wave function overlap and consequently on the radiative lifetime τ .

To study the impact of second-order piezoelectricity on the radiative lifetime τ , Fig. 5.9 depicts

τ in the absence (τFO+SP, black squares) and in the presence (τTot, red circles) of second-order

piezoelectric contributions. The inset of Fig. 5.9 depicts the difference in the radiative lifetime

∆τ = τTot − τFO+SP, obtained from calculations including (τTot) and neglecting (τFO+SP)

second-order piezoelectric contributions. Similar to the wavelength shift discussed above, in
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Figure 5.8: Emission wavelength λ as a function of In content x. Results in absence of
second-order piezoelectricity, taking only spontaneous (SP) and first-order (FO) piezoelectric
polarization into account, are given by the black squares (λFO+SP). The red circles denote data
when including second-order piezoelectricity (λTot). The inset shows ∆λ = λTot − λFO+SP.

the In content range of 10% to 20% the influence of second-order piezoelectricity is of secondary

importance (∆τ ≤ 2 ns). Again, as pointed out earlier, the calculated radiative lifetimes in

the 10% to 20% In regime are in the range of 3 ns to 10 ns, which is in good agreement

with reported experimental data on these systems [184, 185]. However, for higher In contents

we clearly observe a significant contribution from second-order piezoelectricity. At 30% the τ

value is a factor of order 1.5 larger (τFO+SP = 12 ns; τTot = 19 ns) when including second-order

piezoelectric effects in the calculations. At 40% and 50% In, the value of ∆τ becomes 23 ns

and 62 ns, respectively. But, it should be noted that the here calculated radiative lifetimes

for a c-plane In0.4Ga0.6N QD, even without second-order effects, are much larger than the

experimental values (τ exp = 3 ns) reported in the literature for InGaN dots with 40% In [21].

Further studies, both theoretically and experimentally, are required to shed more light onto the

physics of InxGa1−xN QDs operating in the long wavelengths regime (green to red). However,

overall our calculations reveal that with increasing In content the second-order piezoelectric

effect becomes important in InGaN/GaN QDs for an accurate description of electronic and

optical properties.

Finally, it is to remind the reader that calculations presented in this chapter have been per-

formed using continuum-based electronic structure theory. Therefore, our results do not take

into account atomistic effects such as alloy fluctuations, which can also affect the emission spec-

tra of these dots [240]. Nevertheless, since we are mainly interested in the trend of emission

wavelength and radiative lifetime in the presence of second order piezoelectricity, our approach

is sufficient for this purpose. More details on the effects of carrier localization on the electronic

and optical properties of these dots will be presented in the next chapter.
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Figure 5.9: Radiative lifetime τ as a function of In content x. Results in absence of second-
order piezoelectricity, including spontaneous (SP) and first-order (FO) piezoelectric polariza-
tion only, are given by the black squares (τFO+SP). The red circles denote the data when
including second-order piezoelectricity (τTot). The inset shows ∆τ = τTot − τFO+SP.

5.3 Conclusion

In summary, we have presented a detailed analysis of second-order piezoelectric effects in WZ

nitride-based heterostructures grown along different crystallographic directions. To accomplish

this task, we have derived analytic expressions for the full second-order piezoelectric polarization

vector field as a function of the incline angle θ to the WZ c-axis. Even though our approach is

applied to WZ III-N systems, it can also be applied to other WZ semiconductor systems such

as ZnO once second-order piezoelectric coefficients are known.

Our calculations on III-N QW systems revealed that especially for semipolar growth planes

with a high incline angle value (55◦ ≤ θ ≤ 85◦ and 105◦ ≤ θ ≤ 120◦), second-order piezoelectric

effects noticeably affect the built-in potential and thus the resulting electric field. More specif-

ically, in an In0.22Ga0.78N/GaN MQW system, grown along the [112̄2]-direction, the electric

field is increased by approximately 20% due to second-order piezoelectricity. Overall, we find

that when including second-order piezoelectric effects in the theoretical framework, electric

fields calculated for realistic MQW systems show a much better agreement with experimen-

tally reported values. This further emphasizes the importance of second-order piezoelectric

contributions for an accurate description of electrostatic built-in fields in nitride-based QWs.

In the next step, we studied the electrostatic built-in potentials in lens-shaped GaN/AlN and

In0.2Ga0.8N/GaN QDs grown on different substrate orientations, namely the c-, the (112̄2)- and

the nonpolar a-plane. Our calculations reveal that, at least for the here chosen QD geometry,

second-order piezoelectric contributions have a very small effect on the overall built-in potential

in GaN/AlN systems. For the InGaN/GaN dot systems studied here the situation is different.

While for a c-plane InGaN/GaN QD with 20% In the second-order contribution is of secondary
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importance, the situation is changed for the systems with high In content or semi- and nonpolar

systems. For example, in the nonpolar case, where the built-in potential is significantly reduced

compared to the same c-plane structures, first- and second-order piezoelectric contributions are

comparable in magnitude inside the dot. Moreover, the first- and second-order contributions

are similar in symmetry but opposite in sign so that cancelation effects occur. This results

also in changes in the built-in potential profile in and around the nanostructure. We relate

the observed difference in the importance of second-order piezoelectricity in GaN/AlN and

InGaN/GaN dot systems to the magnitude of the spontaneous polarization induced built-in

potential.

Building on the calculated built-in fields, we then studied the electronic and optical properties

of InGaN/GaN QD systems in the absence and presence of second-order piezoelectric effects.

Special attention was paid to the impact of Coulomb interactions (excitonic effects). Our

calculations reveal that second-order piezoelectric effects are of secondary importance for the

oscillator strength of the polar and semipolar system. However, for the nonpolar case, due to

the above mentioned cancelation effects in the built-in potential inside the dot, second-order

effects significantly affect the wave function overlap and therefore the oscillator strength. Here,

we find that in the presence of second-order piezoelectricity, but neglecting Coulomb effects,

the oscillator strength strongly increases in the nonpolar case compared to a “standard” calcu-

lation including only first-order piezoelectricity and spontaneous polarization. When including

excitonic effects in the theoretical framework, the oscillator strength is basically unchanged in

the c-plane dot, indicating that the electronic and optical properties of this system are domi-

nated by the strong electrostatic built-in fields. The situation is vastly different for the semi-

and nonpolar system. Here, due to the reduced built-in fields compared to the c-plane system,

Coulomb effects become essential for an accurate description of the wave function overlap and

the oscillator strength. We find that the oscillator strength is significantly increased when

Coulomb effects are taken into account for these systems. However, when neglecting second-

order piezoelectric effects, the oscillator strength of the semipolar system is almost identical

to that of the nonpolar system. This picture changes noticeably when including second-order

piezoelectricity. The nonpolar QD now exhibits a much larger oscillator strength compared to

the semipolar system. Thus, our calculations indicate that when growing non-c-plane InGaN

QDs, the nonpolar system should exhibit a shorter radiative lifetime compared to the here

studied (112̄2) semipolar dot system. This is also confirmed by the experimental studies [199].

Finally, we closed this chapter by analyzing the effects of second-order piezoelectricity on the

emission wavelength and radiative lifetime in c-plane InGaN/GaN QDs as a function of In

content. When looking at emission wavelength shifts or radiative lifetime values, at In contents

around 10% to 20%, these quantities are almost unaffected by second-order piezoelectricity.

But, when exceeding 30% In, both quantities are impacted significantly by second-order con-

tributions. The second-order piezoelectric effect induced built-in field increase leads to the
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situation that the emission is shifted to longer wavelength in comparison to a calculation based

on spontaneous and first-order piezoelectric polarization effects only. This means that when

accounting for second-order effects, lower In contents can be considered to reach for instance

emission in the red spectral region. On the other hand, the increase in the built-in poten-

tial due to second-order piezoelectric contributions results in a strong increase in the radiative

lifetime for long wavelength, high In content emitters when compared to results from a “stan-

dard” first-order study. Overall, our results reveal that when targeting InxGa1−xN QD-based

emitters operating in the yellow to red spectral regime, second-order piezoelectricity cannot be

neglected and should be taken into account for designing and understanding the electronic and

optical properties of these systems.



Chapter 6

Atomistic analysis of electronic and

optical properties of wurtzite QDs

In chapters 3, 4 and 5, the electronic and optical properties of III-N nanostructures have been

modeled by employing continuum-based multi-band k · p approaches. Calculated radiative

lifetime τ and DOLP ρ values based on 6+2 band k · p calculations have been found to be

in good agreement with experimentally observed τ and ρ values, as discussed in Chapter 3

and 4 respectively. Despite the success of these continuum-based calculations in describing the

electronic and optical properties of QDs, they are not suitable to provide a complete atomistic

description of the underlying crystal structure. For instance, as pointed out earlier by Bester

et. al [56], the investigation of ideal (e.g. lens) shaped ZB QDs through continuum k ·p models

can not capture the correct C2v symmetry as atomistic models correctly predict. Furthermore,

continuum-based models described in previous chapters inherently overlook microscopic effects

such as alloy fluctuations. However, several reports have highlighted that incorporation of alloy

fluctuations is necessary for an accurate modeling of III-N systems [240, 241]. For instance,

Auf der Maur et al. [240] have reported that the origin of the green gap in c-plane nitride

light emitting diodes may be attributed to a decrease in the radiative recombination coefficient

with increasing In content due to (random) In fluctuations present in an alloy of InGaN. Even

though modified continuum-based approaches [241, 242] are applied to mimic the impact of

alloy fluctuations on the optoelectronic properties of WZ nanostructures, it has been shown for

instance by Schulz, et al [119] that the conclusion drawn from these works (e.g. localization

properties of electrons and holes) do not necessarily match the results from atomistic-based

models. Additionally, these models do not account for strain and built-in potential fluctuations

on a microscopic level which has been shown to be important for III-N alloys [243].

In this chapter, we investigate electronic and optical properties of InGaN/GaN QDs grown

along the c-axis of an WZ crystal structure in the framework of an atomistic nearest neighbor

125
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sp3 TB model [244] which has been described in detail in Sec. 2.2.1.2. We start this chapter by

performing virtual crystal approximation (VCA) based calculations in Sec. 6.2. The purpose

of these calculations is two fold. First, we want to use VCA based calculations as a benchmark

to test the C3v symmetry of the system. For instance, as discussed in Chapter 2, without SOC

one should expect doubly degenerate p-like sates in the energy spectrum of the carrier wave

functions for a QD having C3v symmetry. Secondly, the VCA based calculations present a good

reference for analyzing the impact of alloy fluctuations on the electronic and optical properties

of c-plane InGaN QDs. In the next step, Sec. 6.3 deals with the investigation of single-particle

properties by including random alloy fluctuations in the analysis. Here, we take as an example

a series of In0.20Ga0.80N/GaN QDs and study the impact of alloy fluctuations on the electronic

eigenstates and energies. Finally, we move to many particle properties in Sec. 6.4 and treat

Coulomb effects in the CI scheme based on the calculated electron and hole TB single-particle

wave functions. Here, we discuss the FSS values for these systems given their importance to

achieve entangled photon emission as discussed in Sec. 2.6.4. Before going to the results, we

motivate the assumed QD geometry in the following.

6.1 Dot geometry

In this study, we consider a truncated-cone shaped In0.20Ga0.80N QD embedded inside a GaN

matrix. The QD geometry is schematically shown in Fig. 6.1. Recent structural investigations

of InGaN QDs [47] using transmission electron microscopy (TEM) revealed that c-plane InGaN

QDs are approximately truncated-cone shaped. Additionally, in the same study the average

radii of the QDs is found out to be ≈10-20 nm with heights varying between 3-5 nm [47].

Therefore, in accordance with these recent results we have assumed a truncated-cone shaped

QD with a base diameter of (D1= 13 nm) and a height h of 3 nm. Previous theoretical

studies on c-plane InGaN QDs have also assumed similar geometries [245, 246]. The symmetry

of the combined system of underlying WZ lattice and our assumed QD geometry is C3v. A

cubic supercell having dimension of ≈(29.33 nm×25.40 nm×18.66 nm) (1218816 atoms) with

periodic boundary conditions is used in our calculations. The system is large enough such that

the electronic structure properties of interest are not affected. For instance, the cubic symmetry

of the supercell does not allow for degeneracy in the p-like states in the energy spectrum where

a truncated-cone shaped WZ QD having C3v symmetry should ideally have doubly degenerate

p-like states when SOC is neglected. Therefore, a large enough supercell is chosen such that

the doubly degenerate p-like states do not split in the absence of SOC in our simulation cell as

we will highlight below.
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Figure 6.1: Schematic illustration of a truncated-cone shaped InGaN QD buried in a GaN
matrix. The diameter and the height of the QD is denoted by D1 and h respectively.

6.2 Single-particle states and energies by VCA

In this section, we present the calculated single-particle states and energies of bound electron

and hole states in the VCA approach. In VCA calculations, instead of several randomly chosen

atomic distributions of an alloy, a TB representation of a virtual binary material mimicking

the alloy is used. For several semiconductors this is a useful approximation in terms of e.g.

band gap energies [247]. In our case, the TB parameters for the virtual crystal In0.20Ga0.80N

are obtained by a concentration weighted average of the parent binaries InN and GaN.

Here, strain and built-in potential effects are calculated using the surface integral method

described in Sec. 2.4.1. Using Eqs. (2.52), (2.60) and (2.61), strain and built-in potential values

are evaluated at each atomic site and subsequently added as on-site corrections to the TB

Hamiltonian as described in Sec. 2.3.2 and Sec. 2.5. To test the spatial symmetries of the

system, we first switch off the SOC. As stated earlier, by treating the alloy as a VCA, our QD

system should possess a C3v symmetry. Thus, it can ideally act as a reference point for random

alloy calculations presented in later sections. Therefore, while doing these calculations the

symmetry of the system should not be altered due to numerical artefacts arising from the use

of a continuum method (surface integral) on an atomistic grid. This is also essential in the sense

that in the later parts of this work, we are interested in the FSS values which are usually of the

order of µeV in III-V systems [29]. To achieve this, we carried out a symmetrization procedure

over the region of the dot material. We performed strain and built-in field calculations for one

batch of the supercell and subsequently assigned these values to grid points situated at 120◦

and 240◦ to construct e.g. a symmetric potential that fulfils a C3v symmetry. It should be

noted that without this symmetrization process, the p-state splitting of the electrons is already

≤10 µeV . For most studies, e.g. band gap values or polarization anisotropies this is sufficient.
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However, for FSS values which are in the range of µeV this is not acceptable. Therefore,

through this, we ensured that the symmetry of the QD system is not destroyed by numerical

artefacts and results which will be obtained due to random alloy fluctuations in Sec. 6.3 stem

entirely from random alloy effects. Finally, to incorporate SOC in our calculations, spin-orbit

terms are added to the TB Hamiltonian through the spin-orbit operator, Ĥso as outlined in

Sec. 2.2.1.2. The matrix elements of Ĥso is calculated using Eq. 2.41. A detailed discussion

on the procedure to include SOC in the TB model is already given in Sec. 2.2.1.2. The TB

parameters for InN and GaN with and without SOC are tabulated in Table B.3 of Appendix B.

Having outlined the QD geometry and ingredients of the calculation framework employed in

the VCA based calculations, we now move to the discussion of single-particle results. Here,

the influence of strain and electrostatic built-in field on single-particle states and energies are

addressed in Sec. 6.2.1. After that, the influence of SOC on the single-particle properties are

highlighted in Sec. 6.2.2.

6.2.1 Effect of strain and built-in field

In order to assess the impact of strain and built-in potential separately, we have performed our

calculations in three steps. In a first step, we neglect both strain (εij=0) and built-in potential

(Vp= 0). In the next step, we introduce only the built-in potential (εij=0 and Vp 6=0) in the TB

model. In the final step, both strain and built-in potential contributions (εij 6=0 and Vp 6=0)

are taken into account. It is to note that since these calculations neglect SOC, the symmetry

of the eigenstates can be represented by single group IRRs of C3v point group, which allow

doubly degenerate states in the energy spectrum.

Case a: εij=0 and Vp= 0

Figure 6.2 shows the top-view of the isosurfaces of modulus squared wave functions |φ(r)|2 for

first three single-particle electron (left) and hole (right) states in red and green, respectively.

Here, the light and dark isosurfaces correspond to 10% and 50% of the maximum probability

density, respectively. The corresponding single-particle energies Ei are also listed. The dotted

lines indicate the upper and lower base of the truncated-cone shaped QD. The atomic orbital

contributions to the TB wave functions for each state are also presented.

For our analysis, we denote now the electron (hole) ground, the first and second excited state

as e0 (h0), e1 (h1) and e2 (h2), respectively. By examining the nodal structure of the wave

functions, the depicted electron states can be classified as s- and p-like states. The charge

density of electron ground state e0 reveals an atomic s-like state whereas the excited electron

states e1 and e2 can be classified as p-like states. This type of classification is not possible for

the hole states due to mixing of different orbitals. The hole ground state is a torus-like state.
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Figure 6.2: Single-particle electron (left) and hole (right) states for a In0.20Ga0.80N QD in
the absence of strain, built-in potential and SOC. Here, the picture shows the top view of the
10% (light) and 50% (dark) isosurfaces of the probability density distribution |φ|2. The first,
second and third row represents the ground state, the first and second excited state in that
order for both electrons (left) and holes (right). The energies and orbital characters of the
single-particle states are also listed.

Looking at the single-particle energies, we find degenerate states for both electrons and holes.

This is consistent with the discussions presented in Sec 2.6.4 where we have stressed that due to

the underlying C3v symmetry, we can have two-dimensional IRR in the single group of C3v and

therefore, degeneracies are allowed unlike in a C2v symmetric system [148]. From the energy

level structure of the states, we find that the level spacing in holes are much smaller than for

the electrons. This can be explained in terms of larger effective mass of holes [76].
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Additionally, using group theory we can now classify different single-particle states also accord-

ing to their transformation properties [136]. It can be shown that [136] both non-degenerate

single-particle electron and hole states are invariant under a rotation by 2π
3 and the energetically

degenerate states transform under the action of the elements of C3v like x and y. Therefore,

the ground electron and hole states are denoted as s-states while the excited states are denoted

as p-states.

Looking at the orbital contributions, we observe that all of the electron states are dominated by

s-orbital (≥ 94%) contributions. This is consistent with the discussion presented in Sec. 2.1.1.

On the other hand, for the hole ground state, px- and py-orbitals contribute equally. As seen

from Fig. 6.2, we conclude that mainly px- and py-orbitals contribute to the formation of QD

hole states. Absence of pz contribution is traced back to the previously discussed shift of valence

band edges due to the confinement effects in Sec. 4.2.1.

Case b: εij=0 and Vp 6= 0

Now, we include built-in field in the analysis. In the presence of the built-in field, the level

ordering of the electron states is unchanged. However the ordering of the holes states is changed

in a way that the hole ground state is formed by the two-fold degenerate states while the first

excited state is the non-degenerate state. Here, as expected from the discussions presented

in previous chapters, with the inclusion of the built-in field, a spatial separation of electron

and hole probability densities along the c-direction is observed. Correspondingly, the electron

states are squeezed into the top-interface of the QD and the hole states are pushed to the

bottom. This is clearly visible from the side-view plot of the isosurfaces of the ground state

charge densities of electrons and holes (cf. Fig. 6.3).

Furthermore, we observe that when the built-in field is introduced in the system (εij=0 and

Vp 6=0), a strong modification (not shown here) in the energies of the electron and hole ground

states is obtained as compared to a field free case. For instance, the electron ground state

energy is shifted to lower energies by about 81 meV and the hole ground state is shifted to

higher energies by about 134 meV. This is in accordance with the redshift observed in nitride

systems due to QCSE as discussed in Sec. 1.2.2.

Case c: εij 6=0 and Vp 6= 0

Finally, strain effects are included in the model. The isosurfaces of the charge density for

electrons (left) and holes (right) including strain and built-in potential are shown in Fig. 6.4.

For each state, single-particle energies and orbital contributions are given. Due to in-plane

isotropy of the WZ structure, strain in the x−y plane containing a and m direction is isotropic.

Therefore, the strain present in the structure shifts px- and py-like states in the same way. As a

result, the orbital contributions to the hole states in general remain unchanged and degeneracies

of the states remain intact when strain and built-in field contributions are included. The strains
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Figure 6.3: The figure shows 50% isosurfaces of the ground state charge density distribution
for electrons (red) and holes (green) in side-view in the presence of the built-in potential. The
QD is shown in grey.

only introduce energetic shifts in the system. Also, the level ordering remains same as the

previous case (Case b). Again, symmetry is not affected in the presence of strain.

Overall, through the above discussions, we have shown that all expected symmetries are present

in the studied truncated-cone shaped QD system and this is reflected in the degeneracies present

in the energy spectrum of the single-particle states. So far, we have neglected the influence of

SOC in the analysis. In the next section, we investigate the effect of SOC contributions on the

single-particle states and energies.

6.2.2 Influence of spin-orbit coupling

To focus on the impact of SOC, both strain and built-in potential effects are included here given

that we have already shown that these effects do not affect the symmetry of the system. The

first three single-particle states and energies with SOC are illustrated in Fig. 6.5. Again, the

electron and hole states are plotted in red and green, respectively. Similar to previous cases,

here light and dark isosurfaces correspond to 10% and 50% of the maximum probability density,

respectively. The orbital contributions to the TB single-particle wave functions for each state

are also presented. Here, each state is two-fold degenerate due to time reversal symmetry [111].

While looking at the nodal structure of the electron charge densities, we observe that the

electron ground state is s-like since it has no nodes. On the other hand, the first two excited

electron states can be classified as the p+ and p− states which can be formed by any linear

combinations of px and py states. Such a classification is not possible for the holes due to

mixing of different orbitals. In the previous section, we observed that the presence of built

in field switches the level ordering of single-particle states. When comparing with the Case c

(SOC=0, εij 6=0 and Vp 6= 0), we find that SOC does not alter the single-particle level structure

(cf. Fig. 6.5).
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Figure 6.4: Single-particle electron (left) and hole (right) states for a In0.20Ga0.80N QD in
presence of strain and built-in potential. Here, the picture shows the top view of the 10% (light)
and 50% (dark) isosurfaces of the probability density distribution |φ|2. The first, second and
third row represents the ground state, the first and second excited state in that order for both
electrons (left) and holes (right). The energies and orbital characters of the single-particle
states are also listed.

We now analyze the effect of SOC on the electron and hole single-particle energies. As seen

from Fig. 6.5, in the presence of SOC, we find that the degeneracy of the p states are lifted for

both electrons and holes. This is traced back to the discussions presented in Sec. 2.6.4, where

we have shown that in the presence of SOC, one has to deal with double group IRRs of the

C3v which contains only 2-D IRRs even if the degeneracies due to time reversal symmetry are

included [76]. This explains the splitting of p states in the presence of SOC. The splittings in

our case is found out to be 10.6 µeV (E2
e −E1

e ) and 2.6 meV (E0
h−E1

h) for electrons and holes

respectively.
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Figure 6.5: Single-particle electron (left) and hole (right) states for a In0.20Ga0.80N QD in
presence of strain, built-in potential and SOC. Here, the picture shows the top view of the 10%
(light) and 50% (dark) isosurfaces of the probability density distribution |φ|2. The first, second
and third row represents the ground state, the first and second excited state in that order for
both electrons (left) and holes (right). The energies and orbital characters of the single-particle
states are also listed.

In summary, we have established the general electronic structure of c-plane InGaN QDs and

how different contributions such as strain, built-in potential and SOC effects affect this through

VCA-type calculations. In the next section, we turn to study the impact of random alloy

fluctuations on the electronic properties of InGaN QDs. The VCA-type calculations presented

above acts as an ideal staring point to understand how much the idealized C3v symmetry is

affected in the presence of random alloy fluctuations.
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6.3 Impact of Random alloy fluctuations on electronic proper-

ties

In this step, we treat the InGaN alloy on a microscopic level and randomly replace Ga atoms

by In atoms inside the QD region to get In0.20Ga0.80N. This allows us to study the impact of

alloy microstructures on the results. Here, we use the sp3 TB model introduced in Sec. 2.2.2.2

to describe the alloy fluctuations. The relaxed atomic positions are determined by the VFF

model described in Sec. 2.4.3. For the local built-in potential contributions, we use the local

polarization theory (cf. Sec. 2.5) and for the clampt-ion contributions, we utilize the surface

integral method discussed in Sec. 2.5.

With this framework, we have calculated the single-particle properties of the first three electron

and hole states to be able to compare our results with the previously presented VCA-case.

The above calculations are performed for five random configurations to study the impact of

different alloy microstructures on the results. As an example, we have chosen an arbitrary

configuration (Config-4) here and plotted the top-view of the charge densities isosurfaces in

Fig. 6.6. Following the previous chapter, the electron and hole charge densities are plotted

in red and green, respectively. The light and dark isosurfaces correspond to 10% and 50% of

the respective maximum values. Several interesting features are visible from these plots. The

nodal structure of the electron charge densities still represents to a first approximation s- and

p-like character; however they are deformed due to the random distributions of In and Ga

atoms. We find that this classification according to the nodal structure for the hole states is

not possible indicating already that the random alloy fluctuations have a significant impact on

the electronic structure. Furthermore, we find here that while the electron charge densities are

affected by the local fluctuations, they are still localized in the region as we have seen in the

VCA-type calculations. However, in contrast to the VCA-case, the hole states do not necessarily

localize directly under the electron wave functions and we can also find situations where they

localize near the interface. As compared to the electron states, hole states are localized in

a smaller region. This can be attributed to the high effective mass of holes as pointed out

earlier [76]. Overall, our results indicate that although random alloy fluctuations perturb the

electron wave functions, they have a more dramatic effect on the hole wave functions. The

strong hole localization obtained in this work is also consistent with what has been observed in

InGaN/GaN QW systems [119]. In the next step, we plot the isosurfaces of the ground state

electron (red) and hole (green) charge densities for the same configuration as shown in Fig. 6.7

in the side-view (⊥ to c-axis). We observe here that similar to the previous case, the strong

electrostatic built-in field along the c-axis leads to a spatial separation of electron and hole wave

functions along this direction. The strong localization of hole wave functions described above

is also visible from the side-view of the charge densities. Overall, we see that as compared

to the VCA-case, significant changes in the electronic structure especially for the holes occur
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Figure 6.6: Single-particle electron (left) and hole (right) states for a In0.20Ga0.80N QD in the
presence of random alloy fluctuations for an arbitrarily chosen configuration (Config-4). Here,
the picture shows the top view of the 10% (light) and 50% (dark) isosurfaces of the probability
density distribution |φ|2. The first, second and third row represents the ground state, the first
and second excited state in that order for both electrons (left) and holes (right). The energies
and orbital characters of the single-particle states are also listed.

when we take into account random alloy fluctuations. As we will show later, this is important

for instance while calculating Coulomb matrix elements and optical properties.

Having discussed the impact of alloy fluctuations on electron and hole wave functions, we

analyze now how different single-particle energies are affected by the alloy disorder. In Fig. 6.6,

we also provide the energy eigenvalues connected to these wave functions. If the two excited

electron states are considered as p-like, we find here a very large p-state splitting (≈ 22 meV)

for the electrons. It is to remind the reader that in the VCA-type calculation, the value of this
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Figure 6.7: The picture shows 50% isosurfaces of the ground state charge density distribution
for electrons (red) and holes (green) in side-view for Config-4. The QD is shown in grey.
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Figure 6.8: Electron energies for different configurations. e0, e1 and e2 denote the ground
state, the first and second excited states for electrons.

splitting is 10.6 µeV. Turning to the hole states, while we can no longer classify the hole states

as p-like, the first two hole states are split by ≈ 6 meV. Again, the value of this splitting is 2.6

meV in the VCA-case. This means that splittings introduced due to random alloy fluctuations

are higher when compared to a VCA-case. This conclusion is not just a particularity of the

configuration. We find consistently that the electron p-state splittings vary between ≈ 6 − 34

meV depending on the microscopic configuration. Similarly, splittings between the first two

hole states is also significantly dependant on the configuration number and correspondingly vary

between ≈ 1 − 15 meV. This finding is summarized in Fig. 6.8 and Fig. 6.9 which illustrates

respectively, the electron and hole energies of the first three bound states for five different

configurations. Finally, we plot the ground state transition energies (E0
e −E0

h) for five different

configurations in Fig. 6.10. We observe from Fig. 6.10 that the variation of transition energies

between the lowest (Config-4) and the highest (Config-1) energy value is ≈ 27 meV. Overall,
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Figure 6.9: Hole energies for different configurations. h0, h1 and h2 denote the ground state,
the first and second excited states for holes.

2 . 4 2 0
2 . 4 2 5
2 . 4 3 0
2 . 4 3 5
2 . 4 4 0
2 . 4 4 5
2 . 4 5 0

C o n f i g u r a t i o n
5  43 21

En
erg

y (
eV

) 

Figure 6.10: Ground state transition energies for five different configurations

from the above analysis we find that local fluctuations in the alloy significantly affect the

symmetry and single-particle energies of polar InGaN/GaN QDs.

Now turning to the orbital character of different states, we observe that similar to the VCA-case

described in the last section, the electron ground state wave function mainly consists of s orbital

contribution with much weaker contributions from px, py and pz. However, this situation is

completely different for the hole case. In the VCA-case, with SOC, we observed that the ground

and first excited hole states have a dominant px and py character respectively where as the

second excited state has 50% px and py character. However, here we observe strong variations

in the px and py orbital contributions for different hole states. Since local alloy fluctuations
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break the symmetry of the c-plane, it is expected that px and py orbital starts to mix and

contributes differently to the hole states.

Overall, it is to note that the conclusions drawn above is not a particularity of the configuration

and qualitatively similar results are obtained from all of the configurations. Quantitatively, the

single-particle energies and accordingly, orbital contributions to different states vary between

configurations. This can be related to the differences in impact of local alloy fluctuations for

different configurations. Furthermore, we found that alloy fluctuations alter the symmetry of

the system and as a result, the splitting between p-like states is increased. Now the question

is which point group can reflect the spatial symmetry of these systems? One could probably

think that in the presence of alloy effects, we are dealing with a C1 symmetry [71] in which

rotations by 360◦ should bring the system back in its original position. This point group

basically contains a single group IRR A and a double group IRR A1/2 [71]. Both of these IRRs

are 1-D; this might explain the non degeneracies of the different states in the presence of alloy

fluctuations.

In summary, we have discussed the single-particle states and energies. We find very strong

changes in the electronic structure when we take alloy fluctuations into account. That now

asks immediately the question what excitonic structure is expected for a case where random

alloy fluctuations have been included and how does this change in symmetry affect the FSS ?

This FSS as discussed before is of central importance if we want to achieve entangled photon

emission. So, it is not immediately obvious how these changes in symmetry will affect the FSS

values. Therefore, initially one might think since C3v symmetry is spoiled, we probably have a

system that is not ideally suited for entangled photon emission. However, as we will show in the

next section, we get a very surprising result that these systems might be suited for entangled

photon emission.

Having discussed the single-particle states and energies in the presence of alloy fluctuations,

we now move to investigate the optical properties of these QDs. As pointed out earlier, we are

mainly interested in the fine structure behaviour of excitons which has applications in quantum

entanglement. We have stressed in our discussions of theoretical framework (Chapter 2) that

for an accurate modeling of these properties, we need to account many-body effects in the

calculations. Accordingly, we will now focus on the excitonic structures of QDs in the next

section using previously described CI framework.

6.4 Fine structure splitting

As discussed in detail in Sec. 2.6.4, quantum information applications require generation of

entangled photons and zero bright-bright FSS is essential to achieve this [12]. Therefore, in
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Figure 6.11: Fine structure splitting values for VCA-case and five different configurations

this discussion, our main aim is to study fine structure of the exciton ground state for WZ QDs

with a C3v symmetry and the influence of alloy fluctuations on the results. We include many-

body effects in the calculations by using the CI scheme described in Sec. 2.6.2. In this method,

the many-body Hamiltonian is constructed in the basis of anti-symmetrized products of bound

single-particle electron and hole states. As a consequence, this method requires evaluation of

Coulomb matrix elements describing the attractive electron-hole interaction and the electron-

hole exchange interaction. These elements are calculated using the expressions given in Eq. 2.90

employing TB wave functions. Here, we analyze the difference between the results from the

VCA and five different random alloy configurations.

Before looking at the results, we recap the exciton ground state properties using symmetry argu-

ments and predict the degeneracies from a group-theoretical point of view. For this analysis, we

follow the discussion introduced in Sec. 2.6.4. Thus, we start with classifying the single-particle

states and exciton states according to symmetry. In a first step, we focus on the reference VCA

structure in the presence of strain, built-in potential and SOC. As described earlier, in the

presence of SOC, the eigenstates of each of the single-particle states can be represented by the

IRR of the C3v double group. In Sec. 6.2.2 we have shown that the hole ground state has

px- and py-like character and correspondingly transforms according to a two-dimensional E3/2

representation. On the other hand, the electron ground state has dominant s-like character

and transforms as the two-dimensional IRR E1/2. Accordingly, as described in Sec. 2.6.4, one

should expect Type-I ground state exciton-formed by an electron in the ground state (E1/2)

and a hole in the ground state (E3/2). Correspondingly, the symmetry of this exciton state is

labelled as E1/2⊗E3/2= E⊕E. Since E is a 2-D IRR of the C3v group, we expect two two-fold

degenerate states which are split by the electron-hole exchange interaction. Additionally, in

the absence of SOC, the exchange interaction splits the exciton ground state into a singlet and
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triplet states. On the other hand, since symmetry of the single-particle states are destroyed

by random alloy fluctuations, let us now discuss what is expected in the exciton spectra if we

assign the InGaN QDs with random alloy fluctuations to be of C1 symmetry. In the presence of

SOC, one should expect that these excitons transforms according to A1/2⊗A1/2 = A symmetry

since C1 group has only one element (A1/2) in its double group IRR. Since A is a 1-D IRR,

one expects four non-degenerate states in the ground state exciton spectra. Similarly, in the

absence of SOC, one expects the excitons to have A⊗A = A symmetry, since the single group

IRR of C1 group also contains only one element A. This is a 1-D IRR and when spin is included

in the description, we expect that the exciton ground state will split into a singlet and triplet

states in the presence of exchange interaction.

Equipped with this group theoretical analysis, we now move to the FSS calculations of our

reference VCA structure which represents an ideal C3v symmetry. Subsequently, we include

random alloy effects in the analysis. To compare the ground state exciton energies between

VCA and the different microscopic configurations, we proceed in the following way. We always

plot higher lying exciton states with respect to the ground state energy where the ground state

energy is taken as a zero of the energy for the VCA and the respective configurations. In other

words, we plot (∆EX = EX −EXGS) for the random configurations and the VCA-case which is

shown in Fig. 6.11. For our purpose here, gaining insight into the FSS and how it is impacted

by random alloy fluctuations, this analysis is sufficient.

For the VCA-case, we have included six energetically lowest single-particle electron and hole

states in the CI basis. This is due to the fact that the energy separation to higher lying

states beyond these states is expected to contribute less to the correlation effects as compared

to lower lying states. As expected from the group theoretical analysis presented above, our

calculation yields (cf. Fig. 6.11) two doubly degenerate exciton states which are split by around

50 µeV for the VCA. This is a calculation including electron-hole direct Coulomb and exchange

interaction. In the absence of Coulomb effects, we obtain a four-fold degenerate exciton state

and the inclusion of only direct Coulomb interaction did not split the degeneracy. Therefore,

we obtain the expected result that the exchange interaction is responsible for the FSS of the

excitonic states. Even though we have not performed any calculations on the optical activity

of the exciton states, according to group theoretical arguments, both of these states should be

bright and polarized in the (x, y) plane. Furthermore, following the discussion presented in

Sec. 2.6.4, one can argue that in spite of the presence of a bright-bright splitting of 50 µeV, one

is left with zero bright-bright splitting from each pair of degenerate bright states. In this ideal

picture, c-plane WZ QDs should be ideally suited for entangled photon emission. It is also to

note that the excitonic structure obtained for WZ QDs in this study is completely different from

the excitonic structure of (001) ZB QDs. As discussed in our theoretical framework section

(cf. Sec. 2.6.4) for ideal ZB QDs, all of the four excitonic states are non-degenerate due to the
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underlying C2v symmetry. Therefore, there is no possibility of zero bright-bright splitting and

as a result, entanglement is prohibited.

In the next step, we turn to the case where we have included random alloy fluctuations in

the model. Here, FSS calculations have been performed for five different configurations. In

the discussions presented in Sec. 6.3, we pointed out that hole states are strongly affected in

the presence of alloy fluctuations and the energy level splitting of hole states is smaller as

compared to electrons. Additionally, it was noted that the energetic difference between hole

states also vary between configurations. Therefore, it is not immediately clear how different

configurations will be affected by randomness in the alloy. If energetic difference between

the hole states are small, one could expect that more hole states will have to be taken into

account in the CI expansion to obtain accurate results for FSS values. Keeping this in mind,

we include more hole states (first ten hole states) in our CI framework. For the electrons we

include the six energetically lowest single-particle states. It is to note that in order to predict

the absolute values of energies in the excitonic structure, it might be necessary to include

more electron and hole states in the analysis. However, since we are mainly interested in how

different alloy microstructures affect the symmetry and degeneracies of the excitonic states,

the above assumptions are sufficient for this purpose. Looking at Fig. 6.11, we find that in

the presence of random alloy fluctuations, a single non-degenerate state and an approximate

triply degenerate state is obtained for all of the configurations. Additionally, we find that the

splitting between the singlet and triplet states vary among the configurations. This reflects the

dependence of excitonic energies on specific microscopic random alloy configuration. This result

is in contrast to our group theoretical prediction presented above, where we had expected four

non-degenerate states to be present in exciton ground state. However, it is quite interesting to

observe that the excitonic structure for this case is similar to the case described in Sec. 2.6.4

without SOC where spin is a good quantum number. Therefore, and in contrast to the VCA-

case, SOC is negligible here and we get back the situation without SOC. This might stems from

the fact that hole states are strongly localized due to alloy fluctuations and the SOC is much

smaller in InN and GaN as compared to InAs and GaAs systems. Keeping this in mind, it is

important to examine what excitonic structure is expected in the absence of SOC if we assign

the InGaN QDs with random alloy fluctuations to be of C1 symmetry. As described earlier,

group theoretical analysis in this case gives the observed singlet-triplet splitting in the presence

of electron-hole exchange interaction. Therefore, all of these discussions point towards the fact

that negligible values of SOC might be the origin of singlet-triplet splitting observed in case of

InGaN QDs having random alloy fluctuations.

To validate this argument, we calculated single-particle energies for one of the configurations

in the absence of SOC. We find almost same single-particle energies and electronic structures

with and without SOC at least for the ten lowest lying hole states. This points to the fact that

SOC is negligible in the presence of alloy fluctuations where we can decouple orbital and spin
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Configuration number Config-1 Config-2 Config-3 Config-4 Config-5

V eh,ex
1111 (µeV) 4 0.1 0.5 1.9 0.2

Table 6.1: Typical value of electron-hole exchange Coulomb matrix elements for five different
configurations as calculated from the TB wave functions.

parts to get back the situation of singlet-triplet excitonic structure. Furthermore, similar to the

last case, without many-body effects, we obtain a four-fold degenerate state and the attractive

Coulomb interaction introduces only energetic shifts, but preserves the four-fold degeneracy

of the exciton ground state. Therefore, one can conclude that the electron-hole exchange

interaction is responsible for this splitting. However, the magnitude of this splitting tends

to be small. We have listed as an example, electron-hole exchange matrix elements V eh,ex
1111 for

different configurations in Table 6.1. It can be seen that the values of exchange matrix elements

are only within a few µeV which is smaller by a factor of around 100-1000 compared to typical

InAs/GaAs dots [29]. For instance, one such reports on InAs/GaAs QDs find electron-hole

exchange matrix elements to be around 250-330 µeV [29]. The small values of here calculated

FSS can be attributed to the presence of strong-built in field along the c-axis, which separates

the carriers. Since these exchange matrix elements are responsible for the splitting between

the excitonic states, the magnitude of splitting are also small and are on the order of few µeV.

Additionally, as pointed out earlier, the spin-orbit splitting values of As based systems is much

higher than the considered III-N systems. Therefore, the magnitude of splittings between the

different excitonic states is also much higher.

6.5 Conclusion

In summary, we have investigated the electronic and optical properties of truncated-cone shaped

(0001)-oriented InGaN/GaN QDs of realistic size using an sp3 nearest neighbor atomistic TB

model including local strain and piezoelectric potential effects. We started our discussion with

an ideal VCA structure. From this analysis, we find that electro-static built-in field leads to a

reordering of the hole states and SOC lifts certain degeneracies in the energy spectrum of single-

particle states. This result is traced back to the group theoretical analysis of C3v point group

which reveals that no four-fold degenerate state can exist since there is no 4-D IRR in the C3v

double group. However, from our calculations we obtain only small splittings, i.e. in the order

of few µeV for electron states and a few meV for the hole states. In the next step, the impact of

random alloy fluctuations on the electronic and optical properties of (0001) QD is studied. We

find that random alloy fluctuations lead to a very strong hole wave function localization effects

inside the dot. Our calculations also show that random alloy fluctuations lead to a symmetry

reduction of the electron and hole states. This was visible from the asymmetry of the obtained

charge densities.
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Turning to the many-body properties, we find that the excitonic structure of these systems

are vastly different from conventional (001)-oriented InAs/GaAs systems where entanglement

is prohibited due to the underlying C2v symmetry. In VCA-type calculations, we find that

these dots could be ideal for entangled photon emission due to the presence of zero bright-

bright splitting in the excitonic structure. When random alloy fluctuations are included in

the analysis, due to combined effects of strong hole localization and small SOC we find a very

different excitonic structure as compared to the VCA-case. Here, independent of configurations

studied, we find a singlet-triplet structure in the first four exciton states. Since spin is now a

good quantum number, due to spin selection rules, the triplet state is expected to contain two

bright states which are energetically degenerate. Therefore, these systems might be attractive

for entangled photon emission. However, further studies are now required to analyze the optical

spectra of these systems which is beyond the scope of this thesis.





Appendix A

Classes and Irreducible

representations of C6v point group

In this appendix, the classes corresponding to a C6v point group is discussed in detail. For

this problem, I have followed the lecture notes on “Group theory” by Prof. Dimitri Vvedensky

at Imperial College London, UK [248] and simply used the symmetry operation of a regular

hexagon. Let us assume a regular hexagon as follows:

We will use the following notation to denote how different symmetry operations transform the

vertices of a hexagon. (
1 2 3 4 5 6

v1 v2 v3 v4 v5 v6

)
(A.1)

Here, the first row corresponds to the order of the vertices before any transformation and vi in

the second row denotes the number of the ith vertex after a transformation has been applied.

Correspondingly, the symmetry operation of a hexagon will be,

145
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(VIII)

2 1

3 6

4 5
(X)
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(XI)

6 5

1 4
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(XII)

(I) E =

(
1 2 3 4 5 6

1 2 3 4 5 6

)

(II) C6 =

(
1 2 3 4 5 6

2 3 4 5 6 1

)

(III) C2
6 = C3 =

(
1 2 3 4 5 6

3 4 5 6 1 2

)

(IV ) C3
6 = C2 =

(
1 2 3 4 5 6

4 5 6 1 2 3

)

(V ) C4
6 = C2

3 =

(
1 2 3 4 5 6

5 6 1 2 3 4

)

(V I) C5
6 =

(
1 2 3 4 5 6

6 1 2 3 4 5

)

(V II) σv,1 =

(
1 2 3 4 5 6

6 5 4 3 2 1

)

(V III) σv,2 =

(
1 2 3 4 5 6

2 1 6 5 4 3

)

(IX) σv,3 =

(
1 2 3 4 5 6

4 3 2 1 6 5

)

(X) σd,1 =

(
1 2 3 4 5 6

1 6 5 4 3 2

)

(XI) σd,2 =

(
1 2 3 4 5 6

3 2 1 6 5 4

)

(XII) σd,3 =

(
1 2 3 4 5 6

5 4 3 2 1 6

)

(A.2)
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As summarized above, the symmetry operations of a hexagon consists of the identity (E), rota-

tions by angles of nπ
3 (C6, C3, C2, C

2
3 , C

5
6 ), three mirror planes(σv,1, σv,2, σv,3) passing through

opposite faces of the hexagon and three mirror planes (σd,1, σd,2, σd,3) passing through opposite

vertices of the hexagon.

Now, we will divide the symmetry elements into different classes according to following postu-

lates.

• All the elements of a class correspond to the same type of operation, and is related by

symmetry operations. For instance, identity, rotation and mirror planes are three different

operations.

• All the elements of a class has the same order. The order of an element a is the smallest

integer such that an = E (the identity). Here, rotations C2 has order 2, C3 and C3
2 have

order 3, C6 and C5
6 have order 6. On the other hand, σv,i and σd,i have order 2.

• Two elements i and j of a group are in the same class, only if there is another element

k in the group such that j = k−1ik. Correspondingly, σv,i and σd,i belong to different

classes as there is no group element which transforms σv,i to σd,i.

Using the above postulates, we obtain six different classes of C6v group as

E ≡ {E} ,

2C6 ≡
{
C6, C

5
6

}
,

2C3 ≡
{
C3, C

2
3

}
,

C2 ≡ {C2} ,

3σv ≡ {σv,1, σv,2, σv,3} ,

3σd ≡ {σd,1, σd,2, σd,3} .

(A.3)

Derivation of IRRs in a coordinate basis

The symmetry operations presented above can be represented by 3×3 matrices that transforms

a set of old x, y, and z coordinates into new x′, y′ and z′ coordinates. For instance, a rotation

around z axis can be written as,
x′

y′

z′

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




x

y

z

 . (A.4)
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Now, in this basis, the symmetry operations of a C6v point group can be written as,

E =


1 0 0

0 1 0

0 0 1

 C6 =


1/2 −

√
3/2 0

√
3/2 1/2 0

0 0 1



C2 =


−1 0 0

0 −1 0

0 0 1

 C3 =


−1/2 −

√
3/2 0

√
3/2 −1/2 0

0 0 1



σd =


−1 0 0

0 1 0

0 0 1

 σv =


1 0 0

0 −1 0

0 0 1



(A.5)

The set of these matrices form the matrix representation of C6v point group. Now, the trace

of the matrix (character) gives the short hand version of the matrices Γgeneral as

C6v E 2C6 2C3 C2 3σd 3σv

Γgeneral 3 2 0 −1 1 1
(A.6)

Γgeneral is a reducible representation since it can be simplified further by “Block Diagonaliza-

tion”. In the illustrated case of C6v, since x and y are not independent, Block diagonalization

gives 2×2 (x, y) and 1×1 (z) matrices. Accordingly, the matrices in Bloch form can be written

as,

E =


[

1 0

0 1

]
0

0

0 0
[
1
]
 C6 =


[

1/2 −
√

3/2

1/2 1

]
0

0

0 0
[
1
]


C2 =


[
−1 0

0 −1

]
0

0

0 0
[
1
]
 C3 =


[
−1/2 −

√
3/2

√
3/2 −1/2

]
0

0

0 0
[
1
]


σd =


[
−1 0

0 1

]
0

0

0 0
[
1
]
 σv =


[

1 0

0 −1

]
0

0

0 0
[
1
]


(A.7)
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Subsequently, we can find the traces of 2×2 and 1×1 matrices and obtain the symmetry trans-

formations for the the irreducible representations as:

C6v E 2C6 2C3 C2 3σd 3σv Coordinates(basis)

E1 2 1 −1 −2 0 0 (x, y)

A1 1 1 1 1 1 1 z

(A.8)





Appendix B

Material parameter sets used for k·p
and tight-binding calculations

Parameter AlN

alat(Å) [62] 3.112
clat(Å) [62] 4.982

C11 (GPa) [249] 410.2
C12 (GPa) [249] 142.4
C13 (GPa) [249] 110.1
C33 (GPa) [249] 385.0
C44 (GPa) [249] 122.9
e15 (C/m2) [61] -0.39
e31 (C/m2) [61] -0.63
e33 (C/m2) [61] 1.46
B115 (C/m2) [220] 4.4
B125 (C/m2) [220] 2.4
B135 (C/m2) [220] -0.1
B311 (C/m2) [220] 3.0
B312 (C/m2) [220] 3.0
B313 (C/m2) [220] 3.8
B333 (C/m2) [220] -26.0
B344 (C/m2) [220] 3.2
Psp (C/m2) [61] -0.091

εr [160] 8.5
bsp (C/m2) [226] -0.0191 (AlGaN)

Table B.1: Material parameters for AlN used in this study. It is to note that for this material
system, we are only interested in the calculation of polarization properties. No electronic
structure calculations have ben performed. alat and clat denotes lattice constants along in-
plane and out-of plane directions respectively. Elastic constants are denoted by Cij , first-order
piezoelectric coefficients by eµj and second-order ones by Bµjk. The spontaneous polarization
is given by Psp and related bowing parameters for InGaN and AlGaN are denoted as bsp. The
dielectric constant is given by εr.
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Parameter GaN InN

alat(Å) [62] 3.189 3.545
clat(Å) [62] 5.185 5.703

C11 (GPa) [249] 368.6 233.8
C12 (GPa) [249] 131.6 110.0
C13 (GPa) [249] 95.7 91.6
C33 (GPa) [249] 406.2 238.3
C44 (GPa) [249] 101.7 55.4
e15(C/m2) [61] -0.32 -0.42
e31(C/m2) [61] -0.44 -0.58
e33(C/m2) [61] 0.74 1.07
B115 (C/m2) [220] 3.8 4.5
B125 (C/m2) [220] 2.3 2.8
B135 (C/m2) [220] 2.7 1.6
B311 (C/m2) [220] 6.2 4.8
B312 (C/m2) [220] 3.3 3.7
B313 (C/m2) [220] 0.4 0.5
B333 (C/m2) [220] -21.4 -18.6
B344 (C/m2) [220] 0.4 0.5
Psp(C/m2) [61] -0.040 -0.049

εr [164] 9.6 15.3
Eg (eV) [31] 3.51 0.69

∆CF (eV) [250] 0.019 0.024
∆SO (eV) [62] 0.017 0.005
me(m0) [36] 0.209 0.068

A1(~2/2m0) [36] -5.947 -15.803
A2(~2/2m0) [36] -0.528 -0.497
A3(~2/2m0) [36] 5.414 15.251
A4(~2/2m0) [36] -2.512 -7.151
A5(~2/2m0) [36] -2.510 -7.060
A6(~2/2m0) [36] -3.202 -10.078
ac (eV) [62] -4.08 -7.2

ac −D1 (eV) [250] -5.81 -3.64
ac −D2 (eV) [250] -8.92 -4.58
D3 (eV) [250] 5.45 2.68
D4 (eV) [250] -2.97 -1.78
D5 (eV) [250] -2.87 -2.07
D6 (eV) [250] -3.95 -3.02

EP‖ (eV) [36, 171] 18.7 8.742

EP⊥ (eV) [36, 171] 17.7 8.809

∆E
InN/GaN
VB (eV) [166] 0.62

InGaN
bsp (C/m2) [226] -0.037

Table B.2: Material parameters used in this study for GaN and InN for k·p calculations. alat
and clat denotes lattice constants along in-plane and out-of plane directions respectively. Elastic
constants are denoted by Cij , first-order piezoelectric coefficients by eµj and second-order ones
by Bµjk. The spontaneous polarization is given by Psp and the related bowing parameter for
InGaN is denoted as bsp. The dielectric constant is given by εr. Eg denotes the band gap,
∆so the spin-orbit coupling, ∆cf the crystal-field splitting, me the effective electron mass and
Ai are Luttinger-like hole effective masses. ac and Di denote conduction and valence band
deformation potentials respectively. Interband matrix element for the momentum operator
parallel and perpendicular to the c-axis is given by EP‖ and EP⊥. ∆EVB is the valence band
offset.
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∆so = 0 ∆so 6= 0

InN [eV] GaN [eV] InN [eV] GaN [eV]

E(s,a) -11.9173 -10.6158 -11.9173 -10.6158
E(p,a) 0.4886 0.8183 0.4867 0.8127
E(pz,a) 0.4558 0.7926 0.4572 0.7849
E(s,c) 0.4837 0.9122 0.4837 0.9122
E(p,c) 6.5322 6.6788 6.5322 6.6788
V(s,s) -1.6124 -5.9749 -1.6124 -5.9749
V(x,x) 1.7863 2.3381 1.7863 2.3381
V(x,y) 4.8338 5.4697 4.8338 5.4697
V(sa,pc) 1.8919 4.0909 1.8919 4.0909
V(pa,sc) 6.1355 8.6655 6.1355 8.6655
λa 0 0 0.0017 0.0052
λc 0 0 0.0017 0.0052

Table B.3: Tight-binding parameters (in eV) for the nearest neighbors of wurtzite InN and
GaN. Ref. [102] notation is used.





Appendix C

Expressions for first- and

second-order piezoelectric,

spontaneous polarization vector

fields as a function of θ

In this appendix, we summarize the analytic expressions for first- and second-order piezoelectric

polarization vector fields derived from the approach presented in Sec. 2.2.1. Please note that

the expression for the first-order piezoelectric polarization vector can also be found in Ref. [160]

which are similar to the expressions given in Ref. [225]. The equations for the rotated elastic

tensor are explicitly given in Ref. [160] and are not repeated here.

155



Expressions for polarization vector fields 156

First-order piezoelectric and spontaneous polarization vector field as a func-

tion of the incline angle θ

Using the transformation rules described in Sec. 2.2.1, The x-, y- and z-components of the

first-order piezoelectric polarization vector field, as a function of θ, are given by:

PFO
pz,x′ = εx′x′

[
e33 sin3 θ + (

e31 − 2e15

2
) sin(2θ) cos θ

]
(C.1)

+εz′z′

[
e31 sin3 θ + (

e31 + 2e15

2
) sin(2θ) cos θ

]
+εy′y′ [e31 sin θ] + εx′z′ [2e15 cos(2θ) cos θ − e33 sin(2θ) sin θ] ,

PFO
pz,y′ = 2e15

[
εy′z′ cos θ − εx′y′ sin θ

]
, (C.2)

PFO
pz,z′ = εx′x′

[
e31 cos3 θ + (

e33 − 2e15

2
) sin(2θ) sin θ

]
(C.3)

+εz′z′

[
e33 cos3 θ + (

e31 + 2e15

2
) sin(2θ) sin θ

]
+εy′y′ [e31 cos θ] + εx′z′ [(e31 − e33) sin(2θ) cos θ + 2e15 cos(2θ) sin θ] .

The required strain tensor components in the rotated frame are denoted by εi′j′ . For QW

systems analytic expressions for εi′j′ can be derived and are for instance given in Ref. [225].

For the spontaneous polarization PSP we find: [160]

PSP =


−Psp sin θ

0

Psp cos θ

 . (C.4)

Second-order piezoelectric polarization vector field as a function of the incline

angle θ

Using the transformation rules described in Sec. 2.2.1, the x-, y- and z-components of the

second-order piezoelectric polarization vector field as a function of incline angle θ read:

P SO
pz,x′ = 2B115 cos θ [A−BC]− 2B135 cos θ(FC)− 2B125 cos θ

[
A+ εy′y′C

]
(C.5)

−B311

2
sin θ

[
B2 + 2D2 + ε2

y′y′
]

+B312 sin θ
[
D2 − εy′y′B

]
−B313 sin θ

[
BF + εy′y′F

]
− 2B344 sin θ

[
E2 + C2

]
− 1

2
sin θB333F

2

P SO
pz,y′ = 2B115

[
εy′y′E −DC

]
+ 2B135EF + 2B125 [DC + EB] (C.6)

P SO
pz,z′ = 2B115 sin θ [A−BC]− 2B135 sin θ [FC]− 2B125 sin θ

[
A+ εy′y′C

]
(C.7)

+
B311

2
cos θ

[
B2 + 2D2 + ε2

y′y′
]
−B312 cos θ

[
D2 − εy′y′B

]
+B313 cos θ

[
BF + εy′y′F

]
+ 2B344 cos θ

[
E2 + C2

]
+

1

2
cos θB333F

2 ,
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where the coefficients A, . . . , F are given by

A =
[
εx′y′ cos θ + εy′z′ sin θ

] [
εy′z′ cos θ − εx′y′ sin θ

]
,

B = εx′x′ cos2 θ + εz′z′ sin
2 θ + εx′z′ sin(2θ) ,

C =

[
εx′x′ − εz′z′

2

]
sin(2θ)− εx′z′ cos(2θ) ,

D = εx′y′ cos θ + εy′z′ sin θ ,

E = εy′z′ cos θ − εx′y′ sin θ ,

F = εx′x′ sin
2 θ + εz′z′ cos2 θ − εx′z′ sin(2θ) .
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