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ABSTRACT 
 

Optical molecular imaging is an emerging field and high resolution optical imaging of the distal lung parenchyma has been 

made possible with the advent of clinically approved fiber based imaging modalities. However, currently, there is no single 

method of allowing the simultaneous imaging and delivery of targeted molecular imaging agents. The objective of this 

research is to create a catheterized device capable of fulfilling this need. We describe the rationale, development, and 

validation in ex vivo ovine lung to near clinical readiness of a triple lumen bronchoscopy catheter that allows concurrent 

imaging and fluid delivery, with the aim of clinical use to deliver multiple fluorescent compounds to image alveolar 

pathology. Using this device, we were able to produce high-quality images of bacterial infiltrates in ex-vivo ovine lung within 

60 seconds of instilling a single microdose of (<100 mcgs) imaging agent.  This has many advantages for future clinical usage 

over the current state of the art.   
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INTRODUCTION 

Lung disease represents a large burden of disease and healthcare resources worldwide. Lung 

cancer, pneumonia and chronic lower respiratory disease are three of the top ten leading causes of 

death in the United States [1]. Furthermore, the incidence and prevalence of these diseases is 

expected to increase and the incidence of other respiratory conditions, such as the pulmonary nodule, 

cause significant clinical uncertainty. These pathologies highlight the need, in the pulmonology field, 

for rapid and accurate diagnosis and treatment in order to prevent patient deterioration and close the 

gaps between symptoms, diagnosis and therapy. 

Rapid patient deterioration and slow diagnostic methods represent a disconnect in current 

healthcare practices when it comes to lung disease in hospitalized settings. Utilizing imaging modalities 

to diagnose, classify, and stratify respiratory conditions is commonplace and often relies on using 

structural information through chest x-rays and computed tomography scans. However, there is an 

increasing need to understand these conditions with respect to their biological activity and optical 

molecular imaging holds significant promise in this regard.  

Whilst chest x-rays and computed tomography (CT) scans provide structural information, they 

do not provide information regarding disease activity and this often leads to subsequent procedures 

for invasive sampling or biopsies. One of the most commonly used methods includes flexible 

bronchoscopy [2], which can allow biopsy [3] and Broncho-Alveolar Lavage (BAL).  Biopsies are 

performed via bronchoscope and samples of lung tissue are sampled using a biopsy needle or cytology 

brush. BAL is a method of instilling fluid into the lungs (often >50mls) and collecting the fluid for 

subsequent analysis and microbial culture.  BAL has variable performance in diagnosing pneumonias [4, 

5] and has limited utility in cancers [6], but has limited benefit for diagnosing fibrotic scarring [7]. 
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Advances in laboratory assays have improved the accuracy of diagnosis but accurate sampling 

remains a challenge. In some scenarios, patients can deteriorate rapidly in a short time span, especially 

critically-ill patients who are ventilated.  When these patients develop inflammation or infection in the 

lung, the mortality rates can be as high as 70% [8]. Standard procedures such as BAL can take up to 48h 

to return results [9]. During this intervening time, patients may be prescribed inappropriate therapy or 

deteriorate rapidly while awaiting a confirmatory diagnosis.  If samples are lost or contaminated, the 

procedure must be repeated – adding yet more time to the diagnostic process. There exists an unmet 

clinical need for rapid diagnosis of acute lung disease for critically-ill patients [10]. 

There is little doubt that rapid diagnosis and treatment of lung disease will both decrease costs 

and improve outcomes associated with these devastating diseases. New advances in medical 

technology, including molecular diagnostic probes and imaging, hold the promise to close the gap 

between symptoms, diagnosis and therapy. These advances may also lead to treatment options that 

avoid the complications of systemic therapeutics. Integrated clinical systems may allow diagnosis and 

localized treatment in a single procedure.  We are now seeing advanced technologies in medical optics 

that can enable development of devices to fulfill these unmet clinical needs. 

Fiber-optics based confocal microscopy is an emerging technology that utilizes a fiber-optic 

bundle in a probe configuration for the purpose of imaging tissues.  The technique is also known as 

probe-based confocal laser endomicroscopy (pCLE). This imaging technology allows users to 

microscopically evaluate cellular and sub-cellular tissue structures within the body in real time [11]. 

pCLE has been used in the lungs to differentiate between healthy and unhealthy alveolar structure and 

for imaging cancers and chronic lower respiratory disease [12]–[14]. The ease of use and real time 

visualization allow pCLE to be used with molecular imaging Smartprobes in the lung for investigating 
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diverse pathologies such as fibrogenesis [15], inflammation, and infection. Fluorescent reporters have 

been used to detect neutrophil elastase – a protease implicated in the pathogenesis of inflammatory 

lung disease [16]. For potential methods of identifying infection, several teams have developed 

imaging markers used with pCLE to identify bacterial infections [17] both systemically and in situ [18], 

19]. Of particular interest is a two-color methodology that has shown the potential to identify 

neutrophil recruitment, fungal infection, and bacterial presence in ex vivo human lungs[20].  

pCLE interrogation coupled with bespoke optical molecular reporters has the potential to 

narrow the gap between symptom onset and treatment of lung disease. Given the current ambiguity 

with radiographic images, the ability to differentiate cancer cell phenotypes, bacteria, and fibrosis in 

situ could provide immediate diagnostic feedback to guide therapeutic intervention.  A major hurdle to 

achieving this goal is the difficulty of delivering chemical imaging agents to the areas of interest during 

the imaging procedure so that pathology can be rapidly evaluated. Current bronchoscopes pass to the 

3rd or 4th generation bronchial tree and have one working channel for the introduction of catheters or 

interventional tools. As such combining pCLE and molecular reporters currently requires sequential 

instrumentation of the working channel with pCLE followed by delivery catheters and then subsequent 

pCLE. This current methodology is time-consuming, has co-localization issues, and there is an increased 

risk of sterility issues. Thus to significantly improve the utility of pCLE to interrogate distal alveolar 

pathology, an effective way of delivering imaging agents during the imaging procedure needs to be 

developed. 

Thus the purpose of this development project was to specify, develop, manufacture, validate to 

near clinical readiness and document a Triple Lumen Bronchoscopy Catheter (TLBC).  The TLBC has two 

lumens to allow for in situ micro-dose delivery of potentially two different fluids (such as imaging 
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agents and therapeutics during a clinical procedure comprising bronchoscopy) and one lumen for 

passing the pCLE fiber-optics bundle into the distal human lung. Figure 1 shows the concept of the 

TLBC catheter during use. The TLBC is intended to be used during a bronchoscopy procedure to identify 

specific diseased tissues with pathology specific imaging reagents observable by pCLE.  The research 

described in this publication focuses on the TLBC and not on the development of the imaging reagents 

nor on a specific clinical procedure.  

 

Figure 1 - Device usage diagram.  The TLBC is inserted via flexible bronchoscope and navigated to the region of interest.  Imaging agent 

is then added, and the subject tissue analyzed.  In the event the tissue shows pathology requiring treatment, therapeutic liquids can then be 

applied.  This is all accomplished without having to remove/reinsert catheter (Original image from Wikipedia commons, modified by 

author). 

METHODS AND MATERIALS 

Creating safe, functional devices acceptable for clinical studies is an important aspect of 

translating research ideas into realistic medical solutions.  Input parameters and requirements should 

be applied to designs within the context of appropriate regulatory frameworks to ensure that good 

manufacturing practice results in outputs that are safe, effective, and verifiable for use in clinical 

studies. 

Design control 

TLBC catheters were built and documented following the regulatory design control pathway 

mandated in Title 21 Part 820 of the US Code of Federal Regulations (CFR). 



Journal of Medical Devices 

 

MED-18-1057 Knighton  7 

Catheter Design Inputs 

A set of design input requirements was developed for the TLBC. Theses inputs were derived 

from bronchoscope compatibility requirements as well as clinician input.  The major compatibility 

considerations being that the TLBC should be compatible with bronchoscopes with working channels 

>2mm diameter and the TLBC should be radiopaque. Additionally, the TLBC needed to be compatible 

with existing pCLE imaging fiber-optics probes and rigid enough to enable transbronchial passage. 

Clinician inputs required a bolus of 200 µl of liquid agent be delivered over 5 seconds and that it not be 

too difficult to depress the plunger of a 1ml syringe while delivering these liquids.  Preliminary 

experimentation defined this force value as not more than 30-35N force. Poiseuille’s equation was 

used to determine a minimum appropriate diameter.  This value was bracketed and served as the input 

requirement for the final lumen size.  

Risk analysis was also performed throughout the project, according to the consensus standard 

ISO 14971[21]. The continued analysis served to inform applicable input requirements.  The addition of 

clearly identifiable depth markings, sterility, and minimizing tissue damage during transbronchial 

passage as requirements came directly from these analyses and clinician input. 

The TLBC was designed to be a single-use disposable device in line with all current catheters in 

clinical use in bronchoscopy. Materials were chosen to meet both the performance requirements as 

well as cost targets.  Furthermore, the sterilization methodology of ethylene oxide was chosen and as 

such, the materials and design for both the device and packaging were chosen with this requirement in 

mind. 

The TLBC devices were intended to support an ongoing clinical trial and were not intended for 

broader distribution or uses that were not considered investigational. The catheters were therefore 
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not conditioned at temperature or accelerated aging prior to verification and validation testing. All 

verification and validation tests however were performed after sterilization. The potential health 

hazards of this device fall broadly into four categories: toxicity, sterility, function and breakage. Each of 

these hazard classes has been addressed in the device verification and validation: Toxicity – ISO 10993 

toxicity studies have been successfully completed. There is no reason to believe this lack of toxicity 

would change over time with the materials that are used in the catheter assembly or packaging. 

Sterility – A complete sterilization validation has been successfully completed on these packaged 

devices. In addition, the contract packaging company (ProTech, Inc) has documented evidence that the 

package used for the EDDCs has been validated for a three year shelf life for a similarly packaged 

product. Function – Each of the catheters has been checked for lumen leakage, lumen patency and 

lumen integrity. All catheters that were sent for sterilization and subsequent clinical use and V&V 

testing passed all of these functionality tests. The component materials, adhesives, surface treatments 

and processes are generally accepted as stable and not susceptible to degradation over a period of 

several years at standard shipping and storage temperatures. In addition, if functionality were lost 

there would be no risk to the patient because no unwanted materials or treatments would be 

introduced into the body. Due to the experimental nature of the treatments and close clinical 

supervision, the loss of function would be detected by the clinician. Breakage – Successful verification 

testing has confirmed that all components and adhesive joint meet acceptance criteria. In addition, if 

breakage were to occur, all adhesive joints are external to the patient and no components could enter 

the catheter, bronchoscope or patient airway. Furthermore, the clinician would know immediately that 

breakage had occurred and would replace the catheter or end the procedure at their discretion. In 

summary, the lack of accelerated aging prior to verification testing does not impose any health hazard 
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to the patient and the project team recommended that these catheters be used for clinical use in their 

current configuration. The shelf life of the sterile barrier (3 years) was adopted from previous results 

with a similar catheter and the identical packaging.  

Catheter Design Outputs 

The TLBC was designed to guide a pCLE fiber-optics probe to the tissue site of interest within 

the distal lung and to simultaneously deliver small amounts of liquid for imaging and evaluation of 

pathological processes. The TLBC was required to be introduced into the lung via a flexible 

bronchoscope having a working channel with a minimum diameter of 2.0 mm.  To achieve this 

requirement, the catheter was designed with a multi-lumen cross section.  The cross section for the 

TLBC consists of a circular outside diameter of 1.84mm surrounding three separate lumens.  The 

largest lumen (1.14 mm diameter) enables introduction of the pCLE imaging fiber-optics probe through 

the catheter and to the site of interest.  This lumen is offset slightly from the central axis of the 

catheter.  Two 0.25mm diameter fluid delivery lumens are located opposite of the larger lumen in a 

cross-sectional arrangement as seen in Figure 2A.  The overall design of the TLBC is a 100cm long 

catheter that joins a triple hub (Figure 2B) where two of the extension tubes are for fluid delivery and 

the central tube is for introducing the pCLE imaging fiber-optics probe. 
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Figure 2 - (A) Catheter cross-section showing arrangement of lumens, (B) Catheter hub showing extension tubes and luer connectors for 

fluid (outer - yellow) and pCLE introduction (middle - blue). 

The tubing for the main catheter shaft was custom extruded (Vention Medical) from 7233 SA01 

MED Pebax™ (polyether block amide - Arkema). The Pebax™ was compounded with 20% barium 

sulfate. The barium sulfate radioopacificant was added to ensure the entire catheter shaft was visible 

under x-ray imaging. The catheter tubing was cut into 100 cm lengths for main shaft tubing and 6 cm 

segments for pCLE extension tubing.  The fluid delivery extension tubes of 1.27mm outer diameter and 

0.33mm inner diameter were extruded (Microspec, Inc.) from clear 6333 SA01 MED Pebax™ (Arkema) 

and cut into 6 cm lengths. One end of each extension tube was mechanically abraded using a fine wire 

brush, wiped with 70% isopropyl alcohol, and then plasma etched using ionized argon over the entire 

length.  This was done to enhance the adhesion of stock female luer fittings (PVC, Qosina) to the 

abraded ends of the extension tubes.  Fittings were attached to the extension tubes using an acrylated 

urethane UV-cure adhesive (3311, Loctite). Luer fittings were colored according to their functional 

purpose with blue for the pCLE lumen and yellow for fluid delivery lumens.  Luer fittings were sourced 
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from a supplier who certified that the fittings complied with applicable standards in ISO 593 & 594[22]. 

A PTFE-coated, 0.2 mm diameter, 304 stainless steel wire mandrel was then inserted through the inner 

diameter of each extension tube-luer subassembly prior to injection molding the catheter hub. 

The proximal end of the catheter tubing was then scallop cut using a scalpel through the 

centers of the small fluid lumens without exposing the large pCLE lumen.  Exposed ends of the wire 

mandrels were then inserted into the corresponding channels of the main catheter shaft tubing.  This 

assembly was placed in an aluminum mold with the extension tubing aligned such that the pCLE 

extension was bracketed by the two fluid extension tubes. A benchtop injection molding machine 

(Model 150A, LNS Technologies) was used to mold the central hub of the catheter.  The catheter hub 

was molded from Pebax™ resin (7233 SA01 MED - Arkema).  Mold flash was cleaned from the catheter 

and hub and the mandrels extracted. TLBC catheters were individually tested for leakage and blockage 

before marking and labeling. 

Catheters which passed leakage and blockage testing were plasma-etched using ionized argon 

along the distal-most 10 cm of the main shaft.  Depth markings were applied using pad-printing ink 

(Tampastar® TPR170, Marabu). A 2mm wide mark was applied using a customized rotating fixture.  A 

single mark was placed at distances of 25mm and 75mm inward from the distal tip of the catheter with 

a double mark applied at 50mm inward from the distal tip of the catheter.  The Ink was then cured 

with a flow of 70˚C air for 3 minutes followed by an inspection step to ensure markings met 

specification.  

The catheters were individually labeled with unique serial numbers. This was accomplished by 

applying preprinted decals onto the catheter hub and then coating the decal with a clear polymer. The 

catheter hubs were plasma etched with ionized argon gas and printed decals (82370, Micro Mark) 
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were applied to the hubs. The decals were then conformably coated with UV-cure adhesive (3311) in a 

nitrogen chamber.  Final units intended for clinical use (Figure 3) were cleaned with 70% isopropyl 

alcohol and sealed in clear plastic bags in preparation for shipment to a third-party company for 

packaging and sterilization. 

 

Figure 3 - Completed catheter prior to packaging and sterilization 
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Packaging & sterilization 

Each TLBC was individually tested for functionality prior to being sent off to a third party for 

packaging, labeling, and sterilization (Pro-Tech Design and Manufacturing, Santa Fe Springs, California, 

USA).   Sterilization was accomplished through ethylene oxide (EO) gas processing (Steris Isomedix, 

Temecula, California, USA).  Once received at the third-party packager, serialized catheters were 

removed from the plastic shipping bags and placed within individual gas-permeable pouches.  Pouches 

were labeled with: serial numbers, manufacturing information, manufacturing dates, and expiration 

dates.  The pouches were placed in similarly labeled shelf boxes alongside an instruction for use 

document (IFU) in preparation for ethylene oxide sterilization.  Shelf boxes were gathered together 

and placed in shipper boxes before sterilization.   

Device validation 

Biocompatibility of the Triple Lumen Bronchoscopy Catheter was validated by performing tests 

on the final product according to the requirements of ISO 10993-1 [23] and the FDA Blue Book 

Memorandum G95-1 [24]. The tests performed were selected using Table A.1 of ISO 10993-1 and 

Tables 1 and 2 of the FDA Blue book Memorandum G95-1, and after an evaluation of the use of the 

TLBC.  The type of body contact and the contact duration were evaluated to determine the biological 

tests to perform.  

The TLBC is intended to be used during bronchoscopy procedures, and the duration of body 

contact of the catheter is less than 30 minutes per bronchoscopy procedure, with contact repeated at 

different locations on the mucosa or the tissue during one procedure.  Patient contact duration for the 

selection of biocompatibility tests to be performed was determined to be type A (less than 24h 

cumulated) according to ISO 10993-1 clause 5.3.  The TLBC is a “Surface device” according to the 
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definitions provided in Clause 5.2.1 of ISO 10993-1 [23] and can be put into contact with the mucosal 

membrane. For the visualization of the lungs, the TLBC might sometimes be in contact with damaged 

surfaces and must therefore be categorized as “Surface device in contact with breached or 

compromised surfaces.” Eleven sample TLBC devices were used to evaluate biocompatibility (Nelson 

Laboratories Inc., Salt Lake City, Utah, USA).  The tests performed were: cytotoxicity, sensitization, 

intracutaneous reactivity and acute systemic toxicity. 

The catheter assembly and packaging was designed for sterilization using ethylene oxide (ETO). 

Ten test catheters were inoculated at four sites with a population of at least 1.0 x 106 CFU/site of 

Bacillus atrophaeus.  Catheters were inoculated at the proximal ends of each extension tube and the 

hub joint region for a single fluid extension tube using thin wire.  Once inoculated, each test catheter 

was assembled in its original packaging configuration, consisting of an individual gas-permeable pouch 

inside a shelf box. The inoculated wires were prepared by applying 14 µL of spore suspension (SPS 

Medical) to a 0.003" stainless steel wire and allowing the suspension to dry at ambient temperature for 

30 minutes.  Population verification (labeled for 1.8 x 108 CFU/ml - verified as 1.3 x 108) was performed 

on the inoculated wires. 

Process Challenge Devices (PCDs) consisting of a length of Tygon tubing containing a Biological 

Indicator strip (NAMSA) were used to challenge the catheter sterilization process.  The ends of the 

tubing were closed with a barbed coupler to create a closed inner space.  Biological indicator (BI) strips 

were labeled for a B. atrophaeus population of 2.3 x 106 CFU/BI.  The PCD was packaged in a Tyvek 

backed sterilization pouch, creating two layers of breathable barrier. The test products and PCDs were 

sterilized (Model 3017, STERIS®) with the set points found in Table 1. 
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Table 1 - Sterilization validation process set points 

Conditioning Phase Set Points: Exposure Phase Set Points: 

Temperature: 48.9°C  Temperature: 48.9°C 

Initial Vacuum: 1.1 psia Sterilant Set Point: 7.4 psia 

Vacuum Ramp Rate: 9.9 psia/minute EO concentration: 601 mg/L 

Relative Humidity: 61% Gas Dwell Time: 80 minutes 

Humidity Set Point: 2.1psia   

Steam Dwell Time: 120 minutes   

 

Immediately following cycle completion, the Bls contained in the test products and PCDs were 

tested for sterility by aseptically immersing them into containers of soybean casein digest broth. The 

containers were then incubated at 30-35°C for a minimum of seven days and scored for growth of the 

indicator organism, B. atrophaeus. Validation of the ethylene oxide sterilization process was completed 

in accordance with US FDA good manufacturing process (GMP) regulations 21 CFR Parts, 210, 211, and 

820 (Nelson Laboratories, Salt Lake City, Utah, USA).  

Benchtop verification testing 

The TLBC is designed for use in bronchoscopy procedures.  During the bronchoscopy procedure 

the TLBC is used in conjunction with a pCLE imaging fiber-optics probe (Miniaturized AlveoFlex™, 

Mauna Kea Technologies, Paris, France) to perform optical imaging. The Miniaturized AlveoFlex™ is a 

3m long pCLE imaging fiber-optics probe with an external diameter < 1mm. When connected at its 

proximal end to the Cellvizio® Laser Confocal Imaging system (Mauna Kea Technologies, Paris, France), 

microscopic structure of fluorescent tissues can be visualized at a depth of observation ranging from 0 

to 50 µm with a lateral resolution of 3.5 µm.   A number of verification tests were conducted to ensure 

that the device met the design specifications and user requirements. Samples of the finished device 

and subassemblies were tested during and after the manufacturing process and as part of the 
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sterilization validation activities to ensure that sterilization did not alter the device specifications. The 

following section describes these tests.  

Visibility 

 The correct placement of the TLBC catheter requires manipulation of the bronchoscope and 

catheter under fluoroscopic visualization.  The TLBC I has been designed using a radiopaque polymer 

blend to allow for radiographic visualization. Benchtop radiographic and simulated use testing were 

used to verify that the design requirements for visibility were met. For radiographic testing, the 

combined catheter/pCLE system was x-ray imaged using a chest-representative algorithm.  This test 

was repeated for the TLBC without the pCLE probe or flexible bronchoscope. 

 The second method of visualization used the integrated camera of the flexible bronchoscope to 

identify the depth markings placed along the distal end of the TLBC.  The flexible bronchoscope was 

first inserted into a length of opaque tubing and the TLBC was advanced through the bronchoscope 

until the distal end was in the field of view.  The TLBC was then advanced further until all depth 

markings were clearly visible.  The catheter was removed from the bronchoscope and the test 

concluded. 

Lumen patency 

Flow testing was used to check for lumen patency. A pCLE imaging probe was inserted into the 

central imaging lumen of each catheter and advanced until the probe exited the distal end of the 

catheter to ensure that the lumen was un-occluded. The imaging probe was then removed. A 100ml 

syringe was then placed in a syringe pump (Model# 55-2222, Harvard Apparatus,) and an inline 

pressure transducer (PRESS-S-000, Pendotech) was attached between the syringe and one of the TLBC 
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fluid lumens. The pressure transducer was connected to a data acquisition system (PC mounted 

National Instruments NI USB-6211) as well as a 5V DC power source. The syringe pump was set to flow 

air through the catheter fluid lumen at a rate of 15 ml/min. Pressure readings were sampled at 100 Hz 

and pressure / time curves generated for each catheter (SignalView2009, National Instruments). Upon 

completion of the test, the syringe and syringe pump were reset, and the test was repeated for the 

other lumen of the catheter.  35 catheters in four sample lots were tested. 

Leakage testing 

To test for leakage a pressure decay test was performed. In this test a pressure transducer 

(PRESS-S-000, Pendotech) was attached to one of the TLBC fluid lumens and the remaining two luer 

fittings were sealed with non-vented luer caps. The distal end of the catheter was sealed with a plug 

that prevented cross-talk between the lumens. An angioplasty inflation device (BasixCompak™, Merit 

Medical) was used to pressurize the sealed lumen by attaching to the extension tube / pressure 

transducer assembly. The same data acquisition system and sample rate were used for the pressure 

decay and flow testing.  The inflation device was used to generate an initial pressure of 18 psi, and the 

pressure was recorded for three minutes.  After two minutes, the luer caps that were used to seal the 

non-pressurized lumens were removed. Removing the luer caps from the parallel lumens and recording 

the pressure change allowed for evaluating luminal failures resulting from cross-talk between the 

lumens. The test was then repeated for the other fluid lumen. The methodology was validated via 

submersion testing in water. The data were processed using custom Matlab script (MATLAB r2014, 

Mathworks).  High frequency noise was removed using a moving average filter with a window size of 

100 samples. Data were normalized to zero psi at time t=0, and pressure curves were plotted using as 

change in pressure over time. 
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Tensile testing 

Sixty catheter subassemblies were prepared for testing joint strength. The subassemblies were 

packaged and sterilized prior to testing. Ten representative samples for each of the molded and 

adhesively affixed joints were prepared.  Samples were sterilized using the same process described 

above. Testing was performed on a tensile testing machine (Model# 3342, Instron).  Samples were 

tested to failure, and failure was described as either; A) failure of the interface between the tubing / 

molded hub or tubing / adhered luer fitting, or B) material yield of the extension tubing.  Samples 

passed if the tensile strength of the joint exceeded 20N.  The rationale for choosing 20N is based on 

the yield strength of the Pebax used in the extension tubes [25].  The calculated tensile yield force for 

these tubes is 27N. The calculated breakage force for these tubes is 59N. Using a 20N acceptance value 

for these components and interfaces provides a safety factor of approximately 1.4x at yield and 

approximately 3x at failure.  

Proof of concept testing 

In an ex vivo ovine infection model, lungs were removed from ewes, and ventilated ex vivo [26] 

This lung tissue was used to evaluate device insertion and transbronchial passage into the lung utilizing 

a bronchoscope. The TLBC catheter was inserted into segment into which bacteria had been 

preinstalled, while imaging, and a bacterial specific fluorescent “Smartprobe” agent was instilled. This 

approach differs from our previous work in that the fluorescent probing agent was delivered in situ via 

the TLBC rather than surface application to excised tissue segments [19, 20] utilizing a separate 

catheter, requiring removal of the imaging fiber [26]. The Ewe lung has been shown to be an 

acceptable model for human lungs [27]. These ovine lungs are similar in size to human lungs and 
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therefore can be used for TLBC testing using the same bronchoscope and ventilator as would be used 

in humans.  

A key design requirement was the need for the catheter to pass through the bronchial wall into 

the lung parenchyma to reach sites of interest.  In clinical usage, tactile feedback at the point of 

transbronchial pass allows the user to be confident of alveolar passage in combination with real-time 

imaging.  Damage to healthy tissue was to be minimized by the design of the catheter tip.  A variety of 

tip designs were explored including both square and tapered ends.  A series of transbronchial passage 

tests were performed on excised lung tissue under direct visualization to assess the potential damage 

to pleural tissue. Three sizes of catheter outer diameter were evaluated: 1.7mm, 1.84mm, 2.36mm 

with increasing parenchymal damage with increasing diameter.  Two catheter tip designs were 

explored including a square end and tapered end. This tissue was then dissected to observe the extent 

of damage to the parenchyma caused by transbronchial passage of the TLBC. The investigators then 

scored the results relative to each other. 

RESULTS 

Sterilization Validation 

The TLBCs used in the validation demonstrated less resistance to EO sterilization than the PCDs.  

Therefore, the PCDs were determined to be appropriate indicators for the sterilization of the TLBC 

catheters.  Screening for EO residuals further indicated that >99% of EO gas remnants had been cleared 

from the devices in accordance with the standards set in ISO 10993-7:2008 [28] for limited dwell time 

devices.  Subsequent catheters used for additional verification and validation testing were sterilized 

according to the protocol developed during sterilization validation. 

Benchtop testing 
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Benchtop testing of TLBC units was used to verify that design outputs met design inputs.  

Visibility testing of TLBC units verified that the TLBC catheter is visible under x-ray imaging (Figure 4A). 

Simulated use testing to analyze the visibility of the depth markings using the bronchoscope’s 

integrated camera was able to clearly identify all the depth markings. A representative image is 

included as Figure 4B. 

 

Figure 4 - (A) TLBC catheter under x-ray imaging in a chest algorithm.  (B) The white depth marking bands are clearly visible using the 

integrated camera on the flexible bronchoscope. 

The Miniaturized AlveoFlex™ pCLE imaging fiber-optics probe was able to pass easily along the 

length of all manufactured catheters as demonstrated in Figure 5A. Additional bending tests of the 

TLBC within a flexible bronchoscope confirmed that the probe remained freely moveable within the 

imaging lumen of the TLBC for the complete range of bronchoscope motion angles.  
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Figure 5 - (A) Image of the distal end of TLBC with the AlveoFlex™ pCLE probe extended outside of the imaging lumen. Note that the 

probe shown here is a slightly damaged test sample used for fit-tests only. (B) Image of distal end of the TLBC illustrating the liquid flow 

through the 250µm fluid lumens. 

Pressurized flow testing indicated that no lumens were occluded. All pressure curves showed that flow 

through the lumens reached steady-state flow. Subsequent submersion bubble testing indicated that 

all of the catheters with a final pressure reading less than 2.5 psi had leaks, while those in the range 2.5 

psi-3.0 psi were mixed. Catheters with pressures above 3.0 showed no leaks. (Figure 6). 
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Figure 6 - Flow Test Results.  Submersion bubble testing indicated that all catheters with final pressure of ≤2.5 psi were prone to leakage, 

and catheters with final pressures in the range of 2.5 psi - 3.0 psi were suspect.  No leakage was found in catheters where the pressure was 

≥3.0 psi. 

Decays in pressure were found to indicate lumens having moderate to severe leaks at the luer 

fittings.  A pressure curve that exhibited a time-delayed decay in pressure indicated crosstalk within 

the hub of the catheter. These results followed a predictable behavior associated with crosstalk within 

the catheter (Figure 7). Submersion testing appeared to validate the failure types identified with the 

pressure decay test. However, 7 lumens tested by submersion showed leaks that the pressure decay 

test did not indicate.  The catheters were pressure tested a second time and these leaks were 

identified as new leaks. These new leaks are posited to have been caused by handling following the 

initial pressure decay testing. 
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Figure 7 - Pressure Decay Testing results.  Catheters with no leakage held constant pressure for the duration of the test (top).  Lumen 

cross-talk leakage was identified by a sudden drop in pressure when the cap of an adjacent lumen was removed (second from top).  Steady 

loss of pressure was associated with leakage through one of the joint regions of the assembly (Bottom two). 

The most common mode of tensile test failure was tensile failure of the extruded tubing.  This 

occurred in 56 out of 60 samples or 93(%) percent of cases tested (Table 2).  The remaining 7(%) 

percent failed due to luer joint adhesion failure prior to any detectable tubing material failure.  All tests 

reached the threshold value of 20N. Tensile failure values were an average of 25.030N for fluid tubing, 

and 46.911N for optics/catheter tubing.  
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Table 2 - Tabulated Tensile Testing Pass/Fail Results 

Configuration Tested 
Extrusion Failure 

(No. / %) 

Joint Failure      

(No. / %) 

Optical luer / Optics ext. tube subassembly 10 / 100% 0 / 0% 

Fluid luer / Fluid ext. tube subassembly 6 / 60% 4 / 40%a 

Optics Extension Tubing / Hub Joint 10 / 100% 0 / 0% 

Fluid Extension Tubing 1 / Hub Joint 10 / 100% 0 / 0% 

Fluid Extension Tubing 2 / Hub Joint 10 / 100% 0 / 0% 

Hub / Catheter Extrusion joint 10 / 100% 0 / 0% 

aIn these failures, the failure values are consistent with the values for material failure.  This could indicate that the change in cross-

sectional area of the stretched tubing has caused the tubing to become detached from the relatively stiffer adhesive used to bond 

the luers to the tubing, rather than a true failure of the adhesive bond with undamaged (unstretched) tubing material. 

 

Usage in ex vivo lung 

Anatomically distinct bronchopulmonary segments of the ex vivo lung were instilled with 

bacteria, and subsequently microdoses (<100 mcgs) of a bacterial imaging agent were instilled and 

imaged using the TLBC.  Following instillation, this imaging agent enabled the specific detection of 

bacteria in the distal airway and alveoli within sixty seconds (Figure 8).  
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Figure 8 - (A) Miniaturized AlveoFlex with TLBC in distal ovine lung without Fluorescent probe. (B) Image immediately following 

fluorescent probe administration (C) Image following fluorescent probe dissipation. Bright areas show areas of bacterial infiltrates. 

Testing in ex vivo lung tissue showed that there was a lack of tactile feedback, which could 

potentially result in damage to pleura or other organs.  We discovered that advancing the pCLE 

imaging probe slightly beyond the end of the TLBC and initiating transbronchial passage with the probe 

in place was as effective as the other tip designs.  Therefore, a final design shape was agreed on as a 

square end with the smallest practical size to house the imaging fiber and deliver fluids. Dissected 

tissue showed damage. The damage was assessed by investigators as shown in Table 3. We found that 

a touhy-borst type locking device placed proximally was required to stop the pCLE fiber from slipping 

back during transbronchial passage. 
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Table 3 - Evaluation of tissue damage and difficulty of transbronchial passage, low (+) to high (+++++) 

 Ease of passage  

(+ to +++++) 

Absence of damage to tissue 

(+ to +++++) 

Standard AlveoFlex™ (reference) +++ +++ 

Miniaturized AlveoFlex™ alone +++++ + 

Miniaturized AlveoFlex™ in TLBC +++ +++/++++ 

Standard AlveoFlex™ in TLBC +++++ +++++ 

 

DISCUSSION 

One of the challenges for medical researchers is translating research discoveries into clinically 

impactful solutions.  Reasons for this difficulty are many, and can include lack of infrastructure, 

experience with the design and regulatory processes, or struggling to find clinical needs to fit an 

already developed technology [29]. In an academic setting these challenges are amplified because 

universities have typically not institutionalized the commercialization of medical technology. Many 

institutions have Institutional Review Boards (IRBs) that review clinical trial protocols however these 

IRBs are placing new medical device technology under increasing scrutiny. In addition, new regulatory 

guidance from the FDA [30] is adding additional translational hurdles such as sterilization validation for 

academic medical device developers.  

This project was guided by a quality systems approach [31] in order to facilitate regulatory 

approval for human clinical use. Using this approach, the team drafted a project plan and a design 

input document. Specifications were then developed alongside a comprehensive risk management 

plan both of which guided the final TLBC design. Manufacturing was conducted in a specific area of the 

laboratory where materials, processing instructions, equipment, work in process and finished goods 

could be controlled. Testing on the finished devices illustrated failure modes that could be investigated 
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for root cause. The failures that arose during the testing motivated process improvements to increase 

manufacturing yield and overall device quality.  

The quality systems and design control process [31] serves as common framework for 

developing new medical technologies. The design control process guided our development of a unique 

catheter-based approach to image distal lung pathology using the TLBC.  The TLBC and pCLE imaging 

fiber-optics probe when used with fluorescent reporter molecules represents advantages over the 

current state of the art. First, is the speed in which an optical molecular biopsy is able to deliver a 

diagnosis compared to currently established biopsy approach. Secondly, in situ characterization to 

guide therapeutic intervention of diverse lung diseases paves the way for eliminating the time-to-treat 

gap evidenced in modern medicine. Using the device-based approach that we’ve described here 

enables simultaneous minimally invasive optical imaging and molecular profiling in a single device. 

Currently, no alternate device allows the simultaneous pCLE imaging and delivery of 

fluid/compounds into a pulmonary segment. Current methodologies require i) bronchoscopic 

navigation to an affected region, ii) baseline imaging with a pCLE bundle, iii) removal of imaging bundle 

and insertion of a catheter which allows fluid/compound delivery and iv) delivery of fluid/compound 

and v) removal of catheter and re-insertion of the pCLE bundle to acquire images. This approach results 

in requiring larger volumes of fluid/compound delivery to ensure adequate dispersion, as well as the 

risk of being unable to return to the same pulmonary sub-segment for imaging and fluid 

administration. Therefore, the TLBC is an improvement in current techniques because it allows for 

simultaneous imaging and fluid/compound delivery directly into the field of view, therefore utilizing 

less compound, providing confidence the segment imaged post-delivery remains the same, and 

reduced procedure time.   
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Optical biopsy with pCLE has already been shown to be a novel means of rapidly identifying 

various pulmonary indications [20]. The TLBC builds upon the groundwork of pCLE imaging fiber-optics 

probes by introducing a catheterized sheath that also enables delivery of aqueous formulated products 

in small volumes with a high degree of spatial precision.  With this configuration the unit as a whole 

remains with the pCLE imaging fiber-optics probe and does not need to be removed during the 

procedure in order to deliver agents.  This approach has the potential to significantly reduce overall 

procedure time for optical molecular endomicroscopic guided procedures in the lung.  The real-time 

lung images allow on or off-site interaction with pathology experts for rapid diagnosis. A fast diagnosis 

would allow for diagnostic actions or in some clinical indications, localized therapy which could be 

immediately delivered via the TLBC. This potential to diagnose and guide therapy collapses the time-to-

treat gap to minutes rather than the current standard of hours to days. 

The emergence of localized delivery of optical molecular imaging agents coupled with pCLE are 

enabling new methods for analyzing lung pathologies. These technologies could be significantly 

augmented by catheters such as the TLBC to deliver fluorescent reporters with a high degree of spatial 

and temporal resolution to the distal alveolar space. Indeed, some of the fluorescent Smartprobes are 

enzyme sensors, and accurate measurement of dynamic fluorescent amplification improves data 

collection.    Thus a specialized catheter was developed to bring these technologies together.  The TLBC 

was designed specifically for this application - to allow simultaneous imaging and delivery of targeted 

molecular imaging agents.  This new catheter places the imaging probe and imaging agents in the same 

tissue location and importantly enables in situ in vivo visualization of the dynamic fluorescent 

pathophysiological processes in the distal lung and opens new avenues of better, faster, safer, less 



Journal of Medical Devices 

 

MED-18-1057 Knighton  29 

expensive, and more targeted analysis of pulmonary diseases. This, in-turn, has the future potential to 

deliver improved patient outcomes and reduced burden of health care costs.  
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NOMENCLATURE 
 

pCLE Probe-based Confocal Laser Endomicroscopy 

TLBC Triple Lumen Bronchoscopy Catheter 
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Figure Captions List 
 

Fig. 1 Device usage diagram.  The TLBC is inserted via flexible bronchoscope and 

navigated to the region of interest.  Imaging agent is then added, and the 

subject tissue analyzed.  In the event the tissue shows pathology 

requiring treatment, therapeutic liquids can then be applied.  This is all 

accomplished without having to remove/reinsert catheter (Original 

image from Wikipedia commons, modified by author). 

Fig. 2 (A) Catheter cross-section showing arrangement of lumens, (B) Catheter 

hub showing extension tubes and luer connectors for fluid (yellow) and 

pCLE introduction (blue). 

Fig. 3 Completed catheter prior to packaging and sterilization 

Fig. 4 (A) TLBC catheter under x-ray imaging in a chest algorithm.  (B) The white 

depth marking bands are clearly visible using the integrated camera on 

the flexible bronchoscope. 

Fig. 5 (A) Image of the distal end of TLBC with the AlveoFlex™ pCLE probe 

extended outside of the imaging lumen. Note that the probe shown here 

is a slightly damaged test sample used for fit-tests only. (B) Image of distal 

end of the TLBC illustrating the liquid flow through the 250µm fluid 

lumens. 

Fig. 6 Flow Test Results.  Submersion bubble testing indicated that all catheters 

with final pressure of ≤2.5 psi were prone to leakage, and catheters with 
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final pressures in the range of 2.5 psi - 3.0 psi were suspect.  No leakage 

was found in catheters where the pressure was ≥3.0 psi. 

Fig. 7 Pressure Decay Testing results.  Catheters with no leakage held constant 

pressure for the duration of the test (top).  Lumen cross-talk leakage was 

identified by a sudden drop in pressure when the cap of an adjacent 

lumen was removed (second from top).  Steady loss of pressure was 

associated with leakage through one of the joint regions of the assembly 

(Bottom two). 

Fig. 8 (A) Miniaturized AlveoFlex with TLBC in distal ovine lung without 

Fluorescent probe. (B) Image immediately following fluorescent probe 

administration (C) Image following fluorescent probe dissipation. Bright 

areas show areas of bacterial infiltrates. 
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Table Caption List 
 

Table 1 Sterilization validation process set points 

Table 2 Tabulated Tensile Testing Pass/Fail Results 

Table 3 Evaluation of tissue damage and difficulty of transbronchial passage, low 

(+) to high (+++++) 

 
 


