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Abstract

Background: Several genome-scale metabolic reconstruction software platforms have been developed and are
being continuously updated. These tools have been widely applied to reconstruct metabolic models for hundreds
of microorganisms ranging from important human pathogens to species of industrial relevance. However, these
platforms, as yet, have not been systematically evaluated with respect to software quality, best potential uses and
intrinsic capacity to generate high-quality, genome-scale metabolic models. It is therefore unclear for potential users
which tool best fits the purpose of their research.

Results: In this work, we perform a systematic assessment of current genome-scale reconstruction software
platforms. To meet our goal, we first define a list of features for assessing software quality related to genome-scale
reconstruction. Subsequently, we use the feature list to evaluate the performance of each tool. To assess the
similarity of the draft reconstructions to high-quality models, we compare each tool’s output networks with that of
the high-quality, manually curated, models of Lactobacillus plantarum and Bordetella pertussis, representatives of
gram-positive and gram-negative bacteria, respectively. We additionally compare draft reconstructions with a model
of Pseudomonas putida to further confirm our findings. We show that none of the tools outperforms the others in
all the defined features.

Conclusions: Model builders should carefully choose a tool (or combinations of tools) depending on the intended
use of the metabolic model. They can use this benchmark study as a guide to select the best tool for their research.
Finally, developers can also benefit from this evaluation by getting feedback to improve their software.

Keywords: Genome-scale metabolic reconstruction, Systematic evaluation, Genome-scale metabolic models,
Bordetella pertussis, Lactobacillus plantarum, Pseudomonas putida

Background
Genome-scale metabolic models (GSMMs) have been a
successful tool in Systems Biology during the last de-
cades [1, 2], largely due to the wide range of areas for
which the scientific community has found an applica-
tion. GSMMs, for example, predict cellular behavior
under different biological conditions, or can be used to
design drug targets for important pathogens; they help
to design improved strains through metabolic engineer-
ing strategies or to predict metabolic interactions in mi-
crobial communities; they have been used to study

evolutionary processes or to give a rationale to lab ex-
periments (see excellent reviews [3, 4]).
The reconstruction process that forms the basis of a

GSMM is very time-consuming. Usually, this process
starts with the annotation of a genome and the predic-
tion of candidate metabolic functions at a genome-scale.
The draft reconstruction is then refined by the user in
an iterative manner through an exhaustive review of
each reaction, metabolite, and gene in the network. After
curation, the genome-scale metabolic reconstruction is
transformed into a mathematical structure, an objective
function is given, constraints are set to account for spe-
cific media conditions and the resulting GSMM is evalu-
ated to try to reproduce the experimental data. This
iterative process of manual refinement is the limiting
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step of the whole process because it continues until the
GSMM achieves the desired performance determined by
the model builder. Hundreds of GSMMs have been re-
constructed using this procedure, for which protocols
have been described [5] and reviews are available [6, 7].
Several genome-scale reconstruction tools have been

developed over the last 15 years to assist researchers in
the reconstruction process [8, 9]. These tools are de-
signed to speed up such process by automating several
tasks that otherwise should be performed manually, such
as draft network generation or gap-filling, and/or by
providing useful information to the user to curate the re-
construction. There has been an outstanding increase in
the number of new tools for genome-scale reconstruc-
tion which reflects the increasing interest to create high-
quality GSMMs [10]. Consequently, there is a need for a
systematic assessment of the performance of these tools,
as many researchers are uncertain which tool to choose
when they want to reconstruct their favorite organisms.
In this work, we installed and applied the most prom-

ising genome-scale reconstruction tools to provide a sys-
tematic evaluation of their performance and outputs.
With each tool we reconstructed draft networks for
Lactobacillus plantarum [11] and Bordetella pertussis
[12], representatives of gram-positive and gram-negative
bacteria, respectively, and for which high-quality
GSMMs already exist. We used high-quality manually
curated GSMMs as a benchmark to assess the features
of the tool-generated draft models. In addition, we also
reconstructed draft networks for Pseudomonas putida to
confirm our findings.

Current state of genome-scale reconstruction tools
Here, we provide a brief description of the current re-
construction tools (see also Additional file 1: Table S1).

AutoKEGGRec (2018)
AutoKEEGRec [13] is an easy-to-use automated tool
that uses the KEGG databases to create draft genome-
scale models for any microorganism in that database. It
runs in MATLAB and is compatible with COBRA Tool-
box v3 [14]. One of the advantages of this tool is that
multiple queries (microorganisms) can be processed in
one run making it appropriate for cases where several
microorganisms need to be reconstructed. The main
limitation of this tool, which is directly related to the use
of the KEGG database, is the lack of a biomass reaction,
transport and exchange reactions in the draft genome-
scale models.

AuReMe (2018)
AuReMe [15] (Automatic Reconstruction of Metabolic
Models) is a workspace that ensures good traceability of
the whole reconstruction process, a feature that makes

this tool unique. A Docker image is available for AuR-
eMe, so users are easily able to run AuReMe in any plat-
form without having to pre-install required packages
(Windows, Linux or Mac). AuReMe creates GSMMs
with a template-based algorithm [16] but it is also de-
signed to incorporate information from different data-
bases such as MetaCyc [17] and BIGG [18].

CarveMe (2018)
CarveMe [19] is a command-line python-based tool de-
signed to create GSMMs, ready to use for Flux Balance
Analysis (FBA), in just a few minutes. Its unique top-
down approach involves the creation of models from a
BIGG-based manually curated universal template. The
implementation of its own gap-filling algorithm allows
this tool to prioritize the incorporation into the network
of reactions with higher genetic evidence. The authors of
this tool showed that the performance of the generated
models is similar to the manually curated models.

MetaDraft (2018)
MetaDraft [20, 21] is a Python-based user-friendly soft-
ware designed to create GSMMs from previously manu-
ally curated ones. It contains in its internal database
BIGG models ready to be used as templates although
any other model can be used as a template. Users can
define a specific order of templates in order to prioritize
the incorporation of information related to reactions if
there is a reaction match in two or more templates. One
of the advantages of Metadraft is that it supports the lat-
est features of the current SBML standards, i.e., SBML
Level 3 [22] including the FBC Version 2 [23] and
Groups packages [24].

RAVEN version 2 (2018)
RAVEN [25] (Reconstruction, Analysis and Visualization
of Metabolic Networks) is a tool for genome-scale meta-
bolic reconstruction and curation that runs in MATLAB
is compatible with COBRA Toolbox v3 [14]. In contrast
to the first version which only allowed reconstruction
using the KEGG database [26], this evaluated version
also allows the novo reconstruction of GSMMs using
MetaCyc and from template models. Additionally, algo-
rithms to merge network from both databases are pro-
vided inside RAVEN. The addition of MetaCyc allows
the incorporation of transporters and spontaneous reac-
tions to the reconstructed networks.

ModelSEED version 2.2 (2018)
ModelSEED [27] is a web resource for genome-scale re-
construction and analysis. This tool allows the creation
of GSMMs, not only for microorganisms but also for
plants. The first step of its pipeline for genome-scale re-
construction is the genome annotation which is
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performed by RAST [28]. Users can select or even create
a medium to be used for gap-filling. In contrast to the
first version, the second version allows the creation of
models in less than 10 min (including annotation) and it
provides aliases/synonyms of reactions and metabolites
in other databases.

Pathway Tools version 22.0 (2018)
Pathway tools [29] is a software environment that sup-
ports the creation and curation of organism-specific da-
tabases. One of the most useful features is that users can
interactively explore, visualize and edit different compo-
nents of the created databases such as genes, operons,
enzymes (including transporters), metabolites, reactions,
and pathways. Also, visualization of the whole network
is possible by using Cellular Overview diagrams, in
which experimental data such as gene expression can be
mapped using different colors depending on the expres-
sion level.

Merlin version 3.8 (2018)
Merlin [30] is a java application for genome-scale recon-
struction based on the KEGG database. One of the most
useful resources of Merlin is the re-annotation of ge-
nomes through the online service of BLAST (EBI) or
HMMER. Several parameters in the annotation algo-
rithms such as the expected value threshold and the
maximum number of hits can be changed by the user if
required, which makes this tool very flexible. The inter-
face allows to compare gene function agreement be-
tween the annotation and UniProt providing
information to the user for manual curation.

Kbase (2018)
Kbase [31] (The US Department of Energy Systems Biol-
ogy Knowledgebase) is an open-source software that al-
lows, among a variety of functions, the reconstruction,
and analysis of microbes, plants, and communities. Kbase
is a platform that integrates several tasks such as annota-
tion, reconstruction, curation, and modeling, making suit-
able for the whole process of reconstruction. One of the
unique features of this software is the use of narratives
which are tutorials where users can interactively learn par-
ticular topics and reproduce previous results.

CoReCO (2014)
CoReCo [32] (Comparative Reconstruction) is a novel
approach for the simultaneous reconstruction of mul-
tiple related species. The pipeline of CoReCo includes
two steps: First, it finds proteins homologous to the in-
put set of protein-coding sequences for each species.
Second, it generates gapless metabolic networks for each
species based on KEGG stoichiometry data. Thus,

CoReCo allows a direct comparison between the recon-
structed models, e.g., to study evolutionary aspects.

MEMOSys version 2 (2014)
MEMOSys [33] (Metabolic Model Research and devel-
opment System) is a database for storing and managing
genome-scale models, rather than a reconstruction tool.
This tool allows tracking of changes during the develop-
ment of a particular genome-scale model. Twenty gen-
ome-scale models are publicly available for exporting
and modifying. Child models can be created from the 20
available models and then modified and compared with
parent models. All the differences between different ver-
sions of the models can be listed to track changes in the
networks.

FAME (2012)
FAME [34] (Flux Analysis and Modeling Environment)
is a web-based application for creating and running
GSMMs. This tool can reconstruct genome-scale models
for any microorganism in the KEGG database. One of
the most interesting features of FAME is that analysis
results can be visualized on familiar KEGG-like maps. It
is foremost a tool for running and analyzing models and
is used -by us- for educational purposes. One of the lim-
itations of FAME is that models cannot be generated for
microorganisms which are not in the KEGG database.

GEMSiRV (2012)
GEMSiRV [35] (Genome-scale Metabolic Model Simula-
tion, Reconstruction and Visualization) is a software
platform for network drafting and editing. A manually
curated model is used as a template to generate a draft
network for the species under study. Among the tools
inside the toolbox, MrBac [36] can be used to generate
reciprocal orthologous-gene pairs which are then used
by GEMSiRV to generate the draft model. One of the
limitations of this tool is that only one template can be
used per run.

MetExplore (2018)
MetExplore [37] is a web-based application for sharing
and curating in a collaborative way previously recon-
structed draft metabolic networks. FBA, FVA, gene, and
reaction essentiality analyses can also be performed in
the same environment to compare predictions with ex-
perimental data. One of the main features of this soft-
ware is that networks can be automatically visualized
using the lightest paths algorithm which reduces the
complexity of the network.

rBioNet (2011)
This tool [38] allows assembling a metabolic reconstruc-
tion. Rather than automatically generating a draft
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metabolic network from its genome, it allows the user to
either create a reconstruction from scratch or load an
existing one for curation. In both cases, reference data-
bases are used to facilitate the import of metabolite and
reactions into the network. Several tests, such as dead-
end metabolite detection and mass and charge reaction
balances, can be run to ensure high quality of the recon-
struction. Finally, this tool is part of the COBRA toolbox
and a tutorial of use is available for beginners.

Other tools
Microbes Flux (2012) [39], Subliminal (2011) [40], and
GEMSystem (2006) [41] are no longer maintained, as
confirmed by the authors of the corresponding articles.

Results
To assess the reconstruction tools, we performed both a
qualitative and quantitative evaluation. As a first step,
we created a list of relevant features for genome-scale
reconstruction and software quality and we scored each
tool depending on the performance (1: poor, 5: outstand-
ing). These features are related to software performance,
ease of use, similarity of output networks to high-quality
manually curated models and adherence to common
data standards. In addition, we evaluated 18 specific fea-
tures related mostly with the second stage (refinement)
of the protocol for generating high-quality genome-scale
metabolic reconstructions [5]. The criteria to assign a
particular score in each feature is specified in Add-
itional file 1: Table S2. Note that not all the tools were
designed for the second stage, so they scored poorly on
quite some features. Many of these features have not
been assessed in previous reviews [8, 9].
Subsequently, to assess how similar the generated draft

networks are to high-quality models, we reconstructed
with different reconstruction tools the metabolic net-
works of two bacteria for which high-quality manually
curated genome-scale models already were available. We
chose to reconstruct the metabolic network of Lactoba-
cillus plantarum and Bordetella pertussis, representa-
tives of gram-positive and gram-negative bacteria,
respectively. These microorganisms were selected be-
cause of three reasons. First, the corresponding GSMMs
are not stored in the BIGG database, so tools that are
able to use the BIGG database (AuReMe, CarveME,
MetaDraft, RAVEN) in the reconstruction process can-
not use the specific information for these microorgan-
isms. If Escherichia coli or Bacillus subtilis would have
been chosen instead we would have favored these tools
because high-quality models for E. coli or B. subtilis
already exist in the BIGG database and they would have
been used as templates or inputs. Second, we chose
these microorganisms because we were fully informed of
the quality of the reconstructions as we built them

ourselves and they have proven to be able to accurately
replicate experimental data [11, 12, 42, 43], even by in-
dependent researchers [44, 45]. Third, these networks
were reconstructed almost entirely in a manual way, so
we do not expect any bias for any particular tool.
In addition to the two previous species, we also recon-

structed with all the tools draft networks for Pseudo-
monas putida, for which four lab-independent genome-
scale models have been reconstructed. We compared the
draft reconstructions with iJP962 [46], a model that is
not in the BiGG database, that has been proven to ac-
curately replicate experimental data and to be absent of
inconsistencies [47].
The networks were generated using seven tools: AuR-

eMe, CarveMe, Merlin, MetaDraft, ModelSEED, Path-
way Tools and RAVEN. These cover most of the freely
available software platforms. The general features of
these tools are listed in Table 1.

General assessment overview
None of the tools got a perfect score for all of the evalu-
ated features and usually, strengths in some tools are
weaknesses in others (Fig. 1, Additional file 1: Figure S3,
Tables S25 and S26 to see detailed evaluation). For ex-
ample, on the one hand, ModelSEED and CarveMe were
evaluated as outstanding when we checked whether the
whole reconstruction process is automatic; Merlin was
evaluated as poor because users should interfere more to
get a network ready to perform FBA. On the other hand,
we consider Merlin as outstanding with respect to a
workspace for manual refinement and information to as-
sist users during this step; CarveMe and ModelSEED do
not provide further information for manual refinement
nor a workspace for manual curation, so they were eval-
uated as poor in this category.
In some cases, all the tools got the maximum score

possible. For instance, all the tested tools are properly
supported by specialist teams and also maintain up-
to-date databases. In other cases, none of the tools
got the maximum score. This was the case for auto-
matic refinement of networks using experimental
data. Some of the tools, such as ModelSEED and Car-
veMe, can use media composition to gap-fill the net-
work. AuReMe and Pathway Tools also can use, in
addition to media composition, known metabolic
products to gap-fill the network. In spite of that,
none of the tools can also use Biolog phenotype ar-
rays, knockout experiments and different types of
omics data (transcriptomic, proteomic, metabolomic,
etc.) to automatically curate the network. Although
some efforts have been done in this area [48–51], this
seems like a major challenge for future tool
development that should lead to improved metabolic
reconstructions.
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Compliance with the latest SBML standards has been
pointed as one of the critical points to share and repre-
sent models [52]. Consequently, we evaluated if the tools
use the latest SBML features in the import (inputs) and
export (outputs) of networks. For inputs, we checked if
the tools were able to read networks in SBML level 3
[22]. We additionally checked if the output networks sat-
isfy the following three features: use of SBML level 3
[22] with FBC annotations [23], SBML groups [24], and
MIRIAM compliant CV annotations [22, 53]. These fea-
tures are used, for example, for models in the BIGG
database and they ensure that the information is stored
in a standard way. For inputs, we found that among the
tools that are able to import and use networks (AuR-
eMe, MetaDraft, RAVEN) all of them are able to use
SBML level 3 but AuReMe generated slightly different
networks when using SBML level 2. For outputs, Meta-
Draft and Merlin and RAVEN were the only ones that
exported the networks with all the three features. Be
aware that networks created with RAVEN have to be
exported to SBML using the specific functions of
RAVEN (not COBRA functions as a regular COBRA
user would expect) because otherwise there will be no
MIRIAM annotations in the SBML files. In addition,
AuReMe and CarveMe lack MIRIAM compliant CV an-
notations and SBML Groups, and Pathway Tools and
ModelSEED exported the networks in SBML level 2.

Network comparison
We reconstructed draft networks for Lactobacillus plan-
tarum WCFS1, Bordetella pertussis Tohama I and
Pseudomonas putida KT2440 with each reconstruction
tool. L. plantarum is a lactic acid bacterium (LAB), used
in the food fermentation industry and as a probiotic
[54–56]. Its GSMM comprises 771 unique reactions, 662
metabolites, and 728 genes, and it has been used to de-
sign a defined media for this LAB [43], to explore

interactions with other bacteria [57] and as a reference
for reconstructing other LAB [58]. In contrast to this
LAB, B. pertussis is a gram-negative bacterium, and the
causative agent of the Whooping cough, a highly conta-
gious respiratory disease [59]. The metabolic network of
this pathogen was recently reconstructed, and it com-
prises 1672 unique reactions, 1255 metabolites, and 770
genes. As B. pertussis, Pseudomonas putida is also a
gram-negative bacterium but the interest in this species
relies on its capability as a cell factory to produce a wide
variety of bulk and fine chemicals of industrial import-
ance [60]. Its metabolic network comprises 1069 unique
reactions, 987 metabolites, and 962 genes. While L.
plantarum and B. pertussis are the main subject in the
network comparisons, P. putida was used, as a model
developed independently from us, to validate the ten-
dencies obtained with the two previous species.
In total, 29 networks were created for L. plantarum,

27 for B. pertussis, and 27 for P. putida. The specific in-
puts and parameters for creating each network can be
found in Additional file 1: File S1. Genes, metabolites,
and reactions were extracted from the SBML files and
compared with those in the manually curated model.
For convenience, the manually curated model of L. plan-
tarum, B. pertussis, and P. putida will be called hereafter
iLP728, iBP1870, and iJP962, respectively.

Comparison of gene sets
Genes are the basis from which the genome-scale model
is reconstructed. When a gene is included in a metabolic
reconstruction, there is at least one biochemical reaction
associated with that gene. When a gene is not in the re-
construction, either the reconstruction tool could not
find an orthologous gene in the reference database or an
orthologous gene was found but no biochemical reaction
is associated with that gene. Gene sets are interesting to
compare because if a gene present in the manually

Table 1 List of selected genome-scale metabolic reconstruction tools and their main features

Reconstruction
tool

Mapping method Reactions are inherited
from

Associated
databases

Version Type of software

AuReMe Pantograph (Inparanoid and OrthoMCL) Template model(s) BIGG-MetaCyc 1.2.4 Command line

CarveMe Diamond, eggNOG-mappera Template model BIGG 1.2.1 Command line

Merlin Mapping from annotation with BLAST or HMMER Database KEGG 3.8 Standalone
interface

MetaDraft Autograph (Inparanoid) Template model(s) BIGG 0.9.2 Standalone
interface

ModelSEED Annotation ontology map from RAST data Template model ModelSEED 2.2–2.4 Online service

Pathway Tools Pathologic Database MetaCyc 22.0 Standalone
interface

RAVEN Autograph-type method from BLASTP and Bidirectional
BLASTPb

Database- Template
model(s)

KEGG-MetaCyc 2.0.1 Command line

aeggNOG-mapper should be run externally by the user
bBidireactional BLASTP is used with template models and BLASTP with databases (KEGG and Metacyc)
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Fig. 1 (See legend on next page.)
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curated model is absent in a draft reconstruction, that
could explain why some biochemical reactions are miss-
ing in the draft. Alternatively, if a gene is absent in the
manually curated model but present in a draft recon-
struction, that could explain the presence of reactions
that should not be in the reconstruction. Moreover, gene
sets are simple to compare among reconstructions be-
cause gene identifiers in all the cases are the same (the
locus tag in the genome annotation) and so, in contrast
to metabolites and reactions, there is no mapping-re-
lated bias in the comparison.
To assess how similar the draft networks were to the

corresponding manually curated networks we calculated
the Jaccard distance (JD) as well as the ratio between the
percentage of covered genes and the percentage of add-
itional genes (R) (Additional file 1: Tables S4–S7). The
JD has been used before to measure the distance be-
tween genome-scale metabolic reconstructions, based on
reaction sets [61]; here, we also applied it to compare re-
constructions in terms of genes and metabolites. We
called JDg, JDr, and JDm to the JD between two recon-
structions when they are compared in terms of genes,
reactions and metabolites, respectively. Analogously, we
called Rg, Rr, and Rm to the R when reconstructions are
compared in terms of genes, reactions and metabolites,
respectively. In general terms, a value of 0 in the JD
means that the networks are identical and a value of 1
means that the networks do not share any element. For
the R, higher values reflect a higher similarity to the ori-
ginal network and lower values reflect a lower similarity
with the original network.
The values in the JDg ranged from 0.38 to 0.60 in L.

plantarum and from 0.43 to 0.67 in B. pertussis (Add-
itional file 1: Tables S4 and S5), while values in the Rg

ranged from 1.18 to 13.16 in L. plantarum and from
0.84 to 3.52 in B. pertussis (Additional file 1: Tables S6
and S7). Although the similarity of the generated draft
networks seems slightly better for L. plantarum than for
B. pertussis, we found that it depends on which metric is
analyzed. With the exception of one network, the Rg

showed that all the draft networks of L. plantarum were
more similar to iLP728 than the draft networks of B.
pertussis to iBP1870, using the analog parameter set-
tings. In contrast, the JDg showed that AuReMe, Model-
SEED, RAVEN, and Merlin generated draft networks of
L. plantarum which are more similar to iLP728 than the
draft networks of B. pertussis with regard to iBP1870,

and that CarveMe, MetaDraft, and Pathway Tools gener-
ated draft networks slightly more similar for B. pertussis.
In general, similar values of JDg and Rg were obtained
for P. putida (Additional file 1: File S3).
Additionally, when sorting the values of both metrics,

we noticed that the JDg order does not correspond to
that made with the Rg. The lowest JDg among the draft
reconstructions for L. plantarum was obtained in the
network generated with AuReMe when the gram-posi-
tive set of templates was used; for B. pertussis, it was ob-
tained with MetaDraft. In contrast, the highest Rg

among the draft reconstructions for L. plantarum was
obtained in the network generated with AuReMe when
only Lactococcus lactis was used as template; for B. per-
tussis, it was obtained with MetaDraft when Escherichia
coli template was used.
Although the similarity scores for both metrics are not

entirely consistent, some trends were observed. The net-
works more similar, in terms of genes, to the manually
curated models were generated by MetaDraft, AuReMe,
and RAVEN (Fig. 2). However, since parameters settings
and inputs have a big effect on the similarity scores, the
usage of these tools does not automatically ensure
obtaining a draft network similar, in terms of genes, to a
manually curated model. This is particularly true for
RAVEN which also generated some networks with high
JDg and low Rg scores. The same trends were obtained
for P. putida (Additional file 1: Figure S2).
We further analyzed the percentage of genes covered

in the manually curated models and the percentage of
genes not in the manually curated models to explain dif-
ferences in Rg. For all the species we observed a wide
variation in both variables (Figs. 3, 4 and Additional file
1: Figure S7). Among the five networks of L. plantarum
with the highest coverage, two were created with AuR-
eMe and three with RAVEN; for B. pertussis, four were
created with RAVEN and one with CarveMe. However,
the networks created with RAVEN that recovered the
highest percentages of genes also added a large number
of genes which were not present in the manually curated
models, decreasing the values in the Rg. In addition,
AuReMe and MetaDraft created conservative draft net-
works with the lowest number of additional genes,
which explains the higher values in the Rg. Finally, tools
such as ModelSEED, Pathway Tools, and Merlin consist-
ently created reconstructions with gene coverages not
ranging in the highest values (in comparison with other

(See figure on previous page.)
Fig. 1 Qualitative assessment of the studied genome-scale metabolic reconstruction tools. We evaluated each of the tools (AU: AuReMe. CA:
CarveMe. MD: MetaDraft. ME: Merlin. MS: ModelSEED. PT: Pathway Tools. RA: RAVEN) from an unsatisfactory (red) to an outstanding performance
(dark green). In some categories such as continuous software maintenance and proper support, on the top of the figure, all the tools got the
maximum score while in others such as automatic refinement using experimental data, none of the tools got the maximum. In most of the cases,
strengths in some tools are weaknesses in others
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networks) and adding a relatively large number of genes
not present in the manually curated models, which ex-
plains why they had lower values in the Rg.
For L. plantarum we found 1613 different genes in

total with all the tools, of which 885 were not present in
iLP728. For B. pertussis, 1888 different genes were
found, of which 1118 were not present in iBP1870. In
addition, 79 genes were correctly predicted in all the
draft networks for iLP728; for iBP1870, this was 131
genes. The distribution of metabolic pathways associated
to those genes is wide for both species, with carbohy-
drate metabolism and amino acid metabolism account-
ing for more than 50% of the metabolic processes
(Additional file 1: Tables S8 and S9). Additionally, 35
and 39 genes were not recovered in any network for
iLP728 and iBP1870, respectively. The metabolic func-
tions associated to those genes were very specific, with
polysaccharide biosynthesis (63%) and transport (22%)
top in the list for L. plantarum and with transport (41%)
and ferredoxin/thioredoxin related reactions (30%) for B.
pertussis. Finally, one gene in L. plantarum, which was
associated with riboflavin biosynthesis, was recovered by
all the networks but it was not present in iLP729. For B.
pertussis, three such genes were found. These genes
were associated with alternate carbon metabolism and
cell envelope biosynthesis.

Comparison of reaction sets
Genes and biochemical reactions are connected within a
reconstruction through gene-protein-reaction (GPR)

associations. However, genes and reactions relationships
are ultimately represented in reconstructions as boolean
rules known as gene-reaction rules. With the exception of
exchange, sink, demand, spontaneous and some transport
reactions (e.g., those governed by diffusion), each reaction
has a defined gene-reaction rule in the reference database
used by each reconstruction tool. During the process of
reconstruction, if orthologous genes are found that satisfy
the gene-reaction rule of a particular reaction, that reac-
tion is included in the draft reconstruction. Other reac-
tions may be added to the draft reconstruction based on
others criteria, such the probability of a particular pathway
to exist in the microorganism under study or the need to
fill particular gaps in the network in order to produce bio-
mass. Nonetheless, we expect that networks which are
more similar in terms of genes will also be more similar in
terms of reactions.
In contrast to genes, however, reactions are labeled

with different identifiers in different databases. Thus, the
same reaction can be stored with two different identi-
fiers in two different databases. During the reconstruc-
tion process, reactions are added from the reference
database to the draft reconstruction and tools using
different databases will generate reconstructions com-
prising reactions with different identifiers. We, therefore,
used MetaNetX [62] to map reactions among recon-
structions built with different databases. In this
approach, reactions were compared using their identi-
fiers (case sensitive string comparison). In addition, we
compared networks using reaction equations, i.e., we

Fig. 2 Jaccard distance versus the ratio between coverage and additional genes for draft reconstructions. We used the Jaccard distance and the
ratio to measure the similarity between the draft reconstructions and the corresponding manually curated models, in this case, when the
networks are analyzed in terms of genes. Draft reconstructions for Lactobacillus plantarum and Bordetella pertussis are represented in panels a and
b, respectively. For both cases, the networks more similar to the manually curated models are located on the top left side of each plot. Thus, the
draft reconstructions more similar to the manually curated models were created by AuReMe, MetaDraft, and RAVEN
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compared reactions using their attributes instead of their
identifiers. In this second approach, we considered that
two reactions were the same if they had the same metab-
olites with the same stoichiometric coefficients. Some
exceptions were made to also match reactions that differ
only in proton stoichiometry (due to differences in me-
tabolites charge) or to catch reactions which are written
in the opposite direction (reactants in the side of prod-
ucts). We decided to include exchange reactions in the
network comparison for completeness because CarveMe
and ModelSEED automatically generate them; as they
are non-gene associated reactions, this automatically
lowers the scores for the other tools that do not add ex-
change reactions. For most networks, comparison
through reaction identifiers resulted in a lower percent-
age of coverage than through reaction equation compari-
son (Additional file 1: Tables S10 and S11). This lower
coverage was due to some missing relationships between
different databases in MetaNetX, which we discovered
when comparing with the reaction equations. In total,

220 new unique reaction synonyms pairs were automat-
ically discovered for both species with the second ap-
proach (Additional file 1: Table S12). To further
overcome the missing relationships in MetaNetX, a
semi-automatic algorithm was developed to assist the
discovery of new metabolite synonyms. In total, 187 new
metabolites synonyms were discovered (Additional file 1:
Table S13) which led to the discovery of 282 additional
reaction synonyms (Additional file 1: Table S14).
The comparison through reaction equations showed a

wide variation in reaction coverage and percentage of add-
itional reactions for all the species (Figs. 5 and 6 and Add-
itional file 1: Figure S8). In addition, for those networks
created with RAVEN (KEGG), ModelSEED, and Merlin, we
observed a considerable number of reactions with a partial
match with the manually curated model. These partial
matches emerge from differences in proton stoichiometry,
which indicates the existence of metabolites with different
charge than those found in the manually curated models. In
contrast to the gene sets comparison, where the coverage

Fig. 3 Overlap of genes in draft reconstructions for Lactobacillus plantarum with those in the manually curated model. In total, 29 networks were
reconstructed with 7 tools (CarveMe: CA; MetaDraft: MD; AuReMe: AU; Pathway Tools: PT; ModelSEED: MS; RAVEN: RA; Merlin: ME). Several
reconstructions, which are represented with different sub-indices, were generated for each tool using different parameters settings. Numbers
inside bars represent percentages with respect to the total number of genes in iLP728. The coverage (blue bars) ranged from 49.7 to 87.8% while
the percentage of additional genes (yellow bars) ranged from 4.3 to 65.0%. Most of the genes that were not recovered (dark green bars) are
related to very specific metabolic functions that were carefully incorporated during the manual curation of iLP728 such as polysaccharide
biosynthesis and transport
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was as high as 88% and 83%, we only observed a maximum
coverage of 72% and 58%, for L. plantarum and B. pertussis,
respectively, even when considering partial matches. We
classified the reactions that were not recovered in different
categories (Additional file 1: Figures S3–S6) and we found
that the low reaction coverage can be explained mainly by
three reasons.
First, both manually curated models contain a consid-

erable amount of reactions without gene-associations,
including spontaneous, transport, exchange reactions,
reactions added during the manual gap-filling and bio-
mass-related reactions. For L. plantarum and B. pertus-
sis, there are 241 and 657 of such reactions, representing
31% and 39% of the network, respectively. With the ex-
ception of CarveMe and ModelSEED, which can per-
form automatic gap-filling, all the rest of the tools are
not able to recover most of the non-gene associated re-
actions, mainly because all the tools predict reactions
based on genomic evidence. Thus, for both species,
around, 50% of the reactions that were not recovered do

not have gene-reaction associations in the manually cu-
rated model. Without considering exchange reactions,
the coverage roughly increased by 15% and 12% for L.
plantarum and B. pertussis, respectively, except for Car-
veMe and ModelSEED. Second, in around 30% of the re-
actions that were not recovered, there are at least 50% of
the associated genes missing in the draft reconstructions.
Third, even when all the genes associated with a particu-
lar reaction are recovered, specific substrate and cofactor
usage is difficult to predict. Many times, the tools pre-
dict the correct metabolic activity but they fail in pre-
dicting the specific substrate used in the manually
curated models. We created a collection of plain text
files containing hundreds of examples where the associ-
ated genes were recovered by the tool but the reaction
does not correspond to the one in the manually curated
model because of different substrates (see section avail-
ability of data for details).
We again calculated the JDr and the Rr to assess how

similar the networks were, in this case in terms of

Fig. 4 Overlap of genes in draft reconstructions for Bordetella pertussis with those in the manually curated model. In total, 27 networks were
reconstructed with 7 tools (CarveMe: CA; MetaDraft: MD; AureME: AU; Pathway Tools: PT; RAVEN: RA; Merlin: ME). Several reconstructions, which
are represented with different sub-indices, were generated for each tool using different parameters settings. Numbers inside bars represent
percentages with respect to the total number of genes in iBP1870. The coverage (blue bars) ranged from 49.4 to 83.0% while the percentage of
additional genes (yellow bars) ranged from 18.6 to 99.0%. The genes that were not recovered (dark green bars) are related to very specific
metabolic functions that were carefully incorporated during the manual curation of iBP1870 such as transport and
ferredoxin/thioredoxin-related reactions
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reactions. The first observation we made is that, inde-
pendent of the metric and for both species, each recon-
struction was less similar in terms of reactions than in
terms of genes, which is consistent with the decrease in
coverage. In addition, as in the gene comparison, the
order of scores for the Rg and the Rr by magnitude was
not the same. If we compare the similarity scores for re-
action sets with the ones for gene sets, we see almost
the same trend but with one difference. AuReMe and
MetaDraft are still the tools with the best similarity
scores but now CarveMe goes up in the list of scores
and RAVEN goes down (Fig. 7, Additional file 1: Tables
S4–S7). This was particularly true for B. pertussis where
two networks reconstructed with CarveMe got the two
first places in the JDr list. Almost the same trend was
observed for P. putida (Additional file 1: Figure S2) be-
ing the higher scores for RAVEN instead of CarveMe
the main difference.
Although RAVEN generated some reconstructions

with high gene sets similarity to the manually curated
models, it did not for reaction sets similarity. We,

therefore, analyzed one of the networks reconstructed
with RAVEN in more detail, one that was consistently in
the top 5 list for both species for both metrics. We
found one main reason for the decrease in performance.
The analyzed network was created based on KEGG, so
metabolites were not labeled as intracellular or extracel-
lular. Hence, no transport or exchange reactions were
present. Although there are functions to incorporate this
kind of reactions in RAVEN, that is considered as man-
ual curation because users must specify which com-
pounds should be transported, and we here only tested
how much work would it take to transform these draft
networks into high-quality reconstructions.
We further analyzed reactions that were present and

absent in all the reconstructions to understand which
kind of metabolic processes they were related. Sixty-six
reactions in iLP728 and 98 in iBP1870 were always
found in all the draft networks. In agreement with the
gene sets analysis, the associated metabolic processes are
mainly amino acid metabolism, nucleotide metabolism,
and carbohydrate metabolism (Additional file 1: Tables

Fig. 5 Overlap of reactions in draft reconstructions for Lactobacillus plantarum with those in the manually curated model. In total, 29 networks
were reconstructed with 7 tools (CarveMe: C, MetaDraft: D, AuReMe: A, Pathway Tools: P, ModelSEED: S, RAVEN: R, Merlin: E). Several
reconstructions, which are represented with different sub-indices, were generated for each tool using different parameters settings. Numbers
inside bars represent percentages with respect to the corrected number of reactions in iLP728, which is the total number of reactions in iLP728
minus the biomass-related reactions (light green). We observed a wide variation in the coverage (blue bars) and the percentage of additional
reactions (yellow bars). In addition, a considerable number of reactions in the networks build with ModelSEED, RAVEN (KEGG), and Merlin
contained different stoichiometry for protons than those in iLP728 (dark green bars)
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S15 and S16). Additionally, 165 reactions in iLP1870 and
598 in iBP1870 were not found by any tool. In both spe-
cies, around 10% of those reactions were biomass-related
reactions and from the rest, most of them were ex-
change reactions, transport reactions without gene asso-
ciations and reactions in other categories that were not
in the BIGG database (Additional file 1: Tables S17 and
S18). Only one reaction, associated to amino acid metab-
olism, was found in all the draft networks of L. plan-
tarum but not in iLP728; four reactions, associated
mainly to carbohydrate metabolism, were found in all
the draft networks but not in iBP1870.

Comparison of metabolite sets
Other important elements within metabolic reconstruc-
tions are metabolites. When a biochemical reaction is
added to the draft network during the reconstruction
process, all the reactants and products are added to the
network too. As the draft metabolic networks were cre-
ated with different tools, each of which using its own set
of databases, they had different identifiers for the same

metabolite. For those networks whose identifiers were
different from BIGG, we again used MetaNetX and our
own additional dictionary to map metabolites.
We calculated the JDm and the Rm to assess the me-

tabolite sets similarity. For almost all the draft networks
in both species, the values in the JDm were between the
JDg and the JDr; we found the same for the Rm (Add-
itional file 1: Tables S4–S7). Again, when sorting the net-
works according to their metric scores, we found the
same trends than for reaction sets. The first position in
the lists were networks either reconstructed with Meta-
Draft, AureMe, or CarveMe. Moreover, independently of
the metric and the species, MetaDraft reconstructed
40% of the networks among those in the top 5.
Two hundred six metabolites in iLP728 and 271 in

iBP1870 were correctly predicted in all the draft net-
works. These metabolites were in both cases mainly as-
sociated with carbohydrate metabolism and amino acid
metabolism (Additional file 1: Tables S19 and S20).
Eighty-one metabolites in iLP728 and 278 in iBP1870
were not recovered in any network. Of those, 16 were

Fig. 6 Overlap of reactions in draft reconstructions for Bordetella pertussis with those in the manually curated model. In total, 27 networks were
reconstructed with 7 tools (CarveMe: C, MetaDraft: D, AuReMe: A, Pathway Tools: P, ModelSEED: S, RAVEN: R, Merlin: E). Several reconstructions,
which are represented with different sub-indices, were generated for each tool using different parameters settings. Numbers inside bars represent
percentages with respect to the corrected number of reactions in iBP1870, which is the total number of reactions minus the biomass-related
reactions (light green). We observed a wide variation in the coverage (blue bars) and the percentage of additional reactions (yellow bars). In
addition, a considerable number of reactions in the networks build with MODELSEED, RAVEN (KEGG), and Merlin contained different
stoichiometry for protons than those in iBP1870 (draft green bars)
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related to the biomass of L. plantarum and 16 others
were not in the BIGG database. For iBP1870, 44 were
biomass-related and 47 others were not in the BIGG
database. Finally, 9 and 11 metabolites were recovered in
all the networks but they were not present in iLP728
and iBP1870, respectively. Mainly, they were associated
to the metabolism of cofactors and vitamins and amino
acid metabolism in the case of L. plantarum and carbo-
hydrate metabolism and glycan biosynthesis in the case
of B. pertussis (Additional file 1: Tables S21 and S22).

Topological analysis
To compare the topological features of each network, we
calculated the number of dead-end metabolites, the number
of orphan reactions, the number of unconnected reactions
and other metrics (Additional file 1: Tables S23 and S24).
iLP728 has 113 dead-end metabolites while iBP1870

has 59. This is consistent with the observation that many
pathways are disrupted in L. plantarum leading for ex-
ample to well-known auxotrophies for many amino acids
[42, 43]. With the exception of CarveMe, all the tools
generated networks with a high number of dead-end
metabolites, ranging from 244 and 999, and from 379 to
976, for L. plantarum and B. pertussis, respectively. The
low number of dead-end metabolites in CarveMe is
caused by the use of a manually curated universal model
as a template which lacks dead-end metabolites.
Without considering exchange and demand/sink re-

actions, 127 and 449 reactions without gene associa-
tions (called orphan reactions) were found in iLP728
and iBP1870, respectively. These reactions are mainly

associated with transport amino acid metabolism, and
biomass formation. MetaDraft, AuReMe, and RAVEN
returned metabolic networks with no orphan reac-
tions. These tools only include reactions with gen-
omic evidence and others lacking this support are not
included. ModelSEED returned networks with a low
amount of orphan reactions, which are related to ex-
change reactions. In contrast, CarveMe, Pathway
Tools, and Merlin returned networks with a signifi-
cantly larger number of orphan reactions (ranging
from 66 to 491 in L. plantarum and from 115 to 736
in B. pertussis). For CarveMe, this is due to the inclu-
sion of transport and spontaneous reactions as well
as reactions needed to create biomass (from gap-fill-
ing); for Pathway tools, it is because of the addition
of reactions to complete probable pathways and spon-
taneous reactions; and for Merlin, this is solely due to
spontaneous reactions.

Discussion
In this work, we reviewed the current state of all the re-
construction tools we could find in the literature and
performed a systematic evaluation of seven of them.
None of the tools performed well in all the evaluated
categories so users should carefully select the tool(s) that
suit the purpose of their investigation. For example, if a
high-quality draft is required and models are available
for a phylogenetically close species, MetaDraft or AuR-
eMe could be selected, reducing thus the time needed to
obtain a high-quality manually curated model. Of these,
MetaDraft was the most robust for handling models and

Fig. 7 Jaccard distance versus the ratio between coverage and percentage of additional reactions for draft reconstructions. We used the Jaccard
distance and the ratio to measure the similarity between the draft reconstructions and the corresponding manually curated model, in this case,
when the networks are analyzed in terms of reactions. Draft reconstructions for Lactobacillus plantarum and Bordetella pertussis are represented in
panels a and b, respectively. For both cases, the networks more similar to the manually curated models are located on the top left side of the
plot. Thus, the draft reconstructions more similar, in terms of reactions, to the manually curated models were created by AuReMe, MetaDraft,
and CarveMe
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since it has a graphical user interface, it is also suitable
for non-specialists. AuReMe, on the contrary, offered a
command-line workspace where the traceability is the
priority. Although we were not able to use RAVEN in
the template mode (for details, see error messages in
supplementary files), this tool allowed us to automate
the generation of several reconstructions, it had a high
flexibility with parameters and it offered integration with
the KEGG and MetaCyc databases which makes it very
appropriate for less-studied species. ModelSEED, Car-
veMe, and Pathway Tools were the fastest tools to gen-
erate reconstructions having a great potential for large-
scale studies how it has been proven in previous works
[61, 63]. The first two tools provided networks which
are ready to perform FBA, however presumably because
of the automatic gap-filling procedure, too many reac-
tions that should be manually verified must be expected.
Pathway Tools and Merlin provided platforms suitable
for manual curation which nicely guide the user through
the whole reconstruction process.
The list of features that we defined not only can be used

by model builders to select the best tool(s) but also by de-
velopers as a guide for improving them. We highlight four
features, which are in accordance with the FAIR guiding
principles for scientific data management and stewardship
[64], that should be considered as a priority by developers
to ensure management of reconstructions in a standard
way: (1) To be findable: all the genes, metabolites and re-
action in a reconstruction should be assigned with unique
and persistent identifiers, and synonyms or aliases in other
databases should be provided whenever possible. (2) To
be accessible: exhaustive control of versions should be im-
plemented so users will be able to submit small but sig-
nificant changes to draft reconstructions, to trace changes
made during the reconstruction process, or to retrieve a
particular version if desired. (3) To be interoperable: out-
put (and input if applied) reconstructions should be writ-
ten with the latest features of the SBML standards. (4) To
be reusable: in relationship with providing a detailed prov-
enance, transparency of decisions through the whole re-
construction process should be ensured so users can see
why a particular reaction was added and at which stage
(draft network generation, gap-filling, refinement, etc.).
Genome-scale reconstructions are usually evaluated

after they are converted into genome-scale models [5],
i.e., mathematical structures where simulations can be
performed under constraints that describe specific ex-
perimental conditions. Thus, GSMMs are tested by their
accuracy to predict experimental data such as knock-
outs, nutritional requirements and growth rates on dif-
ferent conditions. However, most of the drafts we
generated were not suitable to perform FBA, mainly due
to the lack of biomass-related, transport and exchange
reactions. Thus, we limited the evaluation of the drafts

to the comparison with manually curated, genome-scale
reconstructions. The latter are valuable by themselves as
knowledgebases because they contain extensive informa-
tion from the literature. Here, we prescribed that the
manually curated reconstructions are the gold standard,
which implies that they cannot be improved and that is
obviously not true. Many reconstructions of, for ex-
ample, E. coli, S. cerevisiae, and H. sapiens have gone
through multiple rounds of improvements during the
years [65–67]. As reference databases used by recon-
struction tools increase in size and quality, so will the re-
constructions which are based on them. Therefore, some
of the reactions which were suggested by the tools and
which are not in the manually curated models could in-
deed be reactions which would improve the quality of
the reconstructions. Whether one of those reactions
should be in the reconstruction or not will depend not
only on the genomic evidence but also on the scope and
context of the reconstruction. Many reactions are usu-
ally not incorporated because they are not needed for
modeling purposes [5]. Thus, similarity scores should
not be taken alone to assess the quality of draft recon-
structions. Indeed, additional reconstructions of Lacto-
bacillus plantarum that we made with CarveMe and
ModelSEED and which were gap-filled using a modified
version of CDM (Additional file 1: File S2), a media that
support the growth of this microorganism in vivo [43],
showed a general performance close to the manually cu-
rated model, suggesting that although the networks are
not so similar as others created with different tools, the
core metabolism remains similar. Despite that, the per-
formance of these networks is dependent on the media
composition which is used for the gap-filling (Add-
itional file 1: Figure S1), and therefore if there is no ex-
perimentally determined media, some false positive and
false negative predictions could emerge. For example, if
very accurate predictions regarding nutritional require-
ment are needed to design a microbial community, auto-
matic reconstructions for which an experimentally
determined media composition is not provided during
gap-filling could result in false predictions.
A correct mapping of identifiers among different data-

bases is crucial to perform a proper comparison between
metabolic networks. Important efforts such as Meta-
NetX [62] and Borgifier [68] have been done to facilitate
this titanic task. The first of those tools allowed us to
map most of the metabolites and reactions among the
different reconstructions but naturally, some relation-
ships were missing. To overcome this limitation, we fully
mapped metabolites in the manually curated models to
known databases namely BiGG, KEGG, MetaCyc, and
SEED. Second, we implemented an algorithm to search
reaction equations, even when they have differences in
proton stoichiometry due to different protonation states
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or even if the reactions are written in the opposite direc-
tion. As a third step to further reduce the fraction of
metabolites which were not mapped and through a
semi-automatic and iterative process, we determined
187 new relationships. In spite of our efforts, some rela-
tionships were still missing which evidence the complex-
ity of the problem. Since recent efforts have made
clearer the type of issues arising in different databases
[69], we emphasize the importance of standards, which
could make easier the identification of synonyms be-
cause of the presence of high-quality information, and
the need of an outstanding mapping system.
Systematic assessments of tools for systems biology

have become very popular [70, 71] due to the great im-
pact they have in the community of potential users who
certainly are searching the best tool to apply in their re-
search. Knowing the strengths and limitations of each
tool allow users to select the best tool(s) for their case,
to save time in preliminary tests and to focus more on
the analysis and modeling using those reconstructions.
Moreover, to provide genome-scale models of high qual-
ity, in terms of usability and standards, has become a
priority during the last years. Efforts such as those done
by Memote [52] highlight the need for suites that test
the quality of genome-scale models to ensure high-qual-
ity outputs, not only in terms of their content as knowl-
edgebases but also in terms of standards.

Conclusions
All the assessed reconstruction tools showed strengths
and weaknesses in different areas and none of the tools
outperformed the others in all the categories. In particu-
lar, template-based reconstruction tools such as AuR-
eMe, MetaDraft, and CarveMe generated networks with
a higher reaction sets similarity to manually curated net-
works than other tools. In addition, tools such as Path-
way Tools and Merlin provide a proper workspace and
useful information for manual refinement which could
be suited for cases where much time can be dedicated to
this step. RAVEN provides a platform in which biochem-
ical information from different databases and approaches
can be merged, which could be useful for less character-
ized species. Finally, tools such as CarveMe and Model-
SEED provide ready-to-use metabolic networks which
can be useful for a fast generation of model-driven hy-
pothesis and exploration but users will have to be aware
of potential false results.
There seems to be a trade-off between coverage and

similarity, and it remains to be seen how much room for
improvement there is. We see three clear features that
would improve any tool: better standards that would
allow easier integration of the best of tools, exhaustive
version control during the reconstruction process, and

algorithms that can use experimental data for inclusion
of genes and reactions into the models.

Materials and methods
Protein sequences
We used the protein sequences or the GenBank files of
the different microorganisms as input to generate the
genome-scale metabolic reconstructions with each of the
selected tools. All the protein sequences were down-
loaded from NCBI. For Lactobacillus plantarum strain
WCFS1, Bordetella Pertussis strain Tohama I, and
Pseudomonas putida KT2440 we used the protein se-
quences deposited under the NCBI accession numbers
NC_004567.2 [72, 73], NC_002929.2 [74, 75] and NC_
002947.4 [76, 77] respectively.

Reconstruction
The specific parameters and inputs used to reconstruct
the draft networks with each tool can be found in Add-
itional file 1: File S1.

AuReMe
We used AuReMe version 1.2.4, which was downloaded
using Docker Toolbox, to generate the draft
reconstructions.
To generate the genome-scale metabolic reconstruc-

tions of Lactobacillus plantarum we used three different
set of templates from the BIGG database: (1) Lactococcus
lactis (iNF517). (2) Lactococcus lactis (iNF517), Bacillus
subtilis (iYO844), Staphylococcus aureus (iSB619), Clos-
tridium ljungdahlii (iHN637) and Mycobacterium tuber-
culosis (iNJ661). 3) Lactococcus lactis (iNF517), Bacillus
subtilis (iYO844), Staphylococcus aureus (iSB619), Clos-
tridium ljungdahlii (iHN637), Mycobacterium tubercu-
losis (iNJ661), Escherichia coli (iML1515), Klebsiella
pneumoniae (iYL1228), Shigella flexneri (iSFxv_1172),
Shigella boydii (iSbBs512_1146), Shigella sonnei
(iSSON_1240), Pseudomonas putida (iJN746), Yersinia
pestis (iPC815), Helicobacter pylori (iIT341), Geobacter
metallireducens (iAF987), Salmonella entérica (STM_
v1_0), Thermotoga marítima (iLJ478), Synechocystis sp
(iJN678), and Synechococcus elongatus (iJB785).
For Bordetella pertussis we used Escherichia coli as a

template (iML1515).
For Pseudomonas putida we used Pseudomonas putida

as a template (iJN746).

CarveMe
We used CarveMe version 1.2.1 (downloaded from
https://github.com/cdanielmachado/carveme on Au-
gust 1st, 2018) to generate the draft reconstructions.
Two genome-scale metabolic reconstructions were
generated for Lactobacillus plantarum using the uni-
versal bacterial template and the gram-positive
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bacterial template, respectively. For B. pertussis, the
universal bacterial template and the gram-negative
bacterial template were used. For P. putida, the uni-
versal bacterial template and the gram-negative bac-
terial template were used.

Merlin
We used Merlin version 3.8 (downloaded from https://
merlin-sysbio.org/index.php/Downloads on August 1st,
2018) to generate the draft reconstructions. For all the
networks, we first annotated the genomes with EBI
through MERLIN using default parameters. Then, we
loaded KEGG metabolic data and integrated the annota-
tion with the model. Finally, we created gene-reaction-
protein associations and removed unbalanced reactions
to be able to export the network to SBML format.

MetaDraft
We used MetaDraft version 0.9.2, which was obtained
from https://systemsbioinformatics.github.io/cbmpy-
metadraft/.
To generate the genome-scale metabolic reconstruc-

tions of Lactobacillus plantarum we used three different
set of templates from the BIGG database: (1) Lactococcus
lactis (iNF517). (2) Lactococcus lactis (iNF517), Bacillus
subtilis (iYO844), Staphylococcus aureus (iSB619), Clos-
tridium ljungdahlii (iHN637) and Mycobacterium tuber-
culosis (iNJ661). (3) Lactococcus lactis (iNF517), Bacillus
subtilis (iYO844), Staphylococcus aureus (iSB619), Clos-
tridium ljungdahlii (iHN637), Mycobacterium tubercu-
losis (iNJ661), Escherichia coli (iML1515), Klebsiella
pneumoniae (iYL1228), Shigella flexneri (iSFxv_1172),
Shigella boydii (iSbBs512_1146), Shigella sonnei
(iSSON_1240), Pseudomonas putida (iJN746), Yersinia
pestis (iPC815), Helicobacter pylori (iIT341), Geobacter
metallireducens (iAF987), Salmonella entérica (STM_
v1_0), Thermotoga marítima (iLJ478), Synechocystis sp
(iJN678), and Synechococcus elongatus (iJB785).
To generate the genome-scale metabolic reconstruc-

tions of Bordetella pertussis we used three different set
of templates from the BIGG database: (1) Escherichia
coli (iML1515). 2) Escherichia coli (iML1515), Klebsiella
pneumoniae (iYL1228), Shigella flexneri (iSFxv_1172),
Shigella boydii (iSbBs512_1146), Shigella sonnei
(iSSON_1240), Pseudomonas putida (iJN746), Yersinia
pestis (iPC815), Helicobacter pylori (iIT341), Geobacter
metallireducens (iAF987), Salmonella entérica (STM_
v1_0), Thermotoga marítima (iLJ478), Synechocystis sp
(iJN678), and Synechococcus elongatus (iJB785). 3)
Escherichia coli (iML1515), Klebsiella pneumoniae
(iYL1228), Shigella flexneri (iSFxv_1172), Shigella boydii
(iSbBs512_1146), Shigella sonnei (iSSON_1240), Pseudo-
monas putida (iJN746), Yersinia pestis (iPC815), Helico-
bacter pylori (iIT341), Geobacter metallireducens

(iAF987), Salmonella entérica (STM_v1_0), Thermotoga
marítima (iLJ478), Synechocystis sp (iJN678), Synechococ-
cus elongatus (iJB785), Lactococcus lactis (iNF517), Ba-
cillus subtilis (iYO844), Staphylococcus aureus (iSB619),
Clostridium ljungdahlii (iHN637), and Mycobacterium
tuberculosis (iNJ661).
To generate the genome-scale metabolic reconstructions

of Pseudomonas putida, we used three different set of
templates from the BIGG database: (1) iJN746. (2) iJN746 -
iML1515 - iYL1228 - iSFxv_1172 - iSbBS512_1146 -
iSSON_1240 - iPC815 - STM_v1_0 - iIT341 - iAF987 -
iLJ478 - iJN678 - iJB785 iJN746 - iML1515 - iYL1228 -
iSFxv_1172 - iSbBS512_1146 - iSSON_1240 - iPC815 -
STM_v1_0 - iIT341 - iAF987 - iLJ478 - iJN678 - iJB785 -
iNF517 - iYO844 - iSB619 - iHN637 - iNJ66.

ModelSEED
We used ModelSEED version 2.2 web service on August
16st of 2018 to generate the draft reconstructions of
Lactobacillus plantarum and B. pertussis. Version 2.4
was used to generate the draft reconstructions for
Pseudomonas putida. Models were created using differ-
ent template models. No media was specified to create
the models.

Pathway Tools
We used Pathway Tools version 22.0 to generate the draft
reconstructions. Four networks were created with the
Desktop mode using different cutoff values for pathways
prediction and one was made with the Lisp-console with
default parameters. All the networks were exported manu-
ally with the Desktop mode.

RAVEN
We used RAVEN version 2.0.1, which was downloaded
from https://github.com/SysBioChalmers/RAVEN, to
generate the draft reconstructions. Different models
were created using different databases (KEGG and Meta-
Cyc) and different values in the parameters for orthology
searches.

Pre-processing of L. plantarum and B. pertussis network
We pre-processed the manually curated networks in
order to compare them with the draft networks. We
semi-automatically changed metabolite and reaction
identifiers to match those of the BIGG database. Also,
we removed duplicated reactions (those with the same
reaction equation). Before the deletion of a duplicated
reaction, the associated gene-reaction rule was trans-
ferred to or merged with the gene-reaction rule of the
reaction that was kept in the network.
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Comparison of gene sets
We define the union of all the unique genes found in a
particular metabolic network as the gene set in that net-
work. We compared gene sets from each draft network
with those in the corresponding manually curated model
by case sensitive string comparison.

Comparison of metabolite sets
Each metabolic network contains a set of metabolites.
For those networks generated with reconstruction tools
using the BIGG database (AuReMe, CarveMe, and
MetaDraft), we compared metabolites just by string
comparison. For other reconstruction tools (Merlin,
ModelSEED, Pathway Tools, and RAVEN), we mapped
the metabolites using MetaNetX version 3.0 [62]. As me-
tabolite identifiers in the manually curated models con-
tain at the end of the string a character describing the
specific compartment in which the metabolite is located
(for example glc_c for glucose in the cytoplasmic space)
and in MetaNetX they do not, we used the following
procedure to compare metabolites: For each metabolic
network and for each metabolite we removed the com-
partment char from the metabolite identifier. Then, if
the modified identifier is present in MetaNetX and if
there is a synonym for that identifier in the BIGG data-
base, we checked if some of the BIGG synonyms
concatenated with the before removed compartment
char match a metabolite in the manually curated model.
If so, we considered that the metabolite is present in the
manually curated model. Otherwise, we considered that
the metabolite is not present.

Comparison of reaction sets
Each metabolic network contains a set of reactions. Re-
action sets were compared using two complementary
methodologies. First, by using reaction identifier Meta-
NetX mapping and second, by using reaction equation
comparison.
In the first approach, as a pre-processing step, we re-

moved duplicated reactions (those reactions with the
same MetaNetX identifier even if the reaction equation
is different). For those networks generated with recon-
struction tools using the BIGG database (AuReMe, Car-
veMe, and MetaDraft) reactions identifiers were
compared by direct case sensitive string comparison. For
other reconstruction tools, MetaNetX was used to map
reaction identifiers, which also were compared by string
comparison.
In the second case, as a pre-processing step, we first

removed duplicated reactions (those with the same
equation even if they had different identifiers) and empty
reactions (those with an identifier but with no reactants
and products). Then, reaction equations were compared
by comparing each metabolite and its stoichiometry

individually. For those networks generated with recon-
struction tools using the BIGG database (AuReMe, Car-
veMe, and MetaDraft), we directly compared reaction
equations. For those networks generated with recon-
struction tools using a database different from BIGG
(Merlin, ModelSEED, Pathway Tools, and RAVEN), we
first converted metabolite identifiers to BIGG by using
MetaNetX version 3.0 and our own dictionary (Add-
itional file 1: Table S13). Then, reaction equations were
compared.
All the comparison was done in MATLAB and model

handling was performed using functions from Cobra
Toolbox v.3.0 [14].

Calculation of Jaccard distance
The Jaccard distance (JD) was calculated to compare re-
constructions in terms of genes, reactions and metabo-
lites. For two any sets of elements, Si and Sj, the JD is
calculated as JD = 1 − ∣ Si ∩ Sj ∣ / ∣ Si ∪ Sj∣. We called
JDg, JDr and JDm to the JD calculated in terms of genes,
reactions and metabolites, respectively. Thus, JDg, JDr,
and JDm were calculated as:
JDg = 1 − ∣Gi ∩Gref ∣ / ∣Gi ∪Gref∣, Gi being the genes

set of the generated draft network i and Gref being the
genes set of the reference network (manually curated
model).
JDr = 1 − ∣ Ri ∩ Rref ∣ / ∣ Ri ∪ Rref∣, Ri being the reac-

tions set of the generated draft network i and Rref being
the reactions set of the reference network (manually cu-
rated model).
JDm = 1 − ∣Mi ∩Mref ∣ / ∣Mi ∪Mref∣, Mi being the

metabolites set of the generated draft network i and Mref

being the metabolites set of the reference network
(manually curated model).

Calculation of ratio
The ratio (R) between the coverage and the percentage
of additional elements was calculated to assess how
similar a particular draft network was to the manually
curated reconstruction. We called Rg, Rr, and Rm to the
R calculated in terms of genes, reactions, and metabo-
lites, respectively. Thus, Rg, Rr, and Rm were calculated
as:
Rg = ∣Gi ∩Gref ∣ / ∣Gi −Gref∣, Gi being the genes set

of the generated draft network i and Gref being the genes
set of the reference network (manually curated model).
Rr = ∣ Ri ∩ Rref ∣ / ∣ Ri − Rref∣, Ri being the reactions

set of the generated draft network i and Rj being the re-
actions set of the reference network (manually curated
model).
Rm = ∣Mi ∩Mref ∣ / ∣Mi −Mref∣, Mi being the metab-

olites set of the generated draft network i and Mj being
the metabolites set of the reference network (manually
curated model).
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Evaluation of performance
We created three models of Lactobacillus plantarum
with CarveMe version 1.2.1 and ModelSEED version 2.4,
using different media compositions for the gap-filling
procedure that is carried out internally in these tools.
Since the models were not able to generate biomass with
the original media composition of CDM, PMM7, and
PMM5 [43], we modified these mediums to ensure
growth. The lack of growth was because of the presence
of some compounds in the biomass equation which were
not provided in the media. The modified mediums were
called CMM-like, PMM7-like, PMM5-like, respectively
(Additional file 1: File S2).
A set of 34 single-omission experiments [43] were used

to evaluate the performance of the models. True positive
were defined as growth in vivo and in silico; True negatives
as no growth in vivo and in silico; False positives as no
growth in vivo and growth in silico; False negatives as
growth in vivo but no growth in silico. CDM-like media
was used as a basal media for the single omission experi-
ments. For both in vivo and in silico experiments, growth
rates below 10% of the growth rate obtained in CDM-like
were considered as no growth.
Metrics to evaluate the performance were calculated as

follows:

Sensitivity ¼ TP
TPþ FNð Þ ð1Þ

Specificity ¼ TN
TNþ FPð Þ ð2Þ

Precision ¼ TP
TPþ FPð Þ ð3Þ

Negative Predictive Value NPVð Þ ¼ TN
TNþ FNð Þ ð4Þ

Accuracy ¼ TPþ TN
TPþ TNþ FNþ FPð Þ ð5Þ

F score ¼ 2� precision� sensitivityð Þ
precisionþ sensitivityð Þ ð6Þ

Availability
All the reconstructions used as well as the MATLAB
functions to generate the models (when possible) and to
compare them are available at https://github.com/Sys-
temsBioinformatics/pub-data/tree/master/reconstruction-
tools-assessment [78]. In particular, the collection of
plain text files showing examples of reactions in the
manually curated models that were not recovered
even though the associated genes were present in the
draft reconstructions can be accessed in https://github.com/
SystemsBioinformatics/pub-data/tree/master/reconstruction-

tools-assessment/supplementary%20material/lpl and https://
github.com/SystemsBioinformatics/pub-data/tree/master/
reconstruction-tools-assessment/supplementary%20ma-
terial/bpe, for L. plantarum and B. pertussis, respectively.
The code is distributed under a General Public License
(GPL), an open-source license compliant with OSI (http://
opensource.org/licenses).

Additional files

Additional file 1: Supplementary figures, tables and files. (RAR 559 kb)

Additional file 2: Review history. (DOCX 2969 kb)
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