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Abstract. In 1960 Fuchs posed the problem of characterizing
the groups which are the groups of units of commutative rings. In
the following years, some partial answers have been given to this
question in particular cases.

In this paper we address Fuchs’ question for finitely generated
abelian groups and we consider the problem of characterizing those
groups which arise in some fixed classes of rings C, namely the
integral domains, the torsion free rings and the reduced rings.

Most of the paper is devoted to the study of the class of torsion-
free rings, which needs a substantially deeper study.

1. Introduction

1.1. General introduction to the problem. The study of the group
of units of a ring is an old problem. The first general result is the
classical Dirichlet’s Unit Theorem (1846), which describes the group of
units of the ring of integers OK of a number field K: the group of units
O∗K is a finitely generated abelian group of the form C2n × Zg where
n ≥ 1 and g is determined by the structure of the field K.

In 1940 G. Higman discovered a perfect analogue of Dirichlet’s Unit
Theorem for a group ring ZT where T is a finite abelian group: (ZT )∗ ∼=
±T × Zg for a suitable explicit constant g.

In 1960 Fuchs in [Fuc60, Problem 72] posed the following problem.

Characterize the groups which are the groups of all units in a
commutative and associative ring with identity.

In the subsequent years, this question has been considered by many
authors. A first result is due to Gilmer [Gil63], who considered the
case of finite commutative rings, classifying the possible cyclic groups
that arise in this case. An important contribution to the problem
can be derived from the results by Hallett and Hirsch [HH65], and
subsequently by Hirsch and Zassenhaus [HZ66], combined with [Cor63].
From their study it is possible to deduce that if a finite group is the
group of units of a reduced and torsion free ring, then it must satisfy
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some necessary conditions, namely, it must be a subgroup of a direct
product of groups of a given family.

Later on, Pearson and Schneider [PS70] combined the result of Gilmer
and the result of Hallett and Hirsch to describe explicitly all possible
finite cyclic groups that can occur as A∗ for some ring A.

Recently, Chebolu and Lockridge [CL15] were able to classify the
indecomposable abelian groups which occur as groups of units of a ring.

In the papers [DCD18a] [DCD18b] R. Dvornicich and the author
studied Fuchs’ question for finite abelian groups and for a general ring
of any characteristic, obtaining necessary conditions for a group to be
realizable, and producing infinite families of both realizable and non-
realizable groups. Moreover, they got a complete classification of the
group of units realizable in some particular classes of rings (integral
domains, torsion-free rings and reduced rings).

The study of groups of units has been investigated also for non
abelian groups. Much has been said about the units of group rings.
Recently, the finite dihedral groups and the simple groups that are re-
alizable as the group of units of a ring have been classified (see [CL17]
and [DO14]).

1.2. The questions studied in the paper. In this paper we consider
Fuchs’ question for finitely generated abelian groups and we consider
the problem of characterizing those groups which arise in some fixed
classes of rings C, namely the integral domains, the torsion free rings
and the reduced rings.

This question is twofold: on the one hand, we have to establish
which finite abelian groups T (up to isomorphism) occur as the torsion
subgroup of A∗ when A varies in C. On the other hand, we have to
determine the possible values of the rank of A∗ when (A∗)tors ∼= T .
Therefore, the situation becomes substantially different from the case
when the group of units is finite and abelian, which has been studied
already in [DCD18a] and [DCD18b].

1.3. Integral domains: result and idea of proof. In Section 3 we
focus on the study of groups of units of integral domains. Our main
tools are Dirichlet’s Unit Theorem and the properties of cyclotomic
extensions. The principal result is the following theorem in which we
collect the results of Theorems 3.1 and 3.4.

Theorem A: The finitely generated abelian groups that occur as
groups of units of integral domains are:

i) the groups of the form C2n × Zg, with n ∈ N, g ≥ φ(2n)
2
− 1, for

domains of characteristic zero;
ii) the groups of the form F∗pn×Zg with n ≥ 1 and g ≥ 0, for domains

of finite characteristic.
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As a particular case we get the characterization of the finite abelian
groups which are realizable as group of units of an integral domain (see
Corollary 3.2).

Finally, in Proposition 3.3 we describe the finitely generated abelian
groups that occur as group of units of an integral domain A which is
integral over Z.

1.4. Torsion-free rings: result and idea of proof. The most rel-
evant part of the paper is the classification of the finitely generated
abelian groups of units realizable with torsion-free rings (Sections 4
and 5). We remark that the study of the group of units of torsion free
rings has become classical in the literature (see the aforementioned pa-
pers by Hallett, Hirsch and Zassenhaus) and that the finitely generated
abelian group rings belong to this class.

In Theorem 5.1 we prove the following
Theorem B: Let T be a finite abelian group of even order. Then

there exists an explicit constant g(T ) depending on T (see (12) for the
explicit value of g(T )) such that the following holds: the group T ×Zr
is the group of units of a torsion free ring if and only if r ≥ g(T ).

The proof is rather long and requires many steps. The first step is
the reduction to the study of the subring of A generated over Z by the
torsion units. This ring has the same torsion units as A and is finitely
generated and integral over Z. Restricting to study these rings, in
Proposition 4.2 we show that the Q-algebra A⊗ZQ is semisimple and is
a finite product of cyclotomic fields (for short, a cyclotomic Q-algebra).
The next step is the study of the units of the subrings of A of type Z[α],
with α a torsion unit of A, in some particular cases (see Propositions
4.6 and 4.7). Once these preliminary results are established, we pass
to the proof of the theorem, which requires two parts.

On the one hand, we have to show that if A is a torsion-free ring
with (A∗)tors ∼= T , then rank(A∗) ≥ g(T ). This is done through the
analysis of the possible maximal order of T -admissible cyclotomic Q-
algebras (namely, cyclotomic Q-algebras which could admit a subring
with (A∗)tors ∼= T ). This gives a first lower bound on the rank of the
group of units (Proposition 5.5). This “natural” bound works only
if the 2-Sylow subgroup of T has “enough” cyclic factors of minimal
order in its decomposition. If not, the actual bound is bigger then the
natural one: this is described in Proposition 5.6.

On the other hand, for each T we have to construct a torsion-free ring
A with A∗ ∼= T × Zg(T ): the construction of orders with a bigger rank
can then be obtained via localization. In the previous part for a given
T we have identified a maximal order MT of a cyclotomic Q-algebra
with rank(M∗

T ) = g(T ). We construct A as an order of MT , hence
rank(A) = rank(M∗

T ) = g(T ) (see Lemma 4.4). The group (M∗
T )tors

contains a subgroup isomorphic to T and it differs from T only in the
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2-Sylow subgroup: our task is to construct an order with a 2-Sylow as
small as possible.

We note that also in this case the results of [DCD18b] on finite
abelian groups of units are recovered as a corollary of this more general
result.

1.5. Reduced rings: result and idea of proof. In Section 6 we
deal with the units of reduced rings.

For a non reduced ring R with nilradical N , it is known that the R∗

is an extension of (R/N )∗ by 1+N (see Proposition 6.1). So the study
of units of reduced rings is also a step towards the understanding of
the units of general rings.

In Theorem 6.4 we prove the following.
Theorem C: The finitely generated abelian groups that occur as

group of units of a reduced ring are those of the form

k∏
i=1

F∗
p
ni
i
× T × Zg

where k, n1, . . . , nk are positive integers, {p1, . . . , pk} are not necessarily
distinct primes, T is any finite abelian group of even order and g ≥
g(T ).

The proof is achieved by using a result by Pearson and Schneider
[PS70, Prop. 1] which allows one to split a generic reduced ring A as a
direct sum A1 ⊕ A2 where A1 is finite and A2 is torsion-free. Putting
together our previous results on torsion-free rings with some properties
of the finite rings we get the classification of the groups of units in this
case.

Acknowledgement: I wish to thank Cornelius Greither for his careful
reading of the paper and for suggesting to me stylistic improvements
and a refinement of the proof of Proposition 4.2. I wish also to warmly
thank the anonymous referees for their careful reading of the paper.
Their suggestions have been fundamental for improving the readability
of the paper.

2. Notation and preliminary results

Let A be a ring with 1: throughout the paper we will assume that its
group of units A∗ is finitely generated and abelian. Let (A∗)tors denote
its torsion subgroup and let gA be its rank so that

A∗ ∼= (A∗)tors × ZgA .
Let A0 be the fundamental subring of A, namely A0 = Z or Z/nZ

depending on whether the characteristic of A is 0 or n. It is immediate
to check that the ring A0[A

∗] has the same group of units as A. Since
we are interested in the classification of the possible groups of units, we
can assume without loss of generality that A is a ring of type A0[A

∗].
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In particular, we will always assume that A is commutative and that
it is finitely generated over A0.

Let B the subring of A generated over A0 by the torsion units of A,
namelyB ∼= A0[(A

∗)tors]. It is important to note that all the elements of
(A∗)tors are integral over A0, since they have finite order. This ensures
that B is commutative, finitely generated and integral over A0.

Lemma 2.1. B∗ ∼= (A∗)tors × ZgB and gB ≤ gA. Moreover, if the
characteristic of A is positive, then B∗ = (A∗)tors.

Proof. B is a subring of A, hence B∗ < A∗: in particular B∗ is finitely
generated and gB ≤ gA. On the other hand, (A∗)tors < (B∗)tors <
(A∗)tors and equality holds.

Moreover, when the characteristic of A0 is positive, then B, being
integral and finitely generated over A0, is itself finite, so B∗ = (A∗)tors.

�

Remark 2.2. The previous lemma shows that all possible torsion parts
occur already when restricting to consider rings which are generated
over A0 by a finite number of integral elements verifying an equation
of type xn − 1 for some n.

The lemma also shows that there is a completely different behavior
between the characteristic zero and positive characteristic rings. In
fact, a finite abelian group T can be isomorphic to the torsion subgroup
of the group of units of a ring A of positive characteristic only if it is
also the group of units of a finite ring and all the results of [DCD18a]
apply in this case. In particular, not all finite abelian groups can occur.

Instead, when A0 = Z it will turn out that the torsion subgroup of A∗

can be any finite abelian groups of even order, whereas this is not true
if we also require that A∗ is finite (see Theorem 5.1 and [DCD18b]).
Nevertheless, to determine the minimum rank g(T ) such that T ×Zg(T )
is the group of units of some ring A, it is sufficient to consider the
finitely generated integral extensions of Z.

In the following subsections we collect some classical results we will
need in the paper.

2.1. Units of Laurent polynomials. LetR be a reduced ring, namely
a ring without non-zero nilpotents. Then the polynomial ring R[x] is
reduced and has the same units as R and the ring of Laurent polyno-
mials R[x, x−1] has group of units 〈R∗, x〉. Inductively we get that the
group of units of the ring of Laurent polynomials in k indeterminates
R[x1 . . . , xk, x

−1
1 , . . . , x−1k ] is isomorphic to R∗ × Zk.

2.2. The Chinese Remainder Theorem. Let R be a commutative
ring with 1 and let I, J ⊆ R be ideals. Then the map

ψ : R→ R/I ×R/J
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defined by r 7→ (r+ I, r+J) is a ring homomorphism with kernel I ∩J
and image {(r + I, s + J) | r − s ∈ I + J}. The well known Chinese
Remainder Theorem (in the following CRT) ensures that ψ is surjective
if and only if I + J = R.

More generally, if I1, . . . , In are ideals of R we can define the homo-
morphism

ψ : R→ R/I1 × · · · ×R/In
by ψ(r) = (r + I1, . . . , r + In). We will refer to the map ψ or to the
map induced by ψ on R/ ∩ni=1 In as to the CRT map.

In the following we will consider the CRT map when R = Z[x],
I = (f(x)) and J = (g(x)). If f(x) and g(x) are coprime polynomials,
then I ∩ J = IJ = (f(x)g(x)), so the CRT map

ψ : Z[x]/(f(x)g(x))→ Z[x]/(f(x))× Z/(g(x))

is an injection and it is an isomorphism if and only if (f(x), g(x)) =
Z[x].

2.3. Dirichlet’s Unit Theorem. Let K be a number field, and let
OK be its ring of integers; the classical Dirichlet’s Theorem describes
the groups of units of all orders of K (we recall that an order of K is
a subring of OK which spans K over Q).

Proposition 2.3 (Dirichlet’s Unit Theorem). Let K be a number field
such that [K : Q] = n and assume that among the n embeddings of K
in Q̄, r are real (namely map K into R) and 2s are non-real (n = r+2s).
Let R be an order of K. Then

R∗ ∼= T × Zr+s−1

where T is the group of the roots of unity contained in R.

For a proof see [Neu99, Ch.1,§12].

2.4. Cyclotomic polynomials. For n ≥ 1 let ζn = e2πi/n, then ζn is
a primitive n-th root of unity. Denote by Φn(x) its minimal polynomial
over Q: as it is well known, Φn(x) ∈ Z[x] and

Φn(x) =
∏

j=1,...,n
(j,n)=1

(x− ζjn).

Moreover, Q(ζn) is a Galois extension of Q of degree φ(n), where φ is
the Euler totient function, and its ring of integers is Z[ζn].

The roots of unity contained in Z[ζn] are the n-th roots of unity if
n is even and the 2n-roots of unity if n is odd and by Dirichlet’s Unit

Theorem Z[ζn]∗ ∼= 〈−ζn〉 × Z
φ(n)
2
−1 for each n ≥ 3. In the following

we will use the notation (φ(n)
2
− 1)∗ for the rank of Z[ζn]∗, namely,

(φ(n)
2
− 1)∗ = φ(n)

2
− 1 for n ≥ 3 and (φ(n)

2
− 1)∗ = 0 for n = 1, 2. We

will omit the ∗ when n > 2.
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In this paper we will need the following classical property of cyclo-
tomic fields and cyclotomic polynomials. Most of the results could be
generalized, but we give only those necessary for our purposes.

Lemma 2.4. .

(1) Suppose that n has at least two distinct prime factors. Then
1− ζn is a unit of Z[ζn] and

Φn(1) =
∏

j=1,...,n
(j,n)=1

(1− ζjn) = 1.

(2) For p prime and e > 0, then 1− ζpe is a generator of the prime
ideal of Z[ζpe ] lying over (p),

pZ[ζpe ] = (1− ζpe)φ(p
e)

and
Φpe(1) =

∏
j=1,...,pe

(j,pe)=1

(1− ζjpe) = p.

Proof. For part (1) see [Was87, Lemma 2.8]. For part (2) see [Lan94,
IV, 1, Thm 1]. �

Lemma 2.5. Let l > 1 and let Ψn,l(x) denote the minimal polynomial
of ζn over K = Q(ζl).

(1) Suppose that n has at least two distinct prime factors. Then
the algebraic integer Ψn,l(1) is a unit.

(2) If n = pa, where p is a prime and a > 0, and l = l1p
b, with

(l1, p) = 1 and 0 ≤ b ≤ a, then Ψpa,l = Ψpa,pb and Ψpa,l(1) is a
generator of the prime ideal of Z[ζpb ] lying over (p).

Proof. Ψn,l(x) divides Φn(x), hence Ψn,l(1) is a unit since it divides the
unit Φn(1) (this actually holds for any number field K).

For part (2) note that Ψpa,l(x) = Φpa if b = 0 and Ψpa,l(x) =

Ψpa,pb(x) = xp
a−b − ζpb if b > 0 (a divisibility relation is obvious and

equality follows from a degree argument). It follows that Ψpa,l(1) is
equal to p or 1 − ζpb according to b = 0 or b > 0, namely it is a
generator for the prime ideal of Z[ζpb ] lying over (p). �

Lemma 2.6. Let n > m ≥ 1. The algebraic integer Φn(ζm) is a unit
in Z[ζm] if n/m is not a prime power.

In the case when n/m = pa for a prime p and an integer a > 0, then
Φn(ζm) is associated to p.

Proof. The first part of the proof is [BHPM18, Corollary 8] (see also
[Apo70]).

For the second part, we note that

Φn(ζm) =
∏

j=1,...,n
(j,n)=1

(ζm − ζjn) =
∏

j=1,...,n
(j,n)=1

ζm(1− ζj−pan ).
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From Lemma 2.4 we have that (1 − ζj−p
a

n ) is invertible if n
(n,j−pa) is

not a prime power. On the other hand, n
(n,j−pa) is a prime power only

if it is a power of p and j ≡ pa (mod m1), where m = pbm1 and
(m1, p) = 1. Taking into account that (j, n) = 1, an easy computation
shows that there are φ(pa+b) values of j with this property. For these
values 1− ζj−pan is a generator of the ideal (1− ζpa+b), namely

(Φn(ζm)) = (1− ζpa+b)φ(p
a+b) = pZ[ζpa+b ].

�

In Sections 4 and 5 we will need to study the ring

Z[x]/(Φm1(x) . . .Φmr(x))

when m1, . . . ,mr are distinct positive integers. Denote by ψ the CRT
map, and, by abuse of notation, also its composition with the isomor-
phism given by the identifications Z[x]/(Φmi(x)) ∼= Z[ζmi ], namely

ψ : Z[x]/(Φm1(x) · · ·Φmr(x))→
r∏
i=1

Z[x]/(Φmi(x)) ∼=
r∏
i=1

Z[ζmi ]. (1)

Then ψ is always an injection and we ask when it is also surjective.
The following lemma gives the answer for r = 2, in Proposition 2.8

we will give the general answer.

Lemma 2.7. Let n > m≥1. The following are equivalent:

i) ψ : Z[x]/(Φm(x)Φn(x))→ Z[ζm]× Z[ζn] is an isomorphism.
ii) (Φm(x),Φn(x)) = Z[x];

iii) Φn(ζm) is invertible;
iv) n/m is not a prime power.

Proof. (i) is equivalent to (ii) by the CRT.
The equivalence between (ii) and (iii) follows from the following chain

of isomorphisms

Z[x]

(Φm(x),Φn(x))
∼=

Z[x]/(Φm(x))

(Φm(x),Φn(x))/(Φm(x))
∼=

Z[ζm]

(Φn(ζm))
.

Finally, Lemma 2.6 gives the equivalence between (iii) and (iv). �

Proposition 2.8. Let r ≥ 2 and m1 < · · · < mr be distinct positive
integers. The following are equivalent

a) the CRT map
ψ : Z[x]/(Φm1(x) · · ·Φmr(x))→

∏r
i=1 Z[x]/(Φmi(x)) ∼=

∏r
i=1 Z[ζmi ]

is an isomorphism;
b) for all 1 ≤ i < j ≤ r the ratio mj/mi is not a prime power.

Proof. For each t with 2 ≤ t ≤ r, consider the CRT map’s

ψt : Z[x]/(Φm1(x) · · ·Φmt(x))→
t∏
i=1

Z[x]/(Φmi(x))
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and

ρt : Z[x]/(Φm1(x) · · ·Φmt(x))→ Z[x]/(Φm1(x) · · ·Φmt−1(x))×Z[x]/(Φmt(x)).

With this notation, we have the following commutative diagram

Z[x]/(
t∏
i=1

Φmi(x))
t∏
i=1

Z[x]/(Φmi(x))

Z[x]/(
t−1∏
i=1

Φmi(x))× Z[x]/(Φmt(x))

ρt

ψt

ψt−1×id (2)

namely,
ψt = (ψt−1 × id) ◦ ρt. (3)

We will prove that (a) is equivalent to (b) by induction on r.
For r = 2 the equivalence is given in Lemma 2.7. We now assume

that r > 2 and that the equivalence holds in the case of r − 1 integers
m1 < · · · < mr−1 and we prove it for m1 < · · · < mr−1 < mr.

Assume (a), so ψ = ψr is an isomorphism. From equation (3) we
get that ψr−1× id is surjective; this ensures that also ψr−1 is surjective
and hence it is an isomorphism since it is always injective. Therefore,
by inductive hypothesis we get that mj/mi is not a prime power for
1 ≤ i < j ≤ r − 1 and we are left to prove that mr/mi is not a
prime power for 1 ≤ i < r. We note that since both ψr and ψr−1 are
isomorphisms, equation (3) ensures that also the CRT map ρr is an
isomorphism so (Φm1(x) · · ·Φmr−1(x),Φmr(x)) = Z[x], which in turns
implies (Φmi(x),Φmr(x)) = Z[x] for each 1 ≤ i < r. By Lemma 2.7 the
last condition ensures that, for each i, the ratio mr/mi is not a prime
power, proving (b).

Conversely, assume that (b) holds, then by applying the inductive
hypothesis to m1 < · · · < mr−1 we get that ψr−1 is an isomorphism.
On the other hand, since mr/mi is not a prime power, by Lemma 2.7
we get (Φmi(x),Φmr(x)) = Z[x] for all i = 1, . . . , r − 1, so there exist
ai(x), bi(x) ∈ Z[x] such that

ai(x)Φmi(x) + bi(x)Φmr(x) = 1.

Multiplying the r − 1 equations we get

a(x)Φm1(x) · · ·Φmr−1(x) + b(x)Φmr(x) = 1,

for some a(x), b(x) ∈ Z[x], or equivalently

(Φm1(x) . . .Φmr−1(x),Φmr(x)) = Z[x].

This ensures that the CRT map

ρr : Z[x]/(Φm1(x) . . .Φmr(x)) ∼= Z[x]/(Φm1(x) . . .Φmr−1(x))×Z[x]/(Φmr(x))

is an isomorphism and using equation (3) we can conclude that also ψr
is an isomorphism, proving (a). �
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We conclude this section with an arithmetical lemma which will be
useful in Proposition 5.5.

Lemma 2.9. Let q1, . . . , qk be pairwise distinct odd primes and let
e1, . . . ek > 0. Then, for δ ≥ 1

φ(2δqe11 · · · q
ek
k )

2
− 1 ≥

k∑
i=1

(
φ(2δqeii )

2
− 1) (4)

and, if δ ≥ 2,

φ(2δqe11 · · · q
ek
k )

2
− 1 ≥

k∑
i=1

(
φ(2δ−1qeii )

2
− 1) +

φ(2δ)

2
− 1. (5)

Proof. Both inequalities are trivial for k = 0, so let k ≥ 1. Since
φ(qeii ) ≥ 2 for all i, the obvious relation mn ≥ m + n for all m,n ≥ 2,
gives

φ(qe11 · · · q
ek
k ) =

k∏
i=1

φ(qeii ) ≥
k∑
i=1

φ(qeii ),

from which we get

φ(2δqe11 · · ·q
ek
k ) = 2δ−1φ(qe11 · · ·q

ek
k ) ≥

k∑
i=1

2δ−1φ(qeii ) =
k∑
i=1

φ(2δqeii ) (6)

and (4) follows.
On the other hand, if δ ≥ 2

φ(2δqe11 · · · q
ek
k ) = φ(2δ−1qe11 · · · q

ek
k ) + φ(2δ−1qe11 · · · q

ek
k );

using (6) on both summands and then the trivial estimate φ(2δ−1qeii ) ≥
φ(2δ), we get

φ(2δqe11 · · · q
ek
k ) ≥

k∑
i=1

φ(2δ−1qeii )+
k∑
i=1

φ(2δ−1qeii ) ≥
k∑
i=1

φ(2δ−1qeii )+kφ(2δ)

and (5) follows a fortiori. �

3. Integral domains

In this section we characterize the finitely generated groups which
occur as group of units of an integral domain of any characteristic
and in Proposition 3.3 those which are the group of units of integral
extensions of Z.

Theorem 3.1. The finitely generated abelian groups that occur as
groups of units of integral domains of characteristic zero are the groups

of the form C2n × Zg, with n ∈ N, g ≥ φ(2n)
2
− 1.
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Proof. Suppose A is an integral domain of characteristic zero whose
group of units A∗ is finitely generated, so that A∗ ∼= T × ZgA where T
denotes the (finite) torsion subgroup. Let K be the quotient field of
A, then T is a finite multiplicative subgroup of K∗, hence it is a cyclic
group.

As noted in Section 2, the ring B = Z[T ] has group of units iso-
morphic to T × ZgB with gB ≤ gA. Hence, to prove that A∗ has the
required form it is enough to restrict to the case when A = B, namely
it is finitely generated and integral over Z. In this case, its quotient
field K is a number field and A is an order of K. By Dirichlet’s Unit
Theorem A∗ ∼= T × Zr+s−1 where T is the (cyclic) group of roots of
unity contained in A and r and 2s are the number of real and non-real
embeddings of K, respectively. Clearly, |T | is even since −1 ∈ A∗. Let
T = 〈ζ2n〉, then Z[ζ2n] ⊆ A, so Q(ζ2n) ⊆ K. For n = 1 we have nothing
to prove. If n > 1, then all embeddings of K in Q̄ must be non-real,

so r = 0 and 2s = [K : Q]. Since Q(ζ2n) ⊆ K then φ(2n)
2
| s so the rank

of A∗ is g = s− 1 ≥ φ(2n)
2
− 1.

As to the converse, let n ≥ 1 and let K = Q(ζ2n). Then O∗K ∼=
C2n × Z

φ(2n)
2
−1 and for any k ≥ 1 the ring of Laurent polynomials in k

indeterminates OK [x1, . . . , xk, x
−1
1 , . . . , x−1k ] has group of units isomor-

phic to C2n × Z
φ(2n)

2
−1+k. �

As a corollary we recover the characterization of the finite abelian
groups which are groups of units of an integral domain.

Corollary 3.2. The finite abelian groups that occur as groups of units
of integral domains of characteristic 0 are the cyclic groups of order 2,4,
or 6.

Proof. From Theorem 3.1 we know that if A is a domain such that A∗

is finitely generated, then A∗ ∼= C2n × Zg with g ≥ (φ(2n)
2
− 1)∗, so we

can have g = 0 only for n = 1, 2, 3. �

In Theorem 3.1 we have seen that among the rings with finitely
generated group of units and torsion subgroup isomorphic to C2n, the
ring A = Z[ζ2n] has the minimum possible rank. The example of rings
whose group of units has the same torsion subgroup, but a greater
rank are constructed in the theorem by localizing polynomial rings.
In particular, the rings of our examples are no longer integral over Z.
Actually, only some of these groups can also be obtained with units
that are integral over Z. The following proposition characterizes these
cases.

Proposition 3.3. The finitely generated abelian groups that can be
realized as group of units of an integral domain A, with A integral
over Z, are the groups of the type C2n × Zg, with n ≥ 1, g ≥ 0 and
φ(2n) | 2(g + 1).
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Proof. Up to replacing A with Z[A∗] we can assume that its quotient
field K is a number field and that A is an order of K. Then the
necessity of the condition follows from Theorem 3.1 and from its proof,
where it is shown that φ(2n) divides 2s = 2(g + 1).

As for the converse, we have to construct examples of orders in num-
ber fields realizing all the listed groups. One possible construction is
the following.

For n = 1 and d ≥ 1, let m be any integer such that 2d|φ(m). This
condition guarantees that the field Q(ζm + ζ−1m ) contains a subfield Kd

of degree d over Q. Cleary, Kd is totally real, so r = d, s = 0 and
the only roots of unity in Kd are ±1, hence the group of units of the
integers of Kd is isomorphic to C2 × Zd−1.

Consider now the case n > 1. Let d ≥ 1 and let p be a prime such
that

p ≡ 1 (mod 2d) ; (7)

since there are infinitely many such primes (see for example [Was87,
Corollary 2.11] or use Dirichlet’s Prime Number Theorem) we can as-
sume p - n. The congruence condition guarantees that inside the cyclo-
tomic extension Q(ζp) there is a (unique) subextension, Kd,p, of degree
d over Q, which is indeed contained in the real subfield Q(ζp + ζ−1p ).
Put L = Ld,p,n = Kd,pQ(ζ2n) and denote by OL = OLd,p,n its ring of
integers. We claim that

O∗L ∼= C2n × Z
dφ(2n)

2
−1.

In fact, (O∗L)tors = 〈ζ2n〉 since ζ2n ∈ O∗L, ζp 6∈ O∗L.
To compute the rank of O∗L, we note that Q(ζp) is arithmetically

disjoint from Q(ζ2n) since (p, 2n) = 1, hence also Kd,p is arithmetically
disjoint from Q(ζ2n) and [L : Q] = [Kd,p : Q][Q(ζ2n) : Q] = dφ(2n).
Moreover, L is Galois over Q and all its embeddings are non-real, so

the rank of its group of units is s− 1 = dφ(2n)
2
− 1.

�

To complete the description of the finitely generated groups of units
of integral domains, in the following theorem we present the simple
result for finite characteristic rings.

Theorem 3.4. The finitely generated abelian groups that occur as
groups of units of an integral domain of characteristic p are the groups
of the form F∗pn × Zg with n ≥ 1 and g ≥ 0.

Proof. Let A be a domain and let A∗ ∼= (A∗)tors×Zg with (A∗)tors finite
and g ≥ 0. By Lemma 2.1, for B = Fp[(A∗)tors] we have B∗ = (A∗)tors.
Now, B is a finite integral domain (it is a finitely generated integral
extension of Fp), whence it is a finite field, namely B ∼= Fpn for some
n ≥ 1. It follows that (A∗)tors = B∗ ∼= F∗pn , and A∗ ∼= F∗pn × Zg as
required.
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Conversely, for n ≥ 1 and g ≥ 0, the group F∗pn×Zg is isomorphic to
the group of units of the ring of Laurent polynomials with coefficients
in Fpn and g indeterminates. �

4. Torsion-free rings: preliminary results

A commutative ring A is called torsion-free if its only element of
finite additive order is 0. Clearly, a torsion-free ring has characteristic
zero.

For a torsion-free ring A we put QA = A⊗Z Q. We note that in this
case the map

ι : A→ QA

defined by a 7→ a⊗ 1 is an embedding, so we will say that A ⊆ QA.
As noted in Section 2 (Lemma 2.1 and Remark 2.2), to characterize

the finitely generated abelian groups T×Zg that arise as groups of units
of torsion-free rings, a substantial step is the study of the subrings that
are generated over Z by units of finite order. In fact, in this subclass all
possible torsion subgroups T are realized and, for each T , the minimum
possible rank g(T ) is attained. This case is much easier to study since
if A is integral over Z then QA is a finite dimensional Q-algebra and
A is an order of QA. In this section and in the first part of the next
one we will restrict to this case; then it will be easy to deal with the
general case.

The following lemma allows us to describe the ring A when it is
generated by one torsion unit and it is a generalization of [DCD18b,
Lemma 4.2].

Lemma 4.1. LetK be a number field and letOK be its ring of integers.
Assume that OK ⊆ A. Let α ∈ A∗ be an element of order n, let

ϕα : OK [x]→ A

be the evaluation homomorphism p(x) 7→ p(α).
Then ker(ϕα) = (µα(x)) with

µα(x) = Ψm1(x) · · ·Ψmr(x)

where, for each i, Ψmi(x) ∈ OK [x] denotes the minimal polynomial
over K of a primitive mi-th root of unity. Moreover, the Ψmi(x)’s are
pairwise distinct and [m1, . . . ,mr] = lcm{m1, . . . ,mr} = n.

Proof. The element α has order n, so xn − 1 ∈ ker(ϕα). Denote by
ϕ̃α : K[x]→ QA the extension of ϕα. Then, there exists a monic poly-
nomial µα(x) ∈ K[x] such that ker(ϕ̃α) = (µα(x)). Clearly, µα(α) = 0
and µα(x) divides the separable polynomial xn − 1 in K[x],

µα(x) | (xn − 1) =
∏
m|n

Φm(x).
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Now, each Φm factors as a product of distinct cyclotomic polynomials
over K, hence µα(x) factors in K[x] as

µα(x) = Ψm1(x) · · ·Ψmr(x),

where Ψmi(x) denotes the minimal polynomial over K of a primitive
mi-th root of unity. The Ψmi(x)’s are pairwise distinct since xn − 1 is
separable; moreover, Ψmi(x) ∈ OK [x] for all i, so µα(x) ∈ OK [x] and
µα(x) ∈ ker(ϕα).

On the other hand, for each f(x) ∈ ker(ϕα) we have µα(x)|f(x) in
K[x] and since µα(x) ∈ OK [x] is a monic polynomial, then it divides
f(x) in OK [x]. This proves that ker(ϕα) = (µα(x)).

Let [m1, . . . ,mr] = m. Since mi|n for all i, then m | n. In fact
m = n, since otherwise µα(x) | xm − 1 and therefore αm = 1, contrary
to our assumption. �

Proposition 4.2. Let A = Z[α1, . . . , αs], where, for all i, αi is a unit of
finite order and assume that A is torsion free. Then the Q-algebraQA =
A⊗ZQ is a finite direct product of cyclotomic fields. In particular, QA

is a semisimple Q-algebra.

Proof. For α = αi, in the notation of Lemma 4.1, let ker(ϕα) = (µα(x))
and assume

µα(x) = Φm1(x) · · ·Φmr(x)

for some distinct m1, . . .mr. Then the CRT gives

Q[α] = Z[α]⊗Z Q ∼= Q[x]/(µα(x)) ∼=
r∏
i=1

Q[x]/(Φmi(x)) ∼=
r∏
i=1

Q(ζmi).

Now, the degree of ζm over Q(ζn) is φ(m)/φ((n,m)), som-th cyclotomic
polynomial Φm(x) splits into φ((n,m)) of factors in Q(ζn)[x]. It follows
that

Q(ζn)⊗Q Q(ζm) ∼= Q(ζn)[x]/(Φm(x)) ∼= Q(ζ[n,m])
φ((n,m)),

so the Q-algebra Q = Q[α1]⊗Q · · · ⊗Q Q[αs] is a product of cyclotomic
fields. It turn out that the same is true for QA = Q[α1, . . . , αs] since it
is the epimorphic image of Q via the Q-algebra homomorphism defined
by α1 ⊗ · · · ⊗ αs 7→ α1 · · ·αs. �

Remark 4.3. The last proposition shows that the Q-algebra QA is
isomorphic to

∏t
i=1Q(ζni) for some n1, . . . , nt, namely, it is semisimple

and of finite dimension over the perfect field Q, hence it is separable (see
for example [CR81, Cor. 7.6]). Moreover, QA is clearly commutative,
so by [CR81, Prop. 26.10] it has a unique maximal order MA, which
is the integral closure of Z in QA, namely

MA
∼=

t∏
i=1

Z[ζni ].
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Since A is an order of QA, then A is a subring ofMA, therefore the rings
we are taking into account are subrings of finite products of cyclotomic
rings.

The next lemma shows that the groups of units of all orders of QA

have the same rank (see also [Seh93, Prop. 2.5] or [BL17, Lemma 3.7]).

Lemma 4.4. Let R be an order of a commutative and finitely gen-
erated semisimple Q-algebra Q and let M denote its maximal order.
Then R∗ has the same rank of M∗.

Proof. Each order R of Q is a subring of finite index ofM, since both
are Z-modules of the same finite rank. Let [M : R] = m, then the
ideal mM is contained in R and M/mM is a finite ring.

Consider the projection π : M→M/mM. Since π is a ring homo-
morphism, it sends the unit ofM into the unit of the quotient and the
restriction of π : M∗ → (M/mM)∗ is a group homomorphism.

Let |(M/mM)∗| = c. For each ε ∈ M∗ we have that εc ≡ 1
(mod mM) so εc − 1 ∈ mM ⊂ R. Now, R and M have the same
identity, hence εc ∈ R and (M∗)c ⊆ R∗ ⊆ M∗. Finally, since (M∗)c

and M∗ have the same rank, this is also the rank of R∗. �

Corollary 4.5. In the notation of Proposition 4.2, letQA =
∏t

i=1Q(ζni).
Then, A∗ ∼= T × Zg where

g =
t∑
i=1

(
φ(ni)

2
− 1)∗

and T is a subgroup of even order of U =
∏t

i=1〈−ζni〉.

Proof. The orderA is contained in the maximal orderMA
∼=
∏t

i=1 Z[ζni ],
hence {±1} < A∗ <M∗

A and by Lemma 4.4 the two groups have the
same rank g. The result follows since

M∗
A
∼=

t∏
i=1

Z[ζni ]
∗ ∼=

t∏
i=1

(
〈−ζni〉 × Z(

φ(ni)

2
−1)∗
)
∼= U × Zg.

�

The next proposition classifies the cases when Z[α] coincides with
M.

Proposition 4.6. Let α ∈ A∗ be an element of finite order. De-
note by ϕα : Z[x]→ A the evaluation homomorphism and let µα(x) =
Φm1(x) . . .Φmr(x) be a generator of ker(ϕα). Then

Z[α] ∼=
r∏
i=1

Z[ζmi ]

if and only if , for all i, j, the ratio mi/mj is not a prime power.
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In this case

Z[α]∗ ∼=
r∏
i=1

〈−ζmi〉 × Z
∑r
i=1(

φ(mi)

2
−1)∗ .

Proof. Consider the following commutative diagram, where the vertical
arrows are the obvious isomorphisms

Z[α] M =
r∏
i=1

Z[ζmi ]

Z[x]/(
r∏
i=1

Φmi(x))
r∏
i=1

Z[x]/(Φmi(x))

∼ =

ψ

∼ = (8)

The diagram shows that Z[α] = M if and only if the CRT map is
onto and this is classified in Proposition 2.8. The description of Z[α]∗

follows immediately. �

Example 1. Let M = Z[ζ3] × Z[i] and let α = (ζ3, i) ∈ M. The
element α is a unit of order 12, µα(x) = Φ3(x)Φ4(x) and Z[α] ∼=
Z[x]/(Φ3(x)Φ4(x)). By last proposition Z[α] ∼= M and (Z[α])∗tors =
(M∗)tors ∼= C6 × C4.

Example 2. LetM = Z[ζ3]×Z[ζ9] and let α = (ζ3, ζ9) ∈M. Clearly,
α is a unit of order 9 and Z[α] ∼= Z[x]/(Φ3(x)Φ9(x)). Proposition 4.6
shows that Z[α] (M and it is easy to see that (Z[α])∗tors

∼= C9, in fact
(ζ3, 1) 6∈ Z[α].

In the following proposition we compute the groups of units of tor-
sion free rings of a particular form which will be useful in the next
section. Actually, using the results of this section together with those
of §2.4 one could prove more general results, substantially with the
same methods, but this would require a greater technical effort. How-
ever, this is beyond our scope, so we decided to limit the generality to
what is necessary for our application.

Proposition 4.7. Let p be a prime and let l be a positive even integer
such that l = l1p

b with (l1, p) = 1. Let a > b and let Ψpa,pb(x) denote

the minimal polynomial of ζpa over Z[ζpb ].
† Then(

Z[ζl][x]

((x− 1)Ψpa,pb(x))

)∗
∼= Cl × Cpa × Zg

where g = (φ(l)
2
− 1)∗ + (φ(l1p

a)
2
− 1).

Proof. The ring Z[ζl][x]/((x − 1)Ψpa,pb(x)) embeds into the maximal
order M = Z[ζl]× Z[ζl][ζpa ] ∼= Z[ζl]× Z[ζl1pa ] via the CRT map:

ψ : Z[ζl][x]/((x− 1)Ψpa,pb(x))→ Z[ζl]× Z[ζl][x]/(Ψpa,pb(x)) ∼=M,

†Ψpa,pb(x) is also the minimal polynomial of ζpa over Z[ζl]
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then

rank

((
Z[ζl][x]

((x− 1)Ψpa,pb(x))

)∗)
= (

φ(l)

2
− 1)∗ + (

φ(l1p
a)

2
− 1).

As for the torsion units, let

T = ψ

((
Z[ζl][x]

((x− 1)Ψpa,pb(x))

)∗
tors

)
.

Clearly, T is the subgroup of U = 〈ζl〉 × 〈ζl1pa〉 ∼= Cl × Cl1pa made by
the units belonging to Im(ψ) = {(a(1), a(ζpa)) | a(x) ∈ Z[ζl][x]}. We
will show that all of them are trivial units, namely they belong to the
subgroup T0 generated by ψ(ζl) = (ζl, ζl) and ψ(x) = (1, ζpa). We note
that T0 ∼= Cl × Cpa , since 〈(ζl, ζl)〉 ∩ 〈(1, ζpa)〉 = (1, 1).

Let u = (ζ il , ζ
j
l ζ

k
pa) ∈ U , then u is equivalent to v = (ζ i−jl , 1) modulo

T0, so u ∈ T if and only if v − (1, 1) = (ζ i−jl − 1, 0) ∈ Im(ψ).
This means that there exists a(x) ∈ Z[ζl][x] such that

ζ i−jl − 1 = a(1)Ψpa,pb(1).

By Lemma 2.5, (Ψpa,pb(1)) = Pb where Pb = (1 − ζpb) if b ≥ 1 and
P0 = (p), hence last equation implies

ζ i−jl − 1 ∈ Pb. (9)

Let ν = l/(l, i − j), then (9) can be rewritten as ζν − 1 ∈ Pb and,
using Lemma 2.4, we get that this holds if and only if ν|pb.

If b ≥ 1, ν | pb exactly when i ≡ j (mod l1). Let j = i + hl1, then
u = (ζ il , ζ

i
l ζ
h
pb
ζkpa) and clearly this element is in T0.

If b = 0 equation (9) can hold only for p = 2, so ν = 1 or 2 and
i ≡ j (mod l12

b−1). Letting j = i + tl12
b−1 (t = 0, 1) the unit u =

(ζ il , (−1)tζ il ζ
k
2a) = (ζ il , ζ

i
l ζ
k+t2a−1

2a ) and clearly it belongs to T0.
This proves that T = T0 and hence it has the required decomposition.

�

5. Torsion-free rings: the classification theorem

Our aim is to classify the abelian and finitely generated groups which
arise as groups of units of torsion-free rings. This question is twofold:
on the one hand, we have to establish which finite groups T (up to
isomorphism) can be the torsion subgroup of A∗ when A is a torsion-
free ring. On the other hand, we have to determine the possible values
of the rank, g(A), of A∗ when (A∗)tors ∼= T . Theorem 5.1 gives a
complete answer to both questions.

Let T be a finite abelian group of even order. In this section we will
use the following notation for the decomposition of T as a product of
cyclic factors that we fix once and for all. We will refer to this notation
as to the “standard” notation for T , or we will call (10) the “standard”
decomposition of T
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Standard notation for T . Let ε = ε(T ) be the minimum exponent
of 2 in the decomposition of T as direct sum of cyclic groups. Then T
can be uniquely written as

T ∼=
s∏
i=1

Cpaii ×
ρ∏
ι=1

C2ει × Cσ
2ε (10)

where s, ρ ≥ 0, σ ≥ 1 and
- for all i = 1, . . . , s the pi’s are odd prime numbers not necessarily
distinct and ai ≥ 1;
- ε = ε(T ) ≥ 1 and ει > ε for all ι = 1, . . . , ρ.
Assume that p1, . . . , ps0 are the distinct primes in the set {p1, . . . , ps}.
Denoting by Tpi the pi-Sylow of T , for i = 1, . . . , s0, and by T2 its
2-Sylow, we can also write T as

T ∼=
s0∏
i=1

Tpi × T2. (11)

As usual, we call the decomposition in (11) the Sylow decomposition.

Theorem 5.1. Let T be a finite abelian group of even order. Referring
to the “standard” notation for T , we define

g(T ) =
s∑
i=1

(
φ(2εpaii )

2
− 1) +

ρ∑
ι=1

(
φ(2ει)

2
− 1) + c(T ) (12)

where

c(T ) =


(σ − s)(φ(2

ε)
2
− 1)∗ for s < σ

0 for s0 ≤ σ ≤ s

(φ(2
ε)

2
− 1)∗ for σ < s0.

Then there exists a torsion free ring A with

A∗ ∼= T × Zr

if and only if r ≥ g(T ).

As a particular case of this theorem we re-obtain the classification
of finite groups which occur as groups of units of torsion-free rings,
already found in [DCD18b, Thm 4.1].

Corollary 5.2. The finite abelian groups which are the groups of units
of torsion-free rings are all those of the form

Ca
2 × Cb

4 × Cc
3

where a, b, c ∈ N, a+ b ≥ 1 and a ≥ 1 if c ≥ 1.

Proof. A finite abelian group T of even order is the group of units of
a torsion-free ring if and only if g(T ) = 0. In the “standard” notation

for T , this means that
φ(2εp

ai
i )

2
− 1 = 0 for all i = 1, . . . , s, φ(2ει )

2
− 1 = 0

for each ι = 1, . . . , ρ and c(T ) = 0. If s = 0 this gives ε = 1 and ει ≤ 2
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for all ι, or ε = 2 and ρ = 0. If s > 0, then pi = 3 for all i, ε = 1 and
ει ≤ 2 for all ι. �

Before proceeding with the proof we point out that all the difficulties
relative to the realization of a group T come from its 2-torsion part.
The following examples show a phenomenon which at first sight may
seem paradoxical: it may happen that a group T has a subgroup T ′ for
which g(T ) < g(T ′).

Example 3. Let T = C2 × C8 × C5. In this case ε = 1 and g(T ) = 2:
in fact, choosing A equal to the maximal order M = Z[ζ8] × Z[ζ5] we
have A∗ ∼= T × Z2.

Example 4. Let T ∼= C8×C5 and let A be a torsion-free ring such that
(A∗)tors ∼= T . Then, A contains a unit α of order 8 and a unit β of order
5. Then in the notation of Lemma 4.1, we have that Φ5(x) | µα(x) and
Φ8(x) | µβ(x), so M, the maximal order of A, must contain a direct
factor with a subring isomorphic to Z[ζ8] and one which contains Z[ζ5].
There are two minimal possibilities: M = Z[ζ8]×Z[ζ5] orM = Z[ζ40].
The first possibility has to be excluded since each order of a maximal
order containing Z[ζ8] × Z[ζ5] has at least 3 units of order 2 (this will
be clear after Lemma 5.3). In this case Theorem 5.1 shows that g(T ) =
φ(40)/2− 1 = 7.

The proof of Theorem 5.1 is quite long. For the convenience of the
reader, we separate the “only if” part and the “if” part. Both parts
require a number of auxiliary results that we will prove separately, in
order to make it easier to follow the main argument.

5.1. Proof of Theorem 5.1: the “only if” part. Let A be a torsion
free ring with finitely generated group of units, such that (A∗)tors ∼= T .
We have to prove the rank(A∗) ≥ g(T ).

To this aim, by Lemma 2.1, we can assume that A = Z[(A∗)tors]
and Proposition 4.2 says that there exist n1, . . . , nt such that QA =
A ⊗Z Q ∼=

∏t
j=1Q(ζnj). Now, by Lemma 4.4, the rank of A∗ is equal

to the rank of the maximal order MA =
∏t

j=1 Z[ζnj ] which is known
by Dirichlet’s Unit Theorem.

In order that M =
∏t

j=1 Z[ζnj ] contains an order O such that

(O∗)tors ∼= T , the nj’s must fulfill the following necessary conditions
(see Lemma 5.3 below):

i) t ≥ ρ+ σ;
ii) 2ε | nj for all j = 1, . . . , t;

iii) for each i = 1, . . . , s there exists an index ji ∈ {1, . . . , t} such
that paii |nji ; moreover, ji 6= jh if pi = ph and i 6= h;

iv) for each ι = 1, . . . , ρ there exists an index lι ∈ {1, . . . , t} such
that 2ει |nlι and lι 6= lh if ι 6= h.
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We will say that the maximal order M =
∏t

j=1 Z[ζnj ] is T -admissible

if {n1, . . . , nt} fulfills the conditions (i)-(iv), where the parameters are
those of the “standard” decomposition of T .

Define

M0,T =
s∏
i=1

Z[ζ2εpaii ]×
ρ∏
ι=1

Z[ζ2ει ]× Z[ζ2ε ]
d, (13)

where d = max{σ− s, 0}. M0,T is T -admissible and in Proposition 5.5
we prove that M∗

0,T has minimum rank among the groups of units of
all T -admissible maximal orders. This ensures that

rank(A∗) = rank(M∗
A) ≥ rank(M∗

0,T ).

Now,

rank(M∗
0,T ) =

s∑
i=1

(
φ(2εpaii )

2
− 1) +

ρ∑
ι=1

(
φ(2ει)

2
− 1) + d(

φ(2ε)

2
− 1)∗,

hence

rank(M∗
0,T ) =

{
g(T ) for σ ≥ s0
g(T )− (φ(2

ε)
2
− 1)∗ for σ < s0.

If σ ≥ s0 or if ε = 1 we get the required bound on rank(A∗).
On the other hand, by Proposition 5.6 if σ < s0, then M0,T does

not contain any order A with (A∗)tors ∼= T , so MA 6= M0,T . Now,
by Proposition 5.5, for ε > 1, M0,T is the only T -admissible maximal
order of minimum rank , hence, if σ < s0 and ε > 1, then rank(A∗) >
rank(M∗

0,T ) and, using again Proposition 5.5, we get

rank(A∗) ≥ rank(M∗
0,T ) + (

φ(2ε)

2
− 1)∗ = g(T ).

�

We now state and prove the results quoted above.

Lemma 5.3. , LetM =
∏t

j=1 Z[ζnj ]. IfM contains a subring A with

(A∗)tors ∼= T , then M is T -admissible.

Proof. For each prime q, the q-Sylow subgroup of M∗ is the direct
product of the (cyclic) q-Sylow subgroups of its cyclic factors 〈ζnj〉,
hence every of its q-Sylow has at most t cyclic components. Looking
at the 2-Sylow of T we get t ≥ σ + ρ, proving (i). Moreover, if T
has an element of order qk, for some k ≥ 1, then the q-Sylow of M∗

has a cyclic component of order at least qk, namely, qk|nj for some
j ∈ {1, . . . , t}; this proves the first part of (iii) and (iv). The last
part of these statements follows by noticing that the q-Sylow of 〈ζnj〉
is cyclic.

We are now left to prove (ii). By identifying A with its image in∏t
j=1 Z[ζnj ], we have that the opposite (−1, . . . ,−1) of the identity is

an element of order 2 in (A∗)tors = T which is in turn a subgroup of
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j=1〈ζnj〉. Now, the 2-Sylow of (A∗)tors is isomorphic to Cσ

2ε×
∏ρ

ι=1C2ει

and all the elements of order 2 of such a group belong to the subgroup
(C2ε−1

2ε )σ ×
∏ρ

ι=1C
2ει−1

2ει , hence they are 2ε−1-powers since ει > ε for all
ι. In particular,

(−1, . . . ,−1) = γ2
ε−1

= (γ2
ε−1

1 , . . . , γ2
ε−1

t )

with γj ∈ 〈ζnj〉, ∀ j. It follows that ord(γj) = 2ε since ord(γj) | 2ε and
ord(γj) - 2ε−1, so 2ε|nj for all j. �

Remark 5.4. According to point (ii) of the definition of T -admissible
maximal order, each T -admissible maximal order is a Z[ζ2ε ]-algebra.

Proposition 5.5. Let M =
∏t

j=1 Z[ζnj ] be T -admissible. Then,

rank(M∗) ≥
s∑
i=1

(
φ(2εpaii )

2
− 1) +

ρ∑
ι=1

(
φ(2ει)

2
− 1) + d(

φ(2ε)

2
− 1)∗

and equality holds only for M =M0,T or, in the case when ε = 1, for
M =M0,T × Zk and k ≥ 0.

Moreover, ifM 6=M0,T , then rank(M∗) ≥ rank(M∗
0,T )+(φ(2

ε)
2
−1)∗.

Proof. For M =
∏t

j=1 Z[ζnj ], we have

rank(M∗) =
t∑

j=1

rank(Z[ζnj ]
∗) =

t∑
j=1

(
φ(nj)

2
− 1)∗. (14)

Our first step is to bound the rank of M∗, by estimating from below

the summands
φ(nj)

2
− 1 for all j, using Lemma 2.9.

Since M is T -admissible, all the nj’s are divisible at least by 2ε

and, up to reordering, we can assume that n1, . . . , nρ are divisible by
2ε1 , . . . , 2ερ , respectively.

Now, εj > ε for j = 1, . . . , ρ, so using the inequality (5) we get

rank(Z[ζnj ]
∗) =

φ(nj)

2
− 1 ≥

∑
q odd prime

qe||nj

(
φ(2εqe)

2
− 1) +

φ(2εj)

2
− 1. (15)

For j = ρ+ 1, . . . t we can use (4), which gives

rank(Z[ζnj ]
∗) ≥

∑
q odd prime

qe||nj

(
φ(2εqe)

2
− 1)‡. (16)

These inequalities allow to prove that

rank(M∗) ≥
s∑
i=1

(
φ(2εpaii )

2
−1)+

ρ∑
ι=1

(
φ(2ει)

2
−1)+d(

φ(2ε)

2
−1)∗. (17)

‡This inequality holds also if nj = 2 since rank(Z[ζnj
]∗) = 0 and on the RHS

we have an empty sum which is 0.
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In fact, it is enough to show that each term on the RHS of (17) appears
at least once in (15) or (16), for some j. This is trivially the case for
the terms in the second sum since each of them appears in (15).

As for the first sum, we note that sinceM is T -admissible, then each
paii divides some nj. This ensures that, for all i, the RHS of (15) or

(16) contains a term of type
φ(2εp

bi
i )

2
− 1 with bi ≥ ai: we can estimate

this term by
φ(2εp

ai
i )

2
− 1.

Finally, the term d(φ(2
ε)

2
− 1)∗ can be explained as follows. The two

sums on the RHS of (17) involve only s+ ρ summands, so they can be
obtained by considering the contribution to the rank of τ ≤ s + ρ of
the (Z[ζnj ])

∗’s. We estimate the rank of the t− τ remaining (Z[ζnj ])
∗’s

simply by

rank(Z[ζnj ]
∗) ≥ (

φ(2ε)

2
− 1)∗.

Since t − τ ≥ 0 and t − τ ≥ t − ρ − s ≥ σ − s we have t − τ ≥ d and
we get (17).

The RHS of (17) is equal to the rank of M∗
0,T , so M∗

0,T has the
minimum possible rank among the groups of units of the T -admissible
maximal orders. When ε = 1, the same is clearly true for the units of
M =M0,T × Zk.

Finally, if M =
∏t

j=1 Z[ζnj ] is T -admissible, but M 6= M0,T , then

either M has more direct summands than M0,T (hence t > s+ ρ+ d)
or at least one of the following holds:

- 2εp
ai1
i1
p
ai2
i2
|nj for some j and two coprime factors p

ai1
i1
, p

ai2
i2

;
- 2ειpaii |nj for some ι, i and j,
and in both cases we get τ < s+ ρ.
In conclusion we always have t − τ > d, so on the RHS of (17) we

have at least one extra summand of type (φ(2
ε)

2
− 1)∗, giving

rank(M∗) ≥ rank(M∗
0,T ) + (

φ(2ε)

2
− 1)∗.

�

The last proposition shows that the group of units ofM0,T has mini-
mum rank among the T -admissible maximal orders. However, for some
T , no order of M0,T has T as the group of torsion units.

Proposition 5.6. Let T be a finite abelian group of even order with
its “standard” notation. If σ < s0, thenM0,T contains no order A with
(A∗)tors ∼= T .

Proof. In this proof, for brevity, we will writeM forM0,T . From (13),
we obtain (M∗)tors ∼= T × Cs−σ

2ε . Assume, by contradiction, that M
contains an order A with (A∗)tors ∼= T . In the notation of (10) and
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(11), we have T ∼=
∏s0

i=1 Tpi × T2, where

Tpi =

vi∏
j=1

C
p
bij
i

and T2 =

ρ∏
ι=1

C2ει × Cσ
2ε (18)

for some bij’s.
For i = 1, . . . , s0, putMpi =

∏vi
j=1 Z[ζ

2εp
bij
i

] and letM2 =
∏ρ

ι=1 Z[ζ2ει ].

The condition σ < s0 yields d = 0, hence

M∼=

(
s0∏
i=1

Mpi

)
×M2.

We first consider the case when ρ = 0, so M2 is trivial.
For each i = 1, . . . , s0 let αpi = (ζpi , . . . ζpi) ∈ Mpi and put α =

(αp1 , . . . , αps0 ) ∈ M. Clearly, α is a unit of M of order p1 · · · ps0 ,
therefore α also belongs to A∗, having (A∗)tors the same pi-Sylow sub-
groups of (M∗)tors for all i = 1, . . . s0.

Now, if ϕα : Z[x]→ A is the substitution homomorphism x 7→ α we
have Z[α] ∼= Z[x]/(kerϕα) and it is easy to check that kerϕα, which
by Lemma 4.1 is principal and generated by a product of cyclotomic
polynomials, is generated by

Φp1(x) . . .Φps0
(x),

and, the primes pi’s being distinct, Proposition 4.6 ensures that

Z[α] ∼=
s0∏
i=1

Z[ζpi ].

and

(Z[α]∗)tors ∼= Cs0
2 × Cp1 × · · · × Cps0 .

This gives a contradiction since (Z[α]∗)tors < (A∗)tors ∼= T and σ < s0.
In the case when ρ > 0, we have to slightly modify the previous

argument to find a contradiction.
As in the previous case, for each i = 1, . . . , s0 let αpi = (ζpi , . . . ζpi) ∈

Mpi ; also denote by v0 the unit element of M2 and by α2 = −v0 =
(−1, . . . ,−1) its opposite.

In M consider the elements

α′ = (αp1 , . . . , αps0 , v0), and δ = (1, . . . , 1, α2).

Both of them belong to A: in fact, α′ ∈ A∗ since it is a unit of M of
odd order; δ is a 2ε power in M∗ and (M∗)2

ε

tors = T 2ε = (A∗)2
ε

tors.
It follows that also α = (αp1 , . . . , αps0 , α2) = α′δ belongs to A, so

that Z[α] ⊆ A. As before, we have

Z[α] ∼= Z[x]/(Φp1(x) . . .Φps0
(x)Φ2(x))
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and, again by Proposition 4.6, we get

Z[α] ∼= Z×
s0∏
i=1

Z[ζpi ]

and therefore

(Z[α]∗)tors ∼= Cs0+1
2 × Cp1 × · · · × Cps0

is a subgroup of (A∗)tors.
If ρ = 1 this gives a contradiction, since A∗ has exactly σ + 1 cyclic

factors of order a power of 2, and s0 > σ.
If ρ > 1, for each ι = 1, . . . , ρ − 1, let βι be the element of M with

all coordinates 1, but whose coordinate in Z[ζ2ει ] is equal to −1. These
elements generate a subgroup of (M)∗ isomorphic to Cρ−1

2 . Moreover,
all the βι’s belong to A∗: in fact, βι is a 2ε power of an element of
(M∗)tors so it belongs to (M∗)2

ε

tors = (A∗)2
ε

tors.
Now,

(Z[α]∗)tors ∩ 〈β1, . . . ,βρ−1〉 = {(1, . . . , 1)},
in fact, the torsion units of Z[α] are of type ((−αp1)e1 , . . . , (−αps0 )es0 , αe02 )
with e0, e1 . . . , es0 ∈ Z, so their coordinates inM2 are all 1 or all -1. It
follows that (A∗)tors contains a subgroup isomorphic to

(Z[α]∗)tors × 〈β1, . . . ,βρ−1〉 ∼= Cs0+ρ
2 × Cp1 × · · · × Cps0

and this is not possible since A∗ has σ + ρ cyclic factors of order a
power of 2, and s0 + ρ > σ + ρ. �

5.2. Proof of Theorem 5.1: the “if” part. Let T be any finite
abelian group of even order; consider on T its “standard” notation as
in (10). For each g ≥ g(T ) we will construct an example of a torsion
free ring A with A∗ ∼= T × Zg.

The first and most substantial step is the construction for g = g(T ).
The following propositions deal with two particular cases.

Proposition 5.7. Let p be an odd prime and let ε, b1, . . . , bv be inte-
gers, with 1 ≤ b1 ≤ b2 ≤ · · · ≤ bv and ε ≥ 1. The maximal order M =∏v

j=1 Z[ζ2εpbj ] contains an order A with (A∗)tors ∼= C2ε ×
∏v

j=1Cpbj .

Proof. For j = 2, . . . , v, let β(j) = (β
(j)
1 , . . . , β

(j)
v ) ∈ M, where β

(j)
i = 1

for i 6= j and β
(j)
j = ζpbj , and put

A = Z[ζ2εpb1 ][β(2), . . . ,β(v)]

where we are identifying A with a subring of M via the diagonal em-
bedding of Z[ζ2εpb1 ]. This means that we identify ζ2εpb1 with α =
(ζ2εpb1 , . . . , ζ2εpb1 ).

We claim that (A∗)tors ∼= V = C2ε ×
∏v

j=1Cpbj .
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It is clear that the elements α,β(2), . . . ,β(v) ∈ A are multiplicatively
independent units and that they generate a subgroup of (A∗)tors iso-
morphic to V . On the other hand, (M∗)tors ∼=

∏v
j=1C2εpbj , hence, up

to isomorphism,

(A∗)tors ≤ V × Cv−1
2ε .

To prove that (A∗)tors ∼= V it is enough to show that the 2-Sylow of
(A∗)tors is cyclic, or equivalently, that (−1, . . . ,−1) is the only element
of order 2 of (A∗)tors.

For each i = 2, . . . , s define Mi = Z[ζ2εpb1 ]× Z[ζ2εpbi ] and denote by
πi : M → Mi the canonical projection. Put Ai = πi(A) and β0,i =
(1, ζpbi ), then

Ai = Z[ζ2εpb1 ][πi(β
(2)), . . . , πi(β

(v))] = Z[ζ2εpb1 ][β0,i].

Let ϕβ0,i be the evaluation homomorphism defined on Z[ζ2ε ][x]. It is
easily checked that its kernel is generated by (x− 1)Ψpbi ,pb1 (x), so

Ai = Z[ζ2εpb1 ][β0,i] ∼= Z[ζ2εpb1 ][x]/((x− 1)Ψpbi ,pb1 (x))

and, by Proposition 4.7, (A∗i )tors
∼= C2εpb1 × Cpbi . This ensures that,

for all indices i, the 2-Sylow of πi((A
∗)tors), which is a subgroup of

(A∗i )tors, is cyclic and this allows us to conclude the proof. In fact, let
u = (u1, . . . , uv) ∈ M∗ be such that u2 = (1, . . . , 1); if u ∈ A, then
πi(u) = (u1, uv) is an element of exponent 2 of (A∗i )tors, so (u1, uv) must
be equal to (1, 1) or (−1,−1), in particular, ui = u1 for all i = 1, . . . , v.
This yields u = (1, . . . , 1) or u = (−1, . . . ,−1), so A∗ has only one
element of order 2, therefore

(A∗)tors ∼= C2ε × Cpb1 × · · · × Cpbv = V.

�

When the group T has too few 2-cyclic factors of minimal order,
Proposition 5.6 shows that no order ofM0,T , has torsion units isomor-
phic to T . In this case, to find an order A with (A∗)tors ∼= T , we have to
consider a bigger maximal order obtained by adding toM0,T an extra
direct factor, which works as a “control” factor on the 2-torsion. The
following proposition deals with the case σ = 1.

Proposition 5.8. Let p1, . . . ps be prime numbers and let ε, a1, . . . as
be positive integers. The maximal order M = Z[ζ2ε ] ×

∏s
i=1 Z[ζ2εpaii ]

contains a subring A with (A∗)tors ∼= C2ε ×
∏s

i=1Cpaii .

Proof. For each i = 1, . . . , s, let β(i) = (1, β
(i)
1 , . . . , β

(i)
s ) ∈ M, where

β
(i)
j = 1 for all j 6= i and β

(i)
i = ζpaii . Put

A = Z[ζ2ε ][β
(1), . . . ,β(s)]

viewed as a subring of M. We claim that (A∗)tors ∼= C2ε ×
∏s

i=1Cpaii .
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Clearly, the elements α = (ζ2ε , . . . , ζ2ε),β
(1), . . . ,β(s) ∈ A are mul-

tiplicatively independent units which generate a subgroup of (A∗)tors
isomorphic to C2ε ×

∏s
i=1Cpaii .

On the other hand, (M∗)tors ∼= Cs+1
2ε ×

∏s
i=1Cpaii , then to prove

our claim it is enough to show that the 2-Sylow of (A∗)tors is cyclic, or
equivalently that (−1, . . . ,−1) is the only element of order 2 of (A∗)tors.

This can be proved arguing as in the previous proposition. In fact,
for each i = 1, . . . , s define Mi = Z[ζ2ε ] × Z[ζ2εpaii ] and denote by

πi : M → Mi the canonical projection. Let Ai = πi(A) and β0,i =
(1, ζpaii ), then

Ai = Z[ζ2ε ][πi(β
(1)), . . . , πi(β

(s))] = Z[ζ2ε ][β0,i].

The kernel of the evaluation homomorphism ϕβ0,i : Z[ζ2ε ][x] → A is
generated by Φ1(x)Φp

ai
i

(x): in fact, since paii is odd, the polynomial

Φp
ai
i

(x) is irreducible in Z[ζ2ε ]. Thus

Ai = Z[ζ2ε ][β0,i] ∼= Z[ζ2ε ][x]/(Φ1(x)Φp
ai
i

(x))

and, by Proposition 4.7, (A∗i )tors
∼= C2εp

ai
i

. This implies that also its

subgroup πi((A
∗)tors) is cyclic and this allows us to conclude the proof.

In fact, let u = (u0, . . . , us) ∈ M∗ be such that u2 = (1, . . . , 1); if
u ∈ A, then, for all i, πi(u) = (u0, ui) is an element of exponent 2
of the cyclic group πi((A

∗)tors), so (u0, ui) must be equal to (1, 1) or
(−1,−1). In particular, ui = u0 for all i = 1, . . . , s. This ensures that
u = (1, . . . , 1) or u = (−1, . . . ,−1), and A∗ has only one element of
order 2, as required. �

We are now ready for the general construction for g = g(T ).
Let

MT =

{
M0,T for σ ≥ s0
M0,T × Z[ζ2ε ] for σ < s0,

(19)

then rank(MT ) = g(T ) for all T . We will construct A as an order in
MT .

The case when s ≤ σ is very easy: we can simply take A = MT

since M∗
T
∼= T × Zg(T ).

Consider now the more general case when σ ≥ s0. We can write the
group T as

T = V2 ×
s0∏
i=1

Vpi ,

where Vpi = C2ε × Tpi = C2ε ×
∏vi

j=1Cpbiji
and V2 = Cσ−s0

2ε ×
∏ρ

ι=1C2ει .
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For i = 1, . . . , s0, let Mpi =
∏vi

j=1 Z[ζ
2εp

bij
i

] and M2 = Z[ζ2ε ]
σ−s0 ×∏ρ

i=1 Z[ζ2εi ]. Then

MT
∼=M2 ×

s0∏
i=1

Mpi .

By Proposition 5.7, for all p = p1, . . . , ps0 , the maximal order Mp

contains an order Ap such that (A∗p)tors
∼= Vp. It follows that A =

M2 ×
∏s0

i=1Api is an order of MT with (A∗)tors ∼= T .
Let now σ < s0. We write the group T as T0 × T1 where

T0 =
σ−1∏
i=1

C2εp
ai
i
×

ρ∏
ι=1

C2ει and T1 = C2ε × Cpaσσ × · · · × Cpass .

By Proposition 5.8 the order M1 = Z[ζ2ε ] ×
∏s

i=σ Z[ζ2εpaii ] contains

a subring A1 with (A∗1)tors
∼= T1.

On the other hand,

MT =M1 ×
σ−1∏
i=1

Z[ζ2εpaii ]×
ρ∏
i=1

Z[ζ2εi ]

and its subring

A = A1 ×
σ−1∏
i=1

Z[ζ2εpaii ]×
ρ∏
i=1

Z[ζ2εi ]

is such that (A∗)tors ∼= T.
Moreover, rank(A∗) ≤ rank(M∗

T ). On the other hand, the rank of A∗

is the same of the rank ofM∗
A, which is a T -admissible maximal order,

and thus its rank is at least the rank of MT . This gives rank(A∗) =
rank(M∗

T ) and also proves that A is an order of MT .

The final step is the construction of torsion-free rings with group of
units isomorphic to T × Zg for all g > g(T ). Also in this case if A
is a torsion-free ring with (A∗)tors = T and minimal rank g(T ), then
A = A[x1, . . . , xk, x

−1
1 , . . . , x−1k ] is torsion-free and has group of units

isomorphic to T × Zg(T )+k.

6. Reduced rings

In this section we classify the finitely generated abelian groups which
arise as groups of units of reduced rings. The next proposition describes
the relation between the units of a ring and those of its reduced quo-
tient, showing that the study of reduced rings is a substantial step to
the study of units of a general ring.

Proposition 6.1. Let A be a commutative ring and let N be its nil-
radical. Then the sequence

1→ 1 + N ↪→ A∗
φ→ (A/N)∗ → 1, (20)
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where φ(x) = x+ N, is exact.

We note that for finite characteristic rings the exact sequence (20) al-
ways splits (see [DCD18a, Thm 3.1]). This is no longer true in general,
as shown in [DCD18b, Ex 2]).

The units of a reduced ring of finite characteristic rings are charac-
terized as follows.

Proposition 6.2. The finitely generated abelian groups which are the
groups of units of reduced rings of positive characteristic are exactly
those of the form

k∏
i=1

F∗
p
ni
i
× Zg

where k, n1, . . . , nk are positive integers, {p1, . . . , pk} are not necessarily
distinct prime numbers and g ≥ 0.

Proof. Let A be a reduced ring of characteristic n, such that A∗ ∼=
(A∗)tors×Zg, with (A∗)tors finite and g ≥ 0. The ringB = Z/nZ[(A∗)tors]
is a finite ring and by Lemma 2.1 B∗ = (A∗)tors. Since B is finite, B
is artinian and so it is a product of local artinian rings. Moreover, a
reduced local artinian ring is a field, hence B is a product of finite fields
(see also [DCD18a, Corollary 3.2]) and we get that (A∗)tors = B∗ has
the required form.

On the other hand, let the pi’s, ni’s and g be as in the statement
and put R =

∏k
i=1 Fpnii . Then the ring R[x1, . . . , xg, x

−1
1 , . . . , x−1g ] has

group of units isomorphic to
∏k

i=1 F∗pnii × Zg. �

The following proposition together with the results of the previous
section allows us to classify the finitely generated abelian groups which
arise as group of units of a reduced ring.

Proposition 6.3. ([PS70, Prop. 1]) LetA be a commutative ring which
is finitely generated and integral over its fundamental subring. Then
A = A1 ⊕ A2, where A1 is a finite ring and the torsion ideal of A2 is
contained in its nilradical.

Now, if A is reduced then the finite ring A1 is reduced and A2 is
torsion-free. Then, Theorems 5.1 and 6.2 immediately gives the follow-
ing.

Theorem 6.4. The finitely generated abelian groups that occur as
groups of units of reduced rings are those of the form

k∏
i=1

F∗
p
ni
i
× T × Zg

where k, n1, . . . , nk are positive integers, {p1, . . . , pk} are not necessarily
distinct prime numbers, T is any finite abelian group of even order and
g ≥ g(T ).
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