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then just refuse(d). 

Left over and waste(d), 

digested to gases. 

Ingenious like Boole, 
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Abstract 

An integrated biogas system is a synergistic cycle of processes sustainably 

recovering energy and nutrients by anaerobic digestion systems. It is a value adding 

sequence managing waste and biomass with a final gaseous by-product biogas or 

biomethane (a natural gas substitute). This thesis explored its core process, 

technology and strategies of biogas production and upgrading to biomethane.  

Various studies of this thesis highlight pathways to conduct and optimise anaerobic 

digestion at intensified conditions while improving reactor utilisation. An increase in 

substrate throughput and loading was attained by a pre-treating first stage hydrolysis 

reactor. The solubilisation of substrate provided upstream carbon dioxide segregation 

and high quantities of readily available liquid fermentation products. A downstream 

digester increased methane yields and enriched the methane content to levels of 71% 

of the biogas composition. Intensified conditions and mono-digestion of a single 

substrate such as food waste can exhibit deficiencies in essential nutrients and 

inhibition of methanogenic activity. Supplementation of undersupplied trace 

elements induced immediate recovery allowing stable digestion at loading rates as 

high as 5 g VS L-1 d-1 at mesophilic temperatures. An increase in temperature further 

improved degradation kinetics and stimulated higher biomethane yields at shorter 

substrate retention in grass digestion.  

In an integrated biogas system, biogas may be upgraded in conjunction with in-situ 

and ex-situ biological methanation strategies. The addition of hydrogen revealed 

positive effects on the methanogenic process. Adverse effects of elevated dissolved 

hydrogen concentrations on acetogenesis became evident in-situ. A biomethane with 

methane concentrations in excess of 96% successfully demonstrated the potential for 

gas grid injection at methane formation rates of 3.7 L per litre reactor volume per 

day. An approach, supplying gases continuously into a sequential ex-situ reactor 

system and steadily displacing the upgraded biogas, confirmed similar methane 

formation yields. A hybrid model, where an in-situ grass digester is followed by an 

ex-situ reactor suggested an alternative approach to conventional biogas upgrading. 

The contribution of this thesis is the successful demonstration of optimisation 

potential in novel and existing digestion systems. The employed biogas upgrading 

strategies proved to be efficient and suitable for gas grid injection.  
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FH₂ in   volumetric hydrogen flow entering the reactor 
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1.1 Introduction and background to thesis 

 

 

“The ultimate test of man’s conscience may be his willingness to sacrifice something 

today for future generations whose words of thanks will not be heard” Gaylord 

Nelson. 

 

 

The fundamental, possibly unheard sacrifice of our generation will be the transition 

from a fossil fuel based society to a society driven by renewable decarbonised 

sustainable energy. The decarbonisation of the economic sectors associated with 

electricity, heat and transport, together with a responsible use of resources will play a 

key role in offsetting the worst effects of climate change and reducing environmental 

pollution. The European Union (EU) has set ambitious greenhouse gas emission 

targets aiming at 20% reduction by 2020 (EC, 2009). A crucial element to advance 

towards the proposed targets is the introduction of a circular economy (European 

Commission, 2015). The Zero Waste Programme for Europe promotes sustainable 

waste treatment with effective nutrient and energy recovery. Anaerobic digestion 

(AD) may be considered a beneficial treatment system due to its direct conversion to 

biogas whilst simultaneously retaining nutrients in the digestate (Murphy & 

McKeogh, 2004).  

The technology of anaerobic digestion has advanced continuously over the course of 

the last decades as the possible treatment and substrate spectrum broadened. The 

initial digestion of waste water or manure was rapidly complemented by slurries and 

residues. In the last decade the range of substrates expanded and included for more 

complex resources such as energy crops (for example maize and grass) with focus 

partially shifting from waste management to energy recovery and renewable energy 

production. Food waste (as it has a gate fee associated with its treatment) can provide 

the most economic source of biogas production (Murphy & Power, 2006). Manures 

and energy crops usually require further subsidies to provide an economic basis. 

However, they drastically increase the potential resources for biogas production. The 
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technology to co- or mono-digest energy crops emerged in the early 2000s with 

research still exploring and optimising its full potential.  

Foremost, the produced biogas is used in onside combined heat and power (CHP) 

applications. The electricity is usually injected into the electricity grid, while 

complete utilisation of heat remains challenging. The installation of remote biogas 

powered CHP units at a local heat sink can provide a solution to exploit the full 

energy potential. Another approach to increase the utilisation and distribution range 

of biogas powered CHP units is gas grid injection. Upgrading technologies to convert 

biogas to biomethane and inject to the gas grid has undergone exponential growth 

rates in the last decade in some European countries. After removing the carbon 

dioxide (CO2) fraction in the biogas, the remaining methane (CH4) can be injected to 

the gas grid and withdrawn for CHP use (or for transport use in natural gas vehicles) 

at any location along the gas grid.  

Rather than removing the CO2, a novel approach of biogas upgrading by methanation 

has become the latest focus of attention in biogas research and is implemented in a 

number of industrial applications. CO2 is coupled with externally added hydrogen 

(H2) to form methane typically via a process stoichiometrically explained by the 

Sabatier Equation (4H2 + CO2 → CH4 + 2 H2O). The process may be catalysed by 

microbes (hydrogenotrophic methanogenic archaea) and can provide a biomethane of 

natural gas quality.  

The innovation in anaerobic digestion has facilitated significant progress in 

optimizing design and operation of biogas technology in the last decades. This has 

been the foundation of a dynamic and booming biogas industry in Europe 

contributing substantially to greenhouse gas emission reduction and the stimulation 

of a more circular economy.  

 

1.2 Rationale for the thesis 

The theme of the thesis aspires to explore and advance biogas technology and 

anaerobic digestion concepts. The rational of this thesis is moved by the idea of 

integrated biogas systems and its implementation into existing infrastructure. An 

integrated biogas system is essentially a synergistic cycle of processes sustainably 

recovering energy and nutrients with an anaerobic digestion system at the centre of 



Chapter 1: Introduction  

Integrated Biogas Systems 4 Markus Voelklein 

the circular economy system. It is a value adding sequence managing waste and 

resources with a final gaseous by-product biomethane (natural gas). Figure 1.1 

reveals the bigger picture of integrated biogas systems where biogas technology is 

the central element interconnecting waste and energy management with biological 

power to gas applications. The interconnection of biogas and biological power to gas 

into existing energy systems facilitates a higher penetration of variable renewable 

energy. It allows a change in energy vector from electricity to renewable green 

decarbonised gas and provides storage capacity for intermittent renewable energies 

such as wind or photovoltaic (PV).  

 

Fig. 1.1 Integrated biogas systems.  

 

In this example of an integrated biogas system the substrate (grass, food waste or 

manure) is treated in an anaerobic digestion system and may include for upstream 

hydrolysis. The methane produced in the methane reactor can instantly be utilised in 

an onsite CHP or forwarded to a remote CHP at a heat sink. Optionally the biogas 

can be purified by a gas scrubber and injected into the gas grid. The biological power 

to gas process involves the addition of hydrogen to biogas from an electrolyser, 

ideally powered by curtailed wind or PV. The actual methanation employs the 
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Sabatier reaction either in-situ within the anaerobic digestion process or ex-situ in an 

external vessel. The ex-situ process may avail of exogenous carbon dioxide from 

conventional upgrading systems or is directly fed with biogas from the methane 

reactor. In all scenarios the upgraded biogas can be stored and withdrawn from the 

gas grid and utilised for heat, transport and electricity applications.  

 

1.3 Thesis aims and objectives 

The thesis aims to optimise the technology of biogas production and upgrading in 

integrated biogas systems by investigating and providing solutions on how to: 

- maximise possible biogas quantities per input (specific methane yield).  

- improve reactor utilisation (volumetric methane production). 

- elevate loading (organic loading rate). 

- reduce necessary retention time (hydraulic retention time). 

- attain methane concentrations meeting gas grid injection standards. 

 

The detailed aims and objectives of the thesis were as follows: 

- Assess a two-stage fermentation system through quantification of 

performance parameters. 

- Investigate hydrolysis efficiency and specific hydrogen yield of a 

hydrolysis reactor. 

- Evaluate overall energy yield of two-stage digestion at increasing organic 

loading rate and contrast with a similar single-stage system.  

- Assess the effect of trace elements (TE) on mono-digestion of source 

segregated food waste in single and two-stage systems. 

- Determine the impact of trace element deficiency and its response after 

supplementation. 

- Assess performance of thermophilic digestion at increasing loading rates. 

- Compare mesophilic and thermophilic grass digestion. 

- Investigate in-situ and ex-situ methanation. 

- Outline and contrast performance characteristics of lab scale methanation 

systems. 

- Propose upgrading strategies based on lab scale findings.   
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1.4 Thesis outline and link between chapters 

The thesis is comprised of 7 chapters and investigates opportunities to make 

advancements in anaerobic digestion. Chapter 1 introduces the thesis. It expands on 

background and expresses the rationale for the thesis. The chapter closes with the 

objectives, outline of the thesis and link between chapters. Chapter 2 provides a 

review of anaerobic digestion technologies and scientific literature relevant to the 

thesis. Chapters 3 to 6 of the thesis represent the core work carried out during the 

course of the research programme. These are original manuscripts of journal papers 

comprising individual sections of introduction, material and methods, results, 

discussion and conclusions. Each paper can be read in isolation while also 

contributing to the main theme of the thesis. Chapters 3 to 5 are published in 

scientific journals. Chapter 6 is currently under review. Chapter 7 completes the 

thesis with conclusions, recommendations, final remarks, future research and 

developments. The link between each chapter and a summary of chapters 2 to 6 are 

given as follows: 

 

Chapter 2: Review of anaerobic digestion technology and systems 

The aim of this chapter is to provide background for this thesis. It focuses on a 

review of knowledge, research and studies previously published on relevant topics to 

the thesis. A perspective on potential optimisation in anaerobic digestion opens this 

chapter. It elaborates on key parameters and possible digestion systems. Special 

attention is given to the digestion of food waste. Single and two-stage systems are 

contrasted, and major findings are outlined. An overview of trace element 

supplementation provides guidelines for optimum addition and stable fermentation. 

Challenges in digesting grass are emphasised. The advantages of elevated process 

temperature are discussed in the context of intensified reactor loading. The addition 

of exogenous hydrogen to a digester (in-situ methanation) or the injection into an 

individual upgrading unit (ex-situ methanation) is explained and reviewed.   
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Chapter 3: Assessment of increasing loading rate on two-stage digestion of food 

waste 

This chapter sets out to tackle the optimisation of anaerobic digestion systems. The 

objective was set to answer the question if the benefits of a two-stage food waste 

digestion system could outperform a single-stage system under similar conditions. 

The two-stage system comprised a first stage hydrolysis reactor followed by a second 

stage methanogenic reactor. At increasing organic loading rates, the performance 

was investigated to establish specific methane yields (SMY) and methane 

concentrations. An assessment of the first stage hydrolysis reactor was conducted to 

provide insights into produced liquid fermentation products. The challenges faced in 

this experiment let to chapter 4.  

 

Chapter 4: Role of trace elements in single and two-stage digestion of food waste 

at high organic loading rates 

The anaerobic digestion process in chapter 3 revealed a deficiency in essential trace 

elements. It was assumed that the advantages of two-stage digestion systems 

potentially facilitate an increased resilience towards a deficiency of trace elements. 

Thus, the impact of trace element deficiency and its response after supplementation 

was documented and discussed in this chapter. Besides the addition of trace 

elements, further potential to optimise anaerobic digestion was seen in higher 

temperature levels.  

 

Chapter 5: Increased loading rates and specific methane yields facilitated by 

digesting grass silage at thermophilic temperatures rather than mesophilic  

This study was conducted to advance the understanding of grass digestion at higher 

temperature levels. It was of particular interest as Ireland possesses an abundant 

resource of grass. Late harvested grass silage was fermented at thermophilic 

conditions. The addition of trace elements previously proved to have beneficial 

effects and was therefore thought to facilitate an increase in loading. The overall 

performance was assessed and compared to mesophilic digestion. Besides increasing 

the methane yield, the ultimate goal was set to further enrich the methane content 

close to levels necessary for gas grid injection. Thus, it set the scene for the 



Chapter 1: Introduction  

Integrated Biogas Systems 8 Markus Voelklein 

following chapter to pursue the idea of injecting and coupling hydrogen with carbon 

dioxide in a grass digester. 

 

Chapter 6: Biological methanation: Strategies for in-situ and ex-situ upgrading 

in anaerobic digestion 

This study investigated lab-scale in-situ and ex-situ biological methanation of 

hydrogen and carbon dioxide to methane. The upgrading success and associated 

influence of increased hydrogen partial pressure on the proposed methanation 

strategies was discussed and contrasted. A biomethane with methane concentrations 

in excess of 96% should facilitate direct gas grid injection. The positive effects of 

hydrogen addition to the methanogenic upgrading process was used to propose novel 

upgrading strategies applicable to upscaling and industry. A potential for cascading 

systems comprising ex-situ units in series or the merging of in-situ and ex-situ units 

was outlined.  
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2.1 Optimisation potential in anaerobic digestion  

Optimisation in anaerobic digestion is fore mostly driven by economic 

considerations and cost reduction. Those criteria ultimately define the design and 

choice of substrate of any anaerobic digestion system. While substrates such as 

wastes and residues are associated with receipt of gate fees, energy crops such as 

maize and grass impose additional procurement costs (Banks & Heaven, 2013). The 

revenue of a waste processing plant certainly benefits from high throughputs and is 

to be optimised for high loadings and short retention times. The extraction of the 

maximum amount of gas and energy is preferably, but secondary. As a result high 

loading and volumetric biogas production rates per reactor volume are the pivotal 

design criteria (Banks & Heaven, 2013). In contrast, the AD plant digesting energy 

crops is merely dependent on the maximum obtainable gas yield per ton of substrate 

input. This requires sufficient residence time or optimised process and reactor 

conditions. In both scenarios ideal conditions for the microbes should prevail to 

allow a stable digestion process. Key parameters influencing the volumetric methane 

production rate (VMP) and specific methane yield include for pre-treatment, reactor 

design, temperature, pH, organic loading rate (OLR), retention time (HRT), kinetic 

properties (K-values), nutrient supply and ammonium (NH4) content of the substrate.  

The relationship of increasing OLR on HRT, SMY and VMP in a continuous stirred 

tank reactor (CSTR) system are explained in Banks and Heaven (2013). An increase 

in OLR consequently elevates VMP but reduces HRT while subsequently lowering 

the SMY. A rise in temperature can enhance SMY and facilitates increased OLR, 

boosting VMP particularly when digesting at short HRT (Banks & Heaven, 2013). 

The temperature level is limited by ammonia concentration (Banks & Heaven, 2013; 

Yirong et al., 2017). The higher the temperature, pH and ammonium (NH4) level, the 

more free ammonia (NH3) will be found in solution inhibiting the methanogens.  

The prevailing digester type for solids, sludges and slurries are vertically mounted 

cylindric CSTR digesters operating at mesophilic temperature (Banks & Heaven, 

2013). As the key limiting step for solids biomass (for example maize, grass) is the 

hydrolysis of the substrate, any substantial optimisation to raise VMP, OLR and 

SMY at reduced HRT will have to comprise upstream pre-treatment.  
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2.2 Digestion of food waste 

Commercial food waste with high degradability is amenable to low retention times 

and high organic loading rates (Banks & Heaven, 2013; Browne & Murphy, 2014b). 

Biomethane potential tests (BMP) confirmed the rapid degradability of commercial 

food waste; 95% of a 30 day BMP yield can be achieved in the first 10 days (Browne 

et al., 2014). This favours high performance anaerobic digestion systems capable of 

coping with intensified conditions at short retention times such as leach bed or two-

stage fermentation systems (Browne & Murphy, 2014b).  

Most food wastes exhibit a high level of protein fractions, contributing to high levels 

of total ammoniacal nitrogen (TAN) and reduced carbon to nitrogen ratios (C:N). 

Temperature and pH define the proportion of free ammonia nitrogen in solution with 

TAN levels exceeding 3-5 g L-1 being considered inhibitory (Yirong et al., 2017).  

 

2.3 Two-stage digestion  

The advantage of two-stage anaerobic digestion is the spatial separation of process 

phases, where reactor parameters such as pH can be optimised for each phase to suit 

the requirements of the microorganisms. The pH in the first reactor (between 4 and 

6) optimises hydrolysis (Bochmann & Montgomery, 2013). In the upstream reactor 

hydrolysis and acidification break down macromolecules into liquid fermentation 

products such as volatile fatty acids (VFAs) and ethanol (Bochmann & Montgomery, 

2013), precursors for the methanogens in the second reactor. The effluent from stage 

one (hydrolysis reactor) is the substrate for the downstream second stage 

methanogenic reactor. Thus, the methanogenic archaea have a homogenous 

feedstock in the form of VFAs and ethanol. The second stage reactor has a neutral 

pH and operates at longer hydraulic retention times of 10 - 20 days as compared to 

the hydrolytic reactor (2-5 days). 

The two-stage process benefits from enhanced process stability and higher rate of 

substrate degradation, leading to higher biogas yields from the same amount of 

substrate (Browne & Murphy, 2014b; Massanet-Nicolau et al., 2015; Shen et al., 

2013). Another fundamental difference and advantage of two-stage over single-stage 

systems is the separate gas collection for each reactor (Bochmann & Montgomery, 

2013). This allows separate use of the produced gases. Biogas from the acidification 
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reactor consists mainly of carbon dioxide, hydrogen sulphide and hydrogen. The 

short retention time and low pH in the first stage is not amenable to methanogenic 

archaea, so methane is not produced. The production of carbon dioxide during 

acidification in the first reactor results in a biogas with enhanced methane content in 

the downstream methane reactor (Bochmann & Montgomery, 2013). The first stage 

reactor may be seen as both a pre-treatment and storage system for feedstock. This 

allows just in time storage of highly degradable substrate in the first reactor, without 

any associated methane production. Demand driven biogas production can be 

controlled by a variable feed rate of pre-acidified substrate into the second reactor. 

Therefore, the methane production is decoupled from the actual substrate delivery 

and feeding. The partial segregation of carbon dioxide in the upstream hydrolysis 

reactor generates a biogas rich in methane in the second reactor.  

The upstream hydrolysis reactor of the two-stage digestion system potentially 

segregates major quantities of hydrogen sulphide (H2S). Substrate acidification and 

degradation causes the hydrogen sulphide to be mainly present in its very volatile 

state of H2S, rather than in its more soluble conjugate base, the bisulfide ion HS- at 

more neutral pH (Waechter, 2012). As hydrogen sulphide is known to precipitate 

trace metals (Gustavsson et al., 2011; Karlsson et al., 2012), the upstream release of 

hydrogen sulphide potentially improves the bioavailability of these elements in the 

second stage system.  

 

2.4 Trace element supplementation 

A sufficient level of all macro- and micro-nutrients is a vital prerequisite for key 

enzymes and microbes associated with stable methanogenesis (Banks et al., 2012; 

Demirel & Scherer, 2011; Drosg, 2013; Kida et al., 2001; Yirong et al., 2014). All 

essential macro-nutrients, such as calcium, magnesium, nitrogen, phosphorus, 

potassium, sodium and sulphur, are foremost available in resources such as wastes, 

slurries, manures or energy crops. However, mono digestion of certain feedstock 

such as for example food waste or energy crops is challenging due to a lack of a 

sufficient level of trace elements such as cobalt, iron, nickel, molybdenum and 

selenium (Banks et al., 2012; Karlsson et al., 2012; Moestedt et al., 2016; Nges et al., 

2012; Wall et al., 2014; Zhang & Jahng, 2012). If the substrate is deficient in 
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nutrients, the process performance diminishes or even fails (Drosg, 2013; Gustavsson 

et al., 2011; Schmidt et al., 2014; Zhang & Jahng, 2012).  

In an analysis of full scale biogas plants, Lemmer et al. (2010) attributed a 10 - 50% 

performance reduction per unit reactor volume to digester systems with insufficient 

trace elements. The accessibility of trace elements is constrained by its 

bioavailability (Banks & Heaven, 2013; Karlsson et al., 2012; Ortner et al., 2015). In 

order to be available for methanogenic archaea, trace elements have to be soluble and 

neither be fixed in precipitated compounds (such as sulphates, sulphides, phosphates 

or carbonates) nor adsorbed (Banks & Heaven, 2013). Ortner et al. (2014) 

established that 30-70% of present trace elements were not bioavailable to the 

microbial community. Therefore, a general recommendation on optimal nutrient 

concentrations remains challenging. 

The addition of trace elements to sustain stable fermentation in scientific literature 

ranges between 0.05-10 mg L-1 for Co, 5-500 mg L-1 for Fe, 0.0272-5 mg L-1 for Mo, 

0.035-10 mg L-1 for Ni and 0.056-0.2 mg L-1 for Se (Banks et al., 2012; Gustavsson 

et al., 2011; Lemmer et al., 2010; Moestedt et al., 2016; Nordell et al., 2016; 

Pobeheim et al., 2011; Qiang et al., 2012; Zhang & Jahng, 2012; Zhang et al., 2012; 

Zhang et al., 2015). Further trace metals such as manganese, tungsten and zinc are 

rarely supplemented and usually not considered to be deficient for digestion. 

Overdosing of trace metals reduces enzyme and microbial activity (Banks & Heaven, 

2013; Lemmer et al., 2010). 

 

2.5 Challenges in grass digestion 

Managing sustainable grass digestion systems, through maximum possible loading 

rates, whilst generating a high specific methane yield, remains a critical design 

challenge. Xie et al. (2011) achieved stable co-digestion of grass silage with pig 

manure, however mono-digestion failed. Thamsiriroj et al. (2012) investigated long-

term operation of mesophilic grass mono-digestion and suggested a limit of 3 g VS 

L-1 d-1. Mechanical failure was manifested when this loading rate was exceeded. This 

was mainly attributed to insufficient mixing caused by enhanced viscosity and a dry 

solids (DS) level rising above 12%. Wall et al. (2014b) assessed the optimisation of 

digester performance for mesophilic mono and co-digestion of grass silage at organic 
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loading rates up to 4 g VS L-1 d-1. In general, the high fibre and total solids content 

impacts negatively on the prevailing viscosity and thus on the mixing quality in the 

reactor. This is the main reason why loading rates exceeding 4 g VS L-1 d-1 in grass 

mono-digestion have not been reported in literature. Similar to food waste, digestion 

of grass silage is characterised by elevated amounts of TAN; this needs to be taken 

into consideration in the system design. 

 

2.6 Thermophilic digestion 

An increase in temperature improves kinetic properties, increases enzyme activity, 

reduces viscosity, leads to higher substrate utilisation and growth rates of bacteria 

(Mähnert, 2007). The correlation of loading and dry solids on viscosity, based on 

mesophilic and thermophilic digestion of maize, rye and sugar beet silage was 

outlined in detail by Mähnert (2007). An increase in loading provoked a significant 

gain in viscosity at mesophilic temperatures. However, at similar dry solids content 

the thermophilic reactor displayed a lower viscosity. For 100% maize digestion the 

apparent viscosity at 7% DS accounted for 0.6 Pa s at mesophilic (35 °C) digestion 

and 0.2 Pa s for thermophilic (55 °C) digestion. The greater the loading rate and dry 

solids content, the more distinct this difference became. As explained in section 2.2 

elevated temperature level increase free ammonia nitrogen concentrations and may 

impose process inhibition.  

 

2.7 Biological methanation 

2.7.1 Sabatier process 

The underlying principle of biological methanation is the Sabatier process. 

According to the Sabatier reaction (equation 1) hydrogenotrophic methanogenic 

archaea are able to consume an equimolar amount of four times hydrogen (H2) to 

carbon dioxide (CO2) and generate biomethane of natural gas quality (Fukuzaki et 

al., 1990).  

 

4𝐻2 +  𝐶𝑂2  →  𝐶𝐻4 + 2𝐻2𝑂                                  ∆𝐺0 =  −165 𝐾𝐽 𝑚𝑜𝑙−1   (1) 

 



Chapter 2: Review of anaerobic digestion technology and systems  

Integrated Biogas Systems 15 Markus Voelklein 

2.7.2 Biological methanation systems 

The biological reduction of carbon dioxide to methane is referred to as biological 

methanation and can be performed either in-situ within a biogas digester or ex-situ in 

an adjacent external reactor (Angelidaki et al., 2018; Lecker et al., 2017). In an ex-

situ system the initial stages of anaerobic digestion (hydrolysis and acidogenesis) are 

not present. The provision of carbon dioxide, hydrogen, essential nutrients and 

hydrogenotrophic methanogens is sufficient to establish the process (Angelidaki et 

al., 2018; Lecker et al., 2017). 

An in-situ methanation system is based on a conventional biogas digester receiving 

organic substrate and hydrogen. The addition of exogenous hydrogen puts the 

symbiotic fermentation stages of acetogenesis and methanogenesis under stress by 

potentially elevating concentrations of intermediates/precursors such as volatile fatty 

acids, hydrogen and carbon dioxide. At standard conditions fatty acid oxidation (such 

as from butyrate and propionate to acetate) remains endergonic and becomes feasible 

at hydrogen partial pressure below 10 Pa (Fukuzaki et al., 1990). Adequate levels are 

sustained by interspecies hydrogen transfer between acetogenic and 

hydrogenotrophic methanogenic microorganisms; the addition of exogenous 

hydrogen drastically favours the latter. With balanced levels of hydrogen to allow 

fatty acid oxidation, adverse effects on acetogenesis are not to be expected and 

simultaneous production of biogas and upgrading to biomethane is possible. 

(Agneessens et al., 2017; Bassani et al., 2016; Luo & Angelidaki, 2013b; Luo et al., 

2012a; Mulat et al., 2017).  

 

2.7.3 Solubilisation of hydrogen 

The solubilisation of hydrogen is the decisive step to make gaseous hydrogen 

available for microorganisms on a cellular level. With a solubility rate of 

0.7 mmol H2 L-1 bar-1, hydrogen dissolves poorly in water, with solubility rates 24 

times less than that of carbon dioxide at 55 °C. The hydrogen to liquid transfer is 

therefore the bottleneck of the process. It is influenced by system pressure, Henry 

constant, temperature, hydrogen partial pressure, reactor configuration, mixing 

speed, gas recirculation and the employed gas diffusion system.  
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2.7.4 Phase boundary interface 

The phase boundary interface is the crucial element to provide efficient gas liquid 

mass transfer. Any increase for instance by smaller bubble size or enlarged contact 

surface, proportionally enhances the quantities of gases dissolved into liquid until 

maximum solubility is reached. Several gas injection methods such as hollow fibre 

membranes, gas diffusers and electrochemical methods have been described in the 

scientific literature and successfully demonstrated high gas transfer (Angelidaki et 

al., 2018; Bassani et al., 2016; Kraakman et al., 2011; Lecker et al., 2017). Similarly, 

gas recirculation systems (Alitalo et al., 2015; Bassani et al., 2016; Kougias et al., 

2017; Luo et al., 2012a) or for example systems recirculating liquid in a trickle bed 

reactor have shown to facilitate and enhance gas liquid contact (Burkhardt et al., 

2015; Rachbauer et al., 2016; Strübing et al., 2017; Ullrich et al., 2018). 

 

2.7.5 Reactor configuration and design 

The efficiency is further defined by reactor configuration and design. In the lab 

various systems have been investigated including: Intensely mixed reactor bottles 

(Agneessens et al., 2017; Guneratnam et al., 2017; Luo & Angelidaki, 2012b; Mulat 

et al., 2017); bubble column reactors (Kougias et al., 2017; Savvas et al., 2017); 

trickle bed reactors with immobilized microorganisms (Burkhardt et al., 2015; 

Rachbauer et al., 2016; Strübing et al., 2017; Ullrich et al., 2018); fixed bed reactors 

functioning as biological/anaerobic filters (Alitalo et al., 2015); hollow fibre 

membrane reactors (Luo & Angelidaki, 2013b); continuous stirred tank reactors 

(Kougias et al., 2017; Luo & Angelidaki, 2013a); and upflow anaerobic sludge 

blanket reactors (Bassani et al., 2016; Luo & Angelidaki, 2013b; Rittmann et al., 

2015).  

Novel concepts have been suggested for instance by Savvas et al. (2017) 

investigating ex-situ methanation in a 110 cm tall glass cylinder with 1.5 litre 

working volume. The gas mixture was dissolved directly by introducing it into a 

centrifugal pump and recirculating the liquid from bottom to top of the reactor. 

Kougias et al. (2017) assessed ex-situ methanation of a biogas with 60% methane 

content. Positive effects of gas recirculation were observed in a bubble column and 

two in-series connected upflow reactors. More complex ex-situ reactor 
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configurations such as trickle bed reactors attained high methane concentrations in 

the off gas at elevated methane formation rates (Strübing et al., 2017). Bassani et al. 

(2016) was able to upgrade biogas from 58% CH4 content to 82% in an in-situ 

upflow anaerobic sludge blanket reactor. Bubbleless gas transfer in an in-situ hollow 

fibre membrane module with cattle manure and whey as substrate produced 

promising results (Luo & Angelidaki, 2013b).  
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Abstract 

A two-stage food waste digestion system involved a first stage hydrolysis reactor 

followed by a second stage methanogenic reactor. Organic loading rates were 

increased from 6 to 15 g VS L-1 d-1 in the hydrolysis reactor and from 2 to 

5 g VS L-1 d-1 in the methanogenic reactor. The retention time was fixed at 4 days 

(hydrolysis reactor) and 12 days (methane reactor). A single-stage digester was 

subjected to similar loading rates as the methanogenic reactor at 16 days retention. 

Increased OLR resulted in higher quantities of liquid fermentation products from the 

first stage hydrolysis reactor. Solubilisation of chemical oxygen demand peaked at 

47% at the maximum loading. However, enhanced hydrolysis yields had no 

significant impact on the specific methane yields. The two-stage system increased 

methane yields up to 23% and enriched methane content by an average of 14% to 

levels of 71%. 

 

 

 

 

 

 

 

 

 

 

Keywords: two-stage digestion; food waste; hydrolysis; biogas; high performance 

reactors.  
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3.1 Introduction 

The Zero Waste Programme for Europe promotes a circular economy (European 

Commission, 2015) and encourages a phase out of land filling of biodegradable 

waste such as the organic fraction of municipal solid waste (OFMSW) by 2025. 

Anaerobic digestion may be considered a beneficial treatment system for OFMSW 

due to direct conversion to biogas whilst simultaneously retaining nutrients in the 

digestate (Murphy & McKeogh, 2004). Food waste (as it has a gate fee associated 

with its treatment) can provide the most economic source of biogas production 

(Murphy & Power, 2006). Biomethane potential tests highlight the rapid 

degradability of commercial food waste; 95% of the 30 day BMP yield was achieved 

in the first 10 days by Browne et al. (2014). Commercial food waste with high 

degradability should be amenable to low retention times and high organic loading 

rates.  

Single-stage anaerobic digestion is a well-established technology for biogas 

production. The investment costs are relatively low and the process is well 

understood. However, hydrolytic and methanogenic microorganisms are optimised at 

differing pH (Bochmann & Montgomery, 2013). In a single-stage system the 

prevailing pH (7-8) favours the methanogenic archaea, leading to non-optimum 

growth conditions for acidifying hydrolytic bacteria. 

The advantage of two-stage anaerobic digestion is the spatial separation of process 

phases, where reactor parameters such as pH can be optimised for each phase to suit 

requirements of the microorganisms. The pH in the first reactor (between 4 and 6) 

optimises hydrolysis (Bochmann & Montgomery, 2013). In the upstream reactor 

hydrolysis and acidification break down macromolecules into liquid fermentation 

products such as volatile fatty acids (VFAs) and ethanol (Bochmann & Montgomery, 

2013), precursors for the methanogens in the second reactor. The effluent from stage 

one (hydrolysis reactor) is the substrate for the downstream second stage 

methanogenic reactor. Thus, the methanogenic archaea have a homogenous 

feedstock in the form of VFAs and ethanol. The second stage reactor has a neutral 

pH and operates at longer hydraulic retention times of 10 to 20 days as compared to 

the hydrolytic reactor (2-5 days). 
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The two-stage process benefits from enhanced process stability and higher rate of 

substrate degradation, leading to higher biogas yields from the same amount of 

substrate (Browne & Murphy, 2014b; Massanet-Nicolau et al., 2015; Shen et al., 

2013). Another fundamental difference and advantage of two-stage over single-stage 

systems is the separate gas collection for each reactor (Bochmann & Montgomery, 

2013). This allows separate use of the produced gases. Biogas from the acidification 

reactor consists mainly of carbon dioxide, hydrogen sulphide and hydrogen.  

Biohydrogen systems may be optimised for hydrogen production (Guwy et al., 2011; 

Li et al., 2009). The short retention time and low pH in the first stage is not amenable 

to methanogenic archaea, so methane is not produced. The production of carbon 

dioxide during acidification in the first reactor results in a biogas with enhanced 

methane content in the downstream methane reactor (Bochmann & Montgomery, 

2013). Thus, rather than optimise hydrogen production the first stage reactor may be 

seen as both a pre-treatment system and a partial up-grading system facilitating 

biogas rich in methane in the second reactor. If the energy vector for biogas is 

biomethane, then the upgrading facility (CO2 removal) will be cheaper and less 

energy intensive for a two-stage system than a single-stage system. This is a 

significant benefit considering biogas upgrading can cost 30% of the capital cost of 

the whole biogas/biomethane system (Murphy & Power, 2009).  

Previous studies on two-stage digestion have focused on novel equipment testing 

(Argelier et al., 1998; Browne & Murphy, 2014b; Chinellato et al., 2013; Guwy et 

al., 2011) and hydrogen production (Chinellato et al., 2013; Karlsson et al., 2008; Liu 

et al., 2013; Luo et al., 2011; Massanet-Nicolau et al., 2015). Massanet-Nicolau et al. 

(2015) contrasted a two-stage system digesting grass to a single-stage system and 

highlighted a 13.4% increase in energy yields at similar retention time. Chen et al. 

(2015) determined the correlation of acidogenic fermentation types with oxidation 

reduction potential, pH, OLR and liquid fermentation products of food waste and rice 

straw. The literature is very sparse in contrasting one and two-stage digestion of food 

waste. Gaps also exist in testing continuous two-stage processes at increasing organic 

loading rates. 

Thus, the objectives of this paper are to assess a two-stage system through 

quantification of performance parameters such as hydrolysis efficiency, specific 
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hydrogen (SHY) and methane yields. The overall energy yield at increasing organic 

loading rate will be evaluated and contrasted with a similar single-stage system. The 

objective is not to generate maximum rates of hydrogen but to optimise the 

acidification process and hence maximise energy yields and organic loading rates.  

 

3.2 Materials and Methods 

3.2.1 BMP system 

The biomethane potential of the substrate was tested in an automatic methane 

potential test system (AMPTS ll, Bioprocess Control, Sweden). The working volume 

of the batch BMP tests were 400ml; all tests were run in triplicate for 30 days at 

37 °C. The inoculum to substrate ratio was set to 2:1. Carbon dioxide was removed 

by passing through a sodium hydroxide solution. The methane gas flow is recorded 

with gas tippers based on water displacement. This system is described in detail by 

Wall et al. (2013). 

 

3.2.2 Reactor systems 

Two-stage fermentation of food waste was performed at lab scale CSTR in two 

systems, comprised of a hydrolysis reactor and a methane reactor. The reactors had a 

total volume of 5 L with an internal diameter of 0.15 m and a height of 0.4 m. The 

working volume was 1.35 L for the hydrolysis reactor and 4.0 L for the methane 

reactor (figure 3.1). A third system, a single-stage reactor with the same dimensions 

as the methane reactor of the two-stage system was also employed (figure 3.1). 
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Fig. 3.1 Schematic of experiment lay out. 

 

 

 

Fig. 3.2 Design of experiment. 
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A temperature controller unit was installed to maintain a constant temperature in the 

reactors at mesophilic conditions. An outer heating blanket supplied the heat. A wet 

gas meter recorded gas flow automatically. Collected biogas was stored in a gas bag 

for compositional analysis. Mixing was provided by a stirring mechanism, consisting 

of a vertical shaft with height adjustable paddles at the upper and lower end. A 

variable speed motor drove the shaft. The shaft of the stirrer was surrounded by a top 

mounted pipe, which sealed the top of the reactor with the rotating stirrer. The 

reactors were equipped with a submerged pipe on top of the reactor to prevent gas 

leakage and oxygen entry during the feeding process. The hydrolysis reactors were 

fed manually once per day. The input substrate displaced a certain amount of effluent 

at the lower end of the reactor through a flexible tube. In this way the same level in 

the reactor was always maintained and representative samples for analysis were 

obtained. 

 

3.2.3 Design and operating conditions 

Figure 3.2 outlines the deployed digestion systems. The reactor configurations were 

tested with different loading rates, while the retention time and working volume 

stayed the same. The two-stage system was set up in duplicate. The retention time in 

both two-stage systems was 4 days in the hydrolysis reactor and 12 days in the 

methane reactor. The single-stage reactor was set to a retention time of 16 days, to 

match the overall retention time of the two-stage system. This was achieved by 

diluting the substrate with corresponding amounts of water. The approach is partly 

academic, yet reflects potential for co-digestion with wastes such as slurry. 

 

The loading rate of the hydrolysis reactors (H1 & H2) was increased gradually, 

starting with an initial loading rate of 6 g VS L-1 d-1 and reaching a final loading rate 

of 15 g VS L-1 d-1. The subsequent loading rate in the methane reactors (M1 & M2) 

of the two-stage system varied from 2 to 5 g VS L-1 d-1. The ratio of the respective 

volumes of the two phase reactors (3:1) was inversely proportional to the ratio of the 

OLR in each phase. The loading rate for the single-stage reactor (M3) ranged from 2 

to 4 g VS L-1 d-1. Results for an OLR of 5 g VS L-1 d-1 were not obtained in the single 

phase system due to experimental difficulties. After stabilization at each organic 
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loading rate the loading rate was maintained for at least 2 retention times. The pH in 

the hydrolysis stage was actively controlled with sodium hydroxide to maintain a 

pH-value at around 5.5. Without pH control, the pH of acidogenesis can readily 

decrease to below 4, which could significantly suppress the acid production, 

favouring the hydrogen producing ethanol-fermenting pathway (Chen et al., 2015; Li 

et al., 2009). 

 

3.2.4 Inoculum and characterisation of food waste 

The inoculum for the hydrolysis reactors was obtained from existing laboratory 

single-stage digester effluent based on food waste and grass. For the hydrolytic 

reactor a heat-shock treatment at 120 °C was conducted for 20 minutes to deactivate 

methanogenic archaea and allow harvest of anaerobic spore-forming acidifying 

bacteria. Immediately after the heat-treatment the pH was decreased to 5.5 with 1 

molar hydrochloric acid to provide optimal conditions for hydrolysis bacteria. During 

the 20 days acclimatisation phase the reactor was fed at a low loading rate of 

2.5 g VS L-1 d-1 to support bacterial growth and acclimatisation. The inoculum for 

the methane reactors was obtained from the same single-stage digester effluent, but 

without any pre-treatment. 

The source segregated food waste for this experiment was obtained from a local 

waste management company collecting wastes form major catering premises in the 

city. Approximately 80 kg of food waste was first manually screened and non-

biodegradable contaminants like bones and plastics were removed. The residual food 

waste was subsequently shredded in a mechanical meat mincer to a pasty consistence 

with particle size between 0.5-5 mm. Until it was processed in the anaerobic reactors, 

it was stored at a temperature of -20 °C.  

The physical and chemical characteristics of the feedstock were determined prior to 

the experiment. Total solids (TS) content of 24.63 ±0.72% was identified with a 

share of 94.29 ±0.64% present as volatile. The residual ash content yielded in 

5.71 ±0.64%. A pH in the range of 5.1 ±0.05 was determined. Elemental composition 

of the food waste resulted in 47.56 ±1.23% Carbon, 6.56 ±0.24% Hydrogen, 

36.97 ±1.66% Oxygen and 3.20 ±0.23% Nitrogen; associated C:N ratio calculates to 
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14.86. A theoretical chemical oxygen demand (COD) value of 1.46 g COD g VS-1 

(calculated in section 3.3.1) was established.  

3.2.5 Analytical methods 

The total solids and volatile solids were determined according to Standard Methods 

2540 G. The pH value was measured using a pH meter (Jenway 3510). Soluble 

chemical oxygen demand (sCOD) was determined using Hach Lange cuvette tests 

(LCK 914) and evaluated by a DR3900 Hach Lange Spectrophotometer. Samples 

were centrifuged at 15,000 rpm for 10 minutes prior to testing. The concentrations of 

individual volatile fatty acids were analysed with gas chromatography (Hewlett 

Packard HP6890) using a NukolTM fused silica capillary column and a flame 

ionization detector (FID). Hydrogen was used as a carrier gas. Lactic acid, methanol, 

ethanol and propanol were determined by high performance liquid chromatography 

(HPLC) using an Agilent 1200 HPLC system with a refractive index detector. An 

Agilent Hi-Plex H 300 x 7.7 mm Column was used with 0.01N H2SO4 as the elution 

fluid, at a flow rate of 0.6 ml min-1. The temperature of the column is maintained at 

65 °C.  

The methane content can considerably change during a 24 hour period, particularly if 

the digester is only fed once a day. As a result calculations based on periodic 

measurements would severely over or underestimate methane production, depending 

on when in the daily cycle methane content is measured. In order to avoid misleading 

measurements, biogas was stored in a gas bag and measured for its biogas 

composition on a weekly basis. Biogas composition was analysed for O2, N2, CH4, 

H2 and CO2 using a gas chromatograph (Hewlett Packard HP6890) equipped with a 

Hayesep R packed column and a thermal conductivity detector (TCD). Argon was 

used as carrier gas. Certified gas standards are employed for the standardization of 

hydrogen, methane and carbon dioxide.  

Biogas flow from each reactor was measured by using a water displacement 

mechanism. A certain amount of gas passes through a tipping mechanism, displaces 

the volume of water in a pre-defined chamber till it floats and releases the gas. Every 

release generates a digital impulse, which represents the displaced gas volume in the 

chamber. The measured methane volume was adjusted to the volume at standard 

temperature (273K) and pressure (1013mbar). 
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3.2.6 Calculations 

The acidification yield was determined for total VFA production and for the 

summation of total VFA, ethanol (Et) and lactic acid (La) production, expressed as a 

percentage of sCOD, through use of equation 2 and 3. 

 

Acidification yield (VFA) =
StVFA

SS
 x 100       (2)  

 

Acidification yield (VFA, La, Et) =
St (VFA,LA,Et) 

SS
 x 100     (3)  

 

SS is the sCOD measured and StVFA represents the total volatile fatty acids and 

St(VFA,La,Et) is the total volatile fatty acids, lactic acid and ethanol expressed as 

g COD L-1. The theoretical chemical oxygen demand (CODth) equivalents for VFA, 

ethanol and lactic acid can be derived from stoichiometric considerations.  

The hydrolysis yield defines the degree of solubilisation of organic matter. It is 

calculated according to equation 4.  

 

Hydrolysis yield=
SS

Si
 x 100         (4)  

 

SS is the sCOD measured and Si represents the initial total COD (tCODi). 

 

3.3 Results and Discussion 

3.3.1 Theoretical maximum biomethane potential (BMPth) and substrate 

chemical oxygen demand equivalent (CODth)  

A proximate and ultimate analysis of the food waste was conducted which allowed 

theoretical derivation of the stoichiometric equation of the food waste and hence 

maximum theoretical methane yield and concentration. The calculation in table 3.1 

yields a theoretical maximum biomethane potential of 548.2 L CH4 kg VS-1 with a 

methane concentration of 56.1%.  
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Table 3.1. Theoretical calculation of biomethane potential and methane 

concentration using the Buswell Equation. 

C18.2 H30 O10.6 N + 5.35 H2O → 10.18 CH4 + 7.97 CO2 

417.66 g mol-1 + 96.44 g mol-1 → 163.46 g mol-1 + 350.64 g mol-1 

1 kg VS + 0.23kg H2O → 0.39 kg CH4 + 0.84 kg CO2 

Density CH4 0.714 kg m-³; density CO2 1.96 kg m-³ 

56.1 vol.-% CH4; 43.9 vol.-% CO2 

Theoretical biomethane potential equates to 548.2 L CH4 kg VS-1 added. 

It is assumed that volatile solids compounds only consist of C, H, O and N. 

 

Initial total COD of the substrate was derived from elemental analysis. Theoretically 

the volatile solids of food waste could be expressed as C18.2 H30 O10.6 N. Contribution 

of sulphur was assumed to be negligible. Equation 5 calculates the moles of oxygen 

required to oxidise one mole of food waste.  

 

C18.2 H30 O10.6 N + 19.62 O2 → 18.15 CO2 + 13.52 H2O + 1 NH3    (5)  

 

Total oxidation requires 19.62 moles of oxygen (627.76 g) to oxidize 1 mol of food 

waste (431.11 g VS). The quotient gives the theoretical COD equivalent of 

1.46 g COD g VS-1. 

 

3.3.2 Biomethane Potential Test 

A 30 day bio-methane potential test was carried out in triplicate which generated a 

total methane yield of 492.7 ±9.3 L CH4 kg VS-1 and a k-value of 0.154. The BMP 

results achieved 89.9% of the theoretical biomethane potential. This matches the 

findings of Browne et al. (2014) on highly degradable commercial food waste. 

Approximately 90% of total methane yield (443.3 L CH4 kg VS-1) was obtained in 

the first 10 days. 

 

3.3.3 Single-stage digestion with gradually enhanced OLR 

Table 3.2 shows the performance characteristics of the single-stage digester, reactor 

M3. Prior to the experiment an acclimatisation period of two retention times at an 
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OLR of 2 g VS L-1 d-1 occurred. Subsequently the OLR was increased gradually from 

2 to 4 g VS L-1 d-1 at a fixed HRT of 16 days. After OLR of 2.5 g VS L-1 d-1 trace 

elements (Ni, Co, Se, Mb and Fe) were supplemented to ensure a stable fermentation. 

The initial pH dropped over time from 7 to 6.6 indicating an increase in VFA 

concentration and a lower buffer capacity. Consequently VFA/TIC (ratio of VFA to 

alkalinity) rose from 0.21 to 0.49 at the final OLR of 4 g VS L-1 d-1. The VFA 

measurement confirmed the VFA/TIC relationship and revealed an accumulation of 

acetic and propionic acid (0.42 g L-1 and 0.26 g L-1 respectively) towards the end of 

the period at an OLR of 4 g VS L-1 d-1. The biological parameters support the 

conclusion of a stable yet intensified fermentation. The attained methane 

concentration reached a level of about 54.9-55.8% and the specific methane yield 

varied between 316.4-326.6 L CH4 kg VS-1. The observed methane production leads 

to an energy yield of 11.5-11.8 MJ kg VS-1, and represents an obtainable gas yield of 

between 64.6-66.3% of the 30 day BMP. The gas yield and composition remained at 

a constant level although the OLR was gradually increased at a fixed HRT. 

 

Table 3.2. Performance characteristics of the single-stage reactor M3. 

Methane reactor  M3 M3 M3 M3 

OLR g VS L-1 d-1 2 2.5 3 4 

HRT days 16 16 16 16 

pH  7 ±0.1 6.6 ±0.1 6.5 ±0.3 6.6 ±0.3 

Methane concentration vol.-% 55.3 ±1.8 55.0 ±0.8 54.9 ±1 55.8 ±1 

Methane yield L CH4 kg VS-1 324.5 ±25.5 319.3 ±9.1 326.6 ±26.2 316.4 ±17.9 

Methane yield /BMP % 65.9 ±7.9 64.8 ±2.8 66.3 ±8.0 64.2 ±5.7 

Energy yield MJ kg VS-1 11.7 ±0.92 11.5 ±0.33 11.8 ±0.94 11.4 ±0.65 

 

3.3.4 Two-stage digestion with gradually enhanced OLR 

3.3.4.1 Hydrolysis reactor performance 

Table 3.3 shows the performance characteristics of the first stage of the two-stage 

system at increasing organic loading rates. The pre-treated hydrolysis bacteria 

acclimatised to food waste in a 20 day commissioning phase at an initial OLR of 

6 g VS L-1 d-1. Thereafter, the hydrolysis reactor was subjected to gradually increased 

OLR from 6 to 15 g VS L-1 d-1 at a fixed retention time of 4 days. An average pH of 
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5.5 prevailed during the whole experimental period. Increased OLR required 

enhanced daily addition of sodium hydroxide leading to minor pH variations of ±0.5.  

The gas obtained in the first stage exclusively consisted of hydrogen and carbon 

dioxide without any traces of methane. Hydrogen concentrations in the range of 

5.6-16.2% were measured, with specific hydrogen yields of 1.7-11.8 L H2 kg VS-1. 

The corresponding energy yields in terms of lower heating value (10.8 MJ m-3) 

account for 0.019-0.127 MJ kg VS-1. Similar hydrogen yields of food waste and low 

grade biomass sources between 3-16.5 L H2 kg VS-1 have also been reported by other 

authors assessing two-stage digestion and hydrogen production (Karlsson et al., 

2008; Luo et al., 2010; Massanet-Nicolau et al., 2013). It has to be noted that a 

review study of hydrogen production from agricultural wastes including for food 

waste by Guo et al. (2010) revealed a wide range of possible yields between 

3-196 L H2 kg VS-1. The purpose of this paper is not however, to generate maximum 

rates of hydrogen but to optimise the acidification process and hence maximise 

energy yields and organic loading rates. 

The acidification process mainly generated ethanol, lactic acid and volatile fatty 

acids (C2-C6) in a range of 2.39-16.83 g L-1, 0.60-5.44 g L-1 and 4.76-15.18 g L-1 

respectively. Methanol and propanol were not detected. The VFA spectrum was 

dominated by acetate (2.19-5.34 g L-1), butyrate (0.82-7.13 g L-1), caproate 

(0.72-2.46 g L-1), propionate (0.35-0.80 g L-1) and valerate (0.14-0.73 g L-1), 

followed by minor amounts of iso-valerate and iso-caproate and iso-butyrate. The 

dominance of ethanol, butyric and acetic acid among the liquid fermentation 

products clearly indicated a mixed type ethanol-butyric acid fermentation 

(Bouallagui et al., 2004; Chen et al., 2015; Li et al., 2009).  

Figure 3.3 relates the generated fermentation products in terms of COD equivalent to 

the total COD input. It revealed a relatively constant VFA production at a level of 

approximately 0.15 g COD per g COD added at all loading rates. Consequently, the 

acidification yield varied between 34.3 and 40.8%. The acidification yield as 

described in equation (2) may be noted in figure 3.3 as the proportion the lowest line 

(St(VFA)/CODadded) is of the highest line (sCOD represented by hydrolysis yield). 

These values are in line with Chen et al. (2015) reporting acidification yields 

between 29-36% for food waste and rice straw fermentation. Orozco et al. (2013) 
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reported maximum acidification yields for grass silage of 35%. Comparable results 

for food and vegetable waste of 38.9-44.4% were found by Bouallagui et al. (2004). 

Higher acidification yields of 56-84% have been obtained by De La Rubia et al. 

(2009) at retention times of up to 10 days and lower OLR. 

 

 

Fig. 3.3 Generated fermentation products in terms of COD added. 

 

Increased OLR resulted in higher quantities of ethanol and lactic acid. The initial rate 

of 0.083 climbed to 0.242 g COD per g COD added (figure 3.3) for the highest OLR 

of 15 g VS L-1 d-1. Thus, the share of VFA, ethanol and lactic acid after hydrolysis 

peaked at 88.5% indicating that sCOD mainly consists of these liquid fermentation 

products. The gap between hydrolysis yield and total amount of liquid fermentation 

products (referred to as St(VFA,La,Et)) is attributed to other intermediate volatile 

fermentation compounds and soluble organic matter. This gap was also observed by 

other authors (Argelier et al., 1998; De La Rubia et al., 2009; Orozco et al., 2013). 

The solubilisation of COD per unit COD added corresponded with the growth of 

VFA, lactic acid and ethanol concentrations at increased OLR levels. The obtained 
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hydrolysis yield was found to be between 34.9-47.1%. This is higher than values 

obtained by De La Rubia et al. (2009) and Orozco et al. (2013) who reported values 

of approximately 30% digesting sunflower oil cake and grass respectively. They 

were as high as those reported by Bouallagui et al. (2004) of 38.9-44.4% from fruit 

and vegetable waste. The gain in hydrolysis yield at higher OLR was also found by 

others (Argelier et al., 1998; De La Rubia et al., 2009; Orozco et al., 2013) and were 

partly attributed to the increased levels of ethanol and lactic acid in this study. This 

could have been triggered by the daily pH-adjustment with sodium hydroxide, 

causing enhanced variations of the pH at higher OLR. The increased pH levels of 

around 6 at the beginning of the daily acidification cycle created more favourable 

conditions for the butyric producing pathway. The lower pH of 5 at the end of each 

daily cycle facilitated lactic acid and ethanol production. This is in agreement with 

Chen et al. (2015) who examined the link between pH, ORP, OLR, HRT and 

fermentation products in food waste and rice straw fermentation trials. 
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Table 3.3. Performance characteristics of the first stage of the two-stage system at various organic loading rates. 

Hydrolysis reactor (two-stage)  H1  H2  H1  H2  H1a  H1  H2  H1  H2  

OLR g VS L-1 d-1 6.0 6.0  7.5  7.5  9.0  12.0  12.0  15.0  15.0  

HRT days 4  4  4  4  4  4  4  4  4  

pH  5.5 ±0.2  5.5 ±0.2  5.5 ±0.2  5.5 ±0.2  5.5 ±0.3  5.5 ±0.4  5.5 ±0.4  5.5 ±0.5  5.5 ±0.5  

Lactic acid  g L-1 0.60 ±0.25  0.67 ±0.44 1.98 ±0.53 1.72 ±0.77 3.61 ±0.38 4.35 ±1.04 4.62 ±1.45 5.44 ±0.3  3.71 ±0.52 

Ethanol  g L-1 2.39 ±0.08 2.76 ±0.34 3.26 ±0.42 3.55 ±0.58 4.23 ±0.03 7.08 ±0.22 7.67 ±0.76 15.95 ±1  16.83 ±0.82 

Acetate g L-1 2.19 ±0.2  2.50 ±0.02  3.03 ±0.56 2.80 ±0.3  3.19 ±0.42 4.98 ±0.77 5.04 ±0.61 5.34 ±0.28 5.19 ±0.47 

Propionate g L-1 0.53 ±0.01 0.40 ±0.04  0.35 ±0.05 0.39 ±0.05 0.41 ±0.07 0.64 ±0.14 0.52 ±0.08 0.80 ±0.08  0.74 ±0.03 

Iso-Butyrate g L-1 0.11 ±0.01 0.10 ±0.02  0.12 ±0.01 0.14 ±0.01 0.14 ±0.03 0.13 ±0.04 0.10 ±0.02  0.11 ±0.02 0.09 ±0.01 

Butyrate g L-1 1.14 ±0.14 0.82 ±0.12 1.28 ±0.22 1.34 ±0.1  1.43 ±0.2  2.69 ±0.57 2.56 ±0.53 6.33 ±0.14 7.13 ±0.36 

Iso-Valerate g L-1 0.06 ±0.01 0.05 ±0.01 0.04 ±0.03 0.07 ±0.02 0.10 ±0.01  0.10 ±0.02  0.11 ±0.02 0.14 ±0.01 0.16 ±0.01 

Valerate g L-1 0.19 ±0.02 0.14 ±0.02 0.25 ±0.02 0.30 ±0.04  0.38 ±0.06 0.51 ±0.06 0.45 ±0.04 0.65 ±0.04 0.73 ±0.07 

Iso-Caproate g L-1 0.02 ±0.01 0.01 ±0.01 0.01 ±0.01 0.02 ±0.01 0.03 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 

Caproate g L-1 0.99 ±0.26 0.72 ±0.17 1.58 ±0.32 1.49 ±0.21 1.99 ±0.29 2.35 ±0.02 2.46 ±0.12 0.93 ±0.09 1.14 ±0.10  

Total VFA g L-1 5.26 ±0.21 4.76 ±0.12 6.69 ±1.01 6.59 ±0.66 7.78 ±0.98 11.39 ±1.62 11.23 ±1.31 14.30 ±0.42 15.18 ±0.05 

Total VFA,LA, Et g L-1 8.25 ±0.47 8.18 ±0.39 11.94 ±0.96 11.86 ±0.38 15.62 ±1.04 22.82 ±0.57 23.52 ±2.43 35.69 ±0.86 35.71 ±1.20 

sCOD g L-1 12.87 ±0.60 12.67 ±0.50 17.20 ±1.13 18.27 ±0.90 21.47 ±0.99 31.27 ±0.72 30.87 ±1.82 41.70 ±1.6  40.37 ±2.12 

Acidification yield (VFA)b % 40.8 ±1.7  37.6 ±0.9  38.9 ±5.9  36.1 ±3.6  36.2 ±4.6  36.4 ±5.2  36.4 ±4.3  34.30 ±1.0  37.6 ±0.1  

Acidification yield (VFA,Et,La)c % 64.1 ±3.6  64.6 ±3.0  69.4 ±5.6  64.9 ±2.1  72.7 ±4.9  73 ±1.8  76.2 ±7.9  85.6 ±2.1  88.5 ±3  

Hydrolysis yield % 35.5 ±1.7  34.9 ±1.4  36.2 ±2.4  40.9 ±2.0  39.9 ±1.8  43.9 ±1.0  43.3 ±2.6  47.1 ±1.8  45.6 ±2.4  

Hydrogen concentration vol.-% 7.4 ±2.08  5.6 ±0.99  13.2 ±2.1  10.6 ±3.6  16.2 ±3.0  12.5 ±1.3  10.2 ±1.0  9.9 ±1.1  10.1 ±0.6  

Hydrogen yield L H2 kg VS-1 2.4 ±1.3  1.7 ±0.7  7.8 ±2.5  5.9 ±2.5  11.8 ±2.1  10.1 ±2.2  7.2 ±1.1  8.9 ±2.1  8.2 ±0.9  

Energy yield MJ kg VS-1 0.026 ±0.01 0.019 ±0.01 0.084 ±0.03 0.064 ±0.03 0.127 ±0.02 0.109 ±0.02 0.078 ±0.01 0.096 ±0.02 0.088 ±0.01 
a two-stage system 2 (reactors H2 at OLR 9 g VS L-1 d-1 & M2 at OLR of 3 g VS L-1 d-1) was omitted due to experimental difficulties; b acidification yield includes for VFA; 
c acidification yield includes for VFA, lactic acid and ethanol. 
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3.3.4.2 Methane reactor performance 

Table 3.4 shows the performance characteristics of the second stage of the two-stage 

system at increasing organic loading rates. The fermentation process in all methane 

reactors remained within stable limits as indicated by VFA/TIC values below 0.34 

(data not shown). After the OLR of 2.5g VS L-1 d-1 trace elements (Ni, Co, Se, Mb 

and Fe) were supplemented to maintain a stable process (as for system 3 single-stage 

system). The pH remained between 7.5 and 7.9 with a minor increase at higher OLR, 

due to the increased sodium hydroxide addition in the upstream hydrolysis reactors. 

There was no evidence of ethanol or lactic acid in methane reactor effluent. The 

produced VFA in the acidification stages was almost completely destroyed 

(94.9-97.8%) in the downstream methane reactors. At maximum loading at an OLR 

of 5 g VS L-1 d-1 in methane reactor M2, an enhanced total VFA level of 1.5 g L-1 

was recorded leading to a reduced destruction rate of 91.0%. However, a 

considerable reduction in SMY was not observed. The methane yield of the 

two-stage systems ranged between 371.1-419.0 L CH4 kg VS-1 with methane 

concentrations between 66.7-74.3%. This is in line with Chinellato et al. (2013) and 

Bouallagui et al. (2004) who found enhanced methane concentrations of 65% and 

69-70.6% at yields of 311-484 L CH4 kg VS-1 and 363-450 L biogas per kg COD 

input respectively for two-stage digestion of fruit and vegetable waste. In comparison 

to the 30 day BMP test, this represents an obtainable gas yield of 75.3-85.0%. Even 

though both systems were subjected to the same reactor conditions, there were minor 

deviations, resulting in energy yields of 13.4-15.1 MJ kg VS-1.
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Table 3.4. Performance characteristics of the second stage of the two-stage system at various organic loading rates. 

Methane reactor  M1 M2 M1 M2 M1 M1 M2 M1 M2 

OLR g VS L-1 d-1 2.0 2.0 2.5 2.5 3.0 4.0 4.0 5.0 5.0 

HRT days 12 12 12 12 12 12 12 12 12 

pH  7.5 ±0.1 7.5 ±0.1 7.5 ±0.1 7.5 ±0.1 7.6 ±0.1 7.7 ±0.1 7.7 ±0.1 7.9 ±0.1 7.9 ±0.1 

Methane concentration vol.-% 68.6 ±2.5 69.5 ±1.9 74.3 ±1.5 68.5 ±1.1 72.8 ±0.3 69.2 ±1.1 66.7 ±1.5 70.2 ±0.8 67.6 ±2.9 

Methane yield L CH4 kg VS-1 392 ±12.6 419 ±23.2 371.1 ±5.5 391.2 ±16.7 391.4 ±7.2 373.9 ±10.9 413.9 ±22.6 381.7 ±15.5 389.2 ±31.8 

Methane yield / BMP  % 79.6 ±3.2 85 ±5.5 75.3 ±1.5 79.4 ±4.3 79.5 ±1.9 75.9 ±2.9 84 ±5.5 77.5 ±4.1 79 ±8.2 

Energy yield MJ kg VS-1 14.11 ±0.5 15.08 ±0.8 13.36 ±0.2 14.08 ±0.6 14.09 ±0.3 13.46 ±0.4 14.90 ±0.8 13.74 ±0.6 14.01 ±1.2 

Total energy yield MJ kg VS-1 14.14 ±0.4 15.10 ±0.8 13.45 ±0.2 14.15 ±0.6 14.22 ±0.2 13.57 ±0.4 14.98 ±0.8 13.84 ±0.6 14.10 ±1.2 
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3.3.5 Discussion and performance comparison of single-stage versus two-stage 

digestion 

The single-stage and the two-stage systems were subjected to the same overall 

reactor conditions in terms of loading rate, temperature (38 °C) and retention time 

(16 days). As illustrated in figure 3.4 the SMY for each reactor system was relatively 

constant regardless of the applied organic loading rate. This leads to the conclusion 

that the performance is significantly impacted by the HRT rather than just the OLR. 

A correlation between enhanced hydrolysis yields at increased OLR levels and SMY 

was not detected. The two-stage system proved to have a better energy yield 

(regardless the applied OLR) than the single-stage system. This suggests that easily 

degradable substrates such as food waste with high k-values depend less on the 

overall degree of hydrolysis, rather the fact that hydrolysis in a two-stage system 

occurred (in contrast to single-stage digestion).  

The single-stage reactor only achieved 64.6-66.3% of the BMP (30 days) and 

57.6-59.6% of the theoretical biomethane maximum. In contrast, the methane yield 

obtained from the two-stage system reached 75.3-85.0% of the BMP (30 days) and 

between 67.7-76.4% of the maximum biomethane potential. This reinforces the 

advantages of a pre-treating hydrolysis stage. The lower gas yields in the continuous 

trials may be attributed to the shorter retention times (16 days) and the continuous 

feed and removal of digestate in the larger reactor as opposed to the longer retention 

time (30 days) in the idealised small well mixed BMP batch system with an 

inoculum to substrate ratio of 2:1. 

The hydrogen yields account for 1.5-3.0% of the total gas volume. After converting 

the hydrogen yield into energy content in terms of lower heating value, its value of 

0.019-0.127 MJ kg VS-1 is further reduced to about 0.45-0.93% of the overall energy 

yield and is almost negligible (table 3.3 & 3.4). The methane energy yields obtained 

from the two-stage system ranged between 13.4 and 15.1 MJ kg VS-1 and 

outperformed the single-stage reactor's energy values of 11.5-11.8 MJ kg VS-1. 

Similar results for two-stage digestion were found by Liu et al. (2013) and Luo et al. 

(2011) describing energy yields of 14.0 MJ kg VS-1 and 13.1 MJ kg VS-1 in 

food/organic waste trials. 
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Fig. 3.4 Comparison of single-stage, two-stage, BMP and theoretical biomethane potential (two-stage system reactors H2 at OLR 9 g VS L-1 d-1 

& M2 at OLR 3 g VS L-1 d-1 were omitted due to experimental difficulties). 
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In contrast to the single-stage reactor, the two-stage system allows separate gas 

capture at each stage. Thus, the hydrolysis reactor acts as a carbon dioxide stripping 

step, reducing the potential costs of biogas upgrading to biomethane (for use as a 

natural gas substitute). On average this reactor configuration allowed enrichment of 

the methane content by 14% as compared to the single-stage system. The two-stage 

system facilitated a rapid degradation of VFAs leading to enhanced SMY. The 

average gain in SMY was 21-23% in comparison to the single-stage system. This is 

in agreement with Liu et al. (2013) and Luo et al. (2011) describing enhanced gas 

yields from organic wastes as compared to the single-stage digestion process.  

In a previous study by Browne and Murphy (2014b) the potential of a sequentially 

fed leach bed system based on similar food waste (to this paper) was assessed. A 

recirculation between the two separated stages enhanced leaching, but also provoked 

undesired methane formation in the upstream hydrolysis stage. Besides the 

advantages of retaining the methanogenic archaea in form of granular sludge, the 

immobilisation induced operational difficulties and blockages. The system as 

described in this paper requires neither recirculation nor an immobilisation system 

for the microbial community. No operational difficulties were faced and no methane 

was produced in the hydrolysis stage. Up to 76% of the theoretical maximum 

biomethane potential could be achieved, as compared to 64% in the leach bed UASB 

system (Browne & Murphy, 2014b).  

The key results of this experiment are contrasted with other literature studies in table 

3.5. Such a comparison remains very dependent on the experiment conditions as 

most studies either focus on hydrolysis or hydrogen production. In accordance with 

this study, short retention times (1-4 days) and moderate to high loading rates 

(4-20 g VS L-1 d-1) in the first stage appeared to favour optimum conditions for 

hydrolysis. Thus, acidification (9.5-84%) and hydrolysis yields (15.8-44.4%) 

obtained by Bouallagui et al. (2004), Chen et al. (2015), De La Rubia et al. (2009) 

and Orozco et al. (2013) were matched with acidification (64.1-88.5%) and 

hydrolysis yields (34.9-47.1%) of this study. The benefits of the deployed 

fermentation strategy can be found in the high solubilisation of COD (hydrolysis 

yield of 34.9-47.1%) at low hydrogen production in the first stage and higher SMY at 

elevated methane content in the second stage. Thus, the SMYs of 

371-419 L CH4 kg VS-1 were comparable to reported results of 
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270-484 L CH4 kg VS-1 (Chinellato et al., 2013; Luo et al., 2011; Massanet-Nicolau 

et al., 2015; Orozco et al., 2013). The SMY was similar to more complex reactor 

configurations such as anaerobic sequencing batch reactors or leach bed reactors with 

209-450 L CH4 kg VS-1 (Bouallagui et al., 2004; Browne & Murphy, 2014b).  
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Table 3.5. Results of two-stage fermentation reported in literature. 

       First stage        Second stage       

Reference Substrate 
Reactor operation 

mode 

 
HRT OLR 

Acidification 

yield 

Hydrolysis 

yield 
SHY 

 
HRT OLR SMY 

CH4 - 

content 

Single vs. 

two-stage 

     d g VS L-1 d-1 % % L H2 kg VS-1  d g VS L-1 d-1 L CH4 kg VS-1 vol.-% % increase 

Bouallagui 

et al., 2004 

Fruit and 

vegetable 

waste 

Two-stage ASBRe 

 

3 3.7-10.1a  38.9-44.4f  
 

10 0.72-1.65 363-450b 69-71  

Browne & 

Murphy, 

2014b 

Food 

waste 
Leach bed, UASB 

 

18-30c 7.1-11.8a    
 

0.56d 7.1-11.8 209-384 55.9-63.7  

Chen et 

al., 2015 

Food 

waste rice 

straw 

Batch BMP 

 

8 4-12 29-36   
 

  423-535 58-63  

Chinellato 

et al., 2013 

Food 

waste rice 

straw 

Two-stage CSTR 

 

3 15-25   0-117 

 

12 3-6 311-484 61.2-65.6  

De La 

Rubia et 

al., 2009 

Sunflower 

cake 
Two-stage CSTR 

 

8-15 4-9 56-84 20.5-30.1  
 

     

Luo et al., 

2011 

Organic 

wastes 
Two-stage CSTR 

 
1-3 12-18   40-48 

 
12-14 3-4.5 320-344  4.5 

Massanet-

Nicolau et 

al., 2013 

Wheat 

pellets 
Two-stage CSTR 

 

0.75 66.6   7 

 

20 2.5 359 55.7-58.4 37 

Massanet-

Nicolau et 

al., 2015 

Grass Two-stage CSTR 

 

0.75 66.6   6.7 

 

19.3 2.6 349  12.7 

Orozco et 

al., 2013 
Grass Batch BMP 

 
2-10 1-6.5 9.5-35.9 15.8-30.5  

 
20 1-6.5 270-368  30 

This 

experiment 

Food 

waste 
Two-stage CSTR 

 
4 6-15 64.1-88.5 34.9-47.1 1.7-11.8 

 
12 2-5 371-419 66.7-74.3 23 

a on a COD basis (g COD L-1 d-1); b on a COD basis (L CH4 kg COD-1); c solid retention time; d recirculation of leachate; e anaerobic sequencing batch reactors; f derived from values provided.
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3.4 Conclusion 

Variations in loading rate impact the solubilisation of substrate in the first stage of a 

two-stage system; the highest solubilisation was achieved at an OLR of 

15 g VS L-1 d-1. Low hydrogen yields resulted in minimal energy in the hydrolysis 

gas; over 99% of energy in biogas originated from the second stage. Upstream 

hydrolysis facilitated much shorter retention times and higher loading rates while 

increasing methane concentration and yield. The SMY (75.3-85.0% of BMP) was 

independent of organic loading. The methane yield was more dependent on reactor 

configuration and retention time rather than organic loading rate.  
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3.5 Supplementary data 

 

Dilution of substrate input: 

The key focus of chapter 3 is to investigate in detail the acidification process at 

constant HRT and increasing OLR. Diluting the substrate with corresponding 

amounts of water and adjusting the pH with sodium hydroxide in the upstream 

hydrolysis reactor allowed active control of the reactor conditions while the retention 

time and working volume remained constant with a change in loading. The setup of 

the study focused on in depth analysis of sCOD composition and the quantification 

of reactor performance at reduced HRT. The dilution with water facilitated a 

comparison of single and two-stage digestion while actively reducing retention time. 

Without the addition of water, a reduction in retention time would not be feasible and 

undermine the objectives of the study. However, this setup is subjected to certain 

limitations. It has to be noted that this setup reflects an academic approach and is not 

intended to compare to upscaled reactor configurations or replicate industrial feed 

stock. The introduced rates of water and sodium hydroxide exceed any feasible 

addition to full-scale systems. They would excessively contribute to operational costs 

and dischargeable digestate quantities. Furthermore, most food wastes exhibit a high 

level of protein, contributing to high levels of NH4 in the digestate. The addition of 

water reduces the NH4 concentration within the system to a level not considered 

inhibitory to the subsequent methanation stage (Banks et al., 2012).  

Two-stage digestion of food waste as an alternative to single-stage: 

Food waste with high degradability is amenable to low retention times and high 

organic loading rates (Banks & Heaven, 2013; Browne & Murphy, 2014b). Both, 

single and two-stage systems are capable of fully exploiting the potential SMY 

(Browne et al., 2014; Browne & Murphy, 2014b). In commercial scale, economic 

considerations and cost reduction ultimately define the design and choice of any 

anaerobic digestion system. Thus, single-stage digestion systems have demonstrated 

to be the prevailing technology providing a stable and reliable process (Banks & 

Heaven, 2013).  

However, the employed reactor configuration is dependent on a variety of process 

and design criteria. Any single-stage food waste processing plant operating with an 
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upstream food waste storage vessel, essentially reflects a two-stage system. The first 

stage reactor may be seen as both a pre-treatment and storage system for feedstock 

such as food waste. This allows just in time storage of highly degradable substrate in 

the first reactor, without any associated methane production or aerobic fouling. 

Therefore, the methane production is decoupled from the actual substrate delivery 

and feeding. The downstream biogas production can be controlled by a variable feed 

rate of pre-acidified substrate into the second reactor. This allows just in time 

production of biogas and the realisation of new revenue opportunities such as 

demand driven electricity production, without necessitating additional gas storage to 

the system. As an alternative, the partial segregation of carbon dioxide in the 

upstream hydrolysis reactor generates a biogas rich in methane in the second reactor 

facilitating gas grid injection.  

The outlined advantages potentially can justify a more complex two-stage system as 

compared to single-stage. However, for low complex substrates such as food waste 

the SMY of a single-stage may align with a two-stage system after longer retention. 

In conclusion, a thorough case-to-case techno-economic assessment is needed to 

establish and validate the proven benefits of a two-stage system. A general 

recommendation of two-stage systems exceeding the overall performance of a 

single-stage system for commercial application can not be derived from this study.  

 

Evaluation, accuracy and interpretation of laboratory data: 

Laboratory experiments beyond small scale batch trials are associated with 

substantial expenditure of time and financial efforts. Rather than using a series of 

statistically amenable low volume reactors (135 to 400 ml), it was decided to utilize 

upscaled 1.35 to 4 L reactors. The elevated reactor volumes reduce interfering 

influences on the quality of the results, such as particle size to reactor ratio effects, 

sampling volumes, etc. Thus, a data basis to ensure valid statistical assessment within 

the continuous experiments in chapter 3 was not given. Instead, the lab scale 

experiments were conducted in an ongoing sequence, subsequently moving from 

lower to higher loading. The results of the acclimatisation period after each increase 

in loading rate were not taken into consideration (this period is equated to the first 

HRT after change in loading rate). The subsequent two retention times represent the 

data basis for the experimental evaluation. Results were based on averages of the 
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subsequent two periods of hydraulic retention time at that loading rate and 

replication on the fact that each day is a replication of the day before. However, a 

statistically significant difference between single- and two-stage digestion was not 

established. The results are based on numerical difference.  

 

Hydrogen production in two-stage digestion: 

A calculation estimating the theoretical maximum hydrogen production based on the 

obtained volatile fatty acid, lactate and ethanol spectrum in all hydrolysis reactors is 

given in table 3.6, 3.7 and 3.8. Theoretical maximum hydrogen production rates per 

input of food waste were calculated in the range 58 to 124 L H2 kg VS-1. The 

theoretic calculation identifies the maximum possible stochiometric yield, not 

necessarily reached by the microbial degradation pathway. The obtained 1.7 to 11.8 

L H2 kg VS-1 obtained in this study correspond to 2.6 to 15.4 % of the theoretical 

maximum hydrogen production. It has to be noted that a review study of hydrogen 

production from agricultural wastes including for food waste by Guo et al. (2010) 

revealed a wide range of possible yields between 3-196 L H2 kg VS-1. The actual and 

calculated hydrogen production both remain within this identified range. The 

established range could be explained by individual process parameters and pathways 

of fermentation. Any deviation from the predicted maximum hydrogen production 

range could also be influenced to some extent by potential hydrogen leakage from 

the reactor system.  

If the upstream hydrolysis gas is segregated, the associated loss of hydrogen 

adversely impacts the overall energy yield. Considering the calculated maximum 

hydrogen yields in terms of lower heating value (average of 0.93 MJ kg VS-1), 

between 4.2 and 8.9% of the total energy produced would originate from the first 

stage. It is understood that with an increase in hydrogen production the single-stage 

system improves its competitiveness. However, the average hydrogen energy yield of 

0.93 MJ kg VS-1 may only reduce but not compensate the gap in total average energy 

yield between single (11.6 MJ kg VS-1) and two-stage (14.09 MJ kg VS-1) at the 

given 16 days retention time. As an alternative the produced hydrolysis gas may be 

injected into the downstream second reactor or utilised for power to gas applications. 
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Table 3.6. Theoretic stochiometric hydrogen production from food waste 

Acetate:      C18.2 H30 O10.6 + 8 H2O → 5 H2 + 9.1 C2H4O2 

Propionate:      C18.2 H30 O10.6 + 3 H2O → 1 CO2 + 1 H2 + 5.7 C3H6O2 

(Iso) Butyrate:     C18.2 H30 O10.6 + 1.4 H2O → 2 CO2 + 4.1 C4H8O2 

(Iso) Valerate:     C18.2 H30 O10.6 + 1 H2O → 2.6 CO2 + 3.15 C5H10O2 

Lactate:      C18.2 H30 O10.6 + 7.6 H2O → 4.5 H2 + 6.1 C3H6O3 

Ethanol:      C18.2 H30 O10.6 + 7.5 H2O → 6 CO2 + 4.2 H2 + 6.1 C2H6O 

 

Table 3.7. Theoretical calculation of hydrogen production in the hydrolysis reactors (example given for acetate in H1). 

C18.2 H30 O10.6 + 8 H2O → 5 H2 + 9.1 C2H4O2 (it is assumed that volatile solids compounds only consist of C, H, O). 

0.55 mol H2 / mol C2H4O2, with 22.4 L mol-1 equates to 12.31 L H2 / mol C2H4O2. 

With 60 g mol-1 C2H4O2 this equates to 0.21 L H2 / g C2H4O2. 

0.3375 L digestate exit the hydrolysis reactor H1 per day with an acetate level of 2.19 g L-1.  

This equates to an acetate related hydrogen production of 18.7 L H2 / kg VS of food waste in H1. 

Similar calculation pathway for propionate, (iso) butyrate, (iso) valerate, lactate and ethanol and remaining hydrolysis reactors. 

With 6 kg VS L-1 d-1 entering the 1.35 L hydrolysis reactor, the theoretical maximum hydrogen production originating from volatile 

compounds (VFA, lactate and ethanol) in digestate of H1 results in 58 L H2 kg VS-1 of food waste,  
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Table 3.8. Maximum theoretic hydrogen production with analysed compounds of VFA, lactate and ethanol quantities at increasing OLR.  

Hydrolysis reactor   H1 H2 H1 H2 H1a H1 H2 H1 H2 

OLR  6 6 7.5 7.5 9 12 12 15 15 

Experimental H2 yield L H2 kg VS-1 2.4 ±1.3 1.7 ±0.7 7.8 ±2.5 5.9 ±2.5 11.8 ±2.1 10.1 ±2.2 7.2 ±1.1 8.9 ±2.1 8.2 ±0.9 

Max. theor. H2 yield L H2 kg VS-1 58 65 70 70 76 88 93 124 123 

Max. theor. H2 energy yield MJ kg VS-1 0.63 0.71 0.76 0.76 0.83 0.95 1.01 1.35 1.34 
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Abstract 

This study investigated trace element deficiency and supplementation in mono-

digestion of food waste. A single-stage system was contrasted to a two-stage system 

(hydrolysis followed by methanogenisis). Initial hydrolysis is beneficial as it releases 

hydrogen sulphide, while the prevailing pH prevents an associated H2S induced 

precipitation of trace elements. Stable digestion took place without TE 

supplementation until an organic loading rate of 2.0 g VS L-1 d-1; this was followed 

by severe instability at an OLR of 2.5 g VS L-1 d-1 in both systems. A major 

accumulation of volatile fatty acids inhibited methanogenic activity. A gradual 

deterioration of pH, VFA/TIC and specific methane yields provoked reactor failure. 

The benefit of enhanced TE availability in the two-stage system was not apparent 

due to the complete absence of essential TE in the feed stock. Supplementation of 

deficient TE Co, Fe, Mo, Ni and Se induced recovery, reflected by an immediate 

improvement of VFA/TIC and VFA concentrations in both systems. Specific 

methane yields were restored and maintained at initial levels. At a 16 day retention 

time, elevated loading rates as high as 5 g VS L-1 d-1 allowed stable digestion with 

TE supplementation.  

 

 

 

 

Keywords: biogas; two-stage digestion; food waste; trace elements; high 

performance.  
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4.1 Introduction 

Anaerobic digestion has become one of the dominant treatment technologies for all 

kinds of wet organic wastes. In particular, source segregated food waste is a very 

suitable substrate for AD due to its high biodegradability and volatile solids (VS) 

content (Browne et al., 2014). A sufficient level of all macro- and micro-nutrients is 

a vital prerequisite for key enzymes and microbes associated with stable 

methanogenesis (Demirel & Scherer, 2011; Drosg, 2013; Kida et al., 2001). All 

essential macro-nutrients, such as calcium (Ca), magnesium (Mg), nitrogen (N), 

phosphorus (P), potassium (K), sodium (Na) and sulphur (S), are available in food 

waste. However, mono digestion of food waste is challenging due to a lack of a 

sufficient level of micro-nutrients (or trace elements) such as cobalt (Co), iron (Fe), 

nickel (Ni), molybdenum (Mo) and selenium (Se) (Banks et al., 2012; Moestedt et 

al., 2016; Nges et al., 2012). Recent studies have reported a deficiency in trace 

elements in single-stage digestion of crop and waste based substrates (Banks et al., 

2012; Karlsson et al., 2012; Wall et al., 2014; Zhang & Jahng, 2012). If the substrate 

is deficient in nutrients, the process performance diminishes or even fails (Drosg, 

2013; Gustavsson et al., 2011; Schmidt et al., 2014; Zhang & Jahng, 2012).   

In an analysis of full scale biogas plants Lemmer et al. (2010) attributed a 10-50% 

performance reduction per unit reactor volume to digester systems with insufficient 

trace elements. The accessibility of trace elements is constrained by its 

bioavailability (Karlsson et al., 2012; Ortner et al., 2015). In order to be available for 

methanogenic archaea, trace elements have to be soluble and neither be fixed in 

precipitated compounds (such as sulphates, sulphides, or carbonates) nor adsorbed. 

Ortner et al. (2014) established that 30-70% of present trace elements were not 

bioavailable to the microbial community.  

The advantages of two-stage digestion systems potentially facilitate an increased 

resilience towards a deficiency of trace elements. The spatial separation with 

different pH in the two stages provides optimum conditions for individual anaerobic 

digestion phases. The substrate is initially broken down into macro-molecules and 

liquid fermentation products in the first reactor (Voelklein et al., 2016a). Firstly, this 

is associated with superior performances in terms of methane yields and process 

stability as compared to the single-stage system (Chen et al., 2015; Luo et al., 2011; 
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Voelklein et al., 2016a). Secondly, the high degree of initial substrate acidification 

and degradation (Voelklein et al., 2016a) releases major sulphur contents as 

hydrogen sulphide into the first reactor. The pKa for the first dissociation of H2S is 

6.99 (Waechter, 2012). The low pH of approx. 5 causes the hydrogen sulphide to be 

mainly present in its very volatile state of H2S, rather than in its more soluble 

conjugate base, the bisulfide ion HS- at more neutral pH (Waechter, 2012). As 

hydrogen sulphide is known to precipitate trace metals (Gustavsson et al., 2011; 

Karlsson et al., 2012), the upstream release potentially improves the bioavailability 

of these decisive elements. In addition, the actual load of sulphur entering the 

downstream methane reactor at neutral pH is diminished and limits the associated 

precipitation of trace elements. In contrast, in a single-stage reactor at neutral pH 

(without upstream treatment), approximately 50% of hydrogen sulphide is available 

as bisulfide ion HS- (pKa 6.99) to potentially precipitate trace elements (Waechter, 

2012). 

A general recommendation on optimal nutrient concentrations remains challenging. 

The microbial community involved in the biogas process is composed of a huge 

variety of microorganisms with differing nutrient requirements. In addition, 

bioavailability and feedstock concentration of trace metals, temperature, loading and 

associated growth rate of microbes determine the demand of nutrient 

supplementation (Ortner et al., 2014; Uemura, 2010; Zhang et al., 2003). However, 

addition of deficient elements proved to be vital in stabilizing the digestion process 

and overcoming biological limitations (Demirel & Scherer, 2011; Karlsson et al., 

2012; Nges et al., 2012; Pobeheim et al., 2011; Qiang et al., 2012; Ward et al., 2008). 

Banks et al. (2012) established a minimum trace element level for Co (0.22 mg L-1) 

and Se (0.16 mg L-1) in digestion of food waste from the UK. In their study of trace 

element requirements for stable food waste digestion at elevated ammonia 

concentrations, supplementation at levels of Co (1.0 mg L-1), Fe (5.0 mg L-1), Mo 

(0.2 mg L-1), Ni (1.0 mg L-1), Se (0.2 mg L-1) and tungsten (W) (0.2 mg L-1) were 

required (Banks et al., 2012). Zhang and Jahng (2012) reported addition of Co 

(2 mg L-1), Ni (10 mg L-1), Mo (5 mg L-1) and Fe (100 mg L-1) in digestion of food 

waste in Korea. A study by Zhang et al. (2015) described stable fermentation of food 

waste at loading rates as high as 5.0 g VS L-1 d-1 while supplementing Co (1 mg L-1), 

Ni (1 mg L-1), Se (0.2 mg L-1) and Fe (5 mg L-1). Gustavsson et al. (2011) suggested 
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supplementation of Co (0.5 mg L-1), Ni (0.3 mg L-1) and Fe (0.5 g L-1) for digestion 

of wheat stillage; addition of Se and W produced no effect. Sole supplementation of 

Ni, Mo or Co proved to be insufficient (Moestedt et al., 2016; Zhang & Jahng, 2012).  

The addition of trace elements to sustain stable fermentation ranged between 

0.05-10 mg L-1 for Co, 5-500 mg L-1 for Fe, 0.0272-5 mg L-1 for Mo, 

0.035-10 mg L-1 for Ni and 0.056-0.2 mg L-1 for Se (Banks et al., 2012; Gustavsson 

et al., 2011; Lemmer et al., 2010; Moestedt et al., 2016; Nordell et al., 2016; 

Pobeheim et al., 2011; Qiang et al., 2012; Zhang & Jahng, 2012; Zhang et al., 2012; 

Zhang et al., 2015). Further trace metals such as manganese (Mn), tungsten and zinc 

(Zn) are rarely supplemented and usually not considered to be deficient for digestion. 

Overdosing of trace metals reduces enzyme and microbial activity (Lemmer et al., 

2010). 

The key role of trace element addition and its microbiological impact in anaerobic 

digestion has been of major interest in recent studies. Long-term studies have 

assessed conditions provoking reactor failure and subsequent reactor recovery after 

trace element supplementation. However, research evaluating the implications of 

trace element deficiency in two-stage systems is not to be found. This study expands 

upon previous work on increasing loading rates in mono-digestion of food waste in 

two-stage digestion (Voelklein et al., 2016a). The objective in this work is to assess 

the effect of trace elements on mono-digestion of source segregated food waste in 

single and two-stage systems. The emphasis is not to analyse optimal concentrations 

of trace elements, but to determine the impact of trace element deficiency and its 

response after supplementation.  

 

4.2 Materials and Methods 

4.2.1 Design of experiment  

The experiment investigated the impact of trace element depletion and subsequent 

supplementation in different reactor configurations; a duplicate two-stage system 

(M1 & M2) and a conventional single-stage reactor (M3). The reactors were tested 

with the same substrate (source segregated food waste) with stepwise increasing 

organic loading rates. The reactors were fed once per day. The input substrate of the 

first stage displaced a certain amount of effluent being introduced into the second 
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stage. Samples for analysis were obtained on a weekly basis from substrate, effluent 

stage one and stage two. Biological parameters such as pH, VFA, VFA/TIC and 

specific methane yield were assessed as indicators of reactor stability and 

performance. The single- and two stage experiments were performed at mesophilic 

conditions (38 °C) using 5 L CSTRs with vertically mounted stirrers. The actual 

working volume for the first stage hydrolysis reactors was 1.35 L. The working 

volume was 4 L for the subsequent methane reactors. The reactor volume of the 

single-stage system corresponded to the 4 L methane reactor volume of the two-stage 

system.  

The hydraulic retention time in the two-stage system was fixed at 4 days in the 

upstream hydrolysis reactor and 12 days in the downstream methane reactor. This 

matched the 16 day retention time of the single-stage reactor M3. The retention time 

was achieved by diluting the substrate with specified amounts of water. The 

experiment was commenced with an initial acclimatisation phase of 20 days. After 

reaching steady state conditions (after at least 3 HRTs) the organic loading rate of 

M1 and M2 was increased gradually from 2 to 5 g VS L-1 d-1. The loading rate for the 

single-stage reactor (M3) was increased from 2 to 4 g VS L-1 d-1.  

 

4.2.2 Inoculum and substrate  

The inoculum was obtained from a single-stage digester fed grass silage and food 

waste. The source segregated food waste was obtained from a local waste 

management company collecting food waste from major catering premises. 

Approximately 80 kg of food waste was first manually screened and non-

biodegradable contaminants like bones and plastics were removed. The residual food 

waste was subsequently shredded in a mechanical meat mincer to a pasty consistence 

with particle size between 0.5 to 5mm. It was stored at a temperature of -20 °C until 

fed to the anaerobic reactors. A total solids content of 24.63 ± 0.72% with a share of 

94.29 ± 0.64% present as volatile was determined. The pH yielded in 5.1 ± 0.05 with 

a C:N ratio of 14.86. The physical and chemical characteristics of the substrate were 

analysed and are further described in Voelklein et al. (2016a). 
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4.2.3 Analytical methods 

VFA/TIC was measured using the Nordmann-method (Nordmann, 1977). This 

parameter indicates the ratio of volatile fatty acids to buffering capacity. The 

concentrations of individual volatile fatty acids were analysed with gas 

chromatography (Hewlett Packard HP6890) using a NukolTM fused silica capillary 

column (30 m × 0.25 mm × 0.25 μm) and a flame ionization detector. Hydrogen was 

used as a carrier gas. All metal elements except selenium were analysed according to 

DIN EN ISO 11885 with inductively coupled plasma optical emission spectrometry 

(ICP-OES); selenium was determined according to DIN EN ISO 17294-2 (E29) with 

inductively coupled plasma mass spectrometry (ICP-MS). Biogas composition was 

analysed for CH4, CO2, H2, O2 and N2 using a Hewlett Packard HP6890 gas 

chromatograph equipped with a Hayesep R packed GC column (3 m x 2 mm, mesh 

range of 80-100) and a thermal conductivity detector. Argon was used as carrier gas. 

Certified gas standards were employed for the standardization of hydrogen, methane 

and carbon dioxide. The utilised analytical methods are further described in 

Voelklein et al. (2016a). 

 

4.2.4 Recognising reactor failure and corrective measures  

The reason for reactor failure can be found mainly in organic overload, inadequate 

mixing, enhanced dry solids content of digestate in the reactor, temperature changes, 

ammonia inhibition, inhibitory substances in the feed stock or undersupply of trace 

elements (Drosg, 2013). Close process monitoring allows identification of changes in 

parameters such as pH, VFA/TIC, VFA, hydrogen concentration, biogas quality and 

quantity. The reactor specific interpretation and comparison of those parameters 

allows establishment of a characteristic baseline and immediate recognition when 

deviating from the norm. Strategies to counteract depend on the initial circumstances 

causing reactor failure. Pathways to recovery include for a reduction/cessation of 

feedstock, elevation of pH, dilution with water or digestate, supplementation of 

deficient nutrients and are always accompanied with close process monitoring. 
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4.3 Results 

4.3.1 Nutrient supplementation 

The food waste contained trace element metals Cu, Fe, Ni, Mn and Zn in the range of 

0.42-31.5 mg L-1 (Table 4.1). Some of the key trace elements for anaerobic digestion 

(such as Co, Mo, Ni and Se) were undersupplied and partly below the detection limit. 

A similar trace element spectrum in food waste was also found in other studies 

(Banks et al., 2012; Qiang et al., 2012; Zhang & Jahng, 2012). The low 

concentrations in the substrate were further reflected by the decreased values found 

in the effluent of the reactors once they became critically unstable (Table 4.1).  

 

Table 4.1. Trace element levels in food waste, in digestate at reactor failure, reported 

range of nutrients added in literature and nutrients added to feed stock. 

Element Unit 
Food 

waste 
M1b M2b M3b 

Nutrients 

added in 

literature 

Nutrients 

added to 

feed stock 

Iron (Fe) mg L-1 ww 31.5 21.6 25.6 19.7 5-500 160 

Manganese (Mn) mg L-1 ww 6.9 0.87 0.86 1.6 - - 

Zinc (Zn) mg L-1 ww 7.3 0.83 0.84 1.6 - - 

Copper (Cu) mg L-1 ww 1.3 0.78 1.0 1.2 - - 

Nickel (Ni) mg L-1 ww 0.42 0.039 0.32 0.75 0.035-10 1 

Molybdenum (Mo) mg L-1 ww < LDa 0.028 0.043 0.092 0.0272-5 0.2 

Cobalt (Co) mg L-1 ww < LDa 0.019 < LDa 0.019 0.05-10 1 

Selenium (Se) mg L-1 ww < LDa < LDa < LDa < LDa 0.056-0.2 0.2 

Cadmium (Cd) mg L-1 ww < LDa < LDa < LDa < LDa - - 

a <LD, lower than detection limit of 0.5 mg kg-1 dry solids; b at OLR 2.5 g VS L-1 d-1 after reactor 

failure; mg L-1 corresponds to mg kg-1 (density neglected for comparison reasons); ww: wet weight. 

 

The experiment commenced at a low OLR of 2 g VS L-1 d-1 without any nutrient 

addition. Once the experiment became critically unstable, trace element 

supplementation commenced. The trace elements added to the feedstock of the 

methane reactors were designed to contain the deficient elements Co, Fe, Mo, Ni and 

Se according to Table 4.1. The level of trace elements in the feedstock and trace 

element solution consequently determines the concentration of trace elements in the 

digestate, with a minor increase due to conversion of solid matter into gas. The 
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selected concentrations for supplementation in this experiment followed levels most 

frequently applied and recommended in literature (Banks et al., 2012; Gustavsson et 

al., 2011; Zhang & Jahng, 2012; Zhang et al., 2015). Thus 1 mg L-1 Co, 160 mg L-1 

Fe, 0.2 mg L-1 Mo, 1 mg L-1 Ni and 0.2 mg L-1 Se were added to the feedstock (Table 

4.1). In the present study Co was added in the form of CoCl2·6H2O, Fe as 

FeCL3·6H2O, Mo as H24Mo7N6O24·4H2O, Ni as Cl2Ni·6H2O and Se as Na2SeO3. 

Trace elements were introduced in the single-stage reactor and the methane reactor 

of the two-stage system. Adequate amounts of Fe were added to precipitate emerging 

hydrogen sulphide to iron sulphur compounds. The bioavailability of supplemented 

trace elements in dissolved form was sufficient for the methanogenic archaea 

(Gustavsson et al., 2013; Ortner et al., 2015). 

 

4.3.2 Single-stage reactor performance 

4.3.2.1 Process performance until reactor failure 

Figure 4.1 shows the performance of the single-stage reactor M3 during the 360 day 

operation period. After an initial commissioning period of two hydraulic retention 

times (equivalent to 32 days), the reactor was set at an OLR of 2 g VS L-1 d-1 and the 

SMY stabilised at 324.5 ±25.5 L CH4 kg VS-1. The pH and VFA/TIC values showed 

a minor deterioration towards the end of OLR 2 g VS L-1 d-1. This phenomenon was 

explained with a decrease in measured TIC values, provoking reduced buffer 

capacity, raising the ratio of VFA/TIC and lowering the pH values. However, low 

VFA/TIC values of on average 0.21 indicated stable conditions during the overall 

steady state period at OLR 2 g VS L-1 d-1 (Table 4.2), as VFA/TIC ratios below 0.4 

are associated with stable reactor performance (Drosg, 2013). Low VFA levels of 

0.3 g L-1 (Table 4.2), and constant SMY, further strengthened the conclusion of 

stable reactor conditions. A further increase in loading rate to an OLR of 

2.5 g VS L-1 d-1 was immediately accompanied by a subtle increase of VFA/TIC, 

enhanced VFA and declining pH. However, a decrease of the key reactor 

performance SMY was only gradually observed. After a continuous drop in gas 

production over the period of 3 HRTs, a significant deterioration of process 

parameters (pH, VFA/TIC, VFA) caused a distinct drop in SMY (Figure 4.1). After 

3.5 HRTs at an OLR of 2.5 g VS L-1 d-1 the methane content decreased to 
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30.5 vol.-% and the pH dropped by 1 unit to 5.4 in only 5 days, emphasising the 

dynamic development in the final stage of failure. The acid consuming acetoclastic 

methanogens could not keep pace with the rising levels of total VFA (4.32 g L-1) and 

were further inhibited by this accumulation. At the peak of reactor failure (day 133) 

SMY fell to levels as low as 82.7 L CH4 kg VS-1 and a VFA/TIC value of 1.57 

clearly emphasised the irreversible state, exceeding stable VFA/TIC levels of below 

0.4 (Drosg, 2013). This development was attributed to major trace element depletion 

as confirmed by laboratory analysis in Table 4.1. 

 

 

Fig. 4.1 Single-stage reactor performance before and after trace element 

supplementation (dotted line for SMY M3 on day 133-154 represents feeding stop 

for 14 days to facilitate recovery after reactor failure; calculation of SMY not 

applicable; stabilisation of pH with NaOH and commencement of trace element 

supplementation on day 140; experimental difficulties on day 208-240 with gas 

measuring equipment). 

 

After severe reactor failure on day 133, it was decided to stop feeding (Figure 4.1). 

In order to facilitate microbiological recovery, on day 140 the pH was adjusted to 

neutral levels with sodium hydroxide and trace element supplementation was 

initiated (Table 4.1). After VFA/TIC levels dropped and a distinct improvement in 

gas quality and production were observed (day 147), it was decided to recommence 

feeding. The OLR of 2.5 g VS L-1 d-1 was further maintained for 4 HRTs. Neither an 
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increase in VFA/TIC, nor a significant reduction in pH was determined. The SMY 

reached a plateau of 319.3 ± 9.1 L CH4 kg VS-1 and regained the levels achieved 

before reactor failure. The experiment continued with trace element addition for 

another 160 days with elevating OLRs. The SMY remained at 326.6 ± 26.2 and 

316.4 ± 17.9 L CH4 kg VS-1 at an OLR of 3 and 4 g VS L-1 d-1 respectively. The 

reactor performed at healthy conditions with only a minor rise in VFA and VFA/TIC. 

However, pH never reached the initial values of 7 again which was attributed to the 

gradually enhanced OLR. Table 4.2 summarises the performance characteristics of 

each steady state.  

 

Table 4.2. Performance characteristics of single-stage reactor M3 at each steady 

state. 

   M3 M3a M3 M3 M3 

Trace element 

addition 

 
no no yes yes yes 

OLR g VS L-1 d-1 2 2.5 2.5 3 4 

HRT days 16 16 16 16 16 

pH  7 ±0.1 5.4 6.6 ±0.1 6.5 ±0.3 6.6 ±0.3 

VFA/TIC  0.21 ±0.02 1.57 0.38 ±0.04 0.45 ±0.11 0.49 ±0.03 

Acetate g L-1 0.16 ±0.07 1.25 0.18 ±0.02 0.31 ±0.11 0.42 ±0.04 

Propionate g L-1 0.08 ±0.04 1.88 0.06 ±0.01 0.15 ±0.09 0.26 ±0.01 

Iso-Butyrate g L-1 0.03 ±0.03 0.35 0.03 ±0.01 0.03 ±0.01 0.02 ±0.01 

Butyrate g L-1 0.01 ±0.01 0.14 0.07 ±0.01 0.08 ±0.02 0.04 ±0.01 

Iso-Valerate g L-1 0.02 ±0.04 0.33 0.02 ±0.01 0.03 ±0.01 0.02 ±0.01 

Valerate g L-1 0.01 ±0.01 0.23 0.03 ±0.01 0.03 ±0.01 0.01 ±0.01 

Iso-Caproate g L-1 0.01 ±0.01 0.04 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 

Caproate g L-1 0.01 ±0.01 0.09 0.07 ±0.01 0.03 ±0.02 0.02 ±0.01 

Total VFA g L-1 0.3 ±0.18 4.32 0.46 ±0.01 0.64 ±0.23 0.78 ±0.05 

Methane 

concentration 
vol.-% 55.3 ±1.8 30.5 55 ±0.8 54.9 ±1 55.8 ±1 

Methane yield L CH4 kg VS-1 324.5 ±25.5 82.7 319.3 ±9.1 326.6 ±26.2 316.4 ±17.9 

a no standard deviation applied as values only represent the final state of reactor failure. 

 

4.3.3 Two-stage reactor performance 

4.3.3.1 Process performance until reactor failure 

Figure 4.2 & 4.3 show the reactor performances of methane reactors (M1 & M2) 

deployed in a two-stage system. The experiments commenced with a 3 HRT starting 
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period to acclimatise the microorganisms to food waste digestion. Thereafter, the 

OLR was brought to 2 g VS L-1 d-1 until a steady state was reached after 3 HRTs. 

The SMY for M1 and M2 settled at 392 ±12.6 and 419 ±23.2 L CH4 kg VS-1 

respectively. Low levels of VFA/TIC and pH indicated stable biological conditions. 

As the OLR was increased in M1 and M2 to 2.5 g VS L-1 d-1, the SMY dropped 

acclimatising to the higher load. This was to be expected and from day 84 onwards 

the reactors temporarily appeared to recover, indicated by lower VFA/TIC and pH 

improvements after the initial deterioration. However, the advance of the experiment 

revealed a massive VFA/TIC increase and pH drop. A SMY reduction to levels as 

low as one third (M1) and a half (M2) of SMY as compared to that at an OLR of 

2 g VS L-1 d-1 was identified. The magnitude and the dynamic change of process 

parameters exceeded previous observations significantly. As a consequence, the 

initial performance of M1 could not be re-obtained. M2 remained at unsteady levels 

(VFA/TIC, pH) for longer whilst showing a temporary gain in SMY, before 

ultimately being unable to cope with the loading.  

The higher level of Ni and Mo in the digestate of M2 as compared to M1 (Table 4.1) 

might have initially mitigated and delayed the final break down. In the final stage of 

reactor failure M1 (day 96-108) and M2 (day 132-144) pH values dropped as far as 

6.69 (M1) and 6.92 (M2) whilst VFA/TIC analysis ultimately peaked at 1.42 and 

1.34 respectively. A major accumulation of VFA in the range of 4.98 (M1) and 

3.44 g L-1 (M2), dominated by acetic and propionic acid, reinforced the theory of an 

inhibition of the acetoclastic pathway in methanogenesis. Subsequent reactor failure 

was attributed to major trace element depletion as confirmed by laboratory analysis 

in Table 4.1. 
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Fig. 4.2 Two-stage reactor performance (M1) before and after trace element 

supplementation. 

 

 

 

Fig. 4.3 Two-stage reactor performance (M2) before and after trace element 

supplementation.  
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After the reactors failed, trace element supplementation as recorded in Table 4.1 was 

started for M1 and M2 on day 108 and 144 respectively. As the reactor failure of M1 

was more severe than M2, feeding was suspended for 3 days and pH was raised with 

sodium hydroxide to levels before failure. After 6 days (0.5 HRT) pH and VFA/TIC 

in M1 indicated stable fermentation and matched the results at OLR 2 g VS L-1 d-1 

again. The SMY quickly reached 371.1 ±5.5 L CH4 kg VS-1 and corresponded with 

results before supplementation of trace elements. M2 neither received an alkaline 

solution for pH stabilisation nor a feeding stop. Therefore, the pH only gradually 

increased over time and VFA/TIC recovery to levels below 0.5 experienced a minor 

delay of 12 days. The OLR of M1 and M2 was further increased until an OLR of 

5 g VS L-1 d-1 was reached whilst maintaining an HRT over the two stages of 16 

days. Constant low VFA/TIC and VFA levels were observed with a gradual increase 

corresponding to rising OLR. The SMY ranged between 373.9 ±10.9 and 

413.9 ±22.6 L CH4 kg VS-1 corresponding with values achieved before trace element 

addition. Stable fermentation conditions were restored and maintained after trace 

element supplementation, confirming the failure was induced by a deficiency of 

essential trace elements. Table 4.3 summarises the performance characteristics of 

each steady state. 
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Table 4.3. Performance characteristics of second stage of two-stage reactors, M2 & M3 at each steady state. 

   M1 M2 M1a M2a M1 M2 M1 M1 M2 M1 M2 

Trace element 

addition 

 no no no no yes yes yes yes yes yes yes 

OLR g VS L-1 d-1 2.0 2.0 2.5 2.5 2.5 2.5 3.0 4.0 4.0 5.0 5.0 

HRT days 12 12 12 12 12 12 12 12 12 12 12 

pH  7.5 ±0.1 7.5 ±0.1 6.7 6.9 7.5 ±0.1 7.5 ±0.1 7.6 ±0.1 7.7 ±0.1 7.7 ±0.1 7.9 ±0.1 7.9 ±0.1 

VFA/TIC  0.17 ±0.03 0.16 ±0.01 1.42 1.34 0.15 ±0.01 0.22 ±0.04 0.17 ±0.04 0.13 ±0.03 0.17 ±0.03 0.15 ±0.06 0.34 ±0.02 

Acetate g L-1 0.45 ±0.1 0.11 ±0.09 5.70 2.86 0.12 ±0.03 0.08 ±0.02 0.09 ±0.01 0.15 ±0.09 0.38 ±0.33 0.33 ±0.1 1.33 ±0.2 

Propionate g L-1 0.09 ±0.01 0.01 ±0.02 0.78 0.36 0.04 ±0.01 0.01 ±0.01 0.04 ±0.01 0.01 ±0.01 0.04 ±0.01 0.05 ±0.01 0.05 ±0.02 

Iso-Butyrate g L-1 0.04 ±0.01 0.01 ±0.01 0.21 0.13 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 

Butyrate g L-1 0.02 ±0.01 0.01 ±0.01 0.56 0.09 0.04 ±0.01 0.03 ±0.01 0.03 ±0.01 0.03 ±0.01 0.04 ±0.01 0.4 ±0.09 0.09 ±0.07 

Iso-Valerate g L-1 0.01 ±0.01 0.01 ±0.01 0.24 0.13 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.02 

Valerate g L-1 0.01 ±0.01 0.01 ±0.01 0.13 0.04 0.02 ±0.02 0.01 ±0.01 0.02 ±0.02 0.01 ±0.01 0.03 ±0.01 0.03 ±0.01 0.01 ±0.02 

Iso-Caproate g L-1 0.01 ±0.01 0.01 ±0.01 0.02 0.03 0.01 ±0.01 0.01 ±0.01 0.02 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 

Caproate g L-1 0.01 ±0.01 0.02 ±0.01 0.32 0.06 0.06 ±0.05 0.05 ±0.01 0.06 ±0.03 0.06 ±0.01 0.07 ±0.01 0.05 ±0.02 0.02 ±0.03 

Total VFA g L-1 0.6 ±0.1 0.16 ±0.14 7.9 3.7 0.3 ±0.17 0.16 ±0.03 0.29 ±0.11 0.25 ±0.1 0.55 ±0.36 0.87 ±0.23 1.52 ±0.29 

Methane 

concentration 
vol.-% 68.6 ±2.5 69.5 ±1.9 55.4 61.2 74.3 ±1.5 68.5 ±1.1 72.8 ±0.3 69.2 ±1.1 66.7 ±1.5 70.2 ±0.8 67.6 ±2.9 

Methane yield L CH4 kg VS-1 392 ±12.6 419 ±23.2 112.6 172.4 371.1 ±5.5 391.2 ±16.7 391.4 ±7.2 373.9 ±10.9 413.9 ±22.6 381.7 ±15.5 389.2 ±31.8 

a no standard deviation applied as values only represent the final state of reactor failure. 
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4.3.4 Impact and comparison of trace element supplementation on single and 

two-stage digestion 

All reactors were subjected to the same overall conditions in terms of loading rate, 

retention time and temperature. Figure 4.4 illustrates and compares the steady state 

key performance parameters VFA, VFA/TIC and SMY of the second stage of the 

two-stage systems (M1 & M2) with the one-stage reactor (M3). Without any addition 

of trace elements an elevated SMY of 392 ±12.6 and 419 ±23.2 L CH4 kg VS-1 was 

obtained at an initial OLR of 2 g VS L-1 d-1 in the two-stage reactors M1 & M2 

respectively, as opposed to 324 ±25.5 L CH4 kg VS-1 for M3. The superior gas yields 

in the two-stage digestion is a result of the upstream hydrolysis and is further 

described in Voelklein et al. (2016a). 

After increasing the OLR to 2.5 g VS L-1 d-1 the VFA/TIC level in all reactors (M1, 

M2 & M3) severely deteriorated by up to one order of magnitude to levels of 

1.34-1.57. The reactors failed and significantly exceeded levels of fermentation 

considered stable (Drosg, 2013). Similar observations of unstable reactor behaviour 

at low OLR have been reported by Climenhaga and Banks (2008), Gustavsson et al. 

(2011), Nordell et al. (2016) and Zhang et al. (2015). The VFA spectrum of M1 and 

M2 was dominated by acetic (3.59 g L-1 and 2.67 g L-1 respectively) and propionic 

acid (0.52 g L-1 and 0.31 g L-1 respectively) with minor shares of longer chained fatty 

acids (C4-C6). In contrast the share of 1.88 g L-1 of propionic acid exceeded the share 

of 1.25 g L-1 of acetic acid in the single-stage reactor M3. The accumulation of VFA 

is an associated consequence of trace element deficiency (Banks et al., 2012; Nordell 

et al., 2016; Pobeheim et al., 2011). 

The severe drop in SMY caused by reactor failure ultimately affected all reactors to 

the same extend regardless of the reactor configuration. The initial acidification and 

break down of substrate in the upstream reactor of the two-stage system resulted in a 

prevailing pH of approx. 5 (Voelklein et al., 2016a). This allowed part of the 

hydrogen sulphide to be released and present as H2S (gas), not resulting in 

precipitation and potential deficiency of trace elements. A more robust and beneficial 

behaviour of the two-stage process in respect of its upstream hydrolytic pre-treatment 

was not observed, due to the complete lack of some trace elements in the feedstock 

(Table 4.1). Therefore, the two-stage system did not show any better resilience to 
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nutrient deficiency in general, neither towards the potential advantage of reduced 

precipitation nor to enhanced availability of trace elements.  

However, the hypothesis of increased bioavailability in a two-stage system remains, 

as an absence of trace element Co, Mb and Se can not be compensated by increased 

bioavailability. The trace element supplementation after failure stimulated 

methanogenic activity in all reactors, triggering a reduction in VFA and subsequently 

sustained low VFA/TIC values. This is in line with observations made in studies 

assessing the long term effects of trace element supplementation (Karlsson et al., 

2012; Nges et al., 2012; Pobeheim et al., 2011). The dynamic response in both 

reactor configurations restored and enabled SMY levels comparable to the 

experimental period before failure. Immediate beneficial effects after addition of 

deficient nutrients were also obtained by Moestedt et al. (2016), Nordell et al. (2016), 

Qiang et al. (2012) and Zhang et al. (2015). 

The gap in SMY between the one and two-stage remained after stabilizing the 

reactors with trace elements. The 16 day BMP performance of 471.94 L CH4 kg VS-1 

was never reached regardless of the elimination of nutrient deficiency. This is a 

result of fully mixed continuous stirred tank reactors causing fresh matter to leave the 

reactor prior to complete digestion. The shorter the retention time the more 

significant this effect becomes. The gas yields further confirmed the observed 

conclusion that trace element addition had negligible impact on SMY (at a fixed 

HRT of 16 days), yet is essential for a stable fermentation with low VFA levels after 

exceeding a threshold OLR of 2.0 g VS L-1 d-1. The positive effects of trace element 

addition are in line with studies conducted by Banks et al. (2012), Gustavsson et al. 

(2011), Qiang et al. (2012), Zhang and Jahng (2012) and Zhang et al. (2015).         
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Fig. 4.4 Performance comparison of single and two-stage digestion at steady state with and without trace element supplementation (gas yields at 

OLR 2.5 no TE without error bars as values only represent the final state of reactor failure).
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4.4 Conclusion 

Food waste lacked essential nutrients causing instable single and two-stage reactor 

performance after exceeding a threshold OLR of 2.0 g VS L-1 d-1. The break down 

was characterised by pH, VFA/TIC, VFA and CH4 concentrations far beyond stable 

limits and a reduction in SMY. TE addition of Co, Fe, Mo, Ni and Se restored a 

stable process and allowed increased loading rates. TE addition did not increase 

SMY beyond levels at initial stable digestion. The two-stage system incorporating 

hydrolytic pre-treatment showed improved SMY than the single-stage system but did 

not show any better resilience to nutrient deficiency. 
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4.5 Supplementary data  

 

Relation of two-stage digestion and H2S induced precipitation of trace elements: 

The acidification of substrate in the upstream reactor of the two-stage system 

allowed part of the hydrogen sulphide to be present and released as H2S (gas), not 

resulting in precipitation and potential deficiency of trace elements. However, 

hydrogen sulphide concentrations were not obtained during the experiment to 

substantiate a more beneficial behaviour of the two-stage process in respect of its 

upstream hydrolytic pre-treatment and trace element availability. The brief remarks 

in chapter 4 concerning hydrogen sulphide and trace element availably may be seen 

as an explanation and a rational to further expand on the idea of two-stage digestion, 

rather than a definitive finding of the study. A general recommendation of two-stage 

systems facilitating elevated trace metal availability can not be derived from this 

study.  

 

Addition of trace elements and associated improvement in the two-stage food 

waste: 

A sufficient level of all macro- and micro-nutrients is a vital prerequisite for key 

enzymes and microbes associated with stable VFA degradation and methanogenesis 

(Banks et al., 2012; Demirel & Scherer, 2011; Drosg, 2013; Kida et al., 2001; Yirong 

et al., 2014). The substrate in chapter 4 was lacking a sufficient level of trace 

elements such as cobalt, iron, nickel, molybdenum and selenium (Banks et al., 2012; 

Karlsson et al., 2012; Moestedt et al., 2016; Nges et al., 2012; Wall et al., 2014; 

Zhang & Jahng, 2012). The associated demand for specific trace elements at 

different methanogenic pathways can impact reactor stability. For instance, selenium 

is understood to be an essential element to facilitate hydrogenotrophic 

methanogenesis (Banks et al., 2012; Deppenmeier, 2002; Thauer et al., 2008). 

Previous studies have identified syntrophic acetate oxidation and hydrogenotrophic 

methanogenesis as the principle methanogenic route at elevated ammoniacal nitrogen 

level (Jiang et al., 2018; Karakashev et al., 2005). Thus, a deficiency in selenium 

could mark a potential limitation in this study. However, elevated ammoniacal 

nitrogen levels were not present in this study due to the dilution of food waste with 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/methanogenesis


Chapter 4: Role of trace elements in single and two-stage digestion of food waste at 

high organic loading rates  

Integrated Biogas Systems 67 Markus Voelklein 

water. Thus, the possible impact of a selenium deprived substrate may not have 

hampered hydrogenotrophic methanogenesis performance. The increase in VFA at 

low TAN concentrations is more likely associated with an interference in acetoclastic 

anaerobic degradation pathways (Diekert et al., 1980; Fermoso et al., 2009; 

Myszograj et al., 2018; Zhang et al., 2003). For example, nickel and cobalt are 

essential co-factors of enzymes in acetoclastic methane formation (Diekert et al., 

1980; Fermoso et al., 2009; Myszograj et al., 2018; Zhang et al., 2003). Methyl-

coenzyme M (Co-factor F430) and the acetate converting enzyme carbon monoxide 

dehydrogenase both contain nickel (Diekert et al., 1980; Fermoso et al., 2009; 

Myszograj et al., 2018; Zhang et al., 2003). Coenzyme M methyl transferase contains 

cobalt (Diekert et al., 1980; Fermoso et al., 2009; Myszograj et al., 2018; Zhang et 

al., 2003). A deficiency of these elements may have influenced subsequent 

fermentation pathways causing diminishing process performance, VFA accumulation 

and reactor failure.  

A lack of performance in full scale mono-digestion of food waste is often observed 

after 1-2 years of operation, after the initial nutrients are washed out and a new 

equilibrium is established. Besides the lack of trace metals in the food waste (table 

4.1), the short HRT and addition of water further facilitated a reduction of trace 

element concentration in the digestate. The addition of water allowed enhanced wash 

out of nutrients and reflects a long term depletion of trace elements within a shorter 

time frame. Despite some trace elements still being present in the digestate in chapter 

4, the accessibility may have been constrained by its bioavailability (Banks & 

Heaven, 2013; Karlsson et al., 2012; Ortner et al., 2015). Ortner et al. (2014) 

established that 30-70% of present trace elements were not bioavailable to the 

microbial community. In order to be available for methanogenic archaea, trace 

elements had to be soluble and neither be fixed in precipitated compounds (such as 

sulphates, sulphides, phosphates or carbonates) nor adsorbed.  
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Abstract 

This study was conducted to advance the understanding of thermophilic grass 

digestion. Late harvested grass silage was fermented at thermophilic conditions at 

increasing organic loading rates. Stable digestion took place at an OLR between 3 

and 4 g VS L-1 d-1. This enabled specific methane yields as high as 

405 L CH4 kg VS-1. An accumulation of volatile fatty acids, accompanied by a 

gradual deterioration of pH, VFA/TIC arose at an OLR between 5 and 7 g VS L-1 d-1, 

yet inhibition did not occur. SMY decreased with reduced retention time ranging 

between 336 and 358 L CH4 kg VS-1 at OLR 7 and 5 g VS L-1 d-1 respectively. The 

biomethane efficiencies remained high (92-103%) at corresponding retention times. 

Comparative results indicated a superior performance with respect to higher loading 

and SMY as compared with mesophilic conditions. 

 

 

 

 

 

 

 

 

 

 

Keywords: biogas; thermophilic digestion; grass; high organic loading rate; 
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5.1 Introduction 

Ireland’s temperate climate provides ideal conditions for grass production and 

grazing based livestock systems. Grass silage surplus to livestock requirements has 

been identified as a potential source for biomethane production in Ireland (McEniry 

et al., 2013; Murphy & Power, 2009; Wall et al., 2013). In respect of Ireland’s EU 

2020 targets, 1.1% of grassland co-digested with the majority of slurry from dairy 

cows could satisfy 10% of renewable energy supply in transport (Wall et al., 2013). 

Furthermore, grass as a renewable gaseous transport fuel gives at least a 50% better 

net energy yield per hectare than the next best indigenous European liquid biofuel 

system (Smyth et al., 2009).  

Grassland not suitable for grazing or forage, such as roadside plantings, green 

wastes, nature conservation biomass or fallow land are a valuable source of substrate 

for anaerobic digestion. Those resources are typically only harvested once or twice a 

year at an advanced growth stage and exhibit a lignocellulosic composition. The 

more complex form of this biomass includes for enhanced fractions of lignin and 

hemi-cellulose, locking accessibility to easily degradable carbohydrate fractions. 

This results in more incomplete fermentation and reduced rates of degradation at 

standard conditions. Possible technologies to break up the lignocellulosic structure 

and facilitate accessibility to easy degradable fractions include for substrate specific 

mechanical, chemical, biological, sonic or thermal treatment methods. Current 

research proposed increasing yields via chemical treatment with acids, biologically 

with enzymes, hydrolysis pre-treatment, and change in pH or temperature 

(Amnuaycheewa et al., 2016; Kumar et al., 2015; Wall et al., 2016).  

The potential for grass digestion systems has been extensively examined at 

mesophilic temperatures in Ireland (Allen et al., 2016; Nizami & Murphy, 2010; 

Nizami et al., 2012; Singh et al., 2011; Thamsiriroj et al., 2012; Wall et al., 2014a; 

Wall et al., 2014b). Yields from 349 to 451 L CH4 kg VS-1 have been obtained 

depending on harvest date and maturity. Other studies suggest methane yields of 

253-394 L CH4 kg VS-1 for mesophilic mono and co-digestion of various grass 

species (Koch et al., 2009; Mähnert et al., 2005; Seppälä et al., 2009; Xie et al., 

2011).  
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Managing sustainable grass digestion systems, through maximum possible loading 

rates, whilst generating a high specific methane yield, remains a critical design 

challenge. Xie et al. (2011) achieved stable co-digestion of grass silage with pig 

manure, however mono-digestion failed. Thamsiriroj et al. (2012) investigated 

long-term operation of mesophilic grass mono-digestion and suggested a limit of 

3 g VS L-1 d-1. Mechanical failure was manifested when this loading rate was 

exceeded. This was mainly attributed to insufficient mixing caused by enhanced 

viscosity and a dry solids (DS) level rising above 12%. Wall et al. (2014b) assessed 

the optimisation of digester performance with increasing organic loading rates for 

mesophilic mono and co-digestion of grass silage. Recirculation of liquid effluent 

was incorporated to maintain a dry solids content below 12% in the reactor. 

Optimum conditions were assessed for grass mono-digestion at an organic loading 

rate of 3.5 to 4 g VS L-1 d-1. Despite the benefits of grass digestion, it remains a 

challenging substrate for anaerobic digestion, in particular if no dilution, co-digestion 

or recirculation of liquor occurs. The high fibre and total solids content impacts 

negatively on the prevailing viscosity in the reactor. This is the main reason why 

loading rates exceeding 4 g VS L-1 d-1 in grass mono-digestion have not been 

reported in literature. 

However, an increase in temperature mitigates those limiting effects due to improved 

kinetic properties, increased enzyme activity, reduced viscosity, higher substrate 

utilisation and growth rates of bacteria (Mähnert, 2007). The correlation of loading 

and dry solids on viscosity, based on mesophilic and thermophilic digestion of 

maize, rye and sugar beet silage was outlined in detail by Mähnert (2007). An 

increase in loading provoked a significant gain in viscosity at mesophilic 

temperatures. However, at similar dry solids content in the reactor the thermophilic 

reactor displayed a lower viscosity. For 100% maize digestion the apparent viscosity 

at 7% DS accounted for 0.6 Pa s at mesophilic (35 °C) digestion and 0.2 Pa s for 

thermophilic (55 °C) digestion. The greater the loading rate and dry solids content, 

the more distinct this difference became.  

The relevant gap in the state of the art is that though the advantages of thermophilic 

systems have been widely described, there is no literature on assessing thermophilic 
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digestion of late cut grass silage at increasing organic loading rates and comparing to 

mesophilic digestion.  

The innovation in this paper is that it:  

- Assesses the biomethane potential of late cut grass silage at a range of 

retention times at thermophilic temperatures. 

- Contrasts BMP values at thermophilic and mesophilic temperatures. 

- Assesses the specific methane yield of late cut grass silage in continuous 

thermophilic digestion at increasing loading rates. 

- Assesses the ratio of the SMY to the BMP at thermophilic temperature ranges 

at the same retention times. 

  

5.2 Materials and Methods 

5.2.1 Inoculum and substrate  

The inoculum was obtained from a full scale thermophilic digester based on manure 

and crops operating at an OLR of 7 g VS L-1 d-1. The feedstock was a first-cut 

perennial ryegrass (Lolium perenne), harvested on the 24th June (a late growth stage 

for Ireland) to address the utilisation of a more mature and lignocellulosic substrate. 

The wilted grass was ensiled for 5 weeks in 1.2 m diameter cylindrical bales wrapped 

in polyethylene foil and subsequently repacked into stretch-film wrapped 25 kg 

bales. The particle size of the grass silage was further reduced with a heavy duty 

mincer to a size between 5-10 mm. It was stored at a temperature of -20 °C until fed 

to the anaerobic reactors. The characteristics of the substrate grass silage (harvest 

24th June) are indicated in table 5.1. The delayed time of harvest influenced the 

digestibility of the silage, reflected by increased neutral detergent fibre (NDF) and 

acid detergent fibre (ADF). As a result, dry solids digestibility (DSD) remained at 

lower levels than normal for Irish first cut grass silage.  
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Table 5.1. Characteristics of the substrate grass silage (harvest 24th June). 

Parameters  Grass silage 

pH  
 

4.6 

Dry solids (DS)  g kg-1 199 

Volatile solids (VS) g kg-1 181 

VS/DS g kg-1 910 

Neutral detergent fibre (NDF) g kg-1 DS 716 

Acid detergent fibre (ADF) g kg-1 DS 400 

Dry solids digestibility (DSD)  g kg-1 DS 555 

Crude protein  g kg-1 DS 148 

Water soluble carbohydrate  g kg-1 DS 71 

C:N ratio  26.5 

Cadmium mg kg-1 <0.19 

Cobalt mg kg-1 <0.29 

Copper mg kg-1 1.95 

Iron mg kg-1 106.5 

Manganese mg kg-1 11.1 

Molybdenum mg kg-1 1.16 

Nickel mg kg-1 0.70 

Selenium mg kg-1 <0.19 

Zinc mg kg-1 6.50 

 

5.2.2 Nutrient supplementation 

The grass silage contained trace element metals such as cobalt, copper, iron, nickel, 

manganese, molybdenum, nickel, selenium and zinc in the range of 0.19-11.2 mg L-1 

(Table 5.1). Some of the key trace elements for anaerobic digestion (such as Co, Mo, 

Ni and Se) were undersupplied and partly below the detection limit as suggested by 

others (Banks et al., 2012; Lemmer et al., 2010; Pobeheim et al., 2011; Thamsiriroj 

et al., 2012; Voelklein et al., 2017; Wall et al., 2014a). Thamsiriroj et al. (2012) and 

Wall et al. (2014a) found positive effects in supplementing deficient elements such 

as cobalt, iron and nickel to grass digestion trials. The selected concentrations for 

supplementation of trace elements in this experiment followed the supplementation 

levels in operation at the full scale digester (where the inoculum was sourced) and 

coincided with concentrations most frequently applied and recommended values 

from literature (Banks et al., 2012; Lemmer et al., 2010; Pobeheim et al., 2011; 

Thamsiriroj et al., 2012; Voelklein et al., 2017; Wall et al., 2014a). Levels of 
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0.5 mg L-1 Co, 500 mg L-1 Fe, 5 mg L-1 Mo, 5 mg L-1 Ni and 0.5 mg L-1 Se were 

added to the feedstock. In the present study Co was added in the form of 

CoCl2·6H2O, Fe as FeCL3·6H2O, Mo as H24Mo7N6O24·4H2O, Ni as Cl2Ni·6H2O and 

Se as Na2SeO3. Adequate amounts of iron were added to precipitate emerging 

hydrogen sulphate to iron sulphur compounds and maintain increased bioavailability 

of the trace elements in the reactor. 

 

5.2.3 Biomethane potential  

5.2.3.1 Biomethane potential test 

The BMP of the substrate was tested in an automatic methane potential test system 

(AMPTS ll, Bioprocess Control, Sweden) at thermophilic conditions (55 °C). The 

working volume of the batch BMP tests was 400 ml. All tests were run in triplicate 

for 63 days at thermophilic conditions (55 °C). The inoculum to substrate ratio was 

chosen as 2:1. Carbon dioxide was removed by passing the biogas through a sodium 

hydroxide solution. The methane gas flow was recorded with gas tippers based on 

water displacement. This system is described in detail by Wall et al. (2013). 

 

5.2.3.2 Biomethane potential test calculations  

Kinetic analyses were conducted with software package Matlab R2009a 

(TheMathWorks Inc., Natick, MA, USA). A first order differential equation 

(equation 6) and a modified Gompertz equation (equation 7) were fitted to the 

cumulative methane production curves (Allen et al., 2016; Herrmann et al., 2015). 

Equation 6 was used to calculate the decay constant value k. 

 

𝑌(𝑡) = 𝑌𝑚  ∙  (1 − 𝑒𝑥𝑝(−𝑘𝑡))        (6) 

 

where, Y(t) is the cumulative methane yield (L CH4 kg VS-1) at time t (days). Ym 

represents the maximum methane potential (L CH4 kg VS-1) of the added substrate. 

K is the decay constant (days-1). The lag-phase and half-life (T50) in days were 

determined from the modified Gompertz equation (equation 7). The lag-phase 

expresses the time (days) until methane production sets in. Half-life (days) represents 

the time to reach 50% of the maximum specific methane yield.  
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𝑀(𝑡) = 𝑃 ∙  𝑒𝑥𝑝 {−𝑒𝑥𝑝 [
𝑅𝑚𝑎𝑥 ∙ 𝑒

𝑃
 (𝛥 − 𝑡)] + 1}      (7) 

 

where, M(t) represents the cumulative methane yield (L CH4 kg VS-1) at time t 

(days), P the maximum methane production potential established in the BMP 

(L CH4 kg VS-1), Rmax the maximum methane production rate (L CH4 kg VS-1 d-1) 

and Δ the lag phase and t the time (days).  

 

5.2.4 Design and operation conditions of semi continuous trials  

The digestion of grass silage was performed at thermophilic conditions (55 °C). The 

experiment was split into 3 individual reactors and tested at different loading rates 

for 3 consecutive retention times. Figure 5.1 outlines the specific digestion systems. 

Reactor 1 (R1) operated at 3 g VS L-1 d-1 with a hydraulic retention time of 63 days. 

Reactor 2 (R2) was maintained at 4 g VS L-1 d-1 and 46 days HRT. Reactor 3 (R3) 

started with an initial OLR of 5 g VS L-1 d-1 and was further subjected to higher 

loading of 6 and 7 g VS L-1 d-1 resulting in retention times of 36, 30 and 25 days 

respectively. Due to the five-day feeding regime (Monday to Friday), the theoretical 

OLR was adjusted by the factor 5/7 and represents a loading comparable to daily 

feeding. The corresponding HRT was changed by 7/5 to consider the 2 days without 

feeding on Saturday and Sunday. This reflected the actual loading and retention time 

corresponding to a daily feeding regime. It has to be noted that some studies relate 

their performance characteristics without these correction factors, which would 

enhance the maximum loading to 10 g VS L-1 d-1 in this study. The system was not 

subjected to any dilution or recirculation of liquids, hence the retention time was 

solely determined by the actual feeding volume of grass silage. 

The thermophilic semi-continuous trials were performed at three individual lab scale 

reactors. The reactors had a total volume of 5 L with an internal diameter of 0.15 m 

and a height of 0.4 m. The working volume was 4.0 L. A temperature controller unit 

was installed to maintain a constant temperature in the reactors at thermophilic 

conditions (55 °C). An outer heating blanket supplied the heat. A wet gas meter 

recorded gas flow automatically. Collected biogas was stored in a gas bag for 

compositional analysis. Mixing was provided by a stirring mechanism, consisting of 
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a vertical shaft with in total 4 small paddles attached. A variable speed motor drove 

the shaft. The shaft of the stirrer was surrounded by a top mounted pipe, which 

sealed the top of the reactor with the rotating stirrer.  

The biomethane efficiency is defined as the SMY from continuous digestion divided 

by the SMY obtained from the BMP test of the same substrate at the same retention 

time. Thus, the retention time dependent yields of the continuous trials refer to 

similar retention time in the BMP system.  

 

 

Fig. 5.1 Design of experiment. 

5.2.5 Analytical methods 

Total solids and volatile solids (VS) were analysed according to Standard Methods 

2540 G. The pH value was determined using a pH meter (Jenway 3510). VFA/TIC 

was measured using the Nordmann-method (Nordmann, 1977). This parameter 

describes the ratio of volatile fatty acids to alkalinity (buffering capacity). A 

VFA/TIC value below 0.4 indicates stable reactor conditions (Drosg, 2013). The 
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concentrations of individual volatile fatty acids were analysed by gas 

chromatography (Hewlett Packard HP6890) using a NukolTM fused silica capillary 

column (30 m × 0.25 mm × 0.25 μm) and a flame ionization detector. Hydrogen was 

used as a carrier gas. All metal elements except selenium were determined according 

to DIN EN ISO 11885 with inductively coupled plasma optical emission 

spectrometry (ICP-OES); selenium was analysed according to DIN EN ISO 17294-2 

(E29) with inductively coupled plasma mass spectrometry (ICP-MS). 

Biogas flow from each reactor was measured by using a water displacement 

mechanism. A certain amount of gas passes through a tipping mechanism, displaces 

the volume of water in a pre-defined chamber till it floats and releases the gas. Every 

release generates a digital impulse, which represents the displaced gas volume in the 

chamber. The measured methane volume was adjusted to the volume at standard 

temperature (273 K) and pressure (1013 mbar). The produced biogas was stored in a 

gas bag and measured for its biogas composition on a weekly basis. Biogas 

composition was analysed for methane (CH4), carbon dioxide (CO2), hydrogen (H2), 

oxygen (O2) and nitrogen (N2) using a Hewlett Packard HP6890 gas chromatograph 

equipped with a Hayesep R packed GC column (3 m x 2 mm, mesh range of 80-100) 

and a thermal conductivity detector (TCD). Argon was used as carrier gas.  

 

5.3 Results and discussion 

5.3.1 Biomethane potential 

5.3.1.1 Theoretical maximum biomethane potential (BMPth) 

A proximate and ultimate analysis of the grass silage was conducted which allowed 

theoretical derivation of the stoichiometric equation and hence maximum theoretical 

methane yield and concentration. The calculation in table 5.2 yields a theoretical 

maximum biomethane potential of 445 L CH4 kg VS-1 with a methane concentration 

of 52%.  

 

Table 5.2. Theoretical calculation of biomethane potential and methane 

concentration using the Buswell Equation for grass silage. 

C30.97 H53.03 O24.15 + 5.64 H2O → 16.07 CH4 + 14.89 CO2  

811.85 g mol-1 + 101.56 g mol-1 → 258.00 g mol-1 + 655.42 g mol-1 + 17.01 g mol-1 
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1 kg VS + 0.13 kg H2O → 0.32 kg CH4 + 0.81 kg CO2  

Density CH4 0.714 kg m-³; Density CO2 1.96 kg m-³ 

51.94 vol.-% CH4; 48.06 vol.-% CO2 

Theoretical biogas potential equates to 856.9 L kg VS-1 added. 51.94 vol.-% CH4; 

48.06 vol.-% CO2. Theoretical biomethane potential equates to 445.08 L CH4 kg VS-1 

added. It is assumed that volatile solids compounds only consist of C, H, O. N is 

neglected.  

 

5.3.1.2 Biomethane potential test 

A biomethane potential test was carried out in triplicate. After 20 days the gain in 

daily gas production was less than 1% of the total gas production produced to that 

day. According to the VDI 4630 guideline ‘Fermentation of organic materials, 

characterisation of the substrate, sampling, collection of material data, fermentation 

tests’ published by Association of German Engineers (VDI) (VDI, 2006), this is a 

possible criteria to determine the experimental duration. After 30 days (standardised 

duration for BMP) a total methane yield of 374 ±1.8 L CH4 kg VS-1 and a k-value of 

0.173 was obtained. The BMP achieved 84.0% of the theoretical maximum 

biomethane potential. An extended retention time of in total 63 days increased the 

specific methane yield further by 4.6% to 392 ±4.4 L CH4 kg VS-1, corresponding to 

88.0% of the theoretical maximum biomethane potential. This matched the findings 

of Allen et al. (2016) determining a range of 316-393 L CH4 kg VS-1 for mesophilic 

late cut grass silage in a 30 day BMP trial. 

 

5.3.2 Single-stage reactor performance at increasing loading rates 

Table 5.3 illustrates the process characteristics of the continuous thermophilic 

digestion trials. Biological parameters such as pH, VFA, VFA/TIC and SMY were 

assessed as indicators of reactor stability and performance. The results shown for 

each OLR display the data at steady state conditions. Thus, it represents average 

values obtained in the last HRT of the total of 3 hydraulic retention times at each 

loading rate. The significance of differences between means was tested by analysis of 

variance (ANOVA) and multiple comparisons applying the Tukey-Kramer test 

procedure with a significance level of 0.05.  
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5.3.2.1 Organic loading rate: 3-4 g VS L-1 d-1 

The experiment commenced at a moderate loading rate of 3 g VS L-1 d-1 (R1) and 

4 g VS L-1 d-1 (R2). The initial pH at OLR 3 g VS L-1 d-1 was as high as 8.15 ±0.16; 

it was marginally lower (8.05 ±0.1) at an OLR 4 g VS L-1 d-1. An elevated pH at 

thermophilic digestion is commonly observed (Franke-Whittle et al., 2014). Total 

VFA reached a maximum of 0.92 and 1.18 g L-1 at an OLR of 3 g VS L-1 d-1 and 

4 g VS L-1 d-1 respectively, with acetic and propionic acid being the only detectable 

compounds. The VFA/TIC values did not exceed levels of 0.25, indicating a stable 

fermentation process. Sufficient retention times of 63 days (OLR 3 g VS L-1 d-1) and 

46 days (OLR 4 g VS L-1 d-1) allowed for generation of high SMYs of 

405 ±26.4 L CH4 kg VS-1 (R1) and 381 ±12.6 L CH4 kg VS-1 (R2) respectively 

(figure 5.2). The SMY obtained for OLR 3 and 4 g VS L-1 d-1 numerically differed, 

yet did not show statistically significant difference (P>0.05), see table 5.3. A 

statistically significant higher SMY of OLR 3 g VS L-1 d-1 compared to OLR 5, 6 and 

7 g VS L-1 d-1 was evident (P<0.05). While numerically exceeding the SMY of OLR 

5, 6 and 7 g VS L-1 d-1, the SMY of OLR 4 g VS L-1 d-1 only statistically significantly 

differed from the maximum OLR of 7 g VS L-1 d-1 (P<0.05). The gained yields 

resulted in a biomethane efficiency of 1.03 (HRT 63 days) and 0.98 (HRT 46 days), 

based on similar retention time of BMP assay and continuous trials. Thus 88.8% and 

85.5% of the maximum biomethane potential (as assessed using the Buswell 

equation) was reached at an OLR of 3 and 4 g VS L-1 d-1 respectively. The increased 

degradation at longer HRT is further reflected by lower TS and VS contents in the 

digestate effluent (table 5.3). The TS and VS at the longest HRT of 63 days reached 

levels as low as 10.7% and 76.5% respectively, in contrast to 12.2% TS and 81.8% 

VS at the shortest retention time of 25 days. The methane content of 52.3% (OLR 3) 

and 51.5% (OLR 4) were similar to the theoretical calculation (51.9%) derived from 

the Buswell Equation. 

The ammonia (NH3) level in a digester is mainly dependent on its ammonium (NH4) 

level, pH and prevailing temperature. Thus, in these trials the equilibrium of 

NH4/NH3 shifted towards NH3 with levels of 991 mg L-1 at an OLR of 3 g VS L-1 d-1 

and 878 mg L-1 at an OLR of 4 g VS L-1 d-1. About 1/3rd of the total NH4-N was 
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present in its more toxic NH3 form, which diffuses more easily through cell 

membranes than the ammonium ion. In contrast, at a mesophilic temperature of 38°C 

and a more neutral pH of 7.5, the equivalent NH3 share would be calculated at only 

5%. Similar results were obtained by Franke-Whittle et al. (2014) contrasting 

mesophilic and thermophilic digestion of feedstock cow manure and food wastes in 

Austria in examining the effect of temperature and different ammonia loads. The 

NH3 levels found at the OLR 3-4 g VS L-1 d-1 were within the non-inhibiting range of 

700 mg L-1 NH3 (Angelidaki & Ahring, 1994) and 1200 mg L-1 NH3 (Franke-Whittle 

et al., 2014) previously reported in literature. As the inoculum was well adapted due 

to long term full scale operation of similar substrate and NH3 levels, and no 

performance reduction was monitored, it was understood that no ammonia inhibition 

was present.  
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Table 5.3. Performance parameters of thermophilic (55 °C) grass mono-digestion at increasing loading rate. 

Retention time (days)  25 30 36 46 63 

Batch-system            

BMPa L CH4 kg VS-1 364 ±0.5 374 ±1.8 381 ±1.7 388 ±3.2 392 ±4.4 

CSTR-system            

OLR g VS L-1 d-1 7 6 5 4 3 

SMY L CH4 kg VS-1 336d ±6.6 351d,e ±6.6 358d,e ±9.7 381e,f ±12.6 405f ±26.4 

CH4 % 52.2 ± 0.25 52.9 ±0.17 51.7 ±0.28 51.5 ±0.59 52.3 ±0.23 

TS % 12.2 ±0.04 12.3 ±0.03 12.1 ±0.08 11.4 ±0.20 10.7 ±0.38 

VS/TS % TS 81.8 ±0.40 81.5 ±0.55 80.9 ±0.56 78.9 ±0.60 76.5 ±0.84 

pH  7.65 ±0.29 7.93 ±0.08 7.99 ±0.07 8.05 ±0.1 8.15 ±0.16 

VFA/TIC  0.55 ±0.1 0.58 ±0.03 0.67 ±0.04 0.23 ±0.1 0.25 ±0.02 

TAN b mg L-1 3077 ±219 3060 ±145 2913 ±229 3027 ±87 2917 ±159 

Free NH3-N c mg L-1 431 ±31 724 ±34 765 ±60 878 ±25 991 ±54 

VFA            

Acetate g L-1 3.12 ± 0.75 2.19 ± 0.24 1.76 ± 0.24 0.85 ± 0.09 0.67 ± 0.23 

Propionate g L-1 3.45 ± 0.07 4.58 ± 0.22 8.21 ± 0.22 0.32 ± 0.05 0.24 ± 0.09 

Iso-butyrate g L-1 0.25 ± 0.05 0.27 ± 0.05 0.51 ± 0.05 0  0  

Butyrate g L-1 0.11 ± 0.05 0.15 ± 0.05 0.17 ± 0.05 0  0  

Iso-valerate g L-1 0.40 ± 0.05 0.46 ± 0.05 0.75 ± 0.05 0  0  

Valerate g L-1 0.07 ± 0.05 0.10 ± 0.05 0.15 ± 0.05 0  0  

Iso-caproate g L-1 0  0  0  0  0  

Caproate g L-1 0  0  0  0  0  

Sum of VFAs g L-1 7.40 ± 0.64 7.77 ± 0.12 11.6 ± 0.20 1.18 ± 0.12 0.924 ± 0.33 

a Biomethane Potential Test with 4.27 g VS grass silage in 0.4 L effective volume; b total ammonium nitrogen; c free NH3-N of TAN 

d-f Means within line with no lowercase superscript letter in common differ significantly (α = 0.05). 
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Fig. 5.2 Steady state specific methane yield and volatile fatty acids spectrum at 

increasing loading rate.  

 

The increase of OLR in R3 had a significant impact on the process as illustrated in 

figure 5.2 and table 5.3. With enhanced substrate input a distinct rise in VFA level 

was observed. The pH fell to levels of 7.99, 7.93 and 7.65 at OLR of 5, 6 and 

7 g VS L-1 d-1 respectively. Subsequently the free ammonia (NH3) diminished to 

concentrations as low as 431 mg L-1 while TAN remained unchanged. The 

accumulation of VFA was the result of an imbalance between acid producing 

bacteria and acid consuming methanogenic archaea. At an OLR of 5 g VS L-1 d-1 a 

major accumulation of VFA (11.62 g L-1) occurred, dominated by acidic and 

propionic acid (1.76 and 8.21 g L-1 respectively), followed by minor quantities of 

longer chain fatty acids. A further increase of OLR in R3 to 6 and 7 g VS L-1 d-1 

induced lower overall VFA levels of 7.77 and 7.40 g L-1 respectively. The propionic 

acid concentration approximately halved, yet the acidic level was slightly elevated as 

compared to that at an OLR of 5 g VS L-1 d-1. This indicates a recovery and adaption 

of the acetoclastic methanogens. Ahring (1995) observed acetate and propionate 

concentrations of up to 6000 mg L-1 and 3000 mg L-1 respectively, in the absence of 
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performance reductions. However, the elevated propionic levels and occurrence of 

longer chain fatty acids indicated stress and possible inhibition on the acetoclastic 

methanogens.  

The deterioration of biological parameters in this trial had less impact on the SMY 

than previous studies had implied (Voelklein et al., 2017; Wall et al., 2014). 

Angelidaki et al. (1993) outlined the importance of individual digester characteristics 

emphasizing the necessity to consider reactor specific rather than general levels in 

assessing stability. Ahring (1995) and Franke-Whittle et al. (2014) showed that full-

scale digesters can sustain higher levels of VFA while still maintaining stable 

performance. However, an elevated VFA level at lower pH possesses potential to 

harm the microbial community (Zhou et al., 2013). This equilibrium of acids shifts to 

its more undissociated (protonated) state causing damage through increased 

permeability to the cell membrane. The elevated leakage of VFA due to the shift in 

concentration gradient into the cell supresses overall activity and eventually reduces 

survival rates. In this trial increased levels of pH restricted the VFA to its more 

dissociated (unprotonated) state. Therefore, even the higher VFA concentration was 

less harmful to the cell membrane of the methanogenic archaea, as compared to a 

reactor close to failure at low pH. 

The VFA/TIC trend matched the gain in VFA concentration and increased to 

0.67 ±0.04 at an OLR of 5 g VS L-1 d-1. At higher substrate input during OLR 6 and 

7 g VS L-1 d-1, the reduction in VFA also led to decreased VFA/TIC values of 0.58 

and 0.55 respectively. Although the VFA concentrations exceeded the general 

recommended level of 2 g L-1, the VFA/TIC only marginally overshot the stable 

fermentation threshold of 0.5 (Drosg, 2013). This was attributed to the increased pH 

and buffer capacity of the system (Franke-Whittle et al., 2014).  

The SMY corresponded to the stepwise reduction in retention time (from 36 to 30 to 

25 days) of the substrate in the system. A gradual drop in methane yield from 358 

±9.7 to 351 ±6.6 to 336 ±6.6 L CH4 kg VS-1 respectively was observed (table 5.3). 

Although a numerical reduction in SMY was identified while increasing OLR from 5 

to 6 to 7 g VS L-1 d-1, a statistically significant difference was not found (P>0.05), 

see table 5.3. A statistically significant lower SMY at OLR 7 g VS L-1 d-1 compared 

to OLR 3 and 4 g VS L-1 d-1 was determined (P<0.05). The SMY at OLR 

http://www.dict.cc/englisch-deutsch/concentration.html
http://www.dict.cc/englisch-deutsch/gradient.html
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4 g VS L-1 d-1 did not statistically significant exceed the SMY of OLR 5 and 

6 g VS L-1 d-1 (P>0.05). 

The methane content ranged between 51.7% and 52.9% corresponding to the 

theoretical expected value of 51.9% established from the Buswell Equation. The gas 

yield of the reactor with the longest HRT (63 days) was 28 L CH4 kg VS-1 higher 

compared to a retention time of only 25 days. This resulted in a 7.7% increased 

methane yield for a retention time increase of 2.5. The biomethane efficiency was 

calculated as 94% (HRT 36 days), 94% (HRT 30 days) and 92% (HRT 25 days) as 

compared to the corresponding HRT of the batch BMP assays. Between 75.4 to 

80.4% of the maximum biomethane potential was reached at an OLR between 5 and 

7 g VS L-1 d-1. The reduced degradation at shorter HRT is further reflected by higher 

TS and VS contents in the digestate effluent (table 5.3). The TS and VS at the 

shortest HRT of 25 days remained at a higher level of 12.2% TS and 81.8% VS, as 

compared to the longest HRT (63 days: 10.7% TS; 76.5% VS) in these trials.  

The systems resilience towards the high loading was mainly attributed to the 

beneficial characteristics of increased temperature (enhanced microbial activity & 

viscosity reduction of digestate), trace element addition and improved mixing 

system. Loading rates in excess of 7 g VS L-1 d-1 (retention time below 25 days) 

caused mechanical failure of the agitation system and a total solid contents of above 

13% at an OLR of 8 g VS L-1 d-1 (data not shown in table 5.3). A maximum total 

solids content of 12% was also recommended by other studies (Koch et al., 2009; 

Thamsiriroj et al., 2012; Wall et al., 2014b). The achieved OLR of 7 g VS L-1 d-1 in 

this study exceeded maximum loadings of mesophilic and thermophilic grass silage 

mono-digestion of 3-4 g VS L-1 d-1 previously described in literature (Linke & 

Mähnert, 2005; Thamsiriroj et al., 2012; Wall et al., 2014b).  

 

5.3.3 Contrasting batch and continuous digestion 

The obtained yields of the continuous stirred tank reactor (CSTR) are compared to 

the batch digestion trials in figure 5.3 and table 5.3. It became apparent that at an 

HRT of 46 days the methane yields of the batch and continuous trials matched. At 

shorter HRT the methane yield of the CSTR were 6-8% lower than corresponding 

BMP results. This is explained by the fact that no fresh matter leaves the batch 
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system undigested. In contrast, a retention time dependent share of substrate leaves 

the continuous fed reactor not entirely digested. The longer the retention time the less 

this effect impacts on the SMY. At the longest HRT of 63 days the SMY of the 

CSTR aligned (within the measurement accuracy) with the batch system as the 

statistical effect of undigested substrate leaving the reactor becomes less significant. 

In addition, the floating effects of the grass due to the lower digestate dry solids 

content, as compared to that at the higher OLR and dry solids content in R3, may 

prolong the solid retention time as compared to the hydraulic retention time 

(Thamsiriroj et al., 2012). This suggests that thermophilic grass digestion in a 

continuous system is complete after 63 days.  

However, the elevated VFA level at shorter HRT (<36 days) may impose an 

inhibition on the methanogens impacting on the possible SMY. The results suggested 

that within 30 days, 95% (BMP) and 87% (CSTR) of the final methane yield were 

obtained. The system’s optimum behaviour was identified at an OLR of 4 and HRT 

of 46 days resulting in 94% of the final methane yield. This enabled a very stable 

digestion process and sufficient gas yields, while remaining within economically 

sustainable boundaries.  

 

 

Fig. 5.3 Comparison of specific methane yield between batch (BMP) and continuous 

(CSTR) trials at increasing retention time. 

http://www.dict.cc/englisch-deutsch/measurement.html
http://www.dict.cc/englisch-deutsch/accuracy.html
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5.3.4 Performance comparison of mesophilic versus thermophilic digestion 

Biochemical and biological reactions may be distinguished by temperature. 

Thermodynamics dictate the speed of degradation where an increase in temperature 

is associated with an enhanced growth and reaction rate. This behaviour is 

theoretically described by the ARRHENIUS-equation. However, the kinetics are 

further influenced by substrate concentration as described by the MONOD-equation. 

The methane yields were in the range of typical grass digestion trials 

310-493 L CH4 kg VS-1 as shown in table 5.4 (Allen et al., 2016; Mähnert et al., 

2005; Nizami & Murphy, 2010; Nizami et al., 2012; Thamsiriroj et al., 2012; Wall et 

al., 2014a; Wall et al., 2014b). A comparison of the results of this study to other 

literature data is difficult as methane yields and kinetics mainly depend on the 

characteristics of the employed substrate. The results obtained in this study were 

therefore contrasted to mesophilic digestion of the same late cut grass silage of 

continuous (O’Shea et al., 2016) and batch (Wall et al., 2016) digestion trials. Figure 

5.4 compares a 30 day 38 °C mesophilic (Wall et al., 2016) and 55 °C thermophilic 

batch biomethane potential test (this study) of grass silage. The final SMY resulted in 

343 ±6.3 L CH4 kg VS-1 for the mesophilic trial with a k-value of 0.134 (Wall et al., 

2016). In contrast, the thermophilic BMP yielded 374 ±1.8 L CH4 kg VS-1 with a 

k-value of 0.173. This indicates that the thermophilic process reached 84% of the 

theoretical maximum biomethane potential after 30 days, whereas the mesophilic 

trial yielded 77%. The corresponding gas yields at 30 days coincide with findings of 

Linke and Mähnert (2005) correlating k-values to maximum biomethane potential 

and retention time. The lag phase of the thermophilic and mesophilic BMP was 1.1 

and 2.9 days respectively, confirming the rapid initial start and adaption of the 

thermophilic trials. The lag phase values match the data for grass digestion obtained 

by Allen et al. (2016). 

The enhanced k-values of the thermophilic process reflected the dynamic capability 

of a process at elevated temperature level. Figure 5.4 confirms the rapid initial 

production of methane. This corresponds to 6.5 days for the mesophilic and 3.5 days 

for the thermophilic BMP to reach 50% (T50) of the final 30-day gas production. 

However, the mesophilic methane yield almost aligns with the thermophilic yields 

after 10 days. The last 10 days of the trials are characterised by an additional gain in 
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methane yield of the thermophilic BMP. After 30 days retention the thermophilic 

BMP exceeded the mesophilic by 31 L CH4 kg VS-1, which represents a gain in SMY 

of 9%. The mesophilic (0.123) and thermophilic (0.198) k-values for cellulose 

control run approximately matched the corresponding k-values obtained from grass 

silage.  

The methane yields of the continuous thermophilic digestion were compared to 

continuous mesophilic trials run on an identical feedstock, which yielded a SMY of 

326 L CH4 kg VS-1 at an OLR of 2 g VS L-1 d-1 at 36 days retention. At the same 

retention time, the thermophilic digestion of this study established an SMY of 

358 L CH4 kg VS-1, yet at an OLR of 5 g VS L-1 d-1. This indicates an increased 

methane yield of 10% of the thermophilic system and confirms the findings of the 

mesophilic vs. thermophilic BMP comparison. Even though the retention time of the 

thermophilic system was further reduced to 25 days (OLR 7 g VS L-1 d-1), it still 

exceeded the methane yield of the 36 day mesophilic system by 10 L CH4 kg VS-1. 

However, at significantly longer retention times the mesophilic process may have an 

increased SMY and align with yields obtained under thermophilic conditions 

(Mähnert, 2007). 

The superior gas yields at elevated loading and reduced retention time demonstrated 

the more resilient characteristics of the thermophilic process. The viscosity 

difference was identified as a key factor for improved grass digestion. In comparison 

to mesophilic temperature at the same retention time, the viscosity at thermophilic 

levels is firstly reduced due to enhanced degradation and lower dry solids content. 

Secondly, the natural behaviour of lower viscosity at increasing temperature is of 

major importance. This correlation and enhanced performances of the thermophilic 

process was also obtained and examined by Mähnert (2007). 
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Fig. 5.4. Comparison of mesophilic and thermophilic BMP assay at 30 days.  

 

Table 5.4. Results of grass digestion reported in literature. 

Reactor operation 

mode 

  

Reference  Temperature HRT OLR SMY 

  °C d g VS L-1 d-1 L CH4 kg VS-1 

Batch-BMP Allen et al., 2016  38 30 
 

315.6 

Batch-BMP Maehnert et al., 2005  38 28 
 

310-360 

Batch-BMP Nizami & Murphy, 2010  38 22-35 
 

350-493 

Batch-BMP Wall et al., 2016  38 30 
 

343a 

Batch-BMP This experiment  55 30 
 

374a 

Batch-BMP This experiment  55 25-63 
 

364-392a 

Continuous-

CSTR 
O’Shea et al., 2016  38 36 2 326a 

Continuous-

CSTR 
Thamsiriroj et al., 2012  37 60 0.5-2.5 363-455 

Continuous-

CSTR 
Wall et al., 2014a  37 19b 4 404b 

Continuous-

CSTR 
Wall et al., 2014b  37 21-37b 2-3.5 398-414b 

Continuous-

CSTR 
This experiment  55 36 5 358a 

Continuous-

CSTR 
This experiment  55 25-63 3-7 336-405a 

a on the same substrate basis; b recirculation of liquor. 
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5.4 Conclusion 

Thermophilic grass digestion enabled higher loading and superior methane yields as 

compared to mesophilic digestion. The resilience at thermophilic temperature at high 

loading rates was attributed to the beneficial viscosity characteristics of increased 

temperature, trace element addition and improved mixing. Decreased retention time 

at enhanced loading rates reduced the gas yield, yet retention times of 25 days and 

loading rates of 7 g VS L-1 d-1 were feasible. The optimum system was identified at a 

46 day retention time at a loading rate of 4 g VS L-1 d-1 yielding 86% of the 

maximum theoretical methane yield. 
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5.5 Supplementary data  

All standard conditions mentioned in chapter 5 refer to standard temperature at 273K 

and standard pressure at 1013mbar. 

 

Evaluation and interpretation of laboratory data: 

The grass digestion trials were conducted in an ongoing sequence, subsequently 

moving from high to lower retention time. The data base does not include the results 

of the first retention time (acclimatisation period) after each increase in loading. The 

subsequent two retention times represent the data basis for the experimental 

evaluation. The experiments focused on thermophilic digestion of grass silage and 

evaluated statistically significant differences between an increase in retention time, 

loading rate and SMY. A data base of mesophilic digestion to ensure a valid 

statistical comparison and assessment within the continuous experiments in chapter 5 

was not given. Therefore, a statistically significant difference between mesophilic 

and thermophilic digestion was not established. The comparison between mesophilic 

and thermophilic are based on numerical differences on the same substrate basis and 

similar retention time. 

 

Comparison of mesophilic and thermophilic grass digestion: 

The inoculum for the mesophilic and thermophilic BMP assays were both sourced 

from previous grass digestion reactors. The fibres in the digestate were removed to 

ensure a rapid depletion in gas production. After a 10-day waiting period and full gas 

depletion the remaining digestate represented an inoculum rich in methanogens and 

dissolved nutrients. The lag phase of the thermophilic and mesophilic BMP was 1.1 

and 2.9 days respectively, confirming the rapid initial start and adaption of the 

thermophilic trials. The mesophilic BMP kinetics match the data for grass digestion 

obtained by Allen et al. (2016) with differently sourced mesophilic inoculum. To 

further strengthen the difference of mesophilic and thermophilic digestion in BMP 

assays more trails with differently sourced inoculum and determination of statistical 

differences are required, to further substantiate the observed conclusion. 
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The thermophilic temperature level was postulated to stimulate microbial activity, 

facilitate rapid degradation and reduce viscosity properties of the digestate (Mähnert, 

2007). Therefore, the resilience of the thermophilic systems towards the high loading 

was mainly attributed to the beneficial characteristics of increased temperature 

(enhanced microbial activity & viscosity reduction of digestate) and subsequent 

improved mixing system. The viscosity properties of mesophilic and thermophilic 

digestate were not obtained during the course of the experiment. A detailed 

evaluation and comparison to substantiate the impact of viscosity on the digestion 

process can therefore not be given. In comparison to mesophilic temperature at the 

same retention time, the viscosity at thermophilic levels is firstly reduced due to 

enhanced degradation and lower dry solids content. Secondly, the natural behaviour 

of lower viscosity at increasing temperature is of major importance. The remarks in 

the result and conclusion section in chapter 5 may be seen as a theoretic explanation 

for the observed high rate in loading, rather than a finding of the study. 

The outlined benefits of thermophilic as compared to mesophilic digestion only 

apply at similar retention times or loading and are associated with a higher energy 

input to maintain the elevated temperature level. If heat is an abundant source at a 

biogas plant and not used otherwise (such as the excess heat from a combined heat 

and power facility, from pasteurisation or from an exothermic biomethanation 

process), it may also be utilised to benefit from the outlined advantages in this study. 

However, it has to be stated that at prolonged retention, the difference in SMY of 

mesophilic and thermophilic may disappear. A general recommendation extrapolated 

for thermophilic systems exceeding the overall performance in a single-stage system 

can not be derived from this study. In conclusion, a case to case cost-benefit 

assessment may facilitate the choice of reactor temperature level.  

 

Specific methane yields including gas potential from VFA in the digestate: 

An elevated VFA level leaving the digester at shorter HRT (<36 days) may impact 

on possible SMYs achieved. The potential gas production originating from these 

VFAs is outlined in table 5.5, 5.6 and 5.7. In table 5.7 the VFA corrected SMY 

yields of the CSTR are compared to the SMY of the continuous and batch digestion 

trials. Retention times below 36 days revealed a VFA related SMY of 16.6 to 28.3 L 

CH4 kg VS-1. This corresponds to an increase in methane yield of 4.9 to 7.9% 
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sourced from undigested VFA in the digestate. Therefore, the numerical difference 

between the CSTR and BMP system (as outlined figure 5.3) at defined retention 

times is further reduced.  

 

If a digestion system is not followed by a secondary digester or covered storage 

vessels, the potential SMY from VFA is lost and may adversely affect GHG savings 

of the system reducing its sustainability. However, additional sequential vessels or 

covered storage vessels may compensate for the otherwise lost gas potential in a full 

scale systems.  

 

Table 5.5. Theoretic stochiometric methane production from VFA (C2 – C4) 

according to Buswell equation. 

Acetate:   C2H4O2 → 1 CH4 + 1 CO2        (374 L CH4 kg-1) 

Propionate:   C3H6O2 + 0.5 H2O → 1.75 CH4 + 1.25 CO2      (530 L CH4 kg-1) 

(Iso) Butyrate:  C4H8O2 + 1 H2O → 2.5 CH4 + 1.5 CO2         (637 L CH4 kg-1) 

(Iso) Valerate:  C5H10O2 + 1.5 H2O → 3.25 CH4 + 1.75 CO2    (715 L CH4 kg-1) 

It is assumed that volatile solids compounds only consist of C, H, O, N. 

 

 

Table 5.6. Theoretical calculation of potential methane production from VFA in the 

digestate. 

Exemplary calculation pathway for acetate at HRT 25 days: 

3.12 g L-1 (acetate concentration digestate)a x 374 L CH4 kg VS-1 (SMY from acetate 

as in table 5.5) x 0.0327 L (digestate leaving reactor per day)  / 7 g VS L-1 d-1 equates 

to a gas potential of 5.5 L CH4 kg VS-1 for acetate in the digestate exiting reactor per 

day. 

Similar calculation pathway for propionate, (iso) butyrate, (iso) valerate add up to a 

total SMY potential (summarised in table 5.7) sourced from VFA in the digestate 

leaving the reactor after an HRT of 30, 36, 46, 63 days. 

a values retrieved from table 5.3 in section 5.3.2.  
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Table 5.7. Performance parameters of thermophilic (55 °C) grass mono-digestion at 

increasing loading rate and corrected SMY including gas potential from VFA in 

digestate. 

Retention time  d 25 30 36 46 63 

Batch-system:       

      BMP L CH4 kg VS-1 364 374 381 388 392 

CSTR-system:       

      SMY L CH4 kg VS-1 336 351 358 381 405 

      SMY VFA digestate
a L CH4 kg VS-1 16.6 18.3 28.3 2.3 1.8 

      SMY VFA corrected
b  L CH4 kg VS-1 352 369 386 383 407 

Increase in gas yield            % 4.9 5.2 7.9 0.6 0.4 

a SMY potential originating from VFA in digestate; b SMY includes gas potential 

from VFA. 
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Abstract 

This study investigated in-situ and ex-situ biological methanation strategies for 

biogas upgrading potential. The addition and circulation of hydrogen with a ceramic 

gas diffuser unit revealed positive effects on the methanogenic process. A short-term 

maximum methane productivity of 2.5 L CH4 per L reactor volume per day (LVR
-1 d-

1) was obtained in-situ. Adverse effects of elevated dissolved hydrogen 

concentrations on acetogenesis became evident. Ex-situ methanation in a reactor 

subjected to gas recirculation for recurrent 24 hour periods achieved methane 

formation rates of 3.7 L CH4 LVR
-1 d-1. A biomethane with methane concentrations in 

excess of 96% successfully demonstrated the potential for gas grid injection. A 

theoretic model supplying gases continuously into a sequential ex-situ reactor system 

and steadily displacing the upgraded biogas confirmed similar methane formation 

performance and was advanced to a full-scale concept. Gas conversion efficiency of 

95% producing biomethane at 85% methane content was attained. A hybrid model, 

where an in-situ grass digester is followed by an ex-situ reactor, is proposed as a 

novel upgrading strategy.  
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6.1 Introduction 

6.1.1 Introduction and background 

Anaerobic digestion of organic wastes and energy crops has become a key 

sustainable technology to provide green gas to natural gas grids in Europe (Wall et 

al., 2017). The physiochemical removal of excess carbon dioxide in biogas elevates 

the calorific value to match requirements for gas grid injection (Angelidaki et al., 

2018). A further utilisation of this segregated carbon dioxide by biological reduction 

to methane emerged as a potential pathway in recent years (Angelidaki et al., 2018; 

Burkhardt & Busch, 2013; Lecker et al., 2017; O'Shea et al., 2017). According to the 

Sabatier reaction (equation 8) hydrogenotrophic methanogenic archaea are able to 

consume an equimolar amount of four times hydrogen (H2) to carbon dioxide (CO2) 

and generate biomethane of natural gas quality (Fukuzaki et al., 1990).  

 

4𝐻2 +  𝐶𝑂2  →  𝐶𝐻4 + 2𝐻2𝑂                                     ∆𝐺0 =  −165 𝐾𝐽 𝑚𝑜𝑙−1  (8) 

 

6.1.2 Biological methanation 

The exergonic reaction in equation 8 is catalysed by hydrogenotrophic methanogenic 

archaea and referred to as biological methanation. It can be performed either in-situ 

within a biogas digester or ex-situ in an adjacent external reactor (Angelidaki et al., 

2018; Lecker et al., 2017). In an in-situ methanation system organic substrate and 

additional hydrogen (such as from electrolysis of preferably surplus green electricity) 

is added to the digester where the biogas is produced. As per conventional anaerobic 

digestion, the substrate degradation steps (hydrolysis and acidogenesis) provide 

intermediates such as volatile fatty acids (VFA) and precursors like carbon dioxide 

for the methanation process. On the contrary, in an ex-situ system carbon dioxide 

(such as from a fermentation process), hydrogen, essential nutrients and 

hydrogenotrophic methanogens are required (Angelidaki et al., 2018; Lecker et al., 

2017). The initial stages of anaerobic digestion (hydrolysis and acidogenesis) are not 

present in an ex-situ system. Thus, reactor stability and performance only depend on 

sufficient provision of those four ingredients. 
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6.1.3 Constraints of in-situ biological methanation 

The associated increase in dissolved hydrogen influences microorganisms utilising 

hydrogen in their metabolic pathway. This includes for hydrogen producing 

acidogenic and acetogenic bacteria, as well as hydrogen consuming homoacetogenic 

microorganisms and hydrogenotrophic methanogenic archaea (Angelidaki et al., 

2018; Fukuzaki et al., 1990). Thus, the symbiotic fermentation stages of 

methanogenesis (equation 8) and acetogenesis (equation 10) are exposed to altered 

conditions and as such a system in equilibrium is put under stress. The reason can be 

found in thermodynamics which dictate the feasibility of fatty acid oxidation such as 

from butyrate (equation 9) and propionate (equation 10) to acetate via acetogenesis 

(Fukuzaki et al., 1990).  

 

𝐶𝐻3𝐶𝐻2𝐶𝑂𝑂𝐻 + 2𝐻2𝑂 →  𝐶𝐻3𝐶𝑂𝑂𝐻 + 𝐶𝑂2 + 3𝐻2  ∆𝐺0 = +76.1 𝑘𝐽 𝑚𝑜𝑙−1 (9) 

 

𝐶𝐻3𝐶𝐻2𝐶𝐻2𝐶𝑂𝑂𝐻 + 2𝐻2𝑂 →  2𝐶𝐻3𝐶𝑂𝑂𝐻 +  2𝐻2   ∆𝐺0 = +48.3 𝑘𝐽 𝑚𝑜𝑙−1 (10) 

 

At standard conditions these reactions remain endergonic and become feasible only 

when hydrogen partial pressure is kept below 10 Pa (Fukuzaki et al., 1990). 

Adequate levels are sustained by interspecies hydrogen transfer between acetogenic 

and hydrogenotrophic methanogenic microorganisms (equation 8). This balance of 

immediate production and consumption of hydrogen, with the associated transfer of 

electrons, is stressed by the addition of exogeneous hydrogen to the process. 

Elevated hydrogen partial pressure (>10 Pa) drastically favours methanogenic 

activity (equation 8), however adversely affects acetogenesis (equation 10) and 

ultimately inhibits the oxidation of longer chained volatile fatty acids to acetate 

(Fukuzaki et al., 1990).  

Secondly, when exogenous hydrogen is introduced to an anaerobic digestion process, 

the elevated hydrogen partial pressure stimulates homoacetogenesis (equation 11). In 

an conventional anaerobic digester only 2 - 5% of hydrogen is consumed by 

homoacetogenesis (Mackie & Bryant, 1981). In contrast, when exogenous hydrogen 

is added, up to 40% of hydrogen maybe consumed by the Wood-Ljungdahl pathway 
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(homoacetogenesis), significantly contributing to acetate production and 

subsequently acetoclastic methane formation, as shown in equation 12 (Angelidaki et 

al., 2018; Liu et al., 2016).  

 

 4𝐻2 + 2𝐶𝑂2 →  𝐶𝐻3𝐶𝑂𝑂𝐻 + 2𝐻2𝑂     ∆𝐺0 =  −104.5 𝑘𝐽 𝑚𝑜𝑙−1 (11) 

 

𝐶𝐻3𝐶𝑂𝑂𝐻 →  𝐶𝐻4 + 𝐶𝑂2                        ∆𝐺0 =  −31.0 𝑘𝐽 𝑚𝑜𝑙−1  (12) 

 

In a balanced in-situ system, with adequate levels of hydrogen in solution to allow 

fatty acid oxidation, simultaneous production of biogas and upgrading to biomethane 

is possible (Agneessens et al., 2017; Bassani et al., 2016; Luo & Angelidaki, 2013b; 

Luo et al., 2012a; Mulat et al., 2017).  

 

6.1.4 Solubilisation of hydrogen 

Regardless of the methanation system, the solubilisation of hydrogen is the decisive 

step to make gaseous hydrogen available for microorganisms on a cellular level. 

With a solubility rate of 0.7 mmol H2 L-1 bar-1, hydrogen dissolves poorly in water, 

with solubility rates 24 times less than that of carbon dioxide at 55 °C. The hydrogen 

to liquid transfer is therefore the bottleneck of the process and can be described by 

equation 13. 

 

𝑅𝐻2
=  (𝑘𝐿𝑎)𝐻2

∙ (𝑐𝐻2,𝐺
−  𝑐𝐻2,𝐿

)       (13) 

 

Where RH₂ is the volumetric hydrogen mass transfer rate in mol L-1 h-1. The 

volumetric mass transfer coefficient is described by kLa in L h-1 and foremost 

characterised by reactor configuration, mixing speed, gas recirculation and the 

employed gas diffusion system (Kraakman et al., 2011; Orgill et al., 2013). The 

gradient between the gaseous hydrogen concentration cH₂,G and the dissolved 

hydrogen concentration cH₂,L in mol L-1 defines the driving force for hydrogen gas to 

liquid transfer. Further the system pressure, solubility (Henry constant), temperature 

and hydrogen partial pressure determine the final amounts of hydrogen going into 

solution (Angelidaki et al., 2018; Ullrich et al., 2018).  
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The hydrogen partial pressure is further influenced by the volume reduction in the 

headspace during upgrading. The amounts of gases dissolving in liquid in 

comparison to the concentration in the headspace can be seen in figure 6.1 and figure 

6.2 (ideal gas to liquid transfer at 50°C and 1013 mbar assumed). Although 80% of 

the initial gas mix in the head space comprises hydrogen (figure 6.1), only a minor 

fraction of hydrogen is dissolved in liquid (figure 6.2). At increasing gas 

conversions, the total volume in the headspace reduces (to 20% at complete 

conversion as compared to the start) as a result of the hydrogen coupling with carbon 

dioxide to produce methane. This causes a non-linear change in partial pressures. 

Therefore, the amount of hydrogen dissolved remains at elevated levels during gas 

conversion. At 90% conversion 35% of the initial 0.52 mmol L-1 of hydrogen are still 

dissolved in water. However dissolved hydrogen concentrations drastically decrease 

in excess of 90% conversion, significantly impacting the possible upgrading 

performance. With the potential methane content at 90% conversion being 64.3% 

and with hydrogen in solution drastically reducing, the final 10% gas conversion to 

reach 100% methane content in the off gas appears challenging. In addition, figure 

6.1 and 6.2 allow the validation of gas concentrations in the off gas at certain gas 

conversions. They further provide an estimation of dissolved gases in solution at 

ideal conditions at 50°C at 1013 mbar. 

 

Fig. 6.1. Theoretic model of gas concentrations (cG) in the headspace of the reactor at 

increasing gas conversions (Xi) at 50°C at 1013 mbar.  
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Fig. 6.2. Theoretic model of dissolved gas concentrations in liquid (cL) at increasing 

gas conversions (Xi) at 50°C at 1013 mbar. 

 

6.1.5 State of the art biological upgrading concepts in laboratory scale 

In the lab various systems have been investigated including: intensely mixed reactor 

bottles (Agneessens et al., 2017; Guneratnam et al., 2017; Luo & Angelidaki, 2012b; 

Mulat et al., 2017); bubble column reactors (Kougias et al., 2017; Savvas et al., 

2017); trickle bed reactors with immobilized microorganisms (Burkhardt et al., 2015; 

Rachbauer et al., 2016; Strübing et al., 2017; Ullrich et al., 2018); fixed bed reactors 

functioning as biological/anaerobic filters (Alitalo et al., 2015); hollow fibre 

membrane reactors (Luo & Angelidaki, 2013b); continuous stirred tank reactors 

(Kougias et al., 2017; Luo & Angelidaki, 2013a); and upflow anaerobic sludge 

blanket reactors (Bassani et al., 2016; Luo & Angelidaki, 2013b; Rittmann et al., 

2015).  

Novel concepts have been suggested for instance by Savvas et al. (2017) 

investigating ex-situ methanation in a 110 cm tall glass cylinder with 1.5 litre 

working volume. The gas mixture was dissolved directly by introducing it into a 

centrifugal pump and recirculating the liquid from bottom to top at a rate of 6 L min-

1. A methane formation rate (MFR) per litre reactor volume (VR) of 12 L CH4 LVR
-1 
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d-1 was achieved when total upgrading to methane was accomplished. Kougias et al. 

(2017) assessed ex-situ methanation of a biogas with 60% methane content. Positive 

effects of gas recirculation were observed in a bubble column and two in-series 

connected upflow reactors. At gas recirculation rates of 12 L h-1 an MFR of 1.2 and 

0.5 L CH4 LVR
-1 d-1 at 98% methane content was attained. More complex ex-situ 

reactor configurations such as trickle bed reactors attained 98% methane 

concentrations at 15.4 L CH4 LVR
-1 d-1 (Strübing et al., 2017). Bassani et al. (2016) 

was able to upgrade biogas from 58% CH4 content to 82% at an MFR of 1.3 L CH4 

LVR
-1 d-1 in an in-situ upflow anaerobic sludge blanket reactor; this led to a VFA 

increase by a factor of 1.5 to 5.1 g L-1.  

Guneratnam et al. (2017) identified a more efficient process at 65 °C compared to 55 

°C. An increase in system pressure from 1.5 bar to 9 bar in a trickle bed reactor 

revealed an elevation of methane content from 64% to 86% at an MFR of up to 4.3 L 

CH4 LVR
-1 d-1 (Ullrich et al., 2018). An increase in mixing intensity proved to have 

positive effects on MFRs (Luo et al., 2012a; Rachbauer et al., 2016; Seifert et al., 

2014). In conclusion, the upgrading success could be improved by elevated pressure, 

gas retention time, phase boundary interface and temperature.  

 

6.1.6 Novelty and objectives  

Novel concepts and various upgrading strategies have been proposed in the scientific 

literature, with the main focus on ex-situ systems; data on in-situ methanation 

systems is limited (Agneessens et al., 2017; Bassani et al., 2016; Luo & Angelidaki, 

2013b; Luo et al., 2012a; Mulat et al., 2017). This is most likely a result of the 

described biological constraints. A gap in the state of the art is the examination of in-

situ methanation utilising complex substrates such as grass silage and making a 

direct comparison with ex-situ reactors on the basis of hydrogen injection rates and 

MFR. As continuous stirred tank reactors (CSTR) dominate current biogas facilities, 

a modified CSTR-system with gas recirculation and improved gas distribution 

appears as a promising in-situ concept to investigate.  

The objectives of this paper include the assessment of lab-scale in-situ biological 

methanation in grass silage fed digesters, contrasted with ex-situ biological 

methanation. The upgrading success and associated influence of increased hydrogen 
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partial pressure on the proposed methanation strategies is discussed and contrasted as 

part of this study. The research results are used to propose novel upgrading models 

and concepts. The innovation in this paper is the connection of ex-situ units in series 

and merging in-situ and ex-situ units to a hybrid model estimating detailed set ups of 

full-scale applications based on lab scale experimental data.  

 

6.2 Materials and Methods 

6.2.1 Reactor systems 

This study investigated in-situ and ex-situ upgrading strategies for biogas and carbon 

dioxide to biomethane. Figure 6.3 shows the three employed reactor systems: Batch 

in-situ (BIS), batch ex-situ (BES) and continuous ex-situ (CES). The employed 

stainless-steel reactor had a total volume of 9.5 litres with an internal diameter of 

0.15 m and a height of 0.6 m. Externally injected gases such as hydrogen, carbon 

dioxide or methane were measured with Ritter drum type gas meter TG5/5 (for BIS 

and BES) and digital mass flow meters Voegtlin compact regulator GCR (for CES). 

A 100 litre gas bag provided gas storage, before recirculation through a gas diffuser 

to the bacterial bed. The success of the upgrading process was ultimately quantified 

with a Ritter drum type gas meter TG5/5 and a Hewlett Packard (HP6890) gas 

chromatograph. The deployed system was subsequently used for all applied 

upgrading strategies. However, stirring was only necessary in the batch in-situ 

experiment.  
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a) Batch in-situ b) Batch ex-situ c) Continuous ex-situ 

   

Fig. 6.3. Schematic of experiment lay out: a) Batch in-situ (BIS 1 - BIS 6), b) Batch 

ex-situ (BES 1 - BES 2), c) Continuous ex-situ (CES 1 - CES 6). 

 

6.2.2 Design and operation conditions in-situ methanation  

The in-situ upgrading of grass silage was performed at thermophilic conditions (55 

°C) and ambient pressure. Prior to the experiment, the reactor was filled with 

inoculum from a thermophilic lab scale reactor operating at the same conditions, 

feedstock and nutrient supply (Voelklein et al., 2016). The feedstock was previously 

ensiled first-cut perennial rye grass with a dry solids content of 20%, 91% of which 

were volatile. Undersupplied trace elements were supplemented according to 

Voelklein et al. (2016) during the whole course of the in-situ experiment.  

A loading rate of 4 g VS L-1 d-1 was applied resulting in 46 days substrate retention 

time. In a series of thermophilic grass digestion trials, Voelklein et al. (2016) showed 

stable thermophilic grass digestion at increasing organic loading rates (OLR) rising 

from 3 - 8 g VS L-1 d-1 with supplementation of deficient trace elements. An organic 

loading rate of 4 g VS L-1 d-1 was chosen here so as not to overload the 

microorganisms and still enable a viscous digestate medium to be established. The 

viscous conditions in the digestate were thought to enhance gas residence time and to 

capture ultra-fine bubbles, facilitating gas to liquid mass transfer. Table 6.1 shows 

the design and sequence of the in-situ methanation trials. The batch in-situ process 
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received grass silage as feedstock on a daily basis and an equimolar amount of four 

times hydrogen to the expected carbon dioxide production in the biogas. In order to 

enhance contact between the introduced hydrogen, the produced biogas and the 

microbial community, a gas pump continuously recirculated the gases through the 

bacterial bed for a 24 hour batch period at a rate of 4 L min-1. As a consequence, 

carbon dioxide is converted to methane.  

The experiment was conducted in an ongoing sequence, subsequently moving from 

BIS 1 to BIS 6 over time (results of the acclimatisation period BIS 2 not reported 

because of measuring equipment failure). Prior to each in-situ upgrading period (BIS 

3, BIS 5, BIS 6) with external hydrogen, the specific methane yield with the sole 

substrate grass silage was assessed (BIS 1 and BIS 4) to match results of previous 

trials at similar conditions (Voelklein et al., 2016). The batch in-situ trials were 

further split into operation stages with low (BIS 3) and high performance (BIS 5 and 

BIS 6) gas diffusing systems. The low performance gas diffusing system comprised a 

low-pressure gas pump (0.2 bar) diffusing the gases with a fish stone. The fish stone 

diffuser was chosen due to its limited diffusing capacity. This should prevent 

elevated hydrogen partial pressure in the digestate causing overloading and 

inhibition. On the contrary, the high-performance ceramic gas diffusing system 

(Ceramic Dome Fine Bubble Diffuser, 304 SS Base) was selected to evaluate the 

impact of increased hydrogen concentrations both on the microbial community and 

performance. The ceramic diffuser covered the entire bottom area of the reactor to 

maximise the gas to liquid contact phase. It required a necessary gas compression in 

excess of 2 bar (increased pressure only between pump and diffuser). The elevated 

pressure allowed diffusion of the gases with smaller bubble size maximising 

hydrogen gas to liquid transfer.  

 

6.2.3 Design and operation conditions ex-situ methanation 

Table 6.2 shows the design and sequence of the ex-situ methanation trials. The ex-

situ methanation was run at ambient pressure and thermophilic conditions (55 °C). It 

was divided into three major stages: Batch ex-situ with hydrogen and carbon dioxide 

injection (BES 1 and BES 2), continuous ex-situ with hydrogen and carbon dioxide 

injection (CES 1 to CES 3) and continuous ex-situ with hydrogen, carbon dioxide 
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and methane injection (CES 4 to CES 6). The continuous ex-situ methanation (CES 1 

to CES 6) investigated the impact of a steady gas injection and release, in contrast to 

the total amount being supplied once a day for a 24-hour upgrading period in BES 1 

and BES 2. As a result, the hydrogen partial pressure remained at a steadier level, 

rather being the initial sole constituent and gradually declining over the course of a 

24-hour period. In addition, the gas retention time decreased from 24 hours to less 

than 2 hours (table 6.2). 

Gases were introduced and recirculated through a ceramic gas diffuser after 

compression to 2 bar. The batch ex-situ systems BES 1 and BES 2 operated with a 

gas residence time of 24 hours, at low (BES 1) and medium (BES 2) 

hydrogen/carbon dioxide loading. In contrast, the continuous ex-situ systems CES 1 

to CES 6 experienced a steady displacement of gases at varying hydrogen/carbon 

dioxide loading. CES 1 to CES 3 were subjected to an injection of hydrogen and 

carbon dioxide. CES 4 to CES 6 received additional methane quantities to represent a 

synthetic biogas injection (carbon dioxide and methane mixture). In order to 

compensate for reactor dilution with water during the methanation process 

(formation of water according to equation 8 and 11), a nutrient solution retrieved 

from the liquid phase of a grass digester (free of fibre and VFA) was added to the 

process periodically (Voelklein et al., 2016). The nutrient solution was subjected to a 

filtration and incubation process to ensure fibre and complete volatile fatty acids 

removal (cessation of gas production).  

 

6.2.4 Analytical methods 

The total solids and volatile solids (VS) were determined according to Standard 

Methods 2540 G. The pH value was analysed using a pH meter (Jenway 3510). The 

concentrations of individual volatile fatty acids were analysed by a gas 

chromatograph (Hewlett Packard HP6890) using a Nukol TM fused silica capillary 

column and a flame ionisation detector (FID). Hydrogen was used as a carrier gas. A 

Hewlett Packard HP6890 gas chromatograph, equipped with a Hayesep R packed 

GC column (3 m x 2 mm, mesh range of 80 - 100) and a thermal conductivity 

detector (TCD) analysed the gas composition for methane, carbon dioxide, hydrogen, 

oxygen and nitrogen. Argon was used as the carrier gas. Certified gas standards were 
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employed for the standardization of hydrogen, methane and carbon dioxide. Gas 

flows were measured by using a Ritter drum type gas meter TG5/5 and digital mass 

flow meters Voegtlin compact regulator GCR. The measured gas volume was 

adjusted to the volume at standard temperature (273 K) and pressure (1013 mbar). 

 

6.2.5 Calculations 

The most important parameters to characterise the performance and efficiency of a 

methanation system are methane formation rate (MFR), gas retention time (RT) and 

gas conversion (Xi). The MFR (equation 14) is a function of the volumetric methane 

flow rate entering (FCH₄ in) and leaving (FCH₄ out) the digester based on the reactor 

volume VR.  

 

𝑀𝐹𝑅 =  
𝐹𝐶𝐻₄,𝑜𝑢𝑡− 𝐹𝐶𝐻₄,𝑖𝑛

𝑉𝑅
         (14) 

 

The retention time (RT) of the gases in the reactor is based on equation 15. The 

volume change of reactant gases is reflected by an average residence time of the flow 

in (Fgas in) and out (Fgas out) in relation to the reactor Volume (VR). 

 

𝑅𝑇 =  
𝑉𝑅

(𝐹𝑔𝑎𝑠 𝑖𝑛+ 𝐹𝑔𝑎𝑠 𝑜𝑢𝑡)/2
         (15) 

The success of hydrogen and carbon dioxide forming methane is defined by the 

conversion rate (Xi). The gas conversion rate of the educt gases is calculated 

according to equation 16, where FCH₄ out is the outgoing and FCH₄ in the incoming 

volumetric methane flow. 

 

𝑋𝑖 =  
𝐹𝐶𝐻4 𝑜𝑢𝑡 − 𝐹𝐶𝐻4 𝑖𝑛 

𝐹𝐶𝐻4 𝑜𝑢𝑡 

         (16) 

 

The gas conversion in the in-situ process was allocated to a share of methane 

formation derived from carbon dioxide and hydrogen denoted as X CO₂+H₂ → CH₄ 

(equation 17) and methane formation from grass labelled X Grass → CH₄ (equation 18), 

where FCH₄ out is the outgoing volumetric methane flow, FH₂ in and FH₂ out the 

volumetric hydrogen flow entering and leaving the reactor. The daily mass based on 
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volatile solids added to the reactor is represented by mVS. The specific methane yield 

is indicated by SMY. 

 

𝑋 𝐶𝑂2+ 𝐻2 → 𝐶𝐻4
=  

 𝐹𝐻2 𝑖𝑛 − 𝐹𝐻2 𝑜𝑢𝑡 

 𝐹𝐻2 𝑖𝑛 

        (17) 

 

𝑋 𝐺𝑟𝑎𝑠𝑠 → 𝐶𝐻4
=  

 𝐹𝐶𝐻4 𝑜𝑢𝑡 − (𝐹𝐻2 𝑖𝑛 − 𝐹𝐻2 𝑜𝑢𝑡 )/4

𝑚𝑉𝑆∗𝑆𝑀𝑌
      (18) 

 

6.3 Results and discussion 

6.3.1 In-situ methanation of grass silage 

6.3.1.1 In-situ methanation - low performance gas diffuser 

Table 6.1 outlines the experimental stages and performance characteristics of the in-

situ trials. The experiment commenced (BIS 1) with a loading rate at a level of 4 g 

VS L-1 d-1, resulting in a retention time of 46 days (table 6.1). No hydrogen was 

added at this stage. Stable digestion was monitored and confirmed by low volatile 

fatty acid values of around 472 mg L-1 as suggested by Drosg (2013). Fos/Tac (free 

organic acids/total inorganic carbon) and pH remained within stable limits of 0.37 

and 7.81 respectively. A specific methane yield of 388 L CH4 kg VS-1 and a methane 

concentration of 54.8% was measured. This corresponds to an MFR of 1.5 L CH4 

LVR
-1 d-1 and matches findings previously established by Voelklein et al. (2016) on 

the exact same substrate.  

Period BIS 2 and BIS 3 followed the grass mono digestion period of BIS 1 (results of 

the acclimatisation period BIS 2 not reported because of measuring equipment 

failure). The reactor operation mode was changed to batch in-situ methanation. Thus, 

hydrogen was introduced together with the feedstock on an everyday basis. During 

BIS 3 external hydrogen was injected through a fish stone diffuser at a rate of 5.05 L 

H2 LVR
-1 d-1 and recirculated together with the produced biogas for a 24-hour batch 

period. The hydrogen added equated to four times the expected carbon dioxide 

production (equimolar ratio), based on the specific methane yield found in BIS 1.  

In theory, complete upgrading almost doubles the methane output (as CO2 is 

converted to an equal volume of CH4) elevating the specific methane yield from 388 
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L CH4 kg VS-1 (at a CH4 concentration in the biogas of 54.8%) to                           

708 L CH4 kg VS-1. However, the specific methane yield raised only to 460 L CH4 

kg VS-1 equating to 65% of the predicted final methane yield. A detailed evaluation 

of the upgrading process and off gas revealed the gas conversion and individual 

contributions to the gained methane yields. 92% of the possible methane yield from 

grass was reached. In contrast, only 33% of the potential methane from hydrogen 

was attained. This was attributed to the characteristics of the lower performance gas 

diffuser limiting the gas to liquid mass transfer.  

In total, the MFR of 1.82 L CH4 LVR
-1 d-1 lead to an increase by 19% compared to 

grass mono digestion. The incomplete upgrading let to a dilution of methane 

concentration to 32.1% compared to 54.8% in BIS 1. Compared to BIS 1 the volatile 

fatty acids concentration quadrupled. The main contributors towards the total amount 

of 1897 mg L-1 were acetic and propionic acid. This is still considered uncritical 

using anaerobic digestion guidelines developed by Drosg (2013) and is further 

confirmed by low Fos/Tac values of 0.4 (Drosg, 2013).The absence of significant 

accumulation of volatile fatty acids indicates fast consumption of exogeneous 

hydrogen by hydrogenotrophic or homoacetogenic microbes.  
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Table 6.1. Performance characteristics of grass in-situ methanation. 

    BIS 1 BIS 3   BIS 4 BIS 5 BIS 6 

Operation mode 
 

CSTR CSTR & batch  

in-situ upgrading 

 
CSTR CSTR & batch  

in-situ upgrading 

CSTR & batch  

in-situ upgrading 
Diffuser   Fish stone   Ceramic diffuser Ceramic diffuser 

Injected substrates  Grass Grass  Grass Grass Grass 

Injected gases  None H2  None H2 H2 

Hydrogen loading   - Equimolar   - Equimolar Equimolar 

OLR g VS/L/d 4 4  4 4 4 

HRTGrass d 46 46  46 46 46 

Gas retention time h - 24  - 24 24 

H2 (hydrogen loading) L H2 LVR
-1 d-1 - 5.05  - 5.29 5.29 

Gas composition out:     

  H2 % - 56.5 ±4.9  - 34.6 ±7.7 93.9 ±1.9 

  CO2  % 45.2 ±0.8 11.4 ±1.7  46.8 ±0.8 5.1 ±2.1 0.0 

  CH4  % 54.8 ±0.8 32.1 ±4.9  53.2 ±0.8 60.3 ±7.4 6.1 ±1.9 

Methane formation rate L CH4 LVR
-1 d-1 1.53 ±0.27 1.82 ±0.20  1.51 ±0.30 2.52 ±0.07 0.33 ±0.11 

SMY theory. L CH4 kg VS-1 381 708  381 719 719 

SMY experiment L CH4 kg VS-1 388 ±10 461 ±37  382 ±11 640 ±19 47 ±12 

Gas conversion:             

  X CO₂ + H₂ → CH₄
1 %   33    72 4 

  X Grass → CH₄
2 %   92    104 18 

  X Total 
3 %   65    89 12 

VFA mg L-1 472 ±95 1,897 ±823  621 ±228 7,807 ±335 11,827 ±278 

pH  7.81 ±0.07 7.88 ±0.01  7.89 ±0.04 8.34 ±0.06 8.05 ±0.47 

VFA/TIC   0.37 ±0.07 0.40 ±0.03  0.22 ±0.03 0.76 ±0.10 0.90 ±0.03 

Results of acclimatisation period BIS 2 not shown; 1 X CO₂ + H₂ → CH₄: Conversion carbon dioxide to methane; 2 X Grass  → CH₄: Conversion grass to methane; 3 X Total: Total conversion to methane.
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6.3.1.2 In-situ methanation - high performance gas diffuser 

The results with a higher performance ceramic gas diffuser during BIS 4 to BIS 6 

represent the second part of the in-situ trials and are illustrated in figure 6.4 and table 

6.1. During the initial stage (BIS 4) the reactor was subjected to mono digestion of 

grass for 46 days (1 HRT) at a loading rate of 4 g VS L-1 d-1. No hydrogen was added 

at this stage. Stable digestion was confirmed by volatile fatty acid values of 

approximately 621 mg L-1, Fos/Tac of 0.22 and pH of 7.89 (Drosg, 2013). A specific 

methane yield of 382 L CH4 kg VS-1 and a methane concentration of 53.2% was 

measured. This equals to a MFR of 1.5 L CH4 LVR
-1 d-1 and matches the findings 

given in BIS 1 and previously described by Voelklein et al. (2016) on the same 

substrate.  

At the start of BIS 5 on day 291 (figure 6.4) 5.29 L H2 LVR
-1 d-1 was introduced daily 

in addition to the feedstock grass silage. A gradual yet volatile increase in methane 

yield was observed during the first 9 days. Beginning with day 300 a specific 

methane yield of 640 L CH4 kg VS-1 was determined for 4 days, corresponding to 

89% of the potential total methane yield. The conversion of grass to methane was 

complete (104%). The added hydrogen successfully combined with excess carbon 

dioxide from the fermentation process to an extent of 72%. A methane production of 

2.5 L CH4 LVR
-1 d-1 was obtained. However, this performance lasted only for a period 

of four days and was characterised by a major escalation of volatile fatty acid 

concentration. The amount of 7807 mg L-1 was mainly dominated by acetic (4015 

mg L-1) and propionic acid (2451 mg L-1). The deterioration was further 

accompanied by a rise in Fos/Tac to 0.76. However, the pH only experienced a minor 

increase to 8.37.  

The drastic deterioration of microbial performance became evident during the period 

of BIS 6. The specific methane yield and methane concentration gradually dropped 

to values as low as 47 L CH4 kg VS-1 and 6.1% respectively. This decline was 

accompanied by a distinct drop in carbon dioxide production till its ultimate 

depletion on day 308. This phenomenon was explained with volatile fatty acids 

accumulation of 11,827 mg L-1 inhibiting the subsequent break down of grass silage 

into acids and its ultimate release as carbon dioxide along the degradation pathway 

(Fukuzaki et al., 1990; Mackie & Bryant, 1981). In addition, the thermodynamic 



Chapter 6: Biological methanation: Strategies for in-situ and ex-situ upgrading in 

anaerobic digestion  

Integrated Biogas Systems 111 Markus Voelklein 

requirement of low hydrogen partial pressure for further oxidation of longer chained 

fatty acids (e.g. propionate, butyrate) effectively limited acetogenesis (Fukuzaki et 

al., 1990). Consequently, the high concentration of volatile fatty acids impaired the 

acetoclastic methanogenic archaea reinforcing a self-perpetuating cycle of acid 

accumulation. Without the release of carbon dioxide during acidification the carbon 

source for hydrogenotrophic methanogens depleted, further contributing to rising 

hydrogen partial pressures and adversely affecting acetogenesis. Thus, 

methanogenesis reached only 12% of its total potential in this in-situ period (Bis 6), 

emphasising ultimate reactor failure. The assumption of system failure was further 

supported by consistently elevated Fos/Tac values as high as 0.9 and reduced pH of 

7.93 with a final drop to 7.61.  

In conclusion, the main cause for reactor failure was attributed to the high gas 

diffusing capability of the ceramic gas diffuser inducing significant biological and 

performance constraints. Since the necessary hydrogen quantity for complete 

upgrading was introduced together with the feedstock only once a day, the initial 

peak hydrogen partial pressure may have adversely influenced the symbiotic process 

of acetogenesis and methanogenesis. Continuous or pulse injection of hydrogen and 

intermittent gas recirculation could potentially remedy the impact of aggravated 

hydrogen partial pressure. Thus, the supply of dissolved hydrogen may be 

maintained at a lower more continuous rate to prevent adverse effects of elevated 

dissolved hydrogen concentrations on acetogenesis. Considering the lower MFR of 

an in-situ process as compared to ex-situ reactor configurations, an adequate 

hydrogen supply for acetogenesis dominates the importance of increased hydrogen to 

liquid transfer. 
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Fig. 6.4. Performance of in-situ upgrading in a grass fed anaerobic reactor. 
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The results compare to Bassani et al. (2016) who also performed in-situ methanation. 

They recorded an increase in methane content from 58% to 82% at a MFR of 0.12 L 

CH4 LVR
-1 d-1. Mulat et al. (2017) obtained an MFR of 0.13 L CH4 LVR

-1 d-1 by 

elevating the methane concentration from 65% to 89%. An in-situ trial on cattle 

manure and whey by Luo and Angelidaki (2013b) revealed a biogas production rate 

maximised at 0.9 L CH4 LVR
-1 d-1 at 96% methane content. Those experiments were 

conducted under a low organic loading rate resulting in an MFR of between 0.12 to 

0.9 L CH4 LVR
-1 d-1 with a hydrogen flow of 0.5 to 2.1 L H2 LVR

-1 d-1. In contrast, this 

study was performed at a hydrogen loading of 5.1 to 5.3 L H2 LVR
-1 d-1 yielding a 

stable MFR of 1.8 L CH4 LVR
-1 d-1 and a short term MFR of 2.5 L CH4 LVR

-1 d-1.  

Further observations during the experimental process were noted as follows. A total 

solids content in the digestate of between 10 - 11%, of which approximately 80% 

were volatile, was determined during the whole in-situ experiment. Sedimentations 

of sand and fibre formed during the period of BIS 3 around the fish stone diffuser. It 

was assumed that the rising gas bubbles lowered the density of the reactor digestate. 

The ceramic gas diffuser covered the total bottom area of the reactor and effectively 

eliminated sedimentation. The injection of hydrogen in all in-situ upgrading trials led 

to immediate foaming events within 5 minutes. After a period of 30 minutes the foam 

completely receded.  

 

6.3.2 Ex-situ methanation  

6.3.2.1 Batch gas injection in ex-situ methanation 

After completion of the in-situ trials the fibres in the digestate were removed to 

ensure a rapid depletion in methane production from sources other than externally 

injected gases. The remaining digestate represents a medium rich in methanogens 

and dissolved nutrients. The reactor was then run in various operation modes starting 

with batch ex-situ (BES) followed by continuous ex-situ methanation (CES). The 

carbon source for methane production shifted from grass silage to externally injected 

carbon dioxide. Introduced gases were constantly recirculated through the microbial 

bed to facilitate gas to liquid mass transfer at a rate of 4 L min-1. A change of process 

variables between each stage in the ex-situ series resulted in a rapid response. Steady 
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performance values were attained within the first 24 hours. Each experimental stage 

was maintained for 4 weeks with results of the last 2 weeks depicted in table 6.2.  

The hydrogen loading in BES 1 represents the base scenario for all following ex-situ 

methanation trials (BES 2 to CES 6). BES 1 was exposed to a daily injection of 7.3 L 

H2 LVR
-1 d-1 for a 24-hour period. In BES 1 hydrogen was completely consumed 

resulting in an MFR of 1.7 L CH4 LVR
-1 d-1 with methane concentrations as high as 

92%. Total gas conversion was not achieved; the maximum conversion was 93%. 

This was a result of premature depletion of hydrogen in the pre-configurated gas 

mixture. As a consequence of the successful upgrading in BES 1, the hydrogen 

loading was doubled to 15.4 L H2 LVR
-1 d-1 in BES 2. The MFR increased to 3.7 L 

CH4 LVR
-1 d-1 with methane concentrations of 96%. Similar to BIS 1 gas conversion 

reached a maximum of 96%. The results in this study partially compare to the more 

complex trickle bed systems obtaining high methane concentrations in the off gas in 

excess of 98% (Burkhardt & Busch, 2013; Savvas et al., 2017; Strübing et al., 2017). 

It has to be noted that some of these trickle bed systems attained elevated methane 

formation performances in the range 1.17 - 15.4 L CH4 LVR
-1 d-1.  
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Table 6.2. Performance characteristics of ex-situ upgrading systems. 

      BES 1 BES 2   CES 1 CES 2 CES 3   CES 4 CES 5 CES 6 

Operation mode   Batch ex-situ  Continuous ex-situ  Continuous ex-situ 

Diffuser   Ceramic diffuser  Ceramic diffuser  Ceramic diffuser 

Injected gases   H2, CO2  H2, CO2  H2, CO2, CH4 

Hydrogen loading     Low Medium   Medium High Highest   High Medium Low 

Gas retention time h  24 24  1.99 0.57 0.33  0.41 1.14 1.63 

Gas injection:             

H2 %  80 80  80 80 80  73 54 30 

CO2  %  20 20  20 20 20  18 14 8 

CH4  %  - -  - - -  8 32 61 

H2 (Hydrogen loading) L LVR
-1 d-1  7.3 15.4  14.7 47.1 73.3  50.5 13.7 5.4 

CO2  L LVR
-1 d-1  1.8 3.9  3.7 11.8 18.3  12.6 3.5 1.6 

CH4  L LVR
-1 d-1  - -  - - -  5.7 8.2 9.9 

Gas out:              

H2 %  0 0  41 ± 3.4 54 ± 2.8 68 ± 1.2  61 ± 1.2 30 ± 2.3 12 ± 2.4 

CO2  %  8 ± 1.7 4 ± 0.5  10 ± 1.3 14 ± 1.2 17 ± 1.2  17 ± 1.1 8 ± 2.1 4 ± 1.2 

CH4  %  92 ± 1.7 96 ± 0.6  49 ± 3.9 32 ± 3.0 15 ± 1.0  23 ± 1.8 61 ± 3.9 84 ± 2.1 

H2 L LVR
-1 d-1  0 0  2.4 ± 0.3 13.7 ± 0.7 37.3 ± 3.3  29.2 ± 0.6 5.4 ± 0.1 1.3 ± 0.1 

CO2  L LVR
-1 d-1  0.1 ± 0.03 0.2 ± 0.02  0.6 ± 0.1 3.5 ± 0.4 9.2 ± 1.0  7.9 ± 0.9 1.6 ± 0.3 0.4 ± 0.1 

CH4  L LVR
-1 d-1  1.7 ± 0.1 3.7 ± 0.2  2.9 ± 0.2 8.2 ± 0.8 9.1 ± 1.0  10.8 ± 0.6 9.9 ± 0.4 11 ± 0.2 

Methane production rate L LVR
-1 d-1  1.7 ± 0.1 3.7 ± 0.2  2.9 ± 0.2 8.2 ± 0.8 9.1 ± 1.0  5.1 ± 0.6 1.7 ± 0.4 0.85 ± 0.2 

Gas conversion %  93 96  78 70 49  40 49 53 

pH   8.5 ± 0.2 8.5 ± 0.1  8.1 ± 0.04 7.1 ± 0.2 7.4 ± 0.3  8.2 ± 0.2 8.1 ± 0.2 8.2 ± 0.2 

VFA     456 ± 81 328 ± 13   290 ± 16 1317 ± 515 765 ± 718   1420 ± 411 1673 ± 441 1370 ± 849 
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A detailed insight into the 24-hour upgrading period of BES 2 is revealed in figure 

6.5. Hourly measurements of the gas content (in triplicate) allowed establishment of 

a dynamic upgrading profile. The first 12 hours were characterised by a rapid initial 

start until 93% carbon dioxide conversion to methane was reached. In this 12 hour 

period, the methane content reached 80%. In the following 12 hours the methane 

conversion rose to 97%. Methane concentration after 24 hours peaked at 95.5%, with 

2.9% and 1.6% carbon dioxide and hydrogen remaining in the gas mixture 

respectively.  

The initial linear gas conversion and associated decrease in hydrogen partial pressure 

indicates that sufficient dissolved hydrogen levels were present until CO2 levels fell 

below 9%. It is understood that in the first 11 hours gas to liquid mass transfer was 

not a limiting factor, mainly due to the sufficient hydrogen concentration in the gas 

and positive performance characteristics of the ceramic gas diffuser. At carbon 

dioxide levels below 9% the conversion rate drastically declined. This is in line with 

the findings of Agneessens et al. (2017), Luo et al. (2012a) and Mulat et al. (2017) 

who observed rapidly decreasing hydrogen uptake rates below 12 - 15%. The 

explanation can be found in the low concentrations of dissolved hydrogen in water at 

conversion rates in excess of 90% (figure 6.1 and figure 6.2). The dynamic initial 

conversion in figure 6.5 suggests additional potential of the batch ex-situ process. 

Any further increase in loading was restricted by the size of the gas bag in this 

reactor configuration. Therefore, the operation mode was changed from daily batch 

injections to a continuous gas injection. 
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Fig. 6.5. Hourly performance of ex-situ methanation in BES 2 (cG: gas concentration 

in headspace; Xi: gas conversion). 

 

6.3.2.2 Continuous gas injection in ex-situ methanation 

The hydrogen loading of CES 1 was set to approximately match the hydrogen 

loading of BES 2 receiving 14.7 L H2 LVR
-1 d-1 (table 6.2). However, the gas 

conversion to methane of CES 1 could not keep pace with the batch process in BES 2 

and dropped from 96% to 78% at an MFR of 2.9 L CH4 LVR
-1 d-1. Inevitably the 

methane content experienced dilution and suffered a decline to 49%. In CES 2 the 

hydrogen loading was approximately tripled to 47.1 L H2 LVR
-1 d-1 compared to CES 

1 (table 6.2). The gas conversion rate only experienced a drop by 8% to a level of 

70%. The corresponding methane concentration decreased to 32%. A final 5-fold 

increase in hydrogen loading to 73.3 L H2 LVR
-1 d-1 let to a 29% reduction of gas 

conversion to 49% in comparison to CES 1 (table 6.2). Methane concentration 

declined to a level of 15%. In conclusion, higher volumetric loading of hydrogen and 

carbon dioxide is typically linked to lower final methane concentrations in the off gas 

in ex-situ methanation.  
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Incomplete upgrading at higher loadings have been observed by Ullrich et al. (2018) 

reporting a methane formation rate of up to 4.28 L CH4 LVR
-1 d-1 at 86.5% methane 

content. Using continuous cultures (M. marburgensis) the methane content as 

recorded by Seifert et al. (2014) dropped from 85% to 60% when the MFR increased 

from 6.1 to 22.8 L CH4 LVR
-1 d-1. A fair comparison of literature data and upgrading 

systems remains difficult. Special caution is required as intensely mixed reactors 

easily outperform other configurations. The internal power consumption of a system 

or the additional effort of maintaining a pure culture and associated nutrient supply 

has to be considered.  

The final series of the ex-situ methanation (CES 4 to CES 6) assessed the implication 

of reduced hydrogen partial pressure by adding methane to the injected gas mixture. 

CES 4 was set to a similar hydrogen loading (50.5 L H2 LVR
-1 d-1) mixture as CES 2. 

The introduced biogas mixture without considering hydrogen would represent a 

biogas with a methane content of 31%. Consequently, the methane component in the 

feed gas lowers the quantity of dissolved hydrogen in the liquid phase. Thus, gas 

conversion dropped from 70% (CES 2) to 40% (CES 4). In CES 5 the hydrogen 

loading was further reduced to match CES 1. The applied biogas mixture without 

considering hydrogen included for a methane concentration of 70% and caused the 

conversion of carbon dioxide to methane to drop from 78% (CES 1) to 49% (CES 5).  

The attained conversion corresponds to levels found in CES 3, which was exposed to 

5 times elevated hydrogen loading. In conclusion, the addition of methane markedly 

reduced gas conversion rates compared to trials at similar hydrogen loading without 

methane. This was mainly attributed to the decreased hydrogen partial pressure and 

associated gas to liquid transfer (Lecker et al., 2017). Furthermore, it adversely 

affected the potential residence time for gases to be converted. With increasing 

quantities of methane at similar hydrogen loadings, the residence time diminished by 

28% and 43% comparing CES 1 with CES 5 and CES 2 with CES 4 respectively.  

Within all ex-situ trials (BES 1 to CES 6) the pH remained within stable limits 

between 7.1 and 8.5. A drop to 7.1 (CES 2) and 7.4 (CES 3) was observed at higher 

hydrogen loading. Average volatile fatty acids level between 290 mg L-1 and 1,673 

mg L-1 were monitored and considered within stable conditions as defined by Drosg 

(2013). The slight increase in acetate and lower concentrations of longer chained 
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fatty acids indicates a stimulation of the Wood-Ljungdahl pathway (Fukuzaki et al., 

1990).  

 

6.3.3 Comparison of in-situ, batch ex-situ and continuous ex-situ methanation 

A performance and efficiency comparison of in-situ, ex-situ and continuous 

methanation at various hydrogen injection levels is illustrated in figure 6.6 and 6.7. A 

similar behaviour was recognised within all applied upgrading strategies. An 

increasing MFR and decreasing conversion efficiency can be assumed with rising 

rates of hydrogen injection. Best results were obtained with the batch ex-situ 

strategy, exceeding the continuous strategy in methane production performance and 

efficiency. The highest hydrogen injection rates were imposed on the continuous 

methanation strategy CES 1 - CES 3 (blue line in figure 6.6). At 73 L H2 LVR
-1 d-1 

hydrogen injection the methane production appeared to plateau. The non-linear 

characteristic indicates a maximum production rate of the hydrogenotrophic 

methanogenic archaea for this reactor configuration.  

A comparison of the continuous upgrading strategies with and without methane in 

the feed gas mixture (blue vs. red line in figure 6.6 and 6.7) reflects a distinct 

difference in methane formation and conversion efficiency at rising hydrogen 

injecting rates. This was explained by the presence of methane in the introduced gas 

mixture, consequently lowering the hydrogen partial pressure and thus the level of 

dissolved hydrogen. In addition, it reduced gas residence time for possible 

upgrading. A similar correlation was also observed by Martin et al. (2013) using a 

continuous culture Methanothermobacter thermautotrophicus in an ex-situ system. 

At an MFR of 21 L CH4 LVR
-1 d-1 the conversion efficiency dropped from pervious 

89% (no methane in feed gas) to 62% utilizing a biogas with 70% methane content.  

The MFR and efficiency of the in-situ system remains low. The considerably lower 

production rate is a result of the fixed carbon dioxide quantity released in the 

anaerobic digestion process at a certain organic loading rate. The efficiency was 

markedly dependent on the employed diffusing system and only stable at reduced 

dissolved hydrogen levels using a low performance diffuser. 
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Fig. 6.6. Methane formation rate of in- and ex-situ upgrading strategies displaying 

performance characteristics (MFR: methane formation rate). 

 

 

 

Fig. 6.7. Gas conversion of in- and ex-situ upgrading strategies displaying 

efficiencies (Xi: gas conversion). 
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6.3.4 Continuous ex-situ methanation in series 

The continuous injection and simultaneous escape of gases reduced the potential 

conversion efficiencies in the CES systems. A virtual approach to offset the flow of 

gases bypassing the internal gas recirculation is modelled by arranging three reactors 

in series. Figure 6.8 illustrates a theoretic model and approach for a full-scale 

sequential ex-situ methanation unit. The model is based on one operational lab scale 

ex-situ reactor utilising the findings in CES 2 (stage 1), CES 5 (stage 2) and CES 6 

(stage 3). The flow rates and gas concentrations leaving each stage in the model 

approximately correspond to the quantity and quality entering the next stage.  

In the lab the amounts of gases escaping the reactor during the period of CES 2 

(corresponds to stage 1, only receiving H2 and CO2 at a high rate) were replicated 

and injected into the reactor for period CES 5 (corresponds to stage 2, receiving H2, 

CO2 and CH4 at a medium rate). Likewise, the off gas in period CES 5 (stage 2) was 

replicated and introduced during period CES 6 (corresponds to stage 3, receiving H2, 

CO2 and CH4 at a low rate). This sequential approach allows conversion of 95% of 

carbon dioxide into methane; 70% conversion with a methane content of 32% was 

initially obtained after stage 1. After passing the second stage, the conversion rate 

increased to 85%, with 61% methane content in the gas mixture. The final 

conversion in stage 3 pushed the gas conversion to 95%, with a methane 

concentration of 85%.  

Having three reactors in series, the total reactor volume triples as compared to the 

single reactor in CES 1. The flow rate in CES 1 accounts for approximately 1/3 of 

the sequential system’s flow rate. Thus, the input gas flow per litre reactor volume 

remains similar comparing both systems. In contrast to the 78% carbon dioxide 

conversion to methane in the single reactor of CES 1, the three reactors in series 

were able to attain 95% conversion. A methane content of 85% was obtained at 3.6 L 

CH4 LVR
-1 d-1. This methane formation rate matches the results accomplished in BES 

2, yet the methane content falls short to satisfy requirements for gas grid injection.  

If only stage 2 and 3 are taken into consideration, this system could also be seen as a 

biogas upgrading unit with a total hydrogen loading (cumulated average of stage 2 

and 3) of 6.9 L H2 LVR
-1 d-1. A biogas mixture with 70% methane content at a 

methane flow rate of 4.1 L CH4 LVR
-1 d-1 could be elevated to 5.4 L CH4 LVR

-1 d-1 at a 
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methane concentration of 85%. The corresponding MFR in stage 2 and 3 is 

calculated as 1.3 L CH4 LVR
-1 d-1 with 89% of carbon dioxide conversion.  

The results compare to Luo and Angelidaki (2012b) using a biogas with 62.5% 

methane content retrieving an MFR of 5.3 L CH4 LVR
-1 d-1 at 90.8% methane 

concentration in the off gas. At similar hydrogen loading of 6.5 L H2 LVR
-1 d-1 and 36 

- 42% carbon dioxide in the input biogas mixture, Rachbauer et al. (2016) observed 

carbon dioxide conversion of 96% in a trickle bed system. High performances have 

been stated by Alitalo et al. (2015) investigating two ex-situ trickle bed reactors in 

series with a hydrogen flow rate of 25.2 L H2 LVR
-1 d-1. Complete consumption of 

hydrogen was accomplished at gas retention times of 144 hours. The corresponding 

MFR was 6.4 L CH4 LVR
-1 d-1. This compares to twice the performances obtained in 

this experiment with only 85% methane content in the off gas, yet at a residence time 

of only 3.3 hours (according to cumulated gas retention times of CES 2, CES 5 and 

CES 6 in table 6.2 with 0.57 h, 1.14 h and 1.63 h). 
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Fig. 6.8. Three stage sequential ex-situ methanation at a methane formation rate of 3.6 L CH4 LVR
-1 d-1. The conversion of carbon dioxide to 

methane corresponds to 70% (after stage 1), 85% (after stage 2) and 95% (after stage 3).
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6.3.5 Hybrid concept of sequential in-situ and ex-situ methanation 

A general design idea for an upscaled methanation concept is shown in figure 6.9 and 

compares to a typical biogas plant with 1 MWel power output. The individual results 

from in and ex-situ experiments were combined to form a hybrid model. The 

calculation of flow rates, reactor volumes and efficiencies correspond to the findings 

attained in the laboratory trials BIS 5 (batch in-situ) and CES 6 (continuous ex-situ). 

A main in-situ methanation digester with 2440 m³ volume partially upgrades the 

biogas and is followed by a 610 m³ ex-situ methanation unit to further enrich the 

methane content in the biogas.  

In this concept, the in-situ methanation digester receives 9.3 tonnes (volatile solids) 

of grass silage per day for biogas production. This results in an organic loading rate 

of 3.8 kg VS m-³ d-1 at a hydraulic retention time of the grass silage of 47 days. A 

specific biogas yield of 719 m³ per ton of volatile solids is assumed with a share of 

53% methane (Voelklein et al., 2016). The expected quantity of carbon dioxide (338 

m³ t VS-1) from grass silage is matched with an equimolar amount of hydrogen (5.2 

m³ mVR
-³ d-1) and injected into the in-situ reactor. During the course of the 24-hour 

period the produced biogas accumulates in the gas storage and is recirculated with 

the exogenous hydrogen through the in-situ reactor. Hydrogenotrophic methanogens 

couple the hydrogen with carbon dioxide. 92% of the expected specific methane 

yield is obtained after the in-situ upgrading at a level of 70% methane content. The 

high gas conversion is a result of the low MFR predefined by the amounts of carbon 

dioxide released from grass. After the 24-hour period the gas is transferred into the 

intermediate gas storage of a triple membrane gas storage system.  

The partially upgraded biogas is now continuously withdrawn and introduced into 

the ex-situ methanation reactor. At a rate of 14.5 m³ mVR
-³ d-1 the gases pass the ex-

situ unit and are further upgraded in a gas recirculation process until 96% of the 

potential specific methane yield is reached. The biogas escapes the sequential 

process at a rate of 6434 m³ of methane per day at a level of 84% methane. The ex-

situ reactor only contributes an additional share of 4% to the overall specific methane 

yield, as at reduced hydrogen/carbon dioxide levels the conversion rate drastically 

declines. This is in line with observed findings in figure 6.1, figure 6.2 and figure 
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6.5. This phenomenon is also described in Agneessens et al. (2017) and Mulat et al. 

(2017). 

The proposed model is a first estimation to upscale laboratory findings, still 

subjected to certain assumptions. For once, equimolar hydrogen to carbon dioxide 

ratios are assumed in the in-situ process (as compared to BIS 5). Secondly, a stable 

long-term operation of the in-situ reactor at this efficiency remains to be 

accomplished. In order to integrate the upgrading strategy into an industrial process, 

the periodic feeding and upgrading rescheme in the in-situ digester will have to be 

adjusted to hourly increments. Firstly, to allow for a realistic feeding scenario and 

secondly to accommodate the gas quantities in the gas storage system. Complete 

upgrading in this configuration was not obtained. If direct gas grid injection is 

aspired, the ex-situ unit needs to elevate the methane content to greater than 95%. 

This could be achieved changing operation conditions to more efficient batch 

upgrading or by changing the size, configuration or operational pressure of the ex-

situ reactor.  

If the proposed hybrid system is operated in connection with on-site combined heat 

and power units, a mixed operation mode of part time upgrading and storage of 

cheap hydrogen (associated with surplus otherwise curtailed electricity) in the 

intermediate gas storage appears feasible. The in-situ process would only be 

operational for periodic instances at times with sufficient hydrogen available.  
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Fig. 6.9. Hybrid concept of sequential in-situ and ex-situ methanation with triple gas storage membrane on top of in-situ digester (SMY: specific 

methane yield, VR: reactor volume, OLR: organic loading rate, HRT: hydraulic retention time, VS: volatile solids).
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In an alternative concept the biogas quantity (6678 m3 d-1) retrieved from a similar 

1 MW digester (2440 mVR
-³) fed by 9.3 t VS grass silage per day may be treated in a 

conventional biogas upgrading facility. The methane (3539 m3 d-1) is segregated 

from the biogas and injected into the natural gas grid. The excess carbon dioxide 

fraction (3139 m³ d-1) is further utilised exclusively either in a batch ex-situ 

(described in section 3.2.1) or continuous sequential ex-situ methanation system 

(described in section 3.4) and coupled with equimolar amounts of external hydrogen 

to form methane. Based on the MFR data obtained in the lab scale trials of batch ex-

situ (BES 2) and continuous ex-situ methanation (CES 2, CES 5, CES 6), a reactor 

volume of 848 m³ and 870 m³ (3 x 290m³) is required to attain an additional 3014 m³ 

CH4 d-1 (at 96% CH4 content) and 2668 m³ CH4 d-1 (at 85% CH4 content) in a batch 

ex-situ and a continuous sequential ex-situ methanation system, respectively. The 

cumulated methane yield per day calculates to 6553 m³ CH4 d-1 for the batch ex-situ 

and 6207 m³ CH4 d-1 for the continuous sequential ex-situ methanation concept. 

All investigated concepts are capable to upgrade biogas to a level close to or within 

the boundary acceptable for gas grid injection. A comparison of the required reactor 

volumes to upgrade biogas in a hybrid model or within a single or sequential system 

of ex-situ methanation units ranges between 610 mVR³ and 870 mVR³. A substantial 

reduction in reactor size of the ex-situ unit following partially upgraded biogas of the 

in-situ methanation may be expected but exact volumes remain difficult to predict. 

The marginal deviation in volume is a result of methane being present in the 

introduced gas mixture entering the ex-situ unit of the hybrid model, lowering the 

level of dissolved hydrogen and gas residence time for possible upgrading. 

 

6.4 Conclusion 

This study provides insights into biological methanation strategies. A general 

correlation between increasing hydrogen injection, elevated methane formation and 

diminishing conversion rates was established for all applied strategies. The presence 

of methane in the upgrading biogas markedly reduced gas conversion rates compared 

to similar hydrogen loading without methane. The challenge for in-situ methanation 

remains to ensure a balanced system, with adequate levels of hydrogen in solution to 

allow both, acetogenic and hydrogenotrophic microbes to coexist. In general, below 
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carbon dioxide levels of 9%, conversion of carbon dioxide to methane drastically 

diminishes. Thus, connecting in-situ or ex-situ units in series may provide a more 

favourable pathway as compared to individual systems. A concept of a hybrid model 

combining in- and ex-situ methanation in full scale suggests an alternative to 

conventional upgrading systems. 
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6.5 Supplementary data  

 

All standard conditions mentioned in chapter 6 refer to standard temperature at 273K 

and standard pressure at 1013mbar. 

 

Importance of Kla:  

The phase boundary interface is the crucial element to provide efficient gas liquid 

mass transfer. Any increase in kLa for instance by smaller bubble size, enlarged 

contact surface, elevated gas retention or immediate dissolution (membranes), 

proportionally enhances the quantities of gases dissolved into liquid until maximum 

solubility is reached (figure 6.2). Several gas injection methods such as hollow fibre 

membranes, gas diffusers and electrochemical methods have been described in the 

scientific literature (Angelidaki et al., 2018; Bassani et al., 2016; Kraakman et al., 

2011; Lecker et al., 2017). In addition, increased system pressure improves solubility 

of gases in liquid and reduces bubble size; smaller bubbles are less buoyant and 

possess a diminished upflow potential. Thereby the ratio of surface to volume is 

drastically elevated, further enhancing the phase boundary contact area (Lecker et al., 

2017). Overall, reducing the bubble size during gas injection is a pivotal factor to 

extend gas retention and gas to liquid transfer. Similarly, gas recirculation (Alitalo et 

al., 2015; Bassani et al., 2016; Kougias et al., 2017; Luo et al., 2012a) or for example 

recirculation of liquid in a trickle bed reactor facilitates and enhances gas liquid 

contact (Burkhardt et al., 2015; Rachbauer et al., 2016; Strübing et al., 2017; Ullrich 

et al., 2018). 
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7.1 Chapter overview 

The thesis set out to explore integrated biogas systems and optimise the technology 

of biogas production and upgrading. The conclusions and possible solutions to the 

objectives given in Chapter 1.3 are presented in this chapter. Overall and detailed 

conclusions synthesising the major findings of this thesis are identified. 

Recommendations, final remarks, future research and possible developments based 

on the content of this study complete this thesis.  

 

7.2 Thesis conclusions with respect to the initial thesis objectives 

The thesis successfully demonstrates the optimisation potential in novel and existing 

digestion systems. Its various studies sought to explore and promote pathways to 

conduct anaerobic digestion at elevated organic loading rates and high specific 

methane yields, while maintaining short substrate retention and still attaining 

favourable volumetric methane production rates, ideally at a final level suitable for 

gas grid injection. The key contributors to achieve those objectives and derive overall 

conclusions are listed as follows: 

 

Maximise possible biogas quantities per unit substrate input (SMY) 

- Pre-treatment by a two-stage digestion system separating fermentation 

stages of acidification and methanation generates optimum conditions for 

microbial communities and increases specific methane yields.  

- Digestion at elevated temperature accelerates degradation kinetics; biogas 

yields increase and full biomethane potential is reached at reduced 

substrate retention. 

 

Increase possible loading (OLR) 

- Elevated temperature levels facilitate microbial activity and beneficial 

viscosity properties; accelerated degradation improves mixing conditions 

and enables higher organic loading. 

- Supplementation of trace elements at adequate levels allows stable 

digestion and favours an increase in loading rate. 
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Reduce necessary retention time (HRT) 

- Hydrolysis in a two-stage digestion system solubilises substrate and 

provides immediate precursors for methanogenesis shortening overall 

substrate retention time. 

- Elevation of process temperature stimulates a more rapid degradation and 

higher biomethane yields at short substrate retention. 

 

Improve reactor utilisation (VMP) 

- Reactor utilisation corelates with retention time and loading rates; 

elevated loading and reduced retention time improves volumetric methane 

production rates. 

- Elevated temperature levels compensate for short substrate retention and 

enhance reactor utilization. 

- Increased hydrogen addition to biological methanation systems boosts 

volumetric methane production.  

 

Enrich methane concentrations and attain a biomethane meeting gas grid injection 

standards 

- Two stage digestion of food waste releases major quantities of hydrogen 

sulphide and carbon dioxide during hydrolysis; a biogas rich in methane is 

obtained in the downstream methane reactor. 

- Addition of hydrogen to an in-situ and ex-situ biological methanation system; 

carbon dioxide is reduced to methane by hydrogenotrophic methanogenic 

archaea yielding methane concentrations satisfying requirements for gas grid 

injection. 

 

The detailed conclusions for each chapter of the thesis are as follows:  

Assessment of increasing loading rate on two-stage digestion of food waste 

- Variations in loading rate impact possible solubilisation of substrate in the 

first stage. 

- Highest solubilisation was achieved at an organic loading rate of 

15 g VS L-1 d-1. 
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- Low hydrogen formation in the first stage resulted in minimal energy in the 

hydrolysis gas. 

- More than 99% of the total energy value in biogas originated from the second 

stage. 

- Upstream hydrolysis facilitated much shorter retention times and higher 

loading rates while increasing methane concentration and yield. 

- Methane yield was more dependent on reactor configuration and retention 

time rather than organic loading rate.  

- The two-stage system yielded up to 23% more methane than the single-stage 

system in this setup. 

- The two-stage system produced up to 404 L CH4 kg VS-1 or 15.1 MJ kg VS-1. 

- The methane content of the biogas increased by 14% to 71% in the two-stage 

system as compared to single-stage digestion. 

 

Role of trace elements in single- and two-stage digestion of food waste at high 

organic loading rates 

- Food waste lacked essential nutrients for stable anaerobic digestion. 

- Single- and two-stage reactor performance failed after exceeding an organic 

loading rate of 2.0 g VS L-1 d-1 without TE supplementation under mesophilic 

conditions.  

- Reactor failure was characterised by pH, VFA/TIC, VFA concentrations 

exceeding limits considered stable and reduced SMYs. 

- TE addition of Co, Fe, Mo, Ni and Se restored a stable process. 

- Supplementation of TE did not elevate specific methane yield but allowed an 

increase in loading to 5 g VS L-1 d-1. 

- Upstream release of hydrogen sulphide potentially improves bioavailability 

of TE; however the two-stage system did not show any better resilience to 

nutrient deficiency than the single-stage system. 

 

Increased loading rates and specific methane yields facilitated by digesting grass 

silage at thermophilic temperatures rather than mesophilic  

- Thermophilic grass digestion enabled higher loading and superior methane 

yields as compared to mesophilic digestion.  
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- The resilience at thermophilic temperature at high loading rates was 

attributed to the beneficial viscosity characteristics of increased temperature, 

trace element addition and improved mixing conditions. 

- Elevated pH in thermophilic (as compared to mesophilic) digestion restricts 

increased VFA concentration to its more dissociated (unprotonated) state; 

high VFA concentrations at higher pH with associated buffering capacity are 

less harmful to the cell membrane of the methanogenic archaea, as compared 

to a reactor system close to failure at lower pH (such as in mesophilic 

reactors). 

- Retention times of 25 days and loading rates of 7 g VS L-1 d-1 were feasible 

with TE supplementation at thermophilic temperature conditions.  

- Decreased retention time at enhanced loading rates reduced gas yield.  

- Optimum performance was identified at a loading rate of 4 g VS L-1 d-1 and 

46 days retention time, achieving 86% of the maximum theoretical SMY. 

 

Biological methanation: Strategies for in-situ and ex-situ upgrading in 

anaerobic digestion 

- Increasing hydrogen injection caused elevated methane formation (expressed 

in L CH4 LVR
-1 d-1) and diminishing conversion rates in all applied strategies; 

a maximum MFR of 3.7 L CH4 LVR
-1 d-1 at 96% methane content was feasible 

ex-situ.  

- In-situ methanation requires a balanced system with adequate levels of 

hydrogen in solution to allow both, acetogenic and hydrogenotrophic 

microbes to coexist; short-term maximum methane productivity of 

2.5 L CH4 LVR
-1 d-1 was obtained in-situ. 

- Below carbon dioxide levels of 9%, conversion of carbon dioxide to methane 

drastically diminishes.  

- Connecting in-situ or ex-situ units in series provides a more favourable 

pathway as compared to individual single systems.  

- A concept of a hybrid model combining in- and ex-situ methanation in full 

scale suggests an alternative to conventional upgrading systems.  
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7.3 Recommendations 

The thesis successfully demonstrates optimisation strategies in state-of-the-art 

digestion systems. The cost of biogas production and upgrading can be reduced by 

implementing novel technology into existing biogas infrastructure. In theory, an ideal 

biogas plant continuously delivers maximum substrate throughput and methane 

yields to facilitate peak reactor utilisation, either for CHP use or gas grid injection. 

As a recommendation of this thesis, such a system could possibly comprise a 

pre-acidifying hydrolysis reactor, attached to a digester at elevated temperatures 

stabilised by trace elements and followed by an ex-situ methanation unit.  

The two-stage system allows high loadings at short retention times while maintaining 

excellent substrate degradation leading to higher biogas yields from the same amount 

of substrate. The upstream solubilisation of COD enables the utilisation of a wide 

and more complex substrate spectrum. A retention time of 2-4 days at an OLR of 

15 g VS L-1 d-1 is recommended in the upstream hydrolysis reactor to effectively 

acidify and break down macromolecules into precursors for the methanogens in the 

second reactor. Longer retention times only marginally contribute to a higher degree 

of acidification. This digester choice allows feeding upon arrival on site and 

conservation of highly degradable substrate (such as food waste) in the first reactor; 

this reduces upfront aerobic storage losses typically found in conventional waste 

treating facilities. In this scenario, the first reactor may function as both a 

pre-treatment and storage system for feedstock. This approach essentially decouples 

the closely linked main process steps of substrate delivery and feeding from methane 

production.  

The off-gas of the hydrolysis reactor may be separated from the biogas produced in 

the downstream methane reactor. It comprises significant quantities of hydrogen 

sulphide and thus reduces expenditures on biogas desulphurisation treatments. 

Furthermore, the upstream segregation of hydrogen sulphide in the hydrolysis reactor 

mitigates precipitation of trace metals. Therefore, it potentially increases the 

resilience of the downstream methane formation process to a deficiency in nutrients 

and favours the associated bioavailability of these required elements. At these 

intensified conditions additional trace element supplementation is recommended to 

attain optimum levels in the digestate further stabilising the methane formation 
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process. The level of trace elements in the digestate should range between 0.05-10 

mg L-1 for Co, 5-500 mg L-1 for Fe, 0.0272-5 mg L-1 for Mo, 0.035-10 mg L-1 for Ni 

and 0.056-0.2 mg L-1 for Se to sustain stable fermentation.  

The downstream methane production can be controlled by a variable feeding rate of 

pre-acidified substrate. A pulse feeding regime and the associated temporary increase 

in gas production can facilitate power output to coincide with daily peak electricity 

prices or complement existing sources of renewable electricity generation. The 

retention time in the second reactor depends on the substrate kinetics and associated 

revenue or procurement costs of the substrate. It should remain in the second reactor 

between 12 and 46 days at an OLR between 5 and 7 g VS L-1 d-1. The recommended 

thermophilic temperature level further stimulates microbial activity, facilitates rapid 

degradation, reduces viscosity properties of the digestate and therefore provides 

superior mixing conditions.  

A close monitoring of pH, COD, VFA, alcohols, gas composition and flow rate in 

the first hydrolysis reactor and pH, trace element concentration, VFA, VFA/TIC, 

NH4 levels, gas composition and flow rate in the second methane reactor is advised 

to establish reactor specific operational data and recognise deviations from the norm. 

In case the process shows signs of overload, it is recommended to reduce the feeding 

rate or ultimately introduce alkalinity to induce immediate reactor recovery. 

The biogas from the acidification reactor consists mainly of carbon dioxide resulting 

in a biogas with enhanced methane content in the downstream methane reactor. If the 

energy vector for biogas is biomethane, it is recommended to utilise the hydrolysis 

gas separately (for example methanation processes) or remove the hydrogen sulphide 

in an aerobic filter and release the carbon dioxide into the atmosphere. The upstream 

partial segregation of carbon dioxide facilitates biogas rich in methane in the second 

reactor. An increase of methane concentrations by an average of 14% to levels of 

71% is realistic. Thus, final biogas upgrading is less energy intensive leading to a 

reduction in associated overall capital and operational costs. 

A mismatch between demand and production from fluctuating sources such as wind 

or photovoltaic may be offset by demand driven electricity sourced from biogas 

CHP. Moreover, it is suggested to interconnect biogas and biological power to gas 

into existing energy systems to facilitate a higher penetration of variable renewable 
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energy. Additional, cheap or otherwise curtailed electricity from intermittent 

renewable sources is suggested to be utilised in an electrolyser to produce hydrogen 

in order to facilitate ex-situ biogas upgrading to biomethane. The obtained hydrogen 

has positive effects on the methanogenic process and is advised to be injected at 

equimolar levels into an ex-situ methanation unit. At a recommended rate of 

15 L H2 LVR
-1 d-1 it is coupled with carbon dioxide from the biogas or hydrolysis 

process. Theoretically (if the initial biogas composition was 50% CH4 and 50% CO2) 

the methane production could almost double with carbon dioxide being fully 

removed and thus facilitating a biomethane ultimately satisfying gas grid injection 

standards.  

As an alternative, a combined hybrid concept of in-situ methanation, followed by an 

ex-situ methanation unit suggests another upgrading approach. It is recommended to 

ensure a balanced in-situ system, with adequate levels of hydrogen in solution to 

allow both, acetogenic and hydrogenotrophic microbes to coexist. The 

interconnection of biogas and biological power to gas into existing energy systems 

completes this concept of an integrated biogas systems and enables a change in 

energy vector from electricity to renewable green decarbonised gas. The upgraded 

biogas can be stored and withdrawn from the gas grid and utilised for heat, transport 

and electricity applications. 

 

7.4 Final remarks 

In future smart energy systems integrated biogas systems may function as the 

centrepiece of an interconnected energy system. This will lead to optimised 

consumption and production of electricity or biomethane on demand while 

simultaneously changing the energy vector. The obtained performance characteristics 

of the investigated in-situ and ex-situ methanation strategies show realistic potential 

to be scaled up to novel cascading upgrading systems. They provide storage capacity 

for intermittent renewable energies such as wind or photovoltaic within the gas grid. 

In this scenario, the storage capability of biomethane functions as a "battery" of the 

electricity grid. Furthermore, the dependency on natural gas imports is reduced, 

indigenous renewable energy resources are promoted and energy (including for heat 

and transport) can be decarbonised.  
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7.5 Future research and developments 

Based on the results and conclusions presented in this thesis the following topics 

have been identified for further research:   

 

1. Assess the benefit of a pre-treating hydrolysis reactor in terms of hydrogen 

sulphide removal and associated elevation of trace element bioavailability; 

further investigate the potential as a storage system for feedstock to facilitate 

demand driven biogas/electricity production. 

 

2. Examine further increases in organic loading rate of a two-stage system at 

short substrate retention. A substantial increase in loading at short substrate 

retention facilities cost effective digestion of gate fee associated waste 

streams. 

 

3. Examine the impact of diffuser units on solubilisation of hydrogen in 

digestate for methanation processes. 

 

4. Determine long term adequate hydrogen level for stable in-situ methanation. 

Assess the implications of high viscous digestate on gas residence time, 

capture of ultra-fine gas bubbles and ultimately on gas to liquid mass transfer. 

 

5. Improve the performance of sequential ex-situ methanation by elevating 

temperature and pressure levels.  

 

6. Assess the robustness and potential scalability of sequential cascading ex-situ 

methanation. Propose, price and size a full scale methanation unit based on 

optimum performance findings at elevated temperature and pressure levels.  
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Appendix A. Laboratory analysis methods 

Analysis of trace elements 

All metal elements except selenium were analysed according to DIN EN ISO 11885 

with inductively coupled plasma optical emission spectrometry (ICP-OES); selenium 

was determined according to DIN EN ISO 17294-2 (E29) with inductively coupled 

plasma mass spectrometry (ICP-MS). 

 

Analysis of VFA/TIC ratio 

VFA/TIC (ratio of volatile fatty acids to buffering capacity) was measured according 

to the Nordmann-method using 0.1 N sulphuric acid (Nordmann, 1977); a two point 

titration method (endpoints 5.0 pH and 4.4 pH) used as a guide in assessing the 

stability of the anaerobic digestion process. The titration has been facilitated by a 

Titronic Universal Automatic Titrator. Ratios below 0.3 are indicative of a stable 

process (Drosg, 2013). 

 

Analysis of sCOD 

Soluble chemical oxygen demand (sCOD) was determined using Hach Lange cuvette 

tests (LCK 914) and evaluated by a DR3900 Hach Lange Spectrophotometer. 

Samples were centrifuged at 15,000 rpm for 10 minutes prior to testing. 

 

Analysis of ammonia 

Total ammoniacal nitrogen (TAN) were analysed using Hach Lange cuvette tests 

(LCK 313). The concentration of ammonia in the solution was measured using a 

Hach-Lange DR3900 spectrophotometer.  

 

Analysis of pH 

The pH value was measured using a pH meter (Jenway 3510) and calibrated before 

usage. 

 

Analysis of volatile and total solids 

The total solids and volatile solids were determined according to Standard Methods 

2540 G. The TS contents were determined by drying the samples at 105 °C for 24 h. 

VS contents were analysed by burning the dried samples two hours at 550 °C. 
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Biogas flow 

Biogas flow from each reactor was measured by using a water displacement 

mechanism. A certain amount of gas passes through a tipping mechanism, displaces 

the volume of water in a pre-defined chamber till it floats and releases the gas. Every 

release generates a digital impulse, which represents the displaced gas volume in the 

chamber. The volume of the gas chamber was validated by establishing means of 10 

consecutive syringe strokes, considering only the actual volume of gases entering the 

chamber. The measured biogas volume was adjusted to the volume at standard 

temperature (273K) and pressure (1013mbar).  

Gas flows were also measured by using a Ritter drum type gas meter TG5/5 and 

digital mass flow meters Voegtlin compact regulator GCR. The measured gas 

volume was adjusted to the volume at standard temperature (273 K) and pressure 

(1013 mbar). 

 

Elemental analysis 

Elemental analysis samples were analysed in triplicate for C, H, N and O  

with an elemental analyser using a thermal conductivity detector (Exeter Analytical,  

CE 440 Model). The samples were analysed in accordance with the SOP provided by 

the manufacturer Exeter Analytical. The C/N ratio of samples was calculated as the 

elemental carbon content divided by the elemental nitrogen content. 

 

Gas chromatographic analysis of biogas composition  

Biogas composition was analysed for O2, N2, CH4, H2 and CO2 using a gas 

chromatograph (Hewlett Packard HP6890) equipped with a dual column system 

comprising a Hayesep Q and Molsieve 13x (Mesh range 80-100). The injected gas 

volume was 1 μL with a split ratio of 10:1. The injector temperature was set at 

200 °C. Argon was used as the carrier gas at a constant flow of 15 mL min-1. The 

inlet is maintained at 80 ⁰C. The column temperature was initially maintained at 

60 °C for 4 min. The slope of the temperature gradient was 10 ⁰C min-1 until 

reaching 80 ⁰C. The oven was maintained at 80 ⁰C for 4.5min. The gases entered a 

thermal conductivity detector (TCD) detector operating at 250 ⁰C at a reference flow 
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of 30 mL min-1. Certified gas standards were employed for the standardization of 

hydrogen, methane and carbon dioxide, based on a calibration forced through zero. 

 

Gas chromatographic analysis of volatile fatty acid, lactic acid and alcohols  

The concentrations of individual volatile fatty acids were analysed with gas 

chromatography (Hewlett Packard HP6890) using a NukolTM fused silica capillary 

column (30 m × 0.25 mm × 0.25 μm) and a flame ionization detector. Hydrogen was 

used as a carrier gas. The inlets were heated to 200 ⁰C. Sample sizes of 10 μL were 

injected. The oven starts with a temperature of 75 ⁰C (maintained for 1 minute). It is 

further raised by 16 ⁰C min-1 to reach 185 ⁰C at 7.88 min; this marks the end of the 

run. Solutes exiting the column during the run enter the FID detector (250 ⁰C). Three 

standard solutions containing 50, 250, 500 and 1000 mg l−1 of acetic, propionic, 

(iso-) butyric, (iso-valeric) acids were used for VFA calibration. A standard solution 

was run within every sampling array to cross validate results. 

Lactic acid and ethanol were determined by high performance liquid chromatography 

(HPLC) using an Agilent 1200 HPLC system with a refractive index detector. An 

Agilent Hi-Plex H 300x7.7mm Column is used with 0.01N H2SO4 as the elution 

fluid, at a flow rate of 0.6ml/min. The temperature of the column is maintained at 

65°C. 20 μL of sample was injected.  

 


