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ABSTRACT An IT system generates messages for other systems or users to consume, through direct
interaction or as system logs. Automatically identifying the types of these machine-generated messages
has many applications, such as intrusion detection and system behavior discovery. Among various heuristic
methods for automatically identifying message types, the clustering methods based on keyword extraction
have been quite effective. However, these methods still suffer from keyword misidentification problems,
i.e., some keyword occurrences are wrongly identified as payload and some strings in the payload are
wrongly identified as keyword occurrences, leading to the misidentification of the message types. In this
paper, we propose a newmachine language processing (MLP) approach, calledP-gram, specifically designed
for identifying keywords in, and subsequently clustering, machine-generated messages. First, we introduce
a novel concept and technique, positional n-gram, for message keywords extraction. By associating the
position as meta-data with each n-gram, we can more accurately discern which n-grams are keywords of
a message and which n-grams are parts of the payload information. Then, the positional keywords are used
as features to cluster the messages, and an entropy-based positional weighting method is devised to measure
the importance or weight of the positional keywords to each message. Finally, a general centroid clustering
method, K-Medoids, is used to leverage the importance of the keywords and cluster messages into groups
reflecting their types. We evaluate our method on a range of machine-generated (text and binary) messages
from the real-world systems and show that our method achieves higher accuracy than the current state-of-
the-art tools.

INDEX TERMS Machine-generated messages, positional n-gram, clustering.

I. INTRODUCTION
Machine-generated messages are automatically generated by
a computer process, application, or other mechanism without
the active intervention of a human. For example, IT sys-
tems generate highly structured messages and store them
in log files. These log files are based on scripts and are
crucial for system security audits. IT systems also generate
and exchange formatted messages with each other according
to certain communication protocols. These messages follow
some defined formats, i.e., specific sequences of fixed key-
words interleaved with dynamic data fields (the ‘‘payload’’).
One application system or communication protocol often

The associate editor coordinating the review of this manuscript and
approving it for publication was Waldemar W. Koczkodaj.

involves multiple types of messages. The problem of clus-
tering those machine-generated messages is to segregate the
messages into structurally similar message clusters, which
correspond to message types with different formats. In data
analytics applications, such as log analysis, network commu-
nications analysis and system response emulation, the under-
lying formats of messages are often not available a priori.
Separating messages according to their types is a critical step
to any further analysis.

Keyword extraction methods using Frequent Pattern
Mining (FPM) [6], [8] and Natural Language Process-
ing (NLP) [23], [25] have been developed to cluster
machine-generated messages. Examples found in recent liter-
ature includeDiscoverer [8], ReverX [2], AutoReEngine[15],
ProDecoder [22], [27], and the HsMM-based method
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proposed by Cai et al. [7]. These methods have been proven
very useful, but still have major limitations in keyword iden-
tification and thus message clustering: (1) some keywords
appear multiple times in messages, but they are considered
only once by existing methods; (2) some payload fields that
contain the same string as a certain message keyword are
wrongly treated as keyword occurrences; (3) some keywords
are missed due to their being part of other longer keywords.
These issues are particularly pronounced in binary messages
where critical keywords can be very short. For example,
the message type keywords in the Lightweight Directory
Access Protocol (LDAP) have only one Byte [18].

In this paper, we propose a new Machine Language
Processing (MLP) approach, called P-gram, specifically
designed for the clustering of machine-generated messages.
P-gram leverages the positions of keywords in the template
structure of machine-generated messages to extract message
keywords more accurately. It is based on the observation
that message keywords appear at relatively fixed positions in
machine-generated messages.

The proposed P-gram consists of four main steps. Given
a set of machine-generated messages, in Step 1, we intro-
duce our new concept, positional n-gram, and identify
frequent positional n-grams with different n lengths in mes-
sages. In Step 2, we extract the longest common positional
n-grams and the shorter but significant positional n-grams as
position-specific keywords (or positional keywords) from the
frequent positional n-grams of the previous step. To reduce
the impact of variable-length payloads on keyword position,
in Step 3, we analyze the variation of the positions of each
keyword, calculate the position window(s) for each keyword,
and merge the positional keywords within their windows. In
Step 4, we use the merged keywords as features for message
clustering. To numerically weigh each feature in messages,
we exploit the position information of keywords and derive
a ‘‘positional weighting’’ for each feature using a variability
weighting technique, namely, entropy analysis. The features’
positional weightings are then used by a general centroid
clustering method, K-Medoids, to group the messages into
clusters reflecting message types.

P-gram effectively addresses the aforementioned keyword
mis-identification issues faced by existing methods. First,
P-gram can identify the repetitive occurrences of keywords
in messages by analyzing the probability density of keywords
at different positions (or position windows). Second, it can
effectively filter out from the candidate keywords noise that
is part of message payload. Third, by using the proposed
independent frequency, P-gram can effectively distinguish
short keywords from those longer ones that contain the short
keywords as sub-strings, whereas existing methods cannot
because they solely rely on the generic frequency of strings.

In summary, we make the following major contributions:
• By introducing P-gram we effectively address the
keyword mis-identification issues commonly afflicting
existing methods in the clustering of machine-generated
messages.

FIGURE 1. An example of a machine-generated message.

• Theorems are provided to prove the effectiveness of the
proposed P-gram in message keywords extraction.

• P-gram is based on the statistical characterization of
machine-generated messages, and it assumes no knowl-
edge of the underlying IT system. Accordingly, it can be
applied to both text- and binary-based messages.

To evaluate the effectiveness of the proposed approach,
we compare P-gram with existing state-of-the-art message
clustering methods, including ProDecoder [22],
AuoReEngine [15], Modified Needleman-Wunsch [9], and
a baseline algorithm (an NLP-style ‘‘vanilla’’ n-gram
approach). Eight message data sets generated from real-world
systems and protocols are used for our evaluation, including
both textual and binary messages. The experimental results
show that P-gram achieves more accurate clustering than any
of the other methods.

The rest of the paper is organized as follows: Section II
introduces the structural features of machine-generated mes-
sages and our goals. We provide the technical details of
P-gram in Section III and present the implementation details
and experimental results of P-gram in Section IV. Related
work is discussed in Section V. Finally, Section VI presents
some concluding remarks and proposes future work.

II. MACHINE-GENERATED MESSAGES AND OUR GOAL
Machine-generated messages follow a template structure
and are constructed according to message templates/formats.
Given a set of messages, there may be of different types,
where each message type follows a particular format. A mes-
sage consists of fixed fields (keywords, that are repeated in
messages of the same type) and variable fields (containing
payload data), as shown in Figure 1. In the context of this
paper, the concept of a keyword is similar to but broader than
its usual meaning in machine languages. That is, a keyword
is a maximum consecutive sequence of bytes or characters
that is reserved by and has a special meaning in a machine
language, which is either compulsory (occurs in all messages
of a given type) or optional (occurs in only some messages of
a given type). In general, the type of a message is determined
by the keywords it contains.

Figure 2 gives an example list of messages from interacting
with a system. It follows a fictional directory service protocol
similar to the widely used Lightweight Directory Access Pro-
tocol (LDAP), but is simplified to make our running example
easier to follow.

Each message shows a number of fields. Manually,
we can identify the keywords, such as ‘‘id:’’, ‘‘, op:B’’,
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FIGURE 2. An example list of 6 messages following the fictional
Lightweight Directory Access Protocol (LDAP). There are two types of
messages covered in this example: op:B and op:S. The op:S messages
present 5 keywords: ‘‘id’’, ‘‘cn’’, ‘‘ou’’, ‘‘ou’’ and ‘‘c’’. Note that, (i) ‘‘ou’’ is a
repetitive keyword with 2 occurrences; (ii) the keyword ‘‘c’’ is a sub-string
of the keyword ‘‘cn’’; (iii) the payload Haycne in message 4 has the same
sub-string of the keyword ‘‘cn’’.

‘‘, op:S,cn:’’, ‘‘, ou=’’, and ‘‘, c=’’. Note that there
are two types of messages, which are determined by the
keywords ‘‘, op:B’’ and ‘‘, op:S,cn:’’.

Our goal is to design a method that, given a set
of machine-generated messages, separates messages into
type-specific clusters as determined by their keywords.
Previous clustering methods often suffer from keyword
mis-identification issues. Taking the messages in Figure 2
as an example, ‘‘ou’’ can be identified as a keyword in
existing methods, as it has a high frequency of occurrence.
However, it will only be considered as having appeared in
a message, ignoring its multiple occurrences in a message.
Another example would be ‘‘cn’’, which can be identified as
a keyword by existing methods. However, the short keyword
‘‘c’’ will be ignored, because ‘‘c’’ is a sub-string of ‘‘cn’’ and
it will be merged into ‘‘cn’’ by existing methods. In addition,
the ‘‘cn’’ from payload ‘‘Haycne’’ is often wrongly treated
as a keyword in the message by existing methods. In this
paper, we seek to address these issues with a new keyword
identification method and achieve better clustering accuracy
for machine-generated messages.

III. P-GRAM CLUSTERING
In this section, we introduce our clustering method, P-gram,
for machine-generated messages. It considers the positions
of various words in messages in determining whether or not
they are keywords, achieving greater accuracy in identify-
ing keywords and message clusters. As shown in Figure 3,
P-gram has four major steps: in Step 1, we identify frequent
position-specific words (or positional n-grams) in the mes-
sages; in Step 2, we extract the position-specific keywords
(or positional keywords) from the message words of Step 1; in
Step 3, we further refine the keywords by taking into account
their positional variations; finally in Step 4, the messages
are clustered based on the identified features—positional
keywords. We present these steps in turn in the following
subsections.

A. POSITIONAL N-GRAM GENERATION (STEP 1)
In this step (see Algorithm 1), we introduce a new concept
and technique, positional n-gram. A traditional n-gram is a
subsequence of n elements contained in a given sequence of

at least n elements. Hence, n denotes the number of consec-
utive elements that are joined together. For example, the first
message ‘‘id:1,op:B’’ in Figure 2 contains the follow-
ing 4-grams (with the element being a character): ‘‘id:1’’,
‘‘d:1,’’, ‘‘:1,o’’, ‘‘1,op’’, ‘‘, op:’’, and ‘‘op:B’’.

In contrast to traditional n-grams, we particularly focus on
the position of each n-gram relative to the beginning of the
message. Formally, we define a positional n-gram as follows.
Definition 1 (Positional n-gram): Given a set M of mes-

sages, we use (xm0 xm1 · · · x
m
lm−1

) to denote the m-th mes-
sage, where xmi is the i-th character in message m and lm is
the length of message m. We use tmi,n = xmi x

m
i+1 · · · x

m
i+n−1

to denote a positional n-gram of length n at position i in
message m.
Based the above definition, we see in Figure 2 that the

positional 3-gram ‘‘id:0,3’’ appears at position 0 in all mes-
sages, and the positional 5-gram ‘‘, op:B4,5’’ appears at
position 4. Similarly, other keywords appear at/around fixed
positions.

To identify frequent positional n-grams, we use the follow-
ing definition to count the number of messages that contain a
given positional n-gram.
Definition 2 (Frequency): Given a set M of messages, for

an arbitrary positional n-gram ti,n, we define

f (ti,n) =
∣∣{tmi,n|ti,n = tmi,n, 1 ≤ m ≤ |M |}

∣∣ , (1)

as the frequency of the positional n-gram ti,n, where |M | is
the cardinality of setM .

Suppose that ρ is the frequency threshold for selecting
candidate keywords. The following set G gives all frequent
positional n-grams:

G =
{
ti,n|

∣∣f (ti,n)∣∣ ≥ ρ|M |} . (2)

Algorithm 1 presents the details of positional n-gram
generation for a given set M of messages. We (1) initial-
ize an empty set G = ∅ and a minimum length n = 1
of positional n-grams; (2) break every message down into
consecutive positional n-grams and save them in a tempo-
rary set Gn; and (3) count the frequency for each posi-
tional n-gram in Gn. For an arbitrary positional n-gram ti,n(∈
Gn), if its frequency f (ti,n) ≥ ρ|M |, we add ti,n into G.
Then, we increase n by 1 and get back to step (2) until
there is no positional n-gram with frequency greater than
ρ|M | identified. Set G returns all the frequent positional
n-grams.

An illustration of Algorithm 1 is given in Figure 3. Here,
the 6 messages in Figure 2 are used as an example service
trace, and we set the threshold ρ = 1/3. After apply-
ing Algorithm 1 (Positional n-gram Generation), we obtain
a set of frequent positional n-grams. For example, the 3-
grams, such as ‘‘id:0,3’’, ‘‘, op4,3’’ and ‘‘cn:10,3’’, are
extracted as frequent positional n-grams as their frequencies
are greater than or equal to 2 (i.e., 6 × 1/3 = 2); but
some 3-grams, such as ‘‘d:11,3’’ and ‘‘d:21,3’’, are not
extracted as frequent positional n-grams as their frequen-
cies are less than 2. Similarly, the 4-grams ‘‘, ou=16,4’’
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FIGURE 3. Architecture of the proposed P-gram. The messages in Figure 2 are used as an example service trace, and the results of the four main steps of
P-gram working on the example trace are illustrated in each block of this figure.

Algorithm 1 Positional n-gram Generation
1: Inputs: A message set {(xm0 x

m
1 · · · x

m
lm−1

)|1 ≤ m ≤ |M |}
and a threshold ρ.

2: Output: A set G of frequent positional n-grams and their
frequencies {f (ti,n)|ti,n ∈ G}.

3: Initialize: G = ∅, and theminimum n-gram length n = 1.
4: repeat
5: Initialize an empty set Gn = ∅ to store positional n-

grams of length n.
6: for (m ∈ {1, · · · , |M |}) do
7: Split message m into positional n-grams Pm :=
{tmi,n}.

8: for (tmi,n ∈ Pm) do
9: if (ti,n /∈ Gn) then

10: Gn = Gn ∪ {ti,n}.
11: f (ti,n) = 1.
12: else
13: f (ti,n) = f (ti,n)+ 1
14: end if
15: end for
16: end for
17: G = G ∪ {ti,n|f (ti,n) ≥ ρ|M |, ti,n ∈ Gn}.
18: fmax = max{f (ti,n)|ti,n ∈ Gn}.
19: n = n+ 1.
20: until (fmax < ρ|M |)

with frequency 2, ‘‘, ou=19,4’’ with frequency 2, and ‘‘,
ou=28,4’’ with frequency 4, are also extracted as frequent
positional n-grams. In contrast, the 2-gram ‘‘cn16,2’’ embed-
ded in payload Haycne in message 4 will not be extracted
as an keyword, as its frequency is less than 2. In particular,
the longest frequent positional n-gram extracted from the
example trace is the positional 9-gram ‘‘, op:S,cn:4,9’’.
In the next step, we will identify positional keywords from
the frequent positional n-grams extracted in Algorithm 1.

B. POSITIONAL KEYWORD IDENTIFICATION (STEP 2)
In this step (seeAlgorithm2), we extract the longest common
positional n-grams and significant short positional n-grams

Algorithm 2 Candidate Positional Keywords Identification
1: Inputs: Threshold ρ, a set G of frequent positional n-

grams, and their frequencies {f (ti,n)|ti,n ∈ G}.
2: Output: A set S of candidate positional keywords and

their independent frequencies {f ′(ti,n)|ti,n ∈ S}.
3: for (ti,n ∈ G) do
4: f ′(ti,n) = f (ti,n).
5: for (ti′,n′ ∈ G) do
6: if (ti′,n′ A ti,n) then
7: f ′(ti,n) = f ′(ti,n)− f (ti′,n′ ).
8: end if
9: end for
10: end for
11: S = {ti,n|f ′(ti,n) ≥ ρ|M |, ti,n ∈ G}.

based on the set G of frequent positional n-grams identified
in Step 1.

Note that, all the positional sub-strings of a selected fre-
quent positional n-gram in set G are also included in set G,
because all these sub-strings have at least the same frequency
as the enclosing positional n-gram. For example, the posi-
tional 2-gram ‘‘cn10,2’’ and its positional sub-string ‘‘c10,1’’
both have a high frequency, 4(> 2), in Figure 2. Since
‘‘c10,1’’ and ‘‘cn10,2’’ have the same starting position, then
we can calculate the frequency of the independent ‘‘c10,1’’
by subtracting from its own frequency the frequency of the
longer positional n-grams which contain the shorter ‘‘c10,1’’.
Then, we get the frequency of the independent ‘‘c10,1’’ being
0. Hence, ‘‘c10,1’’ will not be a potential/candidate keyword.
By using this strategy, therefore, we can extract the longest
frequent positional n-grams at specific positions. Moreover,
we can also keep those short positional n-grams whose inde-
pendent frequency is above a given threshold. Theorems are
provided below to formalize these assertions.

In the following, we present our strategy more formally.
We first give the definitions of a super positional n-gram for
a given positional n-gram.
Definition 3 (Super-gram): For an arbitrary positional

n-gram ti,n = xixi+1 · · · xi+n−1, any positional sub-string
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ti′,n′ = xi′xi′+1 · · · xi′+n′−1 (if exists) of ti,n, where i ≤ i′ and
i′+n′ ≤ i+n, then ti,n is called a super-gram of ti′,n′ (denoted
as ti,n w ti′,n′ ), and ti′,n′ is called a sub-gram of ti,n (denoted
as ti′,n′ v ti,n).
Based on the above definitions, we can obtain the following
theorem.
Theorem 1: For an arbitrary positional n-gram ti,n ∈ G,

if there exists a sub-gram ti′,n′ @ ti,n (i.e., ti′,n′ v ti,n but
ti′,n′ 6= ti,n), then

f (ti′,n′ ) ≥ f (ti,n), and, ti′,n′ ∈ G. (3)

Theorem 1 is easy to obtain, so we do not provide the proof
here. Therefore, for an arbitrary positional n-gram ti,n ∈ G,
any sub-gram ti′,n′ (if exists) is a frequent positional n′-gram
in G.

We then give the definition of the independent frequency
for an arbitrary positional n-gram in set G.
Definition 4 (Independent Frequency): For an arbitrary

positional n-gram ti,n ∈ G, we define

f ′(ti,n) = f (ti,n)−
∑

{ti′,n′∈G|ti′,n′Ati,n}

f (ti′,n′ ), (4)

as the independent frequency of ti,n.
The following theorem gives our fundamental strategy for

candidate positional keywords identification.
Theorem 2: Given a positional n-gram ti,n ∈ S, where S is

defined as follows,

S =
{
ti,n ∈ G|f ′(ti,n) ≥ ρ|M |

}
, (5)

we have,
• if f ′(ti,n) = f (ti,n), @ a super-gram of ti,n in set G;
• if f ′(ti,n) < f (ti,n), ∃ a super-gram ti′,n′ A ti,n, such that
ti′,n′ ∈ S.
Proof: Since ti,n ∈ S, we have ti,n ∈ G and f ′(ti,n) ≥

ρ|M |. Based on the definition of f ′(·), we have f ′(ti,n) ≤
f (ti,n). If f ′(ti,n) = f (ti,n), from Eq. (4), we know that there is
no super-gram of ti,n in set G. This proves the first result of
the theorem.
If f ′(ti,n) < f (ti,n), based on Eq. (4), there exist super-

gram(s) ti′,n′ of ti,n. We use T = {ti′,n′ |ti′,n′ A ti,n, ti′,n′ ∈ G}
to denote the set of all super-grams of ti,n, and use tĩ,ñ =
argmax ti′,n′∈T {|ti′,n′ |} to denote the longest sup-gram in set
T . Note that, f ′(tĩ,ñ) = f (tĩ,ñ). Therefore, we have tĩ,ñ ∈ S.
This proves the second result of the theorem.
Therefore, for an arbitrary positional n-gram ti,n ∈ G,

if f (ti,n) = f ′(ti,n), then ti,n itself is the longest positional
n-gram for all of its sub-grams in G. Hence, ti,n is a potential
keyword. If f ′(ti,n) < f (ti,n), then there exist other longer
positional n-gram(s) in G. Note that, if f ′(ti,n) ≥ ρ|M |,
the independent ti,n itself is also a potential keyword. There-
fore, S returns a set of potential keywords, which can be
either longest positional n-grams or short frequent indepen-
dent positional n-grams.
Algorithm 2 presents the details of identifying candidate

positional keywords based on Theorem 2. We initialize an

empty set S = ∅. For each positional n-gram ti,n ∈ G,
we first initialize its independent frequency f ′(ti,n) as the
generic frequency f (ti,n) of ti,n. Then, we subtract f ′(ti,n) the
frequencies f (ti′,n′ ) of the super-grams ti′,n′ (A ti,n). Finally,
for an arbitrary positional n-gram ti,n ∈ G, if its independent
frequency f ′(ti,n) is greater than ρ|M |, we add it into set S.
Set S returns all the candidate positional keywords.
As illustrated in the Candidate Keywords Identification

step in Figure 3, there are 8 positional keywords extracted
from the frequent positional n-grams in Step 1. In particular,
the positional 5-gram ‘‘, op:B4,5’’ contains sub-strings:
positional 3-grams ‘‘, op4,3’’, ‘‘op:5,3’’ and ‘‘p:B6,3’’,
and the positional 4-grams ‘‘, op:4,4’’ and ‘‘op:B5,4’’.
Hence, ‘‘, op:B4,5’’ is kept as a positional keyword,
while all the sub-strings are removed. Similarly, the posi-
tional 9-gram ‘‘, op:S,cn:4,9’’ is kept as a positional
keyword, while all of its sub-string (e.g., ‘‘, op:S4,5’’
and ‘‘op:S,5,5’’) are removed. The positional 4-grams ‘‘,
ou=16,4’’, ‘‘, ou=19,4’’ and ‘‘, ou=28,4’’ are kept as
positional keywords as they are the super-grams of them-
selves. Note that, ‘‘, ou=’’ is a repetitive keyword. More
specifically, ‘‘, ou=16,4’’ and ‘‘, ou=19,4’’ correspond to
the first ‘‘, ou=’’ keyword, and ‘‘, ou=28,4’’ corresponds
to the second ‘‘, ou=’’ keyword. In the next step, we intro-
duce an approach to merge these positional keywords through
analyzing their position variations.

C. MERGING POSITIONAL KEYWORDS THROUGH
VARIATION ANALYSIS (STEP 3)
Note that, due to the variable length of payloads, the exact
position of message keywords may vary in a certain ‘‘win-
dow’’ (range). Therefore, we should consider all the occur-
rences of a keyword at different positions of a window as one
positional keyword that has the aggregate frequency at these
different positions. For keywords with multiple occurrences
in a message, their positions may vary in multiple windows.
In this step, we analyze the variation of the positions of each
keyword in set S, and merge the positional keywords within
their windows, to reduce the effect of payloads with variable
lengths.

Figure 4 gives an example of the position distribution of a
word in messages. As we can see, the word shows high den-
sity in the intervals [0, 10) and [40, 50], but low density in the
intervals [10, 20), [20, 30) and [30, 40). Intuitively, a high-
density window (interval) is more likely to contain a keyword,
while the low-density window may contain noise (false key-
words) from payloads. To identify those high-density win-
dows, we adopt the Parzen-Window Density Estimation [3]
to estimate the window size of keywords.
For an arbitrary candidate keyword t ∈ S (without posi-

tion), we use X = {x
∣∣tx,n = t, tx,n ∈ S } to denote the set of

all the possible positions of t . Given a window size δt , we can
split X into d xmax−xmin

δt
e windows, where xmax and xmin are the

maximum and minimum positions in X . For each window,
say [x, x + δt ), we can calculate the probability density of t
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FIGURE 4. Example of the position distribution of a word in messages.

in the window as follows,

p(t, x) = f ′x (t)/(δt · Vt ), (6)

where Vt is the volume of all of t’s possible positions in
X , and f ′x (t) is the total independent frequency of t’s posi-
tional n-grams in the window [x, x + δt ), i.e., f ′x (t) =∑

i∈[x,x+δt ) f
′(ti,n). Thus, to analyze the position variation of

t is to find its optimal probability density function. In other
words, we need to find out the optimal window size δt . As
suggested by [3], we set the window size as

δt = 1.06 · σt · V
−1/5
t , (7)

where σt is the standard deviation of t’s positions. Note that
the smaller the standard deviation, the smaller the size of the
window.

To filter out noise positions of t in X , we set a probability
density threshold ε(t) for t . Particularly, we set ε(t) as half
of t’s average probability density over all windows:

ε(t) =
1

2N (t)
·
f ′(t)
δt · Vt

, (8)

where N (t) is the number of t’s position windows, and f ′(t)
is the total independent frequency of t’s positional n-grams
with positions in X . Then, for each window, say [x, x + δt ),
if p(t, x) ≥ ε(t), we use the first positional keyword txmin,n
in the window to represent all possible variations of t in the
window, and aggregate the independent frequencies in the
window to txmin,n as follows:

f ′(txmin,n) =
∑

i∈[x,x+δt )

f ′(ti,n), (9)

and put txmin,n into a new set K (to store merged positional
keywords); if p(t, x) < ε(t), we skip to the next window.
Hence, we can

Algorithm 3 presents the details of merging positional
keywords based on the above position variation analysis. We
initialize an empty set K = ∅, and sort candidate positional
keywords in S alphabetically, so that ∀ t ∈ S, we can easily
retrieve all the positions of t . Then, we calculate window
size δt and the probability density threshold ε(t) for t . Then,
we examine each window and get the probability density p of
t in the window. If p ≥ ε(t), we put the candidate positional
keyword of t with the lowest position in the window into

Algorithm 3Merge Positional Keywords via Variation Anal-
ysis
1: Inputs: A set S of candidate positional keywords and their

independent frequencies {f ′(ti,n)|ti,n ∈ S}.
2: Output: A set K of merged positional keywords and their

windows 1 = {δt }.
3: Initialize: K = ∅, 1 = ∅, and sort S alphabetically.
4: repeat
5: t = S(0).keyword , retrieve t’s all positions: X =
{x
∣∣tx,n = t, tx,n ∈ S }.

6: Calculate window size δt using Eq. (7).
7: Calculate the probability density threshold ε(t) using

Eq. (8).
8: Sort X in ascending order, j = X (0).
9: while (j < |X |) do
10: for (k = (j+ 1)..(|X | − 1)) do
11: if (X (k)− X (j) > δt ) then
12: Get p(t, j) in window [X (j),X (k)) using

Eq. (6).
13: if (p(t, j) ≥ ε(t)) then
14: K = K ∪ {tX (j),n}, 1 = 1 ∪ {X (k −

1)− X (j)}.
15: f ′(tX (j),n) =

∑
i∈[X (j),X (k))

f ′(ti,n).

16: end if
17: break;
18: end if
19: end for
20: j = k .
21: end while
22: S = S\{tx,n|x ∈ X}.
23: until (S = ∅)

set K , record its window size, and update its independent
frequency to the aggregated independent frequency of all t’s
positional keywords in the window; otherwise, we skip to the
next window of t . Set K returns all positional keywords.

As illustrated in the Variability Analysis step in Figure 3,
the positional 4-grams ‘‘, ou=16,4’’ and ‘‘, ou=19,4’’ are
merged to one keyword ‘‘, ou=16,4’’ with independent fre-
quency 4, and the positional 4-gram ‘‘, ou=28,4’’ is kept
as an individual keyword. Now, we will explain the detailed
computation in merging the first two positional 4-grams.
First, it is easy to get the volume V = 12 (i.e., 28 − 16)
of ‘‘, ou=’’, and the standard deviation of its positions:
σ = 6.245. Then, we can use Eq. (7) to calculate the window
size δ = 4.0, and subsequently get 6 windows for ‘‘, ou=’’:
[16, 20), [20, 24), [24, 28), [28, 32), [32, 36) and [36, 38].
By using Eq. (6), we obtain the probability densities for ‘‘,
ou=’’ in these windows as: 0.0828, 0, 0, 0, 0, and 0.0828.
Meanwhile, we obtain the density threshold ε = 0.0138 using
Eq. (8). Hence, we obtain two effective windows [16, 20)
and [36, 38] for ‘‘, ou=’’. Finally, we use ‘‘, ou=16,4’’
to represent the ‘‘, ou=’’ keyword in window [16, 20)
and ‘‘, ou=28,4’’ to represent the ‘‘, ou=’’ keyword in
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window [36, 38]. Similarly, the positional 3-grams ‘‘,
c=36,3’’ and ‘‘, c=40,3’’ are merged to one keyword ‘‘,
c=36,3’’ with the independent frequency updated to 4.

D. MESSAGE CLUSTERING (STEP 4)
In this step, we use the positional keywords in set K as
features for message clustering. Hence, we canmapmessages
into a feature vector space and apply a clustering algorithm,
such as K-Mediods, on the vectors to cluster messages.

We use |K | to denote the cardinality of set K , So, there are
|K | positional keywords (features) merged in Algorithm 3.
Now, we can construct a |K |-dimension vector for each mes-
sage, say m:

vm = [w(ti,n)]1×|K |, 1 ≤ m ≤ |M |, (10)

where w(ti,n) is the weight of feature ti,n in messagem. For an
arbitrary feature ti,n, we check the existence of ti,n in message
m by examining if ti,n is covered by the positional sub-string
xmi x

m
i+1 · · · x

m
i+δt−1

in messagem, where δt ∈ 1 is the window
size of ti,n. If ti,n v xmi x

m
i+1 · · · x

m
i+δt−1

, we need to assign
a weight w(ti,n) for ti,n; otherwise, set w(ti,n) = 0. In the
following, we introduce a entropy-based positional weighting
method to measure the weight w(ti,n).
As some strings from payloadsmay be extracted as features

in set K (due to their high occurrence), we wish to assign a
greater weight to the structural features (such as operation
type) of the message and a lower weight to noise (extracted
from payload). To do so, we make use of the observation that
structure features are more stable than payload data. We use
entropy as a measurement of variability, and use it as the basis
to calculate a weighting for each byte position. The Shannon
Index entropy is adopted to measure the variability [9],

Ej = −
R∑
i=1

qjilog qji, (11)

where Ej is the Shannon entropy for the characters at the j-th
position, qji is the ratio of the i-th character in the character
set of position j, and R is the total number of characters in the
character set. The less diversity of characters at a position,
the lower entropy that position has.

Then, we calculate the variability of a feature by adding up
the entropy of the positions covered by the feature. Hence, for
a feature ti,n, its entropy is:

E(ti,n) =
i+n+δt−1∑

j=i

Ej. (12)

To assign a high weight to stable keywords and a low weight
to dynamic noise, we invert the entropy for each feature by
applying a scaling function of the form given in the following
weight equation

w(ti,n) =
1

[1+ b · E(ti,n)]c
, (13)

where b and c are positive constants. As suggested by [9],
we set b = 1 and c = 10 in our experiments.

Algorithm 4Message Clustering
1: Input: A message set {(xm0 x

m
1 · · · x

m
lm−1

)|1 ≤ m ≤ |M |},
positional keywords in set K and their window sizes in
set 1.

2: Output: Message clusters {c1, c2, · · · , cL}.
3: Initialize: A zero matrixW ∈ R|M |×|K |.
4: for (ti,n ∈ K ) do
5: Calculate the weight w(ti,n) for ti,n from Eq. (13).
6: end for
7: for (k ∈ {0, · · · , |K | − 1}) do
8: ti,n← K (k); get ti,n’s window size δt from set 1.
9: for (m ∈ {1, · · · , |M |}) do

10: if (ti,n v xmi x
m
i+1 · · ·

m
i+δt−1

) then
11: Set W (m, k) = w(ti,n).
12: end if
13: end for
14: end for
15: Apply K-Medoids on matrix W and obtain clusters
{c1, c2, · · · , cL}.

Finally, we get a |M |× |K | weight matrix,W = [wmk ], for
the given message set, where, if the k-th feature appears in
the m-th message, we put wmk at the corresponding position
in matrix W , where wmk is the inverse entropy weight in
Eq. (13). Then, we adopt K-Medoids to do the clustering on
matrix W . Algorithm 4 gives the details of message cluster-
ing. Please refer to the Message Clustering step in Figure 3
for an illustrative example, where the ‘‘op:B’’ messages and
the ‘‘op:S’’ messages are separated correctly.

IV. EXPERIMENTAL RESULTS
To evaluate the effectiveness of the proposed P-gram,
we have applied it to eight datasets of machine-generated
messages from eight real-life systems. They include
3 system log files (Asgard [10], Logparser SOSP and
Proxifier [12]), 2 binary protocol traces (LDAP [18] and
IMS [14]), and 3 text protocol traces (LDAP, Bank SOAP [5]
and Twitter REST [20]). All the datasets can be found in
https://github.com/JiaojiaoSwin/datasets. Table 1 lists the
basic statistics of these datasets. Note that, the message clus-
ters of these datasets are imbalanced (see the Gini indexes).
A lower Gini index means the message clusters are more
equally distributed. IMS and SOAP present relatively low
Gini indexes, while LDAP, SOSP and Proxifier present very
high Gini indexes. The ratio of the smallest cluster in each
dataset is also presented.

Below, we first define the evaluation metrics, then intro-
duce the competitor techniques, and finally present the exper-
imental results and sensitivity analysis.

A. EVALUATION METRICS FOR EFFECTIVENESS
We use two standard evaluation metrics, Precision and Recall
to quantitatively evaluate and compare the effectiveness of
P-gram for message clustering. The following formulas give
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FIGURE 5. Precision of message clustering.

TABLE 1. Statistics of the datasets.

the definitions of Precision and Recall:

Precision =
TruePositive

TruePositive+ FalsePositive
, (14)

Recall =
TruePositive

TruePositive+ FalseNegative
, (15)

TruePositive is the number of messages whose types are
accurately identified.FalsePositive is the number ofmessages
whose types are incorrectly identified as the type concerned,
and FalseNegative is the number of messages whose types
are not identified as the type concerned but should be. We
compute these TruePositive, FalsePositive and FalseNegative
using the method in [16].

B. THE COMPETITOR TECHNIQUES
We compare P-gram with two existing state-of-the-art tools
(Prodecoder [22], and AutoReEngine [15]), one of our previ-
ous works (Modified Needleman-Wunsch) [9], and one base-
line (i.e., Vanilla n-gram).
ProDecoder [22] identifies keywords by adopting Latent

Dirichlet Allocation (LDA) models [4] used for Natural

Language Processing (NLP). Messages are then clus-
tered according to their semantics (different combinations
of keywords) using the Information Bottleneck clustering
algorithm [19]. As suggested by [22], we set the number of
‘‘topics’’ as 40, the number of ‘‘top words’’ as 100, α =
0.1, β = 0.01, and the number of iterations as 2000 in
ProDecoder.
AutoReEngine [15] adapts the Apriori algorithm [1] to

identify keywords. Then, the variation of keywords’ positions
are calculated. Those with variations lower than a given
threshold are kept as keywords, and others are filtered out as
noise. Finally, keywords are sorted into vectors, andmessages
are clustered by the groups of keyword vectors. We set the
threshold as 0.07 for keyword identification and keyword
group extraction. The same threshold is used for the proposed
P-gram in the keyword identification step.
Modified Needleman-Wunsch (MNW) [9] is one of our

previous works. It first builds a distance matrix by cal-
culating the entropy-weighted Needleman-Wunsch distance
between pairwise messages. Then, the Visual Assessment of
Tendency (VAT) clustering algorithm is applied to group
messages into clusters.
Vanilla n-gram is the baseline of our work. It has been

widely used in statistical NLP. In contrast to positional
n-gram, the Vanilla n-gram ignores the positions of n-grams.
All the other strategies of Vanilla n-gram are the same as
P-gram.

C. RESULTS ON EFFECTIVENESS
In all experiments, we set ρ = 0.07. We set the minimum
n-gram length n = 1 for binary messages in Algorithm 1.
For text messages, as keywords are often with longer length,
we set the minimum n-gram length n = 3; this can also
save computational cost. We assume the number of clusters
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FIGURE 6. Recall of message clustering.

is prior knowledge. This is also used for all the competi-
tor techniques except AutoReEngine, which estimates the
number of message types during clustering. Figures 5 and 6
show the Precision and Recall of the clustering results of our
method and other techniques. As we can see, overall, P-gram
outperforms the other techniques in terms of both Precision
and recall over all datasets. More specifically, it achieves
100% Precision and Recall on both IMS and SOAP datasets.
It shows a relatively low Precision (87%–98%) and Recall
(78%–99%) on other datasets.

We see from Figure 5 that, compared to other meth-
ods, Vanilla n-gram shows the worst performance in Pre-
cision on all datasets except on Twitter REST. This is
due to the mis-identified keywords by Vanilla n-gram,
which only considers the frequency of n-grams but fails
to utilize the structural feature of machine-generated mes-
sages. This easily introduces noise into keywords. Hence,
directly applying NLP approaches such as Vanilla n-gram
on machine-generated messages fails to achieve good per-
formance for MLP. As the Twitter REST datasets involves
many natural language texts, Vanilla n-gram shows a slightly
better performance than some other methods. Similar per-
formance of Vanilla n-gram in terms of Recall can be
observed in Figure 6. This, from another angle, justifies
the effectiveness of our P-gram, which utilizes the metadata
of machine-generated messages—the position of message
keywords.

From Figures 5 and 6, we see that ProDecoder outper-
forms the Vanilla n-gram in terms of Precision and Recall
over all datasets except IMS and Twitter REST. ProDecoder
adopts the topic-model approach from NLP to extract ‘‘top-
ics’’ (i.e., keywords) from messages. The ‘‘topic terms’’ are
those highly related 4-grams [22]. ProDecoder utilizes the
hidden features (i.e., the co-occurrence of 4-grams) of MLP.

Therefore, it achieves a better performance than Vanilla n-
gram on most datasets.

AutoReEngine utilizes the variation of keywords’ posi-
tions to filter out noises from potential keywords. Overall,
it shows a better performance than the previous two meth-
ods in terms of Precision (see Figure 5). However, due to
its message clustering strategy (i.e., messages that have the
similar keyword sequence are clustered in one group) without
using the prior knowledge of the number of clusters, it often
generates more clusters than the ground truth clusters. Hence,
as we can see in Figure 6 that, AutoReEngine shows lower
Recall values than ProDecoder on some datasets, including
LDAP, Twitter REST, SOAP, Asgard, and SOSP. Meanwhile,
as we observed in Figures 5 and 6 that, Vanilla n-gram
shows the worst performance in terms of Precision on most
datasets. and it also shows poor performance in Recall on
many datasets. However, on some databases, such as binary
LDAP and Twitter REST, AutoReEngine shows even worse
Recall than Vanilla n-gram.
The performance of the Modified Needleman-Wunsch

(MNW) is close to P-gram. However, P-gram is better overall.
In particular, for the IMS messages, P-gram achieves 100%
Precision, but MNW has only 92% Precision (see Figure 5).
For the REST messages, P-gram achieves around 93% Pre-
cision and Recall, but MNW has only around 65%. This
is because MNW uses the Needleman-Wunsch distance to
measure the similarity between messages. It could involve
substantial noise from payloads when extracting message
keywords. In contrast, P-gram effectively filters out noise by
using the position information. Therefore, P-gram achieves
better performance than MNW.

Furthermore, note that the proposed P-gram shows much
better performance (100% Precision and Recall) on the IMS
and SOAP datasets than on other datasets. This is because the
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FIGURE 7. Sensitivity to the minimum length of n-grams.

FIGURE 8. Sensitivity to the threshold ρ.

distribution of message types in these datasets are relatively
even (i.e., the smallest cluster accounts for 12.5% and 14.1%,
respectively), while other datasets are very imbalanced (see
the Gini index in Table 1). Hence, the keywords in these two
datasets can be properly extracted by using the threshold ρ =
0.07, while the keywords for other datasets may be missed
by this threshold. Later, we discuss the sensitivity of P-gram
to the distribution of message types (i.e., the threshold ρ) in
detail.

In summary, P-gram achieves better clustering
performance by addressing the keyword mis-identification
problems faced by existing methods. Therefore, similar
to considering semantic information in Natural Language
Processing (NLP), for machine language processing
(MLP), we need to consider the structural features of
machine-generated messages.

D. SENSITIVITY ANALYSIS
In our experiments, P-gram involves two parameters: the
threshold ρ and the minimum length n of positional n-grams.
Here, we analyzes the sensitivity of P-gram to these two
parameters. We have chosen two datasets, SOSP logs and
text LDAP protocol messages, for sensitivity analysis, as they

show uneven distribution of messages over their types (see
Table 1) and hence have a greater impact on ρ and n.

In Figure 8, we fix the minimum length n to 3 and analyze
the sensitivity of P-gram to ρ. In general, a very low threshold
ρ would introduce substantial noise from the payloads, but
a very high threshold ρ would miss keywords. As we can
see in Figure 8, on the SOSP dataset, P-gram presents a
relatively stable performance when ρ ∈ [0.05, 0.08], and the
Precision and Recall decreases when ρ < 0.05 or ρ > 0.08.
On the LDAP dataset, P-gram presents a relatively stable
performance when ρ ∈ [0.06, 0.09], and the Precision and
Recall decreases when ρ < 0.06 and ρ > 0.09. Hence, in our
experiments we set ρ = 0.07.

In Figure 7, we fix the threshold ρ = 0.07 and analyze the
sensitivity of P-gram to the minimum length n of n-gram. As
we can see, for a fixed ρ, the Precision and Recall of P-gram
increase with n. P-gram presents a low performance when
the minimum length n is very low (e.g., n < 3), especially
on the text LDAP dataset. This is because, in text messages,
the keywords (a maximum consecutive sequence of common
bytes or characters) are often quite long. When n is very low,
P-gram would introduce substantial noise from the payloads
into potential keywords, resulting in message mis-clustering
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and eventually low Precision and Recall of clustering per-
formance. In our experiments, we set n = 3 for text mes-
sages. In addition, for binary message, we particularly set the
minimum length of n-grams as n = 1, this is because some
keywords in binary messages (such as LDAP messages) are
in single bytes.

V. RELATED WORK
There are many studies that focus on the clustering of
texts/messages. For example, in the area of Bioinformat-
ics, many advanced methods [11], [26] have been proposed
for the clustering of unstructured biomedical texts so as
to construct the domain knowledge graph, assemble DNA
sequences, etc. In the area of social media information extrac-
tion, many effective methods [17], [28] have been developed
for the clustering of (generally short) user posts so as to
discover trending events, identify rumors/false information,
etc.

In this paper, we focus on the clustering of machine-
generated messages. Many methods from Bioinformatics
and social media information extraction can be applied
to machine-generated messages. However, due to the spe-
cific nature of machine-generated messages (using message
formats/templates), directly applying those methods cannot
achieve satisfactory results [15], [25]. Hence, in the follow-
ing analysis we only focus on the methods for clustering
machine-generated messages.

Regarding the clustering of machine-generated messages,
existing methods that are based on keyword extraction have
been proven to be quite effective. They tend to split messages
into keywords and other (payload) fields using n-grams [25]
and/or delimiters [8]. A standard clustering technique is then
performed by comparing keywords to find similar messages.
In the following, we examine some representative works in
keyword-based message clustering.

Cui et al. presented Discoverer [8], which uses a recursive
clustering approach on tokenized messages. Messages are
broken into shorter tokens based on a predefined set of delim-
iters. Then, tokens are compared from left to right. If two
messages have the same token properties or are very similar,
then those two messages are placed in a message type cluster.
Finally, similar message types are merged. The technique
proposed byWang et al. [24] also uses delimiters to divide the
messages into tokens. It identifies message keywords by fil-
tering out the infrequent tokens using the Jaccard index [13].
However, the prior knowledge about delimiters used to break
the messages into tokens makes these approaches inapplica-
ble where such prior knowledge about the messages is not
available. Moreover, it often splits a single message type into
multiple clusters, due to the conservatism that messages in
the same cluster have only very limited variations.

Wang et al. [21] proposed Biprominer targeting binary
messages. It uses variable length pattern recognition to
find distinguishing message keywords. It first recursively
identifies frequent binary patterns of arbitrary length, called
n-grams (where n denotes the number of bytes in the pattern),

in messages. Then, the probability of a keyword following
another keyword is determined. Each keyword has a tran-
sition probability associated with other keywords. Finally,
the messages with labeled patterns are converted into a
transition probability model. Later, Wang et al. [25], [27]
proposed ProDecoder, targeting both textual and binary mes-
sages by exploiting the semantics of messages. ProDecoder
uses Latent Dirichlet Allocation (LDA) models taken from
natural language processing to detect the n-gram keyword
patterns and probable keyword sequences. Instead of using a
keyword transition matrix, ProDecoder uses keyword tuples
as features in an information bottleneck (IB) [19] clustering
approach. IB sorts messages into clusters, with each clus-
ter representing a different message type. Both Biprominer
and ProDecoder measure the probability of each n-gram
appearing in the message, and identify keywords by using
a probability threshold. Then keywords are associated with
specific messages for message clustering. They only consider
the probability of n-grams in messages without taking into
account the template structure of machine-generated mes-
sages, which is an essential feature of machine-generated
messages and one of the main difference between machine
languages and natural languages. Often, these methods put
different types of messages into one cluster, leading to mes-
sage mis-clustering.

Luo and Yu [15] proposed AutoReEngine. They first adapt
the Apriori algorithm [1]

to find frequent n-grams as keywords in messages. Then,
they filter out the ‘‘noisy’’ keywords by using positional vari-
ance referenced from the beginning and end of messages. The
keywords that have large variation of positions are filtered
out as noise. Finally, messages are clustered based on the
intuition that different types of messages contain different
sequences of message keywords. As AutoReEngine adopts
the Apriori algorithm to extract keywords from n-grams,
it often treats parts of payloads as keywords, leading to many
false keywords extracted. As it only considers the frequency
of n-grams when using Apriori for keywords identification,
it fails to distinguish short keywords from those longer key-
words that contain the short keywords as sub-strings. Mean-
while, the multiple occurrences of keywords in a message is
ignored when constructing keyword sequences in the process
of message clustering. Hence, messages of different types are
often mixed in one cluster.

Our technique, P-gram, takes advantages of the template
structure of machine-generated messages. From the above
analysis, we see that existing keyword extraction based
methods for message clustering faced with the keyword
mis-identification issues, in particular with keyword repeti-
tion, noise (false keywords) from payloads, and the omis-
sion of short keywords covered by other longer keywords.
Compared to these methods, P-gram successfully addresses
these issues by considering the position of keywords in mes-
sages. Experiments on various textual and binary messages
demonstrate the effectiveness of the proposed P-gram for
clustering machine-generated messages.
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VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a novel approach, P-gram,
to effectively cluster machine-generated messages. A new
concept and technique, positional n-gram, is developed
to identify message keywords. It addresses the keyword
mis-identification problems suffered by existing message
clustering methods. In particular, P-gram considers the posi-
tions at which message keywords appear, so as to distinguish
the multiple occurrences of the same keywords in a message,
filter out noise from keywords, and separate short keywords
from those that contain the short keywords as sub-strings.
The position-based density analysis of positional keywords
further delineate keywords from the samewords’ occurrences
in payload fields. Furthermore, we have presented theorems
that prove the advantages of our proposed approach. We have
demonstrated the benefits of the proposed approach by apply-
ing it to a range of machine-generated message datasets
collected from real-world systems, including both textual and
binary messages. The experimental results have shown the
superior performance of our approach over existing state-of-
the-art methods.

Based on the work in this paper, we plan to investigate
general techniques to automatically extract accurate message
formats from message traces. Then, we will further discover
the control and data dependencies that exist inmessage traces.
These control and data models will provide critical support
for system security inspection and application behavior anal-
ysis.
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