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Abstract: Let I be the class of fully zero-simple semihypergroups generated by a hyperproduct. In this paper we
study some properties of residual semihypergroup (H+, ⋆) of a semihypergroup (H, ◦) ∈ I . Moreover, we find sufficient
conditions for (H, ◦) and (H+, ⋆) to be cyclic.
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1. Introduction
Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic
structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition
of two elements is a set. Many authors have been working on this field and in [4] numerous applications are
presented for algebraic hyperstructures, such as geometry, hypergraphs, binary relations, lattices, fuzzy sets
and rough sets, automata, cryptography, codes, median algebras, relation algebras, artificial intelligence, and
probabilities. The semihypergroups are the simplest algebraic hyperstructures that possess the properties of
closure and associativity. Some scholars have studied different aspects of semihypergroups [2, 5, 8, 9, 19, 20, 22–
24] and interesting problems arise in the study of their so-called fundamental relations [1, 7, 16, 21, 25], which
leads to analyzing the conditions for their transitivity, and minimal cardinality problems. In [16] the authors
found all simple and zero-simple semihypergroups of size 3 , such that the fundamental relation β is not
transitive, apart from isomorphisms. This semihypergroups of size 3 were used in [8–12] to characterize the
fully simple semihypergroups and the fully zero-simple semihypergroups having all hyperproducts of size ≤ 2 .
In particular, in [11] the authors proved that if (H, ◦) is a hypercyclic simple semihypergroup, generated by
a hyperproduct of elements in H , then the relation β is transitive. Consequently, we have that in every
fully simple semihypergroup the size of every hyperproduct is ≤ 2 . This is not true for the fully zero-simple
semihypergroups, as many examples show in this paper.

The plan of this paper is as follows: after introducing some basic definitions and notations to be used
throughout the paper, in Section 2 , we prove that if (H, ◦) is a hypercyclic fully zero-simple semihypergroup
generated by hyperproduct P and (H+, ⋆) is the residual semihypergroup of (H, ◦) then the relation βH+

is transitive. Moreover, if (H, ◦) is generated by hyperproduct P then (P ∩ P 2) − {0} = ∅ . In Section 3 ,
we introduce the definition of rank for a hyperproduct P , which is the smallest positive integer k such that
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P ∩P k+1−{0} ̸= ∅ . By means of this notion, we characterize the subsemihypergroup P̂ generated by a special
hyperproduct P , called strong, and in Section 4 we analyze properties of the fully zero-simple semihypergroups
generated by a strong hyperproduct. In particular, we prove that if (H, ◦) is a fully zero-simple semihypergroup
generated by a strong hyperproduct P of rank a prime number r then (H, ◦) is cyclic. In this case, rank can
be seen as a generalization of the concept of period in group theory. It is known that if G is a cyclic group
of size a prime number r then every element different from identity is a generator of G . The same property
is true for semihypergroups in Theorem 30, but the commutative property of cyclic groups does not generally
hold; see the example in Remark 31.

1.1. Basic definitions and results
Let H be a nonempty set and P ∗(H) be the set of all nonempty subsets of H . A hyperoperation ◦ on H is a
map from H ×H to P ∗(H) . For all x, y ∈ H , the subset x ◦ y is called the hyperproduct of x and y . If A,B

are nonempty subsets of H then A ◦B =
∪

x∈A,y∈B x ◦ y .

A semihypergroup is a nonempty set H endowed with an associative hyperproduct ◦ ; that is, (x◦y)◦z =

x ◦ (y ◦ z) for all x, y, z ∈ H .
A nonempty subset K of a semihypergroup (H, ◦) is called a subsemihypergroup of (H, ◦) if it is closed

with respect to multiplication; that is, x ◦ y ⊆ K for all x, y ∈ K . If (H, ◦) is a semihypergroup, then
the intersection

∩
i∈I Si of a family {Si}i∈I of subsemihypergroups of (H, ◦) , if it is nonempty, is again a

subsemihypergroup of (H, ◦) . For every nonempty subset A ⊆ H there is at least one subsemihypergroup of
(H, ◦) containing A , e.g., H itself. Hence, the intersection of all subsemihypergroups of (H, ◦) containing A

is a subsemihypergroup. We denote it by Â , and we note that it is defined by two properties:

1. A ⊆ Â ;

2. if S is a subsemihypergroup of H and A ⊆ S , then Â ⊆ S .

Furthermore, Â is characterized as the algebraic closure of A under the hyperproduct in (H, ◦) ; namely, we

have Â =
∪

n≥1 A
n . Moreover, if H is finite, the set

{
r ∈ N− {0} |

∪r
k=1 A

k =
∪r+1

k=1 A
k
}

has minimum

m ≤ |H| and then it is known that

Â =

m∪
k=1

Ak =

m+1∪
k=1

Ak = ... =

|H|∪
k=1

Ak. (1)

If x ∈ H , we suppose ◦x1 = {x} and ◦xn = x ◦ . . . ◦ x︸ ︷︷ ︸
n times

for every integer n > 1 . We refer to x̂ =
∪

n≥1 ◦xn

as the cyclic subsemihypergroup of (H, ◦) generated by the element x . It is the smallest subsemihypergroup
containing x .

If K is a subsemihypergroup of (H, ◦) , it is said to be hypercyclic if there exists a hyperproduct P of

elements in K such that K = P̂ .
If (H, ◦) is a semihypergroup, an element 0 ∈ H such that x ◦ 0 = {0} (resp., 0 ◦x = {0}) for all x ∈ H

is called a right zero scalar element or right absorbing element (resp., left zero scalar element or left absorbing
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element) of (H, ◦) . If 0 is both a right and left zero scalar element, then 0 is called a zero scalar element or
absorbing element.

A semihypergroup (H, ◦) is called simple if H ◦ x ◦H = H , for all x ∈ H .
A semihypergroup (H, ◦) with an absorbing element 0 is called zero-simple if H ◦ x ◦ H = H , for all

x ∈ H − {0} .

Given a semihypergroup (H, ◦) , the relation β∗ of H is the transitive closure of the relation β = ∪n≥1βn ,
where β1 is the diagonal relation in H and, for every integer n > 1 , βn is defined recursively as follows:

xβny ⇐⇒ ∃(z1, . . . , zn) ∈ Hn : {x, y} ⊆ z1 ◦ z2 ◦ . . . ◦ zn.

The relations β , β∗ are called fundamental relations on H [25]. Their relevance in semihypergroup theory
stems from the following facts [21]: the quotient set H/β∗ , equipped with the operation β∗(x)⊗β∗(y) = β∗(z)

for all x, y ∈ H and z ∈ x ◦ y , is a semigroup. Moreover, the relation β∗ is the smallest strongly regular
equivalence on H such that the quotient H/β∗ is a semigroup.

The interested reader can find all relevant definitions, many properties, and applications of fundamental
relations, even in more abstract contexts, in [3, 4, 6, 14, 15, 17, 18, 21, 25].

A semihypergroup (H, ◦) is said to be fully zero-simple if it fulfills the following conditions:

1. All subsemihypergroups of (H, ◦) ((H, ◦) itself included) are zero-simple.

2. The relation β in (H, ◦) and the relation βK in all subsemihypergroups K ⊂ H of size ≥ 3 are not
transitive.

Since in all semihypergroups of size ≤ 2 the relation β is transitive, it follows that every fully zero-simple
semihypergroup has size ≥ 3 .

We denote by F0 the class of fully zero-simple semihypergroups. We use 0 to denote the zero scalar
element of each semihypergroup (H, ◦) ∈ F0 . Moreover, we use the notation H+ to indicate the set of nonzero
elements in H ; that is, H+ = H −{0} . Finally, for the reader’s convenience, we collect in the following lemma
some preliminary results from [9].

Lemma 1 Let (H, ◦) ∈ F0 . Then we have:

1. H ◦H = H ;

2. if S is a subsemihypergroup of H such that 0 ̸∈ S , then |S| = 1 , and moreover, if |S| ≥ 2 then the zero
element of S is 0 ;

3. there exist x, y ∈ H+ such that 0 ∈ x ◦ y ;

4. for every sequence z1, . . . , zn of elements in H+ we have
∏n

i=1 zi ̸= {0} ;

5. the set H+ equipped with hyperproduct a ⋆ b = (a ◦ b) ∩H+ , for all a, b ∈ H+ , is a semihypergroup.

By points 2 and 4 of Lemma 1 we deduce the following result:
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Corollary 2 Let S be a subsemihypergroup of H ∈ F0 . Then we have:

1. if 0 ̸∈ S then there exists a ∈ H+ such that S = {a} and a ◦ a = {a} ;

2. if |S| = 2 then there exists a ∈ H+ such that S = {a, 0} and {a} ⊆ a ◦ a ⊆ {0, a} .

From point 5 of Lemma 1, we know that the set of nonzero element H+ of a fully 0-simple semihypergroup
(H, ◦) is a simple semihypergroup equipped with hyperoperation a ⋆ b = (a ◦ b) ∩H+ , for all a, b ∈ H+ . This
semihypergroup is called a residual semihypergroup of (H, ◦) .

The following results were proved in [13]:

Theorem 3 Let (H, ◦) ∈ F0 . For all x ∈ H , we have (x, 0) ∈ β . Moreover, H/β∗ is trivial.

Lemma 4 Let A,B be two nonempty subsets of (H, ◦) ∈ F0 different from the singleton {0} . We have:

1. (A− {0}) ⋆ (B − {0}) = A ◦B − {0}.

2. If (A, ◦) is a subsemihypergroup of (H, ◦) then (A− {0}, ⋆) is a subsemihypergroup of (H+, ⋆) .

3. If 0 ∈ A and (A−{0}, ⋆) is a subsemihypergroup of (H+, ⋆) then (A, ◦) is a subsemihypergroup of (H, ◦) .

4. If A+ = A−{0} and (Â, ◦), (Â+, ⋆) are the subsemihypergroups of (H, ◦) and (H+, ⋆) generated from A

and A+ respectively, then Â+ = Â− {0}.

Proposition 5 Let (H+, ⋆) be the residual semihypergroup of (H, ◦) ∈ F0 and [0, 0]H = {(a, b) ∈ H ×H | a =

0 or b = 0} . Then we have βH+ = β − [0, 0]H .

2. Hypercyclic semihypergroup in F0

In [11] the authors introduced the definition of hypercyclic semihypergroups and studied a class of semihyper-

groups (H, ◦) such that for all hyperproducts P of elements in H the subsemihypergroup P̂ is hypercyclic. In
this section we study some properties of the hypercyclic semihypergroups in F0 . For the reader’s convenience
we denote by I0 the subclass of hypercyclic semihypergroups in F0 .

Proposition 6 If (H, ◦) ∈ I0 is generated by hyperproduct P , then (H+, ⋆) is hypercyclic generated by
P+ = P − {0} and βH+

is transitive.

Proof If (H, ◦) ∈ F0 is generated from the set P , then H = P̂ and, for Lemma 4, the residual semihypergroup
(H+, ⋆) is generated from P+ = P − {0}. Therefore, (H+, ⋆) is a simple hypercyclic semihypergroup. By
Theorem 3.1 in [11], the relation βH+

is transitive. 2

Corollary 7 If (H, ◦) ∈ I0 and a, b, c are three elements in H such that (a, b) ∈ β , (b, c) ∈ β , and (a, c) /∈ β ,
then b = 0.

Proof By Theorem 3, we have that a ̸= 0 and c ̸= 0 ; otherwise, (a, c) ∈ β. If, for absurdity, b ̸= 0 , then
a, b, c ∈ H+ and, for Proposition 5, (a, b) ∈ βH+ and (b, c) ∈ βH+ . Now, for Proposition 6, we obtain that
(a, c) ∈ βH+

, which is impossible because βH+
⊆ β and (a, c) /∈ β. Therefore, b = 0. 2
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Theorem 8 If (H, ◦) ∈ I0 then
∣∣∣H+/β

∗
H+

∣∣∣ ≥ 2 .

Proof For absurdity, let |H+/β
∗
H+

| = 1 . If a, b ∈ H , we can distinguish two cases: 1) a = 0 or b = 0 ; 2)

a ̸= 0 and b ̸= 0 . In the first case, by Theorem 3, we have that (a, b) ∈ β . In the second case, for the hypothesis
|H+/β

∗
H+

| = 1 and Proposition 6, we obtain that (a, b) ∈ βH+
⊆ β . Thus, we have that (a, b) ∈ β , for all

a, b ∈ H . Therefore, we conclude that β is transitive, which is an absurdity. 2

By Corollary 2, if (H, ◦) ∈ F0 and K ⊂ H is a subsemihypergroup of size |K| < 3 , then there exists
an element c ∈ K such that c ∈ cc . Now we will prove that if |K| ≥ 3 and K is hypercyclic generated by
hyperproduct P then (P ∩ P 2)− {0} = ∅ . We give the following result:

Lemma 9 Let (H, ◦) ∈ F0 . If P is a hyperproduct of elements in H such that (P ∩ P 2) − {0} ̸= ∅ , then
(P k ∩ P k+1)− {0} ̸= ∅ for every integer k ≥ 1 .

Proof By hypothesis the thesis is true for k = 1 . Therefore, we suppose it is true for k ≥ 1 and let
a ∈ (P k ∩ P k+1) − {0} ̸= ∅ . Obviously we have aP ⊆ P kP = P k+1 and aP ⊆ P k+1P = P k+2 ; hence,
aP ⊆ P k+1 ∩ P k+2 . From Lemma 1(4), we obtain that aP ̸= {0} since a ̸= 0 and P ̸= {0} . Thus, we have
that (P k+1 ∩ P k+2)− {0} ̸= ∅ . 2

Proposition 10 If (H, ◦) ∈ I0 is generated by hyperproduct P then we have (P ∩ P 2)− {0} = ∅ .

Proof For absurdity we suppose that (P ∩ P 2)− {0} ̸= ∅ . By Lemma 9 we have (P k ∩ P k+1)− {0} ̸= ∅ for
every integer k ≥ 1 . From Lemma 4 (1), if P+ = P − {0} then we obtain

⋆P k
+ ∩ ⋆P k+1

+ = (P k − {0}) ∩ (P k+1 − {0}) = (P k ∩ P k+1)− {0} ̸= ∅.

Moreover, by Proposition 6, the semihypergroup (H+, ⋆) is hypercyclic generated from P+ and βH+ is transi-
tive. Now, if x, y ∈ H+ , then there exist two integers m,n ≥ 1 such that x ∈ ⋆Pm

+ and y ∈ ⋆Pn
+ . If m = n

then (x, y) ∈ βH+
. If m ̸= n we can suppose that m < n and (⋆Pm+k

+ ∩ ⋆Pm+k+1) − {0} ̸= ∅ , for every
k ∈ {0, 1, . . . , n−m− 1} . Therefore, there exist n−m elements z0, z1, . . . , zn−m−1 ∈ H+ such that

{x, z0} ⊆ ⋆Pm
+ , {z0, z1} ⊆ ⋆Pm+1

+ , . . . , {zn−m−1, y} ⊆ ⋆Pn
+.

In consequence, xβH+
z0βH+

z1βH+
. . . βH+

zn−m−1βH+
y and (x, y) ∈ βH+

since βH+
is transitive. Thus, for

every x, y ∈ H+ we have (x, y) ∈ βH+
and |H+/β

∗
H+

| = 1 . This fact is impossible by Theorem 8. 2

As an immediate consequence of the preceding proposition, we can state the following result:

Corollary 11 Let (H, ◦) ∈ F0 and let K ⊆ H be a hypercyclic subsemihypergroup of size |K| ≥ 3 . If P is a

hyperproduct of elements in K − {0} such that K = P̂ then (P ∩ P 2)− {0} = ∅ .

3. Strong hyperproduct

Let (H, ◦) ∈ F0 and let K ⊆ H be a subsemihypergroup generated by P with |K| ≥ 3 . Since (K, ◦) ∈ F0 , by
Lemma 1, we have K = K◦K =

∪
n≥2 P

n , and hence there exists an integer s ≥ 2 such that (P∩P s)−{0} ̸= ∅ .
This fact suggests the following definition:
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Definition 12 Let (H, ◦) be a semihypergroup and let P be a hyperproduct of elements in H . The smallest
positive integer k such that P ∩P k+1 −{0} ̸= ∅ is called the rank of P. If no such k exists, then we say P has
rank 0 .

Clearly, by Corollary 11, if K is a hypercyclic subsemihypergroup of (H, ◦) ∈ F0 , with size |K| ≥ 3 , and

P is a hyperproduct of elements in K such that K = P̂ , then the rank of P is ≥ 2 .

In this section we will use the notion of rank to determine a sufficient condition for a hypercyclic
semihypergroup (H, ◦) ∈ I0 to be cyclic.

Definition 13 Let (H, ◦) ∈ F0 . An element c ∈ H is called quasi-idempotent if c ̸= 0 and {c} ⊆ c◦ c ⊆ {0, c} .

Definition 14 Let (H, ◦) ∈ F0 . A hyperproduct P of elements in H is called strong if it fulfills the following
conditions:

1. P does not contain any quasi-idempotent element of H .

2. The subsemihypergroup P̂ possesses a quasi-idempotent element.

3. If c ∈ P̂ is a quasi-idempotent element then P s − {0} = {c} , for all integers s such that c ∈ P s .

An immediate consequence of the previous definition and point 2 , point 4 , of Lemma 1 is the following
result:

Proposition 15 Let (H, ◦) ∈ F0 . If P is a strong hyperproduct then 0 ∈ P̂ and |P̂ | ≥ 3 .

Proposition 16 Let (H, ◦) ∈ F0 and let P be a strong hyperproduct. The semihypergroup P̂ has one and
only one quasi-idempotent element.

Proof Since P is a strong hyperproduct, P̂ has a quasi-idempotent element c1 . If there exists another quasi-
idempotent element c2 ∈ P̂ , then there exist two positive integers s1 and s2 such that P s1 − {0} = {c1} and
P s2 − {0} = {c2} . Obviously we have

{c1} = cs21 − {0} = (P s1)s2 − {0} = (P s2)s1 − {0} = cs12 − {0} = {c2}

and so c1 = c2 . 2

Corollary 17 Let (H, ◦) ∈ F0 and let P be a strong hyperproduct of elements in H . If c is the quasi-idempotent

element in P̂ and s ∈ N− {0} then P s is a strong hyperproduct if and only if c ̸∈ P s .

The next table shows a fully zero-simple semihypergroup with two quasi-idempotent elements c1, c2 and
two strong hyperproducts P and Q such that c1 ∈ P̂ and c2 ∈ Q̂ .
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Example 18 Let H = {0, 1, 2, 3, 4, 5, 6} and let ◦ be the hyperproduct defined in the following table:

◦ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0, 3 0, 3 0, 1, 2 5, 6 0, 4, 6 0, 4, 5, 6
2 0 0, 3 0, 3 0, 1, 2 0, 4, 6 5, 6 0, 4, 5, 6
3 0 0, 1, 2 0, 1, 2 3 0, 4, 5, 6 0, 4, 5, 6 0, 4, 5, 6
4 0 2, 3 0, 1, 3 0, 1, 2, 3 0, 6 0, 6 0, 4, 5
5 0 0, 1, 3 2, 3 0, 1, 2, 3 0, 6 0, 6 0, 4, 5
6 0 0, 1, 2, 3 0, 1, 2, 3 0, 1, 2, 3 0, 4, 5 0, 4, 5 0, 6

We have (H, ◦) ∈ F0 . The elements 3 and 6 are quasi-idempotent; the hyperproducts P = 1 ◦ 3 , Q = 4 ◦ 6 are

strong of rank two; and we have 3 ∈ P̂ , 6 ∈ Q̂ . Moreover, we note that (H+, ⋆) is not a commutative simple
semihypergroup and H+/β

∗
H+

is isomorphic to the following semigroup:

1 2
1 1 2
2 1 2

Proposition 19 Let (H, ◦) ∈ F0 and let P be a strong hyperproduct of rank r . Then we have r ≥ 2 .

Proof Let c be the quasi-idempotent element in P̂ and s ≥ 2 the minimum integer such that P s−{0} = {c} .
If for absurdity we suppose P ∩ P 2 ̸= ∅ then P s−1 ∩ P s − {0} ̸= ∅ and so c ∈ P s−1 . By definition of a strong
hyperproduct, we have P s−1 − {0} = {c} . That is a contradiction for the minimality of s . 2

We are ready to prove the following result:

Proposition 20 Let (H, ◦) ∈ F0 and let P be a strong hyperproduct of rank r . Then r is the minimum

positive integer such that P r − {0} = {c} , where c is the quasi-idempotent element in P̂ .

Proof Since c ∈ P̂ there exists a minimum positive integer s such that P s − {0} = {c} . Hence, {c} =

(P s)r − {0} = (P r)s − {0} and c ∈ P̂ r . Clearly, there exists a minimum positive integer t such that
P rt − {0} = {c} . Suppose, for absurdity, that t ≥ 2 . By point 4 of Lemma 1, we have P (t−1)r−1 ̸= {0} .
Moreover, since (P ∩ P r+1)− {0} ̸= ∅ , we obtain

∅ ̸= ((P ∩ P r+1)− {0}) ◦ P (t−1)r−1 − {0} ⊆ (P (t−1)r ∩ P tr)− {0} ⊆ P (t−1)r ∩ {c}.

By Definition 14, it follows that P (t−1)r − {0} = {c} , which is a contradiction for the minimality of t .
Therefore, t = 1 and P r − {0} = {c} . Now, let s be a positive integer such that P s − {0} = {c} , and
then ∅ ̸= P ∩P r+1−{0} = P ∩ cP −{0} = P ∩P s+1−{0} and so s ≥ r . Therefore, r is the minimum positive
integer such that P r − {0} = {c} . 2

Proposition 21 Let (H, ◦) ∈ F0 . If P is a strong hyperproduct of elements in H of rank r then there exists
a positive integer t ≤ 2r such that 0 ∈ P t .
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Proof Let c be the quasi-idempotent element in P̂ . From Definition 13 and Proposition 20, we have
c ∈ c ◦ c ⊆ {0, c} and c ∈ P r ⊆ {0, c} . Moreover, by Proposition 15, we know that 0 ∈ P̂ ; hence,
we can distinguish two cases: 0 ∈ P 2r or 0 ̸∈ P 2r . In the first case we have the thesis. In the second
case, we obtain c ◦ c = {c} = P r . Now there exists an integer m ≥ 1 such that 0 ∈ Pm . If m > 2r ,
by Euclidean division, there exist two nonnegative integers q, n such that m = qr + n with q ̸= 0 and
0 ≤ n < r . We have n ̸= 0 ; otherwise, 0 ∈ Pm = P qr = (P r)q = cq = {c} . Hence, we deduce
0 ∈ Pm = P qr+n = (P r)q ◦ Pn = cq ◦ Pn = c ◦ Pn = P r ◦ Pn = Pn+r and so 0 ∈ Pn+r with n+ r < 2r . 2

Corollary 22 Let (H, ◦) ∈ F0 . If P is a strong hyperproduct of elements in H of rank r then P̂ =
∪2r

k=1 P
k .

Proof Let c be the quasi-idempotent element in P̂ . For all m > 2r there exist q, n ∈ N such that m = qr+n ,
q ≥ 2 , and 0 ≤ n < r . By Proposition 20, if n = 0 then Pm = (P r)q ⊆ {0, c}q ⊆ {0, c} ⊆ {0}∪P r . Otherwise,
if n ̸= 0 , then Pm = (P r)q ◦ Pn ⊆ {0, c}q ◦ Pn ⊆ ({0} ∪ cq) ◦ Pn = {0} ∪ (cq ◦ Pn) = {0} ∪ ({0, c} ◦ Pn) =

{0} ∪ c ◦ Pn = {0} ∪ P r ◦ Pn = {0} ∪ Pn+r . Hence, for Proposition 21, we obtain Pm ⊆
∪2r

k=1 P
k and

P̂ =
∪2r

k=1 P
k . 2

Lemma 23 Let (H, ◦) ∈ F0 and let P be a strong hyperproduct of elements in H of rank r . If c is the

quasi-idempotent element of P̂ then we have:

1. P̂ = ({c} ∪ c ◦ P ∪ c ◦ P 2 ∪ ... ∪ c ◦ P r−1) ;

2. c ◦ P i − {0} = P i ◦ c− {0} , for every i ∈ {1, 2, ..., r} ;

3. (c ◦ P )i − {0} = c ◦ P i − {0} , for every i ∈ {1, 2, ..., r} ;

4. (c ◦ P i) ◦ (c ◦ P j)− {0} = c ◦ P i+j − {0} , for every i, j ∈ {1, 2, ..., r} ;

5. (P i ∩ P j)− {0} = ∅ , for every i, j ∈ {1, 2, ..., r} and i ̸= j ;

6. c ̸∈ c ◦ P i − {0} , for every i ∈ {1, 2, ..., r − 1} ;

7. (c ◦ P i ∩ c ◦ P j)− {0} = ∅ , for all i, j ∈ {1, 2, ..., r − 1} and i ̸= j ;

8. P i ⊆ c ◦ P i , for every i ∈ {1, 2, ..., r − 1} .

Proof For Corollary 22, we can put P̂ = P ∪ P 2 ∪ ... ∪ P 2r .

1. Since P̂ = (P̂ )r = P r ∪ P r+1 ∪ ... ∪ P 2r2 , by Proposition 20, it results that:

P r − {0} = {c}

P r+1 − {0} = c ◦ P − {0}
…………
P 2r−1 − {0} = c ◦ P r−1 − {0}

P 2r − {0} = c ◦ P r − {0} = {c} = P r − {0} .
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At this point, taking into account Proposition 21, the assertion follows immediately.

2. Since {c} = P r − {0} , we have

c ◦ P i − {0} = P r ◦ P i − {0} = P i ◦ P r − {0} = P i ◦ c− {0}.

3. By item 2 , we have (c◦P )i−{0} = (c ◦ P ) ◦ (c ◦ P ) ◦ . . . ◦ (c ◦ P )︸ ︷︷ ︸
i times

−{0} = c ◦ c ◦ . . . ◦ c︸ ︷︷ ︸
i times

◦P ◦ P ◦ . . . ◦ P︸ ︷︷ ︸
i times

−{0} =

c ◦ P i − {0} .

4. By item 2. , (c ◦ P i) ◦ (c ◦ P j)− {0} = c ◦ c ◦ P i ◦ P j − {0} = (c ◦ P i+j)− {0} .

5. For absurdity, let (P i ∩ P j) − {0} ̸= ∅ for some i, j ∈ {1, 2, ..., r} with i ̸= j . Supposing i < j , we
obtain (P r−j+i ∩P r−j+j)−{0} ̸= ∅ , and hence (P r−j+i ∩P r)−{0} ̸= ∅ . Since P r −{0} = {c} we have
c ∈ P r−j+i − {0} , which is a contradiction because r is the minimum integer such that {c} ∈ P r − {0} .

6. Let i ∈ {1, 2, ..., r − 1} . Since c ◦ P − {0} = P r+1 − {0} , we have

(P ∩ P r+1)− {0} ̸= ∅ ⇒ (P ∩ c ◦ P )− {0} ̸= ∅ ⇒ (P i ∩ (c ◦ P )i)− {0} ̸= ∅.

Moreover, by item 3 , we obtain P i ∩ c ◦ P i − {0} ̸= ∅ . Now, if c ∈ (c ◦ P )i − {0} , then c ◦ P i − {0} =

P r ◦ P i − {0} = P r+i − {0} , and hence c ◦ P i − {0} = P r+i − {0} = {c} . Consequently, we have
c ∈ P i − {0} , which is impossible because i < r . Thus, c ̸∈ c ◦ P i − {0} .

7. For absurdity, we suppose that there exists i, j ∈ {1, 2, ..., r−1} , with i ̸= j , such that (c◦P i∩c◦P j)−{0} ̸=
∅ . Letting i < j , by item 3 , we obtain (c ◦ P r−j+i ∩ c ◦ P r−j+j)− {0} ̸= ∅ . Having c ◦ P r − {0} = {c} ,
it follows that c ∈ c ◦ P r−j+i − {0} . Since r − j + i < r , by item 6 , we have a contradiction.

8. Let i ∈ {1, 2, . . . , r − 1} and a ∈ P i . From item 1 , there exists an integer s , with 1 ≤ s ≤ r − 1 , such
that a ∈ c ◦P s . Clearly, it results that c ◦ a ⊆ c ◦P i and c ◦ a ⊆ c ◦P s . Therefore, by point 4 of Lemma
1, we have ∅ ̸= c ◦ a ⊆ (c ◦ P i ∩ c ◦ P s) . Moreover, for item 7 , i = s and a ∈ c ◦ P i . 2

Remark 24 From Lemma 23, if P is a strong hyperproduct of rank r , of elements in a fully zero-simple
semihypergroup, then P̂ is partitioned by the family of subsets

{
{c} , c ◦ P , c ◦ P 2, ..., c ◦ P r−1

}
, where c is the

quasi-idempotent element of P̂ .

Lemma 25 Let (H, ◦) ∈ F0 and let P be a strong hyperproduct of rank r , with c a quasi-idempotent element

in P̂ . If Q is a hyperproduct such that ∅ ̸= Q− {0} ⊆ P , then:

1. Q is a strong hyperproduct with c ∈ Q̂ , having the same rank r of P ;

2. c ◦Qi − {0} = c ◦ P i − {0} , for all i ∈ {1, 2, . . . , r − 1} ;

3. Q̂ = P̂ .

Proof
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1. From Proposition 20, we have Qr − {0} ⊆ P r − {0} = {c} and so Qr − {0} = {c} and c ∈ Q̂ . Clearly
c ̸∈ Q because Q ⊆ P and c ̸∈ P . Moreover, by point 3 of Definition 14, if c ∈ Qs−{0} then c ∈ P s−{0}
and Qs−{0} = P s−{0} = {c} . Hence, Q is a strong hyperproduct of (H, ◦) and c is a quasi-idempotent

element in Q̂ . From Proposition 20, if t is the rank of Q then t ≤ r because Qr −{0} = {c} . Moreover,
since {c} = Qt−{0} ⊆ P t−{0} , by point 3 of Definition 14 and Proposition 20, we have P t−{0} = {c}
and r ≤ t ; therefore, r = t .

2. Let b be an element in P − {0} . We have b ◦ Qr−1 − {0} ⊆ b ◦ P r−1 − {0} ⊆ P r − {0} = {c}
and so b ◦ Qr−1 − {0} = {c} . Moreover, by item 1 , we have b ◦ c − {0} = b ◦ (Qr − {0}) − {0} =

b◦ (Qr−1−{0})◦ (Q−{0})−{0} = c◦ (Q−{0})−{0} = c◦Q−{0} and so b◦c−{0} = c◦Q−{0} , for all
b ∈ P−{0} . Thus, by point 2 of Lemma 23, we deduce that c◦P−{0} = P ◦c−{0} = (P−{0})◦c−{0} =∪

b∈P−{0}(b ◦ c)−{0} =
∪

b∈P−{0}(b ◦ c−{0}) = c ◦Q−{0} . Hence, c ◦P −{0} = c ◦Q−{0} . The proof
of the item follows from point 4 of Lemma 23.

3. The result follows from previous item 2 and point 1 of Lemma 23. 2

4. Semihypergroups in F0 generated by a strong hyperproduct
In this section we consider hypercyclic fully simple semihypergroups generated by a strong hyperproduct. For
the reader’s convenience we give the following:

Definition 26 A semihypergroup (H, ◦) ∈ I0 is called S -hypercyclic if there exists a strong hyperproduct P

such that H = P̂ .

Example 27 The next table shows an S -hypercyclic semihypergroup (H, ◦) ∈ I0 . For notational and descrip-
tive simplicity, we denote A = {0, 1} , B = {0, 2, 3, 4} , C = {0, 5, 6} , and D = {0, 7, 8} .

◦ 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 B B B C C D D
2 0 B 0, 5 C C D D A A
3 0 B C C C D D A A
4 0 B C C C D D A A
5 0 C D D D A A 2, 3, 4 B
6 0 C D D D A A 2, 3 2, 4
7 0 D A A A B B C C
8 0 D A A A B 2, 4 C C

The element 1 is quasi-idempotent and, for example, P = 6 ◦ 7 is a strong hyperproduct of rank four.
Also, elements 2, 3, 4, 7, 8 can be regarded as strong hyperproducts of rank four and H = P̂ = â , for all
a ∈ {2, 3, 4, 7, 8} . In this case H+/β

∗
H+

is isomorphic to group Z4 .

Proposition 28 Let (H, ◦) ∈ I0 be an S -hypercyclic semihypergroup generated by the strong hyperproduct P

of rank r and let c be the quasi-idempotent element of H . We have:

1. If a ∈ P − {0} then a is a strong hyperproduct of rank r and H = â .
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2. If Q is a hyperproduct of elements in H+ then c ∈ Q̂ . Moreover, if c ∈ Q then Q−{0} = {c} . Otherwise,
if c ̸∈ Q then Q is strong and has rank ≤ r .

3. If Q and T are strong hyperproducts of elements in H+ then we have c ◦ Qi ∩ c ◦ T i − {0} = ∅ or
c ◦Qi − {0} = c ◦ T i − {0} , for all i ∈ {1, 2, ..., r − 1} .

4. The element c is the only identity of (H, ◦) .

5. The residual semihypergroup (H+, ⋆) of (H, ◦) is a cyclic semihypergroup with identity.

Proof

1. Immediate consequence of Lemma 25.

2. Let a ∈ P − {0} and let Q =
∏n

i=1 αi be a hyperproduct of elements in H+ . From point 1 , H = â ,
and for every element αi there exists an integer qi such that αi ∈ aqi . Clearly, we have Q =

∏n
i=1 αi ⊆∏n

i=1 a
qi = au , where u =

∑n
i=1 qi . Hence, Qr − {0} ⊆ (au)r − {0} = (ar)u − {0} = {c} and so c ∈ Q̂ .

Now, if c ∈ Q , then c ∈ Q ⊆ au and we have au − {0} = {c} = Q − {0} . Moreover, if c ̸∈ Q and
c ∈ Qs − {0} then c ∈ Qs − {0} ⊆ (au)s − {0} = aus − {0} and so {c} = aus − {0} = Qs − {0} . Hence,
Q is a strong hyperproduct and the rank of Q is ≤ r .

3. If c◦Qi∩c◦T i−{0} = ∅ the thesis follows. Otherwise, if c◦Qi∩c◦T i−{0} ̸= ∅ then there exists a ∈ H+−{c}
such that a ∈ c◦Qi and a ∈ c◦T i and so, by point 2 of Lemma 25, c◦Qi−{0} = c◦a−{0} = c◦T i−{0} .

4. By item 2 , the element b is a strong hyperproduct for every b ∈ H+ −{c} . From Lemma 23 (1), we have

b̂ = {c} ∪ c ◦ b ∪ ... ∪ c ◦ bs−1 , where s is the rank of b . Hence, there exists i ∈ {1, 2, . . . , s− 1} such that
b ∈ c ◦ bi . Clearly, c ◦ b − {0} ⊆ c ◦ bi − {0} and, by item 7 of Lemma 23, we have i = 1 and b ∈ c ◦ b .
In the same way, by item 2 of Lemma 23, we obtain b ∈ b ◦ c . Hence, b ∈ c ◦ b ∩ b ◦ c for all b ∈ H+ .
Obviously, we also have c ◦ 0 = 0 ◦ c = {0} , and hence c is an identity of (H, ◦) . If c′ ∈ H − {0, c} is
another identity and Q = c ◦ c′ , for item 2 , we have {c, c′} ⊆ Q−{0}={c} and c = c′ . Hence, element c

is the only identity of (H, ◦) .

5. By point 1 and Lemma 4 (1), the semihypergroup (H+, ⋆) is cyclic. Moreover, from previous point 4 ,
the element c is an identity of (H+, ⋆) . 2

Proposition 29 Let (H, ◦) ∈ I0 an S -hypercyclic semihypergroup generated by the strong hyperproduct P of

rank r and suppose r is a prime number. Then ĉ ◦ Ph = H for all h ∈ {1, 2, ..., r − 1} .

Proof By item 6 of Lemma 23 and the preceding proposition, c ◦ P i is a strong hyperproduct for all

i ∈ {1, 2, ..., r−1} . Now let h ∈ {1, 2, ..., r−1} . By item 1. of Lemma 23, we need to prove that c◦P j ⊆ ĉ ◦ Ph ,
for every j ∈ {1, 2, ..., r−1} . Since r is a prime number, the congruence hx = j (mod r) has exactly one solution,
s ̸= 0 (mod r). Thus, hs = j + kr and so

c ◦ P j+kr − {0} = c ◦ Phs − {0}.
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By points 2 , 3 , and 4 of Lemma 23, we have c ◦ Phs − {0} = cs ◦ Phs − {0} = (c ◦ Ph)s − {0} . Hence,

c ◦ P j+kr − {0} = (c ◦ Ph)s − {0} . Clearly, if k = 0 we have c ◦ P j ⊆ ĉ ◦ Ph ; otherwise, if k ̸= 0 then
c ◦ P j − {0} ⊆ c ◦ P j ◦ c − {0} = c ◦ P j ◦ (P r)k − {0} = c ◦ Phs − {0} = (c ◦ Ph)s − {0} and also in this case

c ◦ P j ⊆ ĉ ◦ Ph . 2

Theorem 30 Let (H, ◦) ∈ I0 an S − hypercyclic semihypergroup generated by a strong hyperproduct P of
rank a prime number r and having c as quasi-idempotent element. Then:

1. Every element a ∈ H+ − {c} is a strong hyperproduct of rank r and H = â .

2. For every strong hyperproduct Q of H , Q̂ = H and Q has rank r .

3. (H+, ⋆) is a cyclic semihypergroup generated by every a ∈ H+ − {c} .

4. H+/β
∗
H+

is a cyclic semigroup.

Proof

1. Let a ∈ H+ − {c} . Then by item 1 of Lemma 23, there exists h ∈ {1, 2, ..., r − 1} , such that a ∈ c ◦ Ph .

By Proposition 29, we have ĉ ◦ Ph = H . Moreover, c ̸∈ c ◦ Ph and so, from Lemma 25, H = â .

2. Consequence of item 1 .

3. Consequence of Lemma 4 (4) and item 1.

4. Immediate since (H+, ⋆) is a cyclic semihypergroup.
2

Remark 31 In Example 27, the S -hypercyclic semihypergroup (H, ◦) is generated by a strong hyperproduct
P of rank four, while elements 5 and 6 are strong hyperproducts of rank two and do not generate (H, ◦) . This
fact shows that the hypothesis “rank of P is a prime number” in Theorem 30 cannot be deleted. The following
product table shows an S -hypercyclic semihypergroup (H, ◦) generated by a strong hyperproduct P of rank
three.

◦ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 0, 2, 3, 4 0, 2, 3, 4 0, 2, 3, 4 0, 5, 6 0, 5, 6
2 0 0, 2, 3, 4 0, 5, 6 5, 6 0, 5, 6 0, 1 0, 1
3 0 0, 2, 3, 4 0, 5, 6 0, 5, 6 5, 6 0, 1 0, 1
4 0 0, 2, 3, 4 5, 6 0, 5, 6 0, 5, 6 0, 1 0, 1
5 0 0, 5, 6 0, 1 0, 1 0, 1 0, 2, 3 0, 4
6 0 0, 5, 6 0, 1 0, 1 0, 1 0, 2, 3, 4 0, 2, 3, 4

By the previous theorem, we have H = â , for every a ∈ H+ − {1} , where 1 is the quasi-idempotent element
of H . We note that if G is a group then every element a is a strong product and if a is a torsion element
its rank is the period of the element a . Therefore, the rank can be seen as a generalization of the concept of
period. Moreover, it is known that if G is a cyclic group of size a prime number r then every element different
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from identity is a generator of G . The same property is true for semihypergroups in Theorem 30, but the
commutative property of cyclic groups does not generally hold. The hyperoperation in the previous example is
not commutative.
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