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Analysis of Auto-Induction, Inhibition and Auto-Inhibition in a Rh-

Catalyzed C-C Cleavage: Mechanism of Decyanative Aryl-Silylation 

Eric C. Keske, Thomas H. West, and Guy C. Lloyd-Jones* 

EaStChem, School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edin-

burgh, EH9 3FJ, United Kingdom. 

KEYWORDS Rhodium, C-C bond Activation, Disilanes, Induction, Isotopic Labelling, Autoinduction, Kinetics, Isonitriles 

ABSTRACT: The mechanism the Chatani-Tobisu rhodium-catalyzed decyanative silylation of aryl nitriles by hexame-

thyldisilane (Me3Si-SiMe3) has been investigated by in-situ NMR spectroscopy. The production of Ar-SiMe3 evolves in 

three distinct phases: slow catalyst induction is followed by a period of rapidly-accelerating turnover, and then, after 

approximately three catalyst turnovers, the onset of progressive inhibition. The processes giving rise to these phenomena 

have been elucidated by isotopic labelling (13C/15N) and kinetic analysis, and it is shown that, in addition to facilitating 

catalyst turnover to generate Ar-SiMe3, the reactants serve other roles. Me3Si-SiMe3 functions as a slow exogenous precat-

alyst activator, and as a moderately powerful catalyst inhibitor. In contrast ArCN acts as a precatalyst inhibitor. Moreo-

ver, the co-product from the reaction (trimethylsilyl cyanide, Me3SiCN), acts as a powerful endogenous precatalyst acti-

vator and catalyst inhibitor, together giving rise to sigmoidal temporal concentration profiles for [Ar-SiMe3]. Kinetic 

studies of the reaction during the phase of progressive inhibition suggest that, for a given initial catalyst concentration, 

the maximum rate of turnover is achieved when the concentration of [Me3Si-SiMe3] and [ArCN] partition the Rh equally 

between two major resting states, one on-cycle, the other off-cycle. The off-cycle resting-state was identified as a Rh(III) 

complex: (Me3Si)3Rh(CN-SiMe3)3, as confirmed by independent synthesis and isotopic labelling (13C/15N); the on-cycle 

resting state has been tentatively assigned as (Me3Si-NC)3RhAr. Overall the results indicate that the catalytic process can 

in principle be made much more efficient by engendering a pathway or process for Me3SiCN sequestration.

Introduction 

The cleavage (‘activation’) of C-C σ-bonds by transition 

metals remains a significant challenge in synthetic chem-

istry.1 In contrast to the more commonly encountered C-

H activation, there have been far fewer reports on the suc-

cessful cleavage of C-C bonds with homogeneous cata-

lysts. 

 

Scheme 1. Examples of Metal-mediated C-C Bond 

Cleavage 

Most metal-catalyzed C-C σ-bond cleaving processes 

proceed via pathways involving the oxidative addition of 

compounds containing strained rings, directing groups, 

or polarized C-C bonds such as organonitriles (Scheme 1, 

a-c).2 As such, these reactions commonly feature low-va-

lent and electron-rich transition metal catalysts. An inter-

esting example of transition metal mediated C-C σ-bond 

cleavage which operates by an alternative mechanism 

was reported in 2002 by Bergman and Brookhart (Scheme 

2).3 Supported by kinetic studies, and isolated intermedi-

ates, it was shown that the mechanism of this transfor-

mation involves the silylmetallation of an organonitrile. 

The resulting η2-imminoacyl rhodium complex, 1b, can 

readily undergo C-C bond-cleaving retromigratory inser-

tion to generate rhodium isocyanide complex 1c. While 

the process developed by Bergman and Brookhart was 

stoichiometric in nature, it paved the way for a catalytic 

variant, reported in 2006 by Chatani and Tobisu.4 They 

demonstrated that hexamethyldisilane (Me3Si-SiMe3) 

could be used to convert aryl nitriles into the correspond-

ing aryl silanes (Ar-SiMe3; Scheme 3) using a commer-

cially available and robust precatalyst ([Rh(COD)Cl]2), al-

beit at high temperatures, vide infra. Analogous processes, 

generating arenes and aryl boronic ester products, using 

silane5 and diborane6 reagents, respectively, were later 

developed by the same research group. The reactions 



 

were proposed to proceed via similar or related mecha-

nisms. In particular, the decyanative borylation of aryl ni-

triles via the formation of imminoacyl intermediates has 

been supported both by computation,7 and stoichiometric 

studies performed by Esteruelas and coworkers.8 To the 

best of our knowledge however, the kinetics of catalyst 

activation and turnover of this fascinating class of reac-

tions have not been reported. 

 

Scheme 2. Silyl Mediated C-C Bond Cleavage. 

We were drawn to the silylation of aryl nitriles, a pro-

cess that uses a simple homogeneous catalyst system, and 

proceeds in the absence of base or any extraneous addi-

tives or ligands. The aryl silane products are versatile re-

agents in organic chemistry. They are stable to both air 

and moisture, undergo transmetalation to late transition 

metals,9 and have recently proven to be very effective cou-

pling partners in gold-catalyzed oxidative arylation of al-

kenes10and arenes.11 The preparation of ArSiR3 reagents 

by Chatani-Tobisu silylation (Scheme 3) provides an ap-

pealing alternative to the more common strategies, e.g. 

lithiation / silylation.  

 

Scheme 3. Chatani-Tobisu Silylation 

We were thus intrigued as to why the procedure has 

not been more widely adopted. Features that may be in 

part responsible for this are the relatively high reaction 

temperatures (130-150 °C) as well as high catalyst load-

ings and long reaction times. Herein we report on an in-

situ study of the Chatani-Tobisu decyanative silylation, 

conducted to elucidate the mechanistic origins of the lim-

iting features of the reaction.  As described below, an ar-

ray of kinetic phenomena that mask what is an underly-

ing efficient catalytic process have been elucidated, these 

include pre-catalyst auto-induction, reagent inhibition 

and catalyst auto-inhibition. 

Discussion 

Although relatively few details on the mechanism were 

provided in the original reports,4 preliminary 29Si NMR 

studies did identify that Me3SiCl was generated from stoi-

chiometric reaction of the [Rh(COD)Cl]2 precatalyst with 

Me3Si-SiMe3.4b This process was proposed to generate a 

rhodium silyl species A (Scheme 3) which could then cat-

alyze conversion of ArCN to ArSiMe3 and the isonitrile 

Me3Si-NC, via a Bergman-Brookhart type mechanism3 

(Scheme 2). The resulting isonitrile (Me3Si-NC) was pro-

posed to isomerize, off metal, to its nitrile isomer (Me3Si-

CN). The latter species was detected in the reaction mix-

ture at the end of the reaction, and identified by trapping 

with acetophenone / I2.4b To effect turnover, the catalyst 

must cleave the Si-Si bond in the bulky and relatively un-

reactive hexaalkyldisilane,12 however, details on the iden-

tity of the catalyst, including ligation, and the oxidation 

state(s) of intermediates remained elusive. 

1. Selection of Conditions for In-situ Analysis. We 

chose the reaction of 4-fluorobenzonitrile, 2 with hexame-

thyldisilane, 3 in mesitylene, catalyzed by [Rh(COD)Cl]2 

for detailed study. Conducting the reaction under the re-

ported conditions (2.0 M 2; 4.0 M 3; 5 mol % Rh; sealed 

tube, 130 °C)4a resulted in >95% conversion of 2 over a pe-

riod of 18h, and the generation of 84% 4 (19F NMR) and 

Me3SiCN (29Si NMR). However, the high concentrations 

of reactants (6 M), and the resulting viscosity of the reac-

tion medium, led to poor quality NMR spectra. By reduc-

ing the concentrations 20-fold, the process could be 

cleanly monitored in-situ by 19F NMR at 130 °C. On fur-

ther investigation, the reaction profile was found to be 

identical to that obtained by periodic heating, with inter-

mittent analysis at standard NMR spectrometer probe 

temperatures (27 °C). This quasi-in-situ monitoring pro-

cedure proved much more efficient, as it allowed a series 

of reactions to be analyzed in parallel by NMR. 

2 Identification of Three Phases of Turnover. Using 

this quasi-in-situ monitoring technique, a number of key 

features emerged, Fig 1A. The reaction proceeds in three 

distinct phases: an induction period is followed by a short 

period of accelerating turnover (the 'burst-phase'), which 

in turn is followed by a prolonged period with marked 

and progressive reduction in turnover rate. Overall, this 



 

results in an elongated sigmoidal temporal product con-

centration profile, and complete conversion of 2 requires 

7 days to reach >90% conversion.  

 

 

 

Figure 1. A) Typical temporal reaction concentration profile. 

B) Effect of additional [Rh(COD)Cl]2 (5 mol%) added at 1500 

s. C) Effect of initial concentrations on length of induction. D) 

Comparison of temporal concentration profile of 

intermediates associated with pre-catalyst activation (5, 6, 7) 

with reaction product 4.  

The total reaction time contrasts with the burst-phase 

where 20% conversion of 2 occurs in just 20 mins; features 

that are indicative of powerful catalyst inhibition during 

reaction. Addition of a second batch of pre-catalyst (5 mol 

%) in the early stages of inhibition resulted in a second 

burst-phase, notably shorter, and without an induction pe-

riod (Fig. 1B). 

Further investigation revealed that the length of the in-

duction period13 depends on the initial concentrations of 

both the aryl nitrile 2 and the disilane 3, the former length-

ening it, the latter shortening it, Fig 1C.13 During induc-

tion, two Ar-derived species (5 and 6) are generated. Their 

temporal concentration profiles, Fig 1D, suggest that they 

are generated sequentially (256) with [6]max = 

~0.5[Rh]0. 13C NMR analysis using 13CN-labelled substrate 

(13C1-2) indicated that both 5 and 6 retain the cyanide-de-

rived carbon from 2, with chemical shifts (δC = 169.2, 160.1 

ppm (5) and 165.0, 171.2 ppm (6)) indicative of Ar-C(Y)=X 

type structures, e.g. where Y = Cl, and X = N-SiMe3. How-

ever, both species proved highly-reactive and evaded iso-

lation. In addition to 5 and 6, fluorobenzene (7, 1.8 %) is 

generated as the burst-phase ensues, presumably via pro-

toderhodation.14 The proton-source was not identified, 

and 7 was always generated in trace levels, despite assem-

bly of reactions in a N2-filled glove-box, using rigorously-

dried reactants, solvents and catalyst. 

Similar-shaped sigmoidal reaction profiles were ob-

served at higher concentrations of both 2 and 3 (Fig. 1C). 

However, although higher concentrations of 3 (0.4 M) re-

duce the length of the induction period and lead to higher 

rates in the burst-phase, it also causes slower rates of turn-

over during the inhibition-phase. In contrast, higher con-

centrations of 2 result in longer induction but faster turn-

over during inhibition, vide infra. The transitions be-

tween induction, burst-phase and inhibition also gave 

characteristic color changes: the homogeneous yellow 

pre-catalyst solution turns intensely-orange/red as the 

burst-phase ensues, and then yellow/brown as the inhibi-

tion-phase is established; indicative of distinct changes in 

Rh-speciation. 

3. Catalyst Inhibition versus Turnover Number. Path-

ways for catalyst decomposition and inhibition are often 

overlooked in reaction development, but understanding 

such processes inform the design of improved catalyst 

performance, in particular the turnover number.15 A key 

insight to the inhibition occurring in the Chatani-Tobisu 

silylation came from analysis of the transition from burst-

phase to inhibition-phase as a function of pre-catalyst 

concentration, Figure 2. By normalizing the reaction pro-

files by catalyst turnover number, it became evident that 

the onset of inhibition occurs after consumption of 3.0±0.5 

molecules of aryl nitrile per rhodium. Analysis by 29Si 

NMR indicated that the Me3SiCN co-product is generated 



 

in increasing concentration through the inhibition-phase, 

but cannot be detected in solution during induction or the 

burst-phase. At no stage in the reaction was solution-

phase isonitrile (Me3Si-NC) detected (29Si NMR), and col-

lectively the data suggests that three molecules of 

Me3SiCN/NC accumulate during the burst phase of the 

reaction, but remain in a rhodium-bound state. 

 

Figure 2. Consumption of 2, normalized by total rhodium 

concentration, at different [Rh(COD)Cl]2 precatalyst load-

ings.  

4. Identification of Rh-isonitrile Complexes. Further 

in-situ 29Si NMR analysis, after the onset of inhibition re-

vealed that in addition to Me3SiCl, Me3Si-O-SiMe3, Me3Si-

SiMe3 (3), Me3SiCN and ArSiMe3 (4), two species (8 / 9) are 

also present, but at low concentrations. The net concen-

tration of 8 + 9 is proportional to the rhodium-catalyst 

loading, indicative that they are rhodium complexes.  

Their relative abundance (8 / 9) is dependent on the reac-

tant (ArCN 2/ disilane 3) proportions, 8 being favored by 

higher concentrations of arylnitrile, [2]0, Figure 3A.  

Complex 9 displays more informative spectral data, 

consistent with three silicon environments (two isochro-

nous). There are two doublets at δ = 2.7 and −2.7 ppm, 

with rhodium-couplings (1JSi-Rh = 19.2, and 19.7 Hz, respec-

tively) indicative of Rh-SiMe3 moieties, Figure 3B. When 
13C-nitrile labelled 4-fluorobenzonitrile (13C1-2) is em-

ployed, the upper-field doublet gains an additional quar-

tet coupling (δ = −2.7 ppm, 2JSi-C = 5.1 Hz), the other dou-

blet δ = 2.7 ppm becoming a non-resolved multiplet, Fig-

ure 3C. The second pair of silicon environments are pre-

sent as singlets at δ = 2.2 ppm, which become doublets (1JSi-

N = 5.2 Hz) when 15N-labelled 4-fluorobenzonitrile (15N-2) 

is employed, Figure 3D. 

 

Figure 3. In situ analysis by 29Si NMR (80 MHz) and 13C{1H} NMR (101 MHz) of Rh-catalyzed reactions ([Rh]tot = 0.01 

M) of 2 (0.025 to 0.3 M) with 3 (0.1 M) in h12-mesitylene at 300 K, during the inhibition phase. A) 29Si NMR spectra of 

reactions conducted with varying initial concentrations of ArCN (2); signal for 3 (–20 ppm) not shown. B) reference 29Si 

NMR sub-spectrum of 9 generated from unlabeled 2. C) 29Si NMR sub-spectrum of 13C3-9 generated from 13C-2. D) 29Si 

NMR sub-spectrum, reaction 15N3-9 generated from 15N-2. E) 13C{1H} NMR sub-spectrum of  13C3-9 generated from 13C-2. 



 

 

Complex 8 displays the simplest 29Si NMR spectral data, 

a slightly broadened singlet (δ = 6.0 ppm), assumed to 

arise from a Me3Si moiety, and is the hardest to identify. 

The lack of any evident Rh-coupling, or 13C-coupling 

when13C1-2 is employed, suggests the Me3Si is bound to 

N, i.e. as an isonitrile. The generation of three molecules 

of ArSiMe3 (4), Figure 2, before any of the co-product 

(Me3SiCN) is detected in solution, then suggests that 8 

bears three isonitrile ligands, ([RhI(X)(CNSiMe3)3]. Since 

the Cl from the [Rh(COD)Cl]2 pre-catalyst emerges as 

Me3SiCl during induction, and there are no signals evi-

dent for Me3Si-Rh, (i.e. X is not Cl, or Me3Si) a process of 

elimination suggests that 8 is a complex of the form as 

[RhI(Ar)(CNSiMe3)3], where the isonitrile ligands un-

dergo exchange at the 29Si NMR timescale; however this 

assignment is tentative. 

The 13C{1H} NMR spectrum of the reaction of 13C1-2 during 

the inhibition phase displayed several downfield reso-

nances, most notably two multiplets (δ = 180.4 and 180.3 

ppm, 1JRh-C = 37.7, and 46.8 Hz, 2JC-C = 4.7 and 3.6 Hz respec-

tively), indicative of rhodium bound isocyanides, Figure 

3E.16 At higher conversions, additional downfield multi-

plets are observed in the 13C{1H} NMR spectrum, likely to 

arise from higher-order isocyanide complexes, see SI for 

further details. Collectively, the 29Si/13C NMR data are 

consistent with the presence of two species, a Rh(I) com-

plex tentatively assigned as [RhI(Ar)(CNSiMe3)3] (8) and 

favored by higher concentrations of ArCN (2), and a 

Rh(III) complex (9) with a [mer-RhIII(SiMe3)3(CNSiMe3)3] 

type structure, favored by higher concentrations of Me3Si-

SiMe3 (3). 

5. Synthesis and Activity of Rh(III)-Silyl Complex 9. 

To the best of our knowledge, a RhIII(SiMe3)3 type complex 

has not been previously described in the literature, alt-

hough complex 9 is reminiscent of iridium tris(boryl) spe-

cies previously described by Marder and Westcott,17 and 

Ishiyama, Miyaura and Hartwig.18 Complex 9 was inde-

pendently synthesized by the reaction of [Rh(COD)Cl]2 

with excess Me3SiCN and Me3Si-SiMe3 in toluene at 130 

°C in a sealed tube under N2 (Fig. 4). The complex is 

highly air- and moisture-sensitive, and was analyzed in-

situ by 13C/29Si NMR. All attempts to crystallize it were un-

successful; indeed removal of the solvent, or addition of 

hexane resulted in the immediate precipitation of an in-

tensely purple-colored solid, tentatively assigned as 10, 

potentially in polymeric form.19 Complex 9 reacts with 1 

equivalent 4-fluorobenzonitrile 2 in the presence of 3 at 

130 °C, to generate ArSiMe3 4. With 13C-labelled 13C1-2, the 

reaction generates 13C-labelled 9 with the two isonitrile 

sites labelled in the expected 2:1 statistical ratio, Fig. 4. 

 

 

Figure 4. Synthesis and reactivity of complex 9. After 4.5 h, 

there is 63% conversion of 13C1-2, to generate 39% ArSiMe3 4 

and 10 % fluorobenzene (7); 19F NMR. inset shows in situ 
13C{1H} NMR sub-spectrum (isonitrile region) after approxi-

mately 20% conversion of 9 to 13C1-9. 

6. Catalyst Inhibition by Me3SiCN. The preferential 

coordination of Me3SiCN to electron rich transition metals 

via its isonitrile isomer has been reported.20 Moreover, the 

isoelectronic ligand carbon monoxide is a known catalyst 

inhibitor in rhodium-catalyzed decarbonylation and hy-

droacylation.21 We thus tested the effect of exogenous 

Me3SiCN on the Chatani-Tobisu silylation. When 10 mol 

% of Me3SiCN is added to the reaction during the burst-

phase, the early onset of inhibition is observed (Fig. 5). 

With 20 mol %, there is a near-immediate transition from 

the burst-phase to the inhibition-phase. Analysis of the re-

action mixtures by 29Si NMR spectroscopy indicated that 

complex 9 forms immediately after addition of the 

Me3SiCN. Addition of 20 mol % of the isosteric ligand 

tertbutyl isocyanide (tBuNC) resulted in immediate inhi-

bition of turnover, suggesting that isonitrile-nitrile isom-

erization may be necessary for catalyst turnover, vide in-

fra. 



 

 

Figure 5. The effect of exogenous Me3SiCN, added at t = 480 

seconds, the approximate mid-point of the 'burst-phase', on 

the evolution of the Rh-catalyzed reaction of 2 with 3. 

7. Pre-catalyst Induction by Me3SiCN. A remarkable 

difference in outcome is observed when Me3SiCN is pre-

sent at the start of the reaction. With just 10 mol % exoge-

nous Me3SiCN, the usual induction period is completely 

bypassed, allowing direct entry into the burst-phase of 

the reaction (Fig. 6). Moreover, the unidentified species 5 

and 6 associated with the normally slow induction pro-

cess, are absent. With increasing loadings of Me3SiCN, the 

burst-phase is also bypassed, and the inhibition phase en-

tered directly. However, catalyst turnover becomes dis-

proportionately inhibited when >40 mol % of Me3SiCN is 

added, suggesting that in addition to acceleration of pre-

catalyst induction, there is a competing Me3SiCN-induced 

pre-catalyst degradation. 

 

 

Figure 6. The effect of exogenous Me3SiCN, added at t = 0, on 

the evolution of the Rh-catalyzed reaction of 2 with 3. 

The profound reduction in the pre-catalyst induction 

period by Me3SiCN explains why the normal reaction 

profile (Figure 1A) displays an accelerating burst-phase: 

endogenous Me3SiCN arising from slow initial turnover ef-

fects pre-catalyst auto-induction, Scheme 4. Alkyl isocya-

nide ligands accelerate Pd-catalyzed activation of Si-Si 

bonds, an effect ascribed to the small steric environment 

that they imposed at the metal center.12,22 To further ex-

plore this aspect, 10 mol % tBuNC was tested, and analo-

gously to Me3SiCN, this effects rapid pre-catalyst induc-

tion, even at low hexamethyldisilane concentrations, Fig 

7. The isomeric nitrile (tBuCN, 10 mol%) caused no sig-

nificant change in the evolution of the reaction (induction, 

burst phase, inhibition), see SI, indicative that it is unable 

to isomerize to tBuNC under the reaction conditions. 

 

Figure 7. The effect of tBuNC (0.01 M, 10 mol %) at t = 0, on 

the evolution of the Rh-catalyzed reaction of 2 with 3.  

In-situ 29Si NMR analysis of the [Rh(COD)Cl]2 / 3 pre-

catalyst mixture confirmed that Me3SiCl (δ= 30 ppm), the 

co-product of catalyst activation, is generated at room tem-

perature on addition of exogenous Me3SiCN. Up to 30 mol 

% of Me3SiCN can be added before free Me3SiCN is de-

tected, and 1H NMR analysis shows that the COD ligand 

is fully liberated from Rh. All of the above suggests that 

the induction and auto-induction processes both lead to 

isonitrile-ligated Rh-silyl complexes (L = Me3SiNC, 

Scheme 4). 

 

Scheme 4. Pre-catalyst Induction and Auto-induction. 

 



 

8. Kinetic Analysis of the Inhibition-Phase. With a 

method in hand to bypass induction and the associated 

side-products (5, 6), the kinetics of turnover during the 

major phase of the reaction could be efficiently explored. 

The initial rate of product generation (ArSiMe3, 4) was an-

alyzed by 19F NMR during the first 30±10 minutes of turn-

over in the inhibition-phase, with systematic variation in 

the initial concentrations of the [Rh(COD)Cl]2 pre-cata-

lyst, the arylnitrile 2, and disilane 3, (Figures 8A, 8B, 8C 

respectively). 

 

 

 

Figure 8. Initial rate of product (4) generation, during the in-

hibition-phase, as a function of initial concentration. Condi-

tions: A. [Rh]tot varied, [2]0 = 0.1 M; [3]0 = 0.2 M; B. [2] varied, 

[Rh]tot = 0.01 M; [3]0 = 0.2 M; C. [3] varied, [Rh]tot = 0.01 M; [2]0 

= 0.1 M. Data: filled circles. Dashed line, initial rate from 

steady-state model shown Scheme 5, where K[Me3SiCN] = 

4.3 M-1 and k3 = 4.9  10-3 M-1s-1. 

Three distinct kinetic dependencies are observed. The 

simplest is that in Figure 8A, where the rate is directly 

proportional to the [Rh]0 concentration, indicative of a 

monomeric catalyst system, nominally mononuclear 

([Rh]1). The initial rate dependency on arylnitrile, Figure 

8B, displays a classic saturation profile, i.e. tending to-

wards independence of [2]0, at higher concentrations. The 

disilane gave the most complex profile, Figure 8C; the rate 

increasing with [3]0 at lower concentrations, before reach-

ing a threshold in [3]0, above which the rate begins to de-

crease. The profile is indicative of competitive inhibition 

by the reagent (disilane 3).23 There was no evidence for 

product inhibition (ArSiMe3), as confirmed by control ex-

periments [4]0 = 0.05 M (50 mol %), see SI.  

The overall kinetics can be accounted for by a steady-

state rate equation24 based on the simple model shown in 

Scheme 5. Whilst individual rate constants cannot be ex-

plicitly solved, i.e. there are numerous values that collec-

tively provide an equally good fit to the data, the model 

does allow for a scenario in which there are two dominant 

catalyst species, 8 and 9. In such a model, increasing 

ArCN (2) concentration favors equilibrium K1, thus in-

creasing the rate of generation of complex 8, via k2. In con-

trast, increasing disilane (3) concentration accelerates the 

generation of product (4) by depleting (k3) 8, but also in-

hibits turnover by reversible generation (K4) of 9. Under 

these conditions, concentrations of 2 / 3 that distribute the 

rhodium equally between 8 and 9 facilitate the most effi-

cient turnover; for [2]0 = 0.1 M, this condition is satisfied 

when [3]0 = 0.15 M, Figure 8C. 

 

Scheme 5. Steady-State Model for Turnover  

 

9. Mechanism of Chatani-Tobisu Decyanative Silyla-

tion. Based on our observations, and previous reports,3-4 

we propose the overarching mechanism depicted in Fig-

ure 9 to be the major pathway for induction and turnover 

in Chatani-Tobisu decyanative silylation reaction. The 

process has three main phases (I-III).  

In the induction-phase (I), the pre-catalyst undergoes 

very slow reaction with disilane (3) to generate Me3Si-Cl 

and small quantities of a rhodium-silyl complex. Increas-

ing disilane concentration increases the rate, shortening 

the induction period. During induction, the COD ligand 

is also displaced, and presumably replaced by aryl nitrile 

(2) ligands. The resulting Rh(I) complex can then induce 

what is in effect a nitrile-isonitrile isomerization (see inset 

to Figure 9) to generate rhodium aryl complex 8, bearing 



 

a nascent Me3Si-NC ligand. Reaction of 8 with disilane (3) 

generates the Ar-SiMe3 product (4) and rhodium silyl 

complex 10. A second nitrile-isonitrile isomerization, fol-

lowed by coordination of aryl nitrile (2), completes the 

catalytic cycle and liberates Me3Si-CN. 

The second stage of turnover, the 'burst-phase' (II), in-

volves auto-induction. Coordination of Me3Si-CN to the 

precatalyst accelerates its reaction with disilane (3) to gen-

erate Me3Si-Cl and active Rh-silyl species; this effect is 

counteracted by increasing concentration of aryl nitrile 

(2), lengthening the period required to enter the burst-

phase. As more catalyst becomes activated, the rate of 

generation of Me3Si-CN rises, as does the rate of pre-cata-

lyst activation, until all of the rhodium is 'on-cycle'.  

The third stage of turnover, the 'inhibition-phase' (III), 

involves auto-inhibition, and is entered after three full 

turnovers of catalyst. At this stage, rhodium complex 8 

has been saturated with Me3Si-isonitrile ligands. Turno-

ver requires Me3Si-nitrile-displacement by aryl nitrile (2); 

progressive turnovers reduce the concentration of 2 and 

increase the concentration of Me3Si-CN, leading to pro-

gressive decrease in turnover rate. Exogenous Me3Si-CN 

induces all of the above effects. The disilane concentration 

also impacts on the rate of turnover during phase III. In-

creasing disilane 3 concentration accelerates product-gen-

eration from what is tentatively assigned as a rhodium 

aryl complex 8, presumably via a Rh(III)trisilyl interme-

diate analogous to 9. However, generation of 9 moves 

rhodium off-cycle, leading to reduction in overall turno-

ver rate. The relative proportions of the major resting 

states, 8 and 9, and thus turnover rate, are thus dictated 

by the concentrations of 2 and 3. 

 

Figure 9. Mechanisms for induction (phase I), turnover (phase II) and inhibition (phase III) in Chatani-Tobisu Decyanative 

Silylation of aryl nitriles (2) by disilane reagent 3. Inset to lower left shows schematic temporal concentration profiles for the 

three distinct phases. The inset in the lower right shows the generic mechanism for nitrile-isonitrile isomerization with accom-

panying exchange of ligands (R / Me3Si) bound to Rh. 

Conclusions 

The Chatani-Tobisu rhodium catalysed decyanative si-

lylation of aryl nitriles with disilanes4 is a reaction with 

substantial but as yet unrealized potential for application. 

Herein we have demonstrated that the process displays a 

number of kinetic phenomena that are rarely reported in 

homogenous catalysis. Key features include auto-induc-

tion, reagent-inhibition, and auto-inhibition. Whilst the 

cycle presented in Figure 9 is simplified and contains a 

number of 'telescoped' steps, it accounts for all of the 

spectroscopic (NMR) observations and kinetic phenom-

ena detailed above. In particular it explains the origins of 

the three phases of turnover: induction (I), burst-phase 

(II), and inhibition (III).  We have also detected (by 29Si/13C 

NMR) two major resting states in the reaction. One is ten-

tatively assigned as [RhI(Ar)(CNSiMe3)3] (8),25 the other, a 

[mer-RhIII(SiMe3)3(CNSiMe3)3] complex (9) has been inde-

pendently synthesized, allowing demonstration of its rel-

evance to the catalytic cycle, albeit as an off-cycle interme-

diate. 

All of the components in the reaction, other than the ar-

ylsilane product (4) play conflicting roles in the overall 



 

process: the aryl nitrile substrate (2) inhibits the induction 

(I), and burst-phase (II), but accelerates turnover during 

inhibition (III), within the limits of saturation (Figure 8B). 

The silane reagent (3) accelerates induction (I), the burst-

phase (II), and turnover during inhibition (III), within the 

limits of competitive inhibition, becoming an inhibitor at 

high concentrations (Figure 8C). The Me3SiCN co-product 

accelerates induction (I), thus leading to the burst-phase 

(II), but it inhibits turnover during phase (III) by compet-

ing with aryl nitrile 2 as a ligand for rhodium. Reactions 

in which substrates and products have such contradictory 

roles are rare in the literature. The analysis indicates that 

optimum catalyst performance will be achieved with [3] / 

[2] ratios that depend on the absolute concentration of 2; 

in other words under some conditions, substoichiometric 

quantities of 3 will provide maximum rate. Reactions con-

ducted at twenty-fold higher initial concentrations of re-

actants 2 and 3 (both 2 M) employing 1 mol% Rh, with 2 

mol% Me3SiCN to bypass induction, and analyzed by the 

quasi-in-situ 19F NMR monitoring procedure, also dis-

played a burst phase followed by progressive inhibition. 

As the initial concentration of silane (3) is reduced to 1 M 

then 0.7 M, the rate of turnover in the burst phase in-

creased, consistent with silane 3 acting as an inhibitor un-

der the normal conditions employed for synthesis, see SI. 

It is also of note that the proposed mechanism requires 

no off-metal nitrile-isonitrile isomerization processes, and 

thus no free Me3SiNC isonitrile in solution, as is observed 

experimentally. The mechanism also explains the dra-

matic effects observed when tBuNC is added to the reac-

tion (Figure 5): the burst-phase is directly entered, and if 

tBuNC is ineffective in nitrile-isonitrile isomerization (as 

suggested by the lack of inhibition on addition of tBuCN), 

it will remain ligated as its C-bound isomer, undergoing 

much slower displacement by aryl nitrile (2) and thus 

very slow turnover. The effect of isocyanides on the acti-

vation of disilanes, to the best of our knowledge has not 

been previously reported in rhodium catalysis. 

The results presented may be viewed as a cautionary 

study on the importance of mechanistic understanding in 

reaction development. The study predicts that i) seques-

tration of the Me3SiCN co-product from the reaction mix-

ture; ii) use of a rhodium silyl precatalyst, and iii) careful 

selection of absolute and relative reactant (2/3) concentra-

tions, will together lead to substantial increases in the ef-

ficiency and thus broader application of Chatani-Tobisu 

decyanative silylation.4 
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