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Abstract 

The parasite Theileria parva  is carried by hard body ticks (Rhipicephalus appendiculatus,  

R.zambeziensis) and causes East Coast Fever in cattle and Corridor Disease in Buffalo throughout 

much of East and Southern Africa.  If cattle come into contact with Buffalo derived strains of the 

parasite, they can also catch Corridor disease.  Existing Infection and Treatment Methods using the 

Muguga cocktail may not prevent cattle infection where the two hosts coexist. Available 

distribution data for cattle, buffalo, the two vectors and the disease were collated and augmented 

with either spatial modelling using Boosted Regression Trees and Random Forest or habitat 

suitability masking, or both, to provide kilometre resolution maps of each target species.  The 

spatial overlaps between wildlife hosts, vectors and the disease were identified, and the number 

of cattle in these overlap zones calculated.  Approximately 60 million cattle are estimated to be 

within the areas where both vectors and disease are potentially present.  Of these, depending on 

the assumptions used to define the contact areas, 3 - 5 million cattle could come into contact with 

Buffalo.  Most of these are in Kenya, Uganda, Tanzania and Zimbabwe, which are each estimated 

to have between 0.5 and 1.5 million cattle in potential contact with infected Buffalo. The 

implications of these figures  in the context identifying the next steps for treatment 

implementation are discussed.  



1 Introduction and Objectives 
The infection and treatment method (ITM) of immunisation against East Coast fever (ECF) has 

more than 95% efficacy against cattle derived T.parva infection. The evidence of the performance 

of the vaccine against Buffalo-derived T.parva is mixed. In some situations vaccination failed to 

protect cattle against buffalo-derived T.parva infection. In other areas, the vaccine appears to 

work perfectly even when cattle and buffalo graze together. 

It is not clear if the reason for this difference is due to buffalo-derived parasites breaking through 

the immunity engendered by the Muguga cocktail strains and where the vaccine works is because 

somehow the buffalo derived T.parva stocks are protected by the vaccines. It is now known that 

buffalo derived parasites are more polymorphic than cattle derived parasites. It might also be that 

in the areas where the vaccine works, the proportion of buffalo derived parasites compared to 

cattle derived parasites is so low that the vaccine is able to protect against the cattle parasites 

which happen to be in the majority. 

These issues require investigation to get a better understanding so that the vaccine could be 

improved.  In the meantime, in order to protect the reputation of the vaccine, it is safer not to  

vaccinate in areas where cattle are known to interact with buffalo. Unfortunately these areas are 

not clearly known. Besides the number cattle at risk from the buffalo-derived parasites is not 

known to decide if it is worthwhile to invest in protecting those cattle. 

This study aims to map the areas considered to be at risk and therefore to be avoided for ITM with 

the Muguga cocktail in its present form.  This essentially involves identifying the areas where the 

spatial distributions of cattle, buffalo and the disease overlap.   

The disease is transmitted between hosts – both domestic and wild – by tick vectors, and so the 

distribution of the disease is largely determined by the presence of infected ticks  – primarily of 

the species Rhipicephalus appendiculatus and R. zambeziensis.    

Estimating the geographic overlap therefore involves mapping each of the main component 

distributions (buffalo, cattle, and vectors) and estimating the degree to which these overlap.  This 

requires a number of discrete stages, namely to:  

• Review all available distribution data as well as the relevant literature in relation to risk of 

cattle infection from buffalo derived T. parva, including the efficacy of the Muguga cocktail 

as it is currently understood. 

• Acquire and collate all relevant spatial data layers in a common format for the hosts and 

vectors,  as well as the disease itself.  

• It is already known that these data are not complete in that there are gaps in the known 

distributions which preclude assessing the degree of overlap within the entire area 

affected.  It is therefore necessary to produce distributions that have such gaps filled.  A 

well established method to achieve this is to use spatial modelling techniques to estimate  

the spatial distribution of the factors for which continuous, geographic estimates are not 

available or need updating. 



• Combine these modelled distribution maps in such a way as to estimate risk to cattle from 

buffalo derived T. parva. 

• Provide all spatial data to ILRI in a format suitable for further analysis by ILRI staff if 

required (see Section 11) 

2 Review of Available Data 

2.1 Epidemiological Overview 

East Coast Fever (ECF) in cattle in caused by the protozoan parasite Theileria parva, and is 

widespread throughout East and Southern Africa (ILRI, 2017) .  The disease in spread from host to 

host by tick vectors  – primarily Rhipicephalus appendiculatus and R. zambeziensis.   

The disease affects all cattle breeds including Zebu in pastoralist and agro-pastoralist production 

systems and ranches  and improved dairy herds in the more intensive production systems.  The 

parasite infects the bovine lymphocytes, causing a profound lymphoproliferation  which can leads 

to mortalities of up to 80% in  the more susceptible  exotic (dairy) breeds.  Economic losses can be 

very substantial –and ECF  is widely regarded as the most serious animal health constraint to 

increasing the productivity of cattle in eastern, southern and central Africa. The parasite also 

causes disease in buffalo (Syncerus caffer) – known as Corridor Disease which causes much less 

severe symptoms than does ECF in cattle. Transmission can be of ECF between cattle, or  Corridor 

Disease from buffalo to Cattle. 

Sitt et al (2015) provides a comprehensive over view of the epidemiology of T. parva, from which 

much of the following is drawn . Though caused by the same species, the Corridor Disease 

parasites are significantly more genetically heterogeneous than those causing ECF, perhaps only a 

subset of the buffalo-maintained T. parva populations have crossed into cattle populations since 

the relatively recent introduction of cattle into eastern Africa (Hanotte et al., 2002). 

Efforts to combat the disease have been ongoing for many decades. Direct treatments  using 

antibiotics such as oxytetracycline can be used, but these do not, on their own, prevent re-

infection Prevention is clearly better than cure and preventative methods can include tick control 

through  acaricide pour-ons and the like, but the presence  (and possible amplification) of the 

vectors within untreated buffalo populations allows the disease to persist in the environment and 

this remains a threat to domestic livestock (Walker et al, 2014) in and around areas where buffalo 

are found.   

A more effective prevention technique was developed several decades ago, based on the Infection 

and Treatment Method ITM).  This technique entails infecting cattle with a tripartite mixture of 

parasites derived from cattle and buffalo T. parva strains (the Muguga Cocktail) , and 

simultaneously treating the deliberately infected animal with antibiotics. The end result leads to 

the development of long term immunity in treated animals.  The treatment is highly effective in 

most circumstances and extensive treatment campaigns based on the use of the Muguga Cocktail 

have been implemented in the region. 



Though the technology has been available since the seventies, and the first vaccine productions 

started in the early nineties , implementation of these vaccination campaigns have, however, been 

limited by a series of essentially logistic constraints related to vaccine production and delivery 

(Kiara et al, 2016; Perry, 2016).  These constraints, and the ways to overcome them,  are now 

much better understood, and the practicality  of substantially extending the use of the Muguga 

Cocktail is now much greater than has been the case to date. 

There remain, however some technical issues which may limit deployment of the vaccine.  

Perhaps most important of these is the fact that the Muguga Cocktail may not protect against  the 

disease carried by buffalo, probably because  their relative heterogeneity means that the 

comparatively simple vaccine cocktail (though it does contain some buffalo derived elements) 

does not stimulate immunity to the entire range of buffalo parasites (Sitt,  op cit).     

The evidence to support this contention is equivocal:  Homewood et al (2006) found that the 

vaccine was equally effective in areas with buffalo as in buffalo free locations, whilst recent 

studies  have clearly demonstrated that vaccinated cattle can catch buffalo derived T. parva in 

some areas but not others close by (Sitt et. Al., op. cit., Kiara, in prep). Whether this discrepancy 

reflects differing abilities of infected ticks to carry buffalo derived strains of the parasites – so that 

in some areas they cannot transmit buffalo derived strains to cattle – or variation in the 

susceptibility of cattle to the buffalo derived strains, or indeed regional variation in the buffalo 

strains themselves, remains unknown.   

Until the answers to these uncertainties are found and the drivers of variation in cattle 

susceptibility to buffalo strains (whether geographic, immunological, or entomological) are 

sufficiently well understood to predict with a high degree of reliability it must be assumed that 

cattle can catch buffalo derived strains. Given the complexity of the system, the solutions  are 

unlikely to be found in the short term, and in the mean time a strategy must be developed that 

allows the vaccine to be used in those areas where it works, and not in those where it may not.  

This approach is necessary primarily because a failure in vaccination will undermine stakeholders 

faith in the campaigns, and thus endanger the rate of uptake.’ In essence, the precautionary 

principle therefore dictates that all areas which may have the disease and where cattle and buffalo 

are likely to come into contact should be excluded from vaccination campaigns.   

3 Methodology of Estimating Required Distributions 
Identifying these areas of overlap requires the combination of detailed estimates of cattle, buffalo, 

vector and disease distributions.  In order for any such spatial combination to be effective, these 

distributions need to be compatible, i.e. cover the same area (extent); be available at the same 

level of detail (resolution) and refer to the same time periods.   

The extent defined for this work is dictated primarily by the presence  of the disease rather than 

the hosts which are found well beyond the region where the disease occurs.  The tick vectors are 

also found beyond the disease range, but not to any great extent (See Section 4.2), and inclusion 

of their entire ranges within the study extent allows all the available data to be used to estimate 



their distributions, which is likely to improve their reliability.  The rather large extent also provide 

some flexibility when extract subset geographies. The defined extent is shown in Figure 1  

Figure 1: Study Extent 

 

The resolution used has been set at 1km, which is sufficiently detailed to be useful at a local scale, 

whilst being compatible with existing standard livestock distribution datasets (See 4.3.1).  The time 

period is somewhat more complicated to define, given that some distributions may be determined 

by season and the available data relate to a broad data range.  Pragmatism dictates that as much 

of the available data as possible are used to generate the necessary component distributions – 

more data provide better spatial accuracy of the outputs -  which means that the outputs are in 

reality synoptic – i.e. are representative of a period of some years rather than any specific date. 

This also has a distinct advantage that synoptic data are less subject to anomalies caused by 

extremes or year to year perturbation and so are a more reliable prediction of a ‘normal’ situation. 

The basic methodology for all these estimates is the same:  assemble what data are available and 

if there are gaps then use established spatial modelling techniques produce complete predicted 

distributions at the required resolution.  These techniques rely on establishing a statistical 

relationship between the presence or abundance of host, vector, or disease  at known locations 

(the training data) and the values of a series of covariates at those same locations.  These 

relationships are then applied to the covariate datasets, which are available for the entire area of 

interest, and can thus be used to generate a complete map with none of the gaps present in the 

observed distributions.   

There are many statistical methods than can be used to implement these types of spatial analyses, 

and they can be use on either abundance or simple presence and absence data.   With the 

exception of the livestock numbers (see Section 4.3.1) reliable abundance data  are simply not 

available for large enough areas any of the host  vector or disease distributions and necessity 



therefore dictates the models must be for presence or absence. Two of the most widely used are 

Random Forest (RF) and Boosted Regression Trees (BRT) , both of which involve a degree of 

machine learning in the calculation of the predicted distributions.  This study uses both  these 

techniques, to produced separate presence  models which are then combined into an ensembled 

model depicting probability of presence.  The techniques are implemented using the VECMAP 

software suite which is also able to implement Zoned RF – producing predictions for defined 

analysis zones and integrating then into a single output. This tends to produce more reliable 

predictions as the relationships are tailored for each Zone.  In this case the Zones used were the 

Livestock Production Zoned described in Section 4.3.1 below.  

Presence absence modelling requires both presence and absence records in rough equal 

proportions.  By their very nature, most survey efforts are designed to record presence rather than 

absence, and absence data are often rare and must be generated in one way or another.  There 

are several ways to do this – typically either defining ‘pseudo absences’ which essentially rely on 

statistical ways of randomly generating  absence points in localities where there are no presence 

records.  The absence locations are determined only by their position relative to the known 

locations of presence rather than any characteristics of the locations themselves)  

Alternative ways to define absences are to either identify areas that are known to be unsuitable 

based on the conditions that are thought to limit a species distribution ( too hot, too wet, too bare 

of vegetation etc) or to assess the characteristics such as landuse  of the  locations with known 

presences and assign absence to land use types that have very few nor no presence records.  

These are the approaches used in this study and are detailed in each section below 

These statistical distribution modelling techniques rely of the use of appropriate predictor 

covariates which typically include a wide range of environmental, climatic, demographic and 

agricultural parameters that are likely to determine the distributions of hosts or vectors or 

diseases.  A comprehensive covariate suite was prepared which include an extensive set of 

remotely sensed imagery describing temperature, rainfall, and amount of vegetation density.  A 

vast amount of satellite image data are now available, dating back to the mid eighties.  This 

provides the choice of using climatic and environmental data from individual weeks, or years, and 

selecting either means or average or maxima.  It is therefore necessary to reduce this archive to 

some manageable dataset that is nevertheless biologically meaningful .  One such data reduction 

method is Temporal Fourier Analysis  (TFA) that produces a series of climate indicators from an 

extensive time series of imagery, representing average levels, maxima, minima and seasonality.  

Such TFA covariates  have been used for several years in spatial modelling (Scharlemann et al, 

2008). This study uses a similar archive based on a 15 year 2000- 2015  time series of MODIS 

imagery (see Table 1), supplemented by elevation, human population and land use proportions. 

Details of files and formats are given in Section 11.3  

Most of these categories comprise many different variables, so there are something in the order 

of 100 covariates available for each model. Using them all is likely to increase the chance of 

‘overfitting’  i.e. the model then precisely replicates the input data.  To reduce this false accuracy, 

each model was initially offered all the predictors available and then only the top ten were then 

used to provide the final outputs.   



Table 1: Covariate Types Used in Spatial Modelling 

Title Description 
MODIS DLST  Day-time Land Surface Temperature, 2000-2015 Fourier transformed dataset  

MODIS NLST Night-time Land Surface Temperature, 2000-2015 Fourier transformed dataset  

MODIS NDVI Normalised Difference Vegetation Index 2000-2015 Fourier transformed dataset  

MODIS EVI Enhanced Vegetation Index, 2000-2015 Fourier transformed dataset  

MODIS CH3 Channel 3 Temperature, 2000-2015 Fourier transformed dataset  

EarthEnv Percentage Consensus Land Use categories. 

GlobCover Percentage Land Cover Categories 2009 

Elevation GMTED Minimum Elevation 

RH Minimum Annual Relative Humidity, 2015 

Population Worlpop Human Population 

TAMSAT Monthly precipitation, 2016 

 

Each  of the following Sections  contain descriptions of the available data and any procedures used 

for assigning absences which are then followed by the model outputs.  

4 Distributions 

4.1 The Disease 

Norval et al (1992), listed 16 countries for which ECF had been recorded, to which should be 

added Angola De Garcia and Serrano (1971),  Cameroon and the Democratic Republic of the Congo 

(DRC) (Kiara, pers. comm.).  The complete list is therefore 18 countries: Angola, Botswana, 

Burundi, Cameroon, Central African Republic, Congo, Democratic Republic of the Congo, Kenya, 

Malawi, Mozambique, Rwanda, Somalia, South Africa,  South Sudan, Swaziland, Uganda, United 

Republic of Tanzania, Zambia, and Zimbabwe. 

Whilst there are a number of surveys for Corridor Disease and East Coast Fever, they largely relate 

to very small areas, and so are at too fine a scale to be used effectively at a sub-continental level. 

There are two relatively recent publications that collate all available reported information into a 

full coverage based on what amounts to informed expert opinion, namely Kalumi, Losson & 

Saegerman (2011) and Stoltz (2017) derived from Lawrence et al (2005a, b).  Whilst comparatively 

similar in general terms, the two coverages differ in some important details, for example an 

extension of the distribution into eastern DRC and southeast Tanzania  as shown in Figure 2.  

Though disease distributions have not been systematically surveyed and mapped for the entire 

study area, there are a few individual studies which provide information about particular countries 

(Kabi et al , 2014 for Uganda; Proceedings of an ILRAD workshop, 1989  for several countries).  

 



Figure 2: Distribution of Theileriosis a) published maps (left); b) presence and absence points 
assigned (right).   

Countries where the disease has been recorded are shaded grey 

As there are no large scale prevalence or incidence data available from these datasets, the only 

alternative is to model presence and absence.  There are however no specific absence locations in 

the training data, nor are there presence points for which environmental conditions can be 

extracted and evaluated to infer absence where such conditions are different. This leaves the 

single option of generating some form of ‘pseudo absence’ based on location relative to the 

regions of known presence.   

Given the discrepancy between the training data sets, the main body of absence points were 

generated in the regions beyond a buffer zone that bounded the combined extent of the training 

data.  Absences were also generated within the buffer but at a lower spatial density, thereby 

creating a gradient in assumed likelihood of absence as distance from known presence increases. 

No absences were generated in locations where either training data set showed positive.  

Two models were initially run, each with the same absence points (as implied by both training data 

sets) but with presences derived from only one of the training datasets.  These effectively 

represented minimum and maximum ‘known’ distributions – named Consensus and Extended 

distributions. The main predictors of the BRT modelled distributions for these two models (shown 

in Table 2) are  Rainfall in March and November, minimum relative humidity the seasonality and 

range of temperature related parameters, elevation, and human population level.  None of the 

vegetation related factors were represented in the top ten predictors.  

 



Table 2: Predictors, T. parva BRT models 

Importance 
Max Model 

Variable Importance 
Min Extent 

Variable 

14.79 ECTSAT0316 March Rainfall 12.52 ECTSAT0316 March Rainfall 

11.32 EC011503A2, Ch 3 temp, Amp2 11.68 EC011503A2: Ch 3 temp, Amp2 

9.06 ECTSAT1116, Nov Rainfall 10.72 ECMN30GRD Elevation 

5.06 ECWPPDN15A Human Popn Density 10.64 ECTSAT1116 Nov Rainfall 

4.72 ECTSAT0416  April Rainfall 7.04 ECWPPDN15A Human Popn Density 

4.71 ECRHMIN15 MInimum RH 4.28 EC011503P3 Ch3 Phsae 3 

3.43 ECMN30GRD Elevation 4.14 EC011507P3 Day LST Phase 3 

3.08 EC011503P3 Ch3 Phase 3 4.13 ECRHMIN15 Minimum RH 

2.91 EC011515P1 EVI Phase 1 2.90 EC011508A1 Bight LST Amp1 

2.57 EC011507P1 Day LST Phase 1 2.29 EC011507A2 Day LST Amp 2 

The predicted distributions are shown in Additional Figure 11, (Section 8), and both reflect the 

input datasets well.  Both (especially the extended distribution model) also predict the disease to 

be fairly extensive in southwest Ethiopia, from where it has not been reported.  Following 

discussion with the relevant experts at ILRI and Kenyan Veterinary Agencies, and given the fact 

that Land Cover, Land Use and Environmental conditions suitable for the tick and for cattle only 

extend for a very limited distance into DRC, it was decided to rely on the consensus distributions 

as the more realistic of the two alternatives, and so an additional RF model was run on this 

dataset. The ensemble output is shown in Figure 3.  Note that has been masked in this figure to 

remove predicted presences in countries where the parasite has never been reported.  

Figure 3: Predicted Parasite Distribution 

 



4.2 The Vectors 

There are two primary vectors of T. parva – both hard ticks: Rhipicephalus appendiculatus and R 

zambeziensis.  The most extensive datasets for the distribution of these vectors was compiled by 

Cumming (1999), which the author kindly made available to this study and as the most 

comprehensive data currently available form the backbone of the vector distributions used in this 

work. There have however be quite a few more recent surveys of the vector distributions which 

have been used to update and enhance the Cummings data.  For R. appendiculatus, these include  

Gachohi et al for Kenya.  Lynen et al (2007) for Tanzania, Sungarai et al (2016) for Zimbabwe, and 

Spikett et al (2011).  For R. zambeziensis, Cumming’s data also formed the backbone of the 

available information.  The recorded presence of both species are shown in Figure 4  

Figure 4: Recorded Vector Distributions:  a) R.appendiculatus; b) R. zambeziensis 

These distributions are dominated by presence records so, as set out in the methods, they require 

absence records to be generated to enable presence absence modelling by the chosen techniques.  

These where generated for both species in two ways.  Firstly it was assumed that the species were 

absent if more than 220 km (2 degrees) from a known or assumed presence. In this case the 

presence absence boundaries were taken from an additional set of vector distribution maps was 

published online by Madder,  Horak, and Stoltz on the African Veterinary Information Portal.  

These appear to be modified and buffered versions of the Cumming distributions and as such 

depict a broader distribution. As such the absences derived from them are conservative.  

The second way used to generate absences used the used the ecoclimatic conditions at each of 

the recorded presence points and identified those ecoclimatic categories where presence points 

were absent or very nearly so. The figures relative frequencies were calculated as percentages 

which were compared to the proportion of each ecoclimatic category within the bounding 

coordinates of the presence records.  Thus, if only 1% of the presence points were in land use 



category 5, but that category covered 25% of the presence region, then that LU category was 

defined as unsuitable for the vector.  Conversely if LU category 10 covered 25% of the presence 

area but 10% of the presence records were in that LU type, then that LU class could not be defined 

as unsuitable, and so could not be defined an Land use category where the vector could be 

assumed to be absent.  A category was defined as unsuitable if ratio between the two percentages 

was less than 0.25.  The parameters used in this way are shown in Table 3 along with the 

categories identified as unsuitable. 

Table 3: Parameters used to define unsuitable conditions 

Parameter Unsuitable conditions defined 

 R. appendiculatus R. zambeziensis 

Elevation >2500m >1100 

Maximum Normalised Difference Vegetation Index < 0.45 < 0.35 

Average daytime temperature <26C <28C 

Total annual Rainfall >1100mm or < 350mm >850mm < 250mm 

Globcover  
See below for classes 

40,60,70,100,170,180,2
00 – 230  

11,14,20,40,50,70,90,100,
120,170, 200, 220 230 

Globcover class codes are as follows: 11=Post-flooding or irrigated croplands (or aquatic); 14=Rainfed croplands. 20=Mosaic cropland (50-70%) / vegetation 

(grassland/shrubland/forest) (20-50%); 30=Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%) 40=Closed to open (>15%) broadleaved 

evergreen or semi-deciduous forest (>5m).50=Closed (>40%) broadleaved deciduous forest (>5m).60=Open (15-40%) broadleaved deciduous forest/woodland 

(>5m).70=Closed (>40%) needleleaved evergreen forest (>5m).90=Open (15-40%) needleleaved deciduous or evergreen forest (>5m).100=Closed to open (>15%) mixed 

broadleaved and needleleaved forest (>5m).110=Mosaic forest or shrubland (50-70%) / grassland (20-50%).120=Mosaic grassland (50-70%) / forest or shrubland (20-

50%) .130=Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) shrubland (<5m).140=Closed to open (>15%) herbaceous vegetation 

(grassland, savannas or lichens/mosses).150=Sparse (<15%) vegetation.160=Closed to open (>15%) broadleaved forest regularly flooded (semi-permanently or 

temporarily) - Fresh or brackish water.170=Closed (>40%) broadleaved forest or shrubland permanently flooded - Saline or brackish water.180=Closed to open (>15%) 

grassland or woody vegetation on regularly flooded or waterlogged soil - Fresh, brackish or saline water.190=Artificial surfaces and associated areas (Urban areas 

>50%).200=Bare areas.210=Water bodies.220=Permanent snow and ice.230=No data (burnt areas, clouds,…). 

The resulting presence & absence datasets used to train the spatial models are shown in Figure 5. 

Figure 5: Presence and Absence points defined for:  a) R.appendiculatus; b) R. zambeziensis 



The ensemble model outputs for each species are shown in Figure 6.  They both reflect the 

training data well, with specificities and sensitivities in excess of 93% and 85% respectively.  As is 

often the case with such models, there are a number of noticeable false positive areas – 

southwest Angola and southwest Ethiopia for R. appendiculatus, and  along the Caprivi strip and 

north-west Mozambique for R. zambeziensis.  Whilst these might indeed be prediction errors, they 

do represent suitable niches for the vectors and surveillance in these areas might reveal hitherto 

unknown populations. The predicted presence for either vector species,( i.e. where the probability 

of presence is greater than 50% for either) is shown in Additional Figure 12  

Figure 6: Probability of Presence Ensemble Models:  a) R.appendiculatus; b) R. zambeziensis 

Table 4: Top 10 Predictors, Vector Models 

R. appendiculatus R. zambeziensis 

Importance Variable Importance Variable 

25.18 Human population density, 2010 17.67 Enhanced Veg Index, Phase 2 

20.37 Rainfall January 2016 17.26 Elevation 

10.65 Enhanced Veg Index, Phase 2  14.73 Normalised Diff Veg Index, Phase 2 

9.15 Daytime Land Surface Temp, 
Phase1 

10.74 Normalised Diff Veg Index, Phase 1 

7.67 Rainfall March 2016 9.80 Night-time Land temp, Amplitude 
1 

6.73 Rainfall November 2016 8.94 Distance to Water 

6.16 Minimum Relative Humidity, 2015 7.10 Minimum Day-time Land Temp 

5.98 Mean Night-time Land Temp 6.74 Night-time Land temp, Phase 1 

4.42 Max Night-time Land Temp 4.54 Night-time Land temp, Phase 3 

3.63 Rainfall August2016 2.43 Enhanced Veg Index, Phase 2 

Variable in italics are from the Temporal Fourier Analysed MODIS datasets (See Table 1) 



The top ten model  predictors for each species are quite contrasting, and are shown in Table 4.  

These are human population, several rainfall parameters and Relative Humidity, night time 

temperature metric and seasonality of Enhanced Vegetation Index for R. appendiculatus; and a 

predominance of vegetation seasonality metrics, night time temperature levels, and elevation for 

R. zambeziensis 

4.3 The Hosts 

Two host species are of concern for this study: Cattle and Buffalo 

4.3.1 Cattle 

Cattle distributions are available from the Gridded Livestock of the World dataset (FAO, 2017).  

First produced in 2007 (Wint and Robinson, 2007), this global standard dataset has now evolved to 

version 2, and provides cattle distributions for 2010 at a resolution of 1km. These products are, in 

fact, a synoptic average of the dates of the reported data sets from which the outputs are derived.  

The date assigned to the version reflect the dates of the FAO national population estimates that 

are used to standardise the values so that national totals match official numbers.  This structure 

makes it possible to ‘re-calibrate’ the 2010 dataset to match national totals from different years.  

For this study, the population figures – available as both densities per square kilometre and 

numbers per image pixel (0.00833 degrees)  were converted to 2014 values – the latest dates held 

within the FAO archives. Figure 7a shows cattle distribution to be widespread throughout the 

likely distribution of ECF.   

Cattle production systems are classically divided into categories such as pastoral, agro-pastoral, 

mixed, Intensive.  Whilst these classes have been estimated and mapped on the basis of ecology 

and economic contribution by livestock for the Horn of Africa (Cecchi et al 2010)  they are not 

available for the rest of the continent.  The only livestock production classification of the entire 

study area is by Sere and Steinfeld (1996), updated by Robinson et al (2011) shown in Figure 7b 



Figure 7: a) Cattle Numbers per Pixel, 2014; b) Livestock Production Zones 

4.3.2  Buffalo 

Despite being one of the ‘big five’, there appear to be remarkably few high resolution distribution 

data for Buffalo as a whole or for any of its three races available in the public domain. This may be 

partly because Buffalo numbers are changing rapidly which makes it difficult to keep track of 

population size.  There are, however, a number of references that provide buffalo numbers by 

protected area or country.  The seminal publication by East (1998) gives a Cape buffalo population 

of 548,00, of which 142,000 (26%) were found outside protected areas – mostly in Tanzania, 

Zimbabwe, Botswana, Zambia and Kenya.  This has been followed by a most comprehensive by 

Cornélis et al, (2014) which is encyclopaedic in the detail it provides on both habits and recorded 

numbers within protected areas. This publication give a Cape buffalo population of 473, 000.   A 

second comprehensive data set of buffalo numbers in National Parks was produced by FAO 

(Robinson and Siembieda, 2011) which has been made available to this study. 

There are two other authoritative continental datasets for this host:  the range boundaries 

produced and kept reasonably current as part of the Mammal Database (IUCN, 2017) hosted by 

the International Union for Conservation and Nature (IUCN). A map was also produced by 

Furstenberg, (2009), but was only published online and is not substantiated by data sources or any 

explanations and so, whilst potentially accurate, is shown in Figure 8a below for information only. 

There are in addition a number of local or regional estimates of wild buffalo – notably the aerial 

surveys conducted by the Department of Wildlife and National Parks of Botswana; the Kenyan 

Directorate of Resource Surveys and National Parks, and the Tanzanian Wildlife Research Institute.  

Population numbers from these surveys were converted to mean densities with the survey 



boundaries in order to be compatible with the Cornélis datasets, so that the processing and 

analyses could be standardised, as illustrated in Figure 8b.  

Figure 8: Buffalo Distributions: a) Available Datasets; b) Densities Used 

Buffalo are also farmed widely, especially in South Africa, in many if not most of the hundreds of 

Private Game Reserves and ranches in the country.  The locations of these are not in the public 

domain and are likely to require many months of painstaking detective work to unearth 

Fortunately, a study by Mbizeni et al (2013) strongly suggests that the only threat to cattle is from 

buffalo in farms near the Kwa-Zulu Natal Reserve, within an ECF controlled area, in the far North 

East of the country, and the rest of the farms do not represent a threat. They have, not, therefore 

been included within this study. 

The combination of these density data provide a good basis for estimating numbers within 

protected areas, and in some countries (such as Botswana and Kenya) outside the parks.  A 

comparison of the numbers at country level with those protected areas from the figures provided 

by Cornelis (op. cit) suggest that the numbers outside protected areas are in fact minimal, though 

this conclusion remains at odds with East’s (1998) historical perspective.  

Clearly not all the areas within Protected Areas can support buffalo, and it is therefore necessary 

to identify the suitable habitats within the park boundaries.   There are numerous studies of 

Buffalo ecology and the determinants of its distribution, movement and behaviour. Distributions 

have been inferred from habitat suitability within the IUCN boundaries by the African Mammal 

Databank (IEA,  1998).  This latter database has been updated in recent years, but is currently 

being withheld from the public domain. 

The published literature (e.g. Prinz, 1996; Kingdon, 1997) agrees that there are a number of 

constraints to buffalo distributions most obvious of which is the animal’s preference for staying 



close to open water.  Reports of the threshold distance vary to some degree but the consensus 

appears to be that this species is usually not found beyond 20 km and very rarely beyond 25km, 

from open water. Descriptions of habitat preferences vary according the sub-species– Forest 

Buffalo prefer thicker vegetation, whist the Cape Buffalo is more frequently found in Open 

Wooded Savannah.  Given the distribution of the T. parva,  which is not found in the heavily 

forested areas, this study has included all Woodland categories as suitable habitats.  Forest 

percentage was obtained from the 100m resolution CCI Land Cover dataset for 2015 (ESA, 2017). 

The presence of water has been extracted from several sources: a) a 20m resolution Land Cover 

dataset (ESA, 2016) which are sufficiently detailed to provide a good indication of even relatively 

small sources of open water; b) from the small water body archive produced as part of the ESA 

Copernicus datasets (VITO, 2017).  This is supplied as ten day imagery at 300m  and so allows the 

calculation of the proportion of a year for which each pixel is covered in water; c) the Hydrosheds 

15s resolution river courses dataset (USGS, 2006).   

These datasets have been combined to define habitat suitable for buffalo as land with more than 

10% forest and within 0.13 degrees (= approx. 15 km.) of river courses or 0.16 degrees of 

permanent water as detected by satellite imagery.  This is illustrated in Figure 9a.  

If  populations do indeed persist outside protected areas, there is a case for attempting a spatial 

model to locate them using the standard approach, as for vectors and livestock, based on known 

data and inferred habitat suitability and/or unsuitability. The dependence on water is especially 

useful in this context and could be used to mask the species distributions. 

Even though farms have been discounted (see above), there are some issues that make modelling 

more difficult, most especially the fact that the remaining distributions of buffalo populations 

outside parks are largely unknown, and are likely to occupy a very limited fraction of the suitable 

niche that a model would identify and there are no obvious ways to mask out areas from which 

the  

After due consideration and expert consultation it was decided to adopt the following approach.  

Rather than producing a spatial model of buffalo numbers, the suitability map based on habitat 

and water availability has been used to mask out the areas within which density figures are 

available within the protected areas or surveyed areas.  This distribution is shown in Figure 9b.  



Figure 9: Buffalo:  a) Suitable Habitat; b) Suitable Habitat Density Classes  

5 Numbers of Cattle at risk.  
The previous sections have described the production of the data layers needed to locate where 

cattle are at risk of transmission of buffalo derived T. parva.  These are the distributions of the 

disease, cattle; the two disease vectors, and the Cape buffalo together.  These have been 

combined to identify the overlapping regions.   

The overlaps between disease and the vectors, calculated using a 50% probability of presence as 

the threshold for Presence are shown in Additional Figure 13a, together with the cattle in these 

areas in Additional Figure 13a.  

Discussion with ILRI staff and professional colleagues in the Directorate of Veterinary Services and 

the Veterinary Research Institute confirmed that a simple combination of the four components 

produced (disease, vectors, cattle, buffalo) was not sufficient and that a more sophisticated 

approach was required. In particular it was recognised that cattle moved substantially during their 

daily grazing routines, and that the livestock could therefore interact with ticks carrying buffalo 

derived disease some considerable distance from the herd’s home range.  As a result it was 

concluded that the ‘risk’ zone around buffalo distributions should include a buffer, the size of 

which depends on the numbers (densities) of buffalo present. 

A buffer zone between cattle and buffalo was therefore calculated to take account of potential 

cattle movement to grazing areas beyond the edge of  the herd.  Cattle move up to some 30km a 

day – which was therefore defined as the maximum buffer distance which was adjusted according 

to the estimated buffalo density as follows:  up to .5 per sq. km = 10km; 0.5 – 1 sq. km = 15km;  1 – 

3 sq. km = 20km, above 3 sq. km = 30km. This provides an estimated ‘buffalo derived risk zone’ for 

which cattle populations can be estimated and is shown in Additional Figure 14 



The main high–level metrics required from the study were identified as the numbers of cattle in a) 

the areas with the vectors and the disease estimated to be present; and b) within the ‘buffalo 

derived risk zones’ in areas with the parasite and the vectors present.  The definition of these 

geographical overlaps using the modelled predictions of vectors and disease depends the 

probability thresholds used to define presence.  Two were used: i) the standard probability of 0.5, 

representing the likely presence of each modelled component; and i) a reduced probability of 0.25 

representing a less conservative (akin to a worst case) likelihood of presence.  A similar approach 

can be taken to define significant cattle populations, and two thresholds were defined: under 

5/sq. km., and under 1/sq.km., the latter therefore including very sparse livestock populations, 

likely to be existing in marginal conditions.  Combining these two sets of thresholds has provided 

two overlap Zones:  a) a “Conservative” Zone based on presence define as  > 0.5 probability and 

cattle as < 5/sq.km; and b) a “Maximum” overlap defining presence as >0.25 probability and cattle 

as < 1/sq.km.  The numbers of cattle per pixel in these Zones are shown in Figure 10.  

Figure 10: Cattle in Buffalo derived risk zones a) Conservative; b) Maximum 

The FAO Gridded Livestock of the World estimate there to be approximately 120 million cattle in 

the 18 countries ECF affected countries listed in Section 4.1.  The estimated numbers of cattle in 

the various risk categories are shown in Table 5.   

Table 5: Cattle numbers in different Overlap Zones  

 

Cattle No 
(m) 2014 

(FAO) 

Disease and 
either vector 

Disease and R. 
zambeziensis 

Disease and R. 
appendiculatus 

Buffalo, Disease and either vectors 

Country Conservative 
Thresholds 

Marginal 
thresholds 

Number 
(m) 

% total 
Number 

(m) 
% total 

Number 
(m) 

% total 
Number 

(m) 
% total 

Number 
(m) 

% total 

Angola 4.90 0.61 12.5 0.01 0.3 0.60 12.2 0.00 0.0 0.0 0.0 

Botswana 1.80 0.12 6.8 0.12 6.6 0.05 2.8 0.02 1.1 0.0 1.7 



Burundi 0.60 0.32 52.3 0.00 0.0 0.32 52.3 0.00 0.0 0.0 0.0 

Cameroon 5.95 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.0 0.0 

Central 
African 
Republic 

4.35 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.0 0.0 

Congo 0.34 0.00 0.1 0.00 0.0 0.00 0.1 0.00 0.0 0.0 0.0 

Democratic 
Republic of 
the Congo 

0.95 0.01 1.3 0.00 0.0 0.01 1.3 0.00 0.2 0.0 0.4 

Kenya 17.81 12.11 68.0 0.00 0.0 12.11 68.0 1.02 5.7 1.4 7.9 

Malawi 1.32 0.03 2.3 0.00 0.1 0.03 2.3 0.00 0.0 0.0 0.0 

Mozambique 1.59 0.45 28.6 0.18 11.2 0.38 23.8 0.05 3.2 0.1 3.7 

Rwanda 1.14 1.11 97.3 0.00 0.0 1.11 97.3 0.10 8.5 0.1 9.3 

Somalia 4.90 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.0 0.0 

South Africa 13.92 0.82 5.9 0.25 1.8 0.81 5.8 0.09 0.7 0.1 0.7 

South Sudan 11.82 0.01 0.1 0.00 0.0 0.01 0.1 0.00 0.0 0.0 0.0 

Swaziland 0.62 0.07 10.8 0.00 0.4 0.07 10.8 0.00 0.0 0.0 0.0 

Uganda 13.62 9.37 68.8 0.00 0.0 9.37 68.8 0.66 4.8 0.7 5.3 

United 
Republic of 
Tanzania 

25.80 17.25 66.9 0.16 0.6 17.14 66.4 0.90 3.5 1.1 4.4 

Zambia 4.09 1.04 25.4 0.31 7.5 0.94 23.1 0.16 3.8 0.3 7.5 

Zimbabwe 6.20 5.76 92.9 4.07 65.6 4.98 80.4 0.16 2.6 0.2 2.9 

ALL 121.71 49.08 40.3 5.09 4.2 47.93 39.4 3.17 2.6 4.1 3.3 

Overall, these figures suggest about 40% of the regional cattle populations are at risk of ECF (i.e. 

within the vector and disease overlap zone).  This broad figure conceals a great deal of variation – 

from zero (CAR, Cameroon, Somalia, Swaziland, ) to >90% (Rwanda, Zimbabwe).  Intermediate 

levels between 25 and 70% are estimated for many of the major cattle rearing countries: Uganda, 

Tanzania, Mozambique, Kenya, Burundi).  These proportions equate to about 50 million cattle 

region wide, with the largest populations potentially at risk of ECF being in Kenya, Uganda and 

Tanzania.  

Table 5 also provides breakdowns of the cattle numbers and proportions National totals in the 

overlap zones for the disease and each of the two vectors. This may prove useful if integrated with 

vector competence data, should it become available in future. 

The “Buffalo derived risk zones” are clearly only a small part of the overall overlaps between 

disease, cattle and vector.  Table 5 suggests that 3 to 4 million cattle may be at risk region-wide, 

depending on the threshold values for presence and cattle populations used to identify the cattle 

at risk.  This represents around 3% of the regional cattle population.  

A national perspective casts a slightly different light on these rather small figures: the ‘worst case’ 

assumptions using the maximum degree of overlap between buffalo risk zones and cattle result in 

estimates around a million (0.7 – 1.4m) cattle at risk in each of Kenya, Uganda, and Tanzania, 

which together account for three quarters of the region population calculated to be potentially 

vulnerable to Corridor Disease. Despite the numbers, however, this still equates to significantly 

less than 10% of the national herds.  



6 Summary, Discussion and Recommendations 
The risk of cattle acquiring Buffalo-derived strains of T.parva has been known for some 

considerable time.  The main epidemiological and veterinary impacts are that currently available 

methods of treatment and prevention based on the use of the Muguga cocktail in an Infection and 

Treatment Method may not be effective in areas where cattle could come into contact with tick 

disease vectors that have fed on infected Buffalo.  There is, however, some uncertainty about how 

widespread this risk is because the treatment has been observed to work in some areas where 

Buffalo and cattle coexist, but not in others.  

From a veterinary perspective, there are a number of consequences. Firstly there are the direct 

effects on cattle mortality which are usually severe. Secondly, if the risk to cattle of Buffalo 

derived disease strains is extensive it may be worth investing in ways of improving the treatment 

delivery chains or improving the Muguga cocktail itself.  Finally, if stockholders perceive the 

treatment to be ineffective, even if rarely, it may affect take-up rates in areas where there are no 

buffalo derived disease strains – which would affect ECF treatment efficacy throughout the ECF 

risk zone which covers a much wider area.   

In this context, the objective of the current study has not been to determine  the risk of treatment 

failure, but rather to assess the extent of the risk to cattle herds in East and Southern Africa. This 

involves first establishing the geographic distributions of the disease and its tick vectors, and of 

the Buffalo hosts, and then estimating the number of cattle that are present within the areas 

where the Buffalo,  the vectors and the disease are all present.   

This has involved a number of steps: collating the available data; filling in the gaps if needed; 

defining the conditions of overlap, and finally estimating the cattle numbers in the overlap zones 

identified.   

Estimates of cattle numbers are freely available through the Gridded Livestock of the World (FAO, 

2017). For the other components, extensive data searches have been carried out to acquire and 

compile what data are available in the public domain.  For the vectors and the disease, fairly 

complete data are available for most of the region, though a number of gaps remain.  These have 

been filled by well established statistical modelling techniques – specifically Random Forest and 

Boosted Regression Trees – supported by a very extensive set of predictor covariates including 

tailored environmental and climatic variables derived from long term satellite imagery time-series.  

to provide area-wide predictions of the probability of presence of both vectors and disease 

These modelling techniques could not be used in the case of Buffalo distributions. Whilst this 

species is known to be restricted to areas close to open water and with at least some light forest 

cover they are now largely limited to protected areas and some limited and increasingly restricted 

areas outside them. They are not, therefore, primarily limited by environmental or habitat factors 

and are therefore not readily amenable to spatial modelling techniques at a subcontinental scale. 

Accordingly the Buffalo distributions were estimated from known densities within Protected 

Areas, masked by habitat suitability derived from water and forest coverages.  



The spatial overlaps between disease, vectors and suitable buffalo within known distribution 

provided the kernel of the risk zones from which cattle could come into contact with Buffalo 

derived strains of the disease.  Cattle are, however known to move extensively whilst grazing, and 

so buffer zones were defined around these kernels so that livestock up to a days’ travel  away (a 

maximum of 30km) were defined as being able to come into contact with ticks infected with the 

Buffalo disease strains. 

The resulting estimates suggest that about 50 million cattle are within the regional ECF risk areas. 

Of these, and depending on the assumptions made to define the buffer zones and overlap 

thresholds, only 3-4 million cattle were calculated to be at risk of encountering Buffalo strains of 

T.parva.  This represents around 3% of the entire cattle population, or less that 10% of those at 

risk of Theileriosis region-wide.  Whilst this, is at first sight, a small proportion, the figure for some 

countries are somewhat higher – in the region of a million (0.7m – 1.4m) cattle are estimated to 

be at risk in each of Kenya, Uganda, and Tanzania.    

These results are closely in line with numbers derived from expert opinion using entirely different 

sets of information (Kiara, pers. comm.), but the similarity is encouraging given the complete 

contrast in methodologies used.  

Whether these numbers are large enough to justify further investment of the treatment methods 

depends on the cost-benefit economics of the cattle production and treatment in each area and 

cannot be commented upon within this study.  The numbers of animals likely to be affected if the 

treatment fails do, however, seem to be high enough that stock holders will become aware of the 

problem.  If this is the case then decisions as to whether to treat and warn the cattle owners of the 

risks, or not to treat in areas where cattle and buffalo coexist will need to me made. 

To these conclusions there are, as ever, a number of caveats to be applied. In a study of this sort, 

which rely on literature and online  data searches, and statistical rather than process based 

analyses to fill the gaps, it is always possible that the results are inaccurate.  In this case, however, 

the data records used to generate the vector and disease models are sufficiently extensive to 

allow considerable statistical confidence in the general outcomes, with the caveat that the 

predictions are produced at a regional scale and so are probabilistic.  Interpretation at finer scales 

that 30 – 50 kilometre resolutions may therefore produce misleading results.   

Another significant caveat concerns seasonality and long distance movements.  All the estimates 

produced are essentially synoptic – and so are averages. There are therefore likely to be seasonal 

effects that are not accounted for here. These include the fact that cattle might be present when 

the vectors are not active;  that stock holder may avoid areas at certain parts of year, or at certain 

times of day in the knowledge that ticks are a particular risk during such periods. It is simply not 

possible for a short term study at subcontinental scales to accommodate these factors.  It may, 

however, be more feasible to produce localised assessments with several sets of overlaps, each 

valid for different seasons. An example might be estimating the impact of seasonal grazing on the 

interactions between wild and domestic animals. 



This study has led to the acquisition and collation of a large amount of geographic data – as 

described in Section 11. Because they are standardised  these data are potentially useful for a 

wide range of similar analyses.  The covariate data sets can be used in spatial distribution models 

or correlation analyses of any suitable target parameter (i.e. any disease vectors, hosts, or 

diseases)  providing enough training data are available to calibrate the models. These data can also 

be used to delineate suitable habitats for any species for which the environmental or climatic 

limiting factors are sufficiently well understood.   

The methodology used here illustrates the combination of several widely used techniques to 

produce distributions of components for which the overlaps can be mapped and populations 

within them thereby estimated.  The approach can be used in many other epidemiological 

contexts – involving both infectious and vector-borne diseases to provide rapid assessments of the 

likely size of a problem caused by contact between species..  
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8 Additional Figures  
Figure 11: Parasite BRT Model Distributions: a) Extended Distributions (left), b) Consensus 

Distributions (right) 

 

Figure 12: Predicted Distribution, either Vector 

 



Figure 13: a) Overlap between Disease and either Vector; b) Cattle in ECF Overlap 

 

Figure 14: Buffalo derived risk zones a) Conservative; b) Maximum 

 

 

 



9 Terms of Reference 
The scanned Terms of Reference are shown below. 

 



10 Mission to ILRI Activities 
Date/Period Meeting topic/activity Personnel 

3rd December:  
Evening  

 
Arrival Nairobi 

 

4th December:   
Morning  
Afternoon: 

 
Familiarisation  
Presentation of Initial results and potential 
issues  

 
 
Dr Henry Kiara 

5th December:  
Morning:   
Morning: 
 
Afternoon: 
 

 
Data delivery and required data formats  
Discuss technical approach, condition of 
spread from buffalo to cattle 
Risk to cattle of Buffalo derived disease in 
Kenya 

 
Dr Catherine Pfeifer  (ILRI) 
Dr Phil Toye (ILRI) 
 
Dr S. Ndungu and Colleagues (Muguga 
Veterinary Research Institute) 

6th December 
Morning: 
 
Morning: 
 
Afternoon: 

Availability of Buffalo and Livestock data 
for Kenya 
 
Context of using study results, allied 
studies 
Presentation of Study and draft results to 
ILRI staff 

Dr Patrick W. Wagute, Director, 
Directorate of Resource Surveys and 
Remote Sensing 
Dr Vish Nene (ILRI) 
 
 

7th December 
Morning:  
 
Afternoon 

 
Presentation of Study to Directorate of 
Veterinary Services, Kabete 
Revision of analyses to accommodate visit 
findings 

 
Dr Harry Oyas (Deputy Director 
Veterinary Services) & Colleagues 
 

8th December 
Morning: 
Afternoon: 
Evening:  

 
Briefing Senior ILRI Staff  
Debriefing and wrap-up 
Depart Nairobi 

 
Dr Dieter Schillinger 
Dr Henry Kiara 
 

   

 

  



11 Data Catalogue 
All data have been made available to ILRI via posts on Google drive. File format details, Input and 

output files and covariate files are listed in the following sections and in an Excel spreadsheet 

ILRECFDATALIST.XLS supplied with this report. 

11.1 README notes 

Details of the file formats are as follows: 

Unless otherwise stated the properties of all  Raster images are  as follows:    

Pixel size:  0.00833333 x 0.00833333 degrees  

Rows:  6000  

Columns 8520  

Projection:  GCS_WGS_1984  

Datum D_WGS_1984  

Image Format:  geotiff  

Image Component files tif, tfw  

Top Coordinate (degrees) 14  

Left Coordinate (degrees) -18  

Right Coordinate (degrees) 53  

Bottom Coordinate (degrees) -36  

Unless otherwise stated all vector files are ESRI shapes   

Projection:  GCS_WGS_1984  

Datum D_WGS_1984  

Vector Component files shp, shx, sbn (prj)  

The maps used in the report Figures can be displayed in ARcMAP using the following document 

files:  

ECFDELIVERY93.MXD ArcMAP V9x document file  

ECFDELIVERY10.MXD ArcMAP V10x document file  

 

 



11.2 Input and Output files 

 

Map Description Report Figure Delivery Filenames 

Bounding coordinates for this ECF study Figure 1 \ILRIECF\Delivery\ecfextent.tif & .jpg 

Land Water Mask for ECF Extent All figures \ILRIECF\Delivery\eclandmask.tif & .jpg 

Country Boundaries All figures \ILRIECF\Delivery\af_country.tif & .jpg 

ECF Countries Figure 2a \ILRIECF\Delivery\ECFCOUNTRIES.shp & .jpg 

Distribution of Theileriosis  
  

Published maps Figure 2a \ILRIECF\Delivery\tparavadatasets.shp & .jpg 

Presence and absence points assigned  Figure 2b \ILRIECF\Delivery\tparvaPApoints.shp & .jpg 

 Predicted Parasite Distribution, 
Consensus Distribution 

  

Extended BRT Model Figure 11 \ILRIECF\Delivery\TPExtendedBRTModel.tif & .jpg 

Consensus BRT model Figure 11 \ILRIECF\Delivery\TPConsensusBRTModel.tif & .jpg 

Consensus RF Zoned model Not Illustrated \ILRIECF\Delivery\TPConsensusRFZModel.tif & .jpg 

Consensus Ensemble Model Figure 3 \ILRIECF\Delivery\TPConsensusEnsembleModel.tif & .jpg 

Recorded Vector Distributions 
  

R.appendiculatus Figure 4a \ILRIECF\Delivery\rappendprespts.shp & .jpg, 
rappendabspts.shp  

R. zambeziensis Figure 4b \ILRIECF\Delivery\rzambprespts.shp & .jpg 

Masked Suitable Habitats 
  

R.appendiculatus Not Illustrated \ILRIECF\Delivery\RAppMaskedUnsuitability.tif & .jpg 

R. zambeziensis Not Illustrated \ILRIECF\Delivery\RZamMaskedUnsuitability.tif & .jpg 

 Presence and Absence locations 
  

R.appendiculatus Figure 5a \ILRIECF\Delivery\rappendpresabspts.shp & .jpg 

R. zambeziensis Figure 5b \ILRIECF\Delivery\rzambpresabspts.shp & .jpg 

Modelled Probability of Individual 
Vector Presence 

  

R.appendiculatus  BRT Model Not Illustrated \ILRIECF\Delivery\RAppBRTModel.tif & .jpg 

R.appendiculatus  Zoned RF Model  Not Illustrated \ILRIECF\Delivery\RAppRFZonedModel.tif & .jpg 

R.zambeziensis  BRT Model Not Illustrated \ILRIECF\Delivery\RZambBRTModel.tif & .jpg 

R.zambeziensis  Zoned RF Model  Not Illustrated \ILRIECF\Delivery\RZambRFZonedModel.tif & .jpg 

Ensemble Vector Models 
  

R. appendiculatus Figure 6a \ILRIECF\Delivery\RAppEnsembleModel.tif & .jpg 

R. zambeziensis Figure 6b \ILRIECF\Delivery\RZambEnsembleModel.tif & .jpg 

Either Vector > 50% probability Figure 12 \ILRIECF\Delivery\EitherVectorGT50PC.tif & .jpg 

Host Distributions 
  

Cattle numbers per pixel corrected to 
FAO 2014 Totals 

Figure 7a \ILRIECF\Delivery\FAOGLWCattleperPixel.tif & .jpg 

Livestock Production Zones Figure 7b \ILRIECF\Delivery\LivestockZonesS&S2011.tif & .jpg 

Available Buffalo Distribution datasets Figure 8a \ILRIECF\Delivery\AvailableBuffaloDatasets.shp & .jpg 

Selected Buffalo Densities  Used Figure 8b \ILRIECF\Delivery\SelectedBuffaloDensity.shp & .jpg 

Buffalo Suitable Land Cover/Land Use Not Illustrated \ILRIECF\Delivery\BuffaloSuitabilityLandUse.tif & .jpg 

Buffalo Suitability within Range of Water Not Illustrated \ILRIECF\Delivery\BuffaloSuitabilityWater.tif & .jpg 

Suitable Buffalo Habitat Figure 9a \ILRIECF\Delivery\BuffaloSuitability.tif & .jpg 

Estimated range and distribution of 
Buffalo within suitable habitats 

Figure 9b \ILRIECF\Delivery\BuffaloDensitySuitable.tif & .jpg 

Buffalo, Buffered Suitable Areas 
 

\ILRIECF\Delivery\BuffaloBufferedSuitableAreas.tif & .jpg 

Overlap ECF and Vectors 
  



Map Description Report Figure Delivery Filenames 

R.appendiculatus Not Illustrated \ILRIECF\Delivery\OverlapDisease&RApp.tif & .jpg 

R. zambeziensis Not Illustrated \ILRIECF\Delivery\OverlapDisease&RZam.tif & .jpg 

Either Vector Figure 13a \ILRIECF\Delivery\OverlapDisease&Vectors.tif & .jpg 

Buffalo derived risk zones 
  

Conservative Overlap Figure 14a \ILRIECF\Delivery\DisVecBufConsOverlap.tif & .jpg 

Maximum Overlap Figure 14b \ILRIECF\Delivery\DisVecBufMaxOverlap.tif & .jpg 

Cattle in Overlap Zones 
  

Conservative Overlap Figure 10a \ILRIECF\Delivery\CattleConsBufOverlap.tif & .jpg 

Maximum Overlap Figure 10b \ILRIECF\Delivery\CattleMaxBufOverlap.tif & .jpg 

Disease and either Vector Figure 13b \ILRIECF\Delivery\CattleDisVecOverlap.tif & .jpg 

 

 

 

  



11.3 Covariate files 
Folder Filename Description Source/Reference/Documentation supplied URL Comments 

\ILRIECF\basemaps AF_COUNTRY Country Boundaries 
   

\ILRIECF\basemaps ECFCOUNTRIES.shp Countries within ECF zone derived from AF_COUNTRY above 
  

\ILRIECF\basemaps ECDISTWAT.tif Distance (degrees) to Remotely Sensed water 
  

Surface water from ESA CCI 20m and 100m Land Cover maps 

\ILRIECF\basemaps ecgmtedp5c.tif Minimum Elevation (m)  PLUS 500 Global Multi-resolution Terrain Elevation 
Data 2010 

https://topotools.cr.usgs.gov/gmted_vie
wer/ 

500 added to global coverage to remove negative values below sea 
level 

\ILRIECF\basemaps ECNOTPARKS.tif Un protected areas 
  

Inverse of ECPARKSWW.tif 

\ILRIECF\basemaps ECPARKSWW.tif National Parks and Game Reserves 2016 IUCN World Database on Protected Areas https://www.iucn.org/theme/protected-
areas/our-work/quality-and-
effectiveness/world-database-
protected-areas-wdpa 

All areas with following criteria extracted from regional shape file 
and converted to geotiff: DESIG_ENG"  LIKE '%Game%' OR 
"DESIG_ENG" LIKE '%Park%' OR "NAME" LIKE '%Game%' OR "NAME" 
LIKE 'Park' OR "IUCN_CAT" LIKE '%I%' OR "IUCN_CAT" = 'V'   

\ILRIECF\basemaps ecserestei20i11zon
es.tif 

Livestock Zones FAO,  https://cgspace.cgiar.org/bitstream/handle/10568/10537/faoglobalLivestock.pdf  

\ILRIECF\basemaps ecmask00833zero Binary Land water Mask template for this ECF 
study area 

   

\ILRIECF\basemaps ECFEXTENT.tif Bounding coordinates for this ECF study 
   

\ILRIECF\covariates\lc ECEEBARE.tif Percentage  bare ground Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

\ILRIECF\covariates\lc ECEEDCBD.tif Percentage  decidupus broadleaved trees Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

\ILRIECF\covariates\lc ECEEEVGBD.tif Percentage  evergereen broadleaved trees Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

\ILRIECF\covariates\lc ECEEEVGND.tif Percentage  evergreen needleleaved gtrees Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

\ILRIECF\covariates\lc ECEEFLOOD.tif Percentage flooded or irrigated vegetation Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

\ILRIECF\covariates\lc ECEEHERB.tif Percentage  herbaceous covers Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

\ILRIECF\covariates\lc ECEEMANAG.tif Percentage managed land (e.g. cropping) Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

\ILRIECF\covariates\lc ECEEOTHTR.tif Percentage  other Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

\ILRIECF\covariates\lc ECEESHRUB.tif Percentage  shrub cover Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

https://cgspace.cgiar.org/bitstream/handle/10568/10537/faoglobalLivestock.pdf
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract


Folder Filename Description Source/Reference/Documentation supplied URL Comments 

\ILRIECF\covariates\lc ECEESNOW.tif Percentage  snow Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

\ILRIECF\covariates\lc ECEEURB.tif Percentage  urban Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

\ILRIECF\covariates\lc ECEEWATER.tif Percentage  open water Tuanmu, M.-N. and W. Jetz. 2014. A global 1-
km consensus land-cover product for 
biodiversity and ecosystem modeling. Global 
Ecology and Biogeography 23(9): 1031-1045.  

http://www.earthenv.org/landcover.ht
ml 

Part of the 1km resolution consensus Land Cover datasets 

\ILRIECF\covariates\lc ECGBC100PR.tif Proportion Closed to open (>15%) mixed 
broadleaved and needleleaved forest (>5m) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

0.008333 deg resolution calculation  Derived from 300m resolution 
Land Cover ESA GLOBCOVER 2009 dataset 

\ILRIECF\covariates\lc ECGBC110PR.tif Proportion Mosaic forest or shrubland (50-70%) 
/ grassland (20-50%) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC11PR.tif Proportion Post-flooding or irrigated croplands 
(or aquatic) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC120PR.tif Proportion Mosaic grassland (50-70%) / forest or 
shrubland (20-50%)  

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC130PR.tif Proportion Closed to open (>15%) (broadleaved 
or needleleaved, evergreen or deciduous) 
shrubland (<5m) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC140PR.tif Proportion Closed to open (>15%) herbaceous 
vegetation (grassland, savannas or 
lichens/mosses) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC14PR.tif Proportion Rainfed croplands Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC150PR.tif Proportion Sparse (<15%) vegetation Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC160PR.tif Proportion Closed to open (>15%) broadleaved 
forest regularly flooded (semi-permanently or 
temporarily) - Fresh or brackish water 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC170PR.tif Proportion Closed (>40%) broadleaved forest or 
shrubland permanently flooded - Saline or 
brackish water 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://onlinelibrary.wiley.com/doi/10.1111/geb.12182/abstract
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php


Folder Filename Description Source/Reference/Documentation supplied URL Comments 

\ILRIECF\covariates\lc ECGBC180PR.tif Proportion Closed to open (>15%) grassland or 
woody vegetation on regularly flooded or 
waterlogged soil - Fresh, brackish or saline water 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC190PR.tif Proportion Artificial surfaces and associated 
areas (Urban areas >50%) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC200PR.tif Proportion Bare areas Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC20PR.tif Proportion Mosaic cropland (50-70%) / 
vegetation (grassland/shrubland/forest) (20-
50%) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC210PR.tif Proportion Water bodies Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC220PR.tif Proportion Permanent snow and ice Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC230PR.tif Proportion No data (burnt areas, clouds,…) Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC30PR.tif Proportion Mosaic vegetation 
(grassland/shrubland/forest) (50-70%) / 
cropland (20-50%)  

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC40PR.tif Proportion Closed to open (>15%) broadleaved 
evergreen or semi-deciduous forest (>5m) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC50PR.tif Proportion Closed (>40%) broadleaved 
deciduous forest (>5m) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC60PR.tif Proportion Open (15-40%) broadleaved 
deciduous forest/woodland (>5m) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC70PR.tif Proportion Closed (>40%) needleleaved 
evergreen forest (>5m) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\lc ECGBC90PR.tif Proportion Open (15-40%) needleleaved 
deciduous or evergreen forest (>5m) 

Sophie Bontemps, Pierre Defourny, Eric V. 
Bogaert, et al. GLOBCOVER 2009 - Products 
description and validation report (February 
2011) 

http://due.esrin.esa.int/page_globcover.
php 

Derived from 300m resolution Land Cover ESA GLOBCOVER 2009 
dataset 

\ILRIECF\covariates\modis scharlemannetal200
8MODIS.pdf 

Reference describing MODIS Fouurier 
Transformed Covariates 

   

http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
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http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php


Folder Filename Description Source/Reference/Documentation supplied URL Comments 

\ILRIECF\covariates\modis ModisScaling.doc Document setting out scaleing of MODS 
covariate Values 

   

\ILRIECF\covariates\modis EC011503A0.tif Channel Three Temperature, Fourier Mean scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011503A1.tif Channel Three Temperature, Fourier Component 
1 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011503A2.tif Channel Three Temperature, Fourier Component 
2 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011503A3.tif Channel Three Temperature, Fourier Component 
3 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011503D1.tif Channel Three Temperature, Fourier Component 
1 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011503D2.tif Channel Three Temperature, Fourier Component 
2 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011503D3.tif Channel Three Temperature, Fourier Component 
3 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011503MN.tif Channel Three Temperature, Fourier Minimum scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011503MX.tif Channel Three Temperature, Maximum scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011503P1.tif Channel Three Temperature, Fourier Component 
1 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011503P2.tif Channel Three Temperature, Fourier Component 
2 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011503P3.tif Channel Three Temperature, Fourier Component 
3 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507A0.tif Night-time Land Surface Enhanced Vegetation 
Index, Fourier Mean 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507A1.tif Night-time Land Surface Enhanced Vegetation 
Index, Fourier Component 1 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507A2.tif Night-time Land Surface Enhanced Vegetation 
Index, Fourier Component 2 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507A3.tif Night-time Land Surface Enhanced Vegetation 
Index, Fourier Component 3 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507D1.tif Night-time Land Surface Enhanced Vegetation 
Index, Fourier Component 1 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507D2.tif Night-time Land Surface Enhanced Vegetation 
Index, Fourier Component 2 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507D3.tif Night-time Land Surface Enhanced Vegetation 
Index, Fourier Component 3 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507MN.tif Night-time Land Surface Enhanced Vegetation 
Index, Fourier Minimum 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507MX.tif Night-time Land Surface Enhanced Vegetation 
Index, Maximum 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507P1.tif Night-time Land Surface Enhanced Vegetation 
Index, Fourier Component 1 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507P2.tif Night-time Land Surface Enhanced Vegetation 
Index, Fourier Component 2 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011507P3.tif Night-time Land Surface Enhanced Vegetation 
Index, Fourier Component 3 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011508A0.tif Day-time Land Surface Enhanced Vegetation 
Index, Fourier Mean 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 



Folder Filename Description Source/Reference/Documentation supplied URL Comments 

\ILRIECF\covariates\modis EC011508A1.tif Day-time Land Surface Enhanced Vegetation 
Index, Fourier Component 1 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011508A2.tif Day-time Land Surface Enhanced Vegetation 
Index, Fourier Component 2 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011508A3.tif Day-time Land Surface Enhanced Vegetation 
Index, Fourier Component 3 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011508D1.tif Day-time Land Surface Enhanced Vegetation 
Index, Fourier Component 1 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011508D2.tif Day-time Land Surface Enhanced Vegetation 
Index, Fourier Component 2 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011508D3.tif Day-time Land Surface Enhanced Vegetation 
Index, Fourier Component 3 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011508MN.tif Day-time Land Surface Enhanced Vegetation 
Index, Fourier Minimum 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011508MX.tif Day-time Land Surface Enhanced Vegetation 
Index, Maximum 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011508P1.tif Day-time Land Surface Enhanced Vegetation 
Index, Fourier Component 1 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011508P2.tif Day-time Land Surface Enhanced Vegetation 
Index, Fourier Component 2 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011508P3.tif Day-time Land Surface Enhanced Vegetation 
Index, Fourier Component 3 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514A0.tif Normalised Difference Vegetation Index, Fourier 
Mean 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514A1.tif Normalised Difference Vegetation Index, Fourier 
Component 1 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514A2.tif Normalised Difference Vegetation Index, Fourier 
Component 2 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514A3.tif Normalised Difference Vegetation Index, Fourier 
Component 3 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514D1.tif Normalised Difference Vegetation Index, Fourier 
Component 1 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514D2.tif Normalised Difference Vegetation Index, Fourier 
Component 2 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514D3.tif Normalised Difference Vegetation Index, Fourier 
Component 3 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514MN.tif Normalised Difference Vegetation Index, Fourier 
Minimum 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514MX.tif Normalised Difference Vegetation Index, 
Maximum 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514P1.tif Normalised Difference Vegetation Index, Fourier 
Component 1 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514P2.tif Normalised Difference Vegetation Index, Fourier 
Component 2 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011514P3.tif Normalised Difference Vegetation Index, Fourier 
Component 3 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011515A0.tif Enhanced Vegetation Index, Fourier Mean scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011515A1.tif Enhanced Vegetation Index, Fourier Component 
1 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011515A2.tif Enhanced Vegetation Index, Fourier Component 
2 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 



Folder Filename Description Source/Reference/Documentation supplied URL Comments 

\ILRIECF\covariates\modis EC011515A3.tif Enhanced Vegetation Index, Fourier Component 
3 Amplitude 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011515D1.tif Enhanced Vegetation Index, Fourier Component 
1 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011515D2.tif Enhanced Vegetation Index, Fourier Component 
2 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011515D3.tif Enhanced Vegetation Index, Fourier Component 
3 % Total Variation 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011515MN.tif Enhanced Vegetation Index, Fourier Minimum scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011515MX.tif Enhanced Vegetation Index, Maximum scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011515P1.tif Enhanced Vegetation Index, Fourier Component 
1 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011515P2.tif Enhanced Vegetation Index, Fourier Component 
2 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis EC011515P3.tif Enhanced Vegetation Index, Fourier Component 
3 Phase 

scharlemannetal2008MODIS.pdf 
 

Fourier Process datasets derived from 2000-2015 timeseries of V5 
imagery 

\ILRIECF\covariates\modis ECRHJSMI15.tif Rdelative Humidity, Jun to September 2015 Report 
 

Extracted from dataset produced by P. Jones, for IDAMS FP7 Project 

\ILRIECF\covariates\modis ECRHMIN15.tif Minimum Relative Humidity, 2015 Report 
 

Extracted from dataset produced by P. Jones, for IDAMS FP7 Project 

\ILRIECF\covariates\modis ECHFOTTV2.tif Huam Footprint, Version 2 http://sedac.ciesin.columbia.edu/downloads/
maps/wildareas-v2/wildareas-v2-human-
footprint-geographic/hfp-world.pdf 

sedac.ciesin.columbia.edu/data/set/wild
areas-v2-human-footprint-
geographic/maps 

Index of Human footprint on Environment 

\ILRIECF\covariates\modis ECWPPDN15A.tif WORLDPOP Human Population Density, 2015 
 

www.worldpop.org.uk/ 
 

\ILRIECF\covariates\modis ECTSAT0116.tif Tamsat monthly precipitation (mm), 2016, 
January  

 
https://www.tamsat.org.uk 

 

\ILRIECF\covariates\modis ECTSAT0216.tif Tamsat monthly precipitation (mm), 2016 
February 

 
https://www.tamsat.org.uk 

 

\ILRIECF\covariates\pop ECTSAT0316.tif Tamsat monthly precipitation (mm), 2017 March 
 

https://www.tamsat.org.uk 
 

\ILRIECF\covariates\pop ECTSAT0416.tif Tamsat monthly precipitation (mm), 2016, April 
 

https://www.tamsat.org.uk 
 

\ILRIECF\covariates\prec ECTSAT0516.tif Tamsat monthly precipitation (mm), 2016 may 
 

https://www.tamsat.org.uk 
 

\ILRIECF\covariates\prec ECTSAT0616.tif Tamsat monthly precipitation (mm), 2017 June 
 

https://www.tamsat.org.uk 
 

\ILRIECF\covariates\prec ECTSAT0716.tif Tamsat monthly precipitation (mm), 2016, July 
 

https://www.tamsat.org.uk 
 

\ILRIECF\covariates\prec ECTSAT0816.tif Tamsat monthly precipitation (mm), 2016 
August 

 
https://www.tamsat.org.uk 

 

\ILRIECF\covariates\prec ECTSAT0916.tif Tamsat monthly precipitation (mm), 2017 
September 

 
https://www.tamsat.org.uk 

 

\ILRIECF\covariates\prec ECTSAT1016.tif Tamsat monthly precipitation (mm), 2016, 
October 

 
https://www.tamsat.org.uk 

 

\ILRIECF\covariates\prec ECTSAT1116.tif Tamsat monthly precipitation (mm), 2016 
November 

 
https://www.tamsat.org.uk 

 

\ILRIECF\covariates\prec ECTSAT1216.tif Tamsat monthly precipitation (mm), 2016 Total 
 

https://www.tamsat.org.uk 
 

\ILRIECF\covariates\prec ECTSAT2016.tif Tamsat monthly precipitation (mm), 2016 
December 

 
https://www.tamsat.org.uk Derived from monthly totals 

\ILRIECF\covariates\prec ECSWB16MN.tif Sm all Water bodies, Proportion Year present 
 

http://land.copernicus.eu/global/produc
ts/wb 

Derived from dekadal presence of small water bodies -  

 

 



 


