

Università degli Studi di Padova

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

The Economic Impact of Growing Geographical Indications: An Impact Assessment Using FADN Data

Original Citation:

Availability: This version is available at: 11577/3306444 since: 2019-08-26T10:52:21Z

Publisher:

Published version: DOI:

Terms of use: Open Access

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

(Article begins on next page)

The Economic Impact of Growing Geographical Indications: An Impact Assessment Using FADN Data

8th AIEAA Conference "Tomorrow's Food: Diet transition and its implications on health and the t.), environment"

Cei L., Defrancesco E. (Università degli Studi di Padova – TESAF Dept.), Stefani G. (Università degli Studi di Firenze – DISEI Dept.)

Introduction

The production of a geographical indication (GI) may be a tool for **fostering farms' economic results**. The ability of GI products to improve farmers' revenues is also advocated by European Regulations. Few studies have so far dealt with the issue in a systematic way. Our aim is to understand, using an **impact analysis framework**, whether the use of a GI label adds value to the farm's production.

GIs as a farmer's choice

The first step in our impact analysis is to understand which factors influence **the choice of farmers to certify** their production as a GI, instead of selling it as a "standard" version. Based on the literature on the topic, we built a model representing the profitability of the "standard" and GI version of the product. A farmer will chose to certify if the (expected) profitability of the latter is higher the (known) profitability of the former.

$$\pi_{i,S} = p_S \cdot q_{i,S} - c(q_{i,S}, \theta_{i,S}, \eta_i, \theta_{i,S} \cdot \eta_i) + a_i$$

$$\hat{\pi}_{i,GI} = p_{GI} \cdot \hat{q}_{i,GI} - c(\hat{q}_{i,GI}, \hat{\theta}_{i,GI}, \eta_i, \hat{\theta}_{i,GI} \cdot \eta_i) + \hat{\alpha}_{GI} \cdot \hat{q}_{i,GI} + \frac{F_{GI}}{n}$$

π : profit per hectare	heta: product technology	F: pro
<i>p</i> : price	parameter	<i>n</i> : nu
q: quantity of production	η : farm's efficiency	S: sta
per hectare	a: promotion cost (individual)	<i>GI</i> : GI
<i>c</i> : cost function	α : certification cost	<i>i</i> : i th f

F: promotion cost (common) n: number of GI producers S: standard product GI: GI product *i*: ith farm

fr

Sample and variables

We used data from the **Italian FADN database**. Specifically, we considered 5 GI products: Nocciola Piemonte PGI, Mela Val di Non PDO, Toscano PGI, Riviera Ligure PDO and Umbria PDO. The treatment is a **binary variable** indicating whether a farm produce the GI or not. Control units are farms located in the **same region** (province for Mela Val di Non) and producing the **same product** without the GI certification.

GI product		Nocciola Piemonte		Mela Val di Non PDO			EStim			
		PGI (hazelnut)			(apple)			To contro		
		ATT	Т	T/C	ATT	Т	C/T	ir		n n
Nearest Ne	ighbor	0.40	21	1	0.04	78	1	inverse p		
Caliper	$c^2 = 0.5$	0.30	18	6	0.11	70	9	characteri nature of added per (ATT) is o		
	$c^2 = 1$	0.37	19	12	0.15	77	9			
Coarsened Matching	Exact	0.40	17	5	0.08	71	3			
Inverse Pro Weighting	bability	0.24	22	29	0.10	82	5			
GI product		Toscano PGI		Riviera Ligure PDO			Umbria PDO			
		(olive oil)			(olive oil)			(olive oil)		
		ATT	Т	T/C	ATT	Т	T/C	ATT	Т	С
Nearest Ne	ighbor	-0.14	70	1	0.25	35	1	-0.04	21	
Caliper	$c^2 = 0.5$	-0.18	39	6	0.26	30	11	0.07	8	
	$c^2 = 1$	-0.10	45	8	0.27	30	23	0.22	11	1
Coarsened Matching	Exact	0.01	50	7	0.22	29	5	0.16	14	1
Inverse Pro Weighting	bability	-0.10	70	22	0.27	35	26	0.13	21	6

Interesting factors

The factors affecting the farmer's certification decision can be divided in three classes: those modifying the **actual values** of the model, those influencing the **farmer's expectations** and those altering the farmer's **risk attitude**. With the factors identified we draw a **directed acyclic graph**, to better understand the causality relationships between variables and to identify the covariates to control for.

Estimation strategy

C/T 1

8

14

15

64

To control for **observed heterogeneity** we used three matching strategies and an inverse probability weighting. The use of different methods allows to check for obustness. **Unobserved heterogeneity** deriving from farmer's unknown characteristics (link to tradition, innovativeness...) is dealt with exploiting the panel nature of FADN data using a difference-in-difference. The outcome variable (value added per hectare) was used in its logarithmic form. The average treatment effect ATT) is obtained as:

Conclusion

The GI label is able, in some cases, to **add value** to farm's products, as expected by most theoretical studies as well by the EU regulations. However, in line with other results in the literature, the GI **does not automatically guarantee** economic improvements for the producer. Identifying the **differences** between different supply chains may allow to understand the variability of results.

Results

Different matching methods use different numbers of treated units (T) and different control-treated ratios (C/T). However, in most cases, results are quite **robust** to the use of different methods. Methods with medium-small C/T are to be preferred. A **positive effect** of the certification on farms value added per hectare is observed for three GIs over five: Nocciola Piemonte PGI, Mela Val di Non PDO and Riviera Ligure PDO. The certification **does not significantly add value** to the oil production of Umbria PDO, while it seems to have even a **negative effect** in the case of Tuscany olive oil.