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Abstract 

 

This thesis investigates the potential of in-car advisory systems to suggest location and 

timing where and when lane-changes should be executed, by evaluating traffic flow 

conditions with data that is available using vehicle-to-vehicle communication. After 

investigating existing literature regarding car-following and lane-changing models, as well 

as driving support assistance systems and vehicle communication applications and practice, 

a new lane-changing model is introduced, with the objective to serve as a basis for the 

development of the in-car advisory system. In particular, the model accounts for information 

about position and speed of vehicles that are downstream from the considered vehicle 

current position, namely, out of the sight of a driver. Based on the proposed model, a 

decision system to deliver lane-changing advices to the driver is implemented, with the goal 

of avoiding or reducing traffic congestion. A set of simulations using the microscopic traffic 

simulator AIMSUN are performed to test the effectiveness of the proposed system. 
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traffic simulation 

 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   





 

 

 

Contents 
 

1. Introduction ..................................................................................................................... 1 

2. Literature collection ........................................................................................................ 4 

2.1. Car-following models .............................................................................................. 5 

2.2. Congestion assistants ............................................................................................... 7 

2.3. Lane-changing models .......................................................................................... 11 

2.4. Lateral Support Systems ........................................................................................ 15 

2.5. Vehicle Connectivity ............................................................................................. 19 

2.6. Psychological models ............................................................................................ 24 

3. Lane-changing model ................................................................................................... 27 

3.1. Model structure...................................................................................................... 27 

3.2. Implementation of the model ................................................................................ 30 

4. Simulations ................................................................................................................... 38 

4.1. Automated Vehicles scenario ................................................................................ 38 

4.2. Connected Automated Vehicles Scenario ............................................................. 41 

5. Conclusions................................................................................................................... 49 

6. Acknowledgments ........................................................................................................ 50 

References ............................................................................................................................ 51 

Appendix 1 ............................................................................................................................. 1 

Lane-changing model code in C++. Developed with Aimsun microSDK. ....................... 1 

 

   



 

1 

  

1. Introduction 
 

 

How to analyse, model and manage traffic flows has been the basis for many research studies 

since several decades ago. In Pipes (1953), the author related that in the decade of 1950 the 

method of “operations research” was being applied for the study of traffic flow, in 

investigations such as the statistical study of the behaviour of traffic at intersections or the 

dynamics of a line of traffic, that is the field in which the author focused his research on, as 

it is commented later in this work.  

 

Since then, multiple models have been proposed to represent how vehicles interact between 

then, either regarding a line of traffic where each vehicle follows the preceding one (car-

following) or movements of vehicles across the lanes of a road (lane-changing). Nowadays, 

besides developing more accurate models, the introduction of ADAS (Advanced Driver 

Assistance Systems) and vehicles with a degree of automation is another factor to consider, 

as well as the use of available traffic data gathered from spot detectors and floating-car data, 

like in Schakel and van Arem (2014) or in Roncoli et al. (2016). These systems can improve 

safety and comfort of drivers, but also traffic flow efficiency, because they can surpass the 

capabilities of human drivers in some tasks. 

 

The improvement of traffic efficiency is crucial nowadays. The number of daily trips by road 

is already very high, especially during hours when people drive to or from their working 

places. Therefore, peaks in the number of displacements by vehicle are produced, mainly, 

early in the morning and during afternoon. Also, most of road users drive their vehicles 

alone, which means that the number of people traveling on a road could be translated to near 

the same number of vehicles. That reduces drastically the efficiency in mobility in cases 

where private vehicles are majority, like in highways (urban areas tend to have a larger 

number of public transports, or motorcycles and bicycles). 

 

This poor performance often leads to traffic congestion, which is a major problem as it 

increases travel time and fuel consumption for vehicles involved. As stated in Roncoli et al. 

(2015), “the European Commission estimates that the yearly cost of road congestion in 

Europe exceeds 120 billion €”. To solve this problem, many different options can be 

considered. One typical approach is to increase road capacity, improving current 

infrastructures or creating new ones. In cities where there is a limited number of roads to 

access, offering new routes for drivers can allow to distribute traffic per their different 

origins. But this option is not possible in several cases, and increases recourses needed, and 

thus, costs. 

 

Another option consists on reducing the number of vehicles on the road, which is not easy 

as most of the cities still tend to grow (especially in developing countries), so road trips as 

well. It could be possible encouraging people to use public transports instead of private cars, 

or to share their cars. This is becoming more popular nowadays thanks to software 

applications that can show users all the different options available for them to moving 

without needing a private vehicle, easily accessible via smartphone or other internet 

connected devices. But, for such a change in mentality of people, it could take years until 

reaching significant results. 
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Road capacity can also be increased changing drivers’ behaviour. For example, reducing the 

headway they apply between their vehicle and the preceding one; this way, size of vehicle 

platoons is reduced and therefore, road congestion. Nevertheless, is not simple to apply 

solutions like this, as headway is also directly linked to safety. Drivers must maintain a 

headway large enough to stop the vehicle in case the leading vehicle suddenly breaks. Some 

systems, like the one introduced by Schakel and van Arem (2014), propose to deliver advices 

to drivers to make them more attentive and adjust the gap themselves when driving in 

congested traffic. Van Gent et al. (2017) explained how these advice systems must be 

correctly adjust to deliver just the most necessary messages, to avoid distracting the driver. 

Reaction time of drivers must also be taken into account, which changes depending on 

several factors (driver’s age, his level of awareness, visibility conditions…). 

 

The way vehicles are distributed along and across the road also affects traffic flow, because 

to reach cross-lane capacity, capacity flow must be achieved for each lane, as declared in 

Roncoli et al. (2017). Asymmetric traffic rules difficult these balanced distribution, as left 

lanes (in case of right-hand side traffic situation, as it is considered in this document if not 

specified the opposite) are used most of the time to overtake, and traffic must use the 

rightmost lane as the default one. In model like MOBIL from Kesting et al. (2007), how 

these differences between symmetric and asymmetric traffic rules affect to traffic modelling 

are taken into account. Also, lane changes can be a source of disturbances in the flow as they 

affect speed of vehicles surrounding the one carrying out the manoeuvre. 

 

Connectivity is another feature present in vehicles nowadays and, according to Lytrivis et 

al. (2011), will become widely available in the near future. V2V (vehicle-to-vehicle) and 

V2I (vehicle-to-infrastructure) allow to receive and transmit information to vehicles, so 

traffic can be analysed based in all that available data and act in consequence. This actions 

can be executed by drivers, informed about the traffic or even suggested what to do in a 

specific situation through some advice system, like the mentioned one from Schakel and van 

Arem (2014); or even executed directly by autonomous vehicles. 

 

Regarding automated vehicles, it is not within the scope of this project to go deep in that 

field, but some driver support systems involving a certain degree of automation are 

mentioned, like Adaptive Cruise Control systems. Some of these systems, like the Stop&Go 

from van Driel and van Arem (2008), can take control over the driving task in congested 

situations, maintaining automatically the headway with the preceding vehicle, improving not 

just comfort but also efficiency, as they can use smaller headways while maintaining safety. 

 

In order to contribute to this research field, a new lane-changing model is investigated. The 

main objective of this model is anticipating the appearance of breakdowns and acting 

consequently, distributing upstream vehicles across all the lanes when traffic perturbances 

are detected. To achieve this, measures of speed and headway are obtained to evaluate the 

traffic flow in each lane and detect a potential congestion, making vehicles a certain distance 

upstream to move to those lanes with better conditions (those with higher average speeds or 

larger gaps). 
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The model is intended to be the base of a lane-change advisory system, that would alert 

drivers about an increasing risk of congestion downstream of their current position, so they 

would be suggested to change lane in advance to reduce the delay in travel time. However, 

in this first approach, it is assumed that information on position and speed from every vehicle 

on the road is available, like if the penetration rate of connected vehicles was 100%. All the 

lane changes commanded by the system are followed as well, which could be interpreted as 

a scenario with automated vehicles capable of executing the manoeuvre without the 

interaction of the driver, or with a full compliance rate for drivers following delivered 

advices. Another assumption could be that the system delivers more lane-changing advices 

than actual number of lane changes executed by drivers, so a scenario with a lower 

compliance rate would be feasible too. 

 

This document is organized as follows. First, in chapter 2 it is presented a review of different 

articles regarding car-following and lane-changing models proposed by various researchers. 

Driving assistance systems that use these or other similar models are also considered, as well 

as some research works about vehicle connectivity and interaction between drivers and 

assistance systems. Chapter 3 is dedicated to the proposed lane-change model. It is detailed 

how the model has been coded to apply it in a traffic simulator software. The software that 

has been employed in this project is AIMSUN. Then, in chapter 4, results from some initial 

simulations are presented and commented. The test network employed to run the simulations 

is a ring road around the city of Antwerp, in Belgium. Conclusions are   
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2. Literature collection 
 

 

Developing driving models that could represent how vehicles behave is the purpose for 

several studies carried out in the last decades. In this chapter, some of the most relevant 

research articles regarding development of these models are presented and summarized, in 

order to establish a background for developing a new behavioural model to manage lane 

changes.  

 

Two main categories of behavioural models are considered: 

 

 Car-following models. These represent how a vehicle behaves within its current lane. 

In most models, two scenarios are taken into account. First, when the vehicle is 

traveling in free flow conditions, without traffic in front that could conditionate its 

behaviour, so the desired speed of the driver is the parameter that governs the model. 

The other scenario, when a vehicle is traveling among others, is determined by the 

desired headway (distance between a vehicle and the one ahead) that the driver wants 

to maintain with the preceding vehicle. 

 

 Lane-changing models. These models aim to represent movements of vehicles from 

one lane to another, evaluating every aspect of them, from the reasons that lead to 

start a lane change manoeuvre, to searching an appropriate gap in the target lane and 

the interactions with surrounding vehicles. These different levels in the lane-

changing process (strategic, tactical and operational) are detailed later in this chapter 

as a review of Tideman et al. (2007) investigation. 

 

Other studies, regarding features like advisory systems, connectivity solutions or human-

machine interfaces are also considered in this chapter. 
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2.1. Car-following models 
 

The main objective of Car-following models is to describe the longitudinal movement of a 

vehicle based on the movement of the preceding one. According to Pipes (1953), back in the 

decade of 1950, there were already studies about traffic flow focused on the dynamics of a 

line of traffic, so he proposed a mathematical analysis of this feature assuming that vehicles 

must follow a certain traffic regulation when following each other. He considered the 

California Vehicle Code, that suggested a safe distance between vehicles as that of “the 

length of a car (about fifteen feet) for every ten miles per hour” speed. 

 

In his study, Pipes obtains the dynamical equations that govern a line of traffic for two 

situations: 

 

 A line of vehicles initially at rest starts moving, specifying the motion of the leading 

vehicle among different options (suddenly acquisition of motion, gradual 

acceleration and constant acceleration). 

 

 A line of vehicles moving with the same cruising speed begins to decelerate when 

approaching a stop point. In this case, the sudden stop and exponential deceleration 

of the leading vehicle are considered. 

 

For the most complex mathematical problems regarding this analysis, the author proposes to 

use an electrical analogue computer, proving how connected are since their beginnings the 

analysis of traffic and the computer engineering. 

 

Robert E. Chandler was also a pioneer in the field of car-following models. Chandler et al 

(1958) developed mathematical models based on the theory of servomechanisms and 

network analysis, stablishing analogies between traffic and communication theory. These 

models take into consideration how drivers program their driving differently when they drive 

alone or following other vehicles.  

 

In this last case, one essential variable in the model is the inter-car spacing, which depends 

on the velocity of the vehicle. The gap (or headway) that a driver is willing to maintain with 

its leader is what defines how vehicles move in a platoon, in the same way that the desired 

speed configures behaviour in free flow situations. The gap between vehicles is the core of 

every car-following model consulted for this text. 

 

One of the car-following models that are widely cited by researchers is the one from Gipps 

(1981). He constructed a car-following model that focuses on following three main 

objectives:  

 

 Mimic the behaviour of real traffic. This point is the most obvious, as accuracy is 

needed in order to run realistic simulations and obtain valuable results, to study actual 

traffic situations and develop solutions. 

 

 Make it easy to be calibrated (using reasonable vehicle and driver parameters). 
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 Adapt time between recalculations to the reaction time of the driver. This aspect, 

regarding the moment the article was released, probably would not be conflictive 

nowadays due to advances in computing technology. However, as many of these 

models are intended to be integrated in vehicle on-board units, like embedded 

computers, time between calculations should always be a main point to focus on as 

it is critical for traffic safety.  

 

The previous model calculates a safe speed respect to the preceding vehicle applying limits 

to the performance of the vehicle and the driver and considering that the driver selects his 

speed to make it possible to stop the vehicle safely. This limitation on the speed would be 

different in free-flow traffic conditions or in a congested situation, but the model ensures a 

smooth transition between these cases, except for cases like the leader braking harder than 

what the following vehicle could anticipate, the leader leaving the lane or another car moving 

in between the two. 

 

Gipps model also establishes that if the velocity of the leader exceeds the desired speed of 

the follower, it stops following. The follower vehicle would not react instantly to a change 

in speed of the leader, it would wait to adapt the spacing to the new velocity. 

 

The validation of the model show that it is able to mimic real traffic behaviour when 

parameters corresponding to drivers and vehicles take reasonable values, being the three 

main factors that control this behaviour: the distribution of desired speeds (𝑉𝑛), the reaction 

time for drivers (𝜏) and the ratio between rate to driver´s estimates of the mean braking rate, 

(𝑏̅ 𝑏̂⁄ ). Other advantage of the model is its speed of calculation. 

 

Trying to simplify how car-following models are developed, Newell (2002) proposes a 

simple car-following rule: “the time-space trajectory of the nth vehicle is essentially the same 

as the (n – 1)th vehicle except for a translation in space and time”. With this statement, he 

affirms that a vehicle following another is not just influenced by it, but it almost mimics its 

trajectory, maintaining a gap. This spacing between vehicles, noted as 𝑆𝑛, depends on their 

velocity. If the leading vehicle increases it, the following vehicle will increase it in the same 

level, with a delay in time (𝜏𝑛) and space (𝑑𝑛), and applying a new larger gap, as shown in 

figure 1. 

 

 
Figure 1. Relation between leading and following vehicle displacement. Newell (2002) 
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Newell compares his work with other traditional car-following models, like the mentioned 

from Chandler et al. (1958). Studies on how to fit curves to observed values of flow (q) and 

density (k) (for a macroscopic approach of the relation between velocity and spacing) are 

also reviewed in the paper, to prove that the presented linear relation between velocity and 

spacing is realistic. The conclusion that he reaches by this is that “there seems to be little, if 

any evidence of these non-linear effects except possibly for vehicles close to the desired 

velocity, flows close to the maximum, or for very low velocities”. 

 

Wang and Coifman (2008) published a paper, trying to solve the problems that Newell’s car-

following theory presents when there are frequent lane-change manoeuvres, due to its 

impossibility to predict microscopic behaviour of vehicles. The purpose is to evaluate the 

impact of lane-changes in these model. They offer a review of Newell’s work, and mention 

other papers which provide empirical support for Newell’s theory, at least under certain 

conditions. 

 

In their article, Wang and Coifman describe how spacing between vehicles change when one 

of them performs a lane-change. All the affected vehicles in the manoeuvre must adapt the 

distance to the vehicle in front, so during this “accommodation period”, the spacing and 

speed deviate from the preferences of drivers. However, as it can be seen in figure 2, results 

from simulations show that, even with considering these discontinuities in the relation 

between spacing and speed, it is still strong and not far from Newell’s model. 

 

 
Figure 2. Cumulative Distribution Function of correlation between spacing and speed for different 

groups of cars regarding their speed. Wang and Coifman (2008). 

 

 

2.2. Congestion assistants 
 

Car-following models can be employed as a basis to develop systems that assist drivers in 

situations in which the driving task is basically reduced to following a line of traffic. For 

example, in a traffic jam or when approaching to a platoon. In this section of the chapter, 

some of the solutions provided by various authors are presented. 
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Kesting et al. (2007) presented an adaptive cruise control (ACC) traffic-assistance system to 

“improve traffic flow and road capacity”. Both traffic efficiency and driver comfort are 

within the aim this system, so it uses an intelligent driving strategy to avoid possible 

conflicts. The driver can adjust the desired velocity and safety time gap, so the system takes 

that into consideration to calculate appropriate accelerations and decelerations. 

 

This ACC is modelled by a car-following approach, that needs to meet some requirements. 

The model must be accident free, permit smooth driving and adaptability, as well as count 

with a reduced number of parameters (like those adjusted by the driver) and different driving 

styles to apply. Although human drivers should be modelled in a different way than ACC 

systems due to human particularities like reaction time or the better capacity to be aware of 

their environment, an equally simple car-following model could be used too to simulate 

them. 

 

The ACC is able to detect different traffic situations and adapt its behaviour model to those 

scenarios. In free traffic, the driving comfort is the main objective. As drivers approach to a 

jam, the system focus in early braking to approach in a more safe and efficient way to slow 

vehicles. Within congested traffic, the ACC settings are back to default values, but when 

leaving a jam, the maximum accelerations increases so the minimum time gap decreases. 

Smaller gaps are also considered in bottleneck sections, to increase capacity.  

 

Floating-car date is employed by the presented system to detect the traffic situation in which 

the vehicle is at a certain point. Information is also gathered, for example, from vehicle 

sensors (speed of leading car) or digital map databases (road geometry, potential bottleneck 

regions). To improve the detection system, non-local information, provided with V2V or 

V2I communications, could be incorporated to the system. 

 

The ACC system was tested through simulation, using the MOBIL lane-changing model by 

Kesting et al. (2007) to represent more complete and realistic situations. The objective is to 

evaluate the impact of proportion of vehicles equipped with ACC systems (penetration rate 

of 0%, 5%, 15% and 25% were applied), driving strategies and boundary conditions on 

traffic. The road chosen for calibration was the A8 between Munich and Salzburg. As a result 

it was discovered that increasing the number of ACC vehicles congestion was reduced, and 

thus travel time, as it can be observed in figure 3, with total traffic breakdown avoided with 

the 25% rate.   

 

 
Figure 3. Instantaneous and cumulative travel time during simulation. Kesting et al. (2007). 
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Van Driel and van Arem (2008) developed their own ACC system, adding an Active Pedal 

function to this congestion assistant aimed to improve traffic flow. They check as well the 

system through microscopic simulation. The ACC function is based on a Stop&Go system, 

which takes control of the longitudinal movement of the car during a traffic jam, activating 

it only within a range of velocities. The Active Pedal produces a force on the gas pedal to 

warn the driver if approaching too fast to a traffic jam.  

 

Simulations of the system show that both functions have positive results in reducing 

congestion, but the benefits of the Stop&Go are much larger, as it can be observed below in 

figure 4. In the displayed cases vehicles are equipped (with a penetration rate of 10% or 

50%) with the active pedal system, activated 500 m before of a traffic jam; with the Stop&Go 

function, with a time gap of 0,8 s and with both systems acting together in the last case. 

 
 

This Congestion Assistant uses V2V communication to detect traffic jams downstream of 

the position of the vehicle. 

 

A particular type of lane changes are merging situation, as they imply the execution of 

mandatory lane changes. Pueboobpaphan et al. (2010) presented a decentralized merging 

assistant for mixed traffic situations, involving manual and C-ACC (Cooperative Adaptive 

Cruise Control) vehicles. To increase stability around the merging area, an algorithm is 

Figure 4. Effects of congestion assistant on traffic speed. 

van Driel and van Arem (2008). 
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proposed to control the C-ACC so mainline vehicles decelerate when approaching a ramp to 

create gaps for incoming vehicles to merge. After simulation, authors found that the merging 

assistant is able to generate the gaps for ramp vehicles, but this are sometimes unnecessarily 

large. 

 

Wang et al. (2015) worked on controllers and implementable algorithms for CFC (Car-

Following Control) and C-CFC (Cooperative-CFC). Decentralized and distributed 

algorithms are implemented to deal with control of several vehicles, studying the impact of 

the controllers in traffic flow. Communication between vehicles was used to increase their 

awareness level, through a centralized communication scheme. The more vehicles are 

involved, the more complex and challenging this scheme gets. Thus, efficient algorithms are 

proposed in the article, making each CFC vehicle optimize its own situation and using a 

distributed algorithm for cooperation between vehicles, sharing their latest state information 

together with predicted control information. The impact of this controllers is tested through 

simulation in a two-lane highway with randomly distributed CFC and C-CFC vehicles. 

 

The presented CFC system is divided in two modes: following mode and cruising mode. 

Both consider the need to maximize comfort and travel efficiency, while following mode 

also focusing on safety. A gap threshold is established to distinguish both modes, determined 

by a desired time gap that is decided by the driver; a running cost function allows to have a 

smooth transition between modes. Variable time gaps can be implemented. With the 

decentralized algorithm, each vehicle, working as a subsystem, solves its local autonomous 

optimal control problem and predicts the behaviour of its leader using constant speed 

heuristics. If the leader is a C-CFC vehicle, its state is predicted with the assumed 

acceleration trajectory. 

 

Centralized optimization scheme is implemented for platoon control, using a distributed 

algorithm. C-CFC vehicles are supposed to have both forward and backward sensors to 

gather gap and speed information from their leaders and followers, respectively. Also, they 

equip V2V communication capabilities, which makes possible to receive state information 

from the leader and transmit its own to the follower. Sensors are used when the surrounding 

vehicles are human-driven, while the V2V information are considered for other C-CFC 

vehicles. A joint cost function is specified to minimize costs of safety, efficiency and comfort 

for the vehicle and its follower. Optimal acceleration is determined by the marginal costs of 

the vehicle own relative speed and its follower speed. 

 

Centralized optimization would not be feasible due to computation and communication 

requirements, so each vehicle works as a subsystem, as it was mentioned before. Once each 

vehicle solves its local cooperative optimal control problem, determining its optimal 

trajectory. 

 

The simulation process consists in creating bottlenecks applying VSL (Variable Speed 

Limits) at some point of a freeway, which produces traffic waves. It is observed that, when 

the penetration rate of CFC vehicle increases, capacity drop and microscopic hysteresis are 

mitigated. Also, as CFC vehicles accelerate faster to the high-speed state at the head of the 

traffic jam, producing smaller gaps between vehicles and thus an increase of traffic flow. 

This reduction of stop-and-go wave means a reduction in fuel consumption. 
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2.3. Lane-changing models 
 

An investigation on the lane changing process with a microscopic approach was developed 

by Brackstone et al. (1998).  To evaluate the gap acceptance process, a driver in an equipped 

vehicle (with a radar, a laser speedometer and a video recording system) was asked about 

his/her intention to lane change at random intervals, recording instrumental data for setting 

“gap acceptance” and “gap rejection” cases, as well as driver opinion for not measurable 

variables like “motivation” or “opportunity” to lane change. The paper demonstrated the 

possibility “to formulate reasonably accurate behavioural models for lane changing”. 

 

Zheng (2013) reviewed several lane-changing models, analysing how each one deals with 

the decision-making process and how lane changes impact on surrounding traffic.  

 

Gipps (1986) proposed a structure to deal with decision process of a lane-changing model, 

studying potentially conflicting goals. This goals are defined on the basis of an assumed 

general travelling objective for the driver, and consist in specific objectives like driving with 

a particular desired speed, using the correct lane or limiting accelerations and decelerations 

employed. The framework presented by Gipps covers urban traffic situations.  

 

According to Gipps, the factors to take into account to decide the aptitude of a lane change 

are various. Safety has to be assessed, avoiding situations that could lead to a risk of 

collision, so an appropriate gap has to be identified before executing the manoeuvre. The 

model must reflect as well the awareness of drivers respect to obstacles in the road, like 

permanent obstructions or heavy vehicles, and also respect to lanes which are not allowed to 

be used by them, like transit lanes reserved for public transport. Other considered factors, 

like in most of lane-change models discussed in this text, are the distance to an intended turn 

or the potential speed advantages derived from changing to another lane (or remaining in the 

current). 

 

To describe the behaviour of vehicles in the road, the presented model uses different patterns 

based on the distance at which a vehicle is from its intended turn. The closer it gets to it, the 

more important becomes for the vehicle to be in an appropriate lane for turning, ignoring 

gradually speed advantages derived from changing to other lanes. The model is as well 

designed to be integrated with the car-following model (Gipps 1981) commented above, and 

calculates using it a safe speed to be maintained with the preceding vehicle for manoeuvring. 

 

The decision process of this model to change lane has several steps. A preferred lane has to 

be defined for the vehicle, so that lane would be the first option when selecting a target. 

Then, the model checks feasibility of the manoeuvre, so there are no obstructions or 

excessive decelerations needed. The next step evaluates if the vehicle is close to its intended 

turn, increasing willingness of the driver to accept smaller gaps when reaching that critical 

point. The model must consider transit lanes too, allowing non-transit vehicles to use them 

only if their current lane is obstructed, and making them leave the transit lane as soon as the 

obstruction has been overtaken. If the vehicle is not close to its intended turn, but at a middle 

distance from it, limits will be applied to selection of acceptable lane changes.  

 

If factors above do not apply for the vehicle at its current situation, relative advantages of 

current and target lanes would be considered to decide the lane to be used. The vehicle will 

change lane if the target one offers a speed gain high enough, or if it allows to drive faster 
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by avoiding heavy vehicles. The last step is to evaluate safety of the manoeuvre, a criterion 

that could change depending on the urgency of the situation. If after the whole process, 

change to the target lane is rejected, the opposite lane is considered as a new target. 

 

MULTISIM is an investigation tool to analyse the effects of lane changes in traffic flow 

through micro-simulation. In a paper for the 11Th IMACS World Congress in Oslo, Gipps 

(1986) explains how the model let users to adjust parameters like geometry of the simulated 

road (length, lanes, turnings, obstructions) and volume, composition and characteristics of 

the traffic. 

 

Vehicles in MULTISIM are generated by a subroutine that set up their class and attributes. 

A car following model determines behaviour of vehicles within their lane. Lane changing 

depends on different objectives that may conflict, so a decision process must be followed, as 

described in the previous cited article from Gipps (1986). Speed and position of every 

vehicle is updated at fixed intervals, equivalent to reaction time of drivers.  

 

The data is collected from monitors assigned to each vehicle, and written onto a file as 

vehicles depart from the network. MULTISIM provides graphic displays of the simulation 

operation, basically time-distance diagrams where trajectories of the vehicles in each lane 

can be observed (figure 5), represented by lines that go through gaps in the graph (vehicles 

crossing at intersections with green traffic lights) or stop when they encounter a solid 

rectangle (red lights). Comparison between trajectories among each lane graph allows to 

determine when trajectories leave a lane or enter another. 

 

 
Figure 5. Time-distance representation of trajectories  

of vehicles in the second rightmost lane. Gipps (1986). 

 

Interactive graphics are also produced while simulations are running. Possible applications 

of MULTISIM cited by the author are the study of congestion, travel time, number of stops 

of vehicles… but other applications derived from those are cited as well, like modelling fuel 

consumption. It is interesting to notice, considering the time by which the paper was 

published, that scenarios including electric vehicles or dynamic advisory speed signs are also 

taken into account. 
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Kesting et al. (2007) developed one of the most habitually cited lane-changing models, called 

MOBIL (Minimizing Overall Braking Induced by Lane-change). With this model, the lane-

changing process is faced as a multi-step process: 

 

 Strategic level. Evaluation of the route that the driver must follow. 

 

 Tactical stage. Lane change is prepared and initiated (acceleration, deceleration) 

 

 Operational stage. Decision about desirability and safety of the change, as a gap-

acceptance process, comparing available gaps to a critical gap, that depends on the 

relative speed of the driver respect to the leader and the follower in the target lane. 

 

The presented lane-changing model considers the expected advantages and disadvantages 

derived from the manoeuvre, anticipating and comparing vehicle accelerations before and 

after a potential lane change. If the accelerations in the target lane are closer to free flow 

conditions, the attractiveness increases. This acceleration based criteria allows for easy 

integration with car-following models. 

 

Another contribution of this model is the introduction of a “politeness parameter”, so a driver 

would not change lane for obtaining just a marginal advantage if this obstructs other drivers. 

Also, aggressive drivers would make slower vehicles to yield, leaving the faster lane. This 

parameter can be adjusted to apply a more egoistic or more generous behaviour. 

 

The model has diverse criteria to execute lane changes. Safety criteria is based in 

longitudinal accelerations, guarantying that deceleration of the new follower vehicle in target 

lane does not exceeds a safe limit. Gap acceptance is also related to acceleration, as a new 

follower approaching fast in the target lane requires for larger gaps to apply the lane change. 

This way, crash situations are excluded.  

 

Not only advantages that a potential lane change could mean for the considered vehicle are 

taken into account by this model. To satisfy the criterion, these advantages had to be 

compared with the weighted sum of the disadvantages for the new and old follower of the 

vehicle that this manoeuvre could lead to, and exceed a threshold (∆𝑎𝑡ℎ). In the next 

equation, “c” subscript for acceleration refers to the changing vehicle, “n” for the new 

follower and “o” for the old follower. Terms with an accent refers to the situation after 

change. The politeness factor, “p”, is the degree of altruism of the changing vehicle.  

 

𝑎̃𝑐 − 𝑎𝑐 + 𝑝 · (𝑎̃𝑛 − 𝑎𝑛 + 𝑎̃𝑜 − 𝑎𝑜) > ∆𝑎𝑡ℎ 
 

With symmetric traffic rules, if incentive is satisfied in both adjacent lanes, the target lane 

would be that offering best overall traffic advantages. With asymmetric rules this will be 

limited, as overtaking in the right lane is prohibited (unless traffic is congested) and the 

rightmost lane must be the default one. Slow vehicles would change to let faster ones to pass 

in the left lane. In figure 6, obtained from the MOBIL paper, it can be seen how speed 

changes depending on traffic density. In both cases, it decreases as density grows, and there 

are barely differences between lanes for symmetric traffic rules. It is remarkable how global 

speed is higher when the politeness factor is p=1, this is, drivers show a more altruistic 

behaviour (with p=0, they act egoistically). 

(1) 
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Figure 6. Mean velocity vs traffic density for symmetric traffic rules (a) and asymmetric (b). 

Kesting et al. (2007). 

 

Schakel et al. (2012) presented a lane-change model, aiming to reproduce accurately real 

world traffic situations regarding lane distribution and lane speed. Adaptability is another 

goal for the model, so multiple lane change incentives are included for the decision process 

while a limited number of parameters to simplify calibration. The model also includes 

circumstances like relaxation, that reflects the willingness of drivers to accept headways 

smaller than usual and small decelerations during a lane-changing manoeuvre; and 

synchronization, that is the preparation for lane change when drivers adapt their speed to 

adjacent traffic and align with a gap. 

 

In this model, the desire to perform a lane change, which is the core for the decision making, 

and therefore driver behaviour, depends on the followed route, the desire to gain speed or 

keep-right rules. With a higher level of desire, the driver willing to change lane will accept 

smaller headways and greater decelerations. If the desire level is too small, the driver will 

not execute the change, but when level increases different manoeuvres would be considered 

(figure 7), from free lane change (FLC) to synchronized change (SLC) and finally 

cooperative change (CLC), in which a gap has to be created by the driver in order to get to 

the adjacent lane, and the potential follower vehicle should collaborate to achieve that goal. 

 

 
Figure 7. Types of lane-changes executed  

depending on the level of desire. Schakel et al. (2012). 

 

The mentioned incentives that the model considers, to be able to adapt to different scenarios, 

are anticipation speed (awareness of drivers for vehicles downstream), incentive speed 

(desire to increase speed, only considered for the left lane), route (based on remaining time 

or remaining distance, depending on how high speed is, to change to required lane) and keep 

right rule (only respected if speed and route are not negatively affected). Voluntary lane 

change incentives, speed (𝑑𝑠
𝑖𝑗

) and keep right (𝑑𝑏
𝑖𝑗

), are ignored if a conflict with mandatory 
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lane change desire, route incentive (𝑑𝑟
𝑖𝑗

), occurs. The level at which voluntary incentives are 

included is indicated by 𝜃𝑣
𝑖𝑗

. 

 

𝑑𝑖𝑗 = 𝑑𝑟
𝑖𝑗

+ 𝜃𝑣
𝑖𝑗

· (𝑑𝑠
𝑖𝑗

+ 𝑑𝑏
𝑖𝑗

) 

 

Gap acceptance and relaxation processes of lane-changing manoeuvres must consider 

deceleration values obtained from car-following integrated model, rejecting decelerations 

that are too large. Synchronization is initiated when the lane change desire is above the 

synchronization threshold. 

 

2.4. Lateral Support Systems 
 

Like car following models, lane-changing models can also be employed as the basis to 

implement driving support systems, including in this case the movement of vehicles among 

the lanes of the road. In this section, some of the support systems investigated and developed 

in recent years are presented. Some of them need the compliance of the driver to operate the 

vehicle, because the system is limited to deliver advice messages. Other take advantage of 

vehicle autonomous capabilities to act directly. 

 

Tideman et al. (2007) reviewed different lateral driver support systems. The research 

includes methods and technologies of detection, focusing on sensor technology, detection 

algorithms and safety assessment algorithms. Among the functions of these systems are the 

prevention of accidents and the increase of traffic flow. The authors affirm that a lateral 

support system has different functional components, which must: 

 

 Sense. Gathering information, directly from sensors or receiving information 

through communication networks V2X. Sensors can be active or passive, if they emit 

or not electromagnetic energy (passive can just detect it) or a combination of both. 

Most common are optical (passive) sensors, like cameras (figure 8).  

 

 
Figure 8. Camera images of lane border for a car driving  

in a lane (a) and leaving it (b). Tideman et al. (2007). 

 

 Think, what means, to interpret information. The detection algorithms are used to 

determine the context of use of the lateral assistant system, detecting lanes or other 

vehicles through the generation and verification of hypothesis based on information 

gathered by the system. The safety assessment algorithms evaluate the hazard of 

situations like lane departures and lane-change. 

 

 Act. Execute actions, through human machine interfaces or taking control over. 

(2) 
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These components must work together to achieve the main objective of the system, that is 

“to support the driver during movements along the lateral axis of the vehicle”. 

 

 

Schakel and van Arem (2014) developed an in-car advice system to avoid breakdowns in 

traffic flow that could lead to capacity drop (queue discharge rate lower than road capacity) 

and spillback (traffic not passing the bottleneck). Achieving this would improve traffic flow 

efficiency using already existing technology. This system operates on the tactical scale of 

driving, focusing on driving aspects like lane-changes, which makes its study relevant for 

this project. 

 

This system uses a traffic management centre to gather information from detector and 

floating-car data from in-car devices and predicts traffic state, sending advices to vehicles 

based on this evaluation. This way, vehicles receive information from a downstream traffic 

situation that drivers cannot perceive on their own. The system loop is executed every 

minute, limiting the number of advices each driver receives to avoid workload saturation for 

them. This idea has inspired the lane-changing model developed in this project, that is 

detailed in later chapters. 

 

The advice algorithm that the system employs has four steps. In the first one, infrastructural 

properties, mainly regarding geometry of the road, are assigned to sections (or “cells”) of 

the network. Then, advices regions are created, to define distribution in time and space of 

the advices and their content. Advices are triggered based on traffic state and following one 

of the three next principles: 

 

 Acceleration advice principle, by which drivers are suggested to stay attentive and 

maintain “a short but safe headway at the end of congestion”, in order to maximize 

capacity. 

 

 Distribution advice principle, that triggers advices to maximize utilization of all the 

lanes when one of them is too “busy”; for example when it is next to a merge lane. 

In a case like that, drivers in the busy lane are suggested to change to an adjacent 

not-congested lane or to yield for traffic from the merge lane. 

 

 Spillback advice principle, with the intention to avoid congestion due to spillback in 

an off-ramp by telling drivers in the right lane to move to an adjacent one. 

 

In the third step, advice regions are filtered following a priority order. In the last step, drivers 

to receive advices are selected based on their position and other floating-car data. 

 

Responses to advices given are incorporated to the LMRS lane-changing model from 

Schakel et al. (2012), applying a compliance rate. How desired speed and headway of 

vehicles are modelled in the LMRS is affected by quantitative advices following the 

aforementioned principles. For example, modifying maximum acceleration applied by 

drivers to maintain short headways. In case of the lane advices, following an advice is 

incorporated to the LMRS lane change desire expression, increasing desire according to the 

compliance rate and depending on the time since the advice was received.  
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The system is evaluated implementing it in the LMRS simulation framework, on the A20 

freeway near Rotterdam. Detector data from the road was employed. The simulated 

scenarios used different values for the penetration rate (𝜆) and the compliance rate (ω) of 

the system. In the graphic below (figure 9), simulations from two different days (a and b) 

show how delay time (difference between actual travel time and ideal conditions travel time) 

decreases gradually when increasing both compliance and penetration rates, except for a 

peak with 10% penetration rate conditions.  

 
 

Figure 9. Travel time delay for different levels of compliance and penetration rates. Schakel and 

van Arem (2014). 

 

To “assess the effects of detector data delay on traffic state prediction” of an in-car advice 

system as the described, Schakel and van Arem (2015) evaluated the system. They conclude 

that data delay, up to 180s, has no influence on the improvements in travel time delay 

provided by in-car tactical advice. 

 

A macroscopic traffic flow model to be to be used within a model-based control strategy is 

described in Roncoli et al. (2015). This model includes variable speed limits (VSL) and lane-

changing control strategy, and simplicity is one of its main objectives so it could ensure the 

efficiency of the optimal control calculation process and be applied on large-scale networks. 

To compute lateral flows, densities for every segment and lane of the road are considered, 

measuring flows of vehicles entering and exiting a segment, lateral flows between lanes and 

flows entering and leaving from on-ramps and off-ramps, respectively.  

 

To apply the presented control strategy, and due to the number of interdependent factors that 

lane-changes are subjected to, like human driver behaviour, geometry of the road or 

environmental conditions, a basic lane-change model is employed, in which attractiveness 

for a driver to change lane is based on differences in density between them. This model is 

affected by situations like exiting the road, changing to facilitate merging of on-ramp traffic 

or because of the proximity of a lane-drop that require empirical calibration. Aggressiveness 

in lane-changing is another parameter of the behavioural model, and available space in a 

lane to receive vehicles is described by flow acceptance. The model is able to provide the 

right lateral flow to satisfy the off-ramp flow. 

 

Regarding longitudinal flow, one of the main objectives of this model is to represent the 

empirical phenomenon of capacity drop accurately and with a linear formulation, assuming 

that in case of congestion (above a critical density value) the flow linearly decreases with a 

fixed slope. As stated in the paper, introduction of automated driving systems could alter 

capacity drop. 
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In Roncoli et al. (2017), a feedback control strategy is proposed for lane assignment of 

vehicles upstream of a bottleneck to “maximize throughput, targeting critical densities at 

bottleneck locations as set points”. Another controller, like mainstream traffic flow control, 

is used together with the control strategy to ensure the that the flow approaching the 

bottleneck does not exceed its capacity. The control strategy is evaluated through several 

simulations in a hypothetical highway. The stretch employed is divided in different 

segments, so each lane within a segment is a considered a cell. A lane drop is placed as well 

in one of the segments.  

 

In the first case, without control actions, traffic congestion occurs as lane-changes are only 

executed a few segments upstream the lane-drop and spillback is also created. When optimal 

control strategy with constant set points is applied, it manages to avoid the creation of 

congestion, keeping bottleneck density at its critical value; lateral flows are much more 

homogeneously distributed and total travel time is reduced. In the last case a different control 

strategy, with the objective of distributing the total density at the bottleneck, is tested and, 

although congestion is avoided too, it shows no improvements comparing with the previous 

case. In figure 10, contour plots of densities are displayed for each lane in each case. 

 

 
Figure 10. Contour plot of densities in central lane of the stretch for no-control case (a), 

control strategy with constant set points (b) and density distribution strategy (c).  

Roncoli et al. (2017) 
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2.5. Vehicle Connectivity 
 

Recent developments on vehicle automation and communication make necessary to create 

new methods for modelling, estimation and control of traffic. Connectivity capabilities like 

V2V (vehicle-to-vehicle) and V2I (vehicle-to-infrastructure) may allow for an improvement 

in traffic estimation accuracy with a reduced number of spot sensors used to measure 

conventional traffic situations. 

 

Lytrivis el at (2011), for example, developed an advanced cooperative path prediction 

algorithm, to improve road safety by gathering and sharing information among connected 

vehicles on the road: position, velocity, acceleration, heading and yaw rate, as well as road 

geometry. This algorithm allows drivers to have a better perception of the road environment. 

 

A VANET (Vehicular Ad-hoc Network) is employed, as it offers the possibility to predict 

other vehicles paths from information delivered by these, like speed, acceleration, yaw 

rate… Whereas a radar can just estimate some of these parameters, so it is not accurate 

enough for safety purposes, like collision warning, collision avoidance or emergency 

electronics brake lights (EEBLs). The system equipment consists of the mentioned VANET 

router, GPS, inertial sensors and an unscented Kalman filter (UKF). 

 

The algorithm is aimed for highway and rural situations, not for urban environments, that 

are highly dynamic. Track data is provided by the LRR sensor (that offers position and 

velocity measurements) and the vehicular network. LRR has low latency, but also higher 

refresh rate than the network. Position of the targets is obtained accurately thanks to the 

LRR, while VANET offers yaw rate and acceleration of other vehicles directly measured by 

them. Information from both systems is merged to obtain vectors that describe the state of 

tracked objects. Beaconing message are transmitted to inform about the situation of each 

vehicle. In addition, event messages alert about imminent situations. 

 

The transmitted VANET messages are stored and deleted after a time window, using a 

VANET ID to consider just one message for every car. Estimations of future paths of all 

vehicles are compared between each other. Alert message can be sent to drivers with paths 

that intersect, using different models to predict the paths, being the CTRA (constant turn rate 

with tangential acceleration) the more realistic and complex, as it considers both the yaw 

rate and the acceleration values. Other models are the CV (constant velocity), CA (constant 

acceleration) and CTR (constant turn rate). Through a Dempster-Shafer reasoning system 

the most suitable model is selected for each situation and each road geometry. 

 

The EEBL alerts drivers if the car in front executes an emergency braking. This function 

demands very low-latency V2V communication to be effective, but is useful as it makes 

possible for drivers to anticipate to this situation even with bad weather conditions or 

obstructed line of sight, and increases the rage of action allowing to react much in advance. 

The system uses the information provided by the vehicle braking to predict its path (as 

depicted in figure 11) and decide if it is relevant to give an alert message to the driver. 
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Figure 11. Intersection of vehicle paths. Lytrivis et al. (2011) 

 

The EEBL is tested to validate the path prediction algorithm. After the first tests, results 

show that using the DS reasoning system to decide which model is used at each moment, 

performance is improved. Comparing the LRR results with the VANET and a fusion of 

measurements from both, the advantages of using V2V communication are clear, as 

estimations are largely improved. The researchers demonstrated also that time horizon for 

the predictions must be short (around 4s) to offer reliable values.  

 

A second set of tests focus on the performance of the cooperative association, the path 

prediction algorithm and the notification system, to evaluate if they are correctly delivered 

or not. The algorithm checks if the paths of the braking vehicle and its follower intersect, so 

if it occurs, a notification must be displayed to the driver. Different scenarios are considered, 

showing a correct operation of the algorithm in 14 out of 15 cases, showing the great 

performance of the use of VANET networks and its potential for improve road safety.  

 

Other vehicle communication application is presented by Awal et al. (2015), that propose a 

Cooperative Lane-changing Algorithm (CLA) aimed to offer better performance for 

discretionary lane changes, in terms of travel time, fuel consumption, pollutant emissions 

and impact on traffic. It also considers mandatory lane changes, reducing merging time. The 

authors declare that it outperforms MOBIL model from Kesting et al. (2007). 

   

Related lane-change models are discussed, focusing on MOBIL and the fact that this model 

only takes into account the adjacent gap, not including synchronization or considering all 

the lanes of the road.  

 

The proposed Cooperative Lane-changing Algorithm considers the advantages for the 

subject vehicle, the follower in the current lane and several lag vehicles in the target lane, 

minimizing the impact that lane-change manoeuvres have on traffic flow. Safety and utility 

of lane-changes are defined using car-following models. 
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The minimum velocity of the vehicles ahead is what determines which among all the 

available lanes offers the best option. For discretionary lane-changing, the velocity 

differences of the surrounding vehicles are compared with a threshold to establish the margin 

of advantage. In case of mandatory lane changes, the vehicle looks for a gap in front of other 

vehicle in the target lane for synchronization, establishing a decision-making point and a 

lane-changing point (instead of just using the same point as MOBIL does) based on the 

information about position and speed obtained from other vehicles through V2V 

communication. The vehicle that is carrying out the manoeuvre also sends signal and spatial 

information to the vehicles in the target lane, so they can adjust their velocity. 

 

Comparing with MOBIL, this CLA algorithm achieves lower average merging time for 

vehicles in on-ramps, as well as a better merging rate. It also improves the waiting time for 

ramp vehicles, which in the end, as it looks for global benefit, makes travel time of the main 

road vehicles to be slightly higher. The results for flow and fuel consumption are improved 

in both cases with CLA (figure 12). 

 

 
Figure 12. Comparison between MOBIL and CLA, regarding flow (a) and fuel consumption in on-

ramp (b). Awal et al. (2015). 

 

In a paper from Roncoli et al. (2016), a macroscopic model-based approach for the 

estimation of traffic conditions is presented. The average speed of connected vehicles in a 

segment of the highway (assumed to be similar to the average speed of all vehicles in the 

segment), total entry and exit flow of vehicles on the studied stretch and flow at ramps (or 

mainstream flow between them) are measured. A Kalman filter operates using that data to 

estimate density of vehicles in every segment. 

 

The paper includes description of a case study, in which NGSIM (Next Generation 

Simulator) microscopic traffic data from a congested stretch of the I-80 highway in 

California is employed to evaluate performance of the estimation algorithm for different 

penetration rates of connected vehicles. Although it is shown that performance on traffic 

density estimation decreases for lower rates, for a reduced number of connected vehicles it 

is still accurate, with some delay comparing with real density trajectories, as it can be seen 

in figure 13. 
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Figure 13. Trajectories of real and estimated densities with 100% (up) and 5% (down) 

penetration rate of connected vehicles. Roncoli et al. (2016). 

 

A second case study is carried out with data from Schakel & van Arem (2014) from detectors 

on a stretch of the A20 in Netherlands, using a limited number of flow measurements and 

speed data, similar to what could be acquired from connected vehicles. To check realistic 

performance of the estimation, noise was added to both flow and speed measurements. In 

the next figures (14 & 15), the real and estimated congestion pattern of the traffic are 

compared. 

 

 

 

 
Figure 14. Real congestion patterns of A20 stretch. Roncoli et al. (2016). 
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Figure 15. Estimated congestion patterns of A20 stretch. Roncoli et al. (2016). 

 

In another paper from Roncoli et al. (2018), microscopic simulation is employed for 

evaluation of a per-lane density estimation that uses information gathered from connected 

vehicles, reducing the number of necessary detectors for spot flow measurements to a 

minimum. These simulations are executed considering different penetration rates of 

connected vehicles. 

 

The highway stretch considered is divided in segments as in Roncoli et al. (2017), defining 

a cell for every segment of a lane. Mean speed, density and lateral flows of connected 

vehicles are measured for every cell. It is assumed that these measurements are 

representative of all vehicles in the stretch, because the behaviour of human-driven and 

connected vehicles is expected to be the same. Mainstream total flows of vehicles are 

measured with fixed detectors. With the gathered data, a Kalman filter is applied to estimate 

per lane total density. 

 

AIMSUN is the software employed for microscopic simulation of the estimation scheme. 

This is also the software used for traffic simulation in the present work, so further 

information is provided in the next chapters. A stretch of the A-20 highway in Netherlands, 

the same road from Schakel and van Arem (2014) and Roncoli et al. (2016), is the case study 

network. It combines a lane drop and several on-ramps and off-ramps. Real traffic conditions 

are simulated using real demand data, including a congestion situation with spillback. To 

ensure the availability of data at every time step, even with low penetration rates of 

connected vehicles, the speed reported at the last time step or an average of the last reports 

within a larger time window could be considered if the report is not available. For lateral 

flows, when these are unstable a smoothed version of them is employed. 

 

The performance of the estimation schemed is evaluated with a Coefficient of Variation 

(CV) for various penetration rates. The performance is found to be sensitive to this rate, as 

it decreases for lower values (figure 16). 
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Figure 16. Performance of density (left) and ramp flow (right) estimations.  

Roncoli et al. (2018). 

 

Sensitivity of the estimation regarding variation of the model parameters “p” (percentage of 

diagonal lateral movements) and “a” (smoothing factor) is also evaluated, performing an 

experimental analysis to obtain their optimal values. Through this analysis, authors 

discovered, for example, that for low penetration rates the smoothing effect improves 

performance and the optimal diagonal flow appears to be higher. In general, the estimation 

scheme “reproduces reliably the challenging traffic conditions in space and time”. 

 
 

 

2.6. Psychological models 

 

Most of the developments reviewed in this chapter are focused on behavioural models, both 

car-following or lane-changing approaches. The aim of these studies usually is focused on 

representing how vehicles move along and across the road. But other studies go deeper into 

actual driver behaviour, trying to understand the decision process underlying all vehicle 

movements in a road. Authors working on this field also want to find ways to influence this 

decision process, as advice systems that maintain people at the centre of the driving task 

could be implemented much faster in the near future than completely autonomous cars. 

 

Van Driel & van Arem (2004) discuss in their research the way to integrate in-vehicle 

assistance systems from drivers’ perspective, considering their needs, preferences and 

capacities to process information, to develop safe systems. The aim of the project is also to 

evaluate the impacts of integrated driver assistance on both the driver and the traffic flow.  

 

A pilot test carried out in order to develop a suitable survey showed that drivers tend to prefer 

the use of assistance systems on motorways, where these increases primarily comfort, rather 

than urban or rural roads where the driving task is more difficult and the main requirement 

from drivers to the systems is to increase safety. In the second case, for instance, assistance 

is appreciated during lane change manoeuvres (oncoming traffic warnings), but not in other 

kind of situations (intersections). The assistance in case of an imminent crash is perceived 

as very important. 
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Risto and Martens (2013) carried out an experiment to evaluate how drivers estimate the 

compliance rate of the users of a Connected Cruise Control (CCC) system. As other advisory 

systems, they rely on drivers to take control and just give instructions to improve their 

driving behaviour. Because of this, the effectiveness of the system is dependent on the 

response of the drivers. 

 

This kind of systems give advice on optimal speed, driving lane and headway, aiming to 

optimize the distribution of cars, so an incentive for drivers to use them would be the 

possibility to appreciate the benefits on traffic flow and throughput. One possible effect of 

using these systems is when a general benefit in terms of traffic conditions is obtained, but 

not an individual one for each user. So, one major demand from users to be willing to follow 

advices is that the rest of users must follow them as well. The capability of drivers to 

appreciate the compliance of others is therefore an important factor. 

 

To evaluate this capability, participants of the experiment were divided in two groups, one 

of them being aware just about the general purpose and goals of the system and the driver-

in-the-loop approach used. In the other hand, the second group received more specific 

information about what kind of advices were given to users of the CCC and the goal of that 

advice. Also, three zones with different situations to trigger the advices (a lane drop, an on-

ramp and a straight section) were considered, as well as different compliance rates for each 

situation (10%, 50% and 90%). 

 

After completing different trails in the experiment, participants were asked to give an 

estimate of the compliance rate of other vehicles. Those who had received less information 

estimated compliance to be higher than participants from the other group, but no main effect 

of actual compliance rate on participants estimate of compliance was found. The authors 

suggest that uninformed drivers could have thought optimistically that the lack of congestion 

was due to a high level of compliance and looked to general traffic behaviour, as they did 

not have specific information, while informed users were more focused on particular 

indicators of compliance. 

 

As a conclusion, the authors estate that the task of estimating compliance rates is difficult, 

and that when the success of a system depends on perceived compliance rate, information 

about how this system works should not be provided to users. 

 

Another study involving drivers was carried out by van Driel et al. (2006), to evaluate the 

impact of a Congestion Assistant on participants driving behaviour and acceptance of the 

system. The assistant provides information and congestion warnings, and uses an active gas 

and a Stop&Go system. This ACC functions were evaluated later by van Driel and van Arem 

(2008) as it was detailed in a previous section of the present work. 

 

The assistant delivers warnings in form of sound signal and an icon at first, displaying next 

a message informing the driver about the distance to a jam and applying a counterforce on 

the gas pedal if the approaching speed is too high. Once in the traffic jam, the Stop&Go 

system controls the situation after informing the driver about its activation with a spoken 

message. In general, 
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Van Gent et al. (2017) review in their study several research works on how to influence 

driver behaviour and develop a conceptual model to guide the research on this topic, to 

improve in-vehicle information systems efficacy. The requirements of the system are to be 

safe (not distracting the driver with the advices or overload his/her capabilities) and to 

persuade the driver to follow instruction and keep using the system. 

 

Different persuasive methods are mentioned in the previous work, like gamification 

(introduction of game design elements), or behavioural economics (incorporation of insights 

of behavioural sciences into economics). These methods can be used together as various of 

the systems reviewed in the text do. 

 

The proposed system by van Gent et al. (2017) to develop behavioural models is divided in 

three levels.  

 

 In the system level safety and persuasiveness are evaluated.  

 

 In the interface level the way to communicate with the driver is determined; an 

important point as delivering valuable advices would be worthless if they distract or 

saturate the driver. In a situation like this, when timing displaying messages is 

inappropriate or the information communicated is not relevant for the driver, 

probably the system would be ignored or deactivated, as the driver could considers 

than the system distracts him instead of helping.  

 

 The last one, the driver level, is a guide to describe expected behavioural effects. 

This is directly connected with the previous level, as expected behaviour depends on 

how the message is transmitted. 
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3. Lane-changing model 
 

The main objective of this project is to investigate a lane-changing model that could be 

simulated and studied using a traffic modelling computer software. This model aims to 

improve traffic distribution across the lanes of the highway, to prevent congestion to happen 

due to underuse of road capacity. Vehicles are demanded to change lanes in advance, 

according to traffic flow situation in sections of the highway towards where they are 

traveling, but which are not in sight. So, lane-changes are triggered based on the traffic flow 

downstream of the current position of the considered vehicle.  

 

In a normal situation, the area nearby the vehicle is evaluated by the driver, to be aware of 

other vehicles surrounding and estimate if any of the adjacent lanes offer advantages in terms 

of speed gain or in order to follow the predetermined route. For example, a driver could have 

the intention to move to the left lane if the vehicles ahead are traveling at a reduced speed, 

or at least at a speed lower than the desired one for the considered driver. The driver would 

be willing to change lane too if the vehicle in front is from a different class with respect to 

the traffic rules that must follow. For example, trucks and other heavy vehicles are usually 

restricted to lower speed limits, so they must use the rightmost lane every time it is possible 

to. Vehicles following would try to overtake them in order to increase their speed. 

 

However, a driver could be willing to move to the rightmost lane, even if traffic is slower 

than in its current lane, if there is a need to leave the current road to follow a predetermined 

route. This way, the driver could prevent being stuck in its current lane, not valid to follow 

the intended route, if there is not an available gap in the adjacent one when reaching the off 

ramp or other kind of diversion that he/she has to take. Gipps (1986) mentioned how this 

aspect affects the way a lane-change model is configured, as the closer the distance is to an 

intended turn, more restrictive is the selection on valid lanes to change to. 

 

To achieve the cited objectives, it is assumed that vehicles in the road are equipped with 

communication capabilities, so every one of them is aware of the position, speed, movements 

across the road and other parameters of surrounding vehicles that are necessary to check the 

traffic situation in a deeper way than just considering information gathered from the driver 

or by the sensors installed in the vehicle. This assumption is made to avoid limitations when 

developing a logic for the model, so every accessible information from vehicles in the 

simulation program can be used to evaluate the situation in the network and allow other 

vehicles to take actions in consequence with that data. 

 

 

3.1. Model structure 
 

To evaluate the situation in the highway, regarding traffic flow, different approaches have 

been considered during the development of the lane-changing model. Basically, one 

quantitative aspect of the traffic, like average speed of a platoon of vehicles or the average 

headway between them, is compared among lanes to distinguish which one offers best 

conditions for driving. The variables that are considered in this evaluation are the following: 
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Headway (space). It is described as the distance between the front end of a vehicle and the 

rear end of the vehicle ahead, although this distance is called “gap” in other texts, while 

headway usually refers to the distance between both front ends of the considered vehicles. 

In this document, the term gap is used mainly to describe that distance for vehicles in 

adjacent lanes. Headway is directly related with density, because once both length of 

vehicles and headway between them are known in a certain section of the road, density can 

be easily calculated. At a microscopic level, this parameter is more helpful than density, as 

it can be locally controlled by the driver, that can choose to maintain a larger headway when 

driving at high speed for safety reasons or reduce it in congested situations. 

Time headway. Headway can be described as a temporal parameter, being the time that 

takes for a vehicle to reach a certain point of the road after the vehicle that is following has 

passed it.  It is as well the result of dividing the space headway by the speed at which the 

following vehicle is traveling, considered that it is constant. 

 

Measures of traffic situation are used during the decision process of lane-changing. The final 

objective for the vehicle is to reach its destination in the shortest time. Thus, attempting to 

use always the fastest (or less dense) lane every time it allows the vehicle to follow its route. 

But in the case of the developed behavioural model, instead of taking these measures from 

the area surrounding the vehicle, traffic conditions at a certain distance downstream of the 

vehicle current position are taken into account (figure 18), trying to anticipate a potential 

congestion. This way, vehicles would distribute across all the lanes, being those where traffic 

is more fluent more appealing for vehicles upstream of that location. 

 

Figure 17. Headway and gap  

Available gap in 
target lane for 
lane change 

Headway with preceding vehicle 
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Figure 18. Evaluation of lane situation downstream for LC vehicle 

 

To make this possible, the aforementioned variables have to be measured by each vehicle on 

the road in order to classify lanes, establishing which ones are more appealing. A detector 

vehicle is selected, acting as a reference to take the measures. This detector is the first vehicle 

placed at a certain distance from the considered vehicle to evaluate the lane-changing action, 

like in figure 19. 

 

 
Figure 19. LC vehicle and selected detector 

 

Once the detector is established, it gathers all the necessary information from vehicles ahead 

in its current lane. A maximum number of vehicles is considered, and these must be within 

a distance from the detector, except for the last one in the group, that is the placed just after 

this detection distance. In case the vehicle directly in front the detector (this means, its 

leader) is already beyond this distance, only that one would be considered to take measures. 

In figure 20, it is depicted how the selection must be carried out. This way, even when there 

is no any vehicle within the considered detection distance, one beyond that limit will be 

considered. 
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Figure 20. Vehicles to evaluate  

from the detector 

 

Speed and headway between these selected vehicles is measured, as well as the time 

headway, that is directly calculated as it is mentioned above. The instantaneous speed of the 

vehicles at the moment of measuring is considered constant to calculate this last parameter. 

The detector repeats the same process with vehicles in the left and right adjacent lanes. Then, 

average speed and headway of this groups of vehicles is calculated for every lane, so it is 

possible to distinguish where vehicles are moving faster, or in which lane it is more likely to 

find a suitable gap to change. 

 

Based on this information, the driver would be suggested to change lane by a message 

displayed on the vehicle dashboard. The lane suggested would be that with a higher average 

speed, or the one with larger average gaps, depending on how the behavioural model is set 

up. A full compliance rate for drivers following those advices is considered. 

 
 

3.2. Implementation of the model  

 
The lane-changing model has been coded in C++ language, as a modified version of a 

software provided by Konstantinos Mattas from the JRC in Ispra (Italy), one of the authors 

of the paper (Makridis et al. 2018) on impact assessment of Cooperative Active Cruise 

Control (CACC) systems on a case-study of the ring road of Antwerp. This computer 

program has been developed with the microSDK toolkit included with the AIMSUN 

software. Only the lane-changing model section of the program has been modified for this 

project. The car-following model applied is the original one present on the provided file, a 

modified version of the default AIMSUN version, that is based on Gipps (1981) model. 

 

Note: The full C++ code of the lane-changing model to be implemented in AIMSUN is 

presented in the Appendix 1. 

 

Some parameters are defined at the beginning of the lane-changing model file, so they can 

be easily modified to change the way vehicles behave: 

 

Vehicles to obtain 

information on 

position and speed 
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 Distance to detector. Minimum distance between the front end of the vehicle that is 

considered to follow the lane-changing model (LC vehicle from this point forward) 

and the front end of the vehicle acting as a detector (detector vehicle). 

 

 Maximum number of vehicles ahead. It is the number of vehicles that the detector 

considers to take all the traffic situation measures. The detector pick this number of 

vehicles from its own lane to evaluate flow in the current lane, or from adjacent lanes 

to evaluate left and right traffic flow. 

 

 Maximum distance ahead (detection distance). It is, as explained above, the 

distance in front of the detector vehicle within the group of vehicles acting as sensors 

are included, except for the last vehicle in the group, that is placed beyond this 

distance. 

 

 Lane change threshold. It is the threshold applied in every comparison between 

lane conditions to avoid an excess of lane changes, even if traffic conditions in other 

lanes are better. If the ratio between the considered variable values in an adjacent 

lane and the current lane is still under the threshold, the LC vehicle would remain in 

its current lane. 

 

 Fluent Speed. It is the speed considered to offer a fluent traffic situation. Its value 

can be easily set up, but it is fixed for all the vehicles in the network. It also limits 

the number of lane changes, so when a vehicle is already traveling with a speed 

higher than this, no lane-changing manoeuvres are triggered by the model. This 

parameter was defined to avoid certain vehicle behaviours observed during the 

simulation rums, like groups of vehicles moving together back and forth from one 

lane to the previous one. It is introduced in a similar way than in the In-Car advice 

system from Schakel & van Arem (2014), which employs a speed limit to avoid 

giving advice on reducing headway to drivers when they are traveling at free-flow 

speed (considered in this particular case to be higher than 80 km/h). 

 

 Free flow rate. As an alternative to using the fluent speed threshold, it can be 

considered that when a vehicle is traveling with a speed such as the rate between this 

and the free flow speed is high enough, the vehicle is not in a congested situation. 

For the simulation cases in which this factor is employed, a rate of 0,6 (60% of free 

flow speed) is applied to the free flow speed of the detector vehicle to set the non-

congestion threshold. 

 

Note for the AIMSUN case: One initial condition applied for the vehicles is to follow the 

internal default behavioural model of AIMSUN for lane-changing, based on the model by 

Gipps (1986), if they are in an on-ramp lane or just next to one.  This step is considered 

necessary for the same reason than in the case of the fluent speed limit, as erratic behaviour 

for vehicles on lane-changing manoeuvres to enter the highway from on-ramps was 

observed, in a similar way than in the case mentioned before, moving back and forth from 

the ramps. 
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Next, it is presented the procedure that the lane-changing model follows to evaluate if an 

advice to change lane must be sent to a vehicle. 

 

Note: The vehicle considered to change lane is named as “LC vehicle”. The “detector” is 

the reference vehicle to collect information on speed and position from other vehicles on the 

road. 

 

>> Creation of a “detector” vehicle class. 

>> If the initial parameter “distance to detector” = 0, then  “LC vehicle” = “detector” 

>> In opposite case  Pick the vehicle preceding the “LC vehicle” as the detector 
 

In the case the “LC vehicle” is also the “detector”, all data about position and speed from 

vehicles would be gathered using the vehicle itself as the reference to take those measures, 

similar to what a human driver would do. However, this analysis capacity is above human 

abilities, because drivers would try to estimate this information considering just the vehicles 

within their vision range. If the preceding vehicle is selected as the “detector”, then: 

 

>> Get positions of “LC vehicle” and “detector”. 

>> Position of the LC vehicle = 𝑝𝑜𝑠𝐿𝐶 

>> Position of the detector vehicle = 𝑝𝑜𝑠𝑑𝑒𝑡𝑗 

 

Note: The subscript “j” is the position of the current considered detector in the line of traffic 

ahead of the LC vehicle (with j = 1 for the first vehicle). The LC vehicle is at position 0. 

 

>> Measure the distance between them. 

 

Note for the AIMSUN case: It is relevant to mention that networks represented in AIMSUN 

micro simulator are divided in sections, knows as “A2KSecions”. In the case of the GUI, 

networks are divided in “GKSections”, that can include one or more A2KSections. Position 

of a vehicle is expressed using the beginning of the section where it is at the specified time 

as a reference. The “shift” variable indicates the distance between the beginnings of the 

respective sections of two vehicles, as it is shown in figure 21. In this case, between the LC 

vehicle and the detector. If both vehicles are in the same section, this value is null. 

 

  
Figure 21. Shift in AIMSUN 
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In a general case, using another traffic simulation software, the division of a network in 

different sections will be considered as well. To measure the distance between two vehicles 

in the same lane, the process would be similar. First, the position of each vehicle in its 

section, defined as the distance between the beginning of the section and the front end of the 

vehicle in a certain lane, is obtained. Then, to calculate the “shift”, it is necessary to add up 

the length of the group of sections between both vehicles, from the section where the first 

vehicle is to the one before the second vehicle current section. For example, in figure 21, 

section 1 is at the same time the current section of the first vehicle and the one before the 

second, so the “shift” is equal to the length of just that section. 

 

>> Calculate distance between the LC vehicle and the detector: 

 

>> nj = nth section within the group of N sections of the road between the vehicles in the jth 

and the (j-1) position, respectively. In the following case, the N1 would be the one before 

the section of the first vehicle ahead of the LC vehicle. 

>> Length of the nj section = 𝑙𝑛𝑗. Measured as the length of the middle line of the considered 

lane in that section. 

 

𝑠ℎ𝑖𝑓𝑡 =  ∑ 𝑙𝑛𝑗

𝑛𝑗

𝑁𝑗

 

𝑑𝑖𝑠𝑡𝑑𝑒𝑡𝑗 =  𝑝𝑜𝑠𝑑𝑒𝑡𝑗 + ∑ 𝑙𝑛𝑗 − 𝑝𝑜𝑠𝐿𝐶0

𝑛𝑗

𝑁𝑗

 

 

If the selected detector vehicle is within the specified “distance to detector”, then a loop 

process is initialized to select a new detector. 

 

>>WHILE 𝑑𝑖𝑠𝑡𝑑𝑒𝑡𝑗 < “distance to detector” defined parameter  select a “new detector”, 

picking the vehicle preceding the old detector. To define parameters regarding this new 

detector, the subscript is increased every time the loop is entered. Inside the loop: 

 

𝑗 = 𝑗 + 1 
 

>>Get the position of the “new detector”  𝑝𝑜𝑠𝑑𝑒𝑡𝑗 

 

>>Update the variable 𝑑𝑖𝑠𝑡𝑑𝑒𝑡𝑗, adding the distance between the “new detector” (j) and the 

old one (j-1), to obtain the separation between “LC vehicle” and the “new detector”  

𝑑𝑖𝑠𝑡𝑑𝑒𝑡𝑗 = 𝑑𝑖𝑠𝑡𝑑𝑒𝑡𝑗−1 + 𝑝𝑜𝑠𝑑𝑒𝑡𝑗 + ∑ 𝑙𝑘𝑗 − 𝑝𝑜𝑠𝑑𝑒𝑡𝑗−1

𝑛𝑗

𝑁𝑗

 

 

The process to obtain all the data from vehicles in the lane to calculate their average values, 

taking the detector as a reference to start, is very similar. The system picks the first vehicle 

ahead of the detector at first, and gets its position, speed and length, calculating the headway 

between the detector and this new vehicle and the time headway as well. 

 

(3) 

(4) 

(5) 

(6) 
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>> Select the “vehicle ahead”, the one preceding the final chosen “detector” (the vehicle in 

the j position). 

 

>> Get position and length of the “vehicle ahead”.  

>> Position of the vehicle ahead = 𝑝𝑜𝑠𝑎ℎ𝑒𝑎𝑑𝑘 

>>Length of the vehicle ahead = 𝑙𝑎ℎ𝑒𝑎𝑑𝑘 

 

Note: The subscript “k” is the position of the current considered vehicle in the line of traffic 

ahead of the detector (with k = 1 for the first vehicle). 

 

>> Get speed of the “vehicle ahead”. 

>> Speed of the vehicle ahead = 𝑠𝑝𝑎ℎ𝑒𝑎𝑑𝑘 

 

>> Calculate headway between the “vehicle ahead” and its follower (in this first case, it is 

the “detector”). 

  

ℎ𝑤𝑎ℎ𝑒𝑎𝑑𝑘 = 𝑝𝑜𝑠𝑎ℎ𝑒𝑎𝑑𝑘 + ∑ 𝑙𝑚𝑘

𝑚𝑘

𝑀𝑘

− 𝑝𝑜𝑠𝑑𝑒𝑡𝑗 − 𝑙𝑎ℎ𝑒𝑎𝑑𝑘 

 

>> Calculate time headway  “time headway” = “headway” / “speed” 

 

𝑡ℎ𝑤𝑎ℎ𝑒𝑎𝑑𝑘 =  
ℎ𝑤𝑎ℎ𝑒𝑎𝑑𝑘

𝑠𝑝𝑎ℎ𝑒𝑎𝑑𝑘
 

 

The distance between the detector and the vehicle ahead is calculated as well. 

 

>> Calculate distance to the vehicle to take measures from   

 

𝑑𝑖𝑠𝑡𝑎ℎ𝑒𝑎𝑑𝑘 = 𝑝𝑜𝑠𝑎ℎ𝑒𝑎𝑑𝑘 + ∑ 𝑙𝑚𝑘 −

𝑚𝑘

𝑀𝑘

𝑝𝑜𝑠𝑑𝑒𝑡𝑗 

 

A set of variables are defined to store the addition of speed and headway values from all the 

vehicles considered in the measurement process. Example with speed  

 

>> Calculate speed sum. At this point, the addition is just equal to the first considered vehicle 

measure, as 𝑠𝑝𝑠𝑢𝑚𝑘−1 = 𝑠𝑝𝑠𝑢𝑚0 = 0. 

 

𝑠𝑝𝑠𝑢𝑚𝑘 = 𝑠𝑝𝑠𝑢𝑚𝑘−1 + 𝑠𝑝𝑎ℎ𝑒𝑎𝑑𝑘 
 

>> Calculate headway (and time-headway) sums in the same way. 

>> k acts as well as a counter of the vehicles ahead of the detector from which measures will 

be taken. 

 

In case this vehicle ahead is within the limit “detection distance”, a new loop is executed. 

The loop will continue while the selected vehicles are within this distance limit and the 

number (k) of vehicles does not exceed the “maximum number of vehicles ahead” to 

consider. 

(7) 

(8) 

(9) 

(10) 
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>>WHILE 𝑑𝑖𝑠𝑡𝑎ℎ𝑒𝑎𝑑𝑘 < “maximum distance ahead” AND k < “maximum number of 

vehicles ahead”  select the vehicle preceding the “vehicle ahead” (“new ahead”). Inside 

the loop: 

 

𝑘 = 𝑘 + 1 
 

>> Get position and length of “new ahead”  𝑝𝑜𝑠𝑎ℎ𝑒𝑎𝑑𝑘 and 𝑙𝑎ℎ𝑒𝑎𝑑𝑘 

>> Update distance between the “detector” and the last “new ahead” vehicle.  

 

𝑑𝑖𝑠𝑡𝑎ℎ𝑒𝑎𝑑𝑘 = 𝑑𝑖𝑠𝑡𝑎ℎ𝑒𝑎𝑑𝑘−1 + 𝑝𝑜𝑠𝑎ℎ𝑒𝑎𝑑𝑘 + ∑ 𝑙𝑚𝑘 −

𝑚𝑘

𝑀𝑘

𝑝𝑜𝑠𝑎ℎ𝑒𝑎𝑑𝑘−1 

 

>> Get speed of the “new ahead” vehicle  𝑠𝑝𝑎ℎ𝑒𝑎𝑑𝑘 

>> Calculate headway and time-headway for “new ahead”  

 

ℎ𝑤𝑎ℎ𝑒𝑎𝑑𝑘 = 𝑝𝑜𝑠𝑎ℎ𝑒𝑎𝑑𝑘 + ∑ 𝑙𝑚𝑘

𝑚𝑘

𝑀𝑘

− 𝑝𝑜𝑠𝑎ℎ𝑒𝑎𝑑𝑘−1 − 𝑙𝑎ℎ𝑒𝑎𝑑𝑘 

 

>> Update speed, headway and time-headway. Example with speed  

 

𝑠𝑝𝑠𝑢𝑚𝑘 = 𝑠𝑝𝑠𝑢𝑚𝑘−1 + 𝑠𝑝𝑎ℎ𝑒𝑎𝑑𝑘 
 

Once the process exits the loop, the average speed, headway and time headway are 

calculated. 

 

>> Calculate average values of the variables for the current lane. Example for the speed   

 

𝑎𝑣𝑠𝑝𝑒𝑒𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  
𝑠𝑝𝑠𝑢𝑚𝑘

𝑘
 

 

This procedure is repeated to obtain values from the left and right adjacent lanes.  

 

>> Get position of the vehicles ahead in the left and right adjacent lanes. 

>> Position of the vehicle ahead in left lane = 𝑝𝑜𝑠𝑙𝑒𝑓𝑡𝑙 

>> Position of the vehicle ahead in left lane = 𝑝𝑜𝑠𝑙𝑒𝑓𝑡𝑟 

 

Note: Subscript “l” and “r” are the positions of the two current considered vehicles in the 

lines of traffic in the left and right lane, respectively, ahead of the detector (with l = 1 and 

r=1 for the first vehicle in each lane). 

 

Note for the AIMSUN case: The function used to get a vehicle in an adjacent lane picks 

both the vehicle ahead of the reference one (the detector) and the follower vehicle in the 

adjacent lane. The relevant vehicle is the one ahead, the downstream vehicle.  The target 

lane must be specified as well as an argument of the function to access this vehicle, so this 

argument of the function is set to -1 for the left lane or 1 for the right lane. 

 

(11) 

(12) 

(13) 

(14) 

(15) 
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The process to get measures from the vehicles ahead of the “detector” in adjacent lanes is 

the same as for the current lane, but considering the “downstream vehicle” as the first to take 

measures from instead of the “vehicle ahead”. Average values of the considered variable are 

obtained for each lane. Example for speed:  

 

𝑎𝑣𝑠𝑝𝑒𝑒𝑑𝑙𝑒𝑓𝑡 =  
𝑠𝑝𝑠𝑢𝑚𝑙

𝑙
 

 

𝑎𝑣𝑠𝑝𝑒𝑒𝑑𝑟𝑖𝑔ℎ𝑡 =  
𝑠𝑝𝑠𝑢𝑚𝑟

𝑟
 

 

Note for the AIMSUN case: AIMSUN considers obstructions, stop lines or traffic lights as 

vehicles for its car-following model. This feature is coherent with statements from Gipps 

(1986), as car-following models are “relatively unaffected by what constitutes the previous 

vehicle”. To differentiate real vehicles from these special objects, specific microSDK 

functions can be employed, that take into account only actual vehicles. For example, 

“getRealUpDown” function present in the code in Appendix 1. 
 

The next step is to find out which lane offers the best traffic conditions for the LC vehicle. 

One of the aforementioned variables (average speed, headway or time headway) is chosen, 

and its value in the current lane is compared to that for both adjacent lanes. If the value the 

variable takes in the adjacent lane is higher than in the current lane, multiplied by the 

adjusted lane change threshold, that lane becomes the “target lane” 

 

Note for the AIMSUN case: The microSDK of AIMSUN includes a function to check that 

not solid lines on the road will be crossed when moving to the next lane, and that other lane-

changing manoeuvres are not being executed at the same time by the LC vehicle. These 

conditions must be satisfied to accept the “target lane”. 

 

>> Check if it is possible to change to left/right adjacent lane. 

>> Evaluate adjacent lanes conditions. Example for speed, comparing current and left lanes: 

>> IF 𝑎𝑣𝑠𝑝𝑒𝑒𝑑𝑟𝑖𝑔ℎ𝑡 > 𝐿𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ·  𝑎𝑣𝑠𝑝𝑒𝑒𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

 

>> Variable “change left” is positive and “lane change direction” = left. 

 

If both lanes are considered valid to change to, and both offer advantageous conditions 

respect to the current one, then the comparison is made between them. 

 

>> Compare left and right lane conditions:  

>> IF 𝑎𝑣𝑠𝑝𝑒𝑒𝑑𝑙𝑒𝑓𝑡 > 𝑎𝑣𝑠𝑝𝑒𝑒𝑑𝑟𝑖𝑔ℎ𝑡  

 

>> Variable “lane change direction” = left 

 

However, if the calculated average speed in the LC vehicle current lane downstream of its 

position is higher than the free flow speed of the detector vehicle, multiplied by the free flow 

rate, no lane changes are triggered. This measured is applied to avoid unnecessary lane 

changes. 

 

 

 

(16) 

(17) 
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>> IF 𝑎𝑣𝑠𝑝𝑒𝑒𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝑓𝑟𝑒𝑒𝑓𝑙𝑜𝑤𝑠𝑝𝑒𝑒𝑑 · 𝑓𝑟𝑒𝑒𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒   

 

>> Variable “lane change direction” = 0 

 

The alternative version is to use a fixed value limit for the speed, defining it with the rest of 

initial parameters: 

 

>> IF 𝑎𝑣𝑠𝑝𝑒𝑒𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝑓𝑙𝑢𝑒𝑛𝑡𝑠𝑝𝑒𝑒𝑑  

 

>> Variable “lane change direction” = 0 
 

Once the lane-changing direction is known, the manoeuvre is started. The current model 

used is a modified version of an AIMSUN sample lane-change model. First, the LC vehicle 

gets its equivalent position in the target lane, like if it was projecting its shadow. Then, it 

locates the downstream and upstream vehicles in the target lane, as it was done to take traffic 

measures before. Afterwards, it checks for an acceptable gap in the target lane and if tis 

valid, the LC vehicle is added to a list of vehicles to change lane. The AIMSUN algorithms 

decide the priority of all the vehicles willing to change lane. 
 

A process to look for a gap for cooperation in the target lane is executed too. Like in the 

previous case, the LC vehicle gets the position of vehicles in the target lane and it is 

introduced in a list to cooperate with them. The behaviour of the upstream vehicle is 

conditioned by its cooperation parameters. 

 

Once the vehicle was allowed to execute the lane change, an advice message would be sent 

to the considered lane-changing vehicle and displayed to the driver. 
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4. Simulations 

 

The lane-changing model is investigated by running traffic simulations using the AIMSUN 

software. The software allows to build a network, configure traffic conditions (input flows, 

composition of the traffic…), apply a behavioural model for vehicles and run simulations. 

The software offers statistic results on travel time, delay time (difference between expected 

travel time with ideal conditions and actual value), traffic flow, density… 

 

The test network employed to run the simulations, the ring road of Antwerp, was provided 

(like the initial AIMSUN model files) by Konstantinos Mattas from the JRC. Results of 

impact assessment of CACC systems in this network are presented in Makridis et al. (2018). 

The ring road contains sections of different highways. 

 

Two different scenarios have been employed to simulate the lane-changing model, 

depending on the behavioural model algorithms employed for vehicles. For the first 

simulations, the AIMSUN automated vehicles (AVs) scenario was used, but the results 

obtained were not satisfactory, with too high delay times and large travel times, and vehicles 

showing a strange behaviour during the simulation run, as it is detailed in the next section. 

As it was explained by Konstantinos Mattas from the JRC later, this was probably due to a 

problem with DLC (Discretionary Lane Changes) algorithms used in the AIMSUN 

behavioural model for the AVs scenario, because “AVs are expected to be more conservative 

than human drivers and have larger gaps [with their respective leaders]” 

 

However, simulations using the second considered scenario, designed for CAVs (Connected 

Automated Vehicles), returned results that are much more feasible. With this configuration, 

the gap acceptance process works properly and vehicles behave in a more realistic way, 

accepting reasonable gaps. In both scenarios, AIMSUN default car-following model is 

employed, confirming that differences appreciated in the behaviour of the vehicles between 

scenarios are probably due to internal issues of the software. 

 

4.1. Automated Vehicles scenario 

 
In this scenario, it was employed the fluent speed threshold to limit the number of lane 

changes, instead of the free flow threshold. The criterion to choose which lane offers the best 

conditions, was to compare average speed among them. The model initial parameters were 

set to: 

 

 Maximum number of vehicles: 8 

 Lane change threshold: 1,3 

 Fluent speed: 50 km/h 

 

 Distance to detector 

[m] 

Detection distance [m] 

Simulation run 1 200 200 

Simulation run 2 1000 400 

Simulation run 3 0 400 

Simulation run 4 1500 500 

Table 1. Initial parameter values for AVs simulation scenario 
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Selecting a small distance between the vehicle and the detector, fluctuations in traffic 

can be observed during the simulation, with vehicles changing constantly from one lane 

to the adjacent, back and forth.  

 

During the simulation runs, it was observed that the leftmost lane is barely used by 

vehicles, even during congested situations, so highway total capacity is not used. This is 

noticeable for every simulation run with the AV scenario, as it is shown in figures 22 

and 23 that show sections of the highway where congestion has occurred. 

 

 
Figure 22. AIMSUN software interface showing a south section of the network, simulation run 2. 

 

 
Figure 23. Detail view of an on-ramp in a southwest  

section of the network, simulation run 4. 
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In the section of the network displayed in figure 23, it can be observed how vehicles in the 

network do not yield for those trying to enter and merge from the on-ramps, in both 

directions of the traffic. 

 

In the following graphics (figures 24-27), it is shown how results on average travel time, 

delay, traffic flow and density vary between simulations. 

 

 
 

 

 

 
 

 

 

As it was mentioned before, these results are not very reliable. However, some aspects of 

the simulations can be commented. Traffic flow is higher in the first run case, as figure 26 

shows, and thus both travel time and delay time are lower than in the rest of cases. This could 

be due to the lower detection distance applied (200m), comparing with the other runs (400-

500m), so fewer vehicles would be considered when calculating the average speeds and 

headways to classify lanes, and thus, these average values employed in lane comparison will 

be more unstable, triggering a larger number of lane changes. On the other hand, the number 

71

72

73

74

75

76

77

1 2 3 4

Ti
m

e 
(s

/k
m

)

Simulation run

Travel time

28000

28500

29000

29500

30000

30500

31000

31500

32000

32500

33000

1 2 3 4

Fl
o

w
 (

ve
h

/h
)

Simulation run

Traffic flow

33

34

35

36

37

38

39

1 2 3 4
Ti

m
e 

(s
/k

m
)

Simulation run

Delay time

Figure 24. Vehicle travel time for each simulation. Figure 25. Vehicle delay time for each simulation.  

Figure 26. Traffic flow for each simulation. Figure 27. Traffic density for each simulation.  
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of vehicles to calculate these average values is limited to 8, so in congested situations the 

200m detection distance should be enough to select them.  

 

Another notable feature is that in the third simulation run, delay time decreases while traffic 

density rises. According to these results, in this case, capacity of the highway is used in a 

higher rate, although still far from its maximum. 

 

This analysis has been carried out based just in assumptions. Therefore, as it was previously 

stated, results are of limited validity, and limited interest, because of the incorrect behaviour 

showed by vehicles in the AV scenario. 

 

 

4.2. Connected Automated Vehicles Scenario 

 
The CAVs scenario allowed to obtain more realistic results. Several cases were simulated, 

comparing again average speed between the current lane where the vehicle is in and the 

potential left and right target lanes. Two different “lane change thresholds” were applied to 

decide which lane to use: 

 

 Average speed in target lane > 1,3 times the average speed in current lane. 

 Average speed in target lane > 1,1 times the average speed in current lane. 

 

In the second case, more lane changes manoeuvres should be executed, as these are 

considered even for a marginal improvement of traffic conditions in an adjacent lane. Three 

different values of “distance to detector” are considered. In the cases that value is zero, the 

vehicle acting as the “detector” is the one to change lane. The other options are to pick a 

detector that is further than 1000m or 1500m downstream, respectively. 

 

The other initial parameters take the following values in every simulation: 

 

 Detection distance: 500m 

 Maximum number of vehicles for detection: 8 

 Free flow rate: 0,6 

 

The next graphics (figures 28-33) show how some traffic characteristics change with respect 

to the distance to the detector (for a lane change threshold = 1,3). The values shown are 

average values considering all the vehicles in the network (cars and trucks): 
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The average delay time (and thus, total travel time) is slightly reduced when a vehicle 

considers the situation downstream instead of checking its surroundings. According to these 

results, the lane change model is working correctly, as changing lane in advance allow 

vehicles to get closer to the ideal situation (when there is no delay in travel time, as driving 

at the desired speed of the driver is always possible). There are no big improvements on 

travel time between the case checking traffic conditions 1000m downstream and the one 

checking 1500m downstream. 

 

    
 

 

 

Density decreases for larger separations between the lane-changing vehicle and the detector. 

As potential congestion is detected in advance, vehicles act consequently and move to lanes 

that are less busy in the downstream section of the road towards they are going. Vehicles 

decide to change to lanes that allow them to drive faster, as the speed results show 
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Figure 28. CAVs average delay 

time for LC threshold = 1,3 
Figure 29. CAVs average time 

for LC threshold = 1,3 

Figure 30. CAVs average density 

for LC threshold = 1,3 
Figure 31. CAVs average 

speed for LC threshold = 1,3 
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The total number of lane changes decreases when vehicles execute the manoeuvre in 

advance. As density gets lower and speed gets higher, the flow of vehicles improves. 

 

The next graphics (figures 34-39) show variation of traffic characteristics with respect to the 

distance to the detector (for a lane change threshold = 1,1): 
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Figure 32. CAVs total lane changes 

for LC threshold = 1,3 

Figure 33. CAVs traffic flow for 

LC threshold = 1,3 

Figure 34. CAVs average delay 

time for LC threshold = 1,3 

Figure 35. CAVs average time 

for LC threshold = 1,3 
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Selecting the lower “lane change threshold”, results barely change for the cases checking 

downstream traffic, obtaining similar delay time, speed or flow values, but they do for the 

case with “distance to detector” = 0. As every vehicle considers the situation just ahead to 

take the decision to change (and it changes for every minimum speed gain), it is possible 

that, when some vehicle move to an adjacent lane, the situation perceived by the vehicles 

following it changes, which probably causes more lane-change manoeuvres. In this case, the 

situation is more unstable. 

 

In table 2 and table 3 below, a summary of results from simulations is presented, including 

a case in which the AIMSUN default lane-change model is employed.   
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Figure 36. CAVs average density for 

LC threshold = 1,1 

Figure 37. CAVs average speed 

for LC threshold = 1,1 

Figure 38. CAVs total lane changes 

for LC threshold = 1,1 

Figure 39. CAVs traffic flow for 

LC threshold = 1,1 
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Parameters Units 

Lane change 

threshold 

Default lane-

change model 
1,3 

 

Maximum 

number of 

vehicles 

ahead 

Default lane-

change model 
8 Veh 

Detection 

distance 

Default lane-

change model 
500 m 

Free-flow 

rate 

Default lane-

change model 
0,6 

 

Distance to 

detector 

Default lane-

change model 
0 1000 1500 m 

Time series Mean 

value 

σ Mean 

value 

σ Mean 

value 

σ Mean 

value 

σ 
 

Delay Time 

- All 

18,94 25,42 26,35 30,08 18,88 22,33 18,79 24,92 s/km 

Delay Time 

- Car 

19,08 25,06 26,76 29,9 19,06 21,76 18,95 24,71 s/km 

Delay Time 

- Truck 

17,48 28,74 22,16 31,62 17,08 27,42 17,12 26,85 s/km 

Density  

- All 

13,95 N/A 16,43 N/A 14,2 N/A 13,9 N/A veh/km 

Density 

- Car 

11,9 N/A 14,2 N/A 12,14 N/A 11,86 N/A veh/km 

Density - 

Truck 

2,05 N/A 2,23 N/A 2,06 N/A 2,04 N/A veh/km 

Flow - All 34822 N/A 31927 N/A 34679 N/A 35058 N/A veh/h 

Flow - Car 31701 N/A 29084 N/A 31585 N/A 31926 N/A veh/h 

Flow  

- Truck 

3121 N/A 2843 N/A 3094 N/A 3132 N/A veh/h 

Input Flow  

- All 

40686 N/A 39663 N/A 40801 N/A 40786 N/A veh/h 

Input Flow - 

Car 

36774 N/A 35835 N/A 36885 N/A 36856 N/A veh/h 

Input Flow  

- Truck 

3912 N/A 3828 N/A 3916 N/A 3930 N/A veh/h 

Number of 

Lane 

Changes - 

All 

986,89 N/A 1471,51 N/A 994,88 N/A 1000,47 N/A LC/km 

Number of 

Lane 

Changes - 

Car 

891,46 N/A 1347,24 N/A 898,21 N/A 904,35 N/A LC/km 

Number of 

Lane 

Changes - 

Truck 

95,43 N/A 124,27 N/A 96,67 N/A 96,12 N/A LC/km 

Table 2. Summary of results from simulations in CAVs scenario with “lane-changing  

threshold” = 1,3 and different values of the “distance to detector” parameter. 
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Parameters Units 

Lane change 

threshold 

Default lane-

change model 
1,3 

 

Maximum 

number of 

vehicles 

ahead 

Default lane-

change model 
8 Veh 

Detection 

distance 

Default lane-

change model 
500 m 

Free-flow rate Default lane-

change model 
0,6 

 

Distance to 

detector 

Default lane-

change model 
0 1000 1500 m 

Time series Mean 

value 

σ Mean 

value 

σ Mean 

value 

σ Mean 

value 

σ  

 

Speed - All 71,64 19,52 65,77 22,05 70,96 19,29 71,6 19,28 km/h 

Speed - Car 72,38 19,73 66,21 22,4 71,63 19,53 72,32 19,49 km/h 

Speed - Truck 64,21 15,41 61,26 17,39 64,18 15,05 64,25 15,16 km/h 

Total Number 

of Lane 

Changes - All 

319535 N/A 476447 N/A 322123 N/A 323935 N/A 
 

Total Number 

of Lane 

Changes - Car 

288638 N/A 436212 N/A 290824 N/A 292813 N/A 
 

Total Number 

of Lane 

Changes - 

Truck 

30897 N/A 40235 N/A 31299 N/A 31122 N/A 
 

Total Travel 

Time - All 

3831,6

9 

N/A 3917,3

4 

N/A 3833,5

4 

N/A 3856,2

1 

N/A h 

Total Travel 

Time - Car 

3297,6

5 

N/A 3414,4

2 

N/A 3307,3

7 

N/A 3323,0

8 

N/A h 

Total Travel 

Time - Truck 

534,04 N/A 502,92 N/A 526,17 N/A 533,13 N/A h 

Travel Time - 

All 

56,22 25,59 63,69 30,13 56,19 22,49 56,07 25,11 sec/km 

Travel Time - 

Car 

55,68 25,17 63,41 29,95 55,68 21,86 55,55 24,86 sec/km 

Travel Time - 

Truck 

61,76 28,95 66,5 31,75 61,35 27,57 61,37 27,03 sec/km 

Table 2 (cont.). Summary from results for simulations in CAVs scenario with “lane-changing  

threshold” = 1,3 and different values of the “distance to detector” parameter. 
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Parameters Units 

Lane change 

threshold 

Default lane-

change model 

1,1  

Maximum 

number of 

vehicles 

ahead 

Default lane-

change model 

8 Veh 

Detection 

distance 

Default lane-

change model 

500 m 

Free-flow 

rate 

Default lane-

change model 

0,6  

Distance to 

detector 

Default lane-

change model 

0 1000 1500 m 

Time series Mean 

value 

σ Mean 

value 

σ Mean 

value 

σ Mean 

value 

σ 
 

Delay Time - 

All 

18,94 25,42 31,24 38,75 18,66 21,8 19 25,17 sec/km 

Delay Time - 

Car 

19,08 25,06 31,75 38,88 18,87 21,25 19,14 24,75 sec/km 

Delay Time - 

Truck 

17,48 28,74 25,82 36,98 16,49 26,66 17,54 29,09 sec/km 

Density - All 13,95 N/A 17,33 N/A 14,13 N/A 13,95 N/A veh/km 

Density - Car 11,9 N/A 14,9 N/A 12,09 N/A 11,9 N/A veh/km 

Density - 

Truck 

2,05 N/A 2,43 N/A 2,04 N/A 2,05 N/A veh/km 

Flow - All 34822 N/A 29814 N/A 34670 N/A 34942 N/A veh/h 

Flow - Car 31701 N/A 27216 N/A 31564 N/A 31820 N/A veh/h 

Flow - Truck 3121 N/A 2598 N/A 3106 N/A 3122 N/A veh/h 

Input Flow - 

All 

40686 N/A 38121 N/A 40809 N/A 40782 N/A veh/h 

Input Flow - 

Car 

36774 N/A 34365 N/A 36888 N/A 36850 N/A veh/h 

Input Flow - 

Truck 

3912 N/A 3756 N/A 3921 N/A 3932 N/A veh/h 

Number of 

Lane 

Changes - 

All 

986,89 N/A 1940,29 N/A 1005,62 N/A 995,74 N/A LC/km 

Number of 

Lane 

Changes - 

Car 

891,46 N/A 1801,23 N/A 906,5 N/A 900,34 N/A LC/km 

Number of 

Lane 

Changes - 

Truck 

95,43 N/A 139,06 N/A 99,12 N/A 95,4 N/A LC/km 

Table 3. Summary of results from simulations in CAVs scenario with “lane-changing 

threshold” = 1,1 and different values of the “distance to detector” parameter. 
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Parameters Units 

Lane change 

threshold 

Default lane-

change model 
1,1  

Maximum 

number of 

vehicles ahead 

Default lane-

change model 
8 Veh 

Detection 

distance 

Default lane-

change model 
500 m 

Free-flow rate Default lane-

change model 
0,6  

Distance to 

detector 

Default lane-

change model 
0 1000 1500 m 

Time series Mean 

value 

σ Mean 

value 

σ Mean 

value 

σ Mean 

value 

σ Units 

Speed - All 71,64 19,52 64,39 24,14 71,14 19,21 71,47 19,43 km/h 

Speed - Car 72,38 19,73 64,8 24,53 71,79 19,47 72,19 19,65 km/h 

Speed - Truck 64,21 15,41 60,13 19,1 64,63 14,86 64,11 15,28 km/h 

Total Number 

of Lane 

Changes - All 

319535 N/A 628230 N/A 325601 N/A 322403 N/A 
 

Total Number 

of Lane 

Changes - Car 

288638 N/A 583206 N/A 293509 N/A 291513 N/A 
 

Total Number 

of Lane 

Changes - 

Truck 

30897 N/A 45024 N/A 32092 N/A 30890 N/A 
 

Total Travel 

Time - All 

3831,69 N/A 3803,5 N/A 3819,19 N/A 3843,6 N/A h 

Total Travel 

Time - Car 

3297,65 N/A 3331,5 N/A 3294,3 N/A 3313,73 N/A h 

Total Travel 

Time - Truck 

534,04 N/A 472,01 N/A 524,89 N/A 529,87 N/A h 

Travel Time - 

All 

56,22 25,59 68,57 38,9 55,96 21,99 56,28 25,36 sec/km 

Travel Time - 

Car 

55,68 25,17 68,41 39,08 55,48 21,39 55,74 24,87 sec/km 

Travel Time - 

Truck 

61,76 28,95 70,15 37 60,77 26,87 61,81 29,31 sec/km 

Table 3 (cont.). Summary of results from simulations in CAVs scenario with “lane-changing 

threshold” = 1,1 and different values of the “distance to detector” parameter. 
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5. Conclusions  
 

In general, checking the situation downstream of a vehicle current position instead of directly 

ahead for lane-change decision increases the overall performance of the system. The model 

seems to reduce the risk of traffic breakdown, as vehicles carrying out the lane-changes in 

advance make possible to achieve a better distribution of the traffic across all the lanes of 

the road, improving traffic conditions such as flow, density, average speed and reduced 

delays. 

 

However, these improvements are much lower if the results are compared to those obtained 

from a simulation applying the default AIMSUN lane-changing model. Regarding delay 

time, for example, the best performing case using the presented lane-changing model is the 

one with a “distance to detector” = 1000m and a 1,1 “lane change threshold”, obtaining an 

average delay time of 18,66 s/km. Applying the internal model, the average delay time is 

18,94 s/km. The reduction is just around 1,47%. 

 

Therefore, it has been proved that, for the presented lane-changing model, the best results 

are obtained when vehicles evaluate the traffic situation considering information that is not 

available for human-driven not connected vehicles, like position and speed of vehicles 

traveling downstream on the road, out of the field of vision. But it has not been proved that 

this model, even assuming a 100% penetration rate of connected vehicles and a full 

compliance rate from drivers to follow given advices, could offer a better performance 

compared to the AIMSUN default model, after simulations in a Connected Automated 

Vehicles scenario. 

 

The model would need some adjustments and an optimal calibration of its parameters in 

order to increase its performance. It should be simulated in different scenarios, like mixed 

traffic with human-driven vehicles and connected vehicles at different penetration rates. 

Compliance of driver should be considered as well, to reach realistic results.  

 

Other ideas to expand this work in the future could be to increase the complexity of the lane-

changing model, including mandatory lane-changing situations, adjustments on the gap 

search and acceptance process, etc. Development of a car-following model to be integrated 

with it could be interesting as well. 
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Appendix 1 
 

Lane-changing model code in C++. Developed with Aimsun microSDK. 
 

 

bool behavioralModelParticular::evaluateLaneChanging(A2SimVehicle *vehicle, int 

threadId) 

{  

 //Parameters 

 double distance2Detector = 1500; 

 int maxNbVehiclesAhead = 8; 

 double maxDistanceAhead = 500; 

 double changeThreeshold = 1.3; 

 double timeLimit = 15; 

 double fluentSpeed = 60; 

 double freeFlowRate = 0.6; 

 //Vehicle ID 

 int vehicleID = vehicle->getId(); 

  

 //On ramps exceptions 

 bool isOnRamp = vehicle->IsLaneOnRamp(0); 

 bool leftOnRamp = vehicle->IsLaneOnRamp(-1); 

 bool rightOnRamp = vehicle->IsLaneOnRamp(1); 

 

 if (isOnRamp || leftOnRamp || rightOnRamp) return false;//to deactivate it 

 

 else { 

   

  //Selection of the detector 

  A2SimVehicle* detector = NULL; 

 

  if (distance2Detector = 0) detector = vehicle; 

  else { 

   double shiftDetector = 0; 

   detector = vehicle->getRealLeader(shiftDetector); 

   if (detector == NULL) return false; 

 

   double posVehicle = vehicle->getPosition(0); 

   double posDetector= detector->getPosition(0); 

   double distBetweenVeh = posDetector + shiftDetector - posVehicle; 

   A2SimVehicle*newDetector = NULL; 

 

   while (distBetweenVeh < distance2Detector) { 

    newDetector = detector->getRealLeader(shiftDetector); 

    if (newDetector == NULL) return false; 

 

    double posNewDetector = newDetector->getPosition(0); 
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    distBetweenVeh = distBetweenVeh + posNewDetector + 

shiftDetector - posDetector; 

 

    detector = newDetector; 

    posDetector = posNewDetector; 

   } 

  } 

 

  int detectorID = detector->getId(); 

  double posDetector = detector->getPosition(0); 

 

  //Current lane measures 

  double shiftAhead = 0; 

  A2SimVehicle*ahead = NULL; 

  ahead = detector->getRealLeader(shiftAhead); 

  if (ahead == NULL) return false; 

 

  double posAhead = ahead->getPosition(0); 

  double speedAhead = ahead->getSpeed(0); 

  double lengthAhead = ahead->getLength(); 

  double headway = posAhead + shiftAhead - posDetector - lengthAhead; 

  double timeHeadway = headway / speedAhead; 

 

  double distanceAhead = posAhead + shiftAhead - posDetector; 

  double sumSpeed = speedAhead; 

  double sumHeadway = headway; 

  double sumTimeHeadway = timeHeadway; 

  int nbVeh = 1; 

 

  A2SimVehicle*newAhead = NULL; 

  while (distanceAhead < maxDistanceAhead && nbVeh < 

maxNbVehiclesAhead) { 

   newAhead = ahead -> getRealLeader(shiftAhead); 

   if (newAhead == NULL) return false; 

 

   double posNewAhead = newAhead->getPosition(0); 

   distanceAhead = distanceAhead + posNewAhead + shiftAhead - 

posAhead; 

 

   double speedAhead = newAhead->getSpeed(0); 

   sumSpeed = sumSpeed + speedAhead; 

 

   double lengthNewAhead = newAhead->getLength(); 

   double headway = posNewAhead + shiftAhead - posAhead - 

lengthNewAhead; 

   sumHeadway = sumHeadway + headway; 

 

   double timeHeadway = headway / speedAhead; 

   sumTimeHeadway = sumTimeHeadway + timeHeadway; 
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   nbVeh++; 

   ahead = newAhead; 

   posAhead = posNewAhead; 

  } 

 

  //Average speed and headway in current lane 

  double averageSpeedCurrentDownstream = sumSpeed / nbVeh; 

  double averageHeadwayCurrentDownstream = sumHeadway / nbVeh; 

  double averageTimeHeadwayCurrentDownstream = sumTimeHeadway / 

nbVeh; 

 

  //Left lane measures 

  double XPosLeftLane = detector->getPositionInTargetlane(posDetector, -1); 

  double shiftUpLeft = 0, shiftDownLeft = 0; 

  A2SimVehicle*vehUpLeft = NULL; 

  A2SimVehicle*vehDownLeft = NULL; 

  detector->getRealUpDown(-1, XPosLeftLane, vehUpLeft, shiftUpLeft, 

vehDownLeft, shiftDownLeft); 

  if (vehDownLeft == NULL) return false; 

 

  double posDownLeft = vehDownLeft->getPosition(0); 

  double speedDownLeft = vehDownLeft->getSpeed(0); 

  double lengthDownLeft = vehDownLeft->getLength(); 

  double headwayLeft = posDownLeft + shiftDownLeft - XPosLeftLane - 

lengthDownLeft; 

  double timeHeadwayLeft = headwayLeft / speedDownLeft; 

 

  double distanceDownLeft = posDownLeft + shiftDownLeft - XPosLeftLane; 

  double sumSpeedLeft = speedDownLeft; 

  double sumHeadwayLeft = headwayLeft; 

  double sumTimeHeadwayLeft = timeHeadwayLeft; 

  int nbVehLeft = 1; 

 

  A2SimVehicle*newDownLeft = NULL; 

  while (distanceDownLeft < maxDistanceAhead && nbVehLeft < 

maxNbVehiclesAhead) { 

   newDownLeft = vehDownLeft->getRealLeader(shiftDownLeft); 

   if (newDownLeft == NULL) return false; 

 

   double posNewDownLeft = newDownLeft->getPosition(0); 

   distanceDownLeft = distanceDownLeft + posNewDownLeft + 

shiftDownLeft - posDownLeft; 

 

   speedDownLeft = newDownLeft->getSpeed(0); 

   sumSpeedLeft = sumSpeedLeft + speedDownLeft; 

 

   double lengthNewAhead = newDownLeft->getLength(); 
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   headwayLeft = posNewDownLeft + shiftDownLeft - posDownLeft - 

lengthNewAhead; 

   sumHeadwayLeft = sumHeadwayLeft + headwayLeft; 

 

   timeHeadwayLeft = headwayLeft / speedDownLeft; 

   sumTimeHeadwayLeft = sumTimeHeadwayLeft + timeHeadwayLeft; 

 

   nbVehLeft++; 

   vehDownLeft = newDownLeft; 

   posDownLeft = posNewDownLeft; 

  } 

 

  //Average speed and headway in left lane 

  double averageSpeedLeftDownstream = sumSpeedLeft / nbVehLeft; 

  double averageHeadwayLeftDownstream = sumHeadwayLeft / nbVehLeft; 

  double averageTimeHeadwayLeftDownstream = sumTimeHeadwayLeft / 

nbVehLeft; 

 

  //Right lane measures 

  double XPosRightLane = detector->getPositionInTargetlane(posDetector, 1); 

  A2SimVehicle*vehUpRight = NULL; 

  A2SimVehicle*vehDownRight = NULL; 

  double shiftUpRight = 0, shiftDownRight = 0; 

  detector->getRealUpDown(1, XPosRightLane, vehUpRight, shiftUpRight, 

vehDownRight, shiftDownRight); 

  if (vehDownRight == NULL) return false; 

 

  double posDownRight = vehDownRight->getPosition(0); 

  double speedDownRight = vehDownRight->getSpeed(0); 

  double lengthDownRight = vehDownRight->getLength(); 

  double headwayRight = posDownRight + shiftDownRight - XPosRightLane - 

lengthDownRight; 

  double timeHeadwayRight = speedDownRight * headwayRight; 

 

  double distanceDownRight = posDownRight + shiftDownRight - 

XPosRightLane; 

  double sumSpeedRight = speedDownRight; 

  double sumHeadwayRight = headwayRight; 

  double sumTimeHeadwayRight = timeHeadwayRight; 

  int nbVehRight = 1; 

 

  A2SimVehicle*newDownRight = NULL; 

  while (distanceDownRight < maxDistanceAhead && nbVehRight < 

maxNbVehiclesAhead) { 

   newDownRight = vehDownRight->getRealLeader(shiftDownRight); 

   if (newDownRight == NULL) return false; 
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double posNewDownRight = newDownRight->getPosition(0); 

   distanceDownRight = distanceDownRight + posNewDownRight + 

shiftDownRight - posDownRight; 

 

   speedDownRight = newDownRight->getSpeed(0); 

   sumSpeedRight = sumSpeedRight + speedDownRight; 

 

   double lengthNewAhead = newDownRight->getLength(); 

   headwayRight = posNewDownRight + shiftDownRight - posDownRight 

- lengthNewAhead; 

   sumHeadwayRight = sumHeadwayRight + headwayRight; 

 

   timeHeadwayRight = headwayRight / speedDownRight; 

   sumTimeHeadwayRight = sumTimeHeadwayRight + 

timeHeadwayRight; 

 

   nbVehRight++; 

   vehDownRight = newDownRight; 

   posDownRight = posNewDownRight; 

  } 

 

  //Average speed and headway in right lane 

  double averageSpeedRightDownstream = sumSpeedRight / nbVehRight; 

  double averageHeadwayRightDownstream = sumHeadwayRight / nbVehRight; 

  double averageTimeHeadwayRightDownstream = sumTimeHeadwayRight / 

nbVehRight; 

 

  //Lane change decission 

  int laneChangingDirection = 0; 

 

  bool leftChangePossible = vehicle->isLaneChangingPossible(-1); 

  bool rightChangePossible = vehicle->isLaneChangingPossible(1); 

   

  bool leftChange = false; 

  bool rightChange = false; 

 

  if (averageHeadwayLeftDownstream > 

changeThreeshold*averageHeadwayCurrentDownstream && leftChangePossible) 

  { 

   laneChangingDirection = -1; 

   leftChange = true; 

  } 

  if (averageHeadwayRightDownstream > 

changeThreeshold*averageHeadwayCurrentDownstream && rightChangePossible) 

  { 

   laneChangingDirection = 1; 

   rightChange = true; 

  } 
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if (leftChange && rightChange) 

   if (averageHeadwayLeftDownstream > 

averageHeadwayRightDownstream) 

   { 

    laneChangingDirection = -1; 

    rightChange = false; 

   } 

   else 

   { 

    laneChangingDirection = 1; 

    leftChange = false; 

   } 

 

  //Check when last lane change happened 

  //double lastLeft = ((simVehicleParticular*)vehicle)->getLastLeft(); 

  //double lastRight = ((simVehicleParticular*)vehicle)->getLastRight(); 

 

  //Limit lane-changes 

  //if (laneChangingDirection = -1 && lastLeft < timeLimit) 

laneChangingDirection = 0; 

  //if (laneChangingDirection = 1 && lastRight < timeLimit) 

laneChangingDirection = 0; 

   

  //Check if vehciles in the evaluated section downstream are traveling close to 

free flow speed 

  double freeFlowSpeed = detector->getFreeFlowSpeed(); 

  if (averageSpeedCurrentDownstream > freeFlowRate * freeFlowSpeed) 

laneChangingDirection = 0; 

  //if (averageSpeedCurrentDownstream >= fluentSpeed / 3.6) 

laneChangingDirection = 0; 

 

  //Lane change maneuver 

  if (laneChangingDirection != 0) { 

 

   double XPosTargetlane = vehicle->getPositionInTargetlane(vehicle-

>getPosition(0), laneChangingDirection); 

 

   //Lane Changing attempt 

   double ShiftUp = 0, ShiftDw = 0; 

   A2SimVehicle* pVehDw = NULL; 

   A2SimVehicle *pVehUp = NULL; 

   vehicle->getUpDown(laneChangingDirection, XPosTargetlane, pVehUp, 

ShiftUp, pVehDw, ShiftDw); 

   bool GapAcceptable = vehicle-

>isGapAcceptable(laneChangingDirection, XPosTargetlane, pVehUp, ShiftUp, pVehDw, 

ShiftDw); 
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if (GapAcceptable) { 

    vehicle->assignAcceptedGap(laneChangingDirection, 

XPosTargetlane, (const simVehicleParticular*)pVehUp, ShiftUp, (const 

simVehicleParticular*)pVehDw, ShiftDw, threadId); 

    return true; 

   } 

 

   //Target New Gap 

   double ShiftUpReal = 0, ShiftDwReal = 0; 

   A2SimVehicle * pVehDwReal = NULL; 

   A2SimVehicle * pVehUpReal = NULL; 

   vehicle->getRealUpDown(laneChangingDirection, XPosTargetlane, 

pVehUpReal, ShiftUpReal, pVehDwReal, ShiftDwReal); 

   vehicle->targetNewGap(laneChangingDirection, XPosTargetlane, 

pVehUpReal, ShiftUpReal, pVehDwReal, ShiftDwReal, threadId); 

   if (pVehUpReal || pVehDwReal) { 

    vehicle->assignNewTargetGap(XPosTargetlane, (const 

simVehicleParticular*)pVehUpReal, ShiftUpReal, (const 

simVehicleParticular*)pVehDwReal, ShiftDwReal, threadId); 

   } 

  } 

 

  double timeStep = AKIGetCurrentSimulationTime(); 

  if (laneChangingDirection < 0) 

   ((simVehicleParticular*)vehicle)->setLastLeft(timeStep); 

  else if (laneChangingDirection > 0) 

   ((simVehicleParticular*)vehicle)->setLastRight(timeStep); 

 

  return true; 

 } 

} 





 

 

 

 

 


