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Abstract: Microtubules are tubulin polymer structures, which are indispensable for cell growth
and division. Its constituent protein (3-tubulin has been a common drug target for various diseases
including cancer. Colchicine has been used to treat gout, but it has also been an investigational
anticancer agent with a known antimitotic effect on cells. However, the use of colchicine as well as
many of its derivatives in long-term treatment is hampered by their high toxicity. To create more
potent anticancer agents, three novel double-modified colchicine derivatives have been obtained
by structural modifications in C-4 and C-10 positions. The binding affinities of these derivatives of
colchicine with respect to eight different isotypes of human f3-tubulin have been calculated using
docking methods. In vitro cytotoxicity has been evaluated against four human tumor cell lines (A549,
MCF-7, LoVo and LoVo/DX). Computer simulations predicted the binding modes of these compounds
and hence the key residues involved in the interactions between tubulin and the colchicine derivatives.
Two of the obtained derivatives, 4-bromothiocolchicine and 4-iodothiocolchicine, were shown to
be active against three of the investigated cancer cell lines (A549, MCF-7, LoVo) with potency at
nanomolar concentrations and a higher relative affinity to tumor cells over normal cells.

Keywords: colchicine binding site inhibitor; 3-tubulin affinity; antimitotic agent; antiproliferative
activity; thiocolchicine

1. Introduction

Microtubules, present in all eukaryotic cells, are cylindrical polymers composed of o/ 3-tubulin
heterodimers. They are involved in a wide range of key cellular processes, such as the maintenance
of cellular morphology and the active motor transport of cellular components throughout the
cytoplasm [1]. Another essential role microtubules play is the formation of mitotic spindles and
force generation during mitosis with the purpose of separating chromosomes [2]. A failure within
this mitotic spindle apparatus leads to mitotic arrest and eventually apoptosis. This results in cell
death, which is a desirable outcome for cancer cells, but not for healthy tissues. With the objective of
promoting the former and avoiding the latter effect, microtubules have become the target for a large
number of antimitotic agents that act by either favoring or inhibiting microtubule polymerization by
binding at specific sites on the exposed surface of «/3-tubulin heterodimers [3-7]. Although there are
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multiple distinct binding sites on a tubulin heterodimer, 3-tubulin is the main binding partner for all
major microtubule-targeting drug families [8-10].

Among them colchicine (1), a well-known tropolone alkaloid isolated from Colchicum autumnale,
is of particular interest due to its powerful antimitotic properties. It has played an important role in
studies of mitosis and the therapeutic potential of using the colchicine binding site on 3-tubulin in
chemotherapy applications has generated much interest [5-7,11-16]. However, colchicine itself as well
as many of its derivatives, have not yet been used as successful drugs in long-term treatment because
of their detrimental side effects [6,7,11]. Up to now, many structure-activity relationship studies have
been performed to elucidate the structural features required for tubulin binding. These studies have
demonstrated great importance of the 9-keto function and the methoxy groups at C-1, C-2, and C-10 as
well as the importance of stereochemistry of 7-acetamido center, which is critical for antimitotic activity.
Ring B appears to be responsible for the irreversible nature of colchicine binding to tubulin, although
it may also contribute to its toxic effects [11,17]. Therefore, currently much interest has focused on
structural modification of 1 in the hope of improving its anticancer activity [18-33].

In 2011 Yasobu et al. published results of their studies on C-4 halogen substituted colchicine
derivatives [32]. On the evaluation of cell-growth inhibitory activity using mice transplanted with the
HCT116 human colorectal carcinoma cell line, some of the derivatives exhibited less toxicity in mice
and more potent cell-growth inhibitory activity than 1. Moreover, another colchicine derivative with
thiomethyl group at C-10 called thiocolchicine, is also a potent inhibitor of tubulin polymerization
and cell growth, and binds to tubulin more rapidly than colchicine [34-36]. Thiocolchicine is not only
easily available from colchicine after treatment with sodium methanethiolate, but also is more stable,
which allows for using harsher reaction conditions without formation of isomers.

Inspired by these reports, we decided to verify how double modification in C-4 and C-10 positions
influences the activity and selectivity of colchicine. Below, we report the synthesis and spectroscopic
analysis of a series of seven compounds, of which three are entirely novel compounds synthesized
for the first time. We also provide an evaluation of these derivatives as cytotoxic, tubulin-targeting
agents. The antiproliferative effect of seven colchicines derivatives (2-8) was tested in vitro using
four cancer cell lines and one normal murine embryonic fibroblast cell line. To better understand the
interactions between these colchicine derivatives and various isotypes of 3-tubulin, we investigated
potential binding modes of novel double-modified derivatives, 4-halocolchicines as well as colchicine
docked into the colchicine binding site (CBS) of eight different isotypes of 3-tubulin using AutoDock4
software (version 2018.2.0, Tableau Research, Standford University, Seattle, WA, USA) under flexible
ligand and rigid receptor condition. A detailed discussion regarding differences between the structures
of the synthesized compounds and their ability to form complexes with CBS is provided below.

2. Materials and Methods

2.1. General

All precursors for the synthesis and solvents were obtained from Sigma-Aldrich (Merck KGaA,
Saint Louis, MO, USA) and were used as received without further purification. CDClj3 spectral grade
solvent was stored over 3 A molecular sieves for several days. Thin layer chromatographywas carried
out on precoated plates (TLC silica gel 60 F254, Aluminum Plates Merck (Merck KGaA Saint Louis,
MO, USA)) and spots were detected by illumination with an ultra-violet (UV) lamp. All the solvents
used in flash chromatography were of HPLC grade (CHROMASOLV from Sigma-Aldrich, Merck
KGaA, Saint Louis, MO, USA) and were used as received. The elemental analysis of compounds was
carried out on Vario ELIII (Elementar, Langenselbold, Germany).

2.2. Spectroscopic Measurements

The 1H, 13C spectra were recorded on a Varian VNMR-S 400 MHz spectrometer (Varian, Inc.,
Palo Alto, CA, USA). 'TH-NMR measurements of 2-8 (0.07 mol dm~3) in CDCl; were carried out at the
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operating frequency 402.64 MHz. The error of the chemical shift value was 0.01 ppm. The 3C-NMR
spectra were recorded at the operating frequency 101.25 MHz. The error of chemical shift value was
0.1 ppm. All spectra were locked to deuterium resonance of CDCl3. The 'H and '*C-NMR spectra are
shown in the Supplementary Materials.

The FT-IR spectra of 2-8 in the mid infrared region were recorded in KBr. The spectra were taken
with an IFS 113v FI-IR spectrophotometer (Bruker, Karlsruhe, Germany) equipped with a deuterated
triglycine sulfate detector (DTGS) detector; resolution 2 cm™!, NSS = 64. The Happ-Genzel apodization
function was used.

The ESI (Electrospray Ionization) mass spectra were recorded also on a Waters /Micromass (Waters
Corporation, Manchester, UK) ZQ mass spectrometer equipped with a Harvard Apparatus syringe
pump. The samples were prepared in dry acetonitrile (5 x 10~> mol dm~3). The sample was infused
into the ESI source using a Harvard pump at a flow rate of 20 mL min~!. The ESI source potentials
were: capillary 3 kV, lens 0.5 kV, extractor 4 V. The standard ESI mass spectra were recorded at the
cone voltages: 10 and 30 V. The source temperature was 120 °C and the desolvation temperature was
300 °C. Nitrogen was used as the nebulizing and desolvation gas at flow-rates of 100 dm> h~!. Mass
spectra were acquired in the positive ion detection mode with unit mass resolution at a step of 1 m/z
unit. The mass range for ESI experiments was from m/z = 100 to m/z = 1000, as well as from m/z = 200
tom/z = 1500.

2.3. Synthesis

2.3.1. Synthesis of 2

To a mixture of 1 (500 mg, 1.25 mmol) in MeOH/water (1/1, v/v, 5 mL), the sodium
methanethiolate (solution 21% in H,O, 0.83 mL, 2.5 mmol) was added. The mixture was stirred
in at RT for 72 h. Reaction time was determined by TLC. After that time, the reaction mixture was
quenched by the addition of water (150 mL). The whole mixture was extracted four times with CH,Cl,,
and the combined organic layers were dried over MgSQy, filtered, and evaporated under reduced
pressure. The residue was purified by CombiFlash® (hexane/EtOAc (1/1), then EtOAc/MeOH,
increasing concentration gradient) to give 2 with yield 78% [34].

The synthesis of compounds 4, 6 and 8 was carried out analogously to the above starting
respectively from the compounds 3, 5 and 7.

Compound 2, "TH-NMR (403 MHz, CDCl3) & 7.92 (s, 1H), 7.46 (s, 1H), 7.33 (d, ] = 10.4 Hz, 1H), 7.10 (d,
] = 10.5 Hz, 1H), 6.55 (s, 1H), 4.72-4.64 (m, 1H), 3.95 (s, 3H), 3.91 (s, 3H), 3.67 (s, 3H), 2.54 (dd, | = 13.0,
5.8 Hz, 1H), 2.45 (s, ] = 5.7 Hz, 3H), 2.43-2.26 (m, 2H), 1.99 (s, 3H), 1.94 (dd, ] = 11.8, 5.5 Hz, 1H) ppm;
BBC-NMR (101 MHz, CDCl3) 6 182.4,170.0, 158.1, 153.6, 151.8, 151.1, 141.6, 138.6, 134.8, 134.4, 128.3,
126.7,125.6, 107.3, 61.6, 61.4, 56.1, 52.3, 36.4, 29.9, 22.8, 15.1 ppm. FT-IR (KBr pellet): 3283, 2935, 1660,
1605, 1541, 1485, 1461, 1425, 1404, 1349, 1321, 1286, 1236, 1195, 1155, 1138, 1095, 1023 cm~ L. ESI-MS
(m/z): [M + H]* caled. 416, found 416, [M + Na]" calcd. 438, found 438, [M + K]* calcd. 454 found 454,
[2M + Na]* calcd. 853, found 853, [3M + Na]* calcd. 1268, found 1268.

Compound 4, Amorphous yellow solid. 'H-NMR (403 MHz, CDCl3) 6 7.98 (d, | = 6,7 Hz, 1H), 7.44 (s,
1H), 7.26 (d, ] = 10.3 Hz, 1H), 7.08 (d, ] = 10.8 Hz, 1H), 4.58 (dt, ] = 13.1, 6.7 Hz, 1H), 3.98 (s, 3H), 3.96 (s,
3H), 3.61 (s, 3H), 3.24 (dd, ] = 13.5, 4.8 Hz, 1H), 2.44 (s, 3H), 2.27 (ddd, | = 18.0, 12.1, 6.0 Hz, 1H), 2.14
(td, ] = 13.4, 6.2 Hz, 1H), 2.00 (s, 3H), 1.92-1.80 (m, 1H); 3C-NMR (101 MHz, CDCl3) 5 182.4, 170.1,
159.1,151.3,150.2, 149.7, 146.6, 137.3, 134.8, 131.7,129.9, 128.1, 126.4, 122.1, 61.6, 61.5, 61.1, 52.2, 34.5,
25.9,22.8,15.1 ppm. FT-IR (KBr pellet): 3290, 2936, 1661, 1608, 1550, 1464, 1413, 1349, 1327, 1288, 1267,
1197, 1140, 1086, 1023 cm 1. ESI-MS (m/z): [M + H]* calcd. 450, found 450, [M + Na]* calcd. 472,
found 472, [2M + H]* calcd. 889, found 889, [2M + Na]* caled. 921, found 921. Anal. Calcd. for C,
58.73; H, 5.38; Cl,7.88; N, 3.11; O, 17.78; S, 7.13; found: C, 58.61; H 5.35; Cl,7.93; N, 3.01; S, 7.25.
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Compound 6, Amorphous yellow solid. TH-NMR (403 MHz, CDCl3) 6 7.68 (d, | = 6.6 Hz, 1H), 7.42 (s,
1H), 7.26 (d, ] =9.6 Hz, 1H), 7.08 (d, ] = 10.8 Hz, 1H), 4.61-4.52 (m, 1H), 3.99 (s, 3H), 3.97 (s, 3H), 3.63 (s,
3H), 3.27 (d, ] = 8.0 Hz, 1H), 2.45 (s, 3H), 2.25 (dt, ] = 13.4, 7.9 Hz, 2H), 2.01 (s, ] = 1.6 Hz, 3H), 1.85
(dd, ] = 6.7, 4.1 Hz, 1H) ppm; *C-NMR (101 MHz, CDCl3) § 182.4, 170.0, 159.2, 151.2, 151.0, 150.4,
146.6,137.4,134.8, 133.4,130.2, 128.1, 126.3, 113.5, 61.6, 61.5, 61.0, 52.2, 34.5, 29.0, 22.9, 15.2 ppm. FT-IR
(KBr pellet): 3267, 2930, 1659, 1603, 1559, 1462, 1410, 1347, 1138, 1074, 1053, 1014 cm L. ESI-MS (m/z):
[M + HJ* caled. 494, found 494, [M + 2 + H]" 496, found 496, [M + Na]* calcd. 516, found 516, [M + 2
+ Na]* calcd. 518, found 518, [2M + H]" caled. 989, found 989, [2M + 2 + H]" calcd. 991, found 991,
[2M + Na]* calcd. 1011, found 1011, [2M + 2 + Na]™* calcd. 1013, found 1013. Anal. Calcd. for C, 53.45;
H, 4.89; Br, 16.16; N, 2.83; O, 16.18; S, 6.49; found: C, 53.56; H 4.81; Br, 16.28; N, 2.89; S, 6.55.

Compound 8, Amorphous yellow solid. 'H-NMR (403 MHz, CDCl3) § 7.75 (d, ] = 6.9 Hz, 1H), 7.42 (s,
1H), 7.25 (d, ] = 10.3 Hz, 1H), 7.09 (d, ] = 10.8 Hz, 1H), 4.58-4.50 (m, 1H), 3.97 (s, 3H), 3.95 (s, 3H), 3.63
(s,3H), 3.18 (dd, ] = 13.7, 5.0 Hz, 1H), 2.46 (s, 3H), 2.40 (dd, | = 13.6, 6.2 Hz, 1H), 2.32-2.23 (m, 1H), 2.01
(s, 3H), 1.85-1.79 (m, 1H); 13*C-NMR (101 MHz, CDCl3) § 182.4, 170.1, 159.1, 153.5, 151.4, 151.1, 145.6,
137.8,136.8,134.7,129.7, 128.1, 126.3,92.2, 61.6, 61.4, 60.8, 52.1, 34.5, 34.4, 22.9, 15.2 ppm. FI-IR (KBr
pellet): 3288, 2936, 1660, 1607, 1547, 1461, 1406, 1346, 1318, 1288, 1262, 1197, 1138, 1081, 1019 cm L.
ESI-MS (m/z): [M + H]* caled. 542, found 542, [M + Na]* caled. 564, found 564, [M + K]* calcd. 580,
found 580. Anal. Calcd. for C, 48.81; H, 4.47;1,23.44; N, 2.59; O, 14.78; S, 5.92; found: C, 48.67; H 4.55; 1,
23.59; N, 2.64; S, 5.98.

2.3.2. Synthesis of 3

A mixture of N-chlorosuccinimide (175 mg, 1.31 mmol) and 1 (500 mg, 1.25 mmol) in acetonitrile
was stirred at RT under nitrogen atmosphere for the 72 h. Reaction time was determined by TLC.
The reaction was quenched with saturated aqueous Na;S,O3. The whole mixture was extracted
four times with CH,Cl,, and the combined organic layers were dried over MgSQO,, filtered, and
evaporated under reduced pressure. The residue was purified by CombiFlash® (EtOAc/MeOH,
increasing concentration gradient) to give 3 with yield 75% [32].

TH-NMR (403 MHz, CDCl3) § 8.29 (d, ] = 6.2 Hz, 1H), 7.59 (s, 1H), 7.30 (d, ] = 10.7 Hz, 1H), 6.87 (d,
J = 11.2 Hz, 1H), 4.60-4.49 (m, 1H), 4.01 (s, 3H), 3.97 (s, 3H), 3.95 (s, 3H), 3.61 (s, 3H), 3.23 (dd, ] = 13.7,
5.1 Hz, 1H), 2.31 (dq, ] = 18.7, 6.2 Hz, 1H), 2.18-2.09 (m, 1H), 1.96 (s, 3H), 1.93-1.82 (m, 1H) ppm;
IBC-NMR (101 MHz, CDCl3) 6 179.5,170.2, 164.3, 152.0, 150.1, 149.7, 146.6, 135.8, 135.8, 131.7, 130.1,
129.8,122.1,112.5,61.5, 61.5, 61.1, 56.5, 52.7, 34.5, 25.8, 22.7 ppm. FT-IR (KBr pellet): 3256, 2935, 1663,
1618, 1591, 1556, 1456, 1412, 1397, 1351, 1290, 1272, 1243, 1171, 1136, 1080, 1021 cm 1. ESI-MS (m/z):
[M + HJ* calcd. 434, found 434, [M + Na]* calcd. 456, found 456, [2M + Na]* calcd. 889, found 889.

2.3.3. Synthesis of 5

A mixture of N-bromosuccinimide (279 mg, 1.57 mmol) and 1 (500 mg, 1.25 mmol) in acetonitrile
was stirred at RT under nitrogen atmosphere for the 72 h. Reaction time was determined by TLC.
The reaction was quenched with saturated aqueous Na;S;03. The whole mixture was extracted
four times with CH,Cl, and the combined organic layers were dried over MgSQOy,, filtered, and
evaporated under reduced pressure. The residue was purified by CombiFlash® (EtOAc/MeOH,
increasing concentration gradient) to give 5 with yield 95% [32].

1H-NMR (403 MHz, CDCl;) 5 8.02 (s, 1H), 7.58 (s, 1H), 7.30 (d, ] = 10.7 Hz, 1H), 6.88 (d, ] = 11.1 Hz,
1H), 4.59-4.49 (m, 1H), 4.03 (s, 3H), 3.99 (s, 3H), 3.96 (s, 3H), 3.63 (s, 3H), 3.27 (dd, ] = 13.0, 4.3 Hz,
1H), 2.26 (dd, ] = 13.1,5.2 Hz, 1H), 2.18 (d, ] = 2.4 Hz, 1H), 1.99 (s, 3H), 1.78 (s, 1H) ppm; 3C-NMR
(101 MHz, CDCl3) § 179.5, 170.2, 164.4, 151.8, 151.1, 150.4, 146.6, 135.8, 135.7, 133.4, 130.2, 130.0, 113.5,
112.4,61.5, 61.5, 61.0, 56.5, 52.6, 34.5, 28.9, 22.8 ppm. FI-IR (KBr pellet): 3274, 2936, 1662, 1617, 1589,
1565, 1462, 1411, 1398, 1350, 1270, 1250, 1172, 1137, 1080, 1018 cm L. ESI-MS (111/z): [M + Na]* calcd.
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500, found 500, [M + 2 + Na]* caled. 502, found 502, [2M + 2 + Na]* calcd. 979, found 979, [2M + Na]*
caled. 977, found 977, [2M + 4 + Na]* calcd. 981, found 981.

2.3.4. Synthesis of 7

A mixture of N-iodosuccinimide (560 mg, 2.49 mmol) and 1 (500 mg, 1.25 mmol) in AcOH was
stirred at 70 °C under nitrogen atmosphere for the 20 h. Reaction time was determined by TLC.
The reaction was quenched with saturated aqueous Na;S,O3. The whole mixture was extracted
four times with CH,Cl, and the combined organic layers were dried over MgSQOy,, filtered, and
evaporated under reduced pressure. The residue was purified by CombiFlash® (EtOAc/MeOH,
increasing concentration gradient) to give 7 with yield 95% [32].

TH-NMR (403 MHz, CDCl3) § 8.22 (d, ] = 5.6 Hz, 1H), 7.61 (s, 1H), 7.30 (d, ] = 10.7 Hz, 1H), 6.89 (d,
] =11.2 Hz, 1H), 4.55-4.47 (m, 1H), 4.04 (s, 3H), 3.97 (s, 3H), 3.95 (s, 3H), 3.63 (s, 3H), 3.21-3.15 (m,
1H), 2.40 (dd, ] = 12.7, 5.0 Hz, 1H), 1.99 (s, 3H), 1.87-1.81 (m, 1H); 13C-NMR (101 MHz, CDCl3) 5 179.5,
170.2,164.4,153.4,152.0, 151.4, 145.6, 136.7, 136.2, 135.6, 130.1, 129.5, 112.5, 92.1, 61.5, 61.3, 60.7, 56.5,
52.6,34.4, 34.4, 22.7 ppm; FT-IR (KBr pellet): 3274, 2934, 1662, 1617, 1588, 1563, 1461, 1406, 1393, 1346,
1318, 1266, 1249, 1171, 1136, 1078, 1015 cm . ESI-MS (1m/z): [M + H]* calcd. 526, found 526 [M + Na]*
calcd. 548, found 548.

2.4. Antiproliferative Activity of Colchicine and Its Derivatives

Four human cancer cell lines and one murine normal cell line were used to evaluate
antiproliferative activity of colchicine and its derivatives: human lung adenocarcinoma (A549), human
breast adenocarcinoma (MCF-7), human colon adenocarcinoma cell lines sensitive and resistant to
doxorubicin (LoVo) and (LoVo/DX) respectively, and normal murine embryonic fibroblast cell line
(BALB/3T3). The BALB/3T3 cell line was purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA), A549 and MCEF-7 cell lines—from European Collection of Authenticated
Cell Cultures (Salisbury, UK), LoVo cell line was purchased from the ATCC (ATCC, Manassas, VA,
USA), and LoVo/DX by courtesy of Prof. E. Borowski (Technical University of Gdansk, Gdarsk,
Poland). All the cell lines are maintained in the Institute of Inmunology and Experimental Therapy
(IIET), Wroclaw, Poland. Human lung adenocarcinoma cell line was cultured in mixture of OptiMEM
and RPMI 1640 (1:1) medium (IIET, Wroclaw, Poland), supplemented with 5% fetal bovine serum (GE
Healthcare, Logan, UT, USA) and 2 mM L-glutamine (Sigma-Aldrich, Merck KGaA, Saint Louis, MO,
USA). Human breast adenocarcinoma cell line was cultured in mixture of Eagle medium (IIET, Wroclaw,
Poland), supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 8 pg/mL insulin and 1%
amino-acids (Sigma-Aldrich, Merck KGaA, Saint Louis, MO, USA). Human colon adenocarcinoma
cell lines were cultured in mixture of OptiMEM and RPMI 1640 (1:1) medium (IIET, Wroclaw, Poland),
supplemented with 5% fetal bovine serum (GE Healthcare, Logan UT, USA), 2 mM L-glutamine, 1 mM
sodium pyruvate (Sigma-Aldrich, Merck KGaA, Saint Louis, MO, USA) and 10 pg/100 mL doxorubicin
for LoVo/DX (Sigma-Aldrich, Merck KGaA, Saint Louis, MO, USA). Murine embryonic fibroblast cells
were cultured in Dulbecco medium (Life Technologies Limited, Paisley, UK), supplemented with 10%
fetal bovine serum (GE Healthcare, Logan, UT, USA) and 2 mM glutamine (Sigma-Aldrich, Merck
KGaA, Saint Louis, MO, USA). All culture media contained antibiotics: 100 U/mL penicillin and
100 pg/mL streptomycin (Polfa-Tarchomin, Warsaw, Poland). All cell lines were cultured during
entire experiment in humid atmosphere at 37 °C and 5% CO,. Cells were tested for mycoplasma
contamination by mycoplasma detection kit for conventional PCR: Venor GeM Classic (Minerva
Biolabs GmbH, Berlin, Germany) and negative results was obtained. The procedure is repeated every
year or in the case of less frequently used lines: after thawing.
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2.4.1. The Antiproliferative Assays In Vitro

Twenty-four hours before adding the tested compounds, all cell lines were seeded in 96-well
plates (Sarstedt, Niimbrecht, Germany) in appropriate media with 10* cells per well. All cell lines
were exposed to each tested agent at four different concentrations in the range 100-0.01 pg/mL for
72 h. Cells were also exposed to the reference drug cisplatin (Teva Pharmaceuticals Polska, Warsaw,
Poland) and doxorubicin (Accord Healthcare Limited, Middlesex, UK). Additionally, all cell lines were
exposed to DMSO (solvent used for tested compounds) (POCh, Gliwice, Poland) at concentrations
corresponding to those present in tested agents’ dilutions. After 72 h sulforhodamine B assay (SRB)
was performed [37].

2.4.2. SRB

After 72 h of incubation with the tested compounds, cells were fixed in situ by gently adding of
50 puL per well of cold 50% trichloroacetic acid TCA (POCh, Gliwice, Poland) and were incubated at
4 °C for one hour. Following, wells were washed four times with water and air dried. Next, 50 uL
of 0.1% solution of sulforhodamine B (Sigma-Aldrich, Merck KGaA, Saint Louis, MO, USA) in 1%
acetic acid (POCh, Gliwice, Poland) were added to each well and plates were incubated at room
temperature for 0.5 h. After incubation time, unbound dye was removed by washing plates four times
with 1% acetic acid whereas stain bound to cells was solubilized with 10 mM Tris base (Sigma-Aldrich,
Steinheim, Germany). Absorbance of each solution was read at Synergy H4 Hybrid Multi-Mode
Microplate Reader (BioTek Instruments, Inc., Winooski, VT, USA) at the 540 nm wavelength.

Results are presented as mean ICs (concentration of the tested compound, that inhibits cell
proliferation by 50%) + standard deviation. ICsy values were calculated in Cheburator 0.4, Dmitry
Nevozhay software (version 1.2.0 software by Dmitry Nevozhay, 20042014, http:/ /www.cheburator.
nevozhay.com, freely available) for each experiment [38]. Compounds at each concentration were
tested in triplicates in single experiment and each experiment was repeated at least three times
independently. Results are summarized in Table 1. The Resistance Index (RI) was defined as the ratio
of IC5 for a given compound calculated for resistant cell line to that measured for its parental drug
sensitive cell line (Table 1).

2.5. Molecular Docking Simulations

A combination of different theoretical methods was used to explore ligand-tubulin interactions.
The ligand structures were first minimized and then fully optimized based on the RHF/cc-pVDZ level
of theory in GAMESS-US version 2010-10-01. Since there is no crystal structure available for human 31
tubulin (TBB5_HUMAN), we obtained its sequence from UniProt (ID: Q13509). We used the tubulin
structure 1SA0.pdb as a template to construct the homology model for I tubulin using MOE2015.
We then docked the small library of colchicine derivatives to the protein using the AutoDock4 program
under flexible ligand and rigid receptor conditions (Table 2). AutoDock4 software (version 2018.2.0,
Tableau Research, Standford University, Seattle, WA, USA) is designed to predict how drug candidates
bind to a receptor of a known 3D structure and consists of two main programs: AutoDock performs
the docking of the ligand to a set of grids describing the target protein; AutoGrid pre-calculates these
grids. The estimated Moriguchi octanol-water partition coefficient, MlogP, of the compounds were
calculated by ADMET Predictor 8.0 (ADMET Predictor, Simulations Plus, Lancaster, CA, USA).

3. Results

3.1. Chemistry

The synthetic routes to colchicines derivatives 2-8 are outlined in Scheme 1. Colchicine (1)
was treated with sodium methanethiolate to give thiocolchicine (2) with yield 78% according to the
previously described method [34]. 4-chlorocolchicine (3), 4-bromocolchicine (5), and 4-iodocolchicine
(7) were synthesized from 1 by treatment with NCS, NBS, and NIS with yields from 75% up to
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95%, respectively, based on the methods developed earlier [32]. For 4-chlorocolchicine (3) and
4-bromocolchicine (5), the application of milder conditions, i.e., the replacement of acetic acid (the
solvent) by acetonitrile followed by reacting at room temperature, also allowed to obtain the same final
yields. Compounds 3, 5, 7 were then treated with sodium methanethiolate to give double-modified

aerivatsyes GoRpErithyigkds from 71% to 75%. 70f 16

colchicine (1)

X =H:2 (78 %)
X =Cl: 4 (73 %)
X =Br:6 (75 %)
X=1:8(71%)

Scheme 11 S8ythesisf eflcdutihecdlesividives (2-8). Resgeiteansheonshidorsn@itiond: N&Sfacesnidls,
Rdstdnifeired RYBD) deetmmiBacakelotabdts, RINIS i8e@NIZ0 O ) M eO ) NADIGHESINTHREN , RT.
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As many as three of the compounds tested on the LoVo cell line (6-8), including two novel
double-modified derivatives (6,8), exhibited extremely high activity (ICs = 0.007-0.014 uM), which is
even better than the activity of 2 (ICs = 0.021 uM). During the tests on the doxorubicin-resistant
subline (LoVo/DX), compounds 4 and 6 showed the best activity among all tested compounds.
However, the RI values of the tested compounds indicated that colchicines did not break the drug
resistance of LoVo/DX (RI = 9.64-278). Comparison between the cancer cell lines and the normal cell
line (BALB/3T3) was made to define the Selectivity Index (SI) as a measure of therapeutic potential.
This parameter seems to be especially important for drug-like molecules based on a scaffold of a toxic
compound. The SI values showed that compounds 2, 6 and 8 mostly targeted cancer cells, and fewer
targeted normal cells (SI =10.08-10.45, SI = 6.76-11.85, SI = 5.45-16.43 for A549, MCF-7, LoVo cancer
cell lines, respectively). Also compounds 3 and 5 indicated good SI values for MCEF-7 cell line (SI =
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Table 1. Antiproliferative activity (IC5g) of colchicine (1) and its derivatives (2-8) compared with antiproliferative activity of standard anticancer drugs doxorubicin

and cisplatin and the calculated values of the resistance index (RI) and selectivity index (SI) of tested compounds [19,39].

A549 MCE-7 LoVo LoVo/DX BALB/3T3
Compound
ICsg (HM) SI I1Csg (HM) SI ICsp (HM) SI ICsp (HM) SI RI ICs (HM)
1 0.149 + 0.009 14 0.128 + 0.135 1.6 0.108 £+ 0.025 1.9 2.65 £+ 0.96 0.1 24.5 0.208 £ 0.042
2 0.011 + 0.001 10.1 0.010 £ 0.002 11.9 0.021 £+ 0.006 5.5 0.398 + 0.075 0.3 19.0 0.114 £+ 0.072
3 0.046 + 0.035 3.0 0.023 £+ 0.005 6.0 0.069 + 0.012 2.0 0.784 + 0.28 0.2 114 0.138 + 0.069
4 0.022 £ 0.002 1.0 0.022 £ 0.002 1.0 0.022 £ 0.002 1.0 0.111 £ 0.044 0.2 5.1 0.022 £ 0.002
5 0.105 £ 0.008 1.4 0.027 £ 0.008 53 0.084 + 0.021 1.7 1.55 +£0.17 0.1 18.5 0.142 + 0.073
6 0.010 =£ 0.0001 10.3 0.015 £ 0.002 6.9 0.014 £ 0.004 7.4 0.135 £ 0.012 0.8 9.6 0.103 £ 0.089
7 0.094 £ 0.006 1.4 0.098 £ 0.029 1.4 0.010 £ 0.002 13.5 2.78 £0.45 0.1 278.0 0.135 + 0.056
8 0.011 £ 0.002 10.5 0.017 £ 0.006 6.8 0.007 £ 0.002 16.4 0.642 £ 0.084 0.2 91.7 0.115 £ 0.044
Doxorubicin 0.258 + 0.044 0.6 0.386 + 0.118 0.4 0.092 + 0.018 1.8 4.75 + 0.99 <0.1 51.6 0.166 &+ 0.074
Cisplatin 6.367 + 1.413 0.6 10.70 £ 0.753 0.4 4.37 £ 0.73 0.9 5.70 £ 0.63 0.7 1.3 3.90 £ 1.50

The ICs) value is defined as the concentration of a compound at which 50% growth inhibition is observed. Human lung adenocarcinoma (A549), human breast adenocarcinoma (MCF-7),
human colon adenocarcinoma cell line (LoVo) and doxorubicin-resistant subline (LoVo/DX), normal murine embryonic fibroblast cell line (BALB/3T3). The SI (Selectivity Index) was
calculated for each compound using the formula: SI = ICsg for normal cell line BALB/3T3/ICs for respective cancerous cell line. A beneficial SI > 1.0 indicates a drug with efficacy against
tumor cells greater than the toxicity against normal cells. The RI (Resistance Index) indicates how many times a resistant subline is chemoresistant relative to its parental cell line. The RI
was calculated for each compound using the formula: RI = ICsq for LoVo/DX/ICsq for LoVo cell line. When RI is 0-2, the cells are sensitive to the compound tested, RI in the range 2-10
means that the cell shows moderate sensitivity to the drug tested, RI above 10 indicates strong drug resistance.
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As many as three of the compounds tested on the LoVo cell line (6-8), including two novel
double-modified derivatives (6,8), exhibited extremely high activity (ICsg = 0.007-0.014 uM), which is
even better than the activity of 2 (IC59 = 0.021 uM). During the tests on the doxorubicin-resistant subline
(L5 39BX): EehipEhREEEand 6 showed the best activity among all tested compounds. PRs¥ever,
the RI values of the tested compounds indicated that colchicines did not break the drug resistance
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Q9HA4B?), isotypes were performed. Tubulin structure 1SA0.pdb was used as the homology model
template for all tubulin isotypes using MOE2015. To visualize the results, a heat map was prepared
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it would most advantageous to use our compounds in combination with some of their modulators,
e.g., verapamil [49].
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chfferent aff1n1t1es for the individual compounds may explain the observed partlal correlatlon between
ICsp values and binding free energies. Additionally, differences in the solubility values and membrane
permeability may have to be accounted for when ranking the various compounds in biological assays
and comparing them to computational predictions based on binding affinity for the target alone.
We have partially addressed this issue by performing docking simulations for the remaining tubulin
isotypes, several of them may be expressed in cancer cells in a manner different than in normal cells.
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We have demonstrated that a higher affinity for 3 VI tubulin of the compounds investigated may explain
the differences in their biological activities. Our studies clearly show the potential of the obtained
double-modified compounds. In particular, 4-halothiocolchicines are worthwhile for a continuation of
the search for strong and broad-spectrum anticancer agents. Inspired by these preliminary results we
plan subsequent modifications in C-7 position to obtain a series of triple-modified derivatives. Further
evaluation should help to find more detailed structure-activity relationships of microtubule-targeting
drugs and CBS inhibitors, which can help in rational drug design in the future.
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Figure S2: The TH-NMR spectrum of 2 in CDCl3, Figure S3: The 13C.NMR spectrum of 3 in CDClj3, Figure S4:
The 'H-NMR spectrum of 3 in CDCl3, Figure S5: The '3C-NMR spectrum of 4 in CDCls, Figure S6: The 'H-NMR
spectrum of 4 in CDCl3, Figure S7: The 1BC-NMR spectrum of 5 in CDCl3, Figure S8: The TH-NMR spectrum of 5
in CDCl3, Figure S9: The 3C-NMR spectrum of 6 in CDCl3, Figure S10: The 'H-NMR spectrum of 6 in CDCl3,
Figure S11: The '3C-NMR spectrum of 7 in CDCl3, Figure S12: The 'H-NMR spectrum of 7 in CDCl3, Figure S13:
The 13C-NMR spectrum of 8 in CDCl3, Figure S14: The ITH-NMR spectrum of 8 in CDCl3.
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