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 31 

Summary paragraph (200 words) 32 

Predicting a multicellular organism’s phenotype quantitatively from its genotype is 33 

challenging, as genetic effects must propagate up time and length scales. Circadian clocks are 34 

intracellular regulators that control temporal gene expression patterns and hence metabolism, 35 

physiology and behaviour, from sleep/wake cycles in mammals to flowering in plants1-3. Clock 36 

genes are rarely essential but appropriate alleles can confer a competitive advantage4,5 and have 37 

been repeatedly selected during crop domestication3,6. Here we quantitatively explain and 38 

predict canonical phenotypes of circadian timing in a multicellular, model organism. We used 39 

metabolic and physiological data to combine and extend mathematical models of rhythmic 40 

gene expression, photoperiod-dependent flowering, elongation growth and starch metabolism 41 

within a Framework Model for growth of Arabidopsis thaliana7-9. The model predicted the 42 

effect of altered circadian timing upon each particular phenotype in clock-mutant plants. 43 

Altered night-time metabolism of stored starch accounted for most but not all of the decrease 44 

in whole-plant growth rate. Altered mobilisation of a secondary store of organic acids 45 

explained the remaining defect. Our results link genotype through specific processes to higher-46 

level phenotypes, formalising our understanding of a subtle, pleiotropic syndrome at the whole-47 

organism level, and validating the systems approach to understand complex traits starting from 48 

intracellular circuits.  49 

  50 
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(Text 1507 words) 51 

Small networks of “clock genes” drive 24-hour, biological rhythms in eukaryotic model 52 

species1. A few among thousands of downstream, clock-regulated genes are known to mediate 53 

physiological phenotypes, such as the metabolic syndrome of clock mutant animals10. 54 

Identifying such causal links cannot predict whole-organism phenotypes quantitatively: formal, 55 

mathematical models are required. Predictive modelling in multicellular organisms has best 56 

succeeded for phenotypes that closely map the intracellular behaviour of gene circuits11, 57 

metabolic12 or signalling pathways13. Circadian clocks in contrast integrate multiple 58 

environmental inputs and affect disparate, potentially interacting biological processes, up to 59 

organismal growth and lifecycle traits4,14. Mis-timed mutant organisms suffer a syndrome of 60 

mild, environment-dependent effects akin to a chronic disease1,4,10. 61 

The Arabidopsis clock mechanism1 comprises dawn-expressed transcription factors LATE 62 

ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), 63 

which inhibit the expression of evening genes such as GIGANTEA (GI) (Fig.1a). LHY and 64 

CCA1 expression is inhibited by PSEUDO-RESPONSE REGULATOR (PRR) proteins. 65 

Removing the earliest-expressed PRR genes in prr7prr9 mutants slows the clock15 by delaying 66 

the decline of LHY and CCA1 expression and the subsequent rise of their targets (Fig.1b). 67 

Mathematical models of this circuit16 have been extended to intermediate transcription factors, 68 

including factors that regulate flowering time and organ elongation7. We therefore tested 69 

whether these causal links were sufficient to understand (explain and predict) the multiple 70 

phenotypes of a clock mutant genotype.  71 

The Arabidopsis Framework Model (FMv1)9 represents the interacting physiological 72 

components of whole-organism phenotypes, in a simple, modular fashion. Flowering time in 73 

Arabidopsis is commonly scored by the number of rosette leaves, for example. Predicting leaf 74 

number involves the FM’s clock and photoperiod7, phenology17 and functional-structural sub-75 
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models18. Adding a clock sub-model that explicitly represents PRR7, PRR9 and output 76 

pathways (see Supplementary Methods; Fig.2) was sufficient to match the published, late-77 

flowering phenotype19 of prr7prr9 compared to wild-type Columbia (Col) plants under long 78 

photoperiods (Fig.1c). Under short photoperiods, the mutant phenotype is weaker (Extended 79 

Data Fig.1a). The model also matched the observed20, photoperiodic regulation of hypocotyl 80 

elongation in wild-type plants and qualitatively matched the longer hypocotyls of prr7prr9 81 

(Extended Data Fig.1b).  82 

Biomass growth is mediated by the metabolic network, the development of sink and source 83 

organs and resource partitioning amongst them. Here, we test the importance of one of many 84 

potential circadian effects on biomass, via the nightly, clock-limited rate of sugar mobilisation 85 

from storage in transient starch21. To understand these carbon dynamics in prr7prr9, we first 86 

extended the metabolic sub-model. Daytime starch accumulation in wild-type plants under 87 

short photoperiods was underestimated in the FMv19,22. Partitioning of photoassimilate 88 

towards starch in the model was therefore updated using the measured activity of the key 89 

biosynthetic enzyme, AGPase, which partitions more carbon to starch under short photoperiods 90 

than is allowed for in the FMv1 (Supplementary Methods; Extended Data Fig.2a). At night, 91 

starch is mobilised (degraded) at a constant rate to provide sugar until dawn, as anticipated by 92 

the circadian clock21,23. We therefore linked the starch degradation rate to the clock sub-model8 93 

(Supplementary Methods). Simulation of the revised model closely matched end-of-day starch 94 

levels under photoperiods of 12h or less (Fig.1e). Finally, the organic acids malate and fumarate 95 

also accumulate significantly during the day in Arabidopsis, are mobilised at night and have 96 

been proposed as secondary carbon stores24. At the end of the day, levels of malate and 97 

fumarate were two-fold higher in prr7prr9 than wild-type, with a smaller elevation of citrate, 98 

aconitate and iso-citrate (Figs.1d, Extended Data Fig.3). Malate and fumarate were therefore 99 

included as an organic acid pool with dynamics similar to starch, in an extended model termed 100 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/105437doi: bioRxiv preprint first posted online Feb. 6, 2017; 

http://dx.doi.org/10.1101/105437
http://creativecommons.org/licenses/by/4.0/


6 
 

the FMv2 (Fig.2). The FMv2 predicts the gain of carbon biomass directly and other major 101 

biomass components indirectly. For example, the 3.3-fold increase in protein synthesis rates 102 

from night to day predicted by the model was very close to the observed 3.1-fold increase25(see 103 

Supplementary Methods). If altered starch mobilisation in the clock mutant was sufficient to 104 

affect its biomass, the FMv2 should also predict that phenotype. 105 

We first tested whether the FMv2 could explain the phenotypes caused by a direct change in 106 

starch degradation, in mutants of LIKE SEX FOUR 1 (LSF1). LSF1 encodes a phosphatase 107 

homologue necessary for normal starch mobilisation26. lsf1 mutants grown under 12L:12D 108 

have mildly elevated starch levels and reduced biomass26, similar to the prr7prr9 clock mutant 109 

(Fig.3b). Reducing the relative starch degradation rate alone in the FMv2 recapitulated the lsf1 110 

starch excess observed in published studies26 (Extended Data Fig.1c) and new datasets 111 

(Figs.3g,3i). The higher baseline starch level arises naturally if the plant is close to a steady 112 

state, where the absolute amount of starch degraded nightly in lsf1 equals the daily synthesis. 113 

Absolute starch synthesis in lsf1 is wild-type (Fig.3g,3i). To degrade the same amount of starch 114 

as wild-type at a lower relative rate, the lsf1 mutant must have a higher baseline starch level. 115 

The assumption of a lower relative degradation rate in lsf1 is therefore functionally equivalent 116 

to but conceptually simpler than the previous assumption of an altered ‘starch set point’ 117 

baseline level23,26. 118 

A minimal model calibration workflow (Extended Data Fig.4) allowed comparison of 119 

simulations of the FMv2 with measurements from multiple experiments on prr7prr9 and lsf1 120 

mutants. Measured photosynthetic and metabolic variables (Extended Data Fig.5) calibrated 121 

up to 4 model parameters (Extended Data Table 1), and the genotype-specific water content9. 122 

Reducing the relative starch degradation rate in the calibrated model accurately predicted the 123 

reduced biomass of lsf1 mutant plants in each case (Figs.3c,3e), despite the apparent paradox 124 

that the mutants mobilised the same absolute amount of starch as the wild type. The explanation 125 
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supported by the model is that lsf1 mutant plants accumulate large, unused starch pools as well 126 

as new biomass, whereas wild-type plants produce biomass more efficiently, leaving only a 127 

minimum of carbon in starch. The coefficient of variation of the Root-Mean-Square Error 128 

(cvRMSE) provides a normalised error metric for all biomass data9, showing a good fit to both 129 

lsf1 and wild-type genotypes (10.1%, 15.3% Col and 13.7%, 15.4% lsf1 in experiments 1 and 130 

2 respectively). Altering the relative starch degradation rate therefore explained both the lsf1 131 

mutant’s modest starch excess and its reduced biomass, validating the model.  132 

prr7prr9 mutants showed slower relative starch degradation (Fig.3a) and higher starch levels 133 

at both dawn and dusk (Extended Data Fig.1d) than the wild type. Simulating prr7prr9 134 

mutations in the clock sub-model matched these phenotypes for plants grown in Norwich 135 

(Figs.3a, Extended Data 1e) and Edinburgh (Fig.3h), indicating that the mutant clock’s later 136 

estimate of subjective dawn explained the starch degradation defect. prr7 single mutants27 fully 137 

mobilised starch and grew normally, as predicted (Extended Data Fig.6). Although model 138 

calibration data showed that photosynthesis, starch synthesis and leaf production rates were 139 

unaffected by the mutations (Extended Data Fig.5), biomass of prr7prr9 mutant plants was 140 

strongly reduced relative to wild-type plants in independent studies (by 40% and 31% at 38 141 

days in experiments 1 and 2 respectively). However, the calibrated FMv2 predicted much 142 

smaller reductions in biomass in prr7prr9 due to accumulating starch (26% and 18% in 143 

experiments 1 and 2 respectively). Neither 1 S.D. variation in the mutant’s simulated water 144 

content, the most sensitive parameter in our model (Extended Data Fig.7), nor any measured 145 

water content value allowed the model with only a starch defect to match the mutant biomass 146 

(Extended Data Fig.8). The poor model fits (cvRMSE = 41%, 45% in experiments 1 and 2 147 

respectively) indicated that process(es) additional to starch degradation limited the growth of 148 

prr7prr9 but not of lsf1 plants.  149 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/105437doi: bioRxiv preprint first posted online Feb. 6, 2017; 

http://dx.doi.org/10.1101/105437
http://creativecommons.org/licenses/by/4.0/


8 
 

Considering malate and fumarate as a secondary carbon store24, the amount of carbon 150 

mobilised from malate and fumarate at night in the wild type was up to 19% of the carbon 151 

mobilised from starch. prr7prr9 but not lsf1 plants accumulated excess malate and fumarate, 152 

representing further ‘wasted’ carbon that did not contribute to subsequent growth (Figs.3k-n). 153 

We therefore reduced the relative malate and fumarate mobilisation rate in the FMv2 154 

simulation of prr7prr9, to reproduce the observed organic acid excess (Figs.3l,3n). Together, 155 

the simulated defects in starch and organic acid mobilisation quantitatively accounted for the 156 

mutant’s reduced biomass (Figs.3d,3f; cvRMSE = 14.4%, 20.1% in experiments 1 and 2 157 

respectively).  158 

The FMv2 built upon delayed gene expression patterns in prr7prr9 mutants to predict canonical 159 

clock phenotypes: altered hypocotyl elongation, flowering time, starch metabolism and hence 160 

most (58-65%) of the mutants’ reduced biomass. Unused malate and fumarate accounted for 161 

their remaining biomass defect, and might similarly affect arrhythmic prr5prr7prr9 mutants28. 162 

Carbon supply limited growth in our well-watered, nutrient-rich growth conditions22, though 163 

carbon limitation was milder than in conditions that reduced the chlorophyll content of clock 164 

mutants4 or triggered sugar signals to alter timing27. Future extensions of the model could 165 

address the nutrient and water limitations that prevail in field conditions, test further aspects of 166 

circadian regulation and critical functions of plant biology with daily regulation, such as 167 

photosynthesis. Our results suggest a broader proof of principle, that the contributions of 168 

dynamic gene regulation and metabolism to whole-organism physiology will also be 169 

understood (explained and predicted) quantitatively in other multicellular species29, for 170 

example using clock and metabolic models in animals and humans to understand body 171 

composition10.  172 

 173 
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 183 

Figure legends 184 

Figure 1: Simulation of clock dynamics and clock outputs. 185 

(a,b) Clock gene mRNA abundance30 for wild-type (Col) and prr7prr9 plants (dashed lines, 186 

symbols), and FMv2 simulations (solid lines), under 12h light:12h dark cycles (12L:12D), 187 

double-plotted, normalised to Col level. (c) Rosette leaf number at flowering19 under 16L:8D 188 

(filled), compared to simulation (open). (d) Malate and fumarate accumulation (mean±SEM, 189 

n=4) in Col and prr7prr9 at end of day (ED) or night (EN) under 12L:12D, 20°C, light 190 

intensity=160 μmol/m2/s; t-tests compared prr7prr9 to Col (* p<0.05; *** p<0.001). (e) Starch 191 

levels at ED (filled) and EN (open) after 30 days under various photoperiods22 (triangles), 192 

compared to FMv1 (squares), FMv2 (circles). 193 

 194 

 195 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/105437doi: bioRxiv preprint first posted online Feb. 6, 2017; 

http://dx.doi.org/10.1101/105437
http://creativecommons.org/licenses/by/4.0/


10 
 

Figure 2: Schema of the Framework Model.  196 

The FMv2 includes a clock gene circuit sub-model (upper section). Clock outputs (red arrows) 197 

regulate hypocotyl elongation via the PIF components, flowering via FT mRNA production 198 

and starch degradation via the timer T. Environmental inputs affect multiple model components 199 

(shaded). Vegetative growth is driven by the positive feedback on photosynthesis, mediated by 200 

sugar-powered growth of photosynthetically active leaf area within the plant structure. The 201 

FMv2 includes nightly carbon storage both in starch and in a secondary, organic acid pool, 202 

comprising malate and fumarate (Mal+Fum). Components tested by mutation (PRR9, PRR7, 203 

LSF1) are shown in red (see Extended Data).  204 

 205 

Figure 3: Contributions of starch and organic acids to biomass growth.  206 

(a) prr7prr9 (blue, squares) mobilised starch more slowly than Col (green, circles); normalised 207 

to Col peak (mean±SEM, n=6). (b) 38-day-old Col, lsf1, prr7prr9. (c-n) Data (symbols) and 208 

simulation (lines) of fresh weight (c-f), starch (g-j) and total malate and fumarate (k-n) for Col 209 

(circles, green), lsf1 (triangles, orange) and prr7prr9 (squares; dashed black, simulation of 210 

starch defect; blue, starch and organic acid defects). (d,f) Insets enlarge main panel. Data show 211 

mean±SD; n=5 for biomass; n=3 for metabolites, where each sample pooled 3 plants. 212 

Temperature=20°C (a), 20.5°C (b, Experiment1), 18.5°C (Experiment2); 12L:12D light 213 

intensity=190 μmol/m2/s (a), 145 μmol/m2/s (b-n); CO2=420 ppm.  214 
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Methods 215 

Experimental methods  216 

Plant materials and growth conditions 217 

Arabidopsis thaliana of the Columbia (Col-0) accession, prr7-3/prr9-119 and lsf1-126 were used 218 

in this study. Seeds were first sown on half strength Murashige and Skoog (MS) solution and 219 

stratified in darkness at 4°C for 5 days before being exposed to white light at the desired 220 

photoperiod and temperature. Four-day-old seedlings were then transferred to soil containing 221 

Levington seed and modular compost (plus sand). The growth and treatment conditions for 222 

each experiment are shown in the figure legends. For the experiment in Fig.1d and Extended 223 

Data Fig.3 only, seeds were sown on wet soil in pots and transferred directly to experimental 224 

conditions. Plants were thinned after a week and treated with Nematodes after two weeks as a 225 

biological pest control.  226 

Leaf number and plant assay 227 

The total number of leaves (including the cotyledons) was recorded every 3-4 days from 228 

seedling emergence. Only leaves exceeding 1 mm2 in size (by eye) were considered in the total 229 

leaf count. Plants were harvested for biomass at different time points and for metabolite 230 

measurement at 3 weeks (Extended Data Fig.3) and 4 weeks (other data). For metabolite 231 

measurement, rosettes were harvested and immediately submerged in liquid nitrogen, half an 232 

hour before lights off (end of day, ED) or lights on (end of night, EN) and stored at -80°C until 233 

extraction. For dry biomass, dissected plants were oven-dried at 80°C for 7 days. Area analysis 234 

was conducted using ImageJ 31. Each image was first processed with colour thresholding to 235 

isolate the green region, which was next converted into binary format. The area was then 236 

determined using the Analyze Particles tool.    237 

 238 
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Gas exchange measurement 239 

An EGM-4 Environmental Gas Monitor for CO2 (PP Systems, US) was used for CO2 flux 240 

measurement. A Plexiglass cylindrical chamber (12 cm in diameter x 3 cm sealed height, with 241 

a 6 cm tall support) was used (Extended Data Fig.5f). Rubber rings around the lid and the hole 242 

for the pot ensured an airtight seal. The chamber was connected to the EGM-4 with two butyl 243 

tubes for closed-loop measurement.  244 

Each individual measurement was taken by placing an individual plant pot in the chamber for 245 

approximately 60 seconds, during which the EGM-4 recorded CO2 concentration (μmol mol-1 246 

or ppm) every 4.6 seconds. We covered the soil surface of the pots with black opaque plastic, 247 

leaving only a small hole in the middle for the plants. Plants were measured when they were 248 

37 days old. Dark respiration was measured one hour before lights-on while daytime 249 

assimilation was measured one hour before lights-off. 250 

CO2 enrichment of the atmosphere in the growth chambers due to the experimenters’ breathing 251 

was avoided by using a breath-scrubbing device during measurement. Hourly CO2 252 

concentration at leaf level was also monitored by connecting the EGM-4 to a computer for 253 

automated data logging. The average hourly CO2 level was used as input to the model. 254 

Extraction and determination of metabolite content 255 

Rosettes were harvested as described above and ground in liquid nitrogen. Around 20mg of 256 

ground material was aliquoted in screw-cap tubes (Micronic). Ethanolic extraction was 257 

performed using 80% ethanol v/v with 10mM MES (pH 5.9) and 50% ethanol v/v with 10mM 258 

MES (pH 5.9). During extraction, the successive supernatants obtained were combined into 259 

96-deep well plates. The supernatant was used for spectrophotometric determination of 260 

chlorophylls, soluble carbohydrates, amino acids and organic acids as described32. The pellet 261 
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remaining after the ethanolic extraction was used for the determination of starch and total 262 

protein content as described33. 263 

Modelling methods  264 

Development of the FMv2 in Matlab (Mathworks, Cambridge, UK), model equations, 265 

experimental data for model calibration and simulation procedures are described in the 266 

Supplementary Methods section. 267 

Data and model availability 268 

A simulator to run the FMv2 in multiple conditions is publicly accessible online at 269 

http://turnip.bio.ed.ac.uk/fm/. Numerical data and model files will be available from the 270 

University of Edinburgh DataShare www.datashare.ed.ac.uk [insert doi].  271 

 272 
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Figure 1: Simulation of clock dynamics and clock outputs.

(a,b) Clock gene mRNA abundance30 for wild-type (Col) and prr7prr9 plants (dashed lines, 
symbols), and FMv2 simulations (solid lines), under 12h light:12h dark cycles (12L:12D), 
double-plotted, normalised to Col level. (c) Rosette leaf number at flowering19 under 
16L:8D (filled), compared to simulation (open). (d) Malate and fumarate accumulation 
(mean±SEM, n=4) in Col and prr7prr9 at end of day (ED) and end of night (EN) under 
12L:12D, 20°C, light intensity=160 μmol/m2/s; t-tests compared prr7prr9 to Col (* 
p<0.05; *** p<0.001). (e) Starch levels at ED (filled) and EN (open) after 30 days under 
various photoperiods22 (triangles), compared to FMv1 (squares), FMv2 (circles).
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Figure 2: Schematic of the Framework Model.

The FMv2 includes a clock gene circuit sub-model (upper section). Clock 
outputs (red arrows) regulate hypocotyl elongation via the PIF components, 
flowering via FT mRNA production and starch degradation via the timer T. 
Environmental inputs affect multiple model components (shaded). Vegetative 
growth is driven by the positive feedback on photosynthesis, mediated by 
sugar-powered growth of photosynthetically active leaf area within the plant 
structure. The FMv2 includes nightly carbon storage both in starch and in a 
secondary, organic acid pool, comprising malate and fumarate (Mal+Fum). 
Components tested by mutation (PRR9, PRR7, LSF1) are shown in red (see 
Extended Data).
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Figure 3: Contributions of starch and organic acids to biomass growth.

(a) prr7prr9 (blue, squares) mobilised starch more slowly than Col (green, circles); 
normalised to Col peak (mean±SEM, n=6). (b) 38-day-old Col, lsf1, prr7prr9. (c-n) Data 
(symbols) and simulation (lines) of fresh weight (c-f), starch (g-j) and total malate and 
fumarate (k-n) for Col (circles, green), lsf1 (triangles, orange) and prr7prr9 (squares; 
dashed black, simulation of starch defect; blue, starch and organic acid defects). (d,f) 
Insets enlarge main panel. Data show mean±SD; n=5 for biomass; n=3 for 
metabolites, where each sample pooled 3 plants. Temperature=20°C (a), 20.5°C (b, 
Experiment1), 18.5°C (Experiment2); 12L:12D light intensity=190 μmol/m2/s (a), 145 
μmol/m2/s (b-n); CO2=420 ppm.
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Extended Data Figure 1: Simulation of clock outputs.

(a) Simulated leaf number under short photoperiods for WT and prr7prr9, compared to data 
from (Nakamichi et al, 2007); (b) Simulated hypocotyl elongation in multiple photoperiods, 
compared to data of (Niwa et al, 2009); (c) starch levels in lsf1 under 12L:12D, compared to 
model simulations (Comparot-Moss et al, 2010); (d) Starch levels in prr7prr9 under 12L:12D, 
compared to model simulations (as in Fig 1c, plotted in absolute values). Model simulation 
(lines) and experimental data (symbols) of night-time starch level for Col (green line, filled 
circles) and prr7prr9 (blue line, open squares). These are the same data from Fig. 1c. Results 
are given as mean ± SEM (n = 6). Temperature= 20 °C; light = 190 μmol/m2/s; photoperiod 
= 12 hr light: 12 hr dark.
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Extended Data Figure 2: Updating the Carbon Dynamic Model (CDM).

(a) The fractions of net assimilate partitioned to starch at different photoperiods, as 
simulated in the original CDM (FMv1) using the 'overflow' concept, calculated based 
on measured starch levels and calculated based on measured AGPase activity. The 
linear regression shown is for the AGPase activity series. The values used 
subsequently in the model for each experiment (Experiment 1, Experiment 2; 
Figure 3) are also shown. (b) Schematic of the new Carbon Dynamic Model (CDM). 
The second carbon store represents the total amount of malate and fumarate. The 
clock symbol represents the regulation of the rate of starch consumption by the 
circadian clock model. Dashed arrows indicate information or feedback input.
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Extended Data Figure 3: Primary metabolites for Col and prr7prr9 mutant 
measured at the end of day and the end of night.

The results are given as the mean ± SEM (n = 4). Each sample consisted of 
5-7 pooled plants. Temperature = 20°C during the day and 18°C during the 
night; light = 160 µmol/m2/s; photoperiod = 12 h light: 12 h dark. The t-test 
compared between Col and prr7prr9 (* p < 0.05; ** p < 0.005; *** p < 0.001). 
Note that the units given for citrate, malate, and fumarate are µmol/gFW, 
while the units given for the remaining metabolites are nmol/gFW.
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Extended Data Figure 4: Flow diagram of parameter calibration.

Parameters that could be directly or indirectly measured were adjusted in the 
illustrated sequence, to capture measured carbon dynamics and metabolite levels at 
specific time points. Once these were achieved, the model was simulated using the 
determined parameters to generate predictions for plant biomass.
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Extended Data Figure 5: Gas exchange measurement and leaf number of different mutants.

Net assimilation rate for Col, lsf1 and prr7prr9 in Experiment 1 (a, b) and Experiment 2 (c, 
d) expressed per unit rosette area (left column) and per gram fresh weight (right column). 
Data are shown as white bars while model simulations are shown as black bars. Data are 
given as mean ± SD (n = 5 plants). There were no significant genotypic differences for net 
assimilation per unit area, thus similar rates were used in model simulations for all 
genotypes. However, net assimilation per unit fresh weight was significantly higher in lsf1 
and prr7prr9 (** p < 0.005). Taking genotypic differences in water content into account was 
sufficient for the model to reproduce these results. (e) Rosette leaf number until flowering 
for Experiment 1. There was no significant difference in the flowering time of lsf1, while 
prr7prr9 was late-flowering. (f) The Plexiglass chamber used for gas exchange 
measurement. Starch synthesis as a percentage of net assimilation rate for Experiment 1 
(g) and Experiment 2 (h).
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c

Extended Data Figure 6: Biomass and carbon status of prr7 mutants.

Measured (symbols) and simulated (lines) fresh weight (a), starch level (b), and malate and 
fumarate (c) for prr7 single mutant plants (purple) compared to wild type Col (green) in 
Experiment 1. Data for Col are identical to Fig.3a,3b.
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Extended Data Figure 7: Parameter sensitivity overview.

Relative sensitivity of model outputs for each model parameter, coloured by the 
cognate sub-model (see legend). Sensitivities were calculated by simulating the 
model under 1% perturbations of each parameter in turn. (a) Fresh Weight (FW); 
most sensitive parameter is selec, associated with electron transport, (b) starch 
level at end of day (ED); most sensitive parameter is selec and (c) at end of night 
(EN); most sensitive parameter is kdT1, the degradation rate of a putative inhibitor 
of starch turnover. Clock parameters mutated to simulate prr7prr9 double 
mutants are highlighted (see legend). (d) Comparison of sensitivity of FW and 
EON starch for parameters clock and starch module parameters, showing a 
predominant negative correlation: parameters that lower starch at the end of the 
night tend to increase fresh weight. Note that water content (w, a directly 
measured parameter) is not shown due to high sensitivity. Sensitivities to 
changes in water content were 11.3, -10.1, and -10.1 for gFW, ED starch, and EN 
starch, respectively.
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Extended Data Figure 8 : Model sensitivity to water content parameter.

Simulation of biomass and major metabolites using water content values plus and minus 
one standard deviation from the mean, for Experiment 1 in Figure 3. Model simulation 
(lines) andexperimental data (symbols) of fresh weight (a,d,g,j), starch level (b,e,h,k) and 
the total levelof malate and fumarate (c,f,i,l) for Col (a-c), lsf1 (d-f) and prr7prr9 (g-l). 
Dashed lines (g-i) are model simulation for prr7prr9 that only considered starch defects, 
while full lines (j-l) are model simulation that included both starch defects and inefficient 
use of malate and fumarate. Shaded regions indicate the values spanned by simulating 
water contents plus and minus one standard deviation from the mean. Data are given as 
mean ± SD (n = 5 for biomass; n = 3 for metabolites with each sample consisting of 3 
pooled plants). Temperature = 20.5°C; light=145 µmol/m2/s; photoperiod = 12 hr light: 12 
hr dark; CO2 = 420 ppm.
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Extended Data Table 1 | New parameters and their calibrated values for each experiment, and 
model goodness-of-fit (cvRMSE)

Experiment 1 Experiment 2

Genotypes Parameters
Parameter 
names in 
model file

Calibrated values Remarks Calibrated values Remarks

Col (default) Photosynthesis 
efficiency 

photosyn_effi
ciency

0.88 Calculated from 
Col data

0.79 Calculated from 
Col data

Starch synthesis 
efficiency

ss_efficiency 0.6 To fit the ED 
Col starch level

0.55 To fit the ED Col 
starch level

Starch turnover* sta_turnover NA Simulated with 
clock-regulated 
starch model

0.92 Calculated from 
data

MF turnover mf_use 0.7 Calculated from 
data

0.6 Calculated from 
data

MF synthesis mf_syn_frac 0.2 Calculated from 
Col data

0.2 Calculated from 
Col data

Water content (%) w 91.16 Measured 89.99 Measured

cvRMSE (%) 8.0 16.0

lsf1 Starch turnover* sta_turnover
0.84 in 

FMv1; clock-
regulated 
model in 

FMv2

Clock-regulated
model

kd,S = 10
kd,T,2 = 0.018

To fit the ED 
and EN starch 

levels

sta_turnover
0.56

To fit the ED and 
EN starch levels

Water content (%) w 89.43 Measured 89.25 Measured

cvRMSE (%) 13.7 15.4

prr7/prr9 Starch turnover* sta_turnover NA Simulated clock 
mutations 

control starch 
via clock-

regulated starch 
model

0.89 To fit the ED and 
EN starch levels

Water content (%) w 89.12 Measured 88.04 Measured

MF turnover mf_use 0.25 To fit the ED 
MF level

0.21 To fit the ED MF 
level

cvRMSE (%) 41.1 Simulation with 
only starch 

defects

44.8 Simulation with 
only starch 

defects

cvRMSE (%) 15.1 Simulation with 
defects in 

starch, malate 
and fumarate 
consumption

20.9 Simulation with 
defects in starch, 

malate and 
fumarate 

consumption

*The sta_turnover parameter in FMv1 (value 0.84) is not used in FMv2, because starch degradation rate is 
computed by the clock-regulated starch model. Where prr7prr9 showed a mild starch phenotype, in 
experiment 2, sta_turnover was calibrated as described in Extended Data Fig.4; the same model was used 
to compare all genotypes in the experiment. 
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1. Updating the circadian clock, starch, and photoperiod response models 

1.1 Photoperiod response model 

The circadian clock controls the timing of flowering by regulating the expression of the FT 
gene through the photoperiod pathway. The photoperiod response was previously modelled in 
the Arabidopsis Framework Model version 1 (FMv1) 1 by including the model from Salazar 
et al 2009 2. However, this model includes an older circadian clock model 3 that does not 
explicitly represent the relevant clock components PRR9 and PRR7. We therefore replaced 
the Salazar model with our most recent, Seaton-Smith model of the photoperiod pathway 4. 
This brings several advantages. First, the Seaton-Smith model includes additional 
understanding of the photoperiod response mechanism, such as the regulation of CO protein 
stability by FKF1 5. Second, it is based upon the same circadian clock model 6 as the clock-
starch model that we introduce in Section 1.2, below. Third, the clock model includes PRR9 
and PRR7, allowing explicit simulation of the prr9prr7 mutation (see section 1.2.2). Fourth, 
the Seaton-Smith model represents circadian regulation of hypocotyl elongation via the PIF 
transcription factors, allowing the FMv2 to represent this canonical clock phenotype. 

As in the Salazar and FMv1 models, the photoperiod response model in the FMv2 interacts 
with the phenology model through the control of FT transcript expression. The important 
characteristic is 'FTarea', the integrated FT level over the course of a 24h day. FTarea 
controls the Photoperiod component of the phenology model through the expression: 

 

In order to utilise this connection with the new circadian clock model, the parameters b, c  
and n were chosen so that this function matched the original photoperiod function given by 
Chew et al 2012 7, as was done previously for the connection from the older clock model in 
Chew et al 2014 1. 
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1.2 Circadian control of starch turnover 

The circadian clock controls the rate of starch degradation during the night in light:dark 
cycles 8,9. The molecular mechanisms responsible for this control have not been identified, 
but our recent work identified simple, plausible mechanisms 10. These were formalised in 
mathematical models that were evaluated by comparison to a wide range of experimental data 
(e.g. the change in starch turnover when dusk arrives ~4 hours early). In Seaton et al 2014 10, 
three models were described in detail, named Model Variants 1, 2 and 3. Of these, Model 
Variants 2 and 3 provided the best match to experimental data, while Model Variant 1 was 
shown to have several limitations. Since Model Variants 2 and 3 provided quantitatively 
similar predictions over a range of conditions, and Model Variant 2 is simpler (6 fewer 
parameters and 2 fewer regulatory links from the circadian clock), we chose to integrate 
Model 2 with the FMv2. 

1.2.1 Starch model structure 

In order to incorporate this control of starch turnover with the FM, we treat the starch 
component S as a measure of starch concentration (rather than absolute quantity per plant). 
Thus, this is taken as: 

 

Where S(t) is starch concentration variable used in the model of starch turnover, Cstarch(t) and 
Cshoot(t) are the carbon in starch and in the shoot biomass respectively, and r is a scaling 
factor used to bring S(t) to a similar range of concentrations to those used in the original 
model construction10. Note, the control of starch synthesis by the species Y is disregarded, as 
starch synthesis is modelled as a fixed fraction of photoassimilate (see Section 1.2). 

This model runs on an hourly basis throughout the day, but controls starch turnover only 
during the night. The starch concentration (i.e. S(t)) is calculated at the start of the timestep, 
and the change in starch levels by the end of the hour is then given by: 

∆
∆

 

Where ∆S(t) denotes the change in starch concentration across the hour of simulation. Total 
starch carbon at the following timepoint is then updated according to: 

1 ∆  

 

1.2.2 Simulating lsf1 and prr7prr9 mutant genotypes 

In order to simulate the circadian clock mutant prr7prr9, we set to 0 the clock parameters q3, 
n4, n7, n8, and n9, which control the multiple aspects of the transcription rate of PRR7 and 
PRR9. Model simulations predicted ~70% turnover of starch in the mutant, in agreement with 
experimental data (Fig. 3a and Extended Data Figure 1d). 

All other parameter values were calibrated as described in Section 4, below (Extended Data 
Fig.4), and are shown in Extended Data Table 1. The starch degradation rate parameter in 
FMv1 (sta_turnover) is not used in FMv2, because the starch degradation rate is computed by 
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the clock-regulated starch model. In order to simulate the lsf1 mutant, the parameters kd,S and 
kd,T,2 in this model were set to 10 and 0.018, respectively, calibrating simulated starch to our 
experimental data. This allowed the model to match the experimentally observed starch 
turnover in our experiment 1 (Fig. 3g) and in literature data 11 (Extended Data Figure 1c). 
Where prr7prr9 showed a mild starch phenotype in experiment 2, sta_turnover was 
calibrated as described in Extended Data Fig.4; the same model was used to compare all 
genotypes in the experiment.  

2. Revision of Starch synthesis 

In the original Carbon Dynamic Model (CDM) 1,12, starch is synthesised at a rate that is the 
sum of a baseline rate and an ‘overflow’ rate. The baseline rate is a fixed proportion of the 
photoassimilate. The rest of the photoassimilate is first converted into soluble sugars which 
are used for growth and respiration. As growth demand is limited to a maximum value, any 
excess photoassimilate is converted into starch, through the ‘overflow’ rate.   

Our previous work 1,13 showed that the ‘overflow’ mechanism is not always applicable, 
especially when plants are grown in short-day conditions (Figure 1e). Results suggested that 
starch is synthesised at a photoperiod-dependent fixed rate that is much higher than the 
baseline, and any excess photoassimilate remains as sugars. This ensures that plants store 
sufficient starch to last the night. We therefore re-routed the carbon flow based on this 
finding. 

To determine the photoperiod-dependent starch synthesis rate, we first calculated the fraction 
of measured net assimilate partitioned to starch using our previous data13 and the equation 
below: 

 

           

where  

FS  = Fraction partitioned to starch 

SED  =  Starch level at ED  

SEN  =  Starch level at EN 

AN  =  Net assimilation rate per hour 

P = Photoperiod 

 

It has been reported that under low light conditions, most of the flux control through the 
pathway of starch synthesis resides in the reaction catalysed by AGPase 14. Since most lab 
experiments are conducted under low light, we therefore also tested the relation between the 
fraction partitioned to starch and AGPase activity. If the total amount of starch accumulated 
over the light period is proportional to daily AGPase activity (averaged between ED and EN), 
the fraction is given by: 
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where k is the proportional constant. We determined the value of k using data from 12-hr 
photoperiod as the reference. We found a strong linear relation between the fraction of 
measured net assimilate and photoperiod (Extended Data Figure 2). This relation is therefore 
used in the FMv2 to determine starch synthesis rate, StaSyn, as follows: 

 

StaSyn = AN x (-0.0296P + 0.7157)    

      

3. Addition of carbon pool for malate and fumarate 

Malate and fumarate can be interconverted in the tricarboxylic acid cycle, so they are 
considered together in a single pool. The dynamics of this pool is modelled in a manner 
similar to starch except for the regulation of degradation rate by the clock. In the daytime, a 
fixed proportion of the photoassimilate is converted to starch, malate and fumarate, while 
sugar level is allow to fluctuate depending on the carbon excess. At night, malate and 
fumarate are consumed with a linear rate, while starch degradation rate is controlled by the 
clock sub-model (see Extended Data Figure 2 and Section 1.2). For simplicity, we model a 
direct conversion of carbon from malate and fumarate into sugar at night, omitting the 
intermediate metabolic reactions.  

4. Parameter calibration 

Results in our previous studies 1,13 suggested that carbon dynamics in plants are flexible and 
plants adjust processes like photosynthesis, starch synthesis and starch degradation rate 
depending on the environment. The aims of our study were to test if the dynamics of the 
different carbon pools can be quantitatively balanced over the timescale of vegetative growth, 
and how genetic regulation that modifies these dynamics affects plant growth. It is therefore 
necessary that the model first matches quantitatively the carbon pool data for wild-type plants 
as the reference genotype in each study. After accounting for environmental effects on all 
genotypes through the wild-type data, discrepancies between model simulations and data for 
the mutants can be attributed to genetic effects. To achieve this, we calibrated the following 
to the Col data (workflow illustrated in Extended Data Figure 4; parameter values in 
Extended Data Table 1): 

 photosynthesis rate was adjusted by introducing an efficiency factor relative to the 
default 

 starch synthesis rate was adjusted by introducing an efficiency factor relative to the 
default 

Starch turnover was simulated by the clock-controlled starch submodel (Section 1.2), which 
reproduced experimental measurement of percentage turnover in most cases. In cases where 
the phenotype of starch degradation was too mild and could not be explained by the starch 
submodel, we used a linear degradation rate as in the previous model version (FMv1) to 
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reproduce the turnover. We then iteratively tuned starch synthesis and photosynthesis rates to 
match the measured end-of-day level (Extended Data Table 1).  

We next calibrated the parameter values for the new carbon pool that represents malate and 
fumarate (MF) using Col data as follows: 

 The initial level of this pool was set as 0.4 of initial starch level, based on the ratio 
measured in the literature 15 

 MF synthesis was set as a fixed fraction of starch synthesis 
 MF turnover was set as the fraction of dusk level consumed 

Wherever possible, we used parameter values measured or calculated from our data. Mutants 
were simulated by changing the values of genotype-specific parameters as listed in Extended 
Data Table 1, notably the water content.  

In each experiment, we did not find genotypic differences in photosynthesis when expressed 
per unit area, but there was a general increase in photosynthesis in prr7prr9 when expressed 
per gram fresh weight (Extended Data Figure 5). Even though we used the same 
photosynthesis efficiency for all genotypes, we found that the model could reproduce this 
increase due to the lower water content measured in prr7prr9. This suggested the importance 
of including water content as a genotype-specific parameter in our model, since metabolites 
are measured per unit fresh weight.  

As expected, we found variation in photosynthesis efficiency between experiments. In 
particular, the photosynthesis per unit area was higher for all genotypes in Experiment 2. As a 
result, the model underestimated these, but reproduced the values when expressed per unit 
fresh weight, suggesting a difference in the specific leaf area.  

5. Modelling protein synthesis, compared to literature data 

The biomass prediction in the FMv2 implies minimal budgets for the nutrient constituents of 
biomass, which are effectively predictions that can be compared to published experimental 
data. For example, 13CO2 labelling has allowed quantification of the relative rates of protein 
synthesis in the light and dark during light:dark cycles 16, and of rates of protein turnover 17. 

The model does not include protein as a distinct component of the synthesised biomass. 
However, since the protein fraction of biomass is relatively constant across the course of a 
day (for example, see Pyl et al 2012 18), and protein turnover has been measured, it is possible 
to calculate an implied rate of protein synthesis for a given model simulation (as done 
experimentally in Ishihara et al 2015 17). In particular: 

	  

where ProtSyn(t) is the calculated rate of protein synthesis at time t, in units of gProtein gFW-

1 h-1. Gr(t) is the relative growth rate (= (Biomass(t)-Biomass(t-1))/Biomass(t)), in units of hr-

1. Turn is the rate of protein turnover, measured as 0.0014 hr-1 (average of measurements by 
Pulse-Chase labelling 17). Prot is the protein content, measured as 0.0169 gProtein gFW-1 in 
Ishihara et al 2015 17. 

Simulating the conditions used in Ishihara et al 2015 17 for wild-type plants shows that carbon 
biomass growth rates in the model predict a 3.3-fold increase in the rate of protein synthesis 
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during the day, compared to during the night. This is in excellent agreement with 
experimental data which showed a 3.1-fold increase17, 18. 
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