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Data Descriptor: Characterization
of deep neural network features
by decodability from human brain
activity
Tomoyasu Horikawa1, Shuntaro C. Aoki1, Mitsuaki Tsukamoto1 & Yukiyasu Kamitani1,2

Achievements of near human-level performance in object recognition by deep neural networks (DNNs)
have triggered a flood of comparative studies between the brain and DNNs. Using a DNN as a proxy for
hierarchical visual representations, our recent study found that human brain activity patterns measured by
functional magnetic resonance imaging (fMRI) can be decoded (translated) into DNN feature values given
the same inputs. However, not all DNN features are equally decoded, indicating a gap between the DNN
and human vision. Here, we present a dataset derived from DNN feature decoding analyses, which includes
fMRI signals of five human subjects during image viewing, decoded feature values of DNNs (AlexNet and
VGG19), and decoding accuracies of individual DNN features with their rankings. The decoding accuracies
of individual features were highly correlated between subjects, suggesting the systematic differences
between the brain and DNNs. We hope the present dataset will contribute to revealing the gap between the
brain and DNNs and provide an opportunity to make use of the decoded features for further applications.
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modeling and simulation objective • network analysis objective • comparison
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Background & Summary
Building models that achieve human-level performance has motivated researchers to construct
computational models that mimic the architectural and representational properties of the human brain.
Adopting the hierarchical architecture of the human visual system, deep neural networks (DNNs) have
demonstrated utility in various applications, including in object recognition in computer vision, where
near human-level performances are achieved. This achievement has led to many comparative studies on
the similarities between the brain and DNNs, providing empirical support for the correspondence
between the hierarchical representations of the brain and DNNs1–8.

On the basis of the hierarchical representational similarity between the brain and DNNs, our recent
study demonstrated that human brain activity measured by functional magnetic resonance imaging
(fMRI) can be decoded (translated) into DNN feature values6. Combining such decoded DNN features
and techniques developed with DNNs, recent work has started to develop new technologies to read out
richer contents in the brain as demonstrated in the generic decoding of seen, imagined, and dreamed
objects6,7, and in the reconstruction of seen and imagined images9. As exemplified by these studies, the
decoding of DNN features from brain activity patterns can provide opportunities to develop new
technologies for further applications in brain-machine interfacing.

In addition to the capability of the DNN feature decoding approach as a generative model of DNN
signal patterns from the brain, the decoding approach also has the advantage of allowing the
characterization of individual DNN units in terms of their decodability from brain activity patterns. Our
decoding analysis of DNN features showed that not all DNN feature units were equally decoded6,
indicating a gap between the DNN and human vision. Thus, evaluating the decodability of individual
DNN units will help to further elucidate finer levels of representational similarity between the brain and
DNNs, enabling the selection of highly decodable features for further analyses10.

In this report, we present a dataset derived from the DNN feature decoding analyses from human
brain activity patterns (Fig. 1). The dataset comprises fMRI signals measured while subjects viewed
natural images (Data Citations 1–3), DNN feature values of all individual units decoded from the
measured brain activity patterns (Data Citations 4, 5), and decoding accuracies of individual units with
their rankings among units (Data Citations 4, 5).

The fMRI dataset was originally collected for the study by Horikawa and Kamitani6 and comprises
fMRI signals from five subjects measured while the subjects viewed sequences of natural images (image
presentation experiment). This image presentation experiment had two sessions: a training image session
and a test image session. Data from the training and test image sessions consist of fMRI responses to a
total of 1,200 and 50 images respectively (“training” and “test” datasets).

The fMRI dataset was used to generate decoded DNN features for individual subjects. Using two types
of DNN models, AlexNet11 and VGG1912, we first computed DNN feature values from the images
presented in the fMRI experiments. We then trained a set of statistical linear regression models
(decoders) to predict DNN feature values of presented images from visual cortical activity patterns in the
training dataset. The trained decoders were then applied to the test dataset to produce decoded feature
values for the 50 test images for all individual DNN units.

The “decodability” of the individual DNN units was then evaluated for individual subjects. For each
DNN unit, a Pearson correlation coefficient was calculated between a sequence of decoded feature values
and that of true feature values for the presented 50 test images. Then, the rankings of the decodability
were calculated among a set of units within each DNN layer.

Our validation analysis showed that while the decodability varied considerably across units, the units
were highly correlated across subjects for most DNN layers of the tested DNN models. This result
indicates systematic differences in the representation of visual images between the DNN and the
human brain.

To summarize, the present dataset contains a set of resources that is made use of for the DNN feature
decoding and for further analyses. We hope that this dataset will offer opportunities to the neuroscience
and computer science communities to develop new brain-DNN hybrid applications based on decoded
features, and to facilitate comparative studies aimed at revealing the gap between the brain and DNNs.

Methods
The data used in this study comes from a previous study performed in our laboratory6. According to the
journal policy, we here provide a self-contained description of the subjects, datasets, and preprocessing of
the MRI data for the main experiments to make it possible to understand and reproduce the experiments
and analyses without referring to associated publications.

Subjects
Five healthy subjects (one female and four males, aged between 23 and 38) participated in this study. All
subjects had normal or corrected-to-normal visual acuity, and had substantial experience participating in
fMRI experiments. All studies were performed with the written informed consent of the subjects, and
were approved by the Ethics Committee of ATR.
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Stimuli
The stimuli consisted of sequences of natural images collected from an online image database ImageNet13

(2011, fall release). We first selected 200 representative object categories (synsets) from the database, and
then randomly assigned them to 150 training and 50 test categories. Eight images were selected from each
training category and one from each test category. The selected images were cropped to the center.

Experimental design
The subjects participated in an image presentation experiment, a retinotopy experiment, and a functional
localizer experiment. All visual stimuli were rear-projected onto a screen in the MRI scanner bore using a
luminance-calibrated LCD projector. The image presentation experiment data were collected from each
subject over multiple scanning sessions spanning approximately 2 months. On each experimental day,
one consecutive session was conducted for a maximum of 2 h. Subjects were given adequate time for rest
between runs (every 3–10 min), and were allowed to take a break or stop the experiment at any time.

The image presentation experiment consisted of two distinct types of sessions: training image sessions
and test image sessions, comprising 24 and 35 separate runs (9 minutes 54 s for each run) respectively.
Each run contained 55 stimulus blocks comprising 50 blocks with different images and 5 randomly
interspersed repetition blocks where the same image as in the previous block was presented. In each
stimulus block, an image (12 × 12 degrees of visual angle) was flashed at 1 Hz for 9 seconds (there was no
inter-block interval). Images were presented at the center of the display with a central fixation spot. The
color of the fixation spot changed from white to red for 0.5 s before each stimulus block began, to indicate
the onset of the block. Extra 33-second and 6-second rest periods were added to the beginning and end of
each run respectively. Subjects were instructed to maintain steady fixation on the fixation spot throughout
each run, and performed a one-back repetition detection task on the images, responding with a button
press for each repetition, to ensure that they maintained their attention on the presented images (mean
task performance across five subjects: sensitivity = 0.930; specificity = 0.995). In the training image
session, a total of 1,200 images from 150 categories (eight images from each category) were each
presented once. In the test image session, a total of 50 images from 50 object categories (one image from
each category) were presented 35 times each. The presentation order of the categories was randomized
across runs.

The retinotopy experiment was performed following the conventional protocol14,15, using a rotating
wedge and expanding ring of a flickering checkerboard. The data were used to delineate the borders
between each visual cortical area, and to identify the retinotopic map (V1–V4) on the flattened cortical
surfaces of individual subjects.

The functional localizer experiment was performed to identify the lateral occipital complex (LOC)16,
fusiform face area (FFA)17, and parahippocampal place area (PPA)18 of each individual subject. The
localizer experiment consisted of four to eight runs (varied across subjects), with each run containing 16
stimulus blocks. In this experiment, intact or scrambled images (12 × 12 degrees of visual angle) from
face, object, house, and scene categories were presented at the center of the screen. Each of eight stimulus
types (four categories × two conditions) was presented twice per run. Each stimulus block consisted of a
15-second intact or scrambled image presentation. The intact and scrambled stimulus blocks were
presented successively (the order of the intact and scrambled stimulus blocks was randomized), followed
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Figure 1. Overview of the data generation procedures. Stimulus images were presented to human subjects in

the fMRI experiments to collect fMRI signals. DNN feature decoders were first trained to decode DNN feature

values of presented images from the training fMRI data, and were then applied to test fMRI data to produce

sequences of decoded feature values for all DNN units. The same stimulus images were also provided to DNNs

as inputs and sequences of DNN feature values were computed for all DNN units. For each individual DNN

unit, the decoding accuracy (or “decodability”) was evaluated using a Pearson correlation coefficient between

the sequences of decoded and true feature values. The estimated decodability was used to rank the DNN units

within each DNN layer. Examples of the preferred image of high-ranking units are shown at the bottom-right.
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by a 15-second rest period comprising a uniform gray background. Extra 33-second and 6-second rest
periods were added to the beginning and end of each run, respectively. In each stimulus block, 20
different images of the same type were presented for 0.3 s, followed by an intervening blank screen of
0.45-second duration.

MRI acquisition
MRI data were collected using a 3.0-Tesla Siemens MAGNETOM Trio A Tim scanner located at the ATR
Brain Activity Imaging Center. An interleaved T2∗-weighted gradient-echo EPI scan was used to acquire
the functional images covering the entire brain (image presentation and localizer experiments: TR, 3,000
ms; TE, 30 ms; flip angle, 80 deg; FOV, 192 × 192 mm; voxel size, 3 × 3 × 3 mm; slice gap, 0 mm;
number of slices, 50) or the entire occipital lobe (retinotopy experiment: TR, 2,000 ms; TE, 30 ms; flip
angle, 80 deg; FOV, 192 × 192 mm; voxel size, 3 × 3 × 3 mm; slice gap, 0 mm; number of slices, 30). T2-
weighted turbo spin echo images were acquired as high-resolution anatomical images of the same slices
used for the EPI (image presentation and localizer experiments: TR, 7,020 ms; TE, 69 ms; flip angle, 160
deg; FOV, 192 × 192mm; voxel size, 0.75 × 0.75 × 3.0 mm; retinotopy experiment: TR, 6,000 ms; TE,
57 ms; flip angle, 160 deg; FOV, 192 × 192 mm; voxel size, 0.75 × 0.75 × 3.0 mm). T1-weighted
magnetization-prepared rapid acquisition gradient-echo (MP-RAGE) fine-structural images of the entire
head were also acquired (TR, 2,250 ms; TE, 3.06 ms; TI, 900 ms; flip angle, 9 deg; FOV, 256 × 256 mm;
voxel size, 1.0 × 1.0 × 1.0 mm).

MRI data preprocessing
The first 9-second of scans in experiments with a TR of 3 seconds (three volumes; image presentation and
localizer experiments) and the first 8-second of scans in experiments with a TR of 2 s (four volumes;
retinotopy experiment) were discarded from each run to avoid MRI scanner instability. The acquired
fMRI data underwent three-dimensional motion correction using SPM5 (http://www.fil.ion.ucl.ac.uk/
spm). The data were then coregistered to the within-session high-resolution anatomical image with the
same slice dimensions and coordinates as the EPI, and subsequently to the whole-head high-resolution
anatomical image. The coregistered data were then reinterpolated to 3 × 3 × 3 mm voxels.

For the data from the image presentation experiment, data samples were created by first regressing out
nuisance parameters from each voxel amplitude for each run, including a constant baseline, a linear
trend, and temporal components proportional to the six motion parameters calculated from the SPM
motion correction procedure. The data were then despiked to reduce extreme values (beyond ± 3 SD for
each run) and the voxel amplitudes were averaged within each 9-second stimulus block (three volumes)
after shifting the data by 3 second (one volume) to compensate for hemodynamic delays.

Region of interest (ROI) selection
V1, V2, V3, and V4 were delineated by the standard retinotopy experiment14,15. The data from the
retinotopy experiment were transformed to Talairach coordinates and the visual cortical borders were
delineated on flattened cortical surfaces using BrainVoyager QX (http://www.brainvoyager.com). The
voxel coordinates around the gray-white matter boundary in V1–V4 were identified and transformed
back into the original coordinates of the EPI images. The LOC, FFA, and PPA were identified using
conventional functional localizers16–18. The data from the functional localizer experiment were analyzed
using SPM5. The voxels showing significantly higher responses to intact object, face, or scene images than
to corresponding scrambled images (two-sided t-test, uncorrected P o 0.05 or 0.01) were identified, and
defined as LOC, FFA, and PPA, respectively. A contiguous region covering the LOC, FFA, and PPA was
manually delineated on the flattened cortical surfaces, and this region was defined as the “higher visual
cortex” (HVC). Voxels from V1–V4 and the HVC were combined to define the “visual cortex” (VC). In
the regression analysis, voxels showing the highest correlation coefficient with the target variable in the
training dataset were provided to decoders constructed for individual feature units (with a maximum of
500 voxels).

Deep neural networks (DNNs)
We used the Caffe implementation of the AlexNet11 and VGG1912 deep neural network models (available
from https://github.com/BVLC/caffe/), both of which were pre-trained with images in ImageNet13 to
classify 1,000 object categories. The AlexNet consisted of five convolutional layers (conv1, conv2, conv3,
conv4, and conv5) and three fully-connected layers (fc6, fc7, and fc8). The VGG19 model consisted of a
total of sixteen convolutional layers (conv1_1, conv1_2, conv2_1, conv2_2, conv3_1, conv3_2, conv3_3,
conv3_4, conv4_1, conv4_2, conv4_3, conv4_4, conv5_1, conv5_2, conv5_3, and conv5_4), and three
fully-connected layers (fc6, fc7, and fc8). The outputs from the units in each of the DNN layers
(immediately after convolutional or fully connected layers and before rectification) were used as target
variables in the following feature decoding analysis.

Deep neural network feature decoding
We used a set of linear regression models to construct multivoxel decoders to decode DNN feature values
of a seen image from an fMRI activity pattern. For this purpose, we used a sparse linear regression (SLR)
algorithm19 that could automatically select the voxels important for prediction. In our analysis, a single
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regression model (decoder) was constructed to predict feature values of a single DNN unit. In the
following, we explain the regression model for a single DNN unit. We individually trained multiple
models to predict feature values of all DNN units in the tested DNN layers and models.

Given an fMRI data sample x= {x1, …, xd}
T comprising the activities of d voxels as input, the

regression function can be expressed by

y xð Þ ¼
Xd
i¼1

wixi þ w0;

where xi is the fMRI amplitude of the voxel i, wi is the weight of voxel i, and w0 is the bias. For simplicity,
the bias w0 is included in the weight vector such that w ¼ fw0; ¼ ;wdgT. The dummy variable x0= 1 is
introduced into the data such that x ¼ fx0; ¼ ; xdgT. Using this regression function, we modelled the
activity of a DNN unit as a target variable t explained by the regression function y(x) with additive
Gaussian noise, as described by

t ¼ y xð Þ þ ε

where ε is a zero mean Gaussian random variable with noise precision β.
Given a training data set, SLR computes the weights for the regression function such that the

regression function optimizes an objective function. To construct the objective function, we first express
the likelihood function as

P t9X;w; β
� � ¼ YN

n¼1

1

ð2πÞ1=2
β1=2exp -

1
2
βðtn -wTxnÞ2

� �
;

where N is the number of samples, X is an N× (d + 1) fMRI data matrix whose nth row is the d + 1-
dimensional vector xn, and t= {t1, …, tN}

T are the samples of a DNN unit.
To introduce sparsity into the weight estimation, we performed Bayesian parameter estimation and

adopted the automatic relevance determination (ARD) prior19. We considered the estimation of the
weight parameter w given the training data sets {X, t}. We assumed a Gaussian distribution prior for the
weights w and non-informative priors for the weight precision parameters α= {α0, … αd}T and the noise
precision parameter β, which are described as

P0 w9α
� � ¼ Yd

i¼0

1

ð2πÞ1=2
αi

1=2exp -
1
2
αiwi

2

� �
;

P0ðαÞ ¼
Yd
i¼0

1
αi
;

P0 βð Þ ¼ 1
β
:

In the Bayesian framework, we considered the joint probability distribution of all the estimated
parameters, and the weights can be estimated by evaluating the following joint posterior probability of w:

P w; α; β9X; t
� � ¼ P t;w; α; β9X

� �
R
dwdαdβ P t;w; α; β9X

� � ¼ P t9X;w; β
� �

P0 w9α
� �

P0ðαÞP0ðβÞR
dwdαdβ P t;w; α; β9X

� � :

Given that the evaluation of the joint posterior probability P(w, α, β|X, t) is analytically intractable, we
approximated it using the variational Bayesian method19–21. While the results presented in this
manuscript were obtained from the models with the ARD prior, qualitatively similar results were
obtained using other regression models (e.g., ordinary least square regression model).

We trained linear regression models that decode feature values of individual feature units for seen
images given fMRI samples in the training image session. For the test dataset, fMRI samples
corresponding to the same images (35 samples for each of the 50 test images) were averaged across trials
to increase the signal to noise ratio of the fMRI signals. Using the learned models, we decoded feature
values of seen images from averaged fMRI samples. The feature decoding accuracy of each DNN unit was
evaluated by the Pearson correlation coefficient between the true and decoded feature values of each
feature unit. The estimated correlation coefficients (“decodability”) from individual subjects and their
averages were ranked separately within each DNN layer and model. We assigned nan values to the
decodability correlations and ranks of units not showing any responses (DNN signals) to images in the
training or test datasets.

Preferred images of individual units
We used the activation maximization technique to generate preferred images of individual units in each
DNN layer22–25. The generation of preferred images starts with a random image and optimizes the image
to maximally activate a target DNN unit by iteratively calculating how the image should be changed via
backpropagation. This analysis was implemented using custom software written in MATLAB based on
Python codes provided in a series of blog posts (Mordvintsev, A., Olah, C., Tyka, M., DeepDream—a code
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example for visualizing Neural Networks, https://github.com/google/deepdream, 2015; Øygard, A. M.,
Visualizing GoogLeNet Classes, https://github.com/auduno/deepdraw, 2015).

Code availability
The code for the DNN feature decoding is available at https://github.com/KamitaniLab/GenericObject
Decoding. Both MATLAB and Python scripts are included in the repository. We also provide a Python
API to download and extract data from Figshare (Data Citations 2, 4), and jupyter notebooks for example
usage of the data at https://github.com/KamitaniLab/brain-decoding-datasets. In addition, Python scripts
for generating preferred images of individual DNN units are also available at https://github.com/
KamitaniLab/cnnpref. All code is available without any access restrictions.

Data Records
Experimental data
All the data produced from the MRI experiments are hosted at OpenNeuro (Data Citation 1). The dataset
is based on the Brain Imaging Data Structure (BIDS)26. All MRI images are saved as NIfTI files.

The data repository contains five directories for the five subjects (sub-01 to sub-05). Each directory
comprises several subdirectories that include MRI data from a single scanning session. The ses-anatomy
directory contains a defaced T1-weighted anatomical reference image for the individual subject, and the
ses-perceptionTraining∗ and ses-perceptionTest∗ directories include fMRI images collected in the training
and test image presentation experiments, respectively (Table 1). fMRI images from a single run are stored
in a single 4-D NIfTI file. Each run is accompanied by a task event file, which describes experimental
information such as the timing of trials, presented stimuli, and subject’s response times (Table 2). The
session directories also contain a T2-weighted anatomical image obtained in the same session. Binary
mask images for ROIs used in the analysis (see above) are placed in sourcedata/ osubject> /anat
directories (Table 3).

In the task event files, stimuli are represented by a float number, stimulus_id, in which the integer part
indicates the WordNet27 ID for the synset (category) and the decimal part indicates image ID. For
example, 1518878.005958 represents image 5958 in synset n01518878 (‘ostrich’). We do not include the
stimulus images in the data repository because of licensing issues. A script to download the stimulus
images is available at https://github.com/KamitaniLab/GenericObjectDecoding. Downloaded image files
are named as XXXX_YYYY.JPEG, where XXXX and YYYY represents the WordNet ID and image ID
respectively (e.g., n01518878_5958.JPEG).

Preprocessed fMRI data
The preprocessed fMRI data are hosted at Figshare and Zenodo (Data Citations 2, 3). All data are saved
as MATLAB (∗.mat) files. Each file contains data collected from one subject (Subject1-5.mat) as
BrainDecoderToolbox2 data (https://github.com/KamitaniLab/BrainDecoderToolbox2). The data is
composed of fMRI data (‘VoxelData’), stimulus labels (‘stimulus_id’), and experiment design information
(‘DataType’ and ‘Run’). The fMRI data includes preprocessed BOLD signal values of voxels in ROIs that
are used in the analysis (V1, V2, V3, V4, LOC, FFA, PPA, and HVC). Each row in the fMRI data array is
within-block averaged signals. Signals during rest periods and one-back repetition blocks are excluded
from the data. ‘stimulus_id’ is given by the same convention to Experimental Data (see above).
‘DataType’ represents the type of experiments; 1 and 2 represent training and test image presentation
experiments, respectively. All the preprocessed fMRI data uploaded on Figshare (Data Citation 2) and
Zenodo (Data Citation 3) are identical to each other.

DNN features and decodability
The decoded features, true features, accuracy, and ranking by accuracy are available from Figshare and
Zenodo (Data Citations 4, 5). All data files are saved as MATLAB (∗.mat) files and zipped by the DNN
and the layer. The naming rules for the ∗.mat files and the size (shape) of the data in the file are
summarized in Table 4. All DNN feature data uploaded on Figshare (Data Citation 4) and Zenodo (Data
Citation 5) are identical to each other.

Decoded DNN features. The decoded features are saved to a file named in the manner ‘decoded–o
net>–o layer>–osubject_id>–o image_id> .mat’, where onet> takes either “AlexNet” or
“VGG19”, o layer > takes the layer name of the DNN, osubject_id> is the subject ID, and
o image_id> is the ImageNet ID of the stimulus image. In the ∗.mat file, an array is saved with a
shape the same as that of the output of the o layer> layer in the onet>DNN model (See Table 4). The
∗.mat files are zipped for each DNN and layer to ‘decodedDNN-decoded–onet>–o layer>.zip’ file and
uploaded to Figshare and Zenodo (Data Citations 4, 5).

True DNN features. The true features are saved for each DNN model, layer, and image, and are named
as ‘true–onet>–o layer>–o image_id>.mat’. Zipped files for eachonet> ando layer> are uploaded
to Figshare and Zenodo (Data Citations 4, 5).
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Decoding accuracy (“decodability”). The decoding accuracy for each DNN, layer, and subject are
saved in a file named in the manner ‘accuracy–onet>–o layer>–osubject_id>.mat’. In addition, we
also created files for accuracy averaged across subject, ‘accuracy-onet>-o layer>-Averaged.mat’.
Zipped files for eachonet> ando layer> are uploaded to Figshare and Zenodo (Data Citations 4, 5).

Decodability ranking. The ranking of feature units by accuracy is provided for each DNN, layer, and
subject, and is provided in a ∗.mat file named as ‘rank–onet>–o layer>–osubject_id>.mat’. In
addition, we also created a file containing the average ranking by subject, ‘rank–onet>–o layer>–
Averaged.mat’. Zipped files for eachonet> ando layer> are uploaded to Figshare and Zenodo (Data
Citations 4, 5).

Subject Experiment Session # runs

Subject 1 (sub-01) Training image
(ses-perceptionTraining)

1 10

2 10

3 4

Test image
(ses-perceptionTest)

1 10

2 10

3 5

4 10

Subject 2 (sub-02) Training image
(ses-perceptionTraining)

1 10

2 10

3 4

Test image
(ses-perceptionTest)

1 10

2 10

3 10

4 5

Subject 3 (sub-03) Training image
(ses-perceptionTraining)

1 8

2 8

3 8

Test image
(ses-perceptionTest)

1 8

2 9

3 8

4 6

5 4

Subject 4 (sub-04) Training image
(ses-perceptionTraining)

1 8

2 8

3 8

Test image
(ses-perceptionTest)

1 9

2 9

3 9

4 8

Subject 5 (sub-05) Training image
(ses-perceptionTraining)

1 8

2 4

3 6

4 3

5 3

Test image
(ses-perceptionTest)

1 7

2 7

3 5

4 4

5 5

6 7

Table 1. Summary of the experimental data.
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We also provide a Python API to download and extract data from Figshare (https://github.com/
KamitaniLab/brain-decoding-datasets, see Usage Notes section).

Technical Validation
To validate the quality of the dataset, we first performed feature decoding analysis to decode the DNN
feature values from the fMRI activity patterns, and evaluated the decoding accuracy (“decodability”) of
individual DNN units for each subject6. We then evaluated the consistency of the decodability between
multiple subjects to demonstrate the replicability of the results across subjects.

In the feature decoding analysis, decoders were trained to decode DNN unit activities to input image
sequences from visual cortical (VC) activities measured while the subjects viewed the same sequences of
stimulus images from the training dataset (1200 samples). The decoders were individually trained for
each unit in the convolutional (5 and 16 layers for AlexNet and VGG19 respectively) and fully-connected
layers (3 layers for both of AlexNet and VGG19) of the DNN models (see Table 4 for the numbers of
units in each layer). The trained decoders were then applied to an independent test dataset (50 samples)
to evaluate the decodability of individual DNN units. The decodability of each DNN unit was evaluated
by calculating a correlation coefficient (Pearson correlation) between a pair of feature value sequences
from the DNN (true features) and the brain activity of individual subjects (decoded features).

The obtained decodabilities of individual units were further examined for each DNN layer and model,
and were compared across subjects. Figure 2a shows the distributions of the feature decoding accuracies
evaluated for each individual layer of each DNN model (AlexNet and VGG19), in which the decoding
accuracy largely varied across units, layers, and models. To assess the degree of consistency of
decodability across subjects, we evaluated the unit-by-unit similarity of the decodability between multiple
subjects. Figure 2b shows example scatter plots of feature decoding accuracies from two subjects. The
decodability of individual units from the two subjects is densely distributed along the diagonal axis for
most layers, showing positive correlations between the two subjects. Figure 2c shows the mean correlation
coefficients across all pair combinations of the five subjects. The decodability shows positive correlation

Column Description

onset Onset time of the event (sec)

duration Duration of the event (sec)

trial_no Trial number

event_type Type of the event (rest or stimulus)

stim_id Stimulus ID

response_time Subject’s response time (sec; elapsed time from the beginning of the run)

Table 2. Columns in task event files for the image presentation experiments.

File name ROI

sub-*_mask_LH_V1.nii.gz Left V1

sub-*_mask_RH_V1.nii.gz Right V1

sub-*_mask_LH_V2.nii.gz Left V2

sub-*_mask_RH_V2.nii.gz Right V2

sub-*_mask_LH_V3.nii.gz Left V3

sub-*_mask_RH_V3.nii.gz Right V3

sub-*_mask_LH_hV4.nii.gz Left V4

sub-*_mask_RH_hV4.nii.gz Right V4

sub-*_mask_LH_LOC.nii.gz Left LOC

sub-*_mask_RH_LOC.nii.gz Right LOC

sub-*_mask_LH_FFA.nii.gz Left FFA

sub-*_mask_RH_FFA.nii.gz Right FFA

sub-*_mask_LH_PPA.nii.gz Left PPA

sub-*_mask_RH_PPA.nii.gz Right PPA

sub-*_mask_LH_HVC.nii.gz Left higher visual cortex (HVC)

sub-*_mask_RH_HVC.nii.gz Right higher visual cortex (HVC)

Table 3. ROI mask images included in the dataset.
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coefficients between subjects for all layers of the each of the two DNN models. These results suggest that
the feature decoding from the brain can produce replicable results and that the decodability was highly
consistent across subjects even at the unit level.

Taken together, our analyses support the quality of the present dataset as the data showed replicable
and consistent results from multiple subjects. The fMRI data made it possible to decode DNN feature
values from brain activity patterns, and the estimated decodability was highly consistent across
subjects. Thus, free availability of the present dataset provides an opportunity for it to be utilized for
various purposes, including the feature selection in neural encoding and decoding analyses4,8,10, as well
as further applications involving combining the decoded features with deep neural network
technology6,9.

Usage Notes
The experimental data can be downloaded from OpenNeuro (Data Citation 1). To perform DNN feature
decoding, the fMRI data need to be preprocessed as described in the Methods section. The head motion
correction, functional-anatomical registration in individual anatomical space, and resampling, can be
conducted with SPM, while the further preprocessing, including regressing-out of nuisance parameters,
reduction of extreme values, shifting of data, and within-block averaging can be conducted with Brain
Decoder Toolbox 2 (https://github.com/KamitaniLab/BrainDecoderToolbox2). The preprocessed fMRI
data are available on Figshare and Zenodo (Data Citations 2, 3)

The DNN feature decoding analysis can be performed with scripts available at https://github.com/
KamitaniLab/GenericObjectDecoding (analysis_FeaturePredicion.m for MATLAB and analysis_Feature-
Prediciton.py for Python). The scripts train the feature decoding models with fMRI data in the training
image presentation experiments, and predict DNN features from fMRI data in the test image presentation

odata_type> osubject_id> oimage_id> onet> olayer> Data size

accuracy
decoded
rank
true

S1
S2
S3
S4
S5
Averaged (only for
accuracy and
rank)

ImageNet ID for 50 stimulus
images in the format n*****_****.
(only for decoded and true)

AlexNet conv1 55 × 55 × 96

conv2 27 × 27 × 256

conv3 13 × 13 × 384

conv4 13 × 13 × 384

conv5 13 × 13 × 256

fc6 1 × 1 × 4096

fc7 1 × 1 × 4096

fc8 1 × 1 × 1000

VGG19 conv1_1 224 × 224 × 64

conv1_2 224 × 224 × 64

conv2_1 112 × 112 × 128

conv2_2 112 × 112 × 128

conv3_1 56 × 56 × 256

conv3_2 56 × 56 × 256

conv3_3 56 × 56 × 256

conv3_4 56 × 56 × 256

conv4_1 28 × 28 × 512

conv4_2 28 × 28 × 512

conv4_3 28 × 28 × 512

conv4_4 28 × 28 × 512

conv5_1 14 × 14 × 512

conv5_2 14 × 14 × 512

conv5_3 14 × 14 × 512

conv5_4 14 × 14 × 512

fc6 1 × 1 × 4096

fc7 1 × 1 × 4096

fc8 1 × 1 × 1000

Table 4. Summary of the DNN feature and decodability datasets. The data files in Figshare and Zenodo
(Data Citations 4, 5) are named as “odata_type>–onet>–o layer>–osubject_id>–o image_id>.mat”.
A list of each component and the size (shape) of the data are shown.
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experiments. To allow the data to be read by the scripts, the fMRI data must be saved in Brain Decoder
Toolbox 2 format.

The decoded DNN features are available on Figshare and Zenodo (Data Citations 4, 5). We provide
a Python API for downloading and extracting data from Figshare (https://github.com/KamitaniLab/
brain-decoding-datasets). The repository also includes a jupyter notebook that replicates results in Fig. 2.
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Figure 2. Evaluations of DNN feature decoding. (a) Violin plots of feature decoding accuracy for each DNN

layer and model. Distributions of the decoding accuracies of all individual units in each DNN layer are shown

(pooled across five subjects, predicted from VC). Black bars denote mean decoding accuracies averaged across

all units and subjects. (b) Scatter plots of decoding accuracies of individual DNN units from two subjects

(AlexNet, VC). Each dot denotes the decoding accuracies of each DNN unit estimated from Subject 1 (vertical

axis) and Subject 2 (horizontal axis). The color of each dot indicates the density of the plotted dots. For

visualization purpose, randomly selected subsets of units are shown with a maximum of 1000 units. (c) Mean

correlation coefficients between decoding accuracies of DNN units from different subjects (VC). Pearson

correlation coefficients between decoding accuracies of individual DNN units obtained from different subjects

were calculated for all pairs of subjects (10 pairs from 5 subjects). Each dot denotes the correlation coefficients

for each pair of subjects.
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