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Colour vision is known to have arisen only twice—once in Vertebrata and once

within the Ecdysozoa, in Arthropoda. However, the evolutionary history of

ecdysozoan vision is unclear. At the molecular level, visual pigments, com-

posed of a chromophore and a protein belonging to the opsin family, have

different spectral sensitivities and these mediate colour vision. At the morpho-

logical level, ecdysozoan vision is conveyed by eyes of variable levels of

complexity; from the simple ocelli observed in the velvet worms (phylum

Onychophora) to the marvellously complex eyes of insects, spiders, and crus-

taceans. Here, we explore the evolution of ecdysozoan vision at both the

molecular and morphological level; combining analysis of a large-scale

opsin dataset that includes previously unknown ecdysozoan opsins with mor-

phological analyses of key Cambrian fossils with preserved eye structures. We

found that while several non-arthropod ecdysozoan lineages have multiple

opsins, arthropod multi-opsin vision evolved through a series of gene

duplications that were fixed in a period of 35–71 million years (Ma) along

the stem arthropod lineage. Our integrative study of the fossil and molecular

record of vision indicates that fossils with more complex eyes were likely to

have possessed a larger complement of opsin genes.
1. Introduction
(a) Background
Invertebrates with diverse body plans and ecologies dominated the ecosystems

of the Cambrian [1–4]. Species from the superphylum Ecdysozoa, including

Priapulida (penis worms) and Arthropoda (e.g. the extant crustaceans, insects,

myriapods, and chelicerates) were particularly important constituents of these

earliest complex ecosystems. The ability to perceive light and detect visual

cues is important for extant animals, allowing them to regulate their circadian

rhythms, inform visually guided behaviours such as predation, and communi-

cate through visual signals [5,6]. Given the eye complexity of some Cambrian

fossil species, such as Anomalocaris and the trilobites [7], and given that some

of these fossils had structural colours [1], it is likely that vision played a role in

shaping the Cambrian radiation of animals. Hence, understanding the visual
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Figure 1. Distribution of well-characterized ecdysozoan opsins. Purple: short wave sensitive (SWS), violet: UV and Rh7, light blue: medium wave sensitive (MWS),
and green: long wave sensitive (LWS). Black: UV/SWS. In all figures animal silhouettes are from www.phylopic.org.
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ecology of important fossil taxa is fundamental to a greater

comprehension of key evolutionary events such as the

Cambrian explosion [4,8].

The Cambrian explosion is so named as it was character-

ized by an expansion of animal body plans, displaying also a

diversity of complex sensory systems. Many of the most strik-

ing examples of this diversity are found in the stem

arthropod lineage, i.e. among the taxa that diverged before

the last common ancestor of the living arthropods (Chelicer-

ata, Myriapoda, and Pancrustacea) but after the separation of

the arthropod lineage from its closest relatives—Tardigrada

and Onychophora. The stem arthropod lineage included

many of the apex predators of the early Palaeozoic, such as

Anomalocaris, Opabinia, and Pambdelurion [9], and over this

period, these taxa developed a number of innovations,

expanding the gut for improved digestion [9,10], enlarging

and experimenting with more efficient mouth parts
[11–13], and increasing motility [14,15]. The stalked com-

pound eye is an example of the complex sensory organs

that can be seen relatively early in Cambrian stem

arthropods, with more complex eye structures being found

in fossils that are more closely related to the crown arthropods

or that are nested within crown Arthropoda [16].

Colour vision is a key element of living arthropod preda-

tory visual ecology. Arthropod colour vision is mediated by

visual pigments that use rhabdomeric-type opsins (r-opsins)

[17]. A single spectral sensitivity is not sufficient to see in

colour, but possession of two or more visual pigments can

allow the detection of colours by comparative processing

[17,18]. While visual pigments do not fossilize, phylogenetic

methods and molecular data have previously been used to

infer the visual capabilities of long extinct taxa [19].

The common ancestor of all living arthropods (i.e. the

crown arthropod last common ancestor) minimally possessed

http://www.phylopic.org
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four visual opsins (figure 1) [18]. These were the yellow-green

(medium wave sensitive; MWS) opsin, the blue-green (long

wave sensitive; LWS) opsin, Rhodopsin 7 (Rh7, which med-

iates circadian entrainment in Drosophila [20]), and the UV/

SWS opsin, that in the opsin literature is generally referred

to as the UV opsin (see §1b for guidelines on the gene nomen-

clature used in this paper). The UV/SWS gene underwent a

duplication in the common ancestor of the allotriocarid pan-

crustaceans (insects, branchiopods, remipedes, and possibly

cephalocarids) and of the malacostracans (e.g. lobsters and

crabs) [18,21]. This duplication gave rise to an ultraviolet sen-

sitive (UV) and a blue (short wave sensitive; SWS) opsin

(figure 1) that are retained in the malacostracans [18,22,23]

and allotriocarid lineages with a functional visual system

(i.e. insects and branchiopods) [18,22,23]. Because the

relationships between crustaceans are still partially un-

resolved [21,24–26], it is unclear where in the crustacean

phylogeny there was a duplication of the UV/SWS gene.

However, as Branchiopoda and Hexapoda are crown arthro-

pods belonging to the Pancrustacea that diverged 497 Ma or

more [24,25,27,28], we can be confident that this duplication

happened in the Cambrian, within crown Arthropoda, after

the separation of Myriapoda (e.g. centipedes and millipedes)

from Pancrustacea [21].

While the duplication of the UV/SWS gene occurred

within crown Arthropoda [22,23], the UV/SWS, MWS,

LWS, and Rh7 paralogues evolved through a series of dupli-

cations that predate the origin of this group. Previous studies

showed that while other ecdysozoans have r-opsins, they do

not seem to have this set of paralogues [17,22,23].

We used newly sequenced transcriptomes and genomes,

and publicly available data to identify a total of 218 ecdysozoan

opsins to further investigate whether the ecdysozoan r-opsin

diversification was an arthropod-specific phenomenon. We

used dated phylogenies to investigate whether the evolution

of the morphological and molecular components of ecdy-

sozoan visual systems were, to some level, coupled. We

compared the emergence of new opsin paralogues and the

emergence of novel features in ecdysozoan eyes using key fos-

sils and extant taxa. We included new data for the 518 Ma fossil

Pambdelurion whittingtoni, which represents one of the oldest

known occurrences of eye structures in the fossil record. We

conclude that fossil ecdysozoans displaying greater eye com-

plexity inherited more opsin paralogues, suggesting that the

evolution of the molecular and morphological components of

the ecdysozoan visual system may have been coupled.

(b) Naming opsins
Describing the evolutionary history of a gene family is difficult

when, as in the case of the opsin family, no clear nomenclatural

schema has been applied consistently to newly identified

genes. We have used a schema based on the regulatory gene

literature [29,30] to name ancestral and paralogue genes

(see electronic supplementary material and figure S1).
2. Material and methods
(a) Identifying new r-opsins and assembly of an

ecdysozoan visual opsins dataset
Raw transcriptome data publicly available on the National

Centre for Biotechnology Information, Sequence Read Archive
(NCBI SRA) archive for Paragordius varius, Tubiluchus sp., Ramaz-
zottius varieornatus, Abacion magnum, Brachycybe lecontii, Cambala
annulata, Cleidogona sp., Craterostigmus tasmanianus, Eupolybothrus
cavernicolus, Scutigera coleoptrata, Petaserpes sp., Prostemmiulus sp.,
Baetis sp., Boreus hyemalis, Corydalus cornutus, Empusa pennata,

Fopius arisanus, Haploembia palaui, Liposcelis entomophila, Meiner-
tellus cundinamarcensis, Menopon gallinae, Periplaneta americana,

Stylops melittae, Centruroides sp., Frontinella sp., Liphistius sp.,

and Neoscona arabesca were assembled following the protocol pre-

sented in the electronic supplementary material. New data were

generated for Meiopriapulus fijiensis, Batillipes sp., Echiniscus tes-
tudo, Paramacrobiotus richtersi, Damon sp., Galeodes sp., Limulus
polyphemus, Neobisium carcinoides, Nymphon gracile, Oligolophus
sp., and Oniscus sp. following the protocols in the electronic sup-

plementary material (see electronic supplementary material,

table S1 for a list of all transcriptomes and genomes sequenced

and their accession numbers).

Putative opsin sequences were identified from the

assembled genomes and transcriptomes using a BLAST-based

[31] approach (BLAST cut-off E-value ¼ 10e27). A previously

collated set of 401 opsins from 117 species [23] was used as

queries for the BLAST searches. To confirm that sequences

identified were r-opsins, rather than members of other opsin

families or more distantly related G-protein coupled receptors,

the putative opsins were compared (using BLAST) to the NCBI

non-redundant protein database. All sequences with a best

match to an r-opsin were added to an existing dataset of 183

opsins (from [32,33]) made up of 179 well-characterized

r-opsins (16 lophotrochozoan visual r-opsins, 7 vertebrate

melanopsins, 16 arthropsins, 140 panarthropod visual r-opsins)

and four cnidarian opsins. The cnidarian opsins are either

sister to the other r-opsins [32,33] or they represent more dis-

tantly related, r-opsin-like genes [34] thus representing a

valid outgroup to root our r-opsin phylogeny. The known

and putative opsins were aligned in both MUSCLE [35] and

PRANK [36]. Two initial opsin phylogenies (electronic sup-

plementary material, figures S2 and S3) were derived in

Phylobayes MPI 1.7 [37] under the GTRþG model [33] and

rooted using the cnidarian opsins. The trees derived from the

MUSCLE and PRANK alignments were not significantly differ-

ent, and we focus on the MUSCLE alignment analyses below.

Opsins that were more closely related to the panarthropod

visual r-opsins than to any of the other opsins in the prelimi-

nary opsin tree, including new sequences from Priapulida

and Nematomorpha, were confirmed to be members of the

panarthropod visual r-opsin group and were retained for

further analyses (electronic supplementary material, figures

S2 and S3 and table S2). All alignments used in our study,

and all new sequences, are available [38].
(b) Ecdysozoan visual opsin phylogeny
A new alignment of 181 sequences was generated, including all

the sequences that we identified to be more closely related to

the arthropod visual r-opsins than to any other r-opsin, and a

large sample of previously characterized panarthropod visual

opsins [23]. This dataset was aligned using MUSCLE [35], and

phylogenetic analyses were performed using a novel, r-opsin-

specific GTR matrix derived following Abascal et al. [39], in

PAML4.8 [40], which was implemented in Phylobayes MPI 1.7

[37]. The r-opsin-specific matrix is available [38]. In all phylo-

genetic analyses, site-specific rate heterogeneity was modelled

using a Gamma distribution with four rate categories. Conver-

gence was assessed by comparing the maximum discrepancies

observed over the bipartitions and effective sample size using

Bpcomp and Tracecomp [37]. For all analyses two independent

chains were run. A burn-in of 50% of the sample size was used

for all analyses, sampling every fiftieth generation following
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the burn-in period. Trees were rooted using the newly identified

priapulid and nematomorph sequences (based on the relation-

ships inferred for these sequences in phylogenetic analyses that

included also more distantly related r-opsins).

Gene duplication events were inferred using ALE [41]. The

positioning of these gene duplications along a rooted ecdysozoan

phylogeny were compared with those proposed previously

[22,23].

(c) Estimating the time of fixation of opsin duplications
Divergence times between opsin genes were inferred using a

relaxed, autocorrelated, molecular clock model (the Cox, Inger-

soll, and Ross (CIR) process [42]) in Phylobayes v3.3 [37], with

the root placed on the node separating the priapulid and nema-

tomorph r-opsins from all other ecdysozoan r-opsins. Our new

r-opsin GTR matrix was used to model the substitution process,

with site-specific rate heterogeneity modelled using a Gamma

distribution (four rate categories). The root prior was modelled

using a Gamma distribution of average 600 Ma and standard

deviation 26 Ma. These parameters generate a prior distribution

for the root age of our r-opsin phylogeny congruent with the cali-

bration interval for the origin of Ecdysozoa [24,43,44]. This prior

distribution encompasses the currently accepted fossil maximum

for the origin of Ecdysozoa (636.1 Ma; the maximum age of the

Lantian biota) [24,43–45], and the accepted fossil minimum

(541 Ma; the oldest traces of a priapulid-grade animal,

Treptichnus pedum [46]). Fourteen node calibrations were applied

to the tree (see electronic supplementary material, table S3), and

the joint marginal priors were visualized before the analyses.

Convergence was assessed using Tracecomp in Phylobayes.

(d) Ecdysozoan divergence time analysis
An ecdysozoan timetree was generated that included both extant

and fossil taxa using the total evidence tip dating method [47]

under the fossilized birth death process [48] in RevBayes

[49,50]. A molecular-morphological dataset was used for our

analysis, combining the morphological data from [51], with six

genes (2201 amino acid positions) from eight out of the 11

extant taxa in the dataset (all those for which some molecular

data is available). The molecular data was either obtained from

NCBI or from the transcriptomes we sequenced (see electronic

supplementary material for accession numbers and [38]) for the

data. The tree topology was fixed to reflect the phylogenetic

tree of [51], but with the few polytomies in that tree resolved

according to [52]. Fifty-one calibrations representing the age of

the tip of every fossil species in the dataset (electronic sup-

plementary material, table S4) were used. For the root prior,

we used a soft-bounded uniform distribution with a lower

bound of 542 Ma and an upper bound encompassing the age

of the Lantian biota (636.1 Ma) as part of the 2.5% probability

distribution allocated outside of the minimum–maximum

boundary [24,43]. Absence of ecdysozoan fossils from the Lan-

tian biota is considered to represent a true absence rather than

lack of evidence for their presence [44,45]. The sampling prior

for the extant taxa (r) was set to 0.00001, the ratio between the

taxa in our dataset and the estimated diversity of the extant

arthropods (approx. 10 000 000 species [53]). The exponential

prior on the rate of fossil sampling (c) was set to 10, permitting

very broad sampling of possible rates. The RevBayes Script used

to run the analysis is available [38].

(e) Divergence time comparison
Phylogenetic history and divergence times for the clades in our

ecdysozoan tree were compared to the history of the duplications

within the opsin family. Presence of an opsin in the taxa descend-

ing from an internal node in our ecdysozoan phylogeny was
inferred by phylogenetic bracketing when all the descendants

were extant taxa. If one or more of the descendants were fossils

the presence of an opsin in the descendants was estimated by

comparing the age of the considered clade in the ecdysozoan

timetree against the age of the opsin duplication. A fossil is

always younger than the clade it belongs to. Accordingly, fossil

ages underestimate clade ages [54], by comparing two timetrees

rather than the age of gene duplications against the fossil record

we avoided making invalid comparisons. In cases where the

lower bound of the 95% CI of the species divergence time

occurred after and did not overlap with the upper bound of

the 95% CI of the opsin duplication time, the duplication was

inferred to have predated the divergence of the taxa descending

from that node (with p ¼ 0.95). The descending lineages were

thus inferred to have inherited the two paralogues that emerged

from the duplication. When the credibility intervals of a given

speciation and duplication event overlapped, the species diver-

gence might have predated the opsin duplication. In these

cases we conservatively assumed that the lineages descending

from the speciation event inherited the ancestral opsin gene

rather than the paralogues that emerged from the duplication.

Accordingly, our estimates for the number of paralogues that

could have been inherited by fossil taxa are always minimal.
3. Results and discussion
(a) Identifying new ecdysozoan opsins
We identified a total of 56 new r-opsins across Ecdysozoa (see

electronic supplementary material, tables S1 and S2). While

most new r-opsins were found within Arthropoda, 16 were

found in other phyla. We identified two and four r-opsins

in the priapulid M. fijiensis and in the nematomorph P.
varius, respectively. In the tardigrades we identified multiple

r-opsins in two heterotardigrade species and one r-opsin in a

eutardigrade. In arthropods, new r-opsins were identified

in six myriapod species (6 r-opsins), five chelicerates (6 r-

opsins), and 12 pancrustaceans (28 r-opsins), see electronic

supplementary material, table S2 for details.

(b) Understanding the new ecdysozoan opsins
ALE [41] analysis (electronic supplementary material, figure

S4), as well as standard visual inspection of the distribution

of the opsin paralogues across the species in our ecdysozoan

phylogeny, indicate that the new opsins identified in Priapu-

lida, Nematomorpha, and Tardigrada are not orthologous to

specific paralogues used by arthropods for colour vision (i.e.

they are not homologues of the arthropod’s LWS, MWS, UV,

Rh7, and SWS opsins). Instead, they represent lineage-

specific expansions of the original ecdysozoan visual opsin

that we shall hereafter refer to (see §1b above and electronic

supplementary material, figure S1) as the Rh7/UV/SWS/

LWS/MWS opsin (figure 2), with reference to the named,

well-characterized, ecdysozoan visual opsins of which these

sequences are orthologues. Within their respective phyla,

the new priapulid, nematomorph, and tardigrade opsins

could represent family, genus, or even species-specific dupli-

cations. Current taxon sampling does not allow us to clarify

this problem. In particular, the independent duplications

identified by ALE (see electronic supplementary material,

figure S4) in the genomes of the tardigrades Batillipes sp.
and Echiniscus testudo could be indicative of order-level dupli-

cations in Arthrotardigrada and Echiniscoidea, respectively.

The large number of opsin paralogues found in Batillipes
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and Echiniscus might indicate the possibility that the ability to

differentiate between colours independently evolved twice in

Tardigrada, and hence multiple times in Ecdysozoa. How-

ever, as the expression patterns and wavelengths of

maximum absorbance (lmax) of these novel opsins are

unknown, it is not possible at this stage to state with any

level of confidence whether colour vision exists outside

Arthropoda. Irrespective of whether Batillipes and Echiniscus
can differentiate between colours based on wavelength

alone, behavioural studies have demonstrated that these

species have a greater ability to react to light [55] when com-

pared to tardigrades such as Milnesium tardigradum, that have

only one copy of the Rh7/UV/SWS/LWS/MWS opsin [23].

In Priapulida, photic behaviour has not yet been observed,

and it is unknown where and for what function the opsins

we identified may be expressed [56].

In Arthropoda, only the LWS opsin could be identified in

the sea spider (Arthropoda; Chelicerata; Pycnogonida)
Nymphon gracile, possibly suggesting a process of secondary

loss of opsins in this species (figure 2; electronic supplemen-

tary material, figure S5). Most myriapod visual opsins cluster

in the arthropod LWS clade. The exception to this is a number

of sequences restricted only to the Scutigeromorpha (Chilo-

poda) Craterostigmus tasmanianus and Scutigera coleoptrata
(figure 2; electronic supplementary material, figure S5) that

cluster in the MWS clade. The distribution of opsin paralo-

gues across Myriapoda suggests that the molecular

component of the visual system of the myriapods for which

we have data is degenerate in comparison to the base of

their stem lineage. This is consistent with the highly modified

eyes observed in crown myriapods [57].
(c) The history of ecdysozoan vision
Our ALE [41] analysis (see electronic supplementary material,

figure S4) indicates that the last common ecdysozoan ancestor



Table 1. Identity, age of duplication, function, and distribution of the ecdysozoan visual opsins.

name age of duplication (Ma) function where extant taxonomic distribution

Rh7/UV/SWS/MWS/LWS n.a. MWS [22] Priapulida, Nematomorpha, Tardigrada,

Kerygmachela, Pambdelurion

Rh7/UV/SWS 615 – 587 n.a. Opabinia, Anomalocaris, Fuxianhuia

MWS/LWS 615 – 587 n.a. Opabinia, Anomalocaris

MWS 605 – 577 MWS Fuxianhuia, Chelicerata, Pancrustacea

LWS 605 – 577 LWS Fuxianhuia, Chelicerata, Pancrustacea

UV/SWS 585 – 558 UV Chelicerata

Rh7 585 – 558 UV (non-visual) Chelicerata, Pancrustacea

UV 527 – 509 UV Pancrustacea

SWS 527 – 509 UV Pancrustacea
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only had one orthologue of the panarthropod visual opsins—

the Rh7/UV/SWS/LWS/MWS opsin. ALE analyses confirmed

(see also [22,23]) that the Rh7/UV/SWS opsin and the LWS/

MWS opsin originated from a duplication of the Rh7/UV/

SWS/LWS/MWS opsin that occurred after the separation of

both Onychophora and Tardigrada from Arthropoda. The

95% credibility interval from our opsin molecular clock analysis

dates this duplication to 615–587 Ma (table 1). Phylogenetic

bracketing (figure 3) implies that Hallucigenia and other lobo-

pods that are more closely related to Onychophora than they

are to Arthropoda (e.g. Xenusion, Microdictyon, and the Collins

Monster) only inherited one orthologue of the panarthropod

visual opsins (the Rh7/UV/SWS/LWS/MWS opsin) from

their last common ancestor, and possessed the same opsin

complement as the extant Onychophora. Unless lineage-specific

duplications occurred along the lineages leading to these taxa,

they could have onlyexpressed one visual opsin. Fossil evidence

indicates that the eyes of these taxa were similar to those of the

Onychophora [14], suggesting that, like the Onychophora,

these taxa were most likely monochromats.

Results from ALE [41] and an inspection of our opsin

phylogeny clearly indicated that the last common ancestor

of the crown arthropods (i.e. the last common ancestor of

Mandibulata and Chelicerata) possessed four opsins—the

UV/SWS opsin, and the Rh7, MWS, and LWS opsins

(figure 2; electronic supplementary material, figures S5 and

S6). The iconic Cambrian trilobites, which are currently inter-

preted as members of crown Arthropoda (either representing

a stem chelicerate or a stem mandibulate lineage [24,58]),

must have inherited, at the base of their stem lineage, four

opsins—the UV/SWS opsin, Rh7, MWS, and LWS. Phylo-

genetic bracketing further implies that trilobites could not

have possessed both UV and SWS opsins as these paralogues

emerged from a duplication of the UV/SWS opsin that

occurred more crownward in the arthropod tree, within Pan-

crustacea (see also above). The four opsins inherited at the

base of the total group Trilobita constitute the most likely

opsin complement for the trilobite last common ancestor,

which minimally should have therefore been capable of

trichromatic colour vision (assuming Rh7 was used for circa-

dian entrainment [20]). However, we cannot rule out the

possibility of lineage-specific opsin deletions either along

the stem trilobite lineage or within crown Trilobita—e.g. in

the eyeless Trimerocephalus [59]. Similarly, lineage-specific
duplications may have occurred along the stem trilobite

lineage or in more visually acute forms, much like the

lineage-specific multiple duplications that occurred in

Stomatopoda [60].

Deducing the likely opsin complement of individual stem

arthropod taxa is more complex. This paraphyletic lineage

includes the earliest apex predators of the Cambrian, such as

the anomalocaridids, but the extant taxa that bracket

the group possess one and four opsins, respectively (see

figure 2 and above). This leaves open the possibility of the exist-

ence of intermediate states in these fossils, the genomes of which

cannot be sequenced. We compared divergence times for the

opsin genes across the arthropod stem lineage to estimate the

likely opsin complement inherited by specific fossil taxa.

The duplication separating the Rh7/UV/SWS opsin from

the LWS/MWS opsin occurred between 615 and 587 Ma

(table 1, figure 3a; electronic supplementary material, figure

S6). According to our total evidence, arthropod divergence

time analysis, this postdates the split between Pambdelurion
and all remaining arthropods (595–572 Ma). Yet, it predates

the divergence between Opabinia and the remaining arthro-

pod lineages (585–562 Ma; figure 3a and b, electronic

supplementary material, figure S7). We thus infer that two

opsin genes (the Rh7/UV/SWS opsin and the LWS/MWS

opsin) were inherited at the base of the stem lineage leading

to Opabinia. If no lineage-specific deletion happened along

this lineage, Opabinia could have been capable of dichromatic

colour vision. The absorbance spectra of the Rh7/UV/SWS

opsin and the LWS/MWS opsin are unknown. However,

stem arthropods are known from relatively shallow waters

where UV wavelengths would have provided high levels of

contrast between objects and their backgrounds [61]. Hence,

we conjecture that the Rh7/UV/SWS opsin might have

been UV sensitive. Large sediment influx in shallow waters

due to a lack of rooting in terrestrial environments would

have also made the LWS pigment useful for behavioural

tasks [62], and we conjecture that the LWS/MWS opsin

might have been LW sensitive. Both hypotheses could be

tested using ancestral protein resurrection techniques (e.g.

[19]), but this is outside the scope of our study. From a mor-

phological perspective, it is worth noting that while the

anatomical features of the eye of the last common ancestor

of Opabinia and of the remaining arthropods are unknown,

Opabinia itself displays five mushroom-type compound
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Figure 3. (a) Summary of the evolutionary history of the ecdysozoan visual opsins outside crown Arthropoda. An ecdysozoan timetree displaying both fossil and
extant forms. Opsins inferred to have existed in terminal taxa are represented as circles. Squares along the tree indicate gene duplications along the arthropod
lineage. The colours of the squares identify duplications between panels (a and b) and do not refer to the l2max of the duplicating gene. Similarly, the colour of
the circles indicating the presence of individual opsins at the tips of the tree do not necessarily indicate the l2max of that specific opsin, as such values are not
known for all the opsins in the tree. Colours are simply used to identify the presence of specific opsins across taxa. (b) Summary scheme concomitantly illustrating
the evolution of the molecular and morphological components of the arthropod eye. Top: gene duplication history; gene present at different times and history of
gene duplications (average age and 95% credibility intervals). Bottom: age of the nodes representing the separation of stem lineages leading to fossil taxa with
specific eye types from the lineage leading to the arthropod last common ancestor. The timescales at the bottom of the figures are in Ma. Colour codes: opsin genes
(circles in panel a and on top of panel b). White: Rh7/UV/SWS/MWS/LWS; light green: MWS/LWS; fuchsia: Rh7/UV/SWS; dark green: LWS; light blue: MWS; lilac:
Rh7; black: UV/SWS; dark purple: UV; dark blue: SWS. Opsin duplications (squares in panel a and divergence times credibility bars in panel b). Brown: Rh7/UV/SWS/
MSW/LWS to Rh7/UV/SWS and MWS/LWS. Teal: MWS/LWS to MWS and LWS. Light purple: Rh7/UV/SWS to Rh7 and UV/SWS. Age of the stem lineage leading to
fossils with specific eye types. Red: age of the stem lineages leading to Kerygmachela and Pambdelurion (with reflective patches). Yellow: age of the stem lineage
leading to Opabinia (with mushroom eyes). Orange: age of the stem lineages leading to Anomalocaris, Fuxianhuia, and Arthropoda (with compound eyes).
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eyes [63] that are much more complex than the reflective eye

patches of Kerygmachela [64] and Pambdelurion (see electronic

supplementary material and electronic supplementary

material, figure S8), both of which, according to our ana-

lyses, possessed only one opsin gene—the Rh7/UV/SWS/

LWS/MWS Opsin.

Our ALE analyses and our opsin timetree (figures 2

and 3) indicate that the next duplication along the stem

arthropod lineage was that of the LWS/MWS Opsin. This

duplication, which we dated to 605–577 Ma, resulted in the

origin of the LWS and the MWS opsins. A comparison of

the age of the LWS/MWS Opsin duplication against our

arthropod divergence times indicates that this duplication

postdated the divergence of Anomalocaris from the remaining

stem and crown arthropods (580–558 Ma), but predated the

split between Fuxianhuia and the crown arthropods (562–

539 Ma). From these results we infer that, like Opabinia, the

base of the stem lineage leading to Anomalocaris also inherited

two opsin genes (the Rh7/UV/SWS Opsin and the LWS/

MWS Opsin), while the base of the stem lineage leading to

Fuxianhuia may have inherited three genes (the Rh7/UV/
SWS Opsin, the LWS, and the MWS opsins). These inferences

suggest that while Anomalocaris was dichromatic at best, Fux-
ianhuia might have been capable of trichromatic colour

vision. From a morphological perspective, Anomalocaris pos-

sesses unique, pear-shaped, compound eyes with a number

of lenses comparable to that of modern arthropods [65,66],

while Fuxianhuia possessed a compound eye comparable in

resolution to those of modern malacostracans (figure 3) [51].

The duplication of the Rh7/UV/SWS Opsin led to the

evolution of the Rh7 and UV/SWS Opsin. We date this dupli-

cation to 585–558 Ma, postdating the split between

Fuxianhuia and the crown arthropods (562–539 Ma), but

predating the split between Mandibulata and Chelicerata

(540–519 Ma) (table 1). This agrees with observations on

living arthropods that always minimally possess four

opsins (LWS, MWS, Rh7, and the UV-sensitive UV/SWS

Opsin) unless they have undergone lineage-specific deletions

(as in the case of the myriapods and possibly Nymphon
gracile). Finally, a duplication of the UV/SWS Opsin, that

we date at 527–509 Ma, resulted in the evolution of the UV

and SWS opsins, that should be limited to the taxa
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descending from the last common ancestor of the Allotriocar-

ida [21] (where these opsins are known in all lineages with

eyes—Branchiopoda and Hexapoda) and Malacostraca.
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4. Conclusion
A combination of molecular and palaeontological information

can be used to improve our understanding of the physiological

capabilities of extinct animals. This approach has been demon-

strated here with reference to the Cambrian ecdysozoans, where

we demonstrated polychromatism for the trilobites based on phy-

logenetic bracketing and inferred the existence of a variety of stem

arthropod lineages capable of dichromatic and trichromatic

vision. New and diverse body plans emerge in the Cambrian,

implying a drive for different lifestyles. These are reflected in

diverse visual systems [14,15,51,63–65,67]. We show a shared

narrative where extinct taxa with more complex eyes are also pre-

dicted to have more opsin genes, suggesting that morphological

and molecular changes in the ecdysozoan visual systems were,

at least to some extent, coupled and demonstrate the power of

combining molecular and palaeontological data in a molecular

palaeobiological approach to the study of the evolution of life.
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