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COMPUTATIONAL  PSYCHIATRY 

 

PTSD as a Disorder of Prediction 

 

Disproportionate reactions to unexpected stimuli as well as greater attention to 

perceived threat are cardinal symptoms of PTSD. Computational Psychiatry helps 

explain how these responses develop and result from abnormalities in learning and 

prediction during and after traumatic events. 

 

Peggy Seriès. University of Edinburgh. pseries@inf.ed.ac.uk 

 

Following a terrifying event, such as military combat or rape, 5-30% of individuals (1) will develop 

Post Traumatic Stress Disorder (PTSD). For them, the intense fear they have experienced leaves 

a debilitating trace that will interfere with their future life. PTSD symptoms include flashbacks, 

nightmares, hyper-arousal and severe anxiety, as well as uncontrollable thoughts about the event 

and behavioral strategies to avoid environments that may trigger the symptoms.  

 

Why does PTSD develop for a fraction but not all individuals submitted to similar experiences? Is 

there a biological vulnerability for the disorder, or a biological signature of its consequences that 

could be used as a diagnostic marker and guide the development of new therapies? Recent 

studies by Homan et al (2) and Brown et al (3) in combat-exposed veterans show how 

computational psychiatry can help answering those questions. As with other mental disorders (4), 

the key might be to model PTSD as resulting from (subconscious) inferential biases and impaired 

belief updating. 

 

Common theories propose that PTSD results from abnormalities in learning during and after the 

traumatic event (5). Fear conditioning could explain why neutral stimuli (people, place, sounds etc.) 

that have been associated with the traumatic event acquire the capacity to trigger and maintain 

anxiety long after the trauma itself. Why this association doesn’t weaken over time has been 

attributed to either the fact that it was abnormally strong in the first place, or - more likely - to 

deficits in extinction processes, i.e. a failure for the association to weaken when the same cues are 

encountered without leading to the traumatic event. This could be a result of patients’ avoidance 

strategies: individuals with PTSD avoid encountering such cues again and thus may never 

experience them as being safe. Other theories assume on the contrary that PTSD is related to 

basic deficits in acquiring associations between specific cues and the traumatic event. This would 



 

 

result in associating the trauma with the environment as a whole, resulting in heightened 

contextual anxiety and/or overgeneralization of fear to all cues resembling the initial cues. In 

environments not related to the traumatic event, PTSD patients have also robustly been found to 

exhibit reduced habituation of responses to repeatedly presented novel, intense or fear-relevant 

stimuli, as well as greater sensitization of fear-related autonomic responses. Despite the popularity 

of those theories, the specific components of anomalous learning in PTSD remain unclear. 

 
Computational modeling is ideally placed to help formalize and quantitatively test hypotheses 

regarding such potential abnormalities. In the laboratory, we can explore how individuals learn to 

predict the association between different cues and threats (such as electric shocks) and their 

flexibility in using, updating or forgetting those predictions. Computational modeling can then reveal 

inter-individual differences in internal learning and evaluation processes that are otherwise 

inaccessible to raw data analysis (4). 

 

Homan et al. (2) used a fear-conditioning task with a group of combat-exposed veterans presenting 

a wide range of PTSD symptoms (Figure 1). Participants had to passively learn the pairing 

between two face images and mild electric shocks. Face A was paired with an electric shock in one 

third of the trials, while Face B was never paired with the shock. The acquisition phase was 

immediately followed by a reversal phase. After reversal, face B is now likely to lead to the shock, 

while face A is no longer paired with the shock. To assess conditioning, the authors measured skin 

conductance response (SCR). Interestingly, PTSD severity had no effect on the acquisition of the 

conditioned response before or after the reversal: all participants seemed to learn equally well. 

However, a modeling approach uncovered subtle differences.  

 

Homan et al. used a basic reinforcement learning (Rescorla- Wagner) model and a Pearce-Hall 

hybrid model to fit the SCR data. Both types of reinforcement models compute a “value” for each 

face cue, iteratively updated at each trial, based on the discrepancy between the expected and 

obtained outcome, i.e. the prediction error. However, the hybrid model replaces the constant 

learning rate of the Rescorla-Wagner model by a dynamic “associability” parameter, which reflects 

attention allocation to cues that has been previously accompanied by surprise. Associability 

dynamically modulates value learning by accelerating it for cues whose predictions are poor (large 

prediction errors) and decelerating it when predictions become reliable.  

 

In line with previous studies (3, 6), Homan et al. found that the hybrid model accounted for the 

SCR data better than the basic model. Moreover, after fitting the model to individual participants’ 

data, they found that PTSD severity was associated with one particular model quantity: the 

prediction error weight, which can be seen as a learning rate for associability. In line with Brown et 

al. (3), they found that highly symptomatic combat veterans were more influenced by prediction 

errors, weighing them more strongly as they adjusted trial by-trial attention to cues. 



 

 

 

Using model-based fMRI, they went one step further and asked about the neural correlates of such 

differences: where and how strongly is the computation of value, prediction errors and associability 

reflected in the neural activity. One of the main structures implicated in PTSD is the amygdala, 

considered as the threat processing center and locus of associative learning (1). The amygdala 

has been found to be smaller in size and hyperactive in PTSD. Other structures are also involved 

in providing context and meaning to the traumatic events: in particular the PFC and the 

hippocampus. PTSD patients typically show reduced activation of the PFC and hippocampus, 

which is thought to correspond with reduced top-down inhibitory control of the amygdala, possibly 

explaining the hyper-responsivity of the amygdala to fearful stimuli (1). 

 

Homan at al. found that neural activity in the amygdala was associated with the computation of 

value for the face images. PTSD was associated with lower neural tracking of value in the 

amygdala and the striatum, in addition to smaller amygdala volumes. Moreover, and departing 

from (3), the authors found lower tracking of associability (and less so of prediction error) in the 

striatum, hippocampus and dACC in individuals with higher PTSD severity. They suggest that the 

higher weight assigned to prediction errors might be a compensatory adjustment for the decreased 

neural tracking of associability.  

 

Computational psychiatry of PTSD is in its infancy, and quantifying individual differences in internal 

learning and evaluation processes is an important first step. By framing PTSD in a predictive 

coding framework, these recent findings may provide new keys to understanding the disorder: the 

increased weight given to surprising outcomes might explain disproportionate reactions to 

unexpected stimuli or events, as well as heightened orienting and attentional biases toward 

negative information (3). It could also explain the aberrant learning and synaptic plasticity long 

postulated to be at the core of PTSD (1), that aversive outcomes could be experienced as less 

predictable and less avoidable, and the documented aversion to ambiguity in aversive 

environments in PTSD (7). 

 

The next steps will be to clarify how those results compare with previous findings (5) and whether 

they extend (or not) to other paradigms such as instrumental (3) and reward (8) learning. It will be 

crucial to verify that these individual differences correspond to vulnerabilities for the disorder (as 

opposed to its consequences) and how they relate to the different dimensions of PTSD symptoms 

(re-experiencing, avoidance, hyper-arousal). It will be also important to show that they are specific 

to PTSD, as opposed to depression (3) or other anxiety disorders (9), which have also been found 

to relate to learning rates of associative learning in dynamic aversive environments (10). 

Ultimately, computational studies will need to focus on developing models that can integrate 



 

 

theories of abnormal learning, during and after traumatic events, with the explanation of some or all 

symptom clusters into a single framework.  

 

Importantly, such learning mechanisms are also at the core of the therapies that have shown to be 

effective in PTSD (11): prolonged exposure, cognitive processing therapy and trauma-focused 

CBT. These treatments all try to counteract avoidance strategies and to directly address - and 

update - the associations (memories, feelings, thoughts) made during the traumatic events. 

Despite the relative success of these techniques, the mechanisms behind both their strengths and 

their weaknesses are inadequately understood and it has been suggested that up to 33% of people 

with PTSD are resistant to treatment (12). We need to understand how those therapies work when 

they do, possibly by identifying the relationship between individual learning differences (such as 

increased attention to surprising outcomes) and treatment success. Ultimately we will need to 

design new therapies informed by a better understanding of the role of inference and learning in 

the genesis and maintenance of psychological distress (13). 
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Figure 1. A Computational Psychiatry approach to investigating possible learning 

anomalies in PTSD. (A) Homan et al. (2) recorded skin conductance responses (SCR) during a 

fear-conditioning paradigm in combat-exposed veterans. Face A was first paired with a mild 

electric shock. After reversal, Face B was paired with the shock while Face A was no longer 

associated with it. (B) They then modelled the SCR data using various reinforcement models which 

compute a “value” V for each face cue x, iteratively updated at each trial n, based on the 

discrepancy between the expected (Vn(xn)) and obtained outcome (rn),  i.e. the prediction error δn. 

The best fitting model was found to be a hybrid Pearce-Hall model, which includes an associability 

variable (αn), which reflects attention allocation to cues that has been previously accompanied by 

surprise. They determined the best-fitting parameters of the model for each individual and found 

that PTSD severity was associated with increased prediction error weight (η). (C) The model-based 

time-series was then convolved with the hemodynamic response function and then regressed 

against fMRI data with a focus on regions known to be involved in PTSD (the amygdala, the 

striatum, the hippocampus and the dACC). They found that the neural computations that were 

shaped by these altered prediction error weights contributed to the symptoms of PTSD: aversive 

value encoding in the amygdala and striatum, and associability computations in the striatum, 

dACC, and hippocampus. They also found that the right amygdala computations contributed to the 



 

 

symptomatology above and beyond the effects of smaller amygdala volumes, suggesting additive 

effects of right amygdala volume and function. 


