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Abstract: In order to reduce operation and maintenance cost and improve fault diagnosis and detection
accuracy for wind turbines, a study on advanced methods has been carried out. The purpose of this
paper is to present a new method developed using radar chart and support vector machine (SVM)
approach for fault diagnosis and prediction of wind turbine pitch system as it usually has a higher
failure rate. In the study, the supervisory control and data acquisition (SCADA) system data are
utilized as source data for SVM prediction. First of all, the characteristics of the indicator variable data
collected by the SCADA system are analyzed, and the radar charts corresponding to the normal and
faulty operation of the wind turbine pitch system are constructed using the indicator variable data.
Secondly, the SVM method is used to extract the gray-level co-occurrence matrix (GLCM) features and
histogram of oriented gradients (HOG) features of the radar charts, and the SVM classifier is trained.
Then, the operational status is predicted, the classification effect is evaluated by the confusion matrix,
and the prediction evaluation index is calculated. Thirdly, the support vector regression method is
used to analyze the SCADA indicator variable data, the input and output of the regression model are
determined, and the training prediction model is established, and the prediction accuracy of the test
model is analyzed using the test sample data. Finally, the forecasting evaluation indexes obtained by
the above two methods are compared. It proves that the proposed method using SVM to analyze the
system radar charts has a higher prediction accuracy of 91.24% than the support vector regression
method. The prediction accuracy is improved by 8.6%. Hence, it is verified that the new method
using a radar chart and SVM approach has superiority over the support vector regression method.

Keywords: fault prediction; wind turbine pitch system; radar chart; support vector machine; support
vector regression

1. Introduction

Wind energy is one of the main renewable energy sources [1,2]. It is harvested using wind turbines
and to be converted into electric power. With the increase of installed wind power capacity, more and
more attention has been paid to the reduction of operation and maintenance cost. The operation and
maintenance cost of wind turbines in the whole life cycle accounts for 25–30% of the total cost, e.g.,
Reference [3]. Failure of critical components in wind turbine operation may cause costly repairs and
increased downtime. It is, therefore, that fault diagnosis and prediction has become very important.
It is expected that a fault is to be detected at an earlier stage or to be predicted before it occurs [4].
The fault diagnosis and prediction are based on available data, including condition monitoring
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data usually collected through condition monitoring system (CMS), and control and operation data
collected through the Supervisory Control and Data Acquisition (SCADA) system. CMS provides
direct information reflecting a mechanical fault or failure, whereas SCADA system provides all other
auxiliary information which assists in improving the efficiency and accuracy of the fault diagnosis and
detection. SCADA system, for example, is an important subsystem in an energy management system
which helps reduce the system operation and maintenance costs [5].

Electrical and electronic control systems in wind turbines are considered to be prone to failure,
but gearbox and generator failures result in the longest downtime. In general, in large wind turbines,
there are three the most vulnerable subsystems identified. They are pitch system, frequency converter
and yaw system [6]. As a core component of a wind turbine, the pitch system’s failure rate is even higher
than other mechanical subsystems, such as gearbox in some cases. The damage to the pitch system
not only increases the operation and maintenance cost, but also reduces the production efficiency of
the wind turbine [7]. In recent years, there are a number of studies reported on fault diagnosis and
prediction for wind turbine pitch system, e.g., References [7–14]. Based on literature survey, it is found
that the published studies can be generally classified into two categories: One is physical model-based
approach, e.g., References [12–15] and the other is based on measurement data, e.g., References [16–20].
The physical model-based approach is mainly used for fault mechanism analysis, and the data-based
studies are for condition assessment and prediction. Asgari [8] uses the unknown input observer
combined with the actual operating data of the 660KW wind turbine, and detects and isolates the fault
of the pitch system actuator and the generator rotor temperature rise fault in the MATLAB/Simulink
environment. In Reference [9], the identification algorithm of a variable forgetting factor is introduced.
Through the idea of parameter estimation, the natural frequency and damping coefficient of the variable
pitch system actuator are identified and estimated, and the system fault is diagnosed by the change of
parameters. Kusiak and Verma [10] established a system prediction model that is based on data mining
technology for fault diagnosis of actuator failure of wind turbine pitch system. Based on the analysis of
the fault characteristics of the hydraulic pitch system, Han [11] established the fault tree model of the
hydraulic pitch system, and used the combination of quantitative and qualitative analysis to realize
fault diagnosis. At present, the failure of the pitch system is mostly diagnosed for the mechanical
failure of the system, and the diagnosis of the electrical failure of the pitch system needs to be further
studied. In Reference [12], a combined adaptive and parameter estimation scheme and its application
to fault prediction for wind turbines is proposed, which is based on the dynamic wind turbine and
pitch system model. A set of possible faults affecting system dynamics is described. In Reference [13],
a model-based variable pitch actuator fault detection method is proposed. When the pitch actuator is
dynamically changed, the normalized gradient method is used to estimate the parameters of the pitch
actuator and obtain the residual signal. Based on the wind farm SCADA data, Reference [14] proposed
a generalized model of wind turbine anomaly identification. The fuzzy comprehensive evaluation
method is used to synthesize the results of the selected wind turbine condition parameter prediction
model. Reference [15] gave a method for diagnosing faults in the wind turbine pitch actuator that
causes a change in pitch angle. The interval prediction algorithm is combined with recursive subspace
recognition based on the variable forgetting factor algorithm. Reference [16] proposes to select more
important variables in the SCADA system to improve the prediction accuracy, and adopts an index
based on the exponentially weighted moving average model to eliminate the autocorrelation in the data.
In Reference [17], an adaptive neural fuzzy inference system based on prior knowledge (APK-ANFIS)
is proposed to analyze wind turbine SCADA data to realize automatic detection of significant pitch
faults. An 85.50% classification accuracy was achieved in Reference [18] through 14 human-readable
rules generated by the RIPPER induction rule learner. Of these rules, 11 were described as “useful
and intuitive” by independent domain experts, and further, expert systems were developed using the
model and domain knowledge. In Reference [19], for the slip ring pollution and the pitch controller
failure, a novel pitch fault detection method based on performance curve (PC) normal behavior model
(NBMs) is proposed. The power-generator speed (P-N) and pitch angle-generator speed (PA-N) curves
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were selected to establish NBMs, and behavioral curves were used to analyze behavioral differences
for fault prediction. A model-based fault detection and isolation scheme for wind turbine variable
pitch systems is presented in Reference [20] to detect faults in electric pitch actuators and sensors,
where an Extended Kalman Filter (EKF) based multi-model adaptive estimation (MMAE) is designed
to estimate the state of the system. In Reference [21], a designed algorithm based on the H2 norm
optimization technique is proposed to detect blade and pitch system faults, and to repair false positive
rate and detection speed as needed. In Reference [22], the fault diagnosis method of an innovative
stochastic gradient algorithm based on the observer is proposed for the characteristics of wind turbine
variable pitch system failure, which causes system parameters to change. The use of similar functions
combined with Kohonen neural network for fault diagnosis is discussed in Reference [23] where the
fuzzy clustering based on Kohonen neural network is used to solve the problem, and the optimized
samples are used as input to the Kohonen network to obtain various types of standard fault models.

Generally, wind turbine fault prediction is achieved using mathematical modeling, but it is
difficult to establish an accurate mathematical model because of complicated control in wind turbine
operation [24]. This paper analyzes the failure of electronically controlled pitch system of wind turbines,
where there are different types of failure modes. The main faults include: Blade 95-degree limit switch
is triggered; pitch system charging device voltage is abnormal; blade synchronizing error; blade PMC
controller output is overcurrent; blade PMC motor side grounding is short circuit; blade following
error is over the limit; blade velocity controller output frequency exceeds the maximum rotational
speed; blade CANbus communication error; digital channel fault of blade motor encoder; blade power
detector failed; blade PMM analogue to digital converter error; pitch system input power voltage is
lower; PMC controller output is overcurrent; etc. Considering that there are so many types of failure
modes involved in the above-mentioned electronically controlled pitch system, it is very difficult
or impossible to establish a perfect model for pitch system fault prediction. This paper proposes to
follow a data-driven approach rather than a model-based approach to predicting the pitch system error
in operation. Therefore, this paper starts to analyze SCADA data in order to identify the indicator
variables that can reflect the majority of pitch system faults. Support vector machine (SVM) method is
employed to train the prediction models by utilizing the condition monitoring and system operation
data. When a failure in the electronically controlled pitch system occurs, there are seven indicators
identified which reflect the change through an experimental analysis. These indicators are wind speed,
wind direction, rotor speed, rotor position, output power, grid-connected frequency and pitch angle.
The data of these seven indicators are extracted from a 1.5 MW wind turbine SCADA system. Then,
this paper applies the method of analyzing SCADA indicator variable data to establish radar charts to
perform the prediction of wind turbine pitch system failure.

2. Pitch System Data Processing

The pitch system faults account for a large proportion in the SCADA data fault list. In the
predictive analysis of pitch faults, in general, only those common faults are of the focus in study and
discussion. The readers are referred to the brief review given in the introduction section to learn more
about the prediction methods developed. Here, we propose an innovative approach to predicting
the pitch faults by using radar charts and SVM method. To apply this new approach, the first step
is to collect the relevant data. In this study, one 1.5 MW wind turbine model is selected from which
the SCADA system data is collected. A total of 400 data sets were collected, and classified into two
groups. One group of 200 data sets represents the normal operation condition of the pitch system,
whereas another group with the other 200 data sets represents the condition with the turbine pitch
faults. The closer it is to the fault occurrence, the clearer it is to reflect the fault by the running and
condition monitoring data. Therefore, the data representing the system condition 30 minutes before
the fault occurs is collected. Through experimental analysis for testing the SVM method developed;
when the wind turbine has a pitch failure, the related indicators are identified which are wind speed,
wind direction, rotor speed, rotor position, output power, grid-connected frequency and pitch angle.
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The data collection frequency is one per 10 seconds. Table 1 lists a set of indicator variables data—for
example, when the system is in faulty operation. The negative value in the column ‘Output power’
means that there is no power output to the grid, but the wind turbine is getting power from the grid.

The data in each data set is displayed in an excel data table. Select the input quantity of indicators,
including wind speed, wind direction, rotor speed, rotor position, grid-connected frequency and pitch
angle, shown in a matrix table marked as I. Its dimension is 72,400 × 6. The output is output power
recorded and marked as O; the dimension is 72,400 × 1. Therefore, a matrix, including input and
output variable values is given in another matrix, M, M = [I, O]. The matrix table of the collected data
under the pitch faulty condition is marked as I1, and the matrix to show the normal condition data
is marked as I2. The dimension of I1 and I2 is 36,200 × 6. The output power data under the pitch
faulty condition and normal condition are given in other separate matrixes marked as O1 and O2,
respectively, with a dimension of 36,200 × 1. Then, there will be the matrixes M1 = [I1, O1] under
pitch faulty condition and M2 = [I2, O2] under normal pitch condition.

Based on the indicator variable data collected and managed as above, the radar charts
corresponding to the pitch faulty and normal condition can be drawn, as shown in Figure 1. Taking
the wind speed in the range from 3 m/s to 21 m/s; the radar charts with 18,001 frames corresponding to
faulty and normal pitch condition are generated, respectively. The first 10,000 frames of the charts are
used for training, and the remaining 8001 frames are used for testing in each. The numbers 1 to 7 in
each chart represent the seven indicators in Table 1, i.e., 1 means wind speed, 2 represents indicator 2
which is wind direction; 3 means rotor speed and so on.
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Figure 1. Indicator data radar charts.

As can be seen from Figure 1, the radar charts of indicator variable data under normal pitch
condition are more evenly distributed, and the radar charts of the indicator variable data under faulty
pitch condition are less dispersed. The traditional analysis methods are based on the training analysis
of fault data. This paper, however, proposes a novel analysis method based SVM for training and
testing the indicator variable data radar charts under both normal and faulty pitch condition to predict
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the operation status of the wind turbine pitch system. Through analysis of the prediction accuracy, it is
proved that the proposed method is more feasible for predicting pitch failure.

At the same time, the regression model is obtained using the training dataset data by support
vector regression (SVR) method, and the prediction performance of the regression model is verified by
the test set data. The predicted output power obtained by the regression model is compared with the
actual output power, and the error evaluation indices are calculated to analyze the operational status
of the pitch system.

Table 1. SCADA system indicator variable data when the system is in faulty operation.

Serial
Number

Wind Speed
(m/s)

Wind
Direction (◦)

Rotor Speed
(rad/min)

Rotor
Position (◦)

Output
Power (kW)

Grid Frequency
(Hz)

Pitch
Angle (◦)

1 5.52 152.7 0.01 306.1 −10.2 50.1 0
2 3.76 130.6 0.17 300.4 −11.4 50.1 89
3 2.81 137.9 0.01 295.6 −10.2 50.1 89
4 3.05 104.4 0.01 295.3 −10.2 50.1 89
5 4.22 137.2 0.01 293.6 −10.2 50.1 89
. . . . . . . . . . . . . . .
179 14.79 207.6 16.7 306.2 1527 50 11.55
180 15.75 207.2 17.4 321.4 1530.6 50 16.36
181 16.87 198.6 16.4 217.6 1493.4 50 13.87

3. Forecast Method Analysis

3.1. Indicator Variable Data Radar Chart Forecast by SVM

SVM is a machine learning method with supervised features, which improves the generalization
ability of machine learning through structural risk minimization [25]. The empirical risk and confidence
interval are minimized, and the pattern classification is effectively performed by extracting the
characteristics of the radar chart drawn using the data of related indicators.

Figure 2 below shows the flow diagram of the algorithm for processing image classification using
SVM. The flow chart mainly includes extraction of the image features, SVM classification operation,
sample prediction and surface classification effect through the confusion matrix. First, the input picture
is converted into a grayscale image, the image gray-level co-occurrence matrix (GLCM) feature is
extracted and normalized, and then the grayscale image is binarized. The image histogram of oriented
gradients (HOG) features are extracted, and the GLCM features and HOG features are combined as
feature vectors of the image, and the algorithm outputs are characteristics and tags of the training
set and the test sets. Secondly, the SVM classifier is trained by the obtained image features. Then,
the prediction of the sample tag is performed using the feature vector of the test image. Finally,
the classification effect is evaluated through a constructed confusion matrix.Energies 2019, 12, x FOR PEER REVIEW 6 of 18 
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3.1.1. Image Feature Extraction

The indicator variable data radar charts under normal operation and pitch faulty operation have
differences in their shape characteristics. It is to predict the indicator variable values under normal
operation and pitch faulty condition by extracting the image GLCM feature and HOG feature in this
paper. Before performing feature extraction, the RGB color space image is first converted into a gray
image, and the gray image is converted into a binary image by setting a threshold. The threshold is set
to be 0.5608.

For Grayscale image GLCM feature extraction, it is noticed that the indicator variable data radar
charts under normal operation and pitch faulty condition have different grayscale features. Here,
the average value and variance are taken as the final extracted features of the image, and the mean
value indicates that the degree of brightness to darkness of the image. The variance is used to display
grayscale contrast. The larger the variance value is, the greater the grayscale contrast of the image is.

3.1.2. Constructing Confusion Matrix

This paper evaluates the classification effect of the algorithm by constructing a confusion matrix.
The confusion matrix presents the visualization effect of the performance of the algorithm through
a specific matrix, which is a situation analysis table that summarizes the prediction results of the
classification model in machine learning. In the evaluation, the following terms are used: TP (True
Positive) means that the true value is true and the predicted value is true; FN (False Negative) means
that the true value is true and the predicted value is false; FP (False Positive) means that the true value
is false and the predicted value is true; and TN (True Negative) means that the true value is false and
the predicted value is false. Then, the prediction performance is evaluated by the following five indices:

(1) Diagnostic accuracy

Diagnostic Accuracy =
TP + TN

TP + TN + FP + FN
(1)

It is the most important indicator for evaluating a fault diagnostic model.
(2) Predicted as true accuracy

Precision =
TP

TP + FP
(2)

It is the proportion of the positive class records that the classifier judges to be in positive class.
(3) True to true accuracy

Recall =
TP

TP + FN
(3)

Recall represents the proportion of positive samples whose metrics are correctly predicted by
the classifier.

(4) True to false accuracy

Speci f icity =
TN

TN + FP
(4)

Specificity indicates the ratio of the number of faults being correctly diagnosed to the actual
number of faults, and it reflects the fault diagnosis capability of the model.

(5) Predicted as false accuracy

NegativePrediction =
TN

TN + FN
(5)

Negative Prediction indicates the proportion of times when the fault is correctly diagnosed as a
fault, which indicates the credibility of the diagnosis as a fault.
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3.2. Support Vector Regression Prediction

SVR is the application of SVM to regression problems [26]. SVR can deal with practical problems,
such as small samples, nonlinear and high digits, and can be effectively applied to modeling and
prediction of nonlinear data and even optimization control. At the same time, it overcomes the issues
that network structures, such as neural networks are difficult to determine, and it is prone to fall in
local convergence so as to turn out the local extreme points [27].

When using SVR to handle regression problems for a given sample set {(xi, yi)} (i = 1, 2, Λ, M),
xi is the ith m-dimensional input vector, yi is the ith output vector and M is the sample size. Through a
function, g(x), the m-dimensional input vector is mapped into the l-dimensional feature space, l > m.
The SVR implementation constructs a hyperplane f (x) = ωT g(x) + b in the feature space, where ω is
the l-dimensional weight vector, and b is the bias term. The purpose is to obtain the distance

∣∣∣yi − f (xi)
∣∣∣

< ε from all sample points to the hyperplane, where ε is the given precision. When the error is less
than ε, it is not considered. When the error is greater than ε, the extra error is usually expressed by the
relaxation factors ξ and ξ*.

According to the structural risk minimization criterion, the optimization objectives and constraints
of the SVR model are expressed, respectively, as follows [28]:

min
ω,b,ξ,ξ∗

1
2
‖ω‖2 + C

M∑
i=1

(ξi + ξ∗i )

, (6)

subject to


yi − f (xi) ≤ ε+ ξi, i = 1, . . .M.
f (xi) − yi ≤ ε+ ξ∗i , i = 1, . . .M.
ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, . . . , M.

where, ε ≥ 0 is the fitting accuracy of the function; ξi ≥ 0 and ξ∗i ≥ 0 are the relaxation factors; and C > 0
is used to control the degree of penalty for the sample exceeding the error, ε.

The non-negative Lagrangian multipliers αi and α∗i are introduced by the objective function and the
corresponding constraints, and the Lagrange function is constructed to transform the Equation (6) as:

max
α,α∗

−
M∑

i=1, j=1

(
αi − α

∗

i

)
·

(
α j − α

∗

j

)
gT(xi)g

(
x j

)
− ε

M∑
i=1

(
αi + α∗i

)
+

M∑
i=1

yi
(
αi − α

∗

i

), (7)

subject to
M∑

i=1

(
αi − α

∗

i

)
= 00 ≤ αi,α∗i ≤ C.

By solving Equation (7), the optimal hyperplane function is obtained,

f (x) =
M∑

i=1

(αi − α
∗

i )gT(xi)g(x) + b. (8)

An important concept in this model is the kernel function. From the Mercer theorem, this kernel
function is:

K(xi, x) = gT(xi) · g(x). (9)

Thus, insert Equation (9) into Equation (8), the optimal hyperplane function is changed to:

f (x) =
M∑

i=1

(αi − α
∗

i )K(xi, x) + b. (10)

Equation (10) is the SVR function. Figure 3 gives a flow diagram showing the SVR prediction
modeling algorithm. It starts with the determination of the input and output variables of the model like
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the seven indicators selected, then select a kernel function and regression parameter values, such as
the kernel function is selected as a linear function f (x) = ωT

·x + b and C = 2.2 based on a preliminary
study. After that, do sample data pretreatment, that is, the indicator variables data are organized and
put into a designed table in excel spreadsheet like Table 1, for instance. The data is then grouped into
two groups as training data and testing data, for example, 75% of the data is used for training model,
and the remaining 25% is used for testing the model. Train the model until the model evaluation
criteria, R2 and RMSE values are satisfied, i.e., R2 is larger than the threshold and RMSE is less than the
setting target. After the model is obtained, it is tested using the test sample data.
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Root Mean Squared Error (RMSE) is calculated by:

RMSE =

√√
1
n

n∑
i=1

( f (xi) − yi)
2. (11)

The model determination, R2 (Square correlation coefficient) is calculated by:

R2 =

(n
n∑

i=1
f (xi)yi −

n∑
i=1

f (xi)
n∑

i=1
yi)

2

(
n

n∑
i=1

f (xi)
2
− (

n∑
i=1

f (xi))2

)
(n

n∑
i=1

yi2 − (
n∑

i=1
yi)

2
)

. (12)

In Equation (12), yi is the ith true value; f (xi) is the ith simulated output value; n is the total
number of test data.
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4. Prediction Results and Analysis

In order to verify the effectiveness of the SVM algorithm, the radar charts are processed first,
to achieve the radar charts of the indicator variable data under pitch system normal and faulty operation
condition, followed by feature extraction. Finally, the SVM training model is used to generate the
confusion matrix and analyze the prediction indices.

At the same time, the SVR model is established for the normal operation of SCADA data.
For different operating conditions, the actual output power and the output power of the training model
are compared to obtain the SVR model prediction accuracy.

By comparing the prediction effects of the above two methods, the feasibility and efficiency of
using the SVM to forecast the wind turbine pitch system under normal and faulty condition are verified
using the real wind turbine operation data in production.

4.1. SVM for Graphics Prediction and Prediction Accuracy Analysis

The SVM algorithm is used to perform fault prediction on the generated radar charts under
different operation states of the wind turbine using the data collected. The radar charts plotted with
the indicator variable data are shown in Figure 4. First, the radar image is grayscale processed, and the
GLCM features of the image are extracted, and the average and variance are taken as the final extracted
features of the image. The HOG features of the radar charts are then extracted, and the GLCM
features and HOG features are combined as feature vectors of the image. After the SVM is trained,
the classification effect of the model is evaluated by the generated confusion matrix.
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4.1.1. Image Feature Extraction

(1) Image Grayscale Processing

Before extracting the characteristics of the radar chart, the graphics are first grayscaled, as shown
in Figure 4.

(2) Image Feature Extraction

Here, the average value and the variance are used as the GLCM features of the extracted image.
Since there are too many image samples and it is difficult to observe the feature difference, we select
150 sample charts from normal pitch system operation and 150 sample charts from when the system is
in faulty condition to make a comparison in mean and variance of the GLCM features of the extracted
image. The numbers 1–7 in Figure 4 represent the seven indicators in Table 1.

Figure 5 shows the GLCM feature average of grayscale values of the images for comparison.
The feature extraction of the radar charts is from four directions, θ = 0◦, 45◦, 90◦, 135◦; and the
150 average values of the radar charts when the pitch system is in normal and faulty condition are
calculated. Similarly, Figure 6 shows the comparison of GLCM feature variance of grayscale values of
the images in these four directions.Energies 2019, 12, x FOR PEER REVIEW 11 of 18 
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As shown in Figures 5 and 6, there is only a small or no overlap of the mean value and variance of
the GLCM feature of the radar charts under two different conditions, the wind turbine pitch system
faulty and normal operation status can be clearly distinguished. Obviously, the mean value of the
feature under wind turbine faulty condition, as shown in Figure 5, is lower than the normal operation
status except for the 0◦ direction; and the value under normal operation status in Figure 6 is always
higher than the faulty condition. This provides a basis for the prediction of the subsequent operational
status, i.e., normal operation or faulty condition.

4.1.2. Forecast Index Value Calculation

According to the construction of the confusion matrix, the values of the prediction indices, TP, FN,
FP, and TN are shown in Table 2. According to the prediction index values obtained, the prediction
accuracy, the accuracy that the prediction is true, the true-true accuracy, the true-false accuracy and the
accuracy that the prediction is false, are shown in Table 3 below.

Table 2. Forecast index value.

Index TP FN FP TN

Value 6599 1402 0 8001

Table 3. Forecast evaluation index value.

Index Accuracy Precision Recall Specificity Negative Prediction

Value (%) 91.24 100 82.48 100 85.09
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4.2. SVR Model Training and Prediction Accuracy Analysis

The input data is processed separately before performing predictive network training. The data is
organized in the same way as described in Section 2, such as the data table is expressed as M, denoted
as M = [I, O]. The indicator variable values corresponding to the pitch system faulty condition is given
in another table, which is denoted as M1 = [I1, O1]. Following the same, we have M2 = [I2, O2] for the
indicator variable data under the system normal operation. The input variable matrix dimension is
36,200 × 6, and the output vector dimension is 36,200 × 1 for each M1 and M2.

Starting from the first line of M1 and M2, take one line in every three lines and generate an array
with the dimension of 9050 × 7 as the test data set of the model, denoted as N1 and N2. Starting
from the first line of M1 and M2, take three lines every other line to generate another array with the
dimension of 27,150 × 7 as the training data set of the model, denoted as N3 and N4.

The architecture of the SVM is shown in Figure 7, where K is the kernel function [29].
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The idea to use the kernel function is to transform the random vector Xi on the feature space
into a high-dimensional feature space F by nonlinear Φ mapping. Hence, it is to get a solution in
high-dimension space by linearly dividing the space. The mapping is shown below:

Φ : R→ F
Xi → Φ(Xi)

. (13)

In this paper, the linear kernel function C-SVR model is used, and the linear function f (x) = ωT
·x +

b is applied for data fitting. For the optimization problems given in Equations (6) and (7); M, αi and
α∗i are the Lagrange multipliers corresponding to the original problem with inequality constraints.

The corresponding fitting function is f (x) = ωT
·x + b =

∑M
i=1

(
α∗i − αi

)
(xi·x) + b.

Setting error interval as [−6, 6] and the step size 0.5, it is used to record the number of errors that
fall in each area. By taking the normal training data as an example, the number of errors distributed in
each interval is obtained as PP_normal_train, then the error value in each region is averaged to obtain
PP_normal, and finally, the three-term polynomial curve fitting is used to obtain PP_normal_result.
For abnormal training data, normal test data, and abnormal test data; the same results are obtained
through fitting as PP_fault_result, PP_normaltest_result, and PP_faulttest_result. The normalized
data and abnormal data are tested on the trained network to verify the network prediction accuracy.
The verification is by the following equation,

J1 = (PP_normal_result− PP_normaltest_result)2

J2 = (PP_ f ault_result− PP_ f aulttest_result)2 (14)

Y = J1/J2 is the threshold which is set to be 0.85 in this paper. When Y < 0.85, the output value
is recorded as 0 to indicate normal operation. When Y ≥ 0.85, the output value is recorded as 1 to
represent the faulty operation condition. A threshold of 0.85 is more stringent than a threshold of 1
to avoid missing some faults. However, as the turbine system is working under dynamic load and
operates under different operating conditions, the value setting needs to be carefully considered.
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4.2.1. Output Power Comparison

Figure 8 below gives a comparison of the output power of the training model and the actual
output power. Figure 8a shows the comparison between the normal training output power and the
model predicted output power; Figure 8b presents the comparison between the abnormal training
output power and the model predicted output power; Figure 8c shows the comparison between the
output power of normal test and the model predicted output power; and Figure 8d gives comparison
between the abnormal test output power and the model predicted output power.

Energies 2019, 12, x FOR PEER REVIEW 13 of 18 

 

averaged to obtain PP_normal, and finally, the three-term polynomial curve fitting is used to obtain 
PP_normal_result. For abnormal training data, normal test data, and abnormal test data; the same 
results are obtained through fitting as PP_fault_result, PP_normaltest_result, and 
PP_faulttest_result. The normalized data and abnormal data are tested on the trained network to 
verify the network prediction accuracy. The verification is by the following equation, 

( )
( )2

2

2
1

____

____

resultfaulttestPPresultfaultPPJ

resultnormaltestPPresultnormalPPJ

−=

−=

. 
(14) 

Y = J1/J2 is the threshold which is set to be 0.85 in this paper. When Y < 0.85, the output value is 
recorded as 0 to indicate normal operation. When Y ≥ 0.85, the output value is recorded as 1 to 
represent the faulty operation condition. A threshold of 0.85 is more stringent than a threshold of 1 
to avoid missing some faults. However, as the turbine system is working under dynamic load and 
operates under different operating conditions, the value setting needs to be carefully considered. 

4.2.1. Output Power Comparison 

Figure 8 below gives a comparison of the output power of the training model and the actual 
output power. Figure 8a shows the comparison between the normal training output power and the 
model predicted output power; Figure 8b presents the comparison between the abnormal training 
output power and the model predicted output power; Figure 8c shows the comparison between the 
output power of normal test and the model predicted output power; and Figure 8d gives 
comparison between the abnormal test output power and the model predicted output power.  

  
(a) Normal training data (b) Abnormal training data 

  
(c) Normal test data (d) Abnormal test data 

Figure 8. Comparison of output power and actual output power of the training model.  Figure 8. Comparison of output power and actual output power of the training model.

4.2.2. Error Index Comparison

The error indices are error integral (IE), absolute error integral (IAE), and squared error integral
(ISE), which are used in comparing the normal training output power with the model predicted output
power, the abnormal training output power and the model predicted output power, the normal test
output power and the model predicted output power, and the abnormal test output power and the
model predicted output power. The calculated error indices are given in Table 4 in the case study. It can
be seen from the table that the error value obtained by the SVR analysis is within an acceptable range.
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Table 4. Actual output power and model training output power error index.

Data Set Status IE IAE ISE

Normal training 2.871 11.426 2.452 × 103

Abnormal training −49.059 66.378 6.799 × 104

Normal test 13.775 17.386 5.576 × 103

Abnormal test −29.952 39.120 3.465 × 104

4.2.3. Forecast Index Calculation

The SVR performs a regression analysis to obtain the prediction indices TP, FN, FP, and TN values,
as shown in Table 5 below.

Table 5. Forecast index value.

Index TP FN FP TN

Value 6804 2246 896 8154

According to the prediction data obtained above, the prediction accuracy is evaluated, they are the
accuracy of prediction, the accuracy that the prediction is true, the accuracy of the true to be predicted
as true, the accuracy of the false to be predicted as false, and the accuracy of that the prediction is false,
as shown in Table 6.

Table 6. Forecast evaluation index.

Index Accuracy Precision Recall Specificity Negative Prediction

Value (%) 82.64 88.36 75.18 90.09 78.40

4.3. Comparison between Prediction Methods

The prediction results using the SVR model and the SVM on the image prediction model are
compared. The results of the index comparison are shown in Table 7.

Table 7. Forecast evaluation index.

Approach Accuracy Precision Recall Specificity Negative Prediction False Alarm Rate

SVM Model Prediction (%) 82.64 88.36 75.18 90.09 78.40 17.36
SVM processing graphics (%) 91.24 100 82.48 100 85.09 8.76
Accuracy improvement (%) 8.60 11.64 7.30 9.91 6.69 8.60

It should be noted, False alarm rate is the rate that wind turbine system health status is
predicted/forecasted wrongly, it is False alarm rate = 1 − Accuracy.

It can be seen from Table 7 that using SVM to analyze the radar chart, the accuracy of the training
prediction model is higher than that of the regression model using SVR. The accuracy of the SVM
training prediction model is 8.6% higher than that of the SVR prediction model. It is found that the true
accuracy rate is 11.64% higher, the true-true accuracy rate is 7.3% higher, and the true-false accuracy
rate is 9.91% higher, the false accuracy rate is 6.69% higher, and the predicted false alarm rate was
reduced by 8.6%.

4.3.1. Comparison of Model Prediction Accuracy Using Regression and Neural Network Approach

In a previous study [30], multivariate linear regression and BP neural network were used to
predict the wind turbine pitch system failure, caused by pitch 3◦ position sensor failure, pitch 90◦

position sensor failure, un-synchronizing of three blade position in pitching, pitch in emergency mode,
pitch safety chain failure and pitch motor over-temperature using the data collected from the same
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wind farm. The seven indicator variables data were extracted from the collected data set to construct a
model for analysis. Then, the pitch failure prediction model performance indices are shown in Table 8.
It is found that the BP neural network prediction model is better than the multivariate linear regression
analysis in terms of fault detection ability.

Table 8. Pitch failure model prediction performance index.

Approach Accuracy Error Specificity Negative Prediction

Multiple linear regression analysis (%) 71 29 70 71.4
BP neural network analysis (%) 83 17 82 83.7

Similarly, in our another study [31], BP neural network and wavelet BP neural network were
applied to model development for prediction of wind turbine pitch system failure caused by several
other failure modes, including the pitch was in emergency mode, the pitch safety chain failed,
three blades were not synchronized, the blade was not able to be reciprocated, the pitch communication
was off, and blade hit 95◦ limit, using the data collected in the same time period as in the above
comparison analysis. The prediction accuracy by the two approaches is shown in Table 9. It is
clearly identified that the wavelet BP neural network prediction accuracy is higher than the BP neural
network model.

Table 9. Pitch failure model prediction performance indices.

Approach Accuracy Error Specificity Negative Prediction

BP neural network analysis (%) 65 35 64.2 68
Wavelet BP Neural Network analysis

(%) 82 18 79.6 86

4.3.2. Summary and Discussion

Based on the above comparison analysis of the competitive models for prediction of pitch system
failure, it has been found that the SVM method based on the radar charts generated using the
relevant indicators data extracted from the collected wind turbine operation and monitoring data sets
provides the best performance in prediction of pitch system failure than other competitive approaches.
The prediction accuracy in terms of pitch system fault is as high as 91.24%, which is clearly higher than
other models developed using multivariate regression and Neural Network techniques. The main
reason may be due to the advantages of the SVM method as discussed below:

(1) For the fault prediction of wind turbine pitch control system, the image processing accuracy is
higher than the data processing accuracy. In this study, the SVM is used to process the generated radar
charts, and SVR is based on the recorded data so that the prediction accuracy using the SVM method is
higher than using SVR.

(2) SVM is a novel small sample learning method with a solid theoretical background. In essence,
it avoids the traditional from induction to deduction process, and can achieve efficient "transduction
reasoning" from training samples to forecast samples, which greatly simplifies the general classification
and regression process in problem solution.

(3) In general, a small proportion of support vectors determine the final result in a prediction
analysis. This tells us to search for and grasp the key samples among a large number of redundant
samples so that the developed algorithm shall be simple and show good “robustness”. The SCADA
system collects a large amount of data, and it inevitably involves redundant and useless information,
which will cause interference to the training model. For this reason, SVM is used for classification in
this study.
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(4) It is finally to solve a convex quadratic programming problem. In theory, we will get the
globally optimal solution and solve the issue with local extremum with SVW, which is, however, hardly
avoided in the neural network method.

Although it is known that it is difficult to solve the multi-classification problem with SVM,
the focus of this research is on binary-pattern classification, so that it does not involve this issue.

5. Conclusions

In this paper, the SVM method is utilized to process the radar charts generated using the wind
turbine pitch system operation indicators data collected. The data representing the wind turbine pitch
system under normal operation condition and faulty condition were collected, and the corresponding
radar charts were plotted. In the analysis, it is first to make the radar image grayed out, and the average
value and variance of the gray image GLCM feature extracted are calculated. The HOG features are
extracted after binarization, and the GLCM features and HOG features are combined as feature vectors
of the image. Then the SVM prediction model is trained, and finally, the prediction accuracy of the
prediction model is evaluated using the confusion matrix constructed. The prediction index values of
TP, FN, FP and TN are obtained and the six types of prediction evaluation indices are analyzed, namely,
the prediction accuracy, the accuracy to be predicted as true, the accuracy to be predicted as false,
the accuracy of the true to be predicted as true, the accuracy of the false to be predicted as false, and the
total false alarm rate of the prediction. It is verified that the prediction indices given by the new method
proposed in this paper are better than the SVR prediction approach through comparison analyses.
The prediction accuracy is 91.24% by the new method, which is increased by 8.6% by comparing to the
SVR prediction model in the case study. The proposed SVM method is also verified better than other
competitive methods, such as the ones using multivariate linear regression, BP Neural Network and
wavelet Neural Network techniques in prediction of pitch system failure based on a comparison study.

The data used in this paper is from the real data recorded through a wind farm SCADA system
in Hebei province, China. Similarly, the radar charts are also generated using the real data of seven
indicator variables from the SCADA system. In the model training phase, the training data is collected
from the SCADA system. And in the testing phase, the data generated by the model is compared to
the real data from the SCADA system as well. As a result, the proposed method has great value for the
application. It can be applied for real testing.

With the proposed method, a number of wind turbine pitch faults can be predicted before a real
failure occurs so that it can help reduce the number of unscheduled shutdowns of wind turbines and
the maintenance activities could be planned well based on the predicted condition of the pitch system.
Therefore, this method can help reduce the wind turbine maintenance cost and increase the potential
for more electric power production.
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