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Abstract 
Counterfeit watches are products of illicit activity and contain traces of their 
production and distribution. Traces provide pertinent information through one of their 
fundamental characteristics: the ability to reveal links between specimens or cases. The 
aim of this study was to develop an analytical strategy to obtain the elemental 
composition of watchcases, by analysing a selection of 35 counterfeit watches. We 
propose a methodology based on multivariate statistical analysis of chemical results 
that discriminates between watches from common and different origins, and, 
ultimately, classifies them into chemical groups. All watchcases were analysed using 
inductively coupled plasma mass spectrometry (ICP-MS), providing representative 
descriptive data on the composition of watchcases. Several multivariate approaches 
were assessed, considering different scenarios, each using a different set of variables. It 
appeared that the model that performed best in terms of classification criteria could be 
misleading, especially in an exploratory context that focuses on the production of 
intelligence. At the end of the day, hierarchical cluster analysis (HCA) allowed us to 
classify the specimens into 14 chemical classes. Information gained through chemical 
analysis revealed several links between the specimens. This initial study was performed 
on a very limited number of watches. Although still in the developmental stage, our 
approach exhibits promising capabilities and encourages chemical profiling of 
counterfeit watches on larger scale. 
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Introduction 
Counterfeiting is a major international crime that reaches far beyond luxury goods. It 
feeds an important illicit market, benefiting from several major driving forces on both 
the demand and the supply sides: the attractiveness of “fakes” that are considerably 
less expensive than the genuine products; the ongoing growth of the Internet as a 
marketing channel; the expansion of world trade; the combination of cheap production 
costs and high benefits; weak regulatory and enforcement frameworks; and, of course, 
the demand for counterfeits. The Organisation for Economic Co-Operation and 
Development (OECD) estimates the international trade in “fakes” was as high as USD 
461 billion in 2013, which is equivalent to 2.5% of total international trade [1]. 
 
The illicit practice of watch counterfeiting has come under the scrutiny of the 
Federation of the Swiss Watch Industry (FHS), whose legal and anti-counterfeiting 
department performs physical examinations of watches suspected being counterfeit [2]. 
But despite the efforts of the FHS and of other key actors, many questions regarding 
the traffic of counterfeit watches remain unanswered. 
 
The practice of forensic science relies fundamentally on the study of traces left behind 
in the course of criminal activity, and on the extraction and contextualization of the 
information they convey. Beyond its evidentiary contribution in specific court 
proceedings, forensic science plays other important roles. The information content of 
traces can contribute to models in which intelligence and crime analysis tend to support 
strategic decisions and crime prevention [3]. From this perspective, forensic intelligence 
can significantly advance the understanding of illicit trafficking or hidden markets in 
general, and the trading of counterfeit goods in particular. When put into context with 
other types of intelligence gathered through the spatiotemporal analysis of seizures or 
the monitoring of Internet sites selling such products, the physical and chemical 
analysis of counterfeit goods may yield valuable knowledge on the structure of this 
illicit market. 
 
This research investigated whether the elemental composition of watchcases is a useful 
source of information on the production of counterfeit watches. As the production of 
watchcases requires expensive machinery, we assumed that only a finite number of 
production sites, intended to manufacture copies of watch parts, have access to such 
technology. Watchcases originating from the same production batch are made from the 
same raw materials and should have the same chemical composition. The proposed 
methodology consists of the extraction of meaningful chemical information, and its 
correlation with existing physical information. 
 
Even though chemical profiling methods are not new and have found application in a 
variety of areas of forensic science, with new methodologies, new questions inevitably 



arise. The aims of this study were therefore to: 1) develop an analytical strategy to 
measure the elemental composition of watchcases; 2) analyse a selection of counterfeit 
watches; 3) propose a statistical methodology that discriminates between watches of 
different origins; and 4) classify the watchcases into chemical groups and hence provide 
new knowledge on the production of the watches. The ultimate objective was to lay 
the groundwork for the further use of the data in a forensic intelligence perspective. 

Material and methods 

Specimen set and analytical strategy 
The specimen set consisted of 35 counterfeit watches (labelled M01 to M35), including 
seven models of a commonly counterfeit brand1, obtained from the Federation of the 
Swiss Watch Industry (FHS). The watches had been seized by customs authorities at 
the Swiss border, and had been previously identified as counterfeits, and analysed, by 
the FHS. Physical analysis included measurements of corporate logos and trademarks 
on the different watch parts. Seizure information, including place and date of seizure, 
as well as origin and ways of transit, if known, was also recorded. The group of 
specimens was especially selected to comprise watches of only one brand, seized during 
a relatively short period of time (7 months), in order to increase the chances of finding 
chemical and physical links between the specimens. Intuitively, it is more likely that 
the same raw materials and the same tools were used. Limiting the specimen set to a 
single brand thus increased the chances of gathering information on illicit networks. 
 
All watches were disassembled by FHS specialists, and only the watchcases were chosen 
as objects of study. The watchcases were almost exclusively made of metal, which 
dictated the analytical method. 
 
First, X-ray fluorescence (XRF) was used as a screening technique to identify the type 
of alloy. Inductively coupled plasma mass spectrometry (ICP-MS) was then utilized to 
obtain the elemental composition of the watchcases. ICP-MS has been used to analyse 
jewellery [4, 5] as well as to determine the trace-metal composition of steel [6]. Table 1 
summarizes the major and minor elements that were quantified. Several isotopes per 
element were considered, to detect possible isobaric or polyatomic interferences. 

                                     
1 Due to brand confidentiality requirements, no image or detailed information on the counterfeit watch 
specimens is disclosed 



Table 1: List of the major and minor elements and corresponding isotopes analysed by ICP-MS. 

 Element Isotopes  

Major elements 

Chrome (Cr) 52 
Iron (Fe) 54, 56 
Nickel (Ni)  58, 60  

Minor elements 

Aluminium (Al) 27 
Silicon (Si) 28 
Phosphorus (P) 31 
Titanium (Ti) 48, 49 
Vanadium (V) 51 
Manganese (Mg) 55 
Cobalt (Co) 59 
Copper (Cu)  63, 65 
Zinc (Zn) 66 
Arsenic (As) 75 
Molybdenum (Mo) 95, 98 
Cadmium (Cd) 112, 114 
Tin (Sn) 118 
Tungsten (W) 182, 183 
Lead (Pb) 206, 207, 208 
Uranium (U) 238 

Reagents 
Nitric acid (HNO3, >69.0%, TraceSelect, Fluka Analytical) and hydrochloric acid (HCl, 
>37%, TraceSelect, Fluka Analytical) were used. High-purity argon gas was used for 
the ICP-MS system (purity > 99.999%, ALPHAGAZ). Certified single-element 
standards (1000 μg mL-1) for aluminium (Al), chromium (Cr), manganese (Mn), iron 
(Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), tin 
(Sn) and lead (Pb) were purchased from CentriPUR, Merck. Certified single-element 
standards (1000 μg mL-1) of phosphorus (P), silicon (Si), titanium (Ti), vanadium (V), 
molybdenum (Mo) and tungsten (W) were purchased from TraceCert, (Sigma-Aldrich). 
Finally, a certified single-element standard (1000 μg mL-1) of uranium (U) was 
purchased from Inorganic Ventures, Inc. For internal standards, scandium (Sc), 
germanium (Ge), yttrium (Y), rhodium (Rh), indium (In), terbium (Tb) and bismuth 
(Bi) (1000μg mL-1) were used (CentriPUR, Merck). Ultrapure water (18.2 MΩ/cm) 
was prepared with an ELGA PURELAB Ultra instrument. 

Sample preparation, analytical method and validation 
Five samples (approximately 1 g each) per watchcase were cut by electrical discharge. 
They were pre-digested during a cleaning step to remove surface plating and 
contaminants generated during the cutting process. The cleaning was performed in 
open Falcon tubes (15 ml) containing a 3:1 mixture of HCl and HNO3, for 30 to 40 
min. The samples were then transferred into quartz tubes containing 6 ml HCl, 1 ml 
HNO3 and 6 ml high-purity deionized Milli-Q water (>18.2 MΩ/cm, ELGA water 



systems). Microwave-assisted acid digestion was performed in a PTFE vessel on a 
turboWAVE 1500 system (Mikrowellensysteme MWS). The digestion steps for the 
microwave are summarized in Table 2. 
 
The quantitative analysis of major elements required a 1:250,000 dilution in 1% HNO3, 
and the analysis of minor elements required a 1:1,000 dilution; these were performed 
with a microLAB 600 series (Hamilton) diluter. Internal standards were then added to 
the samples. The quantitation of major and minor elements required the performance 
of two separate analyses, due to large differences in the concentration ranges of the 
major and trace elements. To eliminate or reduce the effect of interferences, both 
collision-reaction interface (CRI) gases (He and H2) were used. Elemental 
concentrations were then measured with a Bruker Aurora M90 ICP-MS, applying the 
operating conditions detailed in Table 3. 

Table 2: Microwave oven program for the complete digestion of the steel samples 

Step t [min] MW [W] T [°C] P [bar] 
1 5 1000 180 120 
2 5 1200 220 150 
3 20 1200 220 150 

Table 3: Operating conditions for ICP-MS 

ICP-MS Aurora M90 (Bruker) 
Spray chamber Peltier-cooled (3°C), double-pass Scott type 
Nebulizer Quartz MicroMist Low Flow Unifit (0.4 ml·min-1) 
Cones  Nickel  
RF Power [kW] 1.45 
Gas Flow [L·min-1] Plasma flow 18.00  

Auxiliary flow 1.80 
Nebulizer flow 1.00 

Sample introduction Sampling depth [mm] 5 
Pump rate [rpm] 5 
Stabilization time [s] 30 

Quadrupole scan  Scan mode  Segmented scan  
Dwell time [ms] 10 

Attenuation mode None 
Acquisition  Points per peak  1 

Scans/ Replicate 30 
Replicates/ Sample 5 

Washing solution HNO3 1% 
Washing time [s] 10  
Collision reaction interface H2: 90 mL/min  

He: 110 mL/min 

 



The analytical method was then validated. Along this process, several elements, 
isotopes or CRI gas conditions were removed to keep only the most reliable variables 
for the chemical profiles. 

Data analysis 
Four scenarios, each including a different set of variables, were selected. The aim of 
this process was to assess the impact of variable selection on the ensuing multivariate 
data analysis. Strategies to assess intra- and inter-source variations, in absence of 
specimens where a common source is assured, were studied and applied. The different 
scenarios were then evaluated in terms of classification performance, and a threshold 
value to discriminate specimens was determined. 
 
The final step consisted of the visualisation of the grouping of the counterfeit watches. 
This was achieved through cluster analysis (CA), one of the recommended methods to 
obtain better insight into the structure of data [7]. This method summarises a data set 
in a two-dimensional graphical form and allows specimens to be grouped into clusters 
based on measures of distance and similarity. Thus, specimens with similar 
characteristics in the variable space are grouped in the same class. The distance 
between two points in the n-dimensional space was computed using the Euclidian 
distance. Among the several clustering methods that exist [8], we opted for the common 
method of hierarchical cluster analysis. Specimens were portioned into k clusters (k = 
1, ..., n) whose grouping is visualized in a hierarchical dendrogram. The horizontal axis 
represents the distance between two points. Specimens from a cluster of a lower level 
in the hierarchy are a subset of those from higher levels [7]. Therefore, the threshold 
distance, at which the grouping is stopped, determines the number of clusters in the 
final classification. 
 
Data processing was performed using Microsoft Excel 2016, R (version 3.4.2) in 
combination with RStudio (version 1.1.383). 

Results and discussion 

Analytical results and method validation 
All watches, except for one specimen (M01), were made of austenitic stainless steel, 
meaning that Fe, Cr and Ni were the major components [9]. XRF analysis revealed 
that M01 was made of a Zn-Cu-Ni alloy and this specimen was not considered for 
further ICP-MS analysis, since the dissolution matrix was developed for steel. Visual 
examination of the watches indicated that they were of relatively high quality, with 
mechanical movements found in higher-quality counterfeits. It should be noted that 
watches of poorer quality may be made of alloys other than steel. 
 



Analytical difficulties occurred for P and Si, and no results could be gathered. Cd and 
U were not found (< LOD) in any of the specimens, and were therefore not considered. 
Pb207(He) was excluded because of the high percentage of relative standard deviation 
(%RSD) of the slope when considering linearity. 
 
As the precision of the determination of the concentration of single elements is a key 
factor when dealing with chemical profiles, repeatability was tested both on a control 
sample (midrange certified calibration solution), and on a counterfeit watch specimen 
(M20). It was found that Al(He), Ti(H2), Co(He), Cu(H2), Mo(He and H2) showed high 
values of %RSD (>8), based on multiple analyses of control samples; these were 
therefore excluded. Zn showed extremely high %RSD in the watch specimens, and was 
also discarded. The remaining elements showed satisfactory results, as shown in Table 
4. Pb was not detected in watch specimen M20. 
 
Due to the lack of suitable certified reference material, we used certified calibration 
solutions to test accuracy. The recovery values indicated that the elements determined 
by ICP-MS agreed with the certified values (Table 5). Internal standardization was 
used to correct matrix effects. Also, all samples were considerably diluted, decreasing 
the acidification of the sample and, therefore, matrix effects associated with viscosity 
changes. 



Table 4 : Repeatability of the analysed elements  

 Control sample Watch specimen M20 
Element Repeatability [%] # Meas. Repeatability [%] # Meas. 
Al(H2)  9.67 24 14.89 4 
Ti(He) 5.47 48 11.50 8 
V(He) 5.43 24 2.12 4 
V(H2) 2.93 24 2.06 4 
Mn(He) 4.55 24 2.01 4 
Mn(H2) 3.93 24 3.51 4 
Co(H2) 2.76 24 2.43 4 
Cu(He) 4.67 24 3.75 4 
As(He) 4.28 24 8.84 4 
As(H2) 4.67 24 9.42 4 
Sn(He) 2.78 24 1.04 4 
Sn(H2) 2.96 24 2.83 4 
W(He) 4.11 48 5.06 8 
W(H2) 4.91 48 2.28 8 
Pb(He) 3.39 48 N/A - 
Pb(H2) 2.57 72 N/A - 

Table 5: Accuracy assessment of the method 

Element Certified 
conc. [ppb] 

Mean measured 
conc. [ppb] 

Recovery [%] 

Al(H2)  10  9.00 ± 0.97 90.00 
Ti(He) 10 10.23 ± 0.55 102.28 
V(He) 200 214.90 ± 10.86 107.45 
V(H2) 200 187.40 ± 5.86 93.70 
Mn(He) 4000 4225.85 ± 182.10 105.65 
Mn(H2) 4000 4029.53 ± 157.21 100.74 
Co(H2) 1000 984.47 ± 27.65 98.45 
Cu(He) 200 197.04 ± 9.34 98.52 
As(He) 10 10.05 ± 0.43 100.46 
As(H2) 10 10.30 ± 0.47 103.02 
Sn(He) 5 5.07 ± 0.14 101.45 
Sn(H2) 5 4.98 ± 0.15 99.58 
W(He) 20 19.47 ± 0.82 97.35 
W(H2) 20 18.00 ±0.98 90.00 
Pb(He) 5 4.89 ± 0.17 97.86 
Pb(H2) 5 4.91 ± 0.13 98.26 

 
In total, ten elements, encompassing 23 combinations of isotopes and gas conditions, 
were validated, and retained as potential variables for the construction of the chemical 
profile. 

Variable selection and multivariate data analysis  
It is conceivable that the composition of the major constituents of steel alloys is very 
similar in watchcases from different production lines. Thus, better linking and/or 
separation of specimens might be achieved through the exploitation of trace-element 
profiles. Hence, we decided to rely on the minor elements for the profiling of the 



watchcases. Exploration of raw ICP-MS data revealed large differences in the 
concentrations of the minor elements. In order to obtain better symmetry, data pre-
processing was needed [7]. We took care to maintain analytical information and to 
prevent amplifying the background noise, which would disproportionately influence 
errors of measurement. After testing several pre-processing techniques, we decided to 
scale the data using a cube root transformation (CRT) (Figure 1) to decrease the 
influence of elements present in high concentrations. 

Figure 1 : Boxplots showing the variability of all variables in the raw data and on pre-processed data after cube 
root transformation (CRT) 

 
 
All elements were analysed with two different CRI gases (He and H2), to minimize 
possible isobaric and polyatomic interferences. A single variable per element, gas 
condition and isotope had to be chosen to avoid overweighting certain elements. The 
selection criteria were the following:  

• Lowest overall %RSD for all replicates of the 34 analysed watchcases, since 
homogeneity is essential in a profiling context. 

• If %RSDs were comparable, the most abundant isotope.  
 
A total of 10 elements, listed in Table 6, were retained for further multivariate data 
analysis. 



Table 6 : Selection of variables according the mean overall %RSD of all replicates and natural abundance of 
isotopes  

Element Gas 
condition 

Isotope Mean overall 
RSD [%] 

Natural 
abundance [%] 

Selection 

Al  H2 27 12.53 100 27Al (H2) 
Ti He 48 7.57 73.72 48Ti (He) 

He 49 10.19 5.41 
V He 51 1.64 99.75 51V (He) 

H2 51 1.93 
Mn He 55 1.55 100 55Mn (H2) 

H2 55 1.37 
Co H2 59 1.74 100 59Co (H2) 
Cu He 63 3.37 69.17 63Cu (He) 

He 65 3.35 30.83 
As He 75 5.97 100 75As (He) 

H2 75 7.64 
Sn He 118 2.76 24.22 118Sn (H2) 

H2 118 2.02 
W He 182 7.85 26.5 182W (H2) 

H2 182 7.52 
He 183 7.76 14.31 
H2 183 7.44 

Pb He 206 15.59 24.1 208Pb (H2) 
H2 206 3.87 
H2 207 4.56 22.1 
He 208 13.75 52.4 
H2 208 3.72 

 
Four different scenarios, comprising combinations of the selected variables, were then 
evaluated. Scenario 1 took all ten variables into consideration (Al, Ti, V, Mn, Co, Cu, 
As, Sn, W, Pb). The variables for scenario 2 were V, Mn, Co, and Cu, as these were 
measured at the highest concentration (> 100 ppb) and are the most likely to be 
remeasured again in future steel case samples. For scenario 3, we retained Al, Ti, As, 
Sn, and W, as their concentrations were in a comparable analytical range (10-100 ppb), 
which reduces the influence of very high or very low concentrations. Scenario 4 
comprised V, Mn, Co, Cu, As, Sn, elements with the lowest overall %RSD, because 
these were potentially the most homogeneously distributed elements within the 
watchcases. 

Inter- and intravariability assessment and evaluation of the different scenarios 
Since we sought to link watchcases from a common source and discriminate these from 
watchcases from different sources, inter- and intra-source variations needed to be 
studied. Given the fact that we did not have access to seizures with a formal indication 
of a common source, intra-source variation had to be determined by other means. One 
way was to look at the variation within the samples cut from a same specimen. To 
assess inter-replicate similarity, five replicate samples per watchcase were analysed. 



The underlying assumption was that variability within a specimen reflects variability 
between specimens of a common source. 
 
Another way to determine common source was to consider watches that were seized 
together. Some of these watches were very similar, based on visual examination, 
technical features (e.g. movement and functionalities) and physical profiling. We 
assumed that these particular seizures arose from a common production source. Five 
groups comprising 14 watches, indicated in Table 7, fulfilled these requirements.  

Table 7: Groups of counterfeit watches belonging to the same seizure and being non-distinguishable on the basis 
of technical features and visual examination 

Seizure group Specimen code 
1 M09 M10 M11 M12 
2 M13 M25 
3 M14 M15 
4 M26 M27 
5 M28 M29 
6 M30 M31 

 
Intra- and intervariability distributions were computed by measuring the Euclidean 
distance between sample pairs from a specific specimen (specimen intravariability), 
between sample pairs from different watches but the same seizure group (seizure 
intravariability) and between sample pairs from unrelated seizures (intervariability). It 
is, however, important to stress that an unrelated seizure context does not mean that 
two specimens could not be linked. For both seizure intravariability and intervariability 
distributions, we considered the mean value of the five samples per specimen, as well 
as all the five samples, for the four aforementioned combinations of variables 
(scenarios). The obtained distributions are presented in Figure 2. 



Figure 2 : Representation of the distribution of intra- and intervariability according to the selected scenario 

 
 
In all four scenarios we can observe that specimen intravariability is low, whereas the 
intervariability between specimens from unrelated seizures is high. This indicates a 
separation between intra- and intervariability, and therefore the possibility of 
distinguishing watchcases from common and different production sources based on 
measurements of their elemental composition. 
 
Scenarios 1, 2 and 4 appeared to be resistant to change, considering mean values or all 
samples, although the number of comparisons is much larger. Scenario 3 was more 
sensitive to change, possibly because the elements were less homogeneously distributed 
and/or were present in very small concentrations. In consequence, the risk of 
measurement errors was higher. 



 
Classification required the definition of a threshold value to decide whether watchcases 
should be grouped or not, based on their chemical profile. Threshold values strongly 
depend upon the context [10]. If evidence is to be presented to a court, for example, 
the strategy is to minimize the false positive (FP) rate and therefore the risk of 
producing erroneously incriminating evidence. In an intelligence-based perspective, the 
goal is to maximize the true positive (TP) rate. If a link does exist, we do not want to 
exclude it from further evaluation. Consequently, a number of false positives are also 
included. The specimen intravariability approximates the unknown true production 
intravariability. We assume production intravariability to be larger or at least equal to 
specimen intravariability. On these grounds, our strategy was to set the threshold 
values for each scenario at the maximum distance computed for specimen 
intravariability. 
 
The sensitivity (true positive rate) and specificity (true negative rate) of each scenario 
was evaluated, using previously determined threshold values (Figure 3). 
 
Another performance criterion of a binary classification model is the receiver operating 
characteristic (ROC) curve. Determination of the ROC curve requires plotting the true 
positive rate against the false positive rate as the threshold changes; the area under the 
curve (AUC) is considered a measurement of the accuracy of predictive distribution 
models. Table 8 summarizes all these metrics for the four scenarios. 



Figure 3 : Sensitivity (true positive rate) in black and specificity (true negative rate) in red versus the cut-off 
distance. The dashed blue line represents the highest specimen intravariability value that was found for each 

scenario and was set as a threshold. 

 
Table 8 : Evaluation criteria for the considered scenarios including the threshold, sensitivity and specificity at the 

given threshold and the AUC of the ROC curve 

 Threshold Sensitivity Specificity AUC 
Scenario 1: 1.886 0.917 0.823 0.956 
Scenario 2: 1.723 0.917 0.801 0.942 
Scenario 3: 0.845 0.969 0.895 0.981 
Scenario 4: 1.74 0.917 0.809 0.952 

 
The best performing model was Scenario 3, which considered the five variables whose 
concentrations were in a comparable analytical range (10-100 ppb). For the given 
threshold values, sensitivity, specificity and AUC were higher in that scenario than in 
the others. The AUC for all four models was above 0.94, meaning that each scenario 
has the potential to reliably classify new specimens of watchcases. Scenarios 1, 2 and 4 
did not exhibit significant differences and seemed to provide the same outcomes. Hence, 
further consideration was given to the distribution of seizure intravariability, and its 
comparison with the specimen intravariability, as well as intervariability, as shown in 
Figure 4. 
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Figure 4 : Distribution plots for all scenarios showing specimen intravariability, seizure intravariability and 
intervariability 

 
 
We observed good correspondence between the two different types of intravariability 
that were computed. This means that most of the watches that were similar, based on 
physical and seizure-related information, also showed high similarity in their chemical 
profile. The common thread of Scenarios 1, 2 and 4 is the inclusion of Mn, Co and Cu, 
the most abundant of the minor elements, in the profile. The distribution curves exhibit 
similar shapes, indicating that these three elements contribute the most to the distance 
measurements. Nevertheless, we observed two small peaks at distances of 
approximately 2 and 4. We found that these peaks corresponded to the watch pairs 
M28/M29 and M30/31. These two pairs clearly laid within the intervariability 
distribution, suggesting they should not be linked. In Scenario 3, the two watch pairs 
are not excludable and would therefore be linked. It is almost possible to superimpose 
specimen and seizure intravariability. The only seizure intravariability values that were 
a little higher than the specimen intravariability were some values found in another 
seizure group, namely the group containing watches M09/M10/M11/M12. This group 
is completely absorbed within the specimen intravariability in the three other scenarios. 
It would not be reasonable to choose Scenario 3 for chemical profiling, even though 
classification performance is better. 
 
The elements Mn, Cu and Co were abundant, and showed very low overall %RSD, 
indicating a homogeneous distribution within the alloy. They were therefore important 
profiling variables. The difference in variable selection between the three remaining 



scenarios had very little influence on performance criteria. However, Scenario 1 
appeared to have slightly better specificity and AUC. We therefore decided to choose 
Scenario 1 for further evaluations, including all ten variables and using a distance of 
1.886 as the threshold value for clustering. The underlying premise for the classification 
process was that all watchcases separated by a distance lower than the threshold value 
were produced from the same source. The dendrogram obtained from the hierarchical 
cluster analysis (HCA) is shown in Figure 5. The defined threshold value allowed the 
construction of 14 groups, now defined as chemical classes. 

Figure 5 : Dendrogram showing the results of the HCA for all specimens (mean value of the five replicate samples 
per specimen), considering all 10 elements for the chemical profile. 14 chemical groups (indicated in colours) 

emerged when cutting the dendrogram at the threshold value based on specimen intravariability. 

 
We observed a large number of chemical classes (N = 14) compared to the number of 
specimens (N = 34). One possible explanation is that the production of the watchcases 
took place at multiple production sites. It is assumed that the alloys are bought in 
large quantities and that a physical profile should last over a certain period. Moreover, 
the specimen set included watches that were seized during a relatively short period, 
which increases the chances of finding chemical links between them. It should also be 
noted that the production time of a watchcase may not necessarily be correlated to the 
time a watch or a group of watches is seized by authorities. However, we were able to 
show that in some cases watches belonging to the same seizure and with established 
physical links were chemically as similar as replicate samples from a same specimen. 
The high number of chemical classes is not surprising, taking into consideration the 
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fact that the examined brand is one of the most counterfeited in the luxury watch 
segment. 

Discussion 
The number of analysed specimens was very limited, simply because of the complexity 
of the preparation for analysis. Future studies would benefit from considering more 
specimens. An additional downside was the use of watches seized by custom authorities. 
These watches had already gone through the complete process of production, assembly, 
distribution towards a marketplace and final purchase. In the course of this process, 
information on a common source was associated with more and more uncertainties. It 
would therefore be very useful to have access to counterfeit watches which are already 
known to originate from the same source, e.g. from seizures conducted at different 
production sites. With such specimens, intravariability could be evaluated by 
computing the distribution between pairs from the same production site and 
intervariability by computing the distribution from the ones of different production 
sites. The distributions of intra- and intervariability would possibly be influenced by a 
new specimen, and threshold values would have to be revaluated [11]. 
 
Developing appropriate countermeasures against the traffic of counterfeit watches 
requires the understanding of this phenomenon from various points of view. It is of 
crucial importance to comprehend the level of intelligence that traces and information 
may provide. In our case, the trace was the elemental composition, providing 
information on the production of alloys used for counterfeit watchcases. Although the 
sample preparation was laborious, the analytical results were very satisfactory. Hence, 
the analytical strategy may be generalized to other applications where the bulk 
composition of steel products is of interest. Nonetheless, the analytical strategy should 
be subject to further assessment with larger sets of specimens. 
 
Chemical profiling in terms of multivariate data analysis and structuring of analytical 
results revealed several links between counterfeit watches. The utility of these links in 
terms of added intelligence value was assessed through the integration of these chemical 
profiling results with other types of information pertaining to physical features of the 
counterfeit watches and with spatiotemporal data of their seizures. The output of this 
process was that some of the chemical links corroborated existing knowledge, while 
others revealed new connections between different seizures and specimens. This 
suggests that additional information can be gained through the chemical profiling of 
watchcases. This will be further developed in a forthcoming article. Another interesting 
aspect related to the contribution of chemical profiling of counterfeit watches is that 
the methodology could be extended to detect brand-independent links, which is rarely 
possible with physical profiling.  
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