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1. Introduction 

ABSTRACT 

In most species, calcium waves in the oocyte are considered common phenomena in the activation 
of eggs. However, the mechanism of calcium waves has not yet been clarified. By collaborating 
with biologists studying Caenorhabditis elegans (C. elegans), which is widely used as a model 
organism, we observed that the following requirements must be satisfied to form a useful hy
pothesis based on calcium waves captured using high-speed in vivo imaging: (1) the ability to 
obtain an overview of how the calcium waves are propagated and (2) the ability to understand the 
propagation of waves in a narrow region. However, conventional visualization methods cannot 
satisfy these requirements simultaneously. Therefore, we propose a visual analytics system that 
allows users to understand and explore calcium wave images using cross-correlation analysis of 
the time-series data of the Ca2+ fluorescence intensity at each point. The interface of this system 
comprises an overview visualization, a detail visualization, and user interactions to satisfy these 
requirements and realize exploratory visualization. Some views present an overview visualization 
that displays the clustering results of a directed graph calculated using cross-correlation analysis. 
These views enable the users to understand the overview of wave propagation, thereby helping 
users find a region of interest. The detail visualization shows the relationship between the region 
of interest and other areas. Furthermore, users can use the proposed system with overview-detail 
and brush-link exploration to assign meaning to the region of interest and construct a hypothesis 
for its role. In this paper, we demonstrate how the proposed visual analytics approach works and 
how new hypotheses can be formed using the analysis of C. elegans calcium waves. 

© 2018 Published by Elsevier B. V. on behalf of Zhejiang University and Zhejiang University Press. 
This is an open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/). 

It is known that the concentration of intracellular calcium 
ions increases during fertilization in animal oocytes and eggs 
(Whitaker, 2006). This phenomenon is termed as calcium 
waves because the increase in calcium ions propagates as a 
waveform from the sperm entry point. In addition, depend
ing on the species, calcium oscillation occurs, which involves 
repeated increase and decrease of calcium ion concentration 
(Stricker, 1999). An increasing calcium ion concentration is 

an important signal for activating the oocyte and causing sub
sequent cell division. Previously, numerous studies on calcium 
waves have been conducted because the relationship between 
calcium waves and subsequent evolution can be clarified by elu
cidating the propagation of calcium waves. 

We collaborated with life scientists who are investigating to 
reveal the mechanism of calcium waves, as well as the differ
ences between measured and simulated calcium waves. Com
pared to simulated waves, the measured data demonstrate a 
complicated behavior. These scientists are investigating the 
mechanisms responsible for such complex behaviors and the 
physiological meaning of those mechanisms. However, there 
is lack of hypotheses on which to perform an experiment and 
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improve simulations because the complexity of calcium waves 
observed in imaging data makes it difficult to extract useful 
information. Furthermore, these scientists hope to reveal the 
specificity of the phenomenon in a data-driven manner. One ap
proach to satisfy these objectives is to support hypothesis con
struction using visual analytics. 

In several meetings with domain experts, we determined that 
two design requirements must be satisfied to support hypothe
sis formation from calcium wave data: (1) the ability to obtain 
an overview of how calcium waves are propagated and (2) the 
ability to understand the propagation of waves in a narrow area. 
To enable experts to observe and interpret a region of inter
est (ROI), both requirements must be satisfied simultaneously. 
Some methods that satisfy these requirements individually have 
been proposed. Methods that satisfy requirement (1) include 
flow visualization (Afrashteh et al., 2016) using optical flow 
and flow visualization (Yamashita et al., 2012) using Granger 
causality (Granger, 1980). Methods that satisfy requirement (2) 
include calculating the direction of the vector of the flow field 
(Takagaki et al., 2011) and cross-correlation analysis within a 
small area of the image. However, to the best of our knowledge, 
no existing methods can satisfy both requirements simultane
ously. 

In this study, we introduce a visual analytics system for cal
cium wave data to realize exploratory visualization in order to 
find and interpret ROis. The proposed system enables users to 
(1) understand an overview of the relationships among various 
areas in calcium wave images, (2) select an ROI, and (3) vi
sualize the detailed relationships between the selected ROI and 
other areas. The proposed system comprises an overview visu
alization that supports finding ROis and a detail visualization to 
facilitate interpretation of the ROis. The overview visualization 
uses cross-correlation analysis to calculate a directed graph that 
indicates the relationship of increased calcium concentration at 
various points in the oocyte. To make this directed graph easier 
to understand, we cluster it using an Infinite Relational Model 
(IRM) (Kemp et al., 2006). In addition, we used the Sugiyama 
framework (Sugiyama et al., 1981) to visualize the other graph 
to enable users to view the relationships between clusters. The 
detail visualization uses the cross-correlation analysis results to 
shows how the area selected by the users relates to the remain
ing areas. By connecting these visualizations, users can repeat
edly find and interpret ROis to form a valid hypothesis. In this 
paper, we demonstrate the effectiveness of the proposed visual 
analytics system by analyzing calcium waves in Caenorhabditis 
elegans (C.elegans). 

2. Related Work 

This section presents the related works on three closely re
lated research topics. 

Calcium Wave Analysis. The propagation of calcium waves 
during fertilization and signal transmission by calcium waves 
are common phenomena in many animals. Fabrizio et al. 
(2014) applied Granger causality (Granger, 1980) and cross
correlation to test and visualize the relationships between the 
measured intercellular calcium concentrations at 11 points in 

the 30-somite stage embryo of a zebrafish. Buibas et al. (2010) 
formed networks of neurons and glia by computing the vector 
field obtained from calcium signaling imaging data using an 
optical flow technique. Milovic et al. (2013) developed a sys
tem that employed image processing to automatically recognize 
calcium waves generated during signal transmission between 
cells. In addition, they analyzed the wave-front velocity. The 
results of these studies indicated that time-series analysis and 
image analysis algorithms are effective for the analysis of cal
cium waves. However, these studies did not focus on finding 
and interpreting ROis. In this study, we propose a visual anal
ysis system that supports finding and interpreting ROis based 
on the method proposed by Fabrizio et al. (2014). However, 
our study differs in that the number of locations where calcium 
waves are defined is approximately 200, which is significantly 
greater than the 11 points examined by Fabrizio et al. To make 
it possible for experts to understand the cross-correlation anal
ysis results, we have developed a visual analysis system that 
includes multiple views and user interactions. 

Visualization of Geographic Relational Data. Visualiza
tion of the origin-destination flow is related to the proposed sys
tem in that our approach utilizes a directed graph to depict the 
relationship at each point in the oocyte. Both approaches re
quire the information to be displayed along with the directional 
geographic information. Several studies have investigated vi
sualization of relational data using geographic positions. For 
example, Guo and Zhu (2014) proposed a method used to ex
tract major flow patterns from large geographic mobility data to 
understand mobility flows. Da Lozzo et al. (2015) proposed a 
method used to draw a georeferenced graph to explore relation
ships using 2.5D visualization. Von Landesberger et al. (2012) 
proposed a visual analytics system for categorical spatiotempo
ral data that can be used to understand and explore geographic 
temporal movement of categorical data. However, these ap
proaches do not focus on searching for characteristic areas us
ing geographical relational data by considering the relationship 
of an ROI to other areas. The proposed system is designed to 
help experts explore such ROis interactively. 

Visualization and Visual Analytics for Relationship Anal
ysis. Several studies have proposed visualization and visual an
alytics techniques that enable users to reveal various relation
ships. Zhang et al. (2015) proposed a visual analytics method 
used to support correlation analysis between multivariate data, 
and Wang and Mueller (2016) extended this system to sup
port causality analysis based on regression analysis. In ad
dition, Wang and Mueller (2016) indicated that their method 
could be extended to time-series data using Granger causality 
(Granger, 1980). However, the method proposed by Wang et al. 
cannot handle numerous time-series data easily. Kothur et al. 
(2015) proposed a visual analytics approach to perform win
dowed cross-correlation analysis (Boker et al., 2002) to over
come the difficulty associated with windowed cross-correlation 
in two time-series ensembles when more than two ensembles 
are present. Frey et al. (2012) proposed a visualization method 
used to explore similarity using spatiotemporal data. Their vi
sualization illustrates the clustering of similar time-series data 
based on correlation. These methods help users understand and 
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explore data; however, few studies have considered the differ
ent relationships in spatiotemporal data. The proposed system 
helps users explore data in terms of similarities between a given 
ROI and remaining areas using cross-correlation analysis. 

3. Data and Design Requirements 

In this section, we describe the calcium wave data employed 
in this study. In addition, we present the design requirements to 
support calcium wave analysis. These requirements were deter
mined in several meetings with two expert biologists. 

3.1. Calcium Wave Data 

We used the proposed system to analyze microscopic images 
of calcium waves obtained by Takayama and Onami (2016). 
In this study, we used images of the fertilization of the trp-
3 mutant, which is C. elegans observed to be deficient in the 
sperm TRP-3 channel. This mutant was used because both the 
calcium wave and rapid local Ca2+ increase occur in the wild 
type, whereas only the calcium wave occurs in the trp-3 mu
tant. Thus, using the trp-3 mutant simplifies the analysis of 
wave propagation throughout the oocyte. The calcium ion con
centration is visualized using a calcium indicator that increases 
fluorescence intensity in a high-calcium-concentration environ
ment. The original data were created by imaging the fertilized 
egg using confocal microscopy, which helped us obtain a cross 
section of the oocyte. The z-axis where the sperm had high 
probability for fertilization was selected manually as the cross 
section of the oocyte. 

To analyze these calcium wave images, Takayama et al. gen
erated processed images of fertilized trp-3 mutant eggs. First, 
the region of the fertilized egg was extracted using a threshold 
value, and a manual correction was obtained from the micro
scopic images. Second, registration via affine transformation 
was performed using the StackReg ImageJ plug-in developed 
by Thevenaz et al. ( 1998)) by considering the movement of the 
fertilized egg within the body during microscopic observation. 
Note that the ImageJ is used extensively for image processing 
in biology research. This registration ensures that the fertil
ized eggs in all images are fixed to the same position. Third, 
Takayama et al. set the time fertilization occurred to O s and 
calculated the average fluorescence intensities in the oocyte Fo 
in the range 1.8 to O s. Finally, they divided the fluorescence 
intensity F of each pixel at each time step by F O to calculate 
the ratio of fluorescence intensity. In addition, we applied a 3 
X 3 window mean filter to the images to remove noise. Figure 
1 shows an example of created images of relative fluorescence 
intensity F. As can be seen, the calcium waves are propagated 
from the lower right region, which is the sperm entry point. 
Note that the images were obtained at 0.2-s intervals. 

3.2. Interests of Domain Experts and Design Requirements 

Domain experts are interested in the fact that observation data 
differ from simulation data obtained under the assumption that 
the propagation of calcium waves follows a specific equation. 
Here, the objective is to determine the mechanism of calcium 

t = O[s] 

sperm t = IO[s] 

t = 14[s] t = 18[s] t = 22[s] 

t = 26[s] t = 30[s] t = 40[s] 

- 50 0 50 100 
t>F/ Fo [%] 

Fig. 1. Images of calcium waves in trp-3 mutant C. elegans 

waves experimentally. To form a hypothesis for such experi
ments, it is necessary to understand the phenomena accurately. 
Therefore, a method that can obtain more detailed observations 
than those that can be obtained by simple imaging is required. 
After several meetings with the two biologists, we defined the 
design requirements to explore the observation data and form 
new hypotheses about calcium waves from the data. These de
sign requirements are as follows. 

Rl. The ability to obtain an overview of how calcium waves 
propagate, thereby allowing experts to identify areas 
where the calcium wave flow differs from surrounding ar
eas as a candidate ROI. 

R2. The ability to understand the propagation of waves in a 
narrow area. To understand the behavior of the ROI, it 
is necessary to understand the flow in a narrow area be
cause calcium waves occur in the chain of calcium released 
by the endoplasmic reticulum, which is distributed in the 
oocyte. 

4. System Design 

We designed the proposed visual analytics system based on 
Rl and R2 (Section 3.2). To design this system, we em
ployed cross-correlation analysis, which is an effective method 
used to measure similarity and time delay between time-series 
data. Among existing methods used to test causal relation
ships, such as Granger causality (Granger, 1980), transfer en
tropy (Schreiber, 2000), and convergent cross mapping (Sugi
hara et al., 2012), we adopted cross-correlation analysis because 
the calcium waves in the oocyte comprise time-series data de
picting a strong relation for each point. 

The proposed system satisfies Rl and R2 simultaneously by 
depicting the relationships among the time-series data of the 
Ca2+ fluorescence intensity at each point calculated by cross
correlation analysis. The basic process flow of the proposed 
system is as follows. 
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Overview Visualization to find RO Is (meet RJ ) 

To show clusters: 
• C luster View 
• Adjacency Matrix View 

To understand clusters: 
• Network View 
• Time Series Graph View 

! Select ROI 

Detail Visualization to interpret ROI (meet R2) 

To interpret the relationship between ROI and other areas: 
• Point-to-All View 

To interpret the flow in a narrow area: 
• Point-to-Near View 

Fig. 2. Each view in the proposed system and its role 

Step 1. Extract the calcium concentration time-series data at 
each pixel in the oocyte from the microscopic image of 
the calcium waves shown in Figure 1 (Section 4.1.1). 

Step 2. Conduct cross-correlation analysis for each set of ex
tracted time-series data. Among two points, cross
correlation analysis is employed to determine the 
point that causes earlier increase in calcium concentra
tion. Define each point as a node, and create a directed 
graph by drawing an arrow from the point where the 
concentration initially increases to the point where the 
concentration increases later (Section 4.1.2). 

Step 3. Cluster the directed graph such that nodes with similar 
relations to the remaining nodes belong to the same 
cluster. The clustering result, which is represented as 
a new directed graph, represents an overview of the 
flow of calcium waves (Section 4.1.3). 

Step 4. Create the overview visualization, which consists of 
multiple linked views, to enable domain experts to 
find the ROI from the clustered directed graph (Sec
tion 4.2). 

Step 5. Interpret the ROI using detail visualization (Section in 
4.3). 

The overview visualization and detail visualization (Steps 4 and 
5) comprise multiple views (Figure 2) that support user under
standing. We describe each step, view, and user interaction in 
the following. 

4.1. Data Preprocessing 

Steps 1-3 are performed as preprocessing steps because cal
culating the cross-correlation among the time-series data of the 
Ca2+ fluorescence intensity and clustering the directed graph in
cur high computational cost. The workflow of the preprocessing 
steps is shown in Figure 3. 

4.1.1. Sampling Time Series from Calcium Wave Data 

To conduct cross-correlation analysis, we extracted the time
series data of calcium fluorescence intensity from the calcium 
wave images (128 x 96 pixels) in Figure 1. First, we extracted 

1376 time-series data by sampling the scalar value of each pixel 
of the image at 2-pixel intervals along the x and y axes. Note 
that we removed time-series data for pixels without an oocyte. 
As a result, we obtained 523 time-series data. Here, the time 
step was 0.2 s, and the data length was 200 time steps, ranging 
from 1.8 s before fertilization to 38 s after fertilization. Note 
that the graph in Figure 3b is a superposition of all generated 
time-series data. 

4.1.2. Cross-correlation Analysis 
The second preprocessing step involves calculating an 

adjacency matrix using cross-correlation analysis. Cross-
correlation is calculated as follows: 

1 
N L!i (X(t) - X)(Y(t + lag) - Y) 

Cxy(lag) = -----;:======---======== (1) 
1 _ 1 _ 
N L!1 (X(t) - X)2 N L!i (Y(t + lag) - Y)2 

where X(t) and Y(t) are the time-series data extracted from the 
calcium wave data, X and Y are the average values of X(t) and 
Y(t), respectively, N is the length of the time-series data, and 
lag is measured by the time step. The relationships between 
the time-series data of the Ca2+ fluorescence intensity are cal
culated as follows. 

1. Calculate the cross-correlation by substituting every time 
step in the range 30 to 30 by the lag in Eq. 1. 

2. Select the lag with the maximum correlation. 
3. When the lag is O or greater and cross-correlation is greater 

than 0. 7, define the relationship from X to Y. We assume 
that increased calcium intensity is propagated in the order 
X --t Yif the cross-correlation becomes large when the lag 
is positive. This threshold is determined empirically under 
the assumption that there is a relationship only when there 
is a strong correlation. 

By applying these three steps to all time-series pairs, we can 
calculate an asymmetric adjacency matrix (Figure 3c) that rep
resents the relationship of rise in calcium concentration. The 
rows and columns of the adjacency matrix correspond to the 
time-series data. For the adjacency matrix, element (i, j) is 1 if 
there is a relationship between the time-series data of the i-th 
row and the j-th column, and element (i, j) is O if there is no 
relationship. In Figure 3c, 1 is represented as black, and O is 
represented as white. 

4.1.3. Clustering the Adjacency Matrix 

To obtain the overview of the relationships between time
series data, we clustered the calculated adjacency matrix be
cause interpreting the original adjacency matrix (Figure 3c) is 
difficult. Here, we used the IRM proposed by Kemp et al. 
(2006) for clustering. The IRM is a clustering algorithm that 
can be applied to undirected and directed graphs. The IRM es
timates the cluster automatically using the relational data such 
that nodes with similar relationships belong to the same clus
ter. Here, the IRM was calculated using the Python datamicro
scopes library (https: //gi thub. com/data.microscopes). 
The clustering result obtained by the IRM is shown in Figure 
3d. The number of clusters is 34. It was automatically deter
mined using the infinite relational model. 
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Sampling 
Cross-Correlation 

Analysis 
Clustering 

(a) Original Data (b) Time Series Data at Each Point (c) Adjacency Matrix (d) Clustered Adjacency Matrix 

Fig. 3. Preprocessing workflow 
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(a) Adjacency Matri x View 

(b) Colormap of clusters 

( c) Cluster View 
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80 

80 

-20 
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(d) Network View 

50 100 150 200 --(e) Time Series Graph View 

Fig. 4. Overview visualization views 

4.2. Overview Visualization 

The overview visualization was designed to satisfy Rl (Sec
tion 3.2) , and it contains four views that support data investi
gation and ROI determination, i.e., the Adjacency Matrix View 
(Figure 4a), Cluster View (Figure 4c), Network View (Figure 
4d), and Time Series Graph View (Figure 4e). Note that these 
four views can be updated by user interactions. 

4.2.1. Adjacency Matrix View 

The Adjacency Matrix View (Figure 4a) shows the adjacency 
matrix calculated during preprocessing. This view is used to 
confirm the clustering result and the number of time-series data 
included in each cluster. To determine the order of the adja
cency matrix , we introduced a criterion value o based on the 
number of out-edges from node (o+) and in-edges from node 
(o- ). Here, o is determined as follows: 

(2) 

We determined the order of the adjacency matrix by sorting o 
in descending order. Furthermore, we assigned colors to the 
clusters to identify corresponding clusters in other views. We 
selected the black-body radiation colormap (Borland and Tay
lor, 2007) shown in Figure 4b to represent the order of clusters 

by color and to make each area easy to distinguish. The labels 
on the left and top of the Adjacency Matrix View represent the 
color of each cluster. Here, clusters are divided by black lines. 
In this view, users can select a cluster by clicking the label. The 
positional information of the selected cluster is highlighted in 
the Cluster View (Section 4.2.2). 

4.2.2. Cluster View 
In the Cluster View (Figure 4c), the color of each cluster is 

based on its coordinates. Note that the color of each node is the 
same as the cluster label in the Adjacency Matrix View. 

With this view, users can evaluate the region belonging to the 
same clusters. Here, the positions of selected cluster are high
lighted in blue when the user selects clusters in the Adjacency 
Matrix View and Network View. In this view, if the user selects 
(clicks) a point of interest, the detail visualization (Section 4.3) 
is displayed. Note that the selected point is highlighted in green. 

4.2.3. Network View 

As mentioned previously, it is difficult to interpret the rela
tionships among clusters in the Adjacency Matrix View. Thus, 
the Network View (Figure 4d) visualizes these relationships us
ing a directed graph. To define the relationships between clus
ters, we use the adjacency matrix calculated during preprocess
ing. The concept of the calculation is shown in Figure 5. If 
the connection between the cluster of the i-th row of the matrix 
and that of )-th column is greater than the threshold, we define 
a relationship from the i-th cluster to the j-th cluster. In the 
proposed system, we set the threshold to 90% of the maximum 
number of connections. This threshold is determined empiri
cally to draw an edge only when there are many connections 
between clusters. We then calculate all relationships between 
clusters to generate a directed graph. 

We use a graph layout algorithm to visualize this directed 
graph. Among various graph layout algorithms, we adopted the 
Sugiyama framework (Sugiyama et al. , 1981) to visualize a hi
erarchy to help users understand the relationship between clus
ters. In addition, the Sugiyama framework was selected so that 
users can interpret the flow of calcium waves as an edge. Note 
that the direction of the flow of the calcium wave is reflected 
in the graph layout. Healy and Kuusik (2013) summarized the 
aesthetics of the Sugiyama framework as follows. 

• "Edges should point in a uniform direction." 

• "Short edges are more readable." 

• "Uniformly distributed nodes avoid clutter." 
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Cluster 4 

if ( the number of connection > threshold ) •-• 
Fig. 5. Calculation example of the relationship between clusters 

• "Edge crossing obstructs comprehension." 

• "Straight edges are more readable." 

We implemented the Sugiyama framework using the Open 
Graph Drawing Framework (Chimani et al., 2014) in 
JavaScript. 

In the Network View, each cluster is numbered from zero in 
descending order using a criterion value used to determine the 
order of the adjacency matrix. This cluster number is displayed 
on each node in the Network View. In addition, the color of 
each node is the same as the cluster label in the Adjacency Ma
trix View. The node size is proportional to the number of points 
in the clusters. In the Network View, it is possible to confirm a 
connection via a user interaction, such as changing the size and 
position of the nodes. 

4.2.4. Time Series Graph View 
The Time Series Graph View displays the mean time-series 

data of Ca2+ fluorescence intensity belonging to the selected 
clusters in the Network View or Adjacency Matrix View. The 
mean time series is calculated by estimating the mean value of 
the time-series data at each time step at all points in the cluster. 
Figure 4e shows the Time Series Graph View produced when 
cluster numbers 3 and 14 are selected in the Network View. 
Users can understand the features of the time-series data in the 
selected clusters with this view. Note that we employ Chart.js 
(http://www. chart j s. org/) to draw the graph. 

4.3. Detail Visualization 

In the Detail Visualization, the system visualizes the detailed 
relationships from the ROI to the remaining areas. The De
tail visualization contains two views to satisfy R2 (Section 3.2). 
The two views (i.e., Point-to-All View and Point-to-Near View) 
shown in Figure 6 are displayed when a point in the Cluster 
View is selected. These views allow the user to assign meaning 
to the ROI and construct a hypothesis for its role. 

(a) Point-to-All View (b) Point-to-Near View 

-30 -20 - IO 0 10 20 30 

lag [time step] 

(c) Colormap of the lag 

Fig. 6. Views in the detail visualization 

4.3.1. Point-to-All View 
The Point-to-all view displays the lag that maximizes the 

cross-correlation from the selected point to all other points. 
This lag is calculated using the step described in Section 4.1.2, 
and the lag size is indicated by the colormap shown in Figure 6. 
The red areas in Figure 6 indicate that this lag is a positive area, 
which suggests that an increase in calcium concentration occurs 
after the selected point. The blue region indicates that the in
creased calcium concentration occurs earlier. This view helps 
users evaluate the ROI by displaying the relationship between 
the ROI and the entire area as a lag. 

In this view, a single point selected in the Cluster View is 
shown in green. Moreover, the user can select this view to set a 
new selected point. If the user selects a new point in this view, 
the corresponding points in the Cluster View are displayed in 
green. 

4.3.2. Point-to-Near View 
The Point-to-Near view shown in Figure 6 visualizes the re

lationships from a selected point to the surrounding 24 points. 
This is an enlarged view of the area near the point selected in 
the Cluster View or Point-to-All View. This view helps the user 
understand the flow in a narrow area (R2). The number of sur
rounding points to be displayed in the Point-to-Near View is 
determined empirically. The center green cell of this view in
dicates the selected area. Note that the lag that maximizes the 
cross-correlation is represented by both color and numbers in 
the Point-to-Near View. 

4.4. User Interaction 

In this section, we summarize the user interaction in the pro
posed system (Figure 7). In Figure 7, the solid line arrows in
dicate user operations, and the dotted line arrows indicate an 
operation that is calculated automatically and displayed by a 
user interaction. 

In the proposed system, user interactions are divided into se
lecting the cluster to explore ROis and selecting the ROI to in
terpret its role. In Figure 7, "(DClick the label" and "@Click 
nodes" subtracted from User are operations used to select clus
ters in respective Views. When a cluster is selected in these 
views, the corresponding area is highlighted in blue in the Clus
ter View, and the mean time-series data of Ca2+ fluorescence 
intensity of the selected clusters is displayed in the Time Series 
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Graph View. Figure 7 shows the Cluster View and Time Se
ries Graph View when cluster numbers 3 and 14 were selected 
in the Network View or Adjacency Matrix View. With these 
interactions, the user can explore the ROI in the Cluster View. 
"®Click one point" drawn from the User to Cluster View and 
Point-to-All View is used to select the found ROI. When the 
user selects the ROI in these views, the Point-to-All View and 
Point-to-Near View are displayed. These views facilitate inter
pretation of the ROI. 

5. Application Example 

In this section, we demonstrate how the proposed system 
supports hypothesis formation through analysis examples using 
calcium wave data (Section 3.1). Figure 8 shows a screenshot 
of the proposed system. 

The proposed system juxtaposes the visualization results of 
actual and simple simulation data modeling calcium waves in 
each view because this functionality was required by domain 
experts. In each view shown in Figure 8, the actual data are on 
the left, and the simulation data are on the right. This juxta
position helps an expert confirm differences between the actual 
data and the expert's knowledge because the simulation data re
flect the experts existing knowledge. Moreover, original imag
ing data are displayed at the top left. The original imaging data 
can be used to check the original data. In this section, we first 
introduce the simulation data utilized in our analysis example. 
We then show the analysis results obtained using the proposed 
system. 

5.1. Calcium Wave Simulation Data 

We generated a simulation of calcium waves (Sneyd et al., 
1998) using Nagumo's equation (Nagumo, 1962): 

8c(x.y. t) = V • (DVc(x, y, t)) + c(x,y, 1)(1 - c(x, y, l))(c(x, y, t) - a) (3) at 

where c(x,y,t) is the calcium concentration at time tat coor
dinate (x,y), a is the threshold value, and Dis the diffusion 
coefficient. The simulation result obtained using D = 20 µm2 / s 
and a= 0.1 is shown in Figure 9. In this simulation, the diam
eter of the box in Figure 9 is 50 µm, Ax = Ay = 1.0 µm, and 
time step dt = 1.0 x 10-4 • In this simulation, the point at the 
upper left corner is the origin, right is positive along the x-axis, 
and down is positive along the y-axis. As the initial value of the 
simulation, the calcium concentration was set to 5 in the region 
satisfying 20 < x ::; 30, 45 < y ::; 50, and in other respects, 
it was 0. This high-calcium-concentration region represents the 
sperm entry point. It simulated the first rise in calcium concen
tration at the sperm entry point. This region is white in Figure 9 
when t = 0. In this simulation, calcium waves propagate from 
the bottom. We created images of 300 time steps by sampling 
the simulation results at 0.1-s intervals. We extracted the time 
series data for each pixel from the simulation data, and pre
processing (Sections 4.1.2 and 4.1.3) was performed to create 
input data for the proposed system. Using the preprocessing 
discussed in Section 4.1, 289 time-series data were extracted 
from the simulation data. 

5.2. Analysis Results Using Proposed System 

In this section, we discuss the analysis results obtained using 
the proposed system (Figure 8). Note that the proposed sys
tem was developed as a web-based application. A domain ex
pert used the system on the expert's own computer. To explain 
the system, a description of each view and the user interactions 
were provided (approximately 1.5 hours). Moreover, visualiza
tion researchers (authors of this paper) analyzed. We then dis
cussed the analysis results. As a result, we found new charac
teristic points that the expert had not noticed previously. More
over, new hypotheses suggest that these characteristic points 
comprise an "area where calcium release is occurring" or an 
"area where calcium is sucked by something." Consequently, 
points to pay attention to when analyzing the calcium wave be
came clear, and new experimental plans were established. 

The analysis flow followed to obtain the above results using 
the proposed system is shown below. 

5.2.1. Comparison between Actual and Simulation Data 

The first analysis question from the expert was whether the 
calcium wave of the actual data flows in the same manner as 
that of the simulation data. We show an analysis result relative 
to this question using the proposed system. 

In the proposed system, the size of each node in the Network 
View is proportional to the number of data in the cluster. There
fore, the Network View has nodes of various sizes, as shown in 
Figure 4d. Moreover, nodes corresponding to areas where the 
calcium concentration increases before other areas are placed at 
the top of the Network View. To compare the overview of the 
calcium wave flow obtained with the actual data and simulation 
data using the proposed system, we selected large nodes among 
those located at the top of the Network View and highlighted the 
corresponding areas. The Cluster View (Figure 10b, left) shows 
the view when cluster numbers 0 and 1 from the actual data (red 
circle at the left of Figure 10a) were selected. The Cluster View 
on the right of Figure 1 Ob shows the view produced when clus
ter numbers 0 and 1 of the simulation data were selected. By 
comparing the Cluster View of the actual and simulation data 
(Figure 10b ), it can be seen that the vicinity of the sperm entry 
point is blue in the actual data, and the lower part near the area 
with the high initial value is blue in the simulation data. Fur
thermore, the Cluster View visualized when cluster numbers 3 
and 4 of the actual data and cluster numbers 2 and 3 of the 
simulation data (green in Figure 10a) were selected is shown in 
Figure 10c, and the Time Series Graph View is shown in Figure 
10d. By comparing Figures 10b and 10c, it can be seen that, 
in addition to the area highlighted in Figure 10b, the area fur
ther from the sperm entry point is highlighted in Figure 10c. 
Moreover, from the time series graph shown in Figure 10d, the 
calcium concentration increased earlier with cluster number 0 
(black line) than cluster 4 (brown line; actual data) and cluster 
3 (red line; simulation data). 

The following results were observed from these user interac
tions. 

1. The proposed method can properly extract an overview of 
the flow of calcium waves near the sperm entry point. 
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2. Compared to the simulation data, the highlighted areas of 
the real data are non-uniform. 

From these results, we can conclude that the flow of calcium 
waves of the actual data is more complicated than that of the 
simulation data. The results of this analysis support the hypoth
esis that the actual data are non-uniform compared to the sim
ulation data. Note that this result is consistent with the experts 
expectation. 

5.2.2. Exploration of RO Is using the Proposed System 

The second analysis question from the expert was where the 
characteristic points were. Characteristic points are where the 
flow of the actual data differs compared to simulation. More
over, the expert was interested in the feature of those points. We 
show the result of exploring and interpreting these characteris
tic points (i.e., the ROis) using the proposed system, as well as 
the hypothesis formed using the detail visualization. 

We first explored ROis using the Cluster View (Figure 10c). 
As can be seen in Figure 1 0c, there is an uncolored region near 
the sperm entry point in the actual data. This indicates that the 
behavior of this point differs locally. Thus, this area can be con
sidered an ROI. Figure 11 shows the Detail Visualization when 
point (x = 76, y = 69) was selected. Here, the coordinates of 
the upper left corner of the image are x = 0, y = 0, and down 
is positive along the y-axis. Figure 11 shows an example of 
the detail visualization when we selected point (x = 33, y = 
25) in the simulation data to compare the actual and simula
tion data. In the detail visualization of the simulation data, the 

Point-to-All View shows a flow from the bottom to top by color 
gradation (blue to red) . Furthermore, the Point-to-Near View of 
the simulation data suggests that there exists a flow with a time 
difference of 10 time steps. On the other hand, in the actual data 
example, we interpret that the increased calcium concentration 
at the selected area came later than that in the surrounding area. 
As a result, we formed a new hypothesis that calcium is sucked 
by something for some reason in this characteristic point. 

Next, characteristic point was explored by confirming the 
flow by further selecting nodes in the Network View of the ac
tual data. To confirm the flow, we focused on nodes that meet 
both near the nodes selected in the Network View of the real 
data in Figure 1 0a (left side) and many connections from those 
nodes. Figure 12 shows the Cluster View when cluster num
ber 14 was selected in addition to the nodes selected in Fig
ure 10a. By comparing this Cluster View to the Cluster View 
in Figure 1 0c, it can be seen that the area near the sperm en
try point was newly highlighted. On the other hand, some ar
eas distant from it are also highlighted. The increased calcium 
concentration in these areas distant from the wave-front of the 
calcium waves is a phenomenon that has not been considered 
conventionally. Therefore, these points were investigated as 
ROis. Among them, the points indicated by the arrows (x = 
40, y = 41) in the Cluster View in Figure 12 are described as 
follows. The Point-to-Near View in Figure 12 was displayed 
by selecting the point (x = 40, y = 41). By interpreting this 
Point-to-Near View, in contrast to the Point-to-Near View in 
Figure 11, the periphery of the selected point is red, and most 
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Fig. 9. Images of the simulation data of calcium waves 

of the cross-correlation is maximized when the lag is greater 
than 0. Therefore, the increased calcium concentration occurs 
earlier than that in the areas surrounding this point. From this 
result, we formed the hypothesis that calcium release occurred 
for some reason in this area such that the increased calcium con
centration occurred earlier than that in the surrounding areas. 

As a result of this analysis, new ROis were found and inter
preted by exploring all views available in the proposed system 
(except for the Adjacency Matrix View). Moreover, new hy
potheses were constructed using the Point-to-Near View. Prior 
to this analysis, hypotheses could not be formed sufficiently; 
thus, the expert could not develop an effective experimental 
plan. However, as hypotheses were formed using the proposed 
system, a new experimental plan was drafted to verify them. 
The new plan included examining whether the cell structure and 
characteristic points match using a marker that only highlights 
a specific organ in the cell. 

6. Discussion 

Although the proposed method facilitates forming hypothe
ses from calcium wave data, several issues must be discussed. 
The first is related to the advantages of the proposed system 
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using the Point-to-Near View. 

compared to existing methods. The second is related to the ef
fectiveness of the various views available in the proposed sys
tem. The third relates to the possibility of extracting incorrect 
characteristic points with the clustering algorithm. 

A previous study that analyzed calcium waves applied cross
correlation to test and visualize the relationships between the 
measured intercellular calcium concentrations of 11 points 
(Fabrizio et al. , 2014), and another study visualized the flow of 
calcium wave using Optical Flow (Buibas et al., 2010). Com
pared to these studies, the advantage of the proposed system 
is that it can be performed to find and interpret an ROI simul
taneously by performing interactive analysis. Moreover, it is 
conceivable that the measured calcium wave data contains mea
surement error and noise. We consider that visual analytics in 
which analysis is performed while interpreting data is an ef
fective way to prevent misinterpretation. Experimental plans 
can be improved based on the hypotheses formed using the pro
posed system by analyzing the results of a new experiment us
ing the system. Therefore, the proposed system can promote 
the research cycle of forming and testing hypotheses. 

In the application example described in Section 5, the Adja
cency Matrix View of the proposed method was not used in 
the analysis. The comment regarding the Adjacency Matrix 



12 K. Umezawa et al. / Visual lnfonnatics 2 (2018) 2-13 

View from the expert was, "Since there was no information on 
what kind of adjacency matrix will be shown when complicated 
waves occur, it is not useful for exploring ROI." Thus, to use the 
Adjacency Matrix View to explore characteristic points, it is 
necessary to investigate how waves with complicated behaviors 
are reflected in the adjacency matrix. The expert's comment 
about the Network View was, "If the vertical axis has meaning 
in the hierarchical graph displayed in the Network View, it is 
useful to explore ROI by assigning the meaning to each hierar
chy. In particular, I am interested in what kind of phenomena 
the source and sink vertices in network view reflect." In this 
study, the Sugiyama framework was used to represent the flow 
of calcium waves in a hierarchical graph. To handle the prob
lem indicated by the expert, we plan to implement a method 
(Onoue et al., 2017) that constrains the source and sink vertices 
in the Sugiyama framework such that they are located in the 
same layer. Moreover, in the current Network View, many edge 
crossings occur; therefore, visibility is degraded. To address 
this problem, edge bundling technology (Pupyrev et al., 2011) 
is considered effective. 

In this study, we utilized the IRM (Kemp et al., 2006) as the 
clustering algorithm for the adjacency matrix (Section 4.1.3). 
Since the IRM performs clustering using a probabilistic ap
proach, errors may occur in the clustering results. Thus, points 
that are not actually characteristic points may appear as charac
teristic points. In the proposed system, we think it is possible to 
prevent misinterpretation of the clustering results and character
istic points by interpreting the ROI using the Point-to-All View. 
On the other hand, to realize more accurate analysis, it would 
be effective to prevent misinterpretation by displaying all time
series data and the standard deviation of the selected clusters in 
the Time Series Graph View. 

7. Conclusion 

In this paper, we have proposed a visual analytics system 
to understand calcium wave data and form hypotheses. The 
proposed system was designed to meet the design requirements 
for finding and interpreting ROis. We have demonstrated how 
the proposed system, which comprises multiple linked views, 
works using an analysis example. Moreover, we have demon
strated hypotheses relative to ROis discovered using the pro
posed system. In summary, our exploratory visualization flow 
helps in achieving the following. 

1. Observe an overview of calcium wave propagation through 
graph visualizations, time-series plots, and the position 
corresponding to the cluster. 

2. Explore areas of interest. 
3. Investigate the relationships between an ROI and other ar-

eas. 

By exploring and interpreting ROis using the above procedure, 
new hypotheses were formed to attach meaning to those points 
through discussion of the visualization results by domain and 
visualization experts. The hypotheses are that one is "there are 
areas where calcium release is occurring" and the other is "there 
are areas where calcium is sucked by something." 

In the future, we are planning to evaluate the views and in
teractions required to form new hypotheses. By conducting an 
evaluation experiment using an eye tracker, we would like to 
clarify how the characteristic points are discovered by investi
gating how the proposed systems views and user interactions 
are used, and we expect to improve the proposed system ac
cording to the results of that investigation. In addition, by clar
ifying the effectiveness of each view and interaction, if the pro
posed method is utilized for time-series data from other fields, 
we consider that effective system design can be accomplished 
by selecting necessary views and user interactions. 
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