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MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000-000
S 0025-5718(XX)0000-0

SPECTRAL DISCRETIZATION ERRORS IN FILTERED
SUBSPACE ITERATION

JAY GOPALAKRISHNAN, LUKA GRUBISIC, AND JEFFREY OVALL

ABSTRACT. We consider filtered subspace iteration for approximating a clus-
ter of eigenvalues (and its associated eigenspace) of a (possibly unbounded)
selfadjoint operator in a Hilbert space. The algorithm is motivated by a quad-
rature approximation of an operator-valued contour integral of the resolvent.
Resolvents on infinite dimensional spaces are discretized in computable finite-
dimensional spaces before the algorithm is applied. This study focuses on how
such discretizations result in errors in the eigenspace approximations computed
by the algorithm. The computed eigenspace is then used to obtain approxima-
tions of the eigenvalue cluster. Bounds for the Hausdorff distance between the
computed and exact eigenvalue clusters are obtained in terms of the discretiza-
tion parameters within an abstract framework. A realization of the proposed
approach for a model second-order elliptic operator using a standard finite ele-
ment discretization of the resolvent is described. Some numerical experiments
are conducted to gauge the sharpness of the theoretical estimates.

1. INTRODUCTION

The goal of this study is to provide an analysis of discretization errors that
arise when a popular filtered subspace iteration algorithm is employed to com-
pute eigenvalues of selfadjoint partial differential operators. Instead of a spe-
cific differential operator, we consider a general linear, closed, selfadjoint operator
A :dom(A) € H — H (not necessarily bounded) in a complex Hilbert space H,
whose (real) spectrum is denoted by ¥(A). We are interested in computationally
approximating a subset A of the spectrum that consists of a finite collection of
eigenvalues of finite multiplicity.

Filtered subspace iteration is a method for approximating A and its correspond-
ing eigenspace (invariant subspace) and is a natural generalization of the power
method [23,28]. Tt can roughly be described as follows. First, the eigenspace of the
cluster A is transformed to the dominant eigenspace of another, bounded operator
called the “filter.” Next, a subspace iteration is applied using the bounded filter.
Starting with an initial subspace (usually chosen randomly), the bounded operator
is repeatedly applied to it, generating a sequence of subspaces that approximates
the eigenspace of A. Approximations of A are obtained from the approximate
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2 J. GOPALAKRISHNAN, L. GRUBISIC, AND J. OVALL

eigenspaces by a Rayleigh-Ritz procedure. To apply this filtered subspace iteration
in practice requires computable finite-rank approximations of the resolvent at a few
points, obtained by some discretization process. It is the errors incurred by such
discretizations that form the subject of this paper.

The exact eigenspace, namely the span of all the eigenvectors associated with
elements of A, is denoted by E. Then m = dim F, being the sum of multiplicities
of each element of A, is finite, and we assume m > 1. Throughout this paper, the
multiplicity £ of an eigenvalue A of an operator refers to its algebraic multiplicity,
i.e.,, Ais a pole of order ¢ of the resolvent of that operator. Recall that, for a
selfadjoint operator A, the algebraic multiplicity of A coincides with its geometric
multiplicity, dimker(A — A).

As mentioned above, the idea behind filtered subspace iteration is to transform
E into the dominant eigenspace of certain filter operators. We shall see in the next
section that the construction of these filters can be motivated by approximations
of a Dunford-Taylor contour integral. There has been a resurgence of interest in
contour integral methods for eigenvalues due to their excellent parallelizability [2,4,
14,15,24). Following [2], we identify two different classes of methods in the existing
literature that use contour integrals for computation of a targeted cluster of matrix
eigenvalues. One class of methods, that often goes by the name SS-methods [24]
(see also [4,16]), approximates A by the eigenvalues of a system of moment matrices
based on contour integrals. The moment matrices are obtained by approximating
the integrals by a quadrature, and the spectral approximation error depends on the
accuracy of the quadrature.

The other class of methods are referred to by the name FEAST [21] (see also [14,
28]). They are more related to our present contribution (the difference being that
while FEAST is a matrix algorithm, we focus on filtered subspace iterations applied
to inifinite-dimensional selfadjoint operators and their discretizations). Like SS-
methods, FEAST also uses quadratures to approximate a contour integral. In our
view, the use of quadratures in FEAST is essentially different from their use in
approaches like the SS-method. Quadratures in FEAST are only used to develop
the filter used in a subspace iteration. A consequence of this is that the quadrature
error is not as relevant in FEAST as in the SS-method. The analysis in this paper
will show this in precise terms. In particular, our findings show that the rate of
convergence of the discretization error is unaffected by the quadrature error.

When A is a differential operator on an infinite-dimensional space, some approx-
imations to bring the computations into finite-dimensional spaces are necessary.
The central concern in this paper is the study of how these approximations affect
the final spectral approximations that the filtered subspace iteration yields asymp-
totically. The main technical difficulty in analyzing discretization errors for the
unbounded operator eigenproblem is that many of the existing standard tools [3]
are not directly applicable to our situation. We present an abstract framework that
allows one to study approximation of spectral clusters of unbounded selfadjoint
operators with compact resolvent. Very general discretizations are allowed through
a set of abstract assumptions.

To quickly outline the approximation approach studied in this paper, recall that
the spectral projector onto E, which we denote by 5, is characterized by a Dunford-
Taylor contour integral of the resolvent R(z). Its N-term quadrature approximation
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is denoted by Sy. In the expression defining Sy, when R(z) is replaced by a com-
putable finite-rank approximation Rp,(z), we obtain S%, a practically computable
filter. Here h is some discretization parameter (such as the grid spacing) inversely
related to a computational finite-dimensional space. By repeated application of
S]’(,, the iteration produces a sequence of subspaces {E,(f) : ¢ =1,2,...}, which
we study. While sufficient conditions for convergence of the FEAST iteration for
matrices can be found in [14,28], it is not immediately clear that the iteration con-
tinues to converge when the operator is perturbed, such as the perturbation of Sy
to S]'(,. We begin our analysis by showing that the iterates E,(f) do converge under
certain sufficient conditions, after which we focus on analyzing the limit.

To summarize the novelty of this work, this is the first work to study the effect
of the discretization parameter h (in addition to N). The errors in eigenspace
approximations often need to be measured in stronger norms than the base H-
norm. The example of elliptic differential operators on H = L?(£2) illustrates the
need to measure eigenfunction errors in a stronger norm like the H'(§2)-norm. To
our knowledge, this is the first work to give bounds for eigenspace discretization
errors arising in filtered subspace algorithms in H-norm as well as a stronger V-
norm (see Theorem 4.1). We provide the first result showing that the Hausdorff
distance between the eigenvalue cluster computed by filtered subspace iteration and
A converges to zero at predictable rates as the discretization parameter h — 0 (see
Theorem 5.7 and Corollary 5.8). In the process of doing so, we develop a general
result (Lemma 5.1) bounding the perturbation of Ritz values of an unbounded
selfadjoint operator. To highlight one more conclusion from our analysis, increasing
N has little effect on the spectral discretization error as measured by the gap
between E and FEj (although it may affect the speed of convergence of E}(LE) as
implied by the results of [14,28]).

The rest of the paper is organized as follows. In Section 2, we describe precisely
the above-mentioned process of double approximation (going from S to S%) and
introduce the necessary assumptions for the error analysis. Section 3 introduces
the space to which filtered subspace iteration using SI'(, converges. Bounds for the
gap between computed and exact eigenspaces are proved in Section 4. Eigenvalue
errors are then bounded using the square of this gap. Analysis of a standard finite
element discretization of the resolvent of a model operator in Section 6 provides
an example of how abstract conditions on the resolvent might be verified in prac-
tice. The practical performance of the algorithm with the Lagrange finite element
discretization is reported in Section 7.

2. PRELIMINARIES

Let A, A and F be as discussed previously. As already mentioned, filters are
linear operators on H having E as their dominant eigenspace, in the sense made
precise below.

Suppose that I' = C\X(A) is a positively oriented, simple, closed contour that
encloses A and excludes X(A)\A, and let G < C be the open set whose boundary
is I'. By the Cauchy Integral Formula,

(2.1) (&) = ! (z— &) Vdz = {1, §ed,

0, €eC\(GuT).

2mi
r
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Thus r(€) equals a.e. the indicator function of G in C. The associated (orthogonal)
spectral projection S : H — H is the bounded linear operator given by the Dunford-
Taylor integral

1
2.2 = —
(2.2) S 5 R(z) dz,
r
where R(z) = (2 — A)~! is the resolvent, a bounded linear operator on H for each

z €T Since I' encloses A and no other element of 3(A), its well known that
(2.3) E =ran(S).

Furthermore, by functional calculus (see [22, Theorem VIIL5], [26, Theorem 5.9]
or [5, Section 6.4]), if (X, ¢) € X(A) x dom(A) satisfies Ap = A\, then S¢ = r(A)p =
r(A)¢. Since r(\) equals 1 for all A € A and equals 0 for all other elements of ¥(A),
the desired eigenspace E of A is now the dominant eigenspace of S = r(A). In this
sense, S is an ideal filter.
Motivated by quadrature approximations of (2.1), in the same spirit as [4,13,21,
24, 28], we approximate (&) by
N—1
(2.4) rn(€) =wy + > wi(z— &7,
k=0
for some wy, zx € C. The corresponding rational filter is the operator
N—1
(2.5) Sy =rn(A) =wn + Y wiR(z),
k=0
which can be viewed as an approximation of S. It is common to refer to Sy, as
well as the rational function ry(€), as the filter. As in the case of S, if (A, ¢) €
3(A) x dom(A) satisfies Ap = A\, then Sy¢ = ry(A)d. In particular, the set A of
eigenvalues of interest have been mapped to {ry(A) : A € A} by the filter.
These mapped eigenvalues are dominant eigenvalues of Sy if
(2.6) min [ry(A)] > sup  |ry(p)]
AeA HES(A)\A
holds. This dominance can be obtained provided A is strictly separated from the
remainder of the spectrum. To quantify the separation, we consider the following
strictly separated subsets of R centered around y € R

IY={reR:|z—y[ <~} O5,={zeR:|z—y|=>(1+}

for some positive numbers v and 4. If the spectral cluster of interest is within 7Y,
then the number § provides a measure of the relative gap between it and the rest of
the spectrum—relative to the radius 7y of the interval wherein we seek eigenvalues.
Using the numbers y,~, and §, define

§ sup. |1y (@)
(2.7) W= |uil, k= i
P o, Irn (@)

These definitions help us to formulate the following assumption on the filter and
cluster separation.
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FIGURE 1. The Butterworth filter with NV = 8 points: the points
zy, are plotted in the complex plane (top) and the functions r and
ry are compared on the real line (bottom).

Assumption 2.1. There exist y € R, § > 0 and > 0 such that
(2.8) Acly, E(A\A < OF .

We assume that ry is a rational function of the form (2.4) with the property that
zr € B(A), W < 0, and /& < 1.

Note that if & < 1, then (2.6) holds. When an N-point trapezoidal rule is used
for quadrature approximation we obtain an ry as in (2.4) with wy = 0. When the
Zolotarev rational approximation of r(£) is used to construct ry, the term wy is
nonzero [14].

Example 2.2 (Butterworth filter). Consider the filter obtained by setting wx = 0,
and for k=0,...,N — 1,

(2.9) 2 =70t 4y wy = el TN

with 0, = 27k/N and ¢ = +7/N. These weights and points are obtained using
the N-point uniform trapezoid rule approximation of the contour integral in (2.1)
when T is set to the circle I' = {ye!®*%) 4+ ¢ : 6 € [0,27)} enclosing a spectral
cluster A that satisfies (2.8) — see Figure 1. It is obvious from the expression for
wy, that W = Z,ICV;OI /N =, so the requirement of Assumption 2.1 that W < oo
is satisfied.

An additional important requirement of Assumption 2.1 is that the filter should
satisfy & < 1. Let us now show this holds for the Butterworth filter when N is
even. We claim that

N—-1 ) eiN¢
(210) TN(E) ,;O wk(zk 5) ciNg _ ((5 — y)/w)N .
For the special case v = 1, y = 0, ¢ = 0, this claim follows from a partial frac-
tion decomposition of (¢V — 1)7!, recognizing that ¢V — 1 = g;ol(f — zg). Its
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extension to the general case readily follows from the obvious change of variable.
Restricting (2.10) to the real line, it follows by inspection that

1

vl =5 2oy Il = ey e
for any y € R. Thus & = 2[(1+§)N +1]7! < 1. O

Next, we introduce a subspace V < H, motivated by the need to prove results
that bound discretization errors in norms stronger than the H-norm. We place the
following assumption and give example classes of operators where the assumption
holds.

Assumption 2.3. Suppose there is a Hilbert space V € H such that £ < V, there
is a Cy > 0 such that for all u € V, |ully < Cy|ully, and V is an invariant subspace
of R(z) for all z in the resolvent set of A.

Example 2.4 (V is the whole space). Set V = H, with (-,-)y = (-, ). In this case
it is obvious that all statements of Assumption 2.3 hold. O

Example 2.5 (V is the domain of a positive form). Suppose a(u,v) is a densely
defined closed sesquilinear Hermitian form on H and there is a § > 0 such that

(2.11) a(v,v) = §|v3,, v € dom(a).

Set
V = dom(a), o]y = a(v,v)Y/2.

To show that Assumption 2.3 holds in this case, first set the operator A to be the
closed selfadjoint operator associated with the form, namely it satisfies a(u,v) =
(Au,v) for all u € dom(A) € dom(a) and all v € dom(a) (see the first representation
theorem [18, TheoremVI.2.1] or [26, Theorem 10.7]). Note that, in this case, A
is a positive operator. Hence A has a unique selfadjoint positive square root [18,
Theorem V.3.35], denoted by A'/2, that commutes with any bounded operator that
commutes with A. By the second representation theorem [18, Theorem VI.2.23],
the form domain is characterized by dom(a) = dom(A'?), and |[v]y = | AY?v]
for v € V. The strict positivity of a ensures that both A and AY/? are invertible on
their respective domains.

Since a is closed, V is complete. Due to (2.11), V is continuously embedded
in H, with the constant Cy, = 6~ Y2, The exact eigenspace F is contained in
dom(A) < dom(AY?) = V. Since AY? and A~'/? commutes with R(z), for any
v,w € V, we have for any v € V = dom(A'/?) and z in the resolvent set of A,

R(zyv=(z—A)"to=A"Y2(z—A4)14V2 .

Since ran(A~1/2) = dom(AY?) = V, we see that R(z)V < V. Thus Assumption 2.3
is verified. O

Example 2.6 (V is a graph space). Given A, put V = dom(A) € H and endow
the set V with the topology of the graph norm

ol = (Il + 4vi) ', vev.
We claim that Assumption 2.3 holds in this case. Indeed, since A is closed, the
graph norm makes V into a Hilbert space. Obviously £ < V and V is continuously
embedded into H with Cyy = 1. Since A commutes with R(z) for any z in the
resolvent set of A, we have R(z)dom(A) < dom(A). O
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The next essential ingredient in our study is the approximation of R(z). When
A is a differential operator on an infinite-dimensional space, to obtain numerical
spectral approximations, we perform a discretization to approximate the resolvent
of A in a computable finite-dimensional space. Accordingly, let V;, be a finite-
dimensional subspace of V, where h is a parameter inversely related to the finite
dimension, e.g., a mesh size parameter h that goes to 0 as the dimension increases.
Let Rp(z) : H — V3, be a finite-rank approximation to the resolvent R(z) satisfying
the following assumption.

Assumption 2.7. Assume that the operators Ry (zx) and R(z) are bounded in V
and satisfy

(2.12) lim | Ry (1) — Rz |y = 0
forall k =0,1,...,N — 1.

Note that this assumption implies that R(zx), being the limit of finite-rank
operators, is compact in V. Its also compact as an operator on H due to Assump-
tion 2.3. Consequently R(z) is compact for all z in the resolvent set. Relaxing
Assumption 2.7 to go beyond operators with compact resolvent is outside the scope
of the current work.

Consider the approximation of Sy given by

N—-1

(2.13) Sk =wn + Y wiRn(zk).
k=0

In view of Assumption 2.7, we shall from now on view both Sy and S% as bounded
operators on V. Note that S% need not be selfadjoint. In Section 6, we shall
consider an example of S ]}{,, obtained by a standard finite element discretization of
R(z) based on symmetrically located 2y, that is selfadjoint. But in general S% may
fail to be selfadjoint due to the configuration of {z} or due to the properties of the
discretization (see e.g., [8]).

With the resolvent discretization, filtered subspace iteration can be described
mathematically in very simple terms. Namely, starting with a subspace E}(lo) < W,
compute

(2.14) EY = sh gl for £ =1,2,....

Of course, in practice, one must include (implicit or explicit) normalization steps
and maintain a basis for the spaces E}(f), but these details are immaterial in our
ensuing analysis. The convergence of the FEAST algorithm in Euclidean (2 and
matrix-based) norms was previously studied in [14,23]. In Section 3, we shall utilize
some of their ideas to show that (2.14) converges in V), despite the perturbations
caused by the above-mentioned resolvent approximations. Here however, we are
solely interested in studying the discretization errors found in the final asymptotic
product of the algorithm, i.e., the discretization errors in what the algorithm outputs
as the “limit space” when (2.14) converges.

3. THE LIMIT SPACE

The purpose of this section is to identify to what space convergence of (2.14)
might happen. We also briefly examine in what sense E}(f) converges to it.
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In view of Assumption 2.3, V is an invariant subspace of the resolvent. Hence in
the remainder of the paper, we will proceed viewing Sy and S% as operators on V.
To measure the distance between two linear subspaces M and L of V, we use the
standard notion of gap [18] defined by

(3.1) gapy, (M, L) = max | sup disty(m, L), sup disty (I, M) | .

meUy, leuy

Here and throughout, for any linear subspace M < V, we use Uy, to denote its unit
sphere {w e M : |w|y = 1}.

Recall that ' = ran S, the exact eigenspace corresponding to eigenvalues A1, ..., A\,
of A that we wish to approximate. If Assumption 2.1 holds, then the operator
Sn = rn(A) has dominant eigenvalues

,LLiZ’/‘N(/\Z‘), i=1,2,...,m,

strictly separated in absolute value from the remainder of X(Sy). In particu-
lar, since & < 1, we have p; # 0 for ¢ < m, and letting py = sup{|p| : p €

Z<SN)\{:U‘13 s ,um}}7
(32) ,u’*<|:u’t‘7 221,2,,7’71,

In view of these facts, we can find a simple rectifiable curve © in the complex
plane that encloses {p1, ..., tm} and lies strictly outside the circle of radius 4. In
particular, © encloses no other element of ¥(Sy). Define the spectral projector of
SN by
1 -1
Py = o (z—Sn) dz.
e
Then En = ran Py is the eigenspace of Sy corresponding to its eigenvalues pi1, . . . , .

Lemma 3.1. We have Exy = E and Py = S.

Proof. Since dim Ey = dim E = m, it suffices to prove that £ < Ey. Ife; € F is an
eigenfunction of A corresponding to the eigenvalue \; € A, then Sye; = ry(\;)e;,
so e; € E. Since Py and S are both orthogonal projectors and have the same
range, they are the same operator. O

Next, observe that when Assumption 2.7 is used after subtracting the expression
for S% in (2.13) from that of Sy, we obtain

(33) ISy = Skly < W _max [ Ra(ax) = R(z)ly — 0
as h goes to 0. Let us recall the standard ramifications of the convergence of op-
erators in norm given by (3.3) (see e.g., [18, Theorem IV.3.16] or [1]). Namely,
given an open disc enclosing an isolated eigenvalue of Sy of multiplicity ¢, (3.3)
implies that for sufficiently small h, there are exactly ¢ eigenvalues (counting al-
gebraic multiplicities) of S% in the same disc. In particular, this implies that, for
sufficiently small h, the contour © is in the resolvent set of S% and encloses only
semisimple eigenvalues of joint multiplicity m of S ]f{,, which we shall enumerate as
phoph o ul . Hence, the integral
Ph:QLﬂ'i (z—S]}i,) 'z

e
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is well defined. Henceforth we assume that h has been made small enough as
mentioned above.

Definition 3.2. Let E; = ran Py.

Clearly, P, is the spectral projector of S% corresponding to the eigenvalues
phoph, o uh . Hence,

(3.4) dim Ej, = m.
Note also that by construction of ©,
(3.5) ph # 0, i=1,2,...,m.

Remark 3.3. We may consider approximating A by Ap and then setting Ry, (zx) =
(zx — Ap) 7! in the formation of S%, or more generally, approximate the resolvent
R(z) = (2 — A)~! directly by some Rj(zj). In the former case, the results
of [14,28] will show convergence of the FEAST iteration, applied to the matrix
Ap, provided their assumptions on Ay can be verified. The latter case allows for
different discretizations at different zj, as well as for discretizations of the resolvent
by least-squares approaches, including discontinuous Petrov-Galerkin methods [8].
These approaches are of interest because, even when Ry, (zx) is not selfadjoint, the
application of Ry, (zy) reduces to the solution of a Hermitian positive definite system.

We now show that the above-defined FEj, is the limit space of subspace iter-
ates E}(f).
Theorem 3.4. Starting with a subspace E,(IO) C V), satisfying dim(E,(lo)) = dim(PhE,(Lo)) =

m, we compute E,(f) by (2.14). Suppose Assumptions 2.1-2.7 hold. Then there is
an hg > 0 such that, for all h < hyg,

I EY E,) =0.
Jim gapy,(E;,”, Ey) =0
Proof. Step 1: Recall from (3.4) that dim(Ey) = m for sufficiently small h. To-

gether with PhE,(LO) C Ej and the assumption dim(PhE,(lo)) = m, this leads to the
equality

(3.6) PEY = E,.

Thus
PEY = Py(S})'EY) = (S4) PEY = (%) E), = By

In particular, this implies that dim(E,(f)) > dim(PhE,(f)) = dim(FE}). Hence,
(3.7) dim(EY) = dim(Ey) =m,  £=0,1,2,....

Step 2: Let v; be an eigenvector of S J}(, corresponding to eigenvalue ulh. We shall

now find an approximant of v; in E}(f). Due to (3.6), there is a q(io) in E}(LO) such

that Phq(io) = v;. Set

¢ 1\" 0
¢ = <Mh> (Sh)d”.

Clearly q(f) is well defined due to (3.5) and is in E}(f). Moreover,
— ) =i = () (SR [Pad” + (1 = Pa)df”]
()~ (SR = P,

Vi
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Since (I — Ph)q(io) = (I — Py)%q; (0 (I - Ph)(q(io) —v;), we conclude that
(3.8) vi =) = =) ()T = P () — ).

Step 3: Since S% commutes with Py, equation (3.8) implies
0
Hf%wv\|WHSNI P o = d”Iv.

Let " denote the supremum of |u| over all p in S(SE\{ul, pb, ..., pul3, ie., pl
is the spectral radius of S% (I — Py,), so

. 14
= lim IS} (1 = P)'IY".

Hence, for any given € > 0, there is an £y > 1 such that |[S% (I—P,)]%|v < (uf +¢)*
holds for all £ > £y and consequently
h ¢
(39 o — 421y < By o,
||
Step 4: As already seen, a consequence of Assumptions 2.1 and 2.7, is that
by making h sufficiently small, we ensure that the eigenvalues uf, ub, ..., uP of
Sh are strictly separated in magnitude from the remaining eigenvalues — cf. (3.2).
Hence we may choose an ¢ > 0 so small that §; = (ul + ¢)/|u?| < 1. Then, with
= |v; — q(io) [y, the estimate (3.9) implies

(3.10) lvi — ¢y < audt, > 4.

Note that v;, i = 1,...,m form a basis for E}. Hence, we may expand an arbi-
trary vy € U}E}h in this basis and construct an approximation of v, using the same

coefficients:
m m
_ . _ (0
Vp = CiVi, qe = Ciq;
i=1 i=1

Then, by (3.10),

m m V2 ;o 1/2
(3.11) diStV(Uqu;(f ) < Jon —aelly < Z Czai|5f S (Z |Ci|2> (Z 51‘%) :
i=1

i=1 i=1

where o = max; «;.
Step 5: Denote one of the two suprema in the definition of gapy,(Ep, E}(f)) by

Op,e = sup disty (vh, E;(f)) .

vheU};h

Let g denotes the minimal eigenvalue of the m x m Gram matrix of the v;-basis
(whose (i, j)th entry is (v;,v;)y). Then ¢ > | |ci|* < |vn|3 = 1. (Note that g may
depend on h, but is independent of £.) Hence (3.11) implies 67, , < (a?/g) 331" 67
which converges to 0 as £ — oo since §; < 1.

In particular, for large enough ¢, we have 65 ¢ < 1. Hence, by [18, Theorem 1.6.34]
there is a subspace E,(f) c E,(f) such that gapV(Eh,Ef(f)) = 6pe < 1. Hence,
dim(Ey) = dim(E(l)) = m. But by (3.7), the only subspace E}(LE) c E,(f) of di-

£ (6) (f)

mension m is B, = . Thus, for sufficiently large ¢,

gapV(Eh,Eh ) = Ohes
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and the proof is complete since dp, y — 0 as £ — o0. ([

To summarize this section, we have defined a space Ej, (in Definition 3.2) using
Sk but independently of the filtered subspace iteration (2.14), and have shown (in
Theorem 3.4) that under certain conditions the iteration converges to it. The con-
vergence of FEAST iterations for matrices (disregarding any discretization errors)
were previously studied in [14] when H = R™ and | - |y = | - | using the theory of
subspace iterations [23]. In fact the identity obtained in Step 2 of the above proof
was motivated by a standard argument in the analysis of subspace iterations [23].
Our proof of Theorem 3.4 gives a rigorous justification for the intuition that if
the discretization is good, then despite the errors in the resolvent approximations,
filtered subspace iteration should converge for well-separated eigenvalue clusters.

4. DISCRETIZATION ERRORS IN EIGENSPACE

In this section we study how the discrete eigenspace E}, approaches the exact
eigenspace F as the discretization parameter h goes to 0.

Theorem 4.1. Suppose Assumptions 2.1-2.7 hold. Then there is a Cny > 0 and
an hg > 0 such that for all h < hg,

(4.1) gapy,(E, Ep,) < CNWk:mz?%N H [R(zk) — Rh(zk)]

)

|EHV’

so, in particular,
%imogapv(E,Eh) =0.

Proof. Consider one of the two suprema in the definition of gap,(En, Ej), namely

(4.2) dp = sup disty(e, Ep).
eEUgN
Then,
(4.3) on < sup e — Prefy < sup [[(Pn — Prellv.
EEU}EJ}N eeUgN
Note that
1
Py—Py=—¢[(z—8Sn)" = (z=Sp) ] dz
2mi
e)
1 _ _
= 5= (z— S8 (Sy — S¥) (2 — Sny) " tdz.
e

Since Ey is an invariant subspace of (z — Sy)~!, the above identity gives the
estimate

1 _ _
|Pne — Prely < gffH(Z—SN) Hvl(z = Sx) v dz | Sy — SK) e Ivlelyv-
©

Returning to (4.3), we conclude that §, < On|(Sx — S%)|ex |V, where Oy is a
bound for the quantity in square brackets above. Clearly, Cy can be bounded
independently of h, since |[(z — S%)7|y — [(z — Sn)7|v-

Thus, by virtue of (3.3), 6, — 0 as h — 0. In particular, for sufficiently small A,
we have 0, < 1. Then, by [18, Theorem 1.6.34], there is a closed subspace E, € By
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such that gapV(EJY,Eh) — 6, < 1 and dim E), = dim Ey = m. Because of (3.4),
this implies that Ej = Ej,. Since Ey = E by Lemma 3.1, we finish the proof
of (4.1) by noting that gap,(E, E}) = gapy(EnN, Ep) = Op. d

Remark 4.2. If V is replaced by H in (3.1), we obtain gapy (M, L), so

gapy (F, Ep) = max | sup disty/(e, Ep), sup disty(m,E)

H H
eeUg mEUEh

Its natural to ask if gapy,(E, Ey) — 0 implies gapy, (E, E) — 0 as h — 0. Let §7¢
denote the first of the two suprema above. Since F is finite-dimensional, there is a
Cy, > 0 such that |e| = Chle]y for all e in E. Using also Assumption 2.3,

distq.[(e, Eh) < @ u diStv(e, Eh) CV

5,71{ = < < ol gapy(E, Ep,).

ozec  eln Cm ozece  elv

Thus, if gapy,(E, Ep,) — 0, taking h sufficiently small, dim(E}) = dim(E) = m and
(5,71{ < 1, so using [18, Theorem 1.6.34] as in the previous proof, we may conclude
that gapy (F, Ey) = 0]¢. This implies that, under the same assumptions as in
Theorem 4.1, there is an hy > 0 such that

C
(4.4) gapy (F, Ep) < O—v gapy (E, Ep)
for all h < h;. Note C), depends only on E and is independent of h.

5. DISCRETIZATION ERRORS IN EIGENVALUES

In this section, we analyze the eigenvalue approximations that are generated
as Ritz values (defined below) of eigenspace approximations obtained from the
filtered subspace iteration. To define the Ritz values maintaining the same level
of generality as we have so far, we need to consider the (possibly unbounded)
sesquilinear form generated by A.

Recall that any selfadjoint operator A admits the polar decomposition A =
UalA| = |A|UaA (see [18, p. 335]), where Uy is selfadjoint and partially isometric,
and |A] is selfadjoint and positive semidefinite. As described in [26, §10.2], the
polar decomposition can be used to define the following symmetric sesquilinear
form associated to the operator A:

(5.1) a(z,y) = (UalA["2z, |A]2y)y,
for any z,y in dom(a) = dom(|A|*/?). Let |u|, = |a(u,u)|'/? for any u € dom(a).
By the properties of U,
(5.2) lula < (|A]?u, |A[Y2u) 2 = ||A]Y?uly,  ue dom(a).

Let F' < dom(a) be a closed finite-dimensional subspace of H. We define Ap :
F — F by the relation
(5.3) (Apz,y)n = a(z,y) for all z,y € F.

The spectrum of the linear operator Ar on F', namely X(Ar), is called the set of
Ritz values of A on F. The operator Ag is defined by (5.3) with E in place of F'.
Note that the exact eigenspace we wish to approximate, namely F| is contained in
dom(A) c dom(a), and the exact eigenvalue cluster A that we wish to approximate
is the set of Ritz values of A on E.
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Central to the discussion of this section is how the Ritz values change when F'
is a perturbation of E. To formulate a result on sensitivity of Ritz values, we need
more notation. Recall that S is the H-orthogonal projection onto E. Let Q) denote
the H-orthogonal projection onto F'. Using S, we may express Ag as

Ap = S|A["2UA|AMS]
and Ar may be similarly expressed using Q). Let

B (S —DQula |(S = Dvla
o f = SUp ——F———— = Sup ——————.
0#£veF HUHH 0#£veF HUHH

(5.4) (5 -D@Q

Note that there is a finite positive constant |Ag| such that |Agellx < |Ag|le|xn
for all e € E (since Ag : E — F and FE is finite-dimensional). Define the Hausdorff
distance between two subsets Y1, To < R by

dist(Tq, o) = max[ sup dist(u1, T2), sup dist(ug,Tl)]
i€y p2€Y 2

where dist(u, T) = inf ey | —v| for any T < R. The following lemma is a perturba-
tion result that can be understood independently of the filtered subspace iteration.
In particular, we have no need for Assumptions 2.1-2.7 in the lemma.

Lemma 5.1. Suppose gapy, (E, F) < 1. Then there is a Cy > 0 such that
dist(2(Ag), 2(Ar)) < (S = DQIZ » + CollAp| gapy (E, F)>.

Proof. Step 1: Let R = (S—Q)? and let § < 1 be any number satisfying gap,, (E, F) <

§ < 1. Since |R|y < gapy (E, F)? < 6% < 1, the binomial series Y, ,(~1/2)(—R)"

converges and defines (I — R)’l/ 2. Subtracting the first term from this series, define
T=(I-R)"Y2—1. Since (1—2)"/?2~1=2x[y/1—2+(1—2)]"", we obtain that

& [—1/2 n _ -
ﬂas2(7/ﬁRm=umh>W1=RM[1|mm+ummn%
n=1

which implies
—1
(5.5) Tl < IRl [V1=02+ (1= 6%)] .

We use R to define an isometry J = (I — R)™Y?[QS + (I — Q)(I — S)] on H
(cf. [18, p. 33]) which maps E one-to-one onto F', and whose inverse is
(5.6) J =T =[SQ+(I-S)(I-Q)](U-R)""

Note that the spectra of Ag and the unitarily equivalent JAgJ*|r are identical.
Step 2: Let D = JAgJ*|r — A, a selfadjoint operator on F. By [18, Theo-
rem V.4.10],

(5.7) dist(A, Ap) < | D|pls = s W

For f € I, we have

(Dfuf)H :a(‘]*f7’]*f)_a’(f=f) =a(SJ*f7SJ*f)—a(Qf,Qf)
— Rea(SJ*f + QF, ST*f — Qf).



14 J. GOPALAKRISHNAN, L. GRUBISIC, AND J. OVALL
Observing that (5.6) implies SJ* = SQ(I — R)~/?, we split
(Df, f)u = Rea((ST* +Q)f.SQ (I = R) ™2 ~ 1| f)
+ Rea(($7* + Q)1 (S ~ Q).

Labelling the two terms on the right as t; and to, we proceed to estimate them.

Step 3: The first term t; = Rea((SJ*+Q)f, SQTf) = Rea((SJ*+SQ)f, SQTf).
Here we have used S? = S and a(Sz,y) = a(z, Sy) for all z,y € dom(a). The
latter follows from (5.1) because S commutes with A, so it commutes with |A|
and U [18, p.335ff], and moreover, it commutes with |A|'/? (see e.g. [18, Theo-
rem V.3.35]). Continuing,

t2] = Rea((ST* + Q)f, SQTf)| = [Re (ApS(J* + Q) f, SQT [ )

2| Al Bl
< |Ag||S(T* + SQTfln < 3
MEIIS(* + QU ISQT S < =57 o s W
where we have used the fact that orthogonal projectors have unit norm as well as
the isometry of J*. Thus

2| Ag|
V1—0%24(1-02)
Step 4: Next, we estimate to. Since a((S — Iz,y) = a(z, (S — I)y) for all
x,y € dom(a),

] < gapy (E, F)?| f13.

[t2] = [Rea((S = I)(ST* + Q) f. (S = D)QS)|
= |Rea((S = D)QS, (S = Q)|
<|(S = DQIZ A IF3-
Adding the estimates for |¢1| and |t2| and using it in (5.7), the proof is finished. O

Before applying this lemma to filtered subspace iteration, a few remarks are in
order. (i) Its clear from the proof that the result of the lemma holds even when
dimension of E (and F) is infinite, as long as |Ag| < oo. Its also clear from the
proof that the constant Cp = 2/(v/1 — 42 + 1 — §2) is independent of the location
of eigenvalue cluster A. (ii) The quantity (S — I)Q|2  is related to the square of
the gap (like the other term in the bound of Lemma 5.1). Indeed, if ¢, p is any
constant that satisfies [v|2 < ¢, r|v]3, for all v € E + F, then

(5.8) (S = DQIZ F < carl(S = DQI, < ca,r gapy(E, F)*.

However, in applications, we usually need to make the dependence of ¢, r more ex-
plicit (say, on discretization parameters). One technique for this is developed in the
proof of Corollary 5.8 below. (i1i) We highlight that Lemma 5.1 applies to general
unbounded selfadjoint operators, even those whose spectra extends throughout the
real line. (iv) Bounds for the Hausdorff distance between Ritz values under space
perturbations have been previously studied for bounded operators [19, Theorem 5.3]
and a part of the above proof above is inspired by their arguments. However we
are not able to use their result directly because it holds only for Ritz values lo-
cated at the extremes (top or bottom) of the spectrum of the bounded operator.
Nonetheless, an approach to bring [19, Theorem 5.3] to bear on unbounded opera-
tors is to apply it to R(u) = (u— A)~!, which is bounded (even if A is unbounded)
provided g is in the resolvent set of A. To quickly sketch this approach, one choses
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a u such that E becomes the eigenspace of R(u) corresponding to the top of its
spectrum, then apply [19, Theorem 5.3] to obtain an estimate that bounds the
distance between Ritz values of R(u), from which one then concludes estimates on
the distance between Ritz values of A on E and on F'. This technique would yield
bounds involving gapy, (F, F)? like that of Lemma 5.1 but with other u-dependent
constants. (v) For finite-dimensional F, F, perturbations in eigenvalues of bounded
operators corresponding to the top or bottom of the spectrum have also been stud-
ied in [20, Theorem 2.7] using majorization techniques. Their estimates can also
be used to study spectral perturbations of unbounded operators by the technique
mentioned in item (3v) above. In cases where one can bound specific angles between
E and F, then [20, Theorem 2.7] may provide bounds for individual eigenvalue er-
rors that are sharper than what can be concluded from bounds of the Hausdorff
distance.

We now turn to the issue of approximating the eigenvalue cluster A using the
subspaces of V;, generated by the filtered subspace iteration using S%. Our analysis
of this approximation is under the next assumption. Example 5.4 below illustrates
the reason to consider forms and place this assumption.

Assumption 5.2. Assume that V}, is contained in dom(a).

Example 5.3 (Positive operators). Consider the operator A and the form a in
Example 2.5. Here, since A is positive, the factors of the polar decomposition of
Aare Uy = I and |A| = A. Thus dom(a) = dom(]A|/?) = dom(A'?). Moreover,
V = dom(AY?) in Example 2.5. Since V}, = V by definition, we conclude that
Assumption 5.2 holds. ]

Example 5.4 (A differential operator). To give an example of a partial differential
operator fitting the scenario of Example 5.3, suppose 2 is an open subset of R?,
B : 2 — R is a bounded positive function, and « : 2 — C%*? is a bounded
Hermitian positive definite matrix function. Suppose the smallest eigenvalue of
a(z) and B(z) are greater than some § > 0 for a.e. x € £2. Put H = L?(£2) and set
a by

(5.9) a(u,v) = J agradu - grad v dx + f Buv dx
7} fo)

for all u,v in dom(a) = H*(£2). This is a densely defined closed form. Set A to be
the closed selfadjoint operator associated to the form a, obtained by a representation
theorem [26, Theorem 10.7].

When a and S equal the identity and (2 has Lipschitz boundary, the operator
A is a Neumann operator whose domain satisfies dom(A) € H%2(£2) by a result
of [17]. Thus dom(A) is strictly smaller than dom(a) = dom(AY/2?) = H'(£2) in
this case. Therefore, if V}, is set to the Lagrange finite element subspace of H'(2),
then Assumption 5.2 holds. Note that it is easier to build finite element subspaces
of H'(£2) than H32(£2), which is why we did not require V}, to be contained in
dom(A) in Assumption 5.2. O

Example 5.5 (Semibounded operators). Suppose A is lower semibounded, i.e.,
there is a p € R such that (Az,x)y = p(x,z)y for all z in dom(A). Then,
by [26, Proposition 10.5],

(5.10) dom(|A|"/?) = dom((A — p)*/?).
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An example of such an operator is the operator associated to the form a in (5.9)
when ( no longer satisfies 8 > 0, but instead changes sign while remaining bounded
on {2. Then fixing some p < —||3| L= (¢2), We note that the operator A— p is positive
and is the operator associated with the positive form a,(u, v) = a(u,v) — p(u, v)y.
Thus, by Example 5.3, dom(a,) = dom((A — p)'/?) = H'(£2). Hence by (5.10) we
conclude that dom(a) = H($2). O

Remark 5.6. Above we have encountered two related, but distinct concepts, of the
form associated to an unbounded operator (via the polar decomposition as in (5.1))
and the operator associated to a unbounded form (by the first representation the-
orem [18, TheoremVI.2.1]). If one begins with a form a and then considers the
operator A associated to it, we can define another form & that is the form associ-
ated to A. The form a need not equal a for a general selfadjoint operator as shown
in [12, Example 2.11]). However, a and a are equal if a is a densely defined lower
semibounded closed form by [26, Theorem 10.7].

With the above background in mind, we now return to the analysis of eigenvalue
approximations. Recall Ej, = V}, < dom(|A|'/?), the space we studied in Section 3).
Using Ej,, we compute the spectrum of the finite-dimensional operator Ag, ,

Ap =X(Ag,).

This set forms our approximation to A. In practice, the elements of A, are com-
puted by solving a small dense generalized eigenproblem arising from an equivalent
equation of forms: find A\, € R and 0 # uy € Fj, satisfying

a(un, vn) = An(un, Vn)n
for all v, € Ej. The collection of all such A, forms Aj. In the next theorem, we
use @y, to denote the H-orthogonal projection onto Fj,.

Theorem 5.7. Suppose Assumptions 2.1-5.2 hold. Then there are positive con-
stants Cy and hg such that for all h < hg,

dist(A, Ap) < [(S = 1)@Qul2 5, + Col Ap| gaps (B, En)*.
Proof. By Theorem 4.1 and (4.4) we may choose h so small that gapy (E, Ep) <
0 < 1. Hence, applying Lemma 5.1, the result follows. (]
Corollary 5.8. In addition to Assumptions 2.1-5.2, suppose |[uly = |||A]"/?ulx.
Then there are positive constants Cy and hg such that for all h < hg, we have
gapy,(E,Ep) <1 and
dist(A, Ap) < (A™)? gapy (E, Ex)* + Col|Ag | gapy (E, En)?,

1/2

where A = sup,, cp, ||Al"“en|#/|enln satisfies

1 2
Amax 2 < ( )
(AR™) 1 —gapy,(E, Ey)

Proof. The first inequality will follow from Theorem 5.7 by establishing that
I(S = D)Qla,m, < AR gapy(F, Ep).

Since S is a H-orthogonal projection, it is selfadjoint in #-inner product. Moreover,
since S commutes with A, it commutes with |A| and hence with |A|'/2. Therefore,

(Su,v)y = (JA[Y2Su, |A[Y?0)3 = (S|A["2u, |A[Y?0)3 = (JA[Y?u, S|A[Y?0)3 = (u, Sv)y,

| Azl
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for all u,v € V, i.e., S is selfadjoint in the V-inner product too. This implies that
S is also the V-orthogonal projector onto E. Hence, using (5.2),

(5.11) |Sen, — enla < ||Sen — enl|yv = disty(ep, E)
for any ey, € Ej. Combining (5.4) with (5.11), we conclude that

<S—I>Q|G,Eh,<( sup ehlv)( - |<s—f>|)
0eneBy llenln O#eneEn lenlv
<A§L“aX( dlstv(emE))

ozenern  lenlly
The first inequality of the corollary now follows from (3.1).
Let g = gapy(F, Ep,) and ep, € Ep. Then (5.11) implies

(5.12)
diStV eh,E
ISenly > lenly — len — Senly = lenl (1 - ()) > flenllw (1~ 9).
lenly

Therefore,

lenlv _ llenlv [Senlv _ 1 [Senlv

lenl#  [Senly lenlle ~1—g lenln
Since || Sen |3, = |(|AlSen, Sen)n| = [(UaASen, Sen)n| < |Ag|Senl, < |As|lenl3,,

1 S 1
A;Illax = sup HehHV < H ehHV < HAEH1/2
o£encEy llenlln 1 =g orepem, lenln ~1—g

This completes the proof. ([l

Note that the second inequality of Corollary 5.8 allows one to bound AJ*** in-
dependently of h when gapy,(E, Ej) — 0. A class of examples where Corollary 5.8
immediately applies is given by the positive forms of Example 5.3. For such op-
erators, we have |A|Y2 = A2, so (u,v)y = a(u,v) = (AY?u, AY?v) holds for all
u,v € dom(a) and Corollary 5.8 applies. As a final remark, we also note that in
the case in which V is normed with a norm equivalent to ||A|'/2 - |4, the above
argument provides the estimate

(5.13) dist(A, Ap) < (Cy APa¥)? gapy, (E, Ep)? + Co| Ag| gapH(E,Eh)Q.

where C; depends on the equivalence constants for norms || - |y and [[|A[Y/2 - |4.

6. APPLICATION TO THE DISCRETIZATION OF A MODEL OPERATOR

The purpose of this section is to provide an example for application and illus-
tration of the theoretical framework developed in the previous sections. A simple
model problem is obtained by setting

H=12(0), A=-A, dom(d)={beHI(Q): AbeL(Q)}, V=H}®),
where 2 ¢ R? (d = 2,3) is a bounded polyhedral domain with Lipschitz bound-
ary. Note that here |uly is set to |AY2uly = | gradul 20y = |u|g1(e), which
is equivalent to H'(£2)-norm due to the boundary condition. Throughout, we use

standard notations for norms (| - || x) and seminorms (] -|x) on Sobolev spaces (X).
The above set operator A is the operator associated to the form

a(u,v) = f gradu - grad @ dz, w,v e dom(a) =V = HL(R).
Q
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Hence this model problem fits into Example 2.5 and Assumption 2.3 holds.

To calculate the application of the resolvent u = R(z)v, we need to solve the
operator equation (z — A)u = v for any z in the resolvent set of A. Using the
form b, (u,v) = z(u,v) — a(u,v), this equation may be stated in weak form as the
problem of finding R(z)v € H}(§2) = H satisfying

(6.1) b (R(z)v,w) = (v,w)n for all w e Hy(£2).
We provide a bound on the biliear form b, that will be used in subsequent analysis.
Lemma 6.1. It holds that
102 (u, v)| < @) |ul g 2)lv] a1 (02) for all u,v e Hy(£2) ,

where a(z) = |zA™Y — ||y = sup{|\ — 2|/|\| : A e Z(A)}.
Proof. Recognizing that b, (u,v) = ((zA~' — I)AY?u, AY?v)4, we see that

b2 (u,0)| < |2A7" = T3 AV ulla | A0 3 = a2 ul m o) 0] 13 ) -
Since zA~1—T is normal, its H-norm, a(z), is equal to its spectral radius. Therefore,
a(z) = sup{|A — z|/|]\] : A e X(A)}, as claimed. O

The quantity

(6.2) B(z) = |AR(2) [ = sup{|A|/|]A — z[ : A e E(A)}

also figures in our analysis. The last equality of the H-norm and the spectral radius
again follows from the normality of AR(z). It can also be found in [18, p. 273,
Equation (3.17)]. Since X(A) is real, we see that a(z) = a(z) and 8(z) = 5(2).

Next, suppose {2 is partitioned by a conforming simplicial finite element mesh
2, where h equals the maximum of the diameters of all mesh elements. We shall
assume that {25, is shape regular and quasiuniform (see e.g., [6] for standard finite
element definitions). Set V), equal to the Lagrange finite element subspace of Hg (£2)
consisting of continuous functions, which when restricted to any mesh element K
in (2, is in P,(K) for some p > 1. Here and throughout P;(K) denote the set
of polynomials of total degree at most ¢ restricted to K. It is well known [6] that
there is a Cypp > 0 independent of h such that
(6.3) inf |v— Uh|H1(_Q) < Capph7.|V|H1+r(Q)

vp€Vh

for any 0 < r < p and any v € H'T"(£2).

Consider any v € H = L?(§2). The approximation of the resolvent by the finite
element method, namely Ry, (2)v, is a function in V), satisfying

(6.4) b, (Rn(z)v,w) = (v, w) for all w e V),

It will follow from the ensuing analysis that (6.4) uniquely defines Ry (z)v in Vj
provided h is sufficiently small. The analysis is under the following regularity
assumption.

Assumption 6.2. Suppose there are positive constants C,e; and s such that the
solution uf € V of the Dirichlet problem —Au/ = f admits the regularity estimate

(6.5) [uf [ 1+e(0) < Creglflae  for any feV.
Suppose also that there is a number sg > s such that

(6.6) HUfHHHSE(Q) < Cregllflle for any f e E.



DISCRETIZATION ERRORS IN SUBSPACE ITERATION 19

Standard regularity results for elliptic operators (see, e.g. [10, 11]) yield that
dom(A) > H%(£2) for some s > 0 depending on the geometry of 2. For example,
if 2 is convex, we may take s = 1 in (6.5); and if £2 = R? is non-convex, with its
largest interior angle at a corner being w/« for some 1/2 < o < 1, we may take
any positive s < . One can often show higher regularity when f is restricted to
the eigenspace F, which is why we additionally assume (6.6). For example, if 2 =
(0,1) x (0,1), all eigenfunctions are analytic, having the form sin(mnz) sin(nmy),
for any positive integers m,n. These expressions, when viewed as functions on the
L-shaped hexagon 2, = (0,2)x (0,2)\[1, 2] x[1, 2], also yield smooth eigenfunctions
of 21,. But not all eigenfunctions of {21, are so regular.

The proof of the next result is modeled after a classical argument of [25], and
employs the quantities a(z) and 5(z) introduced above.

Lemma 6.3. Suppose Assumption 6.2 holds. Let z be in the resolvent set of A.
Then there are positive constants C and hg (depending on z) such that for all h < hg

(6.7) |R(2) — Ri(2)|v < Ch", H [R(z) — Rh(z)]}EHV < Ch'E,

68) IR - Ra()lu<Cn¥|[RG) = Ra(2)]| ] < OnEt,
where r = min(s,p) and rg = min(sg, p). We may choose hg = [2a(2)8(2)|2|CappCreg ) /"
and C = 2a(2)5(2)CappChreg-

Proof. Let f € H, e = R(z)f — Rp(2)f, and w = R(Z)e. Then —Aw = Aw =
AR(%Z)e. Hence it follows by Assumption 6.2 and (6.2) that

(6.9)  Jwlgrir(@) < CreglARRZ)e]n < CregB(Z)|en = CreaB(2)]€]n-

Subtracting (6.4) from (6.1), we have b, (e, wp,) = 0 for any wy, € V. Note also that
b.(v,w) = (v,e)y for any v € V. Choosing v = e and applying Lemma 6.1,

lel3; = (e, )2 = ba(e,w) = ba(e,w —wn) < al2)lelm(@)lw — wilm(q) -
Using (6.3) with 7 = min(s, p) > 0, together with (6.9), we deduce that

lel3; < a(2)Capph” [w]mi+r(ay el (@) < a(2)B(2)CappCregh” lelulel (o),
ie.,
(6.10) lell# < a(2)B(2)CappCregh”[ €] v-

Next, setting u = R(z)f, observe that for any v, € V, we have

2lelz — Nl

= [bz(e, €)] = [bz(e; u — va)].

Hence (6.10) and Lemma 6.1 imply
[1— a(2)B(2) CappCregl2[n7] €]}y < a(z)ellv Jnf Ju—vn]y.

When A is so small that 1 — a(2)8(2)CappCreg|2|h” > 1/2, using (6.3), we obtain
lelly < 2a(z)Capph”|u| g1+ (o). Moreover, since —Au = Au = R(z)f, using As-
sumption 6.2 and arguing as in (6.9), we have |u|g1+r(0) < CregB(2)[ f[2- Thus,
(6.11) |R(2)f = Ba(2)fllv < 2CappCregr(2) B(2) 1" | £

for any f € H. Now, if f is in V, then since | ]|y < C| f|v, the bound (6.11) proves
the first inequality in (6.7). Combining with (6.10), we obtain the first inequality
of (6.8) as well.
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To prove the remaining inequalities, we let f € E and repeat the above argument
leading to (6.11) with rg = min(sg,p) in place of r. This proves the second
inequality of (6.7). Then using (6.10) (where we cannot, in general, replace r by
rg), the second inequality of (6.8) also follows. O

With the help of the lemma, we can now prove the main result of this section.

Theorem 6.4. Suppose Assumption 2.1 (spectral separation) and Assumption 6.2

elliptic reqularity) holds, and that dim = dim(FPp =dimkFE. en, there
Il l holds, and that dim E\”) = dim(P,E\")) = dim E. Then, th

are positive constants C' and hg such that for all h < hg, the subspace iterates E,(f)

converge (in gapy,) to a space Ep, satisfying

(6.12) gapy (E, Ep) < Ch™®,
(6.13) gapy (B, Ep) < Ch™=',
(6.14) dist(A, Ap) < Ch?'E,

where r = min(s,p) and rg = min(sg,p).

Proof. The proof proceeds by applying the previous theorems after verifying their
assumptions. We have already verified Assumption 2.3 with above set V = H} ().
In view of (6.7) of Lemma 6.3, since r > 0, Assumption 2.7 holds with the same
V. We may now apply Theorem 3.4, which yields gapV(E}(f),Eh) — 0. Now
the proof of (6.12) reduces to an application of Theorem 4.1. Next observe that
Assumptions 2.3 and 2.7 also hold when V is set to H (see Example 2.4 and (6.8)
of Lemma 6.3). Applying Theorem 4.1 with this ¥V = H setting, we obtain the
estimate (6.13). Finally, (6.14) follows by combining Corollary 5.8 with (6.12)
and (6.13). O

7. NUMERICAL EXPERIMENTS

We illustrate the convergence results of Theorem 6.4 on the model problem
—Ae=Xein) , e=0o0nodQ,

on three different domains = R2. More specifically, we consider eigenvalue errors
and (6.14). The experiments were conducted using [9], which builds a hierarchy of
Python classes representing standard Lagrange finite element approximations of the
filter S based on the resolvent approximations Rj(z), as described in Section 6.
We do not write out the details of the algorithm because they can be found in
our public code [9] or in many previous papers (see e.g., [23, Algorithm 1.1] and
[14]). As in these references, we perform the implicit orthogonalization through a
small Rayleigh-Ritz eigenproblem at each iteration. In general, it is not necessary
to perform this orthogonalization at every step, but in the experiments reported
below, we do so. For all experiments, filtered subspace iteration is applied using
the Butterworth filter (2.9) with N = 8. The symmetry (about the real axis)
of our filter weights and nodes are exploited so that only N/2 boundary value
problems (rather than N) need to be solved for each right hand side per iteration.
The subspace iterations are started with a random subspace of dimension at least
as large as the dimension of E, and the algorithm truncates basis vectors that
generate Ritz values that are deemed too far outside the search interval; in all
cases, we choose this initial subspace dimension to be six. We stop the iterations
when successive Ritz values differ by less than 10~. Though changing N does, in
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some cases, change the number of subspace iterations used to achieve a prescribed
error tolerance (e.g. three iterations for N = 8 versus two iterations for N = 16
for the Dumbbell problem with p = 3 and h = 279), it had no effect on the
discretization errors reported here, so we do not discuss this parameter further.
The finite element discretizations are implemented using a Python interface into the
C++ finite element library NGSolve [27]. Two parameters govern the discretization:
h is the maximum edge length in a quasi-uniform triangulation of €2, and p is the
polynomial degree in each element.

7.1. Unit Square. For the unit square Q = (0,1) x (0,1), the eigenvalues and
eigenvectors may be doubly-indexed by

A = (M2 +02) 72 | epn = sin(mrz)sin(nry) , mneN.

For any subset of the spectrum, the corresponding eigenspaces are analytic (sg =
o0), and the convexity of ) ensures that s = 1. Therefore, Theorem 6.4 indicates
that the eigenvalue convergence should behave like O(h?P). This is precisely what
is observed in Figure 2 both at the low end of the spectrum, A = {272,572}, and
higher in the spectrum, A = {12872,13072}. We note that both 272 and 12872 are
simple eigenvalues, 572 is a double eigenvalue, and 13072 is a quadruple eigenvalue.

For the first set of experiments, the search interval (0,60) was chosen, so y =
v = 30. In Figure 2a, the eigenvalue error, dist(A, Ap), is given with respect to h
for (fixed) p = 1,2,3 and decreasing h = 273,274, ...,277. For the second set of
experiments, the search interval was (1260, 1290), so y = 1275 and v = 15. In order
to provide convergence graphs within the same plot for these more highly oscillatory
eigenvectors, we use h =27°,276 27" forp=2,and h =27%,275,276 27" for p =
3, see Figure 2b. For coarser spaces, the approximations of 13072 were far enough
outside the search interval to be rejected by the algorithm, and an approximation
for only 12872 was obtained. A plot of the computed basis for the five-dimensional
eigenspace corresponding to A = {12872,13072} is given in Figure 3. If we label
the computed eigenvalues \ < \b < ... < )\g‘, with corresponding eigenvectors
e;’, 1 < j < 5, contour plots of these eigenvectors are given, from left to right,
in Figure 3. One sees that span{e’} approximates span{es s}, and it appears that
span{el, el} approximates span{esi1,e113}, and that span{ef, e} approximates
span{er.g, g 7}.

7.2. L-Shape. Let © be the L-shaped domain that is the concatenation of three
unit squares; see Figure 4d. In [29], the authors provide very precise approxima-
tions of several eigenvalues for this domain (and other planar domains). Their
approximations of the first three eigenvalues (accurate to eight digits) are

A~ 9.6397238 Ay ~ 15197252, A3 = 27% ~ 19.739209 ,

and we take the first two of these approximations to be the “truth” for purposes of
our convergence studies. We use the search interval (0, 20).

These eigenvalues correspond to eigenvectors having very different regularities,
and the convergence plots in Figure 4 illustrate that (6.14) can be pessimistic in
the sense that it ascribes a single convergence rate to an entire eigenvalue cluster,
and this convergence rate is dictated by the worst-case regularity of eigenvectors
associated with the cluster. What we see in practice is that individual eigenvalues
within a cluster converge at rates determined by the regularity of their correspond-
ing eigenvectors. Since 2 has a re-entrant corner with interior angle 37/2, we have
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(A) Convergence rates for A = {272, 57%}. (B) Convergence rates for A =

{12872, 1307%}.

FIGURE 2. Square: Convergence rates for clusters located at the
bottom and higher up in the spectrum.

FIGURE 3. Square: Eigenvectors corresponding to the eigenvalues
12872 (left) and 13072.

r = min(s,p) = s for any s < 2/3, and the first eigenvector actually has this regular-
ity. As such, Theorem 6.4 indicates essentially O(h*?) convergence for the cluster.
While this is true for the cluster as a whole, it is only the first eigenvalue that con-
verges this slowly. The convergence order for the second eigenvalue O(hmin(?p ’3)), is
consistent with a regularity index s < 3/2; and the convergence order for the third
eigenvalue, O(h?P), is precisely what is expected from an analytic eigenvector.

7.3. Dumbbell. Let Q be the dumbbell-shaped domain that is a concatenation of
two unit-squares joined by a 1/4 x 1/4 square “bridge”; see Figure 5. By tiling
the dumbbell with (1/8) x (1/8) squares, we see that A = 12872 ~ 1263.309 is
an eigenvalue, with corresponding eigenvector e = sin(87z) sin(8ny). In order to
determine whether there are other eigenvalues near 12872, we choose the search
interval (1262,1264). Because of the highly oscillatory nature of the eigenvector e,
we employ relatively fine discretizations, taking p = 3 and h = 274,275,276 277,
We have determined that there is one other eigenvalue in the search interval, and
it is approximately 1262.41. Labeling these eigenvalues A\; < As, their computed
approximations are given in Table 1. For the coarsest of these discretizations, the
computed approximation of 12872, 1264.02, lies slightly outside the search interval,
but is accepted by the algorithm. Since Ao = 12872 is known, we underline the
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(A) Convergence rates for (B Convergence rates for () Convergence rates for
A1~ 9.6397238. ~ 15.197252. A3 = 272

(D) L-Shape: Computed approximations of the first three eigenvectors.

FIGURE 4. L-Shape: Convergence rates for A1, Ay and As.

TABLE 1. Dumbbell: Computed eigenvalues for the interval
(1262,1264), p = 3 and mesh parameters h = 27%,27% 276 2-7,

h A1 A2
2-1 1263.178867 1264.020566
275 1262.447629 1263.319956
276 1262.418298 1263.309521
277 1262.410062 1263.309366

number of correct digits in our approximations of it. The error in this approximation
is consistent with O(h®) eigenvalue error, in agreement with Theorem 6.4.
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FIGURE 5. Dumbbell: Eigenvectors corresponding to the eigen-
values 1262.41 (left) and 12872.
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