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Abstract. This paper deals with the fractional generalization of the integro-
differential diffusion-wave equation for the Heisenberg sub-Laplacian, with homoge-
neous Bitsadze-Samarskii type time-nonlocal conditions. For the considered prob-
lem, we show the existence, uniqueness, and the explicit representation formulae
for the solution.

1. Introduction

The purpose of this paper is to study Bitsadze-Samarskii type nonlocal problem for
the time-fractional diffusion-wave equation with the Heisenberg sub-Laplacian ∆Hn

in the space variables.
In [1] Bitsadze and Samarskii established the solvability of the new class of non-

local problems for the elliptic equations, which relate the values of the solution on
parts of the boundary with its values inside the domain. Such problems are called the
Bitsadze-Samarskii problems. For the motivation of studying the Bitsadze-Samarskii
type nonlocal problems we refer to [2]–[8] and references therein.

Certain types of physical problems can be modeled by heat and wave equations
with Bitsadze-Samarskii type initial conditions. The time multi-point heat and wave
problems can arise from studying the atomic reactors [9] –[10] and of some inverse heat
conduction problems for determining the unknown physical parameters [11]. Well-
posedness and numerical simulations of time multi-point heat and wave problems
were studied in [9]–[15].

The version of such equations on the Heisenberg group serves as a basic model for
the analysis of the sub-elliptic diffusion and wave propagation models, providing new
insights and techniques for the whole problem.

Thus, we consider the fractional integro-differential diffusion-wave equation

(1.1) Dα
+0,tu(t, x)− Iβ+0,t∆Hnu(t, x) = f(t, x), t > 0, x ∈ Hn,

where f(t, x) is a sufficiently smooth function, Iβ+0,t is the Riemann-Liouville fractional
integral of order β > 0 (see e.g. [16])

Iβ+0,tu(t, x) =
1

Γ(β)

t∫
0

(t− s)β−1u(s, x)ds,
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and ∂α+0,t is the Riemann-Liouville fractional derivative of order 0 < α ≤ 2 ([16])
defined as

Dα
+0,tu(t, x) =

∂[α]+1

∂t[α]+1
I

1+[α]−α
+0,t u(t, x),

where [α] is the integer part of α.
When 1 < α < 2, β = 0, equation (1.1) is the time-fractional wave equation and

when 0 < α < 1, β = 0, equation (1.1) is the time-fractional diffusion equation.
When α = 2, β = 0, it represents the classical wave equation; while if α = 1, β = 0,
it represents the classical diffusion equation.

Many mathematical formulations of physical phenomena contain integro-
differential equations, these equations arise in many fields such as fluid dynamics,
biological models and chemical kinetics. If α = 1, the equation (1.1) describes the
heat conduction with memory [17]–[18], and many authors studied the analogues
problems (see [19]–[25]).

1.1. Heisenberg group. Let Hn be the Heisenberg group, that is, the space R2n+1

endowed with the group law

ξ ◦ ξ′ =

(
x+ x′, y + y′, s+ s′ + 2

n∑
i=1

(xiy
′
i − x′iyi)

)
,

where ξ = (z, s) = (x, y, s) = (x1, ..., xn, y1, ..., yn, s), z = (x, s), x ∈ Rn, y ∈ Rn,
s ∈ R, n > 1; ξ′ = (x′, y′, s′) ∈ R2n+1. This group multiplication endows Hn with a
structure of a nilpotent Lie group. A family of dilations is defined as

δτ (x, y, s) = (τx, τy, τ 2s), τ > 0.

The homogeneous dimension with respect to these dilations is Q = 2n + 2. The left
invariant vector fields on the Heisenberg group are

Xi =
∂

∂xi
+ 2yi

∂

∂s
, Yi =

∂

∂yi
− 2xi

∂

∂s
, i = 1, 2, ..., n.

The horizontal gradient is

∇Hn = (X1, ..., Xn, Y1, ..., Yn).

Hence, the sub-Laplacian ∆Hn is denoted by

∆Hn =
n∑
i=1

(
X2
i + Y 2

i

)
= ∇Hn · ∇Hn .

The (Kaplan) distance function on Hn is given by

dist(ξ, ξ′) =
{

((x− x′)2 + (y − y′)2)2 + (s− s′ − 2(x · y′ − x′ · y)2)
}1/4

, ξ, ξ′ ∈ Hn.

If ξ′ = 0, then the distance function is

dist(ξ) =
{

(|x|2 + |y|2)2 + s2
}1/4

=
{
|z|4 + s2

}1/4
, |z| =

√
|x|2 + |y|2.
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1.2. Group Fourier transform. We begin with a reminder of the definition of the
group Fourier transform on the Heisenberg group (see many sources, but e.g. [26]–
[27] for its use in similar contexts). For f ∈ S(Hn) the group Fourier transform is
defined as

f̂(λ) :=

∫
Hn

f(x)πλ(x)∗dx,

with the Schrödinger representations

πλ : L2(Rn)→ L2(Rn)

for all λ ∈ R∗ := R\{0}. The inverse group Fourier transform formula can be written
as

f(x) =

∫
λ∈R∗

Tr
[
f̂(λ)πλ(x)

]
|λ|ndλ,

where Tr is the trace operator. The Plancherel formula becomes

‖f‖2
L2(Hn) =

∫
λ∈R∗

‖f̂(λ)‖2
HS[L2(Rn)]|λ|ndλ,

where ‖ · ‖2
HS[L2(Rn)] is the Hilbert-Schmidt norm on L2 (Rn) . For more details on

Planchrel formula and the Hilbert Schmidt norm, we refer to [28, Chapter 6, Propo-
sition 6.2.7].

2. Main results

In this paper we will work in the functional space C([0, T ];L2(Hn)) with the norm

‖u‖C([0,T ];L2(Hn)) := sup
t∈[0,T ]

‖u(t, ·)‖L2(Hn)

for all u ∈ C([0, T ];L2(Hn)).

Problem 2.1. Assume that f ∈ C([0, T ];L2(Hn)). In a domain Ω = {(t, x) :
(0, T )×Hn} consider the equation (1.1) with Bitsadze-Samarskii type time-nonlocal
conditions

(2.1) I
1+[α]−α
+0,t u(0, x) +

m∑
i=1

µiI
2−α
+0,tu(Ti, x) = 0, [α]Dα−1

+0,tu(0, x) = 0, x ∈ Hn,

where m ∈ N, µi ∈ R, 0 < T1 ≤ T2 ≤ ... ≤ Tm = T.
We seek a solution t1+[α]−αu ∈ C([0, T ];L2(Hn)) of the problem (1.1), (2.1) such

that Dα
+0,tu ∈ C([0, T ];L2(Hn)) and ∆Hnu ∈ C([0, T ];L2(Hn)).

The condition (2.2) below can be interpreted as a multi–point non-resonance con-
dition. Note that a similar problem for the time-fractional multi-term diffusion-wave
equation was investigated by the authors in [29].
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Theorem 2.2. Let f ∈ C([0, T ];L2(Hn)), Dα
+0,tf ∈ C([0, T ];L2(Hn)), and assume

that the conditions

(2.2)

∣∣∣∣∣1 +
m∑
i=1

µiT
α−[α]−1
i Eα+β,α−1

(
−|λ|νlTα+β

i

)∣∣∣∣∣ ≥M > 0

hold for all l ∈ Nn (where M is a constant), where

νl =
n∑
j=1

(2lj + 1), l = (l1, ..., ln) ∈ Nn.

Then there exists a unique solution of Problem 2.1, and it can be written as

(2.3) u(t, x) =

∫
R∗

Tr[K̂(t, λ)πλ(x)]dλ,

where

K̂(t, λ)l,k = F̂ (t, λ)l,k −

m∑
i=1

µiF̂ (Ti, λ)l,kt
α−[α]−1Eα+β,α−1

(
−|λ|νltα+β

)
1 +

m∑
i=1

µiT
α−[α]−1
i Eα+β,α−1

(
−|λ|νlTα+β

i

) ,

for all λ ∈ R∗ and k ∈ N. Here

F̂ (t, λ)l,k =

t∫
0

sα−1Eα+β,α

(
−|λ|νlsα+β

)
f̂(t− s, λ)l,kds,

and

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)

is the Mittag-Leffler function ([16]).

2.1. Proof of Theorem 2.2.

2.1.1. Proof of the existence result. Let us take the group Fourier transform from
Subsection 1.2 with respect to x ∈ Hn, that is,

(2.4) Dα
+0,tû(t, λ) + σ∆Hn (λ)Iβ+0,tû(t, λ) = f̂(t, λ),

where σ∆Hn (λ) is the symbol of the Heisenberg sub-Laplacian. It has the following
form

(2.5) σ∆Hn (λ) = |λ|Hτ ≡ |λ|
(
−∆τ + |τ |2

)
,

where Hτ is a harmonic oscillator operator for the variable τ ∈ Rn. For more infor-
mation about the operator Hτ , we refer to [28]–[30].

It is known that the operator Hτ is essentially self-adjoint in L2(Rn) with a discrete
spectrum νl, l = (l1, ..., ln) ∈ Nn.

Corresponding to µl, the harmonic oscillator operator has the complete system of
orthonormal eigenfunctions {el}l∈N on L2(Rn). They take the form

el(τ) =
n∏
j=1

Plj(τj)e
−−|τ |

2

2 ,
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where Pm(·) is the Hermite polynomial of order m. That is,

Pm(t) = cme
|t|2
2

(
t− d

dt

)m
e−
|t|2
2 , t > 0, cm = 2−m/2(m!)−1/2π−1/4.

For more details, see [30].
Consequently, the equation (2.4) can be rewritten as

(2.6) Dα
+0,tû(t, λ)l,k + |λ|νlIβ+0,tû(t, λ)l,k = f̂(t, λ)l,k,

for all λ ∈ R∗, and any l, k ∈ N. Here

û(t, λ)l,k = (û(t, λ)el, ek)L2(Rn)

and

f̂(t, λ)l,k = (f̂(t, λ)el, ek)L2(Rn).

According to [31], the solution for equation (2.6) satisfying initial conditions

I2−α
+0,t û(0, λ)l,k = C, [α]Dα−1

+0,tû(0, λ)l,k = 0,

can be represented in the form
(2.7)

û(t, λ)l,k =

t∫
0

sα−1Eα+β,α

(
−|λ|νlsα+β

)
f̂(t− s, λ)l,kds+ CEα+β,α−1

(
−|λ|νlTα+β

i

)
.

Then, it is not difficult to show, that the solutions of the equation (2.6) satisfying
the following conditions

(2.8) I2−α
+0,t û(0, λ)l,k +

m∑
i=1

µiI
2−α
+0,t û(Ti, λ)l,k = 0, [α]Dα−1

+0,tû(0, λ)l,k = 0,

can be represented in the form

(2.9) û(t, λ)l,k = F̂ (t, λ)l,k −

m∑
i=1

µiF̂ (Ti, λ)l,kt
α−[α]−1Eα+β,α−1

(
−|λ|νltα+β

)
1 +

m∑
i=1

µiT
α−[α]−1
i Eα+β,α−1

(
−|λ|νlTα+β

i

) ,

where

F̂ (t, λ)l,k =

t∫
0

sα−1Eα+β,α

(
−|λ|νlsα+β

)
f̂(t− s, λ)l,kds.

Indeed, the formula (2.9) can be checked by the direct calculation from (2.7) under
the conditions (2.8).

Now, applying the inverse group Fourier transform, we obtain the solution of Prob-
lem 2.1 in the form (2.3).

We note-that the above expression is well-defined in view of the non-resonance
conditions (2.2). Finally, based on (2.9), we rewrite our formal solution as (2.3).
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2.1.2. Convergence of the formal solution. Here, we prove convergence of the obtained
integrals corresponding to functions t1+[α]−αu(x, t), Dα

+0,tu(x, t), and ∆Hnu(x, t). To
prove the convergence, we use the estimate for the Mittag-Leffler function

(2.10) |Eα,β (z)| ≤ C

1 + |z|
.

Let us first prove the convergence of (2.3). From the estimate (2.10), we have the
following inequalities ∣∣∣F̂ (t, λ)l,k

∣∣∣ ≤ C1

∣∣∣f̂(t, λ)l,k

∣∣∣
1 + |λ|νl

,∣∣Eα+β,α−1

(
−|λ|νltα+β

)∣∣ ≤ C2

1 + |λ|νltα+β
,

for some constants C1, C2 > 0. Hence, from these estimates it follows that

|t1+[α]−αû(t, λ)l,k|2 ≤
∣∣∣t1+[α]−αF̂ (t, λ)l,k

∣∣∣2
+

1

M

n∑
i=1

|µi|2|F̂ (Ti, λ)l,k|2
∣∣Eα+β,α−1

(
−|λ|νltα+β

)∣∣2
≤ C

∣∣∣f̂(t, λ)l,k

∣∣∣2
(1 + |λ|νl)2

+ C
1

M

n∑
i=1

|µi|2

∣∣∣f̂(Ti, λ)l,k

∣∣∣2
(1 + |λ|νl)2

1

(1 + |λ|νltα+β)2
.

Thus, since for any Hilbert-Schmidt operator A one has

‖A‖2
HS =

∑
l,k

|(Aφl, φk)|2

for any orthonormal basis {φ1, φ2, . . .}, then we can consider the infinite sum over l, k
of the inequalities provided by (2.9). This gives

(2.11) ‖t1+[α]−αû(t, λ)‖2
HS ≤ C‖(1 + σ∆Hn (λ))−1)f̂(t, λ)‖2

HS,

since sup
t∈[0,T ]

1
1+|λ|νltα+β

= 1. Thus, integrating both sides of (2.11) against the

Plancherel measure on R∗ and using the Plancherel identity (see e. g. [28]), we
obtain

‖t1+[α]−αu‖C([0,T ];L2(Hn)) ≤ C‖(I + ∆Hn)−1f‖C([0,T ];L2(Hn))

and

‖∆Hnu‖C([0,T ];L2(Hn)) ≤ C‖f‖C([0,T ];L2(Hn)).

Since f ∈ C([0, T ];L2(Hn)), we get

‖t1+[α]−αu(t, x)‖C([0,T ];L2(Hn)) <∞
and

‖∆Hnu(t, x)‖C([0,T ];L2(Hn)) <∞.
The convergence of the integral corresponding to Dα

+0,tu(x, t) can be shown in a
similar way.
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To show the uniqueness of the solution, let us assume that there are two different
functions u and v satisfying Problem 2.1. Now we introduce a new function w as the
difference of the solutions u and v, that is, w := u− v.

Indeed, w satisfies the homogeneous equation

(2.12) Dα
+0,tw(t, x)− Iβ+0,t∆Hw(t, x) = 0, t > 0, x ∈ Hn,

with boundary conditions

(2.13) I2−α
+0,tw(0, x) +

m∑
i=1

µiI
2−α
+0,tw(Ti, x) = 0, [α]Dα−1

+0,tw(0, x) = 0, x ∈ Hn,

where µi ∈ R, 0 < T1 ≤ T2 ≤ ... ≤ Tm = T.
Again, repeating the same arguments, for the solution w of the problem (2.12)–

(2.13) we obtain the estimate

‖t1+[α]−αw‖C([0,T ];L2(Hn)) ≤ 0.

Thus, 0 = w = u− v. The proof is complete.
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