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Abstract

Solving the backreaction and averaging problems is important as we enter the era
of precision cosmology. Fundamentally, the idea that small-scale inhomogeneities
can affect the large-scale dynamics of the Universe lies in the non-linearity and
non-commutativity properties of the Einstein field equations. It is not necessarily
the case that the dynamics of a perfectly homogeneous Friedmann universe are
the same as an inhomogeneous one. However, difficulties arise in finding suitable
inhomogeneous solutions to the Einstein field equations. Progress can be made by
treating it as an initial data problem and solving the constraint equations. This
gives rise to a family of solutions, the black hole lattices, which consist of linearly
superposed Schwarzschild masses representing a universe with a discretised matter
content. In this thesis, we present extensions and generalisations of these existing
models. Firstly, we devised a novel way to include structure formation and its effects.
We did this in a quasi-static approach that involved splitting the black holes up into
more masses and moving them along parameterised trajectories. For small values
of this parameter, we could induce clustering as the black holes were sufficiently
close together. We found an extra apparent horizon encompassed the cluster and
that in order to reduce backreaction, interaction energies within clustered masses
needed to be included. Our next two extensions involved adding in extra fields, either
electric charge or the cosmological constant. Finally we considered the lattices in an
alternative scalar-tensor gravitational theory, Brans-Dicke. We found our lattices
reduced to their relativistic versions in the appropriate limit, but for some values
very far from general relativity, we could reduce backreaction to zero by altering the
amount of background scalar field. For all of our analyses we found that increasing
the number of masses reduces the discrepancy between our lattice cosmologies and
continuous counterparts.
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1 Introduction

Ten years after publishing his theory of special relativity in 1905, Einstein presented

a set of equations that would prove revolutionary in our understanding of gravity

[4]. These field equations state that matter and spacetime curvature are inextricably

linked, with gravity arising as a consequence of the curvature of spacetime, an idea

that challenged the previous Newtonian school of thought. Shortly afterwards came

the first non-trivial exact solution to the Einstein field equations - the Schwarzschild

solution, describing a spherically symmetric spacetime with a vacuum exterior around

a spherical mass [5]. This was followed by the addition of electric charge in 1916-18

[6–8], but it was not until 1963 that a solution for rotating black holes was discovered

by Kerr [9].

Ever since its inception there has been a wealth of evidence to support Einstein’s

theory of gravitation, beginning with observations of gravitational lensing during a

solar eclipse in 1919 [10], to more recently, observations of gravitational waves from

both binary black hole mergers [11] and neutron star mergers [12], decades after

gravitational waves were first theorised.

Perhaps the most important and exciting application of general relativity is in

cosmology, which aims to understand our entire Universe and its evolution, across

a vast range of scales. Finding a suitable solution to the Einstein field equations

to describe our Universe, however, has historically presented its own challenges.

Einstein proposed the idea of a static universe in 1917 but this became disfavoured

as it contradicted findings by Hubble in 1929 [13]. The observed redshift of a galaxy

seemed to increase with distance, a phenomena which can be attributed to an

expanding universe. Independently, Friedmann, Lemâıtre, Robertson and Walker

(FLRW) had already (or were in the process of) theorised an expanding universe

[14–17]. This FLRW solution to the Einstein field equations would underpin modern

cosmology and prove fundamental in our understanding of the Universe.

The standard model of cosmology, or ΛCDM concordance model, is the simplest and

most successful description of our Universe to date. It assumes that our Universe can

be modelled by the spatially homogeneous and isotropic FLRW solution to Einstein’s

equations on all scales, despite our Universe being only statistically homogeneous

16
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and isotropic on large scales [18]. Furthermore, the large-scale expansion of space is

assumed to have these properties as well, however, this has never been proven.

The successes of the standard model of cosmology come from its simplicity -

the metric described above results in remarkably simple evolution, or Friedmann,

equations that are used to derive observational relations - and its agreement with

data. The model is consistent with many results from high precision measurements,

from large-scale surveys such as SDSS [19] and DES [20], to CMB measurements,

which also inform us that the Universe is spatially flat [21]. The late time accelerated

expansion inferred from supernovae observations [22, 23], can be attributed to a simple

component, the Λ in ΛCDM, or dark energy. The dark matter that is responsible for

galaxy rotation curves is cold, which has implications for the growth of structure.

Even the detection of gravitational waves is an independent nod towards our current

model of cosmology and the Hubble constant [24].

Despite the success of the standard model of cosmology, it is not without its

shortcomings. The dark sector, comprised of dark energy and dark matter, contributes

95% of the overall energy budget of the Universe, yet very little is known about either

of these, despite decade long searches. A growing tension between high redshift and

local measurements of the value of the Hubble constant, at more than 3σ, points

either towards extensions to the standard model of cosmology, or revisiting systematic

effects [25]. Finally, the ΛCDM model fails to predict both the observed number and

mass of satellite galaxies [26].

A more subtle problem, and one that this thesis aims to address, lies in the Einstein

field equations themselves. They are highly non-linear and non-commutative, in that

averaging a tensor and calculating the evolution equations do not commute. This

begs the question - could the small-scale inhomogeneities that are otherwise ignored

in the FLRW solution have an effect on the large-scale dynamics of the Universe?

This is known as the backreaction problem in cosmology, and has been the subject

of intense debate over the last few years, see [27–29], and also [30, 31].

Observationally this may have implications for the propagation of light, and

therefore our interpretations of cosmological observables. This is of particular

importance as we enter an era where next generation large-scale surveys, such as

Euclid [32] and the LSST [33], will map the Universe to an unprecedented level of

precision. Recent studies on the propagation of light in inhomogeneous cosmologies

have found differences in cosmological parameters with FLRW predictions by as

much as 10% [34].

The standard model of cosmology is based on a spacetime metric that has remained

unchanged since its inception nearly a hundred years ago. It is imperative we have



1: Introduction 18

the correct underlying model to interpret future data. Until then, it should not

be assumed that the background geometry of our Universe be so simply described.

Thus we motivate the study of inhomogeneous cosmologies, which this thesis aims

to contribute to. Inspired by approaches from relativity and finding exact solutions,

we present a family of inhomogeneous cosmologies and investigate their similarities

and differences with FLRW universes. Our approach is exact, requires no junction or

matching conditions, and is fully relativistic.

In chapter 2 we review general relativity by looking at some of the main foundational

assumptions. We also look at alternatives, such as scalar-tensor theories of gravity.

Solving the Einstein field equations is no easy feat, therefore we introduce the ADM

formalism and 3+1 decomposition techniques as a means of constructing initial

data to instead solve the constraint equations. We present some of the existing

exact and black hole solutions in chapter 2 also, as well as introducing the topic of

inhomogeneous cosmology. This is done by giving a brief outline of the standard

model of cosmology before looking at what work has been done so far to solve the

backreaction problem, either numerically or analytically, and light propagation within

these models.

A subset of inhomogeneous cosmologies, the black hole lattices, are introduced

in chapter 3. We review the current literature, from their inception to the present

day, and review some of the main calculations that will be referred to again in this

chapter also.

Chapter 4 presents one of the generalisations of these lattices by introducing a

novel way to add structure. It involves splitting each of the black holes up into a

number of further masses and moving them along very well-defined, parameterised

trajectories. By altering the value of this parameter we can consider lattices with

clusters of black holes, and therefore investigate the cosmological effects of these. We

look at different ways to calculate the apparent horizons in these models, the various

definitions of mass, and the interaction energies. We find interaction energies appear

to be important in reducing the amount of backreaction [35].

The remaining chapters follow a similar format to chapter 4, in that we present the

constraint equations if necessary, solve them with an appropriate choice of initial data,

before looking at the cosmological effects. Intermediately there may be a calculation

of apparent horizons or mass parameters or similar. In chapter 5 we present initial

data which solves the constraint equations with a cosmological constant term, Λ. We

do this with an appropriate choice of the extrinsic curvature, and find the intrinsic

geometry remains unchanged from the Λ = 0 case. Differences however lie in the

location of the apparent horizons, which we calculate, as well as the quantities
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we can compare with suitable FLRW counterparts. It turns our the deceleration

parameter is one such quantity, and we find that for an increasing number of masses,

the deceleration parameter for the lattice universes becomes identical to its FLRW

version [36].

In chapter 6 we perform similar calculations but with the addition of electric

charge. Again, we present the initial data and focus on a model that contains 8 black

holes, the cubic lattice. Our FLRW comparison tells us that backreaction is at its

smallest when the black holes are extremal [37].

Finally the last of the generalisations we wish to present can be found in chapter

7. Here we move on from general relativity, to look at a simple scalar-tensor theory

of gravity, the Brans-Dicke theory. Our complexity increases twofold - firstly, by

choosing to construct inhomogeneous cosmologies over FLRW as we have seen, but

secondly, by now extending the gravitational theory to include a scalar field. As

a result, very little has been done in the literature regarding this, so we begin by

deriving the constraint equations for such a theory. We then solve them with initial

data, and interpret the various parameters by comparing to the spherically symmetric

Brans solution. We find a parameter that we interpret as controlling the background

level of scalar field. We derive expressions for the proper mass and scalar charge,

and perform a multilevel comparison. We find that in the general relativistic limit

we are able to recover the previous quantities [38].

Finally we conclude all of our findings in chapter 8 as well as stating where this

work may lead in the future.

1.1 Notation and Conventions

Throughout this thesis we use the metric signature (−, +, +, +). We use geometrised

units where c = G = 1, where c is the speed of light and G is the Newtonian

gravitational constant. Spacetime coordinates are denoted by Greek indices (µ, ν, ρ)

whilst spatial coordinates are denoted by Latin indices (i, j, k). We adopt the

Einstein summation convention throughout, where repeated indices are summed

over.



2 Background

2.1 General Relativity

Parts of section 2.1.5 are taken from [38] and parts of 2.2.4 are taken from [36] and

[35].

2.1.1 Principles of General Relativity

The insight Einstein had regarding gravity and spacetime allowed him to develop

his theory of general relativity. The spacetime metric is generalised from special

relativity to deviate away from flatness and include curvature. As a result, the

gravitational force is instead attributed to the curvature of spacetime. Although

conceptually very different to the definition of the Newtonian gravitational force,

general relativity is able to reproduce Newtonian gravity in the limit of weak fields

and slow velocities, a stringent requirement from solar system tests [39].

The cornerstones of general relativity are the principles of equivalence [40–42]. The

Weak Equivalence Principle states that once the initial positions and velocities have

been prescribed for uncharged freely falling test particles, then they will follow the

same trajectories, independent of internal composition and structure. The Einstein

Equivalence Principle follows on from this and states that locally, and up to tidal

gravitational forces, the same laws of special relativistic physics are recovered in

all freely falling frames, independently of the velocity of the reference frame or

location. Finally, the Strong Equivalence Principle extends these to include massive,

self-gravitating objects as well as test particles, and that locally, the same laws of

special relativistic physics are recovered in all freely falling frames, independently of

the position or velocity of the reference frame [43].

Covariance also plays a large role in general relativity, as the laws of physics, and

indeed gravity, should be invariant under transformations of coordinate systems.

This motivates the use of tensors in general relativity. These provide physically

meaningful equations as a tensor equation that holds in one coordinate system is

true in another [44].

20
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2.1.2 Differential Geometry

General relativity is a metric theory of gravity where spacetime is described by

a 4-dimensional Lorentzian manifold M. The metric tensor gµν is a symmetric,

invertible (0, 2) tensor that provides the notion of measurable quantities, such as

angles, norms and distances between two spacetime events, ds2 = gµνdx
µdxν , and

allows indices to be raised and lowered. Furthermore, the metric gµν defines in

a unique way a metric-compatible covariant derivative ∇µ on M, the Levi-Civita

connection. For a (1, 1) tensor it is defined as follows

∇µT
ν
λ = ∂µT

ν
λ + ΓνσµT

σ
λ − ΓσλµT

ν
σ , (2.1)

where ∂µ denotes the partial derivative with respect to the spacetime coordinates xµ

and the Christoffel symbols Γµνλ are defined as

Γµνλ =
1

2
gµρ (∂νgρλ + ∂λgνρ − ∂ρgνλ) . (2.2)

The covariant derivative is torsion free and compatible with the metric, ∇µgνρ = 0.

It is the natural generalisation of the partial derivative, from flat or Euclidean space,

to curved geometry, and indeed reduces to the partial derivative for a scalar function,

and in flat space.

Any spacetime is locally flat, and the quantity that characterises the deviation

away from this simple geometry is curvature. The Riemann tensor Rµ
νλρ is defined

as follows,

Rµ
νλρ = ∂λΓ

µ
νρ − ∂ρΓ

µ
νλ + ΓµλσΓσνρ − ΓµρσΓσνλ. (2.3)

The Riemann tensor enjoys several symmetry relations and identities,

Rµνρσ = −Rνµρσ, Rµνρσ = −Rµνσρ, Rµνρσ = Rρσµν , (2.4)

including the first Bianchi identity,

Rµνρσ +Rµσνρ +Rµρσν = 0, (2.5)

and second Bianchi identity,

∇λRµνρσ +∇σRµνλρ +∇ρRµνσλ = 0. (2.6)

Contracting the Riemann tensor once gives the Ricci tensor, Rµν = Rρ
µρν , whilst
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contracting again gives the Ricci scalar R = Rµνg
µν = Rµ

µ. Finally, by defining the

Einstein tensor as Gµν ≡ Rµν − 1
2
gµνR we have that the Einstein field equations in

the presence of the cosmological constant Λ can be written as

Gµν + Λgµν = 8πTµν , (2.7)

where we have introduced the stress-energy tensor Tµν , which contains all non-

gravitational sources of energy, such as radiation, fields and fluids. Thus gravity is

a manifestation of the curvature of spacetime, where the presence of mass-energy

generates this curvature. Matter moves on timelike geodesics, whilst photons travel

along null geodesics. For cosmological applications, such as the expansion of the

Universe, the Λ term in Equation (2.7) can be included, but due to its small magnitude

it becomes unimportant for black hole studies [1].

Conservation of energy-momentum is implied from the second Bianchi identity

and Equation (2.7), as ∇µG
µν = 0 and therefore

∇µT
µν = 0, (2.8)

where the compatibility of the covariant derivative with the metric has also been

used.

The Einstein field equations can also be derived using variational principles, where

the action for such a theory is given by the Einstein-Hilbert action,

S =
1

16π

∫
d4x
√
−g(R− 2Λ) +

∫
d4x
√
−gLm, (2.9)

where g is the determinant of the metric and Lm is the matter Lagrangian density.

The only dynamical field is the metric tensor gµν , which means varying the action

with respect to the metric results in the Einstein field equations above.

2.1.3 Birkhoff’s Theorem

Birkhoff’s theorem is used to understand the gravitational field around isolated masses.

It states that, in the absence of a cosmological constant, all asymptotically flat,

spherically symmetric solutions of the vacuum Einstein field equations are static [45].

Asymptotic flatness means the spacetime becomes increasingly Minkowskian at spatial

infinity, meaning the curvature vanishes. The geometry of such a spacetime is given

by the Schwarzschild solution, which has a line element in standard Schwarzschild
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coordinates as

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (2.10)

where m is the mass of the object. The Schwarzschild spacetime can be described by

several different coordinate systems. One of the most widely used of these is isotropic

coordinates, which can be obtained by introducing an isotropic radial coordinate ρ

as r = ρ
(

1 + m
2ρ

)2

. This gives the line element in Equation (2.10) as being

ds2 = −
(

1−m/2ρ
1 +m/2ρ

)2

dt2 +

(
1 +

m

2ρ

)4

(dρ2 + ρ2dθ2 + ρ2 sin θ2dφ2). (2.11)

We will refer back to this particular line element in subsequent chapters when we

construct the black hole lattices.

The Schwarzschild metric is a solution to the vacuum Einstein field equations and

represents a spherically symmetric spacetime surrounding a mass, and by virtue of

Birkhoff’s theorem, can be applied to the vacuum exterior of static or collapsing

stars. Birkhoff’s theorem is not valid in many alternative gravitational theories

however. An example is the non-static spherically symmetric vacuum solution to the

scalar-tensor Brans-Dicke theory [46], which we introduce more in section 2.1.5.

2.1.4 Lovelock’s Theorem

Lovelock’s theorem is important in providing a stepping stone towards constructing

alternative theories of gravity. It states that if we wish to construct a second-order 4-

dimensional theory using only the metric tensor in the Lagrangian, then the resulting

field equations are those of Einstein, with or without a cosmological constant [47, 48].

Consequently, if we seek a theory with different field equations, then we must do at

least one of the following [46]:

• Include additional fields, such as scalar, vector or tensor.

• Include higher than second-order derivatives of the metric in the field equations.

• Allow more than 4 spacetime dimensions.

• Discard either rank-2 tensor field equations, their symmetries, or conservation

laws.

• Allow non-locality.
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The first of these points is the most natural way of extending the theory of relativity,

and we will explain scalar-tensor theories in particular in the next section.

2.1.5 Scalar-Tensor Theories of Gravity

The only dynamical gravitational variable in general relativity is the metric tensor gµν .

Additional fields, such as scalar, vector or tensor can also be added by introducing a

non-minimal coupling between the additional field and gravity. In order to pass solar

system tests, these couplings need to either be weak, or involve screening mechanisms

such that the effects of the additional field are not seen on solar system scales [46].

Cosmologically, one of the biggest motivations for studying the effects of extra fields

is that they give can rise to the late time accelerated expansion of the Universe

without the need for dark energy [49].

The simplest addition is naturally a scalar field, giving rise to a class of theories

called scalar-tensor theories. Scalar-tensor theories of gravity are also among the

oldest and best studied generalisations of Einstein’s theory. They were originally

introduced by Jordan in 1949 [50, 51], before being refined by Brans and Dicke in

1961 [52] and then being generalized to theories with arbitrary coupling parameters

by Bergmann [53], Wagoner [54] and Nordtvedt [55]. They can be seen to contain

the dimensionally reduced theories that one recovers from string theory [56], as

well as the canonical version of the Horndeski class of scalar-tensor theories that

have recently found popularity in cosmology [57]. Phenomenologically, scalar-tensor

theories of gravity have found application in modelling the possible variations of the

constants of nature [58, 59], as well as providing the archetypal class of theories that

are used to quantify allowed deviations from Einstein’s theory [43].

Usually, the coupling parameter is an arbitrary function of the scalar field. However,

if one sets it to a constant value, one recovers the simplest example of a scalar-tensor

theory, the Brans-Dicke theory. This has a Lagrangian density given by [46]

L =
1

16π

√
−g
(
φR− ω

φ
∇µφ∇µφ

)
+ Lm(gµν , ψ), (2.12)

where gµν is the metric, φ is the scalar field, ω is the constant coupling parameter of

the theory, and Lm(gµν , ψ) is the Lagrangian density of the matter fields, ψ. The

non-minimal coupling between φ and R results in new gravitational phenomena,

while the coupling of only gµν to ψ ensures that the Einstein Equivalence Principle

is maintained.

Varying the resulting action with respect to the metric gµν , gives the following
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field equations:

φGµν +

(
2φ+

ω

2φ
(∇φ)2

)
gµν −∇µ∇νφ−

ω

φ
∇µφ∇νφ = 8π Tµν , (2.13)

while varying with respect to the scalar field φ, yields

2φ =
8π T

(3 + 2ω)
, (2.14)

where Tµν are the components of the energy-momentum tensor, and T is its trace.

The locally measured gravitational ‘constant’ in these theories can then be shown to

be given by

G =
(4 + 2ω)

(3 + 2ω)

1

φ
, (2.15)

and hence can vary in spacetime whenever φ is non-constant. These equations can

be seen to reduce to Einstein’s theory in the limit ω →∞, when φ→ constant and

Equation (2.13) reduces to Einstein’s equations [60].

The Brans-Dicke theory of gravity will be considered in chapter 7 where we will

use it to construct inhomogeneous cosmological models.

2.2 Solving the Einstein Field Equations

The problem of finding solutions to the Einstein field equations can be tackled

by treating it as an initial value, or Cauchy problem, inspired by mathematical

treatments of partial differential equations. In its 4-dimensional covariant form there

are ten non-linear second-order partial differential equations to solve. Progress is

instead made by slicing the 4-dimensional manifold into layers of 3-dimensional spatial

hypersurfaces which foliate the spacetime and build up along a 1-dimensional time

direction. This is known as the 3+1, or Arnowitt-Deser-Misner (ADM) decomposition.

The gravitational field then obeys both what are known as the constraint and evolution

equations. The constraint equations must be satisfied by the initial data (the spatial

hypersurfaces) at an initial time. The evolution equations describe how this data

evolves in time to give the full spacetime. It turns out that this picture is completely

equivalent to the field equations of general relativity. Much of the early work can

be attributed to Darmois [61], Lichnerowicz [62] and Foures-Bruhat [63], as well

as Arnowitt et al [64], of which the equations bear their name. Choquet-Bruhat’s

pioneering work showed that indeed the initial value problem described above is

well-posed, meaning given some initial data, the solution to the evolution equations
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is uniquely determined by this initial data [65, 66].

In this section we review the 3+1 decomposition of general relativity and derive the

constraint and evolution equations. We review approaches used to construct initial

data in order to solve the constraint equations as well as give a few examples. An

alternative approach is the orthonormal frame, or tetrad, approach, which contains

the ADM constraint and evolution equations as a subset. We will briefly review this

approach and how it is used to locate the apparent horizons of black holes.

2.2.1 3 + 1 Description

We follow the notation and derivations given in [1], [67] and [68]. We denote a

4-dimensional spacetime manifold byM and its metric by gµν . Our aim is to express

the curvature quantities in the 4-dimensional manifold into 3-dimensional quantities,

which will give us the constraint and evolution equations. The spacetime M is

foliated by spacelike hypersurfaces, or time slices, Σt, where t ∈ R, which are non-

intersecting and M =
⋃
t∈R Σt. Σ0 is the initial hypersurface on which the initial

data is prescribed. The scalar function t can be thought of as a global time function

as the hypersurfaces are the surfaces of constant t, or level surfaces of t, see Figure

2.1.

We can define a covector

ωµ = ∇µt, (2.16)

which is closed by definition, ∇[µων] = ∇[µ∇ν]t = 0. We can use this to define the

lapse function α via

gµνωµων ≡ −
1

α2
, (2.17)

which measures how much time has elapsed between two adjacent time slices along

the normal vector ωµ, where ωµ = ∇µt. The sign of the lapse function is α > 0 such

that ωµ is timelike and the hypersurfaces Σt are spacelike everywhere.

We can define a unit normal vector nµ as

nµ ≡ −αωµ, (2.18)

where nµ is normalised and timelike such that nµnµ = −1. We can interpret this

unit normal as the 4-velocity of an observer whose worldlines are normal to the

hypersurfaces.

A 3-dimensional spatial metric hµν is induced on the hypersurfaces by the metric
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Figure 2.1: A manifoldM foliated by surfaces Σt of constant time t. The unit normal
here is denoted by na. This figure is taken from Numerical Relativity
by Baumgarte and Shapiro [1], and is reproduced with permission of
Cambridge University Press through PLSclear.

gµν as follows,

hµν = gµν + nµnν . (2.19)

This metric lives completely within the hypersurfaces, and so is purely spatial, having

no component along nµ. To see this, we contract the metric with the unit normal as

nµhµν = nµgµν + nµn
µnν = nν − nν = 0. (2.20)

Similarly the inverse 3-metric is defined as

hµν = gµν + nµnν . (2.21)

The 3-metric is a projection tensor that projects out all geometric objects along

nµ. In order to perform the 3+1 decomposition, we contract with the unit normal

to decompose quantities into a temporal part, and contract with the 3-metric to

decompose quantities into a spatial part. The two projection operators that do this

are formed by raising one index of the 3-metric,

hµν = gµν + nµnν = δµν + nµnν , (2.22)

for the spatial projection, and defining

Nµ
ν = −nµnν = δµν − hµν , (2.23)
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for the temporal projection. Thus any object can be decomposed into its spatial and

temporal parts, for example, consider the following arbitrary vector,

vµ = δµνv
ν = (hµν +Nµ

ν)v
ν = hµνv

ν − nµnνvν . (2.24)

The 3-metric hµν uniquely defines a covariant derivative Dµ which for a scalar φ is

defined as

Dµφ ≡ h ν
µ∇νφ, (2.25)

and for a (1, 1) tensor is

DµT
ρ
ν ≡ h α

µ h
ρ
β h

γ
ν ∇αT

β
γ . (2.26)

This covariant derivative is torsion free and compatible with the metric, Dµhνρ = 0.

It has an associated 3-dimensional curvature tensor Rρ
σµν , defined as

DµDνv
ρ −DνDµv

ρ = Rρ
σµνv

σ, (2.27)

where Rρ
σµνn

σ = 0. This tensor can be contracted to give the corresponding Ricci

tensor, Rµν ≡ Rρ
µρν , and Ricci scalar R ≡ gµνRµν = Rµ

µ, of the associated 3-space.

Extrinsic Curvature

The 3-dimensional Riemann tensor Rρ
σµν introduced above measures the intrinsic

curvature of the hypersurfaces Σt. It contains no information about how these are

embedded in the full 4-dimensional spacetime manifold M. Here we will introduce

exactly this missing quantity, the extrinsic curvature. Together this forms the initial

data that will satisfy the constraint equations. The metric hµν and the extrinsic

curvature Kµν are known as the first and second fundamental forms of the spacetime,

respectively.

The extrinsic curvature measures the rate of deformation of the hypersurfaces

along the unit normal, see Figure 2.2, and is defined as follows,

Kµν ≡ −h ρ
µ h

σ
ν ∇(ρnσ) = −h ρ

µ h
σ
ν ∇ρnσ. (2.28)

From this we can define the mean curvature K as

K ≡ gµνKµν = hµνKµν , (2.29)

which we note is just the trace of Kµν . Finally the extrinsic curvature is transverse,

that is, Kµνn
ν = 0.
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Figure 2.2: Diagram showing the extrinsic curvature measuring the rate of change
of the hypersurface along the unit normal na. This figure is taken from
Numerical Relativity by Baumgarte and Shapiro [1], and is reproduced
with permission of Cambridge University Press through PLSclear.

2.2.2 ADM Constraint and Evolution Equations

We are now ready to derive the ADM constraint and evolution equations. First we

need to relate the 3-dimensional curvature tensor to the 4-dimensional curvature

tensor, and do this by first spatially projecting the 4-dimensional Riemann tensor.

Using the previous definitions, we can write

DµDνv
ρ = h α

µ h
β
ν h

ρ
γ ∇α∇βv

γ −Kµνh
ρ
γ n

α∇αv
γ −K ρ

µ Kναv
α. (2.30)

Using Equation (2.27) to introduce the second term on the left-hand side, this gives

Rµνρσ +KµρKνσ −KµσKρν = h α
µ h

β
ν h

γ
ρ h

δ
σRαβγδ, (2.31)

which is known as the Gauss-Codazzi equation. This can be contracted to give

hµρh ν
β h

σ
δ Rµνρσ = Rβδ +KKβδ −K γ

δ Kγβ. (2.32)

Further contracting gives

hµρhνσRµνρσ = R+K2 −KµνK
µν . (2.33)

Expanding out the left-hand side gives

hµρhνσRµνρσ = (gµρ + nµnρ) (gνσ + nνnσ)Rµνρσ

= R + 2nµnρRµρ

(2.34)
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where we have omitted the last term, nµnνnρnσRµνρσ = 0, due to the symmetry

properties of the Riemann tensor, i.e. Rµνρσ = −Rνµρσ. We can now use the Einstein

field equation, Equation (2.7), to eliminate the 4-dimensional Riemann tensor. Doing

this gives

2nµnνGµν = 2nµnνRµν − nµnνgµνR

= 2nµnνRµν +R

= hµρhνσRµνρσ

= R+K2 −KµνK
µν .

(2.35)

Relating this to the stress energy tensor Tµν , where we define the total energy density

as ρ ≡ nµnνT
µν , finally gives the first constraint equation as

R+K2 −KµνK
µν = 16πρ. (2.36)

This is known as the Hamiltonian constraint.

There is one more constraint equation, where the derivation begins by projecting

the 4-dimensional Riemann tensor along the normal direction to obtain DµKνρ =

h α
µ h

β
ν h

γ
ρ ∇αKβγ. This can be manipulated to give

DνKµρ −DµKνρ = h α
µ h

β
ν h

γ
ρ n

δRαβγδ, (2.37)

which is known as the Codazzi-Mainardi equation. As before, this can be contracted

to give

DνKµν −DµK = h α
µ h

βγnδRαβγδ. (2.38)

Expanding out the right-hand side gives

h α
µ h

βγnδRαβγδ = −h α
µ (gβγ + nβnγ)nδRαβγδ

= −h α
µ n

δRαδ,
(2.39)

where again the last term vanishes due to the symmetries of the Riemann tensor.

Utilising the Einstein field equation (2.7) again we have

h α
µ n

δGαδ = h α
µ n

δRαδ −
1

2
h α
µ n

δgαδR. (2.40)

The last term can vanish due to hµδn
δ = 0, and once again, relating this result to

the stress-energy tensor by defining Sµ = −h α
µ n

δTαδ we have the second constraint
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equation,

DνKµν −DµK = 8πSµ. (2.41)

This is known as the momentum constraint, where Sµ is the momentum density

measured by a normal observer. Both constraint equations involve the spatial metric,

the extrinsic curvature, and spatial derivatives for both of these. In order for a set

of initial data to be a solution to the Einstein field equations, it must satisfy these

equations. In order to completely specify the full spacetime, information about how

this initial data evolves is needed, and hence one can solve the evolution equations

as well.

Adapted Coordinates

General expressions for the evolution equations involve Lie derivatives, which we will

not state here, see [1] for details. Instead we can choose adapted coordinates such

that this Lie derivative reduces to the partial derivative and the spatial metric is

simply the spatial part of the metric tensor gµν . In these coordinates, the spacetime

metric can be written as

ds2 = −α2dt2 + hij(dx
i + βidt)(dxj + βjdt), (2.42)

which is known as the 3+1 form of the metric. Here α is the lapse function from

before and βi is the shift vector, which measures how much the spatial coordinates

have shifted within a time slice. The lapse and shift are arbitrary and represent the

coordinate freedom in the Einstein field equation manifesting as a gauge freedom

in the ADM equations. This can be seen by realising that the lapse function is the

choice of separation of time slices whilst the shift vector is the choice in relabelling

the spatial coordinates arbitrarily.

The full set of constraint and evolution equations in these adapted coordinates,

where the 3+1 decomposition naturally reveals a spatial part of the metric, are given

by,

R+K2 −KijK
ij = 16πρ,

DjKij −DiK = 8πSi,

∂tKij = −DiDjα + α(Rij − 2KikK
k
j +KKij)

− 8πα(Sij −
1

2
hij(S − ρ)) + βkDkKij

+KikDjβ
k +KkjDiβ

k,

∂thij = −2αKij +Diβj +Djβi,

(2.43)

(2.44)

(2.45)

(2.46)
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where we have also defined the spatial stress and its trace respectively as

Sij ≡ hikhjlT
kl, S ≡ hijSij = Sii. (2.47)

Equation (2.45) is the evolution equation for the extrinsic curvature Kij and Equation

(2.46) is the evolution equation for the spatial metric hij.

2.2.3 Initial Data

In principle, Equations (2.43) and (2.44) can still be difficult to solve. Therefore we

will now look at some of the approaches used to construct initial data that solves

constraint equations. These include the main conformal approach of Lichnerowicz

and York [62, 69], which forms the focus of this thesis, the conformal thin sandwich

approach, gluing constructions, and the Friedrich-Butscher perturbative approach.

Conformal Method

This method is based on a conformal transformation of the spatial metric. Two

metrics hij and h̃ij are said to be conformally related if there exists a conformal

factor ψ such that

hij = ψ4h̃ij. (2.48)

The transformation for the inverse metric is then hij = ψ−4h̃ij. The corresponding

connection coefficients, Riemann curvature tensor, Ricci tensor and scalar also

transform, the latter being

R = ψ−4R̃ − 8ψ−5D̃2ψ, (2.49)

where R̃ is the Ricci scalar associated with the conformal metric h̃ij and D̃2 is the

covariant Laplacian also associated with this metric. Inserting this expression into

Equation (2.43) gives the Hamiltonian constraint as

8D̃2ψ − ψR̃ − ψ5K2 + ψ5KijK
ij = −16πψ5ρ. (2.50)

This equation can be thought of as an equation for the conformal factor ψ, but

is highly non-linear in ψ. A simplification can be made if one chooses a vacuum

solution, such that the right-hand side is zero, and vanishing extrinsic curvature.

Physically this corresponds to hypersurfaces at a moment of time symmetry, or time-

symmetric slices. To see this, one can use adapted coordinates and consider the form
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of the spatial metric evolution equation (2.46). Provided the shift vector vanishes,

a time-symmetric metric has ∂thij = 0 which implies K = Kij = 0 everywhere.

The momentum constraint Equation (2.44) is solved trivially and the Hamiltonian

constraint becomes

D̃2ψ =
R̃
8
ψ, (2.51)

which is a linear, Helmholtz equation for ψ. Further simplifications can be made by

taking the conformal metric h̃ij to be the metric of a 3-sphere. This is exactly what

we will do in order to construct our black hole lattices, which are explained further

in chapter 3.

The 3-sphere is the higher dimensional equivalent of the 2-sphere, which means we

can relate the Cartesian coordinates in a 4-dimensional Euclidean embedding space

to hyperspherical coordinates on a unit 3-dimensional sphere within that space as

follows [3]:

w = cosχ,

x = sinχ cos θ,

y = sinχ sin θ cosφ,

z = sinχ sin θ sinφ.

(2.52)

Thus the metric of a unit 3-sphere in these hyperspherical coordinates (χ, θ, φ) is

given by

ds2 = dχ2 + sin2 χdθ2 + sin2 χ sin2 θdφ2, (2.53)

which has R̃ = 6. A general expression for the covariant Laplacian on the left hand

side of Equation (2.51) is given by

D̃2ψ =
1√
h̃

∂

∂xi

(√
h̃h̃ij

∂ψ

∂xj

)
, (2.54)

where h̃ is the determinant of the metric tensor hij, given in Equation (2.53).

Alternatively one can consider initial data with non-zero extrinsic curvature. In

that case, one makes use of the conformal-transverse-traceless decomposition as

a way to proceed. We have already introduced the conformal transformation in

Equation (2.48), but one can also decompose the extrinsic curvature into its trace

and trace-free parts, K and Aij, as follows

Kij =
1

3
hijK + Aij. (2.55)
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Relating this to their conformal quantities gives

Kij =
1

3
h̃ijK + ψ−2Ãij. (2.56)

Substituting this and Equation (2.49) into the constraint Equations (2.43) and (2.44)

gives

8D̃2ψ − ψR̃ − 2

3
ψ5K2 + ψ−7ÃijÃ

ij = −16πψ5ρ (2.57)

D̃iÃ
ij − 2

3
ψ6h̃ijD̃iK = 8πψ10Sj. (2.58)

These equations can be simplified by choosing to consider vacuum initial data such

that the right-hand sides vanish, and by taking the conformal metric to be flat such

that R̃ = 0. The resulting equations are highly non-linear in ψ and therefore progress

can be made numerically. We review some of this work in chapter 3.

Conformal Thin Sandwich Method

This approach is similar to the previous conformal method, having been devised by

York [70] but incorporates some degree of time evolution in specifying the initial

data, and therefore is useful in simulating binary black hole collisions, for example

[71]. Its name arises from prescribing the spatial metric on two time slices, instead

of the metric and extrinsic curvature. On the second slice, the metric is weighted

by a velocity tensor uij = ḣij. The evolution equation for the spatial metric is then

used, which contains the shift vector βi. In this method therefore, the lapse and

shift appear, whereas previously they were a completely independent choice. The

lapse is given by the conformal transformation and the shift is given by solving the

constraint equations. Suitable gauge conditions can then be chosen for numerical

integration, for example, the geodesic slicing condition has α = 1 and βi = 0.

Gluing Methods

The gluing methods use existing solutions to construct new solutions to the constraint

equations. [72]. Given two existing solutions (M1, hij 1, Kij 1) and (M2, hij 2, Kij 2),

spherical regions around two points p1 and p2 are removed and conformally blown

up into cylinders which are joined together. One then tries to find initial data on

this new manifold that solves the constraint equations. This is known as IMP gluing,

after Isenberg, Mazzeo and Pollack [73, 74]. An application of this method includes

multi-black hole data sets, where the cylindrical region contains a minimal surface
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and therefore apparent horizon [75]. There also exists the Corvino-Schoen method

[76, 77], which is used to connect an interior region in an asymptotically Euclidean

solution to an exterior Kerr or Schwarzschild solution.

Friedrich-Butscher Perturbative Method

As well as the Hamiltonian and momentum constraint equations, one can also project

the second Bianchi identity onto the hypersurface, giving a set of two more equations

[78]. Together these four equations form the extended constraint equations, which

themselves are a subset of the full conformal constraint equations by Friedrich

[79]. A perturbative approach is then used to generate solutions to these in the

neighbourhood of known solutions. Recently this approach was used to look at

non-linear perturbations of initial data in spatially closed analogues of the k = −1

FLRW spacetime [80].

2.2.4 Orthonormal Frame/Tetrad Description

The 3+1 decomposition can be thought of as a subset of a much larger group of

equations, the orthonormal frame or tetrad approach, which are a complete set of

equations. Analysing a problem using this orthonormal frame approach can offer

more insight and may be useful in systems where preferred directions are needed.

In this thesis, we will use this approach to calculate the position of the apparent

horizons of the black holes. We will start by outlining a few basics of the orthonormal

frame approach before applying it to locate the horizons.

We begin by considering a preferred timelike vector on the spacetime manifold,

which allows us to define a unit timelike vector denoted uµ = eµ0 . We can then

introduce three orthogonal spacelike unit vectors, {eµ1 , e
µ
2 , e

µ
3 , }, which together with

uµ complete our orthonormal frame.

The covariant derivative of the unit timelike vector can be decomposed as

∇µuν = −uµu̇ν + σµν +
1

3
Θhµν − ωµν , (2.59)

where u̇µ ≡ uν∇νu
µ is the acceleration vector, σµν ≡ u̇(µuν) + ∇(µuν) − 1

3
Θhµν is

the symmetric and trace free shear tensor, Θ ≡ ∇µu
µ is the expansion scalar and

ωµν ≡ −u[µu̇ν] − ∇[µuν] is the antisymmetric vorticity tensor. The magnitudes of

these can be defined accordingly, as well as rotation and commutation relations for

the orthonormal frame vectors.

Lastly, we will introduce the Weyl tensor, which is the trace free part of the
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Riemann tensor (recall that the Ricci tensor is the trace part). In 4 dimensions it is

given by [1]

Cµνρσ = Rµνρσ −
1

2
(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +

1

6
(gµρRνσ − gµσRνρ)R,

(2.60)

which is invariant under conformal transformations of the metric, vanishes if and only

if the metric is conformally flat, and in vacuum spacetimes is equal to the Riemann

tensor. The Weyl tensor can be decomposed into its electric and magnetic parts

respectively,

Eµν ≡ Cµνρσu
ρuσ, (2.61)

Hµν ≡
1

2
εµρσC

ρσ
ντu

τ . (2.62)

The electric part contains information about tidal forces due to gravity, whilst the

frame dependent magnetic part contains other information, for example, gravitational

radiation or frame dragging.

The idea now is to use the quantities defined and the relations for the frame vectors

to rewrite the field equations and the Jacobi and Bianchi identities. This gives rise

to the orthonormal frame equations [81].

Time-Symmetric Hypersurfaces

We will now link our initial data for the hypersurfaces to the orthonormal frame

approach and show that we arrive at the same constraint equations. We follow the

derivation in [82]. We first choose the first term on the right-hand side of Equation

(2.59) to vanish, i.e. u̇µ = 0. Then, our choice of a time-symmetric hypersurface

means we are considering the transformation uµ → −uµ. We require quantities to be

invariant under this and so set to zero quantities that are not. From Equation (2.59),

none of the terms satisfy this and so we can set the shear tensor, the expansion scalar

and the vorticity tensor to be zero. A relevant field equation from [81],

0 = −1

3
Θ2 + σ2 − ω2 − 2ωµΩµ − 1

2
R, (2.63)

where R is the trace part of the Ricci tensor Rµν of spacelike 3-surfaces orthogonal

to uµ, and Ωµ is the angular velocity of the spatial frame vectors, tells us that R = 0,

which we identify as the Hamiltonian constraint from the 3+1 approach. Another
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relevant constraint for the electric part of the Weyl tensor from [81] is

Eµν =
1

3
Θσµν − σµρσρν − ωµων − 2ω(µΩν) +

1

3
δµν
[
2σ2 + ω2 + 2ωρΩ

ρ
]

+ Sµν , (2.64)

where Sµν is the trace free part of the Ricci tensor Rµν . Again, from our choices and

R = 0 we have that

Eµν = Sµν = Rµν . (2.65)

Finally, the Bianchi identities for the Weyl tensor allow us to write [81]

0 = (eν − 3aν) (Eµν) + 3ωνH
µν − εµνσ [σνρH

ρ
σ + nνρE

ρ
σ] , (2.66)

where eν is a frame derivative and ων is the vorticity vector, defined as ωµ ≡
1
2
ηµνρσωνρuσ, with ηµνρσ being the totally antisymmetric permutation tensor. The

3D totally antisymmetric permutation tensor is εµνσ with ε123 = 1, ε132 = −1, and

we also have a 1-index object aν which we will relate to the expansion for apparent

horizons in the next section, and a symmetric 2-index object, nνρ [82]. We will return

to these expressions once we have introduced the concept of an apparent horizon in

the next section.

Apparent Horizons

Apparent horizons are defined as outermost marginally outer trapped surfaces where

the expansion of outgoing null geodesics vanish. The precise location of apparent

horizons can be found numerically [83], or located using approximate or analytic

methods. We will briefly review the above definition in what follows, and follow the

results in [1].

We can first of all consider a closed 2-dimensional spatial surface S in the hyper-

surface Σ, and define sµ as an outward pointing unit normal lying in Σ, and we

have that sµnµ = 0, where nµ is the unit normal to the hypersurface. Just as the

4-dimensional metric gµν induces a 3-dimensional metric hµν on the hypersurface, so

does the 3-dimensional metric induce a 2-dimensional metric mµν on the surface S.

This is also known as the screen space projector, and is given by

mµν = hµν − sµsν . (2.67)

We can further define two future pointing null geodesic vectors kµ and lµ, where

only kµ will be of importance in our subsequent analyses as we take this to be the
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outgoing geodesic. It is defined as

kµ ≡ 1√
2

(nµ + sµ) . (2.68)

Its expansion is given by mµν∇µkν . A 2-dimensional surface on Σ where the expansion

of null geodesics is negative everywhere is known as an outer trapped surface. There

can exist multiple regions in Σ with outer trapped surfaces - these can form a

connected region. Thus the boundary of this region is defined as a surface where

the expansion of the outgoing null geodesics vanishes, and it is this that we call

the apparent horizon, or outermost marginally outer trapped surface. For the

Schwarzschild geometry, the apparent horizon coincides with the event horizon.

Our criteria for the apparent horizon is therefore given by

0 = mµν∇µkν

=
1√
2
mµν∇µ(nν + sν)

=
1√
2
mµν∇µ(uν + e1 ν),

(2.69)

where we used the definition of the outgoing null geodesic, Equation (2.68), and the

fact that we can align the unit timelike vector uµ with the unit normal nµ and the

frame vector eµ1 with the outward unit normal sµ from the surface S. The first of

these terms we can identify as the trace of the extrinsic curvature, which by imposing

a time-symmetric hypersurface vanishes. The second term is the expansion of eµ1 in

the screen space, which therefore vanishes also. We can now apply these results to

the orthonormal frame equations we looked at in the previous section.

We can define a Ricci principal direction as being a Ricci direction proportional to

the normal of a surface, specifically for a (n− 1)-dimensional surface with indetermi-

nate lines of curvature residing in a constant mean curvature n-dimensional space.

We can quantify this as being equivalent to

Rµνe1µ ∝ eν1. (2.70)

From this, we can immediately see that the components of the electric part of the

Weyl tensor, E12 and E13, immediately disappear at all points on the apparent



2.2: Solving the Einstein Field Equations 39

horizon, as if we perform the contraction,

R12 = Rµνe1µe2 ν

∝ eν1e2 ν = 0 = E12,
(2.71)

where we have used the definition of a Ricci principal direction, the fact that the

orthonormal basis vectors are orthogonal, and Equation (2.65). Furthermore, time

symmetry implies that the magnetic part of the Weyl tensor Hµν vanishes. Finally, due

to the choice of locally rotationally symmetric curves, the only non-zero components

of the tensor nνρ is n23 [2, 82]. Putting all of this together means Equation (2.66)

becomes [82]

e1

(
E11
)

= 3a1E
11 + n23

(
E3

3 − E2
2

)
, (2.72)

where e1 is a frame derivative in a direction normal to the apparent horizon and

2a1 = −∇νe1µm
µν is the expansion of eµ1 . The subscripts 1, 2 and 3 in this equation

correspond to frame components. This is an important result that we will use in

chapters 4 and 5 to calculate the positions of the apparent horizons in our cosmological

models.

In the Presence of a Cosmological Constant

One can also include the cosmological constant Λ terms in the orthonormal frame

constraint equations. This will be of relevance to chapter 5 where we add Λ to the

black hole lattices and calculate the positions of their horizons. As in the time-

symmetric case, the shear and vorticity tensors vanish, whilst the expansion scalar

Θ is non-zero, as it is related to the trace of the extrinsic curvature. Using these

results, we can see that Equation (2.63) in the presence of Λ becomes

0 = −1

3
Θ2 + σ2 − ω2 − 2ωµΩµ − 1

2
R+ Λ

= −1

3
Θ2 − 1

2
R+ Λ.

(2.73)

Using the definitions of the expansion scalar and the extrinsic curvature we see that

Θ = −K, and we show in chapter 5 that a suitable choice of cosmological constant is

one where K2 = 3Λ. Combining these results we simply have that R = 0 as before,

and therefore Equations (2.65) and (2.72) are unchanged from the time-symmetric

case.

Previously, the definition of an apparent horizon, Equation (2.69), and the choice

of time-symmetric hypersurfaces meant that both K = 0 and the expansion of eµ1
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was zero. Now, we can instead derive a relation between both of these quantities, as

they are both non-zero. Using Equation (2.69) we can instead write

−mµν∇µe1 ν = mµν∇µuν

=
2

3
Θ,

(2.74)

where we have used the fact that the screen space projector mµν contains only 2 of

the 3 orthonormal basis vectors. We will return to these results in chapter 5, where

we will apply it to Equation (2.72).

2.3 Exact Solutions

There have been many attempts at constructing solutions of the Einstein field

equations, from simple solutions to more complicated configurations of black holes

embedded in a background. In this section we review some of the main attempts

so far and how they are related. Of course there are far too many to compile an

exhaustive list, therefore we refer the reader to both [84] and [85] for complete

overviews of the topic. We instead focus on solutions that are of interest from an

inhomogeneous cosmological point of view, or that are related to our black hole

lattices, such as the Einstein-Maxwell solutions.

2.3.1 Homogeneous Solutions

Minkowski Solution

The simplest solution to the Einstein field equations (2.7) is the Minkowski metric,

denoted by ηµν and is given by ηµν = diag(−1, 1, 1, 1). Its line element is therefore

ds2 = ηµνdx
µdxν , (2.75)

and is a solution to the vacuum field equations in the absence of Λ. It can also

be used to describe weak-field solar system phenomena where Newtonian gravity

is insufficient. Small perturbations around the Minkowski metric, where the global

spacetime metric can be written as

gµν = ηµν + hµν , (2.76)
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with hµν denoting the deviation from Minkowski spacetime, can be used as post-

Newtonian corrections and can account for the perihelion shift of Mercury [86].

FLRW Solution

If spatial homogeneity and isotropy is assumed, then such a spacetime is given

uniquely by the FLRW metric with line element

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
, (2.77)

where a(t) is the scale factor, denoting the expansion of the universe, dΩ2 = dθ2 +

sin2 θdφ2, and there are 3 possibilities for the curvature parameter k depending on

the spatial geometry,

k =


1, for a closed universe,

0, flat,

−1, open.

(2.78)

The reader may note that for a flat universe, the FLRW metric is conformally related

to the previous Minkowski metric, with the scale factor a(t) being the conformal

factor.

The FLRW spacetime is a non-vacuum solution, which means the stress-energy

tensor is chosen to be that of a perfect fluid, given by

Tµν = (ρ+ P )uµuν + Pgµν , (2.79)

where ρ is the energy density, P is the pressure, and uµ is the 4-velocity of the fluid.

The pressure and density can be related through an equation of state, P = ωρ, where

the value of the parameter ω indicates the type of fluid considered,

ω =


1
3
, radiation,

0, dust,

−1, dark energy.

(2.80)

Dust is collisionless and non-relativistic, hence P = 0, and is also known as matter,

whilst radiation is considered relativistic. The field equations for the metric in

Equation (2.77) and the stress-energy tensor Equation (2.79) result in the Friedmann
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equations in the presence of Λ as,(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
, (2.81)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (2.82)

where overdots denote differentiation with respect to proper time t. The solutions

for the scale factors a(t) then take different forms depending on the spatial geometry

and the fluid under consideration, see [41] for details. For dust filled universes, only

the closed case has a maximum of expansion, whilst the open and flat universes

expand forever. This is analogous to the construction of initial data for the vacuum

constraint equations in section 2.2.3, where time symmetry, or a maximum of

expansion, restricted the solutions to have a curved conformal metric, whereas a

non-zero extrinsic curvature admitted solutions with a flat conformal space.

2.3.2 Inhomogeneous Perfect Fluid Solutions

One can relax the assumption of homogeneity used in the Minkowski and FLRW

spacetimes above to consider inhomogeneous solutions to the Einstein field equations.

The motivation for doing so is discussed in more detail in section 2.4, but we will

introduce the most commonly used metrics here.

Lemâıtre-Tolman-Bondi Solution

The Lemâıtre-Tolman-Bondi (LTB) solution represents a spherically symmetric dust

spacetime and relaxes a degree of homogeneity compared to the FLRW metric. It

can be written in comoving coordinates as [87]

ds2 = −dt2 +X2(t, r)dr2 + Y 2(t, r)dΩ2, (2.83)

where Y (t, r) is the areal radius. The function X(t, r) is dependent on Y (t, r) and

through solving the Einstein field equations this relation is apparent through writing

the metric as

ds2 = −dt2 +
[Y ′(t, r)]2

1 + 2E(r)
dr2 + Y 2(t, r)dΩ2, (2.84)

where E(r) is now a function of radial coordinate only and Y ′ = ∂Y/∂r. The function

E(r) determines the curvature of the space at each value of r. To see this, if E = 0,

then the metric of the space t = constant is flat. The evolution equation for Y (t, r)
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is given by

Ẏ 2 =
2M

Y
+ 2E, (2.85)

where Ẏ = ∂Y/∂t and M = M(r) is the gravitational mass within a radius r, whilst

the energy density is given by

4πGρ =
M ′

Y 2Y ′
. (2.86)

Equation (2.85) has three solutions based on the sign of E. These expressions

involve a further function, tb(r), which is the local big bang time. Altogether the

three functions of r completely characterise the solution. The FLRW metric can be

obtained by choosing

Y (t, r) = a(t)r. (2.87)

One of the aims of the LTB solution is to model the structures we observe in the

Universe. However, it is spherically, not axially, symmetric and therefore cannot

model rotation, meaning it is inadequate to describe single galaxies and even galaxy

clusters [88]. The solution describes voids well, as these have been shown to have

spherical symmetry as a stable property. Mustapha, Hellaby and Ellis [89] proved

that the LTB solution can be fitted to any set of observed number densities and areal

distances, together with the evolution functions for luminosity and mass per source,

making it a viable choice for cosmology. Indeed, it has been shown that the LTB

spacetime can explain the apparent accelerated expansion without the need for dark

energy. However, a shortcoming of the LTB spacetime is that it requires a central

observer, sometimes at the centre of a large void, which violates the Copernican

principle [90].

Szekeres Solution

The Szekeres family of solutions are the most general known inhomogeneous, dust

filled, exact solutions, exhibiting no symmetries and thus generalising solutions like

LTB [91]. As a result, they can model more general shapes of voids and clusters,

and overcome the restrictions imposed by spherical symmetry discussed above. The

metric for the Szekeres solution is given by [88]

ds2 = −dt2 + e2αdr2 + e2β
(
dx2 + dy2

)
, (2.88)

where α = α(t, x, y, r) and β = β(t, x, y, r) are determined by solving the Einstein

field equations. Defining β′ = ∂β/∂r allows the Szekeres family to be divided into
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two subclasses, those with β′ = 0 and those with β′ 6= 0. The latter of these contains

the LTB solution as a subset, and has the metric functions written as

eβ = Φ(t, r)eν(r,x,y),

eα = h(r)Φ(t, r)β′ ≡ h(r) (Φ′ + Φν ′) ,

e−ν = A(r)
(
x2 + y2

)
+ 2B1(r)x+ 2B2(r)y + C(r),

(2.89)

where Φ(t, r) is defined as being a solution to the following,

Φ̇2 = −k(r) +
2M(r)

Φ
+

1

3
ΛΦ2. (2.90)

The functions h(r), k(r),M(r), A(r), B1(r), B2(r) and C(r) are arbitrary and obey

g(r) ≡ 4
(
AC −B2

1 −B2
2

)
= 1/h2(r) + k(r), (2.91)

where g is another arbitrary function of r. The sign of g(r) in Equation (2.91) then

further divides this class of Szekeres solutions. The most commonly studied are those

with g > 0, called the quasi-spherical solutions, which have non-concentric spheres of

constant mass. The quasi-plane solutions have g = 0, whilst the quasi-hyperbolic

have g < 0. The FLRW metric is recovered when B1 = B2 = 0, C = 4A = 1

and Φ(t, r) = rR(t), k = k0r
2 where k is a constant. In terms of applications, the

Szekeres models have been used to study non-spherical collapse, light propagation

and structure formation, see references within [92] and [93].

The LTB and Szkeres spacetimes aim to describe our Universe more realistically

than the FLRW metric, and in particular provide conclusions about the effects of

inhomogeneities on light propagation and whether this can account for the late time

accelerated expansion. An alternative to these are the lattice toy models, which are

also exact solutions but do not aim to describe the Universe as a whole. These black

hole lattices, which we introduce more rigorously in chapter 3, are therefore simple

testbeds for analysing the effects of inhomogeneities without trying to model the

complexity of structures. Both approaches to modelling inhomogeneity are valuable

contributions and can offer complementary results.

2.3.3 Swiss-Cheese Type Solutions

Swiss-Cheese solutions all involve a background FLRW spacetime with spherical

regions removed and filled with spacetimes such as Schwarzschild, Schwarzschild-de

Sitter, LTB, or Szekeres [87]. These regions can contain hierarchies of masses or



2.3: Exact Solutions 45

self-similar structures. The solutions enjoy many applications, from modelling voids

in the large-scale structure of the Universe [94] to patchwork universes of different

curvature [95]. Recently the optical properties have been studied in a cosmological

context [96]. For further applications to cosmology see [87].

The aim of the Swiss-Cheese solutions is to model inhomogeneity as regions of

inhomogeneity within a more general homogeneous background, rather than one

large inhomogeneity as in the LTB or Szekeres metrics. This arguably is a more

realistic way to think about structure in the Universe and sets the scene for our

discussion of black hole lattices in chapter 3, which further require no embedding

background.

McVittie Solution

The McVittie solution in 1933 was one of the first to consider compact objects in an

expanding background [97]. This is achieved by constructing a solution describing a

black hole embedded in an FLRW cosmology. The solution can be written as [93]

ds2 = −
(

1− µ(t, r)

1 + µ(t, r)

)2

dt2 +R2(t)
(1 + µ(t, r))4(

1 + 1
4
kr2
)2

(
dr2 + r2dΩ2

)
, (2.92)

where R = R(t) is an arbitrary function, the function µ(t, r) is defined as

µ(t, r) =
m

2rR

√
1 +

1

4
kr2, (2.93)

and m and k are constants. The former can be interpreted as the mass in an FLRW

universe, whilst k is the spatial curvature. This solution reduces to the Schwarzschild

line element in isotropic coordinates, Equation (2.11), for k = 0, R = 1, and the flat

FLRW solution for m = 0. McVittie intended to analyse the effect of cosmological

expansion on planetary orbits, and it was found that the effect was zero. However,

many authors have since pointed out that a physical interpretation is limited due to

the coordinate dependence and therefore non-covariant approach [98, 99]. Moreover,

for k = 0, instead of being a horizon as in the Schwarzschild metric, the surface

r(1 + µ)2 = 2m is singular [44].

In terms of cosmology, the spatial volume of a McVittie universe with n singularities

compared to the total volume of an Einstein static universe VEinstein, is given by [100]

V =
16M3

π

(
1 +

2nm

M

)
>

16M3

π
= VEinstein, (2.94)
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where M is the total mass. This can be interpreted as the scale of such a discrete

cosmological solution being altered by the presence of the singularities, or masses.

Einstein-Straus Solution

A solution to the above problems in the McVittie solution was provided by Einstein

and Straus, [101, 102], whereby a spherical region of Schwarzschild was matched to

a Friedmann background. This was done by ensuring the mass in the Schwarzschild

region was equal to the mass removed from the FLRW region. This mass M is then

related to the radius Rh of the removed region, via the following [103]

M =
4π

3
ρ (RRh)3 , (2.95)

where ρ is the average density and R the scale factor from before. Matching the

induced metric and extrinsic curvature, and imposing Equation (2.95) at the boundary

ensures the spacetimes are smoothly matched, and is based on the Darmois-Israel

junction conditions. Again, no effect was found from the global expansion on

planetary orbits in the Schwarzschild regions. However, this is true by design and

occurs due to the matching of the two spacetimes and requiring that the boundary

evolves in a Friedmannian way [87, 100]. Furthermore, the solution is unstable to

perturbations of this expression for mass, and so still has limitations [98].

The black hole lattices overcome the problems encountered in these Swiss-Cheese

cosmologies in that they do not rely on an FLRW background, and are constructed

purely out of inhomogeneities, in order to best analyse their effects on the cosmology.

2.3.4 Einstein-Maxwell Solutions

Majumdar-Papapetrou Solution

If one includes electromagnetism, further solutions can be found to the source-free

vacuum Einstein-Maxwell equations. This is known as the Majumdar-Papapetrou

solution, [104, 105], and has a line element given by

ds2 = −U−2dt2 + U2
(
dx2 + dy2 + dz2

)
, (2.96)

where mi are the masses of the black holes, the coordinate r is related to the

coordinates x, y, z by ri =
√

(x− xi)2 + (y − yi)2 + (z − zi)2, and the function U is
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given by

U = 1 +
∑
i

mi/ri. (2.97)

The relation between the scalar potential At and the metric is given by At = U−1.

Given the line element in Equation (2.96), the source-free Einstein-Maxwell equations

reduce to the Laplace equation for the function U [106],

∇2U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= 0, (2.98)

thus demonstrating the superposition of point masses in the form of the expression

for U , Equation (2.97).

The black holes in this solution are extremal, that is, they have charge q equal

to their mass m. Physically this corresponds to the black holes being in static

equilibrium, with the gravitational attraction balanced by the electrostatic repulsion.

The Majumdar-Papapetrou solution was extended and interpreted by Hartle and

Hawking as a system of charged black holes [106]. Finally, for the case of one point

mass, the solution can be seen to reduce to the Reissner-Nordström spacetime with

equal charge and mass under the coordinate transformation r → r −m. In chapter

6 we extend this existing work to a cosmological setting and construct lattices of

charged black holes that have non-extremal charge.

Kastor-Traschen Solution

The Kastor-Traschen solution generalises the Majumdar-Papapetrou solution to

include a positive cosmological constant, Λ, whilst still having equal charge and mass

[107]. The black holes are no longer in static equilibrium, but instead are dynamic,

and can either move out of causal contact with one another or merge completely. The

Kastor-Traschen solution, and hence the Majumdar-Papapetrou solution, has also

seen cosmological applications. These include that of Bonnor, with a background

FLRW cosmology with arbitrary spatial curvature [108], as well as the construction of

a Kastor-Traschen-FLRW hybrid solution in [109]. Again, we emphasise the reliance

on a Friedmann background in these solutions for cosmological applications.

Israel-Khan Solution

The Majumdar-Papapetrou solution introduced above extends the well known Weyl

class of solutions [7], which describes a static, axisymmetric vacuum spacetime in

Einstein-Maxwell theory, to spacetimes exhibiting no spatial symmetry.
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Another solution of interest also belongs to this Weyl class, and is known as

the Israel-Khan solution [110]. This describes two or more finitely many collinear

Schwarzschild black holes in equilibrium. The sources for U in Equation (2.97) are

taken to be thin rods, all lying in the axis of symmetry, which are connected by struts.

The distance between neighbouring black holes stays constant due to the struts

exerting an outward pressure which cancels the gravitational attraction between the

black holes [111]. However, there exist conical singularities in the struts between the

black holes, making this solution unfeasible for cosmological purposes if we wish to

investigate the effect of discrete sources on the surrounding expansion.

A way around the problem of conical singularities is to consider infinitely many black

holes equally spaced. In [112] this was interpreted as a higher dimensional solution

to Kaluza-Klein theory (a 5-dimensional unification of gravity and electromagnetism)

with one spatial dimension compactified to a circle, representing a black hole localised

on the circle [113]. Korotkin and Nicolai independently construct a vacuum black

hole solution which is periodic in one direction and asymptotes to the Kasner vacuum

anisotropic spacetime [114]. This can also be interpreted as an infinite line of black

holes without conical singularities, however the authors note that the trade-off is

instability under non-periodic perturbations.

2.4 Inhomogeneous Cosmology

2.4.1 The Standard Cosmological Model

The main foundational assumption underpinning the ΛCDM standard model of

cosmology is the cosmological principle. This states that the Universe is spatially

homogeneous and isotropic, allowing the FLRW metric (2.77) to be used as the

solution to the Einstein field equations. This is supported by two ingredients -

assuming the Copernican principle, and temperature anisotropy measurements of

the CMB. The former of these states that we do not live in a special place in the

Universe. Any observations made by us are the same as any other measurements

made elsewhere. The latter reveals that temperature variations of the CMB are of

the order of < 10−5 [115]. Thus, we can assume the CMB is close to isotropic about

all points, and mathematically this implies homogeneity, and allows the cosmological

principle to be adopted.

However, the Universe we observe is only homogeneous and isotropic in a statistical

sense. One can derive a homogeneity scale for the Universe, where above this,

structures are statistically homogeneous. Currently this is found to be at 70h−1 Mpc,
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or 100Mpc, where h is the dimensionless Hubble parameter [18]. Below this, and on

small scales, it is manifest that our Universe is highly inhomogeneous and anisotropic,

and the use of the FLRW metric is a coarse-grained description of reality.

2.4.2 The Backreaction Problem

The problem with assuming a perfectly homogeneous and isotropic background

spacetime for all scales, and as a result homogeneous and isotropic expansion, lies in

the Einstein field equations. The FLRW assumption leads to the equations as being

G[〈g〉] = T eff, (2.99)

where G denotes the Einstein tensor, g the spacetime metric and T eff an effective

stress energy tensor. The angular brackets denote that the FLRW solution is in some

sense an averaged spacetime, as it does not include any small-scale inhomogeneities.

Averaging and evolution do not commute which means we can also write

〈G[g]〉 = 〈T 〉, (2.100)

which, in general, may be different to Equation (2.99). The reason for this becomes

clear if we first realise that the Christoffel connection, Equation (2.2), can be written

as Γ ∼ ∂g [116]. This implies the Riemann tensor and its contractions can be written

as R ∼ ∂Γ + Γ2. As a result, Equation (2.99) will give us

G[〈g〉] = ∂〈Γ〉+ 〈Γ〉2, (2.101)

whilst Equation (2.100) gives

〈G[g]〉 = ∂〈Γ〉+ 〈Γ2〉. (2.102)

The difference between these two can then be quantified as backreaction, by defining

B ≡ T eff − 〈T 〉 = 〈Γ〉2 − 〈Γ2〉, and physically corresponds to the small-scale inhomo-

geneities that were otherwise ignored in adopting the FLRW spacetime, contributing

to and affecting the large-scale dynamics of the Universe over time. Furthermore,

general relativity is valid locally, yet concordance cosmology assumes averaged quan-

tities such as density follow the same equations. As yet there is little consensus on

concrete conclusions that can be drawn about backreaction and the magnitude of

its effects. What can be agreed on however, is the common goal of implementing
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general relativity correctly on all scales. This leads to the discussion of the averaging,

coarse-graining, and fitting problems [117, 118].

The averaging problem asks how best to average the tensors in the above equations

such that the effects of small-scale structures on the dynamics of the Universe have

been included? Pioneering progress in devising a suitable averaging scheme was made

by Buchert [119, 120]. This involves foliating the spacetime by hypersurfaces and

defining the spatial average of a scalar function Ψ,

〈
Ψ
(
t,X i

)〉
D :=

1

VD

∫
D
dVΨ

(
t,X i

)
, (2.103)

over a domain D(t). Using this and defining a dimensionless effective scale factor

aD, the scalar part of the Raychaudhuri equation (an equation for the expansion

scalar θ and its kinematics) and Hamiltonian constraint result in two Friedmann like

equations,

3
äD
aD

+ 4πG〈ρ〉D = QD (2.104)

3

(
ȧD
aD

)2

− 8πG〈ρ〉D +
1

2
〈R〉D = −QD

2
, (2.105)

where R is the spatial Ricci scalar. The backreaction term, QD, is defined as

QD ≡
2

3

〈
(θ − 〈θ〉D)2〉

D − 2
〈
σ2
〉
D , (2.106)

where 〈θ〉D is the averaged expansion rate, defined as 〈θ〉D = V̇D
VD

= 3 ȧD
aD

, θ is the

expansion scalar and σ2 is defined using the shear tensor, σ2 ≡ 1
2
σijσij.

The average expansion rate can differ from the local one. However, the scheme

depends on the choice of foliation, and there are no clear interpretations for what

this means in terms of observables [118]. Recent work has seen a clarification of the

dependence on spacetime foliation [121].

Coarse-graining, although similar to the averaging problem, differs in that it is

more ‘bottom-up’ and asks what this smoothing process looks like at each scale of

the Universe. Our Universe has a complex hierarchy of structure, and schematically

a coarse-graining approach to this may look like the following [117],

g stellar
µν → g galaxy

µν → g cluster
µν →g wall

µν

...

g void
µν

→ g Universe
µν , (2.107)
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where the ellipsis indicates that more than one metric might be used to describe

structures such as walls or voids. Due to the complexity of this problem, most

studies are limited to analysing one level of hierarchy. The black hole lattices we will

introduce in chapter 3 typically have a much more simple g stellar
µν → g universe

µν [117].

Finally, the fitting problem asks which spacetime best represents the real Universe.

As this is a complex problem, progress is made by instead assuming FLRW from the

outset, and asking, what errors have been introduced in doing so. This quantifies

the definition of backreaction above.

2.4.3 Current Approaches

Whilst inhomogeneous cosmologies have been around for a number of decades, see

section 2.3 and [84], the debate about backreaction within inhomogeneous cosmo-

logical models has only been around for the last 10 years or so. Despite the claims

otherwise, [27, 29, 30], it is generally accepted that backreaction is a relevant effect

in cosmology [28]. The question now being addressed is, how relevant? There exist

many different approaches, which we will review in this section, resulting in varying

degrees of relevance, from one-percent effects to much larger order-unity effects. A

unified consensus should be reached in terms of how backreaction should be measured,

and consequently, the magnitude of its effect [122]. A survey of around 50 academics

working in the field of inhomogeneous cosmologies revealed that 40% surveyed feel

that backreaction was the most important topic to study, in particular how it is

defined and how nonlinearities and inhomogeneities affect the expansion. A similar

proportion of people feel this is where the field should focus within the next 5-10

years [123].

In this section we review some of the more recent approaches to addressing

backreaction. These approaches loosely fall under the categories of exact models,

numerical cosmology, perturbative approaches, as well as N-body simulations. Note

however, that there exist perturbative numerical studies, for example.

Exact Models

The exact model approaches broadly fall into two camps - those based on exact

solutions, such as LTB or Szekeres [123–128] (see section 2.3 and references within

[93] and [88]), and the family of black hole lattices. The latter of these form the

basis of this thesis, and are discussed in more detail in section 3, for a review see

[129]. They are also exact solutions to the Einstein field equations, but from an

initial data construction, and involve superpositions of Schwarzschild masses in
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various configurations. Embedding the LTB or Szekeres spacetimes via Swiss-Cheese

methods, as introduced in the previous section, still requires a background spacetime,

usually FLRW, so is not a fully independent approach to addressing backreaction.

For purely LTB or Szekeres models, structure formation can evolve differently to a

corresponding FLRW solution, but generally backreaction remains small in models

that are suitable cosmologies.

In [130], a slightly different analysis was performed based on the Swiss-Cheese

model. An exact dust solution was considered consisting of spherical masses of

constant density placed inside a Schwarzschild spacetime, and this procedure was

repeated inside the mass to give a self-similar solution of nested voids and overdensities.

A large difference was found between the ADM mass and the sum of masses inside,

suggesting the nonlinear effects of general relativity are amplified over sufficiently

many scales and give rise to a backreaction effect in the form of a mass deficit.

Numerical Cosmology

Numerical cosmology aims to use the techniques developed in numerical relativity to

solve the Einstein field equations for inhomogeneous cosmological models. This has

an advantage over the previous toy models in that more realistic scenarios can be

considered, as well as allowing for the full time evolution to be calculated. Notable

works include that of Bentivegna and Bruni [131], who considered an inhomogeneous

distribution of dust in a perturbed Einstein-de Sitter model. They investigated

the departure of the evolution from a reference FLRW model by looking at several

quantities, including the average expansion rate, which deviated locally by as much

as 28% at an underdensity. Complementary studies by Macpherson et al [132–134],

have also shown interesting results. They find no global backreaction, but deviations

from FLRW predictions in cosmological parameters of: 6 − 31% on small scales,

2− 5% on scales above the homogeneity scale. The inhomogeneities are also unable

to resolve the Hubble tension. Other works include a silent universe simulation [123],

as well as approaches based on the BSSN formalism of numerical relativity by Giblin,

Mertens and Starkman [135, 136]. Numerical studies of the black hole lattices by

Bentivegna, Korzyński and Yoo are described in more detail in chapter 3.

A recent aim of the numerical studies is to investigate whether the approximations

employed in relativistic N-body simulations are valid. Traditional N-body simulations

model astrophysical or cosmological systems as dynamical systems of particles under

gravity. They are used to study galaxy formation and dark matter haloes, as well as

reproduce filaments and void-like structures that are observed in large-scale surveys.
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Recent advancements have involved extending these to include relativistic effects

[137–139]. The simulations are based on the weak field approximation only, so cannot

be used to model black holes or large sources of gravitational fields. Non-Newtonian

effects such as frame-dragging are found to be small. The authors state that their

simulations are fully relativistic, however, Macpherson et al point out their studies

are based on the weak field approximation, and a quantitative comparison is needed

to assess whether this is sufficient or if full numerical relativity is needed [134]. A

comparison of fully relativistic and Newtonian simulations did reveal agreement

between the two, except in regions where the weak field approximation was no longer

valid, as expected [140].

Perturbative Methods

Approximate or perturbative approaches to inhomogeneous cosmology usually involve

constructing lattices of discrete masses in various ways, and calculating how these

differ to a corresponding FLRW universe. One such perturbative approach was carried

out by Bruneton and Larena [141] with an inhomogeneous cosmology modelled by

an infinite cubic lattice. The authors used a Fourier series to describe a periodic

distribution of masses, and expanded the metric perturbatively in powers of
√
M/L,

where L was the size of the lattice and M denoted the mass at the centre of each cell.

The solution was exact at second-order, and they found that at order (M/L)3/2 the

expansion is that of a dust filled FLRW universe. However, this result is only valid

up to a certain order, and that higher order terms may introduce a small amount of

backreaction through mode couplings.

An alternative approach was begun in [100] and followed up by Sanghai in [142].

An infinite cubic lattice was constructed by gluing together regular cells of perturbed

Minkowski spacetime, with the gravitational field inside described by post-Newtonian

gravity in terms of a smallness parameter. The cells are matched together by

reflection-symmetric boundaries. These lattices therefore are constructed from a

‘bottom-up’ approach, relying on no FLRW background or averaging techniques. The

authors find a Friedmann-like equation modelling the large-scale expansion, with

a small radiation term appearing as a relativistic correction. Physically this has

a negative energy density, resulting in a decrease in the expansion rate. Further

extensions include the addition of radiation and a cosmological constant [143] as well

as alternative gravitational theories [144].
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2.4.4 Optical Properties

As well as the expansion and dynamics of the above inhomogeneous cosmological

models, the propagation of light must also be studied, as in general these two areas can

differ in the extent to which they agree with FLRW cosmologies. This is important

because next-generation surveys will have the precision to reveal deviations from

FLRW predictions, and if inhomogeneities do indeed affect observables then these

effects need to be taken into account in light of new data.

Recent works have seen ray-tracing in the perturbed Minkowski models by Sanghai

[34], optical properties of the perturbed lattices by Bruneton [145], as well as stochastic

treatments of light in Swiss-Cheese models, [96, 146, 147].

Optical properties of the black hole lattices that were pioneered by Lindquist

and Wheeler were studied in [148] with the inclusion of arbitrary curvature and a

cosmological constant. They calculated the angular diameter distance, luminosity

distance, and redshifts for observers within the lattice universe, and found despite the

large-scale dynamics agreeing with FLRW, the optical properties did not. However,

the discrepancy was not enough to account for the effects of dark energy. More recently,

numerical relativity was used to study light propagation in the black hole lattices along

two curves - along a cell edge and diagonally between two vertices [149]. The results

were compared to both FLRW predictions and the Empty Beam approximation,

which showed the best agreement. Furthermore, for different arrangements of masses

and separations, as much as 5% deviation from FLRW predictions is found by redshift

0.06. The authors note that their results are a magnitude larger than that of Sanghai,

due to an intrinsically different setup, and so further comparison is needed to draw

more conclusive statements.



3 Introduction to Black Hole

Lattices

In this chapter we review and describe in detail the existing work on the black hole

lattices and how they are used to model inhomogeneous cosmologies, first introduced

more than 60 years ago, and currently being revived by a number of authors. The

reader should note that some authors define inhomogeneous cosmologies as having

an FLRW limit [84, 93] however, this is restrictive as it excludes the family of black

hole lattices and indeed perturbative lattices that were introduced in the previous

section. The lattices studied here form a valuable contribution as they require no

approximations or matching across boundaries, and include all relativistic effects at

all orders. Parts of section 3.2.1 are taken from [35].

3.1 Lindquist-Wheeler Models

The first attempt at an inhomogeneous model of black holes was that of Lindquist

and Wheeler in 1957 [150], and was based on the Wigner Seitz construction of solid

state physics. In this, they modelled a closed universe by tessellating a 3-sphere with

regular polyhedra and placed a mass at the centre of each. There are only six ways

of doing this, either with N = 5, 8, 16, 24, 120 or 600 masses, which then determines

the type of polyhedra used [151]. The zone around each mass was approximated to be

spherical and therefore described by the Schwarschild geometry with a Schwarzschild

gravitational potential. At the boundaries, the Schwarzschild solutions were glued

together with matching conditions, introducing a ‘no man’s land’, and therefore

globally the lattices were not a solution to the Einstein field equations. Nevertheless

the expansion of the radius of the lattice was found to be similar to a corresponding

Friedmann-like universe.

55
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Figure 3.1: An embedding diagram of a ‘closed universe’ containing 3 black holes
represented by the minimal surfaces S1, S2 and S3, along with 3 asymp-
totically flat regions. This figure is taken from Interaction Energy in
Geometrostatics by Brill and Lindquist http://dx.doi.org/10.1103/
PhysRev.131.471, and is reproduced with permission by D. Brill.

3.2 Exact Methods

Considerable progress can and has been made in constructing viable black hole

lattices by treating it as an initial value problem, and therefore solving the Einstein

constraint equations. This circumvents the issues arising with junction conditions as

described above, by definition. Misner first looked at instances of momentarily static,

or time-symmetric solutions, and dubbed this geometrostatics [152], analogous to

work in electrostatics. Brill and Lindquist also constructed time-symmetric initial

data for N punctures. This can be thought of as a cosmological region with N

black holes corresponding to N asymptotic regions, see Figure 3.1. Additionally, the

5-mass case was looked at in detail by Wheeler in [153].

3.2.1 Time-Symmetric Hypersurfaces

The construction of initial data in order to solve the constraint equations is a

relatively simple concept which is used extensively in these lattices. We have already

introduced how this works, see section 2.2.2, and we remind the reader that for

the vacuum, time-symmetric case we seek solutions ψ to the Helmholtz equation

(2.51). We do this by reviewing the lattices in [3] by first linking Equation (2.51)

and the conformal factor ψ to a physically suitable choice of solution, that of the

Schwarzschild spacetime in isotropic coordinates, see Equation (2.11). In order to

http://dx.doi.org/10.1103/PhysRev.131.471
http://dx.doi.org/10.1103/PhysRev.131.471
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Figure 3.2: An embedding diagram of the Schwarzschild solution, with the singularity
r → 0 being mapped to asymptotic infinity. The r coordinate here
represents the ρ coordinate from Equation (3.1). This figure is taken from
Interaction Energy in Geometrostatics by Brill and Lindquist http://dx.
doi.org/10.1103/PhysRev.131.471, and is reproduced with permission
by D. Brill.

carry out the 3+1 decomposition on this spacetime we consider a static, spacelike

slice of this,

ds2 =

(
1 +

m

2ρ

)4

(dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2), (3.1)

where we can see a factor that resembles a conformal factor of the hypersurface. This

hypersurface has a singularity at ρ = 0. The following coordinate transformation,

which is just an inversion, ρ = m2/(4r′), produces the following metric,

ds2 =
(

1 +
m

2r′

)4

(dr′2 + r′2dθ2 + r′2 sin2 θdφ2), (3.2)

that is, the inversion is an isometry of the metric. More importantly, the point

ρ → 0 maps to r′ → ∞ and so the previous singularity is now the infinity of an

asymptotically flat region. This is illustrated in Figure 3.2.

Proceeding as in [3], another coordinate transformation into hyperspherical polar

coordinates, ρ = m
2

tan(χ/2), gives Equation (3.1) as

ds2 =

( √
m

2 sin(χ/2)
+

√
m

2 cos(χ/2)

)4

(dχ2 + sin2 χdΩ2), (3.3)

where the solid angle element is given by dΩ2 = dθ2 + sin2 θdφ2. The first of the two

terms in the conformal factor of this geometry diverges at χ = 0, and the second

diverges at χ = π. These two terms clearly satisfy the Helmholtz equation, Equation

(2.51) both individually and as a sum. They are also related to each through the

http://dx.doi.org/10.1103/PhysRev.131.471
http://dx.doi.org/10.1103/PhysRev.131.471
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transformation χ→ π − χ, which corresponds to a rotation of the 3-sphere by an

angle π.

We can generate any number of additional terms in the conformal factor ψ by

rotating the 3-sphere by any arbitrary angle, and by adding a new term of the form

1/ sin(χ/2) in the new coordinates that result. Moreover, we can exploit the linearity

of the Helmholtz equation by summing any n such terms together, in order to obtain

a new solution. This generates the conformal factor ψ as follows

ψ(χ, θ, φ) =
n∑
i=1

√
m̃i

2fi(χ, θ, φ)
, (3.4)

where i labels a mass, n is the total number of masses, the m̃i are the mass parameters

which are arbitrary constants, and the fi are source functions,

fi = sin

(
1

2
arccos(hi)

)
. (3.5)

The terms hi are given by

hi = wi cosχ+ xi sinχ cos θ + yi sinχ sin θ cosφ+ zi sinχ sin θ sinφ, (3.6)

for a term that diverges at the position (wi, xi, yi, zi). Each such position corresponds

to the location of a point-like mass in the initial data, and should be accounted for

by including a corresponding term in ψ. Any number of masses can be included in

the model in this way.

The proof of this is as follows and is taken from [35]: consider rotating the lattice

such that one of the masses appears at position (1, 0, 0, 0). Then, the source function

for this mass is h1 = cosχ so that f1 = sin(χ/2). Recall now the transformation

between Cartesian coordinates and hyperspherical coordinates given in Equation

(2.52) which we will restate here,

w = cosχ,

x = sinχ cos θ,

y = sinχ sin θ cosφ,

z = sinχ sin θ sinφ.

(3.7)

This must then also mean that w = h1. Any subsequent ith mass can be rotated to

be at position (1, 0, 0, 0), and in the coordinates after the rotation must have w′ = hi.
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The general matrix transformation for this rotation is,
w′i

x′i

y′i

z′i

 =


αi βi γi δi

− − − −
− − − −
− − − −



wi

xi

yi

zi

 (3.8)

where for ease of presentation we have neglected to include any terms beyond the

top line of the matrix. Multiplying out we have

w′i = αiwi + βixi + γiyi + δizi (3.9)

which can be compared to the requirement w2
i + x2

i + y2
i + z2

i = 1 for the position

of the ith mass on the unit 3-sphere. For both of these equations to be true when

{w, x, y, z} = {wi, xi, yi, zi}, (which means when w′ = 1), requires {αi, βi, γi, δi} =

{wi, xi, yi, zi}. Using this result together with Equations (2.52) and (3.9) then gives

w′i = wi cosχ+ xi sinχ cos θ + yi sinχ sin θ cosφ+ zi sinχ sin θ sinφ, (3.10)

which upon recalling w′ = hi can be seen to give Equation (3.6) directly. This

completes the proof.

We now seek to determine where we will place the n masses on the surface of the

3-sphere. Analogously to [150] we will tessellate the 3-sphere with identical regular,

polyhedra, and place a Schwarzschild mass at the centre of each. The positions of

these masses will then give us the source functions, and hence the conformal factor as

we have seen. This means there are 6 inhomogeneous cosmological models to choose

from, those with n = 5, 8, 16, 24, 120 or 600 masses.

5-Mass Model

The 5-mass model consists of 5 tetrahedra and is known as a 4-simplex. An example

set of positions of the 5 masses in such a model, in Cartesian (w, x, y, z) coordinates,
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are given below in Equation (3.11) and are taken from [3],

i) (1, 0, 0, 0),

ii)

(
−1

4
,

√
15

4
, 0, 0

)
,

iii)

(
−1

4
, −
√

5

48
,

√
5

6
, 0

)
,

iv)

(
−1

4
, −
√

5

48
, −
√

5

24
,

√
5

8

)
,

v)

(
−1

4
, −
√

5

48
, −
√

5

24
, −
√

5

8

)
.

(3.11)

We can immediately see that by using Equation (3.6), the functions hi for this model

are given by

h1 = cosχ,

h2 =

√
15

4
sinχ cos θ − cosχ

4
,

h3 =

√
5

6
sinχ sin θ cosφ−

√
5

48
sinχ cos θ − cosχ

4
,

h4 =

√
5

6
sinχ sin θ sin

(
φ− π

6

)
−
√

5

48
sinχ cos θ − cosχ

4
,

h5 =

√
5

6
sinχ sin θ sin

(
φ+

π

6

)
−
√

5

48
sinχ cos θ − cosχ

4
,

(3.12)

which are exactly the ones given in [3]. For the subsequent models, we refer the

reader to chapter 4, section 4.2.1 where we describe in detail the other lattices and

the positions of their masses.

We can visually represent the hypersurfaces of the 6 lattices as follows: as the

conformal factor ψ is a function of 3 angular coordinates, (χ, θ, φ), we choose a fixed

χ = χ
0 coordinate and plot the surface ψ(χ0, θ, φ) for each of the lattices in Figure

3.3. These hypersurfaces show that increasing the number of masses increases the

degree of homogeneity already, as the tubes become smaller and contribute less to

the overall geometry, and the hypersurface becomes more spherical.

Table 3.1 summarises all of the possible tilings, not just those of the 3-sphere we

have considered. The final column denotes the Schläfi symbol {pqr} where p is the

number of edges to a cell face, q is the number of cell faces that meet at a corner

of a cell, and r is the number of cells meeting along a cell edge. For the 3-spheres
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(a) 5-mass slice through, with
χ0 = arccos(−1/4).

(b) 8-mass slice through, with
χ0 = π/2.

(c) 16-mass slice through, with
χ0 = π/3.

(d) 24-mass slice through, with
χ0 = π/2.

(e) 120-mass slice through, with
χ0 = π/2.

(f) 600-mass slice through, with
χ0 = π/2.

Figure 3.3: Slices through the 6 lattice hypersurfaces, where the tubes represent
the positions of the masses. This figure is taken from An exact quan-
tification of backreaction in relativistic cosmology by Clifton et. al.
http://dx.doi.org/10.1103/PhysRevD.86.043506, and is reproduced
with permission by T. Clifton.

http://dx.doi.org/10.1103/PhysRevD.86.043506
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N o of cells Background Curvature Cell Shape Lattice Structure

5 + Tetrahedron {333}
8 + Cube {433}
16 + Tetrahedron {334}
24 + Octahedron {343}
120 + Dodecahedron {533}
600 + Tetrahedron {335}
∞ 0 Cube {434}
∞ - Cube {435}
∞ - Dodecahedron {534}
∞ - Dodecahedron {535}
∞ - Icosahedron {353}

Table 3.1: Summary of all possible tilings of 3-dimensional spaces with either constant
positive (+), constant negative (-) or zero curvature (0), as well as the
cells comprising the tilings and their number. The last column denotes
the Schläfi symbols, which denote the number of edges to each cell face,
number of cell faces meeting at a vertex, and number of cells meeting
along an edge. This table is taken from [2].

we have been considering, there are only 6 ways of tiling the 3-space using a finite

amount of polyhedra, whereas an infinite amount of cells are needed to tile 3-spaces

with either zero or negative curvature. In section 3.2.2 we discuss work related to

these infinite lattices.

Proper Mass

An important calculation of these black hole lattices is the measure of the mass of

one of the black holes, which can then be used for comparisons to FLRW cosmologies.

The m̃i in Equation (3.4) refers to the mass parameters of the black holes. The proper

masses, however, corresponds to the mass that an observer in the asymptotically flat

region on the far-side of the Einstein-Rosen bridge would infer by looking at how

the gravitational field drops off at infinity. Therefore in order to calculate this, the

leading order term in the metric in the limit χ→ 0 is compared to the Schwarzschild

geometry, where a value for the mass can be read off. The conformal factor in
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Equation (3.4) in the limit χi → 0 is

ψ →
N∑
j 6=i

√
m̃j

2 sin
(
χij
2

) +

√
m̃i

χ
i

. (3.13)

Defining χ̂i = A2
i
χ
i, where Ai is the first term on the right-hand side of Equation

(3.13) then gives

ds2 →
(

1 +
Ai
√
m̃i

χ̂
i

)4 (
dχ̂

2

i + χ̂2

i dΩ2
i

)
, (3.14)

which can be compared to Equation (3.2) to give an expression for the proper mass

of the ith black hole as

mi =
N∑
j 6=i

√
m̃im̃j

2 sin
(
χij
2

) , (3.15)

where the index j labels all other masses and χij is the coordinate distance between

points i and j (after rotating so that mass i appears at χ = 0). We will refer back to

this expression and the above derivation, as well as generalisations of it, in subsequent

chapters.

Comparison with FLRW Geometry

We will now review in detail how these lattices are compared with equivalent FLRW

counterpart universes [3], as again, these analyses will be repeated in subsequent

chapters to come. The equivalent FLRW universes are also positively curved, and

have a total proper mass equal to M = nm, where n is the number of masses and

m is the proper mass of each. The difference lies in how this mass is distributed,

instead of discrete packets, it is in the form of a perfect fluid, or dust. It is easy to

show that the line element for such a universe takes the following form,

ds2 =
16M2

9π2

(
dχ2 + sin2 χdθ2 + sin2 χ sin2 θdφ2

)
, (3.16)

which can immediately be compared to ds2 = ψ4ds̃2 where ψ is given by Equation

(3.4). This gives a straightforward comparison of the length of scales between the

two cosmologies. As the conformal factor is a function of position, there is a degree

of ambiguity in specifying this for the discrete case, therefore we can identify two

natural choices. The first is to calculate the line element at a point furthest away

from the masses, which in this case is given by a vertex of a cell, which we will denote

D1. The second is to calculate the length of a cell edge and is denoted D2.
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Cell shape N o masses
(
aDiscrete
0

aFLRW
0

)
D1

(
aDiscrete
0

aFLRW
0

)
D2

Tetrahedron 5 1.321 1.360

Cube 8 1.236 1.248

Tetrahedron 16 1.061 1.097

Octahedron 24 1.083 1.099

Dodecahedron 120 1.033 1.034

Tetrahedron 600 0.996 1.002

Table 3.2: Ratios of the scales of lattice to fluid universes for each of the two definitions
D1 and D2, for different numbers of masses. This table is taken from [3].

Definition D1 gives us immediately

dsDiscrete
D1 =

m̃i

4

(
n∑
i=1

f−1
i

)2

, (3.17)

where fi are the source functions from Equation (3.5). Definition D2 gives us

dsDiscrete
D2 =

∫
ψ2dχ. (3.18)

The results for both of these are shown in Table 3.2 for each of the 6 cosmological

models. It is manifest that increasing the numbers of masses reduces the discrepancy

between the scales of lattice to FLRW models, for both definitions, and thus we can

conclude that for the order of a few hundred masses, backreaction remains negligible.

These definitions will be returned to in later chapters, either one or both, as we

generalise the existing models.

The models in [3] and introduced here have enjoyed a wide range of extensions

and advancements. This includes the time evolution along specific curves [2, 82, 154],

as well as the addition of extra fields, in the form of a cosmological constant [36],

electric charge [37] or a scalar field [155, 156]. A novel way to include structure

formation was performed in [35] whilst extending the gravitational theory itself to

that of a scalar-tensor one was considered in [38].

3.2.2 Non-Time-Symmetric Hypersurfaces

Now we will briefly review the work on non-zero extrinsic curvature lattices. Several

authors have investigated this route by aiming to solve the non-linear constraint



3.2: Exact Methods 65

equations already introduced, Equations (2.57) and (2.58). One of the first groups

was that of Yoo et al [157], who used the conformal-transverse-traceless Lichnerowicz-

York scheme whereby the trace-free part of the extrinsic curvature Aij is further

decomposed into longitudinal and transverse trace-free parts. The latter of these is

set to zero, and the hypersurface is chosen to be trivial, hij = ψ4δij, meaning they

consider an infinite, cubic lattice with periodic boundary conditions and a black hole

at the centre of each cube. Near each black hole the solution is Schwarzschild whilst

at the cell faces the expansion is homogeneous and isotropic. This is ensured by

choosing a piecewise function for the form of K, which varies smoothly from 0 at the

centre of the cells to a constant negative value at the boundaries,

K = KcT (r) = Kc


0 for 0 ≤ r ≤ l(

(r−l−σ)6

σ6 − 1
)6

for l ≤ r ≤ l + σ

1 for l + σ ≤ r

, (3.19)

where Kc, l and σ are parameters. The constraint equations were then solved

numerically and compared with cosmological N-body simulations and a corresponding

Einstein-de Sitter universe.

The above prescription was also used by Bentivegna and Korzyński in [158], in a

conformally flat, infinite, expanding cubic lattice, with a similar choice for the trace

of the extrinsic curvature. Slight differences in variable definitions and boundary

conditions were used, and the constraint equations were solved numerically using the

Einstein Toolkit, which utilises the BSSN formalism to evolve the initial data. They

found little difference with a corresponding FLRW universe with the same initial

energy density, only higher-order oscillations which affected the subsequent evolution

- a possible artefact of the choice of initial data.

Numerically solving the constraint equations is not the only way to make progress

in the case of non-time-symmetric initial data. In chapter 5 we demonstrate how to

analytically construct lattices in the presence of a cosmological constant Λ, which

means the extrinsic curvature no longer vanishes.

3.2.3 Alternative Configurations of Masses

Tessellating the 3-sphere with regular polyhedra is not the only way to construct

these lattices. Work by Korzyński in [159] consisted of exact analyses of arbitrary

arrangements of masses, and investigated the limit as the number of masses n→∞.

The 3-sphere was divided into quasi-cubes, which were then partitioned into domains,
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allowing 8k3 black holes where k is an integer. This meant the n = 1 case could be

compared to the 8-mass cubic lattice we have already been introduced to. Volume

averages were used to look at this continuum limit, and it was found that as n→∞,

the spatial part of the metric asymptotes to a closed FLRW metric (except in the

vicinity immediately around the black holes, where it was Schwarzschild), suggesting

backreaction tends to zero.

More recently the field has seen interesting work by [160] and [161]. The former of

these involves again, the time-symmetric S3 lattice but with the black holes placed

both randomly and regularly, so as to compare between different configurations but

also to the FLRW universes. They found backreaction, as expressed by comparing the

ADM masses to the total Friedmann mass, was smaller for the random configurations

than for regular, with both sets approaching FLRW as the number of masses increased.

The local curvature was also studied by looking at second derivatives of the metric.

The work by Jolin and Rosquist [161] uses an alternative way of tessellating the

3-sphere. It is divided into 8 equally sized wedges, similar to an orange, whereby in

one wedge, or cell, masses are randomly placed and the remaining cells are identical

mirror images to this. Thus it can be compared to the regular 8-mass lattice if each

wedge has only one black hole, but also the 16, 24, 120, and 600 cases as well as

others. Analogously to the calculations used for Table 3.2, they found the FLRW

limit was approached as the number of masses increased, but from below, due to

the choice of tessellation. The evolution along a local rotationally symmetric curve

was calculated as in [82] as well as clustered configurations. In this, the behaviour

deviated from FLRW more.

In chapter 4 we provide a complementary approach to the ones discussed above,

which still retains the regularity of the original lattices but looks at the effects of

clusters of masses on the scale of the cosmology. This is achieved by splitting the

masses up and moving them along parameterised trajectories.

3.3 Numerical Approaches

Finally, the 8-mass cubic S3 lattice was numerically evolved in full for the first time

by Bentivegna and Korzyński in [162]. The initial data was set up in the same way

as in [3], whilst the full evolution was carried out using the Einstein Toolkit. The

length of a cell edge as a function of proper time was calculated and matched the

corresponding FLRW evolution up to a time where resolution was lost and numerical

errors became too large. Finally, the total effective mass was approximately 25%
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larger than the sum of ADM masses of the black holes, suggesting this particular

lattice initial data mimicked FLRW but only if there existed a quarter more mass

than that of the black holes alone.



4 A Quasi-Static Approach to

Structure Formation

This chapter is based on [35].

4.1 Introduction

The lattices described in chapter 3 are artificial toy models and contain many

symmetries, as they are one of the six regularly arranged models. We can begin to

relax the regularity and assumption of perfectly equidistant spacing by positioning the

masses differently in order to create clusters of masses, or structure. This will allow

for larger numbers of black holes to be considered, and for the effects of clustering of

the black holes to be studied. Our aim here is to perform a controlled investigation of

the effects that clusters of masses have on the scale and properties of the cosmology

within these black hole lattices. While such situations are still far too simple to model

the full hierarchy of structures in the real Universe, they do provide a well-defined

way to study some of the questions involving coarse-graining and average expansion.

The approach we will follow in this paper adds an extra level of structure to these

models, so that they essentially have three length scales: (i) the curvature radius

of each of the black holes, (ii) the radius of a cluster of black holes, and (iii) the

cosmological curvature scale.

The growth of structure has long been speculated to be a potential cause of

deviations from the predictions of FLRW cosmology in the real Universe [163], and

our models provide a type of quasi-static approximation that could be used to test

some of these ideas within the context of exact solutions to Einstein’s field equations

at moments of instantaneous staticity. This chapter builds on the work involving

hierarchical structures that was recently performed in a similar context in [130], as

well as the random distributions of black holes that were considered in [159]. As

with these previous studies, we find situations in which hierarchies of structures

can significantly alter the large-scale properties of the universe. We interpret these

68
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findings in terms of the gravitational interaction energies between massive bodies,

and the effects that they have on cosmology.

The rest of this chapter is organised as follows: in section 4.2 we describe the

method used to split each mass up into a cluster of masses. Section 4.3 then

contains calculations of the positions of the different apparent horizons (individual

and collective). The results of this are then used to calculate three different mass

parameters in section 4.4.1, and to derive expressions for the different interaction

energies in section 4.4.2. In section 4.5 we compare our black hole universe models

to their FLRW counterparts and to each other, in order to investigate the effect of

the clustering of masses, before discussing our findings in section 4.6

4.2 Creating Clusters of Masses

We create structure in a very specific and precise way such that our initial data solves

the constraint equations exactly whilst still being relatively simple analytically. For

each of the 6 lattice models, we take each of the black holes that are sitting at the

centre of their polyhedra, and split (or explode) them into a number of further masses.

Specifically, the number of masses they are split into is the number of vertices of

the polyhedra used to construct that lattice. The individual black holes are then

moved along parameterised trajectories towards these vertices. Our basic aim is to

be able to consider instants of time at which the black holes will be positioned at

different points along the curves that connect the centres of our lattice cells to their

vertices. We have euphemistically referred to this as ‘moving’ the black holes along

these trajectories, but the reader should be aware that what we are really doing

is comparing different configurations of black hole positions in different universes,

each at their maximum of expansion. We consider this to be a type of quasi-static

approach to structure formation, where the dynamics themselves are neglected, but

the consequences of clustering in these instantaneously static configurations can be

explored in detail (akin to the study in [164], where instantaneously static black

holes at different spatial separations in an asymptotically flat space were compared).

The trajectories we are considering are examples of the locally rotationally symmet-

ric curves identified in [82]. These are curves about which the lattices are symmetric

under rotations by a discrete angle, e.g. the length of a cell edge. At least two

reflection symmetric planes will always intersect along each of these paths [2], and

the property than any reflection symmetric surface is totally geodesic [165] means

that these trajectories must themselves be geodesics in the geometry of the initial
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3-space. This follows for both the full geometry and the conformal geometry. In

terms of parameterising these trajectories, it is more straightforward to consider

them in the 3-sphere geometry that constitutes the conformal space. We therefore

require ẍµ+Γ̃µρσẋ
ρẋσ = 0 along each trajectory, where Γ̃µρσ are the Christoffel symbols

for the round metric of a 3-sphere, and over-dots are derivatives with respect to an

affine parameter.

A simple way to determine the position at any point along our chosen trajectories

is to label the position 4-vector in the Euclidean embedding space at any point along

the path as v, and to parameterise the trajectory itself by λ, such that

v(λ) = (1− λ)voriginal + λvdual (4.1)

where voriginal is the original position of one of the masses in the regular lattice, and

vdual is the position of one of the masses in the dual lattice (or, equivalently, one of

the vertices in the original lattice). Every point along the trajectory is then given

by a unique value of λ ∈ [0, 1]. This choice of parameterisation has been made so

that at λ = 0 the new masses have not been moved from the original position of the

black holes in the original lattice, and so that at λ = 1 they have been moved the

maximal amount (and are therefore at the positions of one of the masses in the dual

lattice). Thus, the analysis of regular lattice configuration performed in [3] becomes

the limiting case, when λ = 0 or 1.

To illustrate this concept further, consider the 8-mass model. It is comprised of 8

cubes, each of which has 8 vertices. Therefore 8 black holes at the centre of each

of these cubes is split up into a further 8, giving a model with 64 black holes. It

turns out that due to the topology of these lattices, 4 black holes then meet at any

vertex. When all the black holes are at their specified vdual positions, there are only

16 separately identifiable black holes, as 4 black holes have met at each endpoint.

The 8-mass model and the 16-mass model are therefore dual to one another. For

some of the other lattices this is not the case, as shown in Table 4.1, where we list

each of the configurations, the cell shape, and the resulting number of black holes.



4.2: Creating Clusters of Masses 71

Original N o Cell shape N o vertices Total N o Dual N o

5 Tetrahedron 4 20 5

8 Cube 8 64 16

16 Tetrahedron 4 64 8

24 Octahedron 6 144 24

120 Dodecahedron 20 2400 600

600 Tetrahedron 4 2400 120

Table 4.1: The numbers of masses for each of the models (original, total and dual)
and the number of vertices of a single cell.

(a) λ = 0. (b) λ = 0.5. (c) λ = 1.

Figure 4.1: A single mass at the centre of a cube in the 8-mass model is split into a
further 8 masses which are moved along trajectories parameterised by λ.

A schematic representation of the splitting up process for one of the black holes in

the 8-mass model described previously can be seen in Figure 4.1, where we show

three instances along the trajectory: the initial point, voriginal at λ = 0, the midpoint

at λ = 0.5, and the endpoint vdual at λ = 1. Figure 4.1 should be used for conceptual

understanding only, as topologically the black holes are not being moved along

trajectories in flat Euclidean space. Instead they are moving along the surface of a

3-sphere. To illustrate this more accurately we show a dimensionally reduced version

of the same process in Figure 4.2. We suppress one dimension to show initially 6

black holes on the surface of a 2-sphere at λ = 0, represented by the black dots.

Increasing λ then sees each of these 6 black holes split into a further 4, and these

follow individual trajectories on the surface of this 2-sphere as λ increases. For values

of λ approaching 1, the black holes end up at their endpoints of their trajectories,

specifically 3 meet at each end point, to show 8 black holes in the final picture at
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(a) λ = 0. (b) λ ∼ λcrit. (c) λ = 0.5.

(d) λ ∼ λcrit. (e) λ = 1.

Figure 4.2: A dimensionally reduced depiction of the 8 → 16-mass case where the
masses move along trajectories parameterised by λ. For values of λ close
to a critical value of λ, collective horizons encompass the black holes,
shown by the blue rings, which vanish as they move further apart.

λ = 1, which is a dimensionally reduced version of the 16-mass model. The blue

rings which can be seen for values of λ close to 0 or 1 are collective horizons, which

are explained in more detail later and only occur for values of λ close to 0 or 1.

4.2.1 Lattice Configurations

We will now look in more detail at each of the 4 different configurations:

5 → 5-Mass Model

The original 5-mass model is the higher-dimensional equivalent of a tetrahedron

and is known as a 4-simplex. It can be created by taking the vertices of a regular

tetrahedron and adding a new one that is equidistant from the other 4. An example
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set of these 5 vertices can be written in Cartesian (w, x, y, z) coordinates as

i) (1, 0, 0, 0),

ii)

√
5

16

(
− 1√

5
, 1, 1, 1

)
,

iii)

√
5

16

(
− 1√

5
, 1,−1,−1

)
,

iv)

√
5

16

(
− 1√

5
,−1, 1,−1

)
,

v)

√
5

16

(
− 1√

5
,−1,−1, 1

)
,

(4.2)

where it is clear that the (x, y, z) coordinates of vertices ii) to v) are the vertices

of a regular tetrahedron centred at (0, 0, 0). Thus position i) is this new vertex

which creates the 4-simplex and is equidistant from the others. The 5-mass model is

self dual, which means when we perform the splitting up process and eventually set

λ = 1, we also recover another 5-mass model. As a result, in our formalism the black

holes were originally at the centres of their cells, or tetrahedra, and move to each of

the vertices of the tetrahedra, but both are equivalently 5-mass models. Thus we

can interchange the positions of the vertices with the positions of the centres of the

cells. This means we can think of Equation (4.2) as the positions of the masses at

λ = 0, i.e. at the centre of their tetrahedra. It is now straightforward to find the

dual positions, or new vertices that the black holes will be moved to. This is by done

reflecting the positions of the 5 locations above in the four planes given by w = 0,

x = 0, y = 0 and z = 0 or equivalently putting a minus sign in front of each of the

above coordinates. Thus our dual lattice has masses at the following positions:

i) (−1, 0, 0, 0),

ii)

√
5

16

(
1√
5
,−1,−1,−1

)
,

iii)

√
5

16

(
1√
5
,−1, 1, 1

)
,

iv)

√
5

16

(
1√
5
, 1,−1, 1

)
,

v)

√
5

16

(
1√
5
, 1, 1,−1

)
.

(4.3)
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We will now look in detail at the trajectory of one of the black holes. Consider the

mass at position i) in Equation (4.2). It is split into 4 masses and these move to

positions ii), iii), iv) and v) in Equation (4.3). This sets voriginal = (1, 0, 0, 0) and

let us choose vdual =
√

5
16

(
1√
5
,−1,−1,−1

)
. Substituting these into Equation (4.1)

gives

v(λ) = (1− λ)(1, 0, 0, 0) + λ

√
5

16

(
1√
5
,−1,−1,−1

)
=

(
1− 3λ

4
,−λ

√
5

16
,−λ

√
5

16
,−λ

√
5

16

)
.

(4.4)

Before we proceed further it should be pointed out that this path and its more

general form Equation (4.1) are straight lines, or chords, that cut directly through

the embedding space E4. We instead require that our masses travel along the surface

of the 3-sphere along geodesic arcs, and impose this constraint by first writing a

general trajectory in hyperspherical coordinates instead of Cartesian. This gives

v(λ) = (r cosχ, r sinχ cos θ, r sinχ sin θ cosφ, r sinχ sin θ sinφ) , (4.5)

where r, χ, θ and φ will be functions of λ. Recognising that a position on the chord

has the same angular coordinates as a corresponding position on the arc, and that

the 3-sphere is a unit 3-sphere with r = 1 allows us to write the new trajectory along

the arc v′(λ) as

v′(λ) = (cosχ, sinχ cos θ, sinχ sin θ cosφ, sinχ sin θ sinφ), (4.6)

where χ = χ(λ), θ = θ(λ) and φ = φ(λ) are obtained from transforming the

(w, x, y, z) coordinate positions from Equation (4.1) into hyperspherical coordinates.

Returning to our worked example, we have that

(w, x, y, z) =

(
1− 3λ

4
,−λ

√
5

16
,−λ

√
5

16
,−λ

√
5

16

)
, (4.7)

which gives,



4.2: Creating Clusters of Masses 75

χ(λ) = arccos

(
1− 3λ

4

)
, (4.8a)

θ(λ) = arccos

−λ
√

5
16

sinχ(λ)

 , (4.8b)

φ(λ) = arccos

 −λ
√

5
16

sinχ(λ) sin θ(λ)

 . (4.8c)

These functions can be substituted into Equation (4.6) to give the trajectory for

the mass, paramaterised by λ. For one mass, there are 3 functions to be calculated,

described by Equations (4.8a), (4.8b) and (4.8c). There are 3 other trajectories

emanating from this starting point which we did not consider, with their own

functions, as well as the 4 remaining black holes in this model. This means there

is a total of 60 functions. For the largest mass model, there are 2400 x 3 = 7200

functions to be calculated.

8 → 16-Mass Model

The positions of the masses in the 8-mass model are given by all permutations of the

following:

(w, x, y, z) = (±1, 0, 0, 0) . (4.9)

A full list of the positions of the 8 masses, as well as their (χ, θ, φ) coordinates, is

given in Table 4.2. The dual of the 8-mass lattice, the 16-mass model, has its mass

positions at all permutations of:

(w, x, y, z) =
1

2
(±1,±1,±1,±1) . (4.10)

Consider the mass at position 1
2
(1, 1, 1, 1) in the 16-mass model. This is split into

4 masses, each of which moves towards one of the following vertices of the 8-mass

model: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), as these are its nearest

vertices.
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Mass number (w, x, y, z) (χ, θ, φ)

i) (1, 0, 0, 0) (0, π
2
, π

2
)

ii) (−1, 0, 0, 0) (π, π
2
, π

2
)

iii (0, 1, 0, 0) (π
2
, 0, π

2
)

iv) (0, −1, 0, 0) (π
2
, π, π

2
)

v) (0, 0, 1, 0) (π
2
, π

2
, 0)

vi) (0, 0, −1, 0) (π
2
, π

2
, π)

vii) (0, 0, 0, 1) (π
2
, π

2
, π

2
)

viii) (0, 0, 0, −1) (π
2
, π

2
, 3π

2
)

Table 4.2: Coordinates (w, x, y, z) of the 8 masses in the embedding space E4, as
well as (χ, θ, φ) in the lattice. This table is taken from [3].

24 → 24-Mass Model

The coordinates of the masses in the original 24-mass model are given as all possible

permutations of

(w, x, y, z) =
1√
2

(±1,±1, 0, 0) . (4.11)

As this configuration is self-dual, the model at λ = 1 also has 24 masses, but at the

dual vertex positions. These are given by Equations (4.9) and (4.10).

120 → 600-Mass Model

The positions of the masses for the 120-mass model are also given by Equations (4.9)

and (4.10), as well as 96 masses located at all even permutations of

(w, x, y, z) =
1

2
(±ϕ,±1,±ϕ−1, 0) , (4.12)

where ϕ = (1 +
√

5)/2 = 1.618 . . . is the golden ratio. The dual of this lattice is the

600-mass model, with masses located at all permutations of
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1√
8

(0, 0,±2,±2), (4.13a)

1√
8

(±1,±1,±1,±
√

5), (4.13b)

1√
8

(±ϕ−2,±ϕ,±ϕ,±ϕ), (4.13c)

1√
8

(±ϕ−1,±ϕ−1,±ϕ−1,±ϕ2) , (4.13d)

and all even permutations of

1√
8

(0,±ϕ−2,±1,±ϕ2), (4.14a)

1√
8

(0,±ϕ−1,±ϕ,±
√

5), (4.14b)

1√
8

(±ϕ−1,±1,±ϕ,±2) . (4.14c)

In Figures 4.3 to 4.6 we plot the slices through the hypersurfaces for some of these

different configurations, at different values of λ. We display the full sequence of λ = 0

continuously through to λ = 1 for the first two lattice configurations, 5 to 5 and 8

to 16 masses, whilst for the two remaining configurations, 24 to 24, and 120 to 600

masses, we only show 2 hypersurfaces for brevity.

4.3 Apparent Horizons

We now have a method to place mass points at arbitrary positions along the curves that

connect the centres and vertices of lattice cells, and so have a basis for cosmological

models that simultaneously allows for clustering on small scales, while maintaining

a degree of statistical homogeneity and isotropy on large scales. It remains to

demonstrate that the new objects in question really are black holes. In this section

we consider the problem of identifying the positions of apparent horizons within our

exact initial data. This is sufficient to demonstrate the existence of black holes and a

cosmological region. The positions of black hole horizons are particularly important

in the models we will be discussing, as the possible merging or sharing of horizons

could change the number of black holes that an observer in the cosmological region

of the space infers. It could even impact upon the existence of a cosmological region

at all. For our models to represent cosmological models we require that the horizons
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Figure 4.3: Slices through the hypersurfaces of the 5 to 5-mass configuration, at
different values of λ, from left to right, top row to bottom row. The first
image is at λ = 0, the sixth image is where λ = 0.5 and the final image is
at λ = 1. The tubes indicate positions of masses, and the first and final
images are duals to each other.

of neighbouring black holes should remain distinct and not overlap. We will call

a region of space cosmological if it is entirely bounded by apparent horizons, and

is not in causal contact with any asymptotically flat region of space. Any timelike

observer in such a cosmological region will then be able to directly infer the presence

of black holes, through the influence of their gravitational field, but will not be able

to relocate themselves to a region that is arbitrarily far from all of them. The number

of black holes in this cosmological region, as determined by the observer, will be

equal to the number of distinct, closed, marginally outer trapped surfaces that bound

it.

An interesting complication that arises is that if these objects are brought close

enough together then an extra apparent horizon can appear, which encompasses

them both. The black holes retain their own individual horizons but also acquire
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Figure 4.4: Slices through the hypersurfaces of the 8 to 16-mass configuration, at
different values of λ, from left to right, top row to bottom row. The first
image is at λ = 0 (the 8-mass model), the sixth image is where λ = 0.5
and the final image is at λ = 1 (the 16-mass model). Again the tubes
indicate positions of masses, and the first and final images are duals to
each other.

this new shared horizon. An analogous phenomenon is already well known for two

black holes sufficiently close enough to each other in an asymptotically-flat space

[164, 166], see Figure 4.7, but brings some new twists in the cosmological context.

In this section we describe the two analytical methods used to compute the locations

of these horizons and the critical values of λ where this collective horizon disappears

for each of the 4 configurations.

Recall from chapter 2 that apparent horizons are defined as marginally outer

trapped surfaces. This then means that expansion of the outward-pointing null

normal to the surface should have vanishing expansion, so that ∇µk
µ = 0. Here we

will use two different techniques which contain complementary information about the

properties of the apparent horizon, and that can be used together to give a measure
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Figure 4.5: Slices through the hypersurfaces of the self dual 24-mass model. The
first image on the left is at λ = 0 and the second image on the right is at
λ = 0.5, a model with 144 masses.

Figure 4.6: Slices through the hypersurfaces of the 120 to 600-mass configuration.
The first image on the left is at λ = 0 (the 120-mass model) and the
second image on the right is at λ = 1 (the 600-mass model).

of asphericity in its shape. We will refer to these as the area method and the Weyl

tensor method, and they proceed as follows:

4.3.1 Area Method

If the gravitational field in the vicinity of each black hole is close to spherically

symmetric then one way of estimating the position of the apparent horizon is to

approximate it as being a sphere in the conformal geometry, with constant radial

coordinate χ = χ
h. The position of this sphere can be found by considering concentric

shells centred on a mass, with different values of χ, and then determining the value
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Figure 4.7: Minimal surfaces for two equal mass uncharged black holes, represented
by the crosses, separated by distance r12. The surfaces are calculated
for three different values of the mass to separation ratio parameter, α.
This figure is taken from Interaction Energy in Geometrostatics by Brill
and Lindquist http://dx.doi.org/10.1103/PhysRev.131.471, and is
reproduced with permission by D. Brill.

of χ that gives a sphere with the minimum area, as measured by evaluating

A(χ) =

∫ 2π

0

∫ π

0

ψ4 sin2(χ) sin(θ)dθdφ . (4.15)

The benefit of this method is that it is relatively simple and that it gives us an

approximation for the position of the apparent horizon in every direction away from

the centre of the black hole. The drawback is that it should only be expected to

be accurate when the black hole horizon is close to spherical. From Figure 4.7 it is

clear that as the black holes move further apart, the shape of the collective horizon

becomes distorted and so our approximation may break down.

http://dx.doi.org/10.1103/PhysRev.131.471
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4.3.2 Weyl Tensor Method

To more accurately determine the positions of the horizons in our initial data we can

examine the constraint equations, as we did in chapter 2. Recall a relevant constraint

equation for locating the horizons in terms of the electric part of the Weyl tensor

was given by Equation (2.72). At the location of an apparent horizon we know from

Equation (2.69) that ∇µe
µ
1 = 0, which in turn implies that a1 = 0. We can also

locate positions on the apparent horizon where E3
3 = E2

2 . This means that if we

arrange our coordinate system so that e1 = ψ−2∂χ points along locally rotationally

symmetric curves obeying these properties then a necessary condition for determining

the location of an apparent horizon is given by

e1(E11) = 0 or, equivalently,
1

ψ2

∂

∂χ
(ψ−4Rχχ) = 0 , (4.16)

where we have used e1 = ψ−2∂χ. In other words, if we plot E11 or ψ−4Rχχ along

a locally rotationally symmetric curve parameterised by χ, then marginally outer

trapped surfaces will be located at the points at which this function is extremised.

This method is expected to be more precise than the area method outlined above

but is only sufficient to locate the points at which the horizon intersects locally

rotationally symmetric curves.

We can use this expression to find the locations of the horizons, both shared and

individual, as well as calculate the critical values for λ for which the shared horizon

vanishes. Considering the 5-mass configuration, we calculate the relevant component

of the electric part of the Weyl tensor along a curve that connects the centre of

one of the cells with a vertex. We do this for different values of λ, specifically

λ = 0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, and display these results in Figure 4.8. To

produce these plots we initially rotated the lattice so that a mass appeared at χ = 0.

Then, Equation (4.16) tells us that the horizons are located at the maxima or minima

of these curves. Initially, at λ = 0, there is one maxima, located at χ ≈ 0.4, which

we identify as the apparent horizon of the 4 black holes that are essentially lying

on top of each other, at the centre of the cell. At λ = 0.05, when these 4 black

holes have moved a small distance apart, we see the appearance of two more maxima

close to χ = 0, which we identify as the black hole’s individual horizons either side.

The original previous horizon at χ = 0.4 is thus identified as the collective horizon.

At λ = 0.1, this horizon has disappeared and we are left with only the individual

horizons, which are still seen in the remaining figures. We note that there are multiple

different points that satisfy Equation (4.16), represented by the different maxima
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N o of masses Critical value at which

in original lattice shared horizons vanish, λcrit

5 0.077

8 0.061

16 0.021

24 0.019

120 0.007

600 0.002

Table 4.3: Numerical values for λcrit, to three decimal places.

and minima along the curve, see Figure 4.8b, however it is only the maxima we

identify as horizons, as demonstrated in the above discussion.

4.3.3 Comparison Between Methods

Unlike the Weyl tensor method, the area method is unable to provide the critical

value of λ at which the collective horizon we are looking for disappears. This is

because a minimal sphere of constant χ can always be found around any number of

black holes, even though in reality it may be far from spherical. Figure 4.9 shows a

comparison of the two methods for illustrative purposes for the 5-mass configuration.

We show the position of one of the black holes originally at χ = 0 moving outwards

radially (black line), as well as its own individual horizons (green and orange lines).

To produce this plot we have extracted out the positions of the maxima in Figure

4.8 as well as for other values of λ. It is clear that the collective horizon found using

the area method does not disappear (red line), unlike the blue line which is the same

quantity but calculated using the Weyl method, and as expected, tends towards the

location of the individual horizon when the black hole is far from its neighbours.

4.3.4 Critical Values of λ

The value of λcrit can be calculated for each of the models we are considering and

the results in Table 4.3 show these values for each of the 6 lattices, that is, the 4

configurations we have been considering but the 6 different models within them. It

is clear that increasing the number of masses decreases the amount of separation

needed before the black holes lose their collective horizon, and can be considered

separate. This is due to the decreasing contribution from each mass to the overall



4.3: Apparent Horizons 84

0.2 0.4 0.6 0.8 1.0 1.2
χ

0.05

0.10

0.15

0.20

0.25

E11
/ m-2

(a) λ = 0.

0.2 0.4 0.6 0.8 1.0 1.2
χ

0.05

0.10

0.15

0.20

0.25

E11
/ m-2

(b) λ = 0.05.
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(c) λ = 0.1.
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(d) λ = 0.2.
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(e) λ = 0.3.
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(f) λ = 0.4.
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(g) λ = 0.5.

Figure 4.8: The value of E11 along locally rotationally symmetric curves, for different
values of λ in the 5-mass lattice. E11 is presented here in units of m−2,
where m is the proper mass of each of the black holes.
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Figure 4.9: The values of χh for both individual and shared horizons at different
values of λ for the 5-mass case. The blue and red lines are the collective
horizons from the Weyl and area methods, respectively. The dashed line
indicates that this horizon only exists for values of λ up to λcrit, but can
always be found using the area method. We plot the position of one of
the black holes as it moves radially outward from χ = 0, shown by the
black line. The orange and green lines are largely indistinguishable, and
show the individual horizon either side of this black hole, calculated using
the Weyl and area method respectively.

geometry.

Calculating where these shared horizons vanish is necessary for the comparison of

these configurations to their FLRW counterparts, the results of which are presented

in section 4.5. This is because the total number of masses is used to perform the

comparison, and depending on the value of λ as we have seen, this will change the

effective number of masses an observer in the cosmology will see. For the 5-mass

case for example, as long as λ > λcrit, there are 20 separated black holes. If λ < λcrit,

these are clustered into groups of 4, each cluster having a collective horizon. This

means we are now considering an effective 5-mass model, as we cannot infer the

presence of the 4 individual black holes residing within a cluster. A consequence of

this is that we will need to explicitly define these different masses, which we will do

in the next section.
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Figure 4.10: Two black holes of mass m1 and m2, separated by distance r and the
gravitational interaction between them, −m1m2/r. The total gravita-
tional mass of the system is equal to the sum of the masses together
with the gravitational interaction.

4.4 Mass Parameters and Interaction Energies

In order to compare our models to Friedmann cosmologies we need to assign some

concept of mass to our lattice structures, and define the masses within them. This

can be tricky for our cosmological purposes as cosmological models (by construction)

do not have asymptotically flat regions from which to view the gravitational fields of

masses or clusters of masses. Further complications arise for these particular models

because it is known that gravitational interaction energies themselves gravitate, see

Figure 4.10, therefore care must be taken when considering a cluster of masses - do

we include the interaction energies within them or not when talking about the mass of

a cluster? It has recently been suggested that complex hierarchies of structure could

produce large deviations from the expectations of Friedmann cosmology, essentially

because the cumulative effect of gravitational interaction energies over many different

spatial scales could contribute substantially to the total amount of mass in the

universe [130]. We will consider this possibility in the context of our models of

clustered black holes. The discussion of mass parameters and interaction energies

that follows will proceed as in [167] and [168].

4.4.1 Mass Parameters

In order to proceed we first need to define our 3 types of mass - bare, proper and

cluster. The definitions of each of these are given below.

Bare mass: The first mass parameter we wish to consider is the bare mass of

each of our mass points, m̃i. As in chapter 3, this parameter is introduced by



4.4: Mass Parameters and Interaction Energies 87

simple analogy with the terms that appear in a time-symmetric slice through the

Schwarzschild solution, but does not necessarily correspond in any direct way to

the physical mass that an observer near a black hole would infer for that object.

In the case of time-symmetric initial data describing a cluster of black holes in an

asymptotically flat space, it is known that the sum of the bare mass parameters

corresponds to the sum total of individual proper masses of all the black holes, as

well as the sum total of all gravitational interaction energies between each pair of

black holes [166]. The interpretation in the present case is a little more complicated,

but we still wish to use these parameters as our first measure of mass. Their meaning

will be investigated further below.

Proper mass: The proper mass of each black hole is defined by rotating our

coordinate system so that the black hole we are investigating is centered at χ = 0,

and by looking at the behaviour of the geometry in the limit χ→ 0. By comparing

the leading-order terms in the metric to the Schwarzschild geometry it is then possible

to read off a value for the mass, which for a universe containing N black holes is

given by Equation (3.15), which we will restate here,

mi =
N∑
j 6=i

√
m̃im̃j

sin
(
χij
2

) , (4.17)

where i is the label that gives the mass point under consideration, j labels all other

masses, and χ
ij is the coordinate distance between points i and j. We will refer

to mi as the proper mass of the ith black hole, which technically corresponds to

the mass that an observer in the asymptotically flat region on the far-side of the

Einstein-Rosen bridge would infer by looking at how the gravitational field drops off

at infinity. This gives a well-defined mass to each of the black holes, but again does

not necessarily correspond to the mass that an observer in the cosmological region of

the space would infer. It can be seen that the proper mass of a black hole is specified

by the positions of all of the other N − 1 masses in the universe.

Cluster mass: The third mass parameter we wish to introduce is what we will

refer to as the cluster mass, mi, which will only be defined for black holes that are

within a cluster. The idea here is to consider the proper mass that such a black

hole would have if we include only contributions to Equation (4.17) that come from



4.4: Mass Parameters and Interaction Energies 88

masses outside of the cluster, so that

mi =
N−Cn∑
j=1

√
m̃im̃j

sin
(
χij
2

) , (4.18)

where again i labels the black hole under consideration, which we arrange to be at

χ = 0, but this time j labels the masses outside of the cluster. The N is again the

total number of black holes in the universe, and Cn here corresponds to the number

of masses in each cluster (which from our construction is equal to the number of

vertices in the primitive lattice cell of the original n-mass lattice). We therefore have

that N = nCn, and the summation in Equation (4.18) can be seen to be over the

N − Cn black holes outside the cluster under consideration.

These definitions of mass will be used to investigate the role of interaction energies

within our configurations as well as the FLRW comparisons.

4.4.2 Interaction Energies

Recall the known result that in Einstein’s theory, gravitational interaction energies

themselves can act as sources of mass, see Figure 4.10. We can write down an

expression for the total gravitational mass of this system Mtot when viewed from

infinity, which is given by [166]

Mtot = m1 +m2 −
m1m2

r
. (4.19)

In general, for many masses this generalises to

Mtot = Mobj +Mint, (4.20)

where Mobj is the sum total mass of all of the individual objects in the system, and

Mint is the sum total of all the pairwise interactions between objects in the system.

Applying this formula to the black holes within a cluster, and the clusters within the

cosmology, will allow us to determine values for the relevant gravitational interaction

energies both within and between clusters of black holes.

Interaction energies within clusters: If we start by considering the individ-

ual black holes within a cluster, then we can derive an expression for the interaction

energies between all objects within that cluster, Mwcl
int . This was calculated in [167],
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and is given by

Mwcl
int ' −

Cn∑
i

Cn−1∑
j 6=i

√
m̃im̃j

sin
(
χij
2

) , (4.21)

where the sum over i is over all the Cn masses in the cluster, and the sum over j is

over the remaining Cn − 1 masses in the cluster (for every ith black hole). Using

this expression, we can write the sum of intra-cluster interaction energies Mwcl
int in

terms of the mass parameters in the previous section as

Mwcl
int = M cl

tot −Mbh
obj '

Cn∑
i

mi −
Cn∑
i

mi, (4.22)

where in this case Mbh
obj is the sum total of proper masses of the individual black

holes in the cluster, and where M cl
tot is the total mass of the cluster (which can now

be seen to be given by the sum of mi over all black holes within the cluster).

Separation interaction energies: Let us now consider the interaction energies

between black holes separated by cosmological distances, and the total mass of the

universe as a whole. These quantities are difficult to define, but a natural definition

for the total energy in the cosmological model is given by

M cos
tot =

N∑
i

m̃i. (4.23)

This quantity is defined in analogy to the standard expression for N black holes in an

asymptotically flat space [166] and is closely related to the expression that one would

obtain when considering the total mass of all black holes and interaction energies

in one of the asymptotically flat flange regions on the far side of an Einstein-Rosen

bridge [168]. Using it to evaluate the inter-cluster gravitational interaction energies,

we find

M sep
int = M cos

tot − nMbh
obj =

N∑
i

m̃i −
N∑
i

mi (4.24)

where the term containing Mbh
obj again indicates the total proper mass of all black

holes, but this time includes all N black holes in the universe. This expression has

an appealing similarity to the one given in Equation (4.22), and is intended to give a

measure of the total of all gravitational interaction energies between all black holes.

Interaction energies between clusters: Using the results above, we can de-
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duce an expression for the interaction energies between clusters that are separated

by cosmological scales. Using Equation (4.20) we find this quantity to be equal to

Mbcl
int = M cos

tot − nM cl
tot, (4.25)

where M cos
tot is again the total energy in the entire model, and M cl

tot here is the total

energy within each cluster (i.e. proper masses of the black holes plus intra-cluster

interaction energies). From our previous considerations this can be written as

Mbcl
int '

N∑
i

m̃i − n
Cn∑
i

mi =
N∑
i

m̃i −
N∑
i

mi (4.26)

where n is the number of clusters (equal to the number of masses in the original

lattice) and where in the last equality we have used the fact that all clusters are

identical. This expression is intended to describe the sum total of all gravitational

interaction energies between all clusters of black holes. Again, it has a pleasing

similarity with Equations (4.22) and (4.24).

With these definitions, we can now calculate the different types of interaction

energies within our 4 configurations. For simplicity, in each model we choose the

mass parameters to all be identical. Figure 4.11 depicts our results for each of the

4 models where we calculate the total separation interaction energy (blue lines),

the interaction energies within n clusters (orange lines) and the interaction energy

between clusters (green lines), as a function of splitting up parameter λ.

When the black holes are clustered there will be interactions between the Cn black

holes within each cluster, as well as interactions between the clusters. These two

interaction energies are depicted as the orange and green lines, respectively. Their

sum is the total of all interaction energies between all black holes in the model and

is given by the blue line. It is clear from the figure that the intra-cluster interaction

energies diverge as λ→ 0, in the limit that the black holes get closer together. The

total interaction energy between all separated black holes also diverges, but the

inter-cluster interactions defined in Equation (4.26) can be seen to remain finite and

close to constant. This is exactly what we would expect from these quantities, and

gives some a posteriori justification for their introduction.

The four plots in Figure 4.11 are sufficient to give information about all of the

interaction energies in all of our clustered-mass models. For example, this is because

the models that contain masses clustered around the positions of the cell centres

of the original 8-mass lattice are given by the λ < 1/2 portion of plot (b), while
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(b) 8→ 16 masses.
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(d) 120→ 600 masses.

Figure 4.11: All three interaction energies for each of the configurations as a function
of λ, and in units of mass parameter m̃i. The blue lines correspond to
the total separation interaction energy, M sep

int , the orange lines give the
interaction energies within n clusters, Mwcl

int and the green lines give the
interaction energy between clusters, Mbcl

int .

models with masses clustered around the positions of the cell centres of the original

16-mass lattice are given by the λ > 1/2 portion of the same plot. This is due to

these two lattices being dual to each other, with the 8-mass model recovered in the

limit λ → 0 and the 16-mass model recovered in the limit λ → 1. Similarly, plot

(d) is sufficient to describe black holes clustered around the positions of the cell

centres in the original 120 and 600-mass models. In the case of plots (a) and (c) only

clustered masses around one type of lattice cell centres are considered, because the 5

and 24-mass lattices are both self-dual.

The critical values of λ, λcrit, are denoted in each of these plots by the vertical

dashed lines. Recall that these values of λ denote when the clustered masses become

distinguishable as individual black holes to observers in the cosmological region. The

reader may note that the halfway point between original setups occurs at λ = 0.5 only

for the models that are self-dual, whilst the non-self dual models have an asymmetry

in transitioning from one to another. For the 8 to 16-mass case, the halfway point
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(when individual black holes are maximally separated) is instead at λ = 0.576,whilst

for the 120 to 600 masses this point occurs at λ = 0.553. This phenomenon can

be seen as the slight discrepancies in the green and orange curves in plots (b) and

(d) - they are due to changing whether we consider the black holes to be clustered

around the centres of the lattice cells or the dual lattice cells. Of course, for values

of λ ∼ 1/2, these masses should not really be considered as being clustered around

either point, so this discrepancy has no real practical significance, but is explained

for completeness.

The reason for introducing and studying these different interaction energies will

become clear in the next section, when we compare our clustered-mass models to

Friedmann solutions and to each other. In order to do this quantitatively, we need

to know which (if any) of the interaction energies should be included in the total

mass content of our black hole universes.

4.5 Comparison with FLRW Cosmology

4.5.1 Choosing a Comparison Cosmology

We will now compare our lattice models to their corresponding FLRW counterparts

and calculate the effect clustering has between the two types of cosmology. We

choose the FLRW cosmologies to be composed of pressureless dust and have a spatial

curvature constant given by k = 1, meaning they are also positively curved. We

also choose the FLRW models to contain the same total proper mass as their lattice

counterparts, as in chapter 3.

The quantity we will be comparing is the same quantity as before, the measure of

global scale, or scale factor. For the FLRW cosmology this was given by Equation

(3.16) and for the lattice cosmology this was given by ds2 = ψ4ds̃2. Recall that in

chapter 3, definition D2 was the length of the edge of a cell. For our structuration

process, this is no longer viable as this measures a length between two vertices of a

cell. Our black holes are on trajectories towards these points and so by construction,

at λ = 1, this quantity would diverge. Therefore we are constrained to use definition

D1 instead, and the reader should note that this will give sufficient results.

As Equation (3.17) is a function of position, there is a degree of ambiguity as

to where we calculate this for each of the models. In order to make this choice as

unambiguous as possible (as well as to minimise the effect of any individual nearby

black hole), we choose the point that is furthest away from all masses, where ψ is

at its global minimum. The resulting scale factor is then uniquely specified for any
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Figure 4.12: The ratio of scale factors in the lattice universes aL0 and the dust-
dominated positively-curved FLRW universes aF0 , as a function of the
number of masses in the universe N , where N = 5, 8, 16, 20, 24, 64,
120, 144, 600 and 2400, from left to right.

value of λ ∈ [0, 1].

4.5.2 At a Fixed Value of λ

Firstly, we compare the 4 configurations each at a fixed value of λ, specifically λ = 0.5.

This means we are considering the lattices when the masses are nearly equidistant

from each other but not exactly. We can then add this to our existing catalogue of

the 6 original lattices, to have a total of 10 different lattices, with masses ranging

from 5 to 2400 in number, and see the effect this has. We plot these results in

Figure 4.12, which clearly show that increasing the number of masses has a global

trend of decreasing the size of the lattices universes to be increasingly similar to the

FLRW cosmologies, if not always locally (these smaller variations are due to different

polyhedra being used).

4.5.3 At Different Values of λ

Secondly, we now compare the 4 configurations to their FLRW counterparts, but at

different values of λ, to measure the effect of clustering. Recall that if λ is within

the critical value λcrit then the number of black holes in the cosmological region is
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given by the number of cells in the original lattice model, n. If this is the case it is

most appropriate to use Equation (4.18) to determine the proper mass of the cluster

within the shared horizon, so that M =
∑

imi. This measure includes the interaction

energies of the black holes within the shared horizon, which are now indistinguishable

from the perspective of a cosmological observer. In this case, we then compare the

lattice models to an FLRW universe with the same total mass as the sum of all of

these cluster masses.

If λ is beyond the critical value, however, then there are N = nCn distinct black

holes in the cosmological region, where Cn is the number of masses in a cluster. In

this case we could choose to calculate the total mass of each cluster of black holes

using M =
∑

imi or use M =
∑

imi where mi is the proper mass of each black hole.

The former of these methods will include the intra-cluster interaction energies, while

the latter will not. We display the results for both methods in Figure 4.13, for each

of our lattice models.

The results of using this method show the expected behaviour for the limiting

cases when λ → 0 or 1, as determined in [3]. The results for values of λ near to

these extreme cases also appear well behaved, as expected due to the fact that we

are still considering an effective n-mass model (the extra masses are behind a shared

horizon), with the cluster mass mi being used as the measure of mass rather than

the individual proper masses mi.

If we now consider the values of λ beyond the critical values, then we can see from

Figure 4.13 that the comparisons made using proper masses of the black holes (solid

lines) can yield quite different results from those made using the cluster mass (dotted

lines). If we take the total mass of the black hole universes to be given by the sum

total of individual proper masses of all black holes within it, as has frequently been

done in previous studies, then the results can be seen to vary strongly with changing

λ. In the most extreme case, which is the 600-mass model, the scale factor of the

lattice universe drops down to 30% of its FLRW counterpart when the black holes are

made to cluster (i.e. when the masses are close together, but still separated enough

to be considered individual black holes). However, when the ratio of scale factors

are determined using the total cluster masses of the black hole (which include the

interaction energies within each cluster), it can be seen that the dependence of the

scale factor aL0 on λ is much less pronounced. In Figure 4.13, the dotted lines that

give the ratio of scale factors in this case have been truncated artificially, as at some

point it becomes meaningless to consider black holes separated by large distances as

belonging to a cluster.

The situations immediately before and after the critical values of λ do not produce
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Figure 4.13: The ratio of scales between the lattice universes aL0 and the corresponding
dust-dominated positively-curved FLRW universes aF0 , as a function of
λ. The four curves correspond to the models with the following number
of masses: 5 → 5 (blue), 8 → 16 (yellow), 24 → 24 (red), and 120 →
600 (green). The sudden drops appear at the points where λ = λcrit,
which have different values for each of the different cases. In the regions
where λ is beyond λcrit, the dotted lines correspond to the total mass
being calculated using the sum of cluster masses (

∑
imi) and the solid

lines correspond to the total mass being calculated using the sum of
proper masses of individual black holes (

∑
imi).

discontinuous changes in the geometry of the cosmological region when we pass λcrit,

only an instantaneous change in the existence of the shared horizon. This suggests

that the appropriate measure of total mass should include the interaction energies

that exist within a cluster, even when the shared horizon does not exist. This raises

some interesting questions about dynamical structure formation in the real Universe:

if interaction energies contribute to the energy budget of the Universe, then which

interactions between which pairs of objects should be considered? In the examples

considered in this section we have artificially introduced clusters of objects on a single

scale. In the real Universe structure exists on a multitude of scales and pairwise

interactions could in principle be expected to exist between every pair of objects in

the Universe. Should we take each of these interactions into account? And, if not,

where should we draw the line?
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4.5.4 Comparison Between Lattice Models

In the previous section we compared our clustered lattice models to FLRW models

with the same total proper mass, and the same total cluster mass. These results

can be used to work out the difference in scale between lattice models with different

values of λ when they have the same
∑

imi or
∑

imi. However, if we want to

perform a similar analysis for lattice models with some fixed total bare mass
∑

i m̃i

then a comparison with FLRW is less instructive. This is because there is a large

difference between lattice models with some
∑

i m̃i and FLRW models that contain

the same total bare mass in dust [3, 168]. Instead we can compare lattice models that

have the same total bare mass but different values of λ. This allows us to see the

consequences of structure formation on the large-scale cosmology if the total energy

in the universe, including all proper masses and interaction energies, is kept fixed.

The results are shown in Figure 4.14. We have chosen to normalise the scale factor

by choosing bare mass parameters such that when λ = 0 we have aL0 = 1. Beyond

this value, we find that the scale factor increases with λ. This growth is initially

rather slow, but rapidly increases as λ gets larger. Note that as the overall number

of masses increases, the increase in the scale factor at large values of λ becomes less

pronounced. For example in the 5-mass lattice the scale factor is approximately 1.05

at λ = 0.3, but for the 600-mass lattice it is only 1.003. This suggests that the effect

of clustering decreases as the number of masses in the universe is increased, if we

compare models with the same total energy, and drops below 1% when the number

of black holes is > 103. This is qualitatively similar behaviour to the results shown

in Figure 4.13, when the sum of intra-cluster interaction energies and proper masses

were taken into account. It shows that the consequences of inter-cluster interactions

are not particularly strongly affected by the clustering, which is in keeping with the

near-constant nature of the green lines in Figure 4.11.

4.6 Discussion

We extended the 6 original black hole lattices by devising a novel formalism to create

structures within them, by splitting up the existing masses and moving them along

very specific trajectories. The purpose of this was to investigate the consequences of

the existence of astrophysical structure on the large-scale properties of the universe.

This gave us a set of four new black hole universes, containing 20, 64, 144 and

2400 masses, and with each model being controlled by a single parameter λ. We

found that a collective horizon appeared around the clustered black holes when they
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Figure 4.14: The scale factor of lattice cosmologies aL0 as a function of λ when the
total energy is kept fixed (such that

∑
i m̃i = constant). The values

of the m̃i have been chosen for each of the 6 different lattices so that
aL0 = 1 when λ = 0, and are different for each model.

were sufficiently close together. We derived expressions for the interaction energies

between clusters and within clusters, as well as the proper mass of individual black

holes and the mass of clusters of black holes. When comparing our lattices to their

FLRW counterparts we found that the most sensible way to do this was to include the

intra-cluster interaction energies in the total energy budget, along with the proper

masses of each of the black holes. Failure to include the interaction energies within

clusters would appear to give deficits of order unity, if only the sum of proper masses

of individual black holes were taken into account. The interaction energies within

astrophysical structures therefore seem capable of having a non-negligible influence

on the scale of the global cosmology. Therefore it appears we need to take interaction

energies into account when calculating the total energy in our cosmological models.

These results are a first step towards understanding the effects of structure formation

on the global cosmology in exact solutions with clustered discrete masses. If the total

energy in the universe is found to remain approximately constant, then we predict

the effects of structure formation to be modest (∼ 10% when N ∼ 10, decreasing

to ∼ 1% when N ∼ 103). However, if only the proper mass of black holes remains

constant then deviations of the order of ∼ 10% seem possible even when the number

of masses is very large.

The work presented so far has involved extending the initial data in chapter 3 to

include masses in more complex configurations, but is still based on the Schwarzschild
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solution to the Einstein field equations. We can further extend this by considering

other solutions, such as Reissner-Nordström or Schwarzschild-de Sitter, or even

other gravitational theories, such as scalar-tensor. Thus, provided we can find

exact solutions to a set of constraint equations, we can construct a variety of these

inhomogeneous cosmologies. This is exactly what we will do in the remaining chapters,

where we move on from the linearly superposed Schwarzschild masses as our initial

data.



5 Solutions with a Cosmological

Constant Λ

This chapter is based on [36].

5.1 Introduction

In this chapter and the following ones we move on from considering only the

Schwarzschild solution and instead look at other solutions to the Einstein field

equations. This chapter focuses on utilising the Schwarzschild-de Sitter spacetime,

which means we will be considering cosmological models that not only contain the

usual black holes as before, but also a cosmological constant denoted by Λ. As

with the previous chapter, we are extending the existing black hole lattices such

that they are being generalised, and in the limit of vanishing Λ, the new models

reduce to the original ones in [3]. As well as providing new mathematical insights

into inhomogeneous cosmologies when these generalisations are performed, there is

an overriding motivation particularly for including a cosmological constant. There

is ample evidence to support the idea that our own Universe is undergoing a late

time accelerated expansion [22, 23], of which a positive cosmological constant is a

satisfactory candidate. Therefore the inclusion of Λ allows a more ‘realistic’ cosmo-

logical model, and one that can be compared to existing expanding models. The

post-Newtonian models in [142] have already been extended to include a cosmological

constant, [143], whilst the authors in [169] have considered a numerical construction

of a flat, infinite cubic lattice. Our work differs from these previous studies as we

make no approximations when modelling the geometry of space, and because we

solve the constraint equations using a fully analytic approach. The topology of our

model is also different to that of Yoo et al., which allows us the benefit of studying

six different tessellations (rather than the one tessellation that exists in flat space).

The rest of this chapter is organised as follows. In section 5.2 we derive initial

data for our models. In section 5.3 we review the Schwarzschild-de Sitter solution

99
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and determine the masses of the black holes and in section 5.4 we derive a formula

for locating apparent horizons within each of our lattice models. This is then used to

determine what values of Λ give cosmologically viable solutions in section 5.5. One

of the ways our models can be compared to equivalent FLRW models is by looking

at how backreaction affects the deceleration parameter, which we do in section 5.6.

Finally we briefly look at how our initial data could be evolved numerically in section

5.7 before discussing our findings in section 5.8.

5.2 Initial Data with Λ

The relevant Hamiltonian and momentum constraint equations that we will need are

as follows,

R+K2 −KijK
ij = 16πρ, (5.1)

Dj

(
Kj
i − h

j
iK
)

= 0, (5.2)

where R is the Ricci scalar of the hypersurface, Kij is the extrinsic curvature, K its

trace, ρ is the total energy density as measured by an observer ni, hij is the intrinsic

metric of the hypersurface and Dj is the covariant derivative with respect to this

metric. In order to solve these, we perform a further conformal-transverse-traceless

decomposition, as introduced in chapter 2. Recall that the extrinsic curvature can be

written in terms of its trace K and trace-free part Aij as in Equation (2.55), and that

we can also perform a conformal rescaling of the 3-metric, where hij = ψ4h̃ij. This

then gives an identity for the Ricci scalar as before, see Equation (2.49). Substituting

these results into the constraint equations above gives

8D̃2ψ − ψR̃ − 2

3
ψ5K2 + ψ5AijA

ij = −2Λψ5 (5.3)

Dj

(
A j
i −

2

3
h j
i K

)
= 0, (5.4)

where the substitution 8πρ = Λ has been made. Previously in [3], both the extrinsic

curvature and cosmological constant were zero. For non-vanishing extrinsic curvature

and/or Λ we have that Equation (5.3) is non-linear in ψ, making it extremely difficult

to solve in general. However, if we choose

K2 = 3Λ and Aij = 0, (5.5)
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then Equation (5.4) is satisfied identically and Equation (5.3) becomes linear in ψ,

8D̃2ψ = ψR̃. (5.6)

It is manifest that this is just the Helmholtz equation from previous chapters, therefore

we can choose the conformal metric of the initial hypersurface to be a 3-sphere of

constant curvature as before, and the conformal factor will take the same form as in

Equation (3.4).

5.3 Proper Masses

We can now compare the geometry of our chosen initial data in the previous section

to an appropriate slice through the Schwarzschild-de Sitter solution to obtain an

expression for the proper mass. The Schwarzschild-de Sitter solution in standard

Schwarzschild coordinates (t, r, θ, φ) is given by

ds2 = −
(

1− 2M

r
− Λr2

3

)
dt2 +

dr2(
1− 2M

r
− Λr2

3

) + r2
(
dθ2 + sin2 θdφ2

)
, (5.7)

where M is the mass of the black hole. This solution has both black hole and

cosmological horizons provided that the combination of parameters M2Λ lies within

the range 0 < M2Λ < 1/9. As this is a requirement of our models, this will be

investigated later in this chapter.

Previous chapters have involved initial data with zero extrinsic curvature. Equation

(5.5) shows that the trace of the extrinsic curvature we are now considering is constant

and therefore we need to look for constant mean curvature (CMC) slices of the above

Schwarzschild-de Sitter solution. In order to proceed, we first write the solution in

the following form [170],

ds2 = −
(
α2 − β2

ψ

)
dt̃2 + 2βdt̃dr + ψdr2 + r2

(
dθ2 + sin2 θdφ2

)
, (5.8)

where α and β are the lapse and shift respectively and where ψ = ψ(r, t̃), (note that

this is not necessarily the conformal factor). Computing the 3-dimensional Christoffel

symbols and non-vanishing components of the Ricci tensor allows the Ricci scalar of

the three-space to be written as [1]

R = 2∂rψ/
(
rψ2
)

+ 2(1− 1/ψ)/r2, (5.9)
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which gives the Hamiltonian constraint Equation (5.1) as [171]

2

r

(
∂rψ

−1 +
1

r
ψ−1 − 1

r

)
+K j

i K
i
j −

1

3
K2 = 0. (5.10)

Using β = βr = Aβr and the evolution equation for the spatial part of the metric,

Equation (2.45), yields K θ
θ = K φ

φ = −1
2

(K r
r −K), and therefore the momentum

constraint (5.2) as

∂r
(
r3K r

r

)
− 1

r
K = 0. (5.11)

Integrating this and Equation (5.10) yields the extrinsic curvature as

K r
r = −

√
2

3
|A|+ 1

3
K, (5.12)

and the conformal factor ψ as [171]

ψ−1 = 1− 2M

r
+

(√
2

3
K +

|A|
2

)
|A|
3
r2, (5.13)

where |A| =
√
AijAij and where M is the mass parameter from Equation (5.7). The

value of |A|r3 in this expression is constrained to be a function of t̃ only, and must

obey the following evolution equation

d (|A|r3)

dt̃
=
√

6αM −
√

6r2

ψ

∂α

∂r
+

(
2|A|√

6
− K

3

)
α|A|r3. (5.14)

For further details about this foliation, including explicit forms for the shift and lapse

functions, the reader is referred to [171]. The particular leaf we require is the one

on which Aij = 0. From Equation (5.13), this gives us a hypersurface with intrinsic

geometry

ds2 =

(
1 +

M

2ρ

)4 (
dρ2 + ρ2

(
dθ2 + sin2 θdφ2

))
, (5.15)

where we have transformed to an isotropic radial coordinate using r = ρ(1 +M/2ρ)2.

This is manifestly the same intrinsic geometry as a time-symmetric slice though the

Schwarzschild geometry. Given that the intrinsic geometry in our initial data is also

identical to that of a time-symmetric slice through the Schwarschild solution, this

means that the proper mass of the ith black hole must also be given by Equation

(3.15).
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5.4 Apparent Horizons

Just as we did in section 4.3, we will look to the orthonormal constraint equations

and the results already derived in chapter 2 to locate the apparent horizons. Recall

a constraint equation given by the Bianchi identity was given in Equation (2.72).

For vanishing Λ, the expansion of the spacelike normal vector, denoted a1 was zero

also. Now however this is not the case and we can relate it to the expansion scalar

by using Equation (2.74). We have that

a outer
1 = −1

2
mµν∇µe1 ν =

1

3
Θ = ±

√
Λ

3
, (5.16)

where we have used the fact that Θ = −K and K2 = 3Λ. The ± after the final

equality indicates the fact that our initial data can describe either an expanding (+)

or a collapsing (−) space. The superscript ‘outer’ here refers to the fact that we

are considering outer trapped surfaces, recall Equation (2.68). We can also consider

ingoing future-directed null geodesics, lµ. These are defined as lµ = 1√
2
(nµ− sµ). The

vanishing expansion of ingoing null geodesics gives rise to marginally inner trapped

surfaces, and therefore our relation between the expansion of eµ1 and the expansion

scalar differs only by a minus sign. We can immediately write

a inner
1 = −1

2
mµν∇µe1 ν = −1

3
Θ = ∓

√
Λ

3
, (5.17)

where the ± sign here corresponds to expanding (−) or collapsing (+) space. We

therefore have both inner and outer trapped surfaces for each of the two possible

signs of Θ. Those with Θ < 0 (or K > 0) correspond to contracting universes whilst

those with Θ > 0 (or K < 0) correspond to expanding universes.

Finally, in Equation (2.72) we can again choose coordinates such that E 3
3 = E 2

2 = 0.

Combining all of the results we now have an expression to locate the positions of the

apparent horizons in our lattices with a cosmological constant, which is given by

e1

(
E11
)

= α1α2

√
3ΛE11 (5.18)

where we have introduced two new quantities, α1 and α2, which both take values

of either +1 or −1. The first parameter describes whether the space is expanding

or contracting, and we choose α1 = +1 to correspond to expansion and α1 = −1

to correspond to contraction. The second parameter then describes whether the

horizon in question is an inner or outer trapped surface. Given our previous choice,
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Figure 5.1: Penrose-Carter diagram for the region of spacetime in a lattice with
non-zero Λ. The hypersurfaces that constitute the initial data are shown
as dashed lines. The expanding universe with Θ > 0 passes through an
outer trapped cosmological horizon (OC), an outer trapped black hole
horizon (OBH), an inner trapped black hole horizon (IBH) and an inner
trapped cosmological horizon (IC) before emerging into the cosmological
region on the right. Similarly, a contracting universe with Θ < 0 passes
through an inner trapped cosmological horizon (IC), an inner trapped
black hole horizon (IBH), an outer trapped black hole horizon (OBH)
and an outer trapped cosmological horizon (OC) before emerging into
the cosmology. The solid curved line on the right-hand side represents a
cut-off where beyond this the causal structure of the cosmological region
should be expected to be too complicated to represent in a 2D figure.

we have that α2 = +1 corresponds to outer trapped surfaces whilst α2 = −1 refers to

inner trapped surfaces. The reader may note that this implies there is a symmetry

between outer trapped surfaces in the expanding case and inner trapped surfaces in

the contracting case. Consequently, a naive estimate of the total number of horizon

types to be found would a priori have been 8 (cosmological and black hole, which

can be either inner or outer trapped, occurring in either expanding or contracting

configurations). However, our analysis above shows that the degeneracy between

outer + expanding and inner + contracting reduces the total number of different

horizons to be just 4, which will be calculated in the next section. Finally, in the

limit Λ = 0 we note that the expression used to locate the apparent horizons given

in Equation (5.18) reduces to that of Equation (4.16) as expected.

We summarise our analyses of the hypersurfaces of our lattices with Λ by showing a

Penrose-Carter diagram for some arbitrary value of Λ in Figure 5.1. Both expanding

and contracting hypersurfaces have been considered and are indicated by the sign of Θ.

On the left of the diagram the spacetime approaches perfect Schwarzschild-de Sitter,

while on the right it approaches the complicated cosmological region (separated off
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by the curve). In between, each surface passes through exactly two cosmological

horizons and two black hole horizons, which can be either inner or outer trapped

surfaces. At the mid-point (within the black hole region) each of the two spaces

contains a throat that has a finite, non-zero, minimal radius. In the limit Λ→ 0 we

can verify that Equation (5.18) reduces to the corresponding Equation (4.16), and

in that case the apparent horizon becomes degenerate with the minimal sphere that

can fit within the throat at the centre of the black hole region. Finally, we note that

the procedure outlined in this section correctly identifies the known locations of the

horizons in the exact Schwarzschild-de Sitter geometry.

5.4.1 Locations of Apparent Horizons

We now seek to determine the location of these horizons in each of the six possible

lattices. To start with we use the 5-mass model as an example and rotate coordinates

so that one of the masses appears at the position χ = 0. We then calculate the

electric part of the Weyl tensor along a curve that connects this mass with one of its

neighbours in an adjacent cell, as a function of radial coordinate χ. This information

can then be used in Equation (5.18) to obtain the positions of the various horizons

for different values of Λ in units of M−2
0 (where M0 is the proper mass of one of the

black holes). The results of this are displayed in Table 5.1, where we have chosen to

consider an expanding universe (Θ > 0) and therefore α1 = +1. In our subsequent

analyses we consider horizons in the expanding case only unless specified otherwise.

Of course the results and analyses for contracting solutions are exactly the same,

albeit under an interchange of the words inner and outer when referring to horizons.

For Λ = 0, we find that the locations of the horizons at χ = χ
2 and χ = χ

3 are

degenerate, as previously identified in [82]. The positions of the other two horizons

when Λ = 0 are found to be at χ1 = 0 (the origin) and χ
4 = 1

2
arccos(−1

4
), (the

midpoint between masses). These are mathematical solutions to Equation (5.18),

but for vanishing Λ had not previously been considered as physically interesting.

Although the latter can rightly be identified as an extremal surface in the geometry

(it is part of the face of one of the cells in the lattice), it is not part of a closed

extremal surface, and so is not technically a horizon. Similarly, it is a stretch to call

the sphere at χ1 = 0 a horizon, as this corresponds to a sphere at infinity on the far

side of the Einstein-Rosen bridge. Nevertheless, it is useful to identify these points

as cosmological horizons as they become more interesting when Λ 6= 0.

Switching on Λ reveals that the horizons change positions, as indicated in Table

5.1. For the inner trapped surfaces with α2 = −1, the black hole horizon at χ3 moves
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α2 = +1 α2 = −1

Λ/M−2
0

χ
1

χ
2

χ
3

χ
4

0 0 0.413 0.413 0.912

0.002 0.00539 0.367 0.474 0.824

0.004 0.00781 0.349 0.507 0.781

0.006 0.00975 0.337 0.541 0.740

0.008 0.0115 0.326 0.586 0.690

0.009 0.0121 0.323 0.638 0.638

0.020 0.0196 0.285 - -

0.040 0.0311 0.241 - -

0.060 0.0426 0.207 - -

0.080 0.0559 0.177 - -

0.100 0.0749 0.144 - -

0.111 0.104 0.104 - -

0.120 - - - -

Table 5.1: Positions of the horizons for the expanding 5-mass model, as a function
of Λ measured in units of M−2

0 . The horizons at χ1 and χ
2 are both

outer trapped, while those at χ3 and χ
4 are both inner trapped. Dashes

indicate that no horizons exist for the given value of Λ. The position of
the midpoint between masses is at χ = 0.912 in this configuration.

outwards with increasing Λ, while the cosmological horizon at χ4 moves inwards as

Λ increases. This means that as Λ increases, χ3 and χ
4 converge towards each other

and become degenerate at Λ ' 0.009M−2
0 . For values of Λ above this critical value,

there are no solutions to Equation (5.18). Similarly, for outer trapped surfaces with

α2 = +1, the black hole horizon at χ2 moves to lower χ as Λ increases, whilst the

cosmological horizon at χ1 moves to higher values of χ. This corresponds to the black

hole horizon moving outwards on the far side of the Einstein-Rosen bridge, while

the cosmological horizon moves inwards from infinity. Again, these two horizons

become degenerate at a critical value of Λ ' 0.111M−2
0 and there exist no solutions

to Equation (5.18) for higher values of Λ.

To illustrate this behaviour graphically one can consider the functional form of the

left and right-hand sides of Equation (5.18). These quantities are shown in Figure

5.2 as a function of the coordinate χ for the 5-mass expanding model with α2 = ±1.

The coloured lines represent the right-hand side of Equation (5.18) and hence are



5.4: Apparent Horizons 107

0.5 1.0 1.5
χ

-0.10

-0.05

0.05

0.10

e1E
11
 / M0

-3, α2 3Λ E11
/ M0

-3

Figure 5.2: A graphical representation of the left and right-hand sides of Equation
(5.18) for the expanding 5-mass model. The black curve corresponds
to the left-hand side, while the multi-coloured curves correspond to the
right-hand side. The values of Λ range from 0 (purple) to 0.02M−2

0 (red)
in increments of 0.002M−2

0 . For α2 = +1 the multi-coloured lines are
above the horizontal axis, and α2 = −1 for those below. The vertical
dashed line shows the midpoint between the two masses.

a function of Λ. When the black line and the coloured lines cross, the equation is

satisfied and a value for the position of a horizon χ
h can be read off. For small

enough values of Λ there are four occasions where this happens. However, if the value

of Λ is increased sufficiently then these lines do not cross at all, and the horizons

cease to exist, a point already illustrated in Table 5.1.

The χ values from the positions of the horizons can be plotted separately, and

in the first panel of Figure 5.3 these values are shown for the 5-mass model. The

subsequent panels show the positions of the horizons for each of the five other lattice

universes that we are considering for different values of Λ. These diagrams show all

four possible horizons, both inner and outer black hole horizons as well as inner and

outer cosmological horizons. The extremal values of Λ in both the inner and outer

regions are displayed in the diagrams as vertical lines. As the number of masses is

increased the two extremal values for Λ converge until they become indistinguishable

by eye as shown in the case of the 120-mass and 600-mass configurations. The black

hole horizons meet at Λ = 0 as expected [82], and in every case the largest χ4 value

is simply the midway point between the two masses. The information presented in
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(f) 600 masses.

Figure 5.3: The positions of the four possible horizons in each of the six lattice
universes as a function of Λ. The blue (orange) line corresponds to a
marginally inner trapped cosmological (black hole) horizon, whilst the
green (red) line corresponds to a marginally outer trapped black hole
(cosmological) horizon. The vertical lines represent the value of Λ after
which no solutions to Equation (5.18) exist.
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Figure 5.3 can be used to determine the distance between neighbouring black holes

for every value of Λ in each of the six possible configurations.

5.5 Cosmologically Viable Solutions

In the previous section we showed that there were certain values of Λ above which,

no apparent horizons could be found. This means in order for our solutions to remain

as cosmological models and to compare them to their FLRW versions, we need to

ensure the horizons, both cosmological and black hole, do indeed exist, and therefore,

impose bounds on our values of Λ. In this section we look at these bounds in more

detail. A further motivation is provided by the fact that in the Schwarzschild-de

Sitter solution, it is known that cosmological and black hole horizons exist provided

0 < M2
0 Λ < 1/9.

The vertical lines in Figure 5.3 have already been used to denote the location of the

point where the black hole and cosmological horizons become degenerate. Here we

will collect these results, for each of the six lattice models, to consider the behaviour

of the upper bound on M2
0 Λ as a function of the number of masses in the universe.

We present this information graphically in Figure 5.4. It is manifest that two different

phenomena arise as the number of masses increases. The first is that the critical

values for Λ, after which there are no horizons, converge to the same value for both

α2 = +1 and α2 = −1. The second is that the value to which they converge is the

same value as the upper bound in the Schwarschild-de Sitter solution, M2
0 Λ = 1/9.

This is not unexpected, as for large values of N the distance between neighbouring

masses increases, and the overall contribution from any individual black hole to the

spacetime of any other diminishes. In other words, increasing N isolates each black

hole to the point that it can be very well approximated by the Schwarzschild-de

Sitter solution.

It is also interesting to see if a varying lower limit for ΛM2
0 exists, or whether

it is always bound from below by zero. One way of determining this is to look

at the gradients of both sides of Equation (5.18) and see if it always true that

∂χ
(√

3ΛE11
)
> ∂χ (ψ−2∂χ (E11)), for arbitrarily small values of Λ. If it is, then the

inner black hole and cosmological horizons should be expected to exist and to remain

separate. We calculated these two functions numerically, and found the condition to

be valid down to values of Λ ∼ O (10−14) and χ ∼ O (10−8) for all six lattice models.

This indicates the lower bound on ΛM2
0 is always zero, at least as far as can be

determined with machine precision calculations. This result agrees with the results
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Figure 5.4: The upper bound on ΛM 2
0 as a function of the number of masses, for

the outer horizons (blue) and the inner horizons (yellow). The solid line
corresponds to the Schwarzschild-de Sitter value of 1/9.

of [169], who found that an inner cosmological horizon always exists in the case of

an infinite flat lattice.

5.6 Deceleration Parameter

Previously, a way to compare our lattices with their corresponding FLRW versions

was to look at the ratio of scale factors, as in [3] and here in chapter 4. As our

intrinsic geometry remains unchanged from these original lattices, there will be little

point in calculating these same quantities again. Instead, a new way to compare our

inhomogeneous lattices with their homogeneous FLRW counterparts is to look at the

deceleration parameter q. The reason for this is twofold - firstly, it was previously

incalculable for the Λ = 0 case, as explained further on, but secondly, its relevance

in being a measure of the rate of change of expansion of space is that adding Λ itself

means we are considering an expanding (or contracting) hypersurface as we have

seen. The deceleration parameter is a dimensionless quantity, and for an FLRW

universe is defined as

q ≡ −aä
ȧ2

(5.19)
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where overdots denote derivatives with respect to the proper time of comoving

observers t. The Friedmann equations for an FLRW universe containing pressureless

dust and Λ were given in Equations (2.81) and (2.82). In an FLRW solution,

K = −3ȧ/a, R̃ = 6k and the electric part of the Weyl tensor (proportional to

ψ−1D̃2ψ) plays the role of the energy density in the effective Friedmann equations

[82]. Recall for the inhomogeneous lattices our choice for the extrinsic curvature to

solve the constraint equations was K2 = 3Λ and we also had the Helmholtz equation

for the conformal factor, 8D̃2ψ = ψR̃. Looking at the above FLRW solution results

and the Friedmann equations means we can immediately see that the most closely

analogous FLRW solutions to these choices are those that obey the conditions

ȧ2

a2
=

Λ

3
and

8πρ

3
=

k

a2
. (5.20)

These can then be used to calculate the deceleration parameter in Equation (5.19)

which is

q =
4πρ

Λ
− 1, (5.21)

and will be used for both the black hole lattices and the comparison FLRW cosmolog-

ical models. For the lattices, the energy density ρ will be the sum of proper masses of

all the black holes, whilst for the FLRW universes ρ is the energy density in dust at

the moment described in Equation (5.20). There are many other ways to construct

measures of deceleration in inhomogeneous universes, and ours is a choice that is

relatively simple and allows for direct comparison between our two cosmologies.

As in previous chapters, the particular way in which we compare our two cosmolo-

gies is to calculate the ratio of deceleration parameters, as shown below,

qL
qF

=
4πρL − Λ

4πρF − Λ
, (5.22)

where qL is the deceleration parameter for the black hole lattices, ρL their energy

densities, and qF and ρF the same quantities but calculated for the FLRW universes.

For vanishing Λ the first term on the right-hand side of Equation (5.21) diverges

which means this quantity cannot be defined in that case. For non-zero Λ however,

the deceleration parameter is finite and so our ratio of deceleration parameters is

well-defined.

Lastly, in order to compare between the two cosmologies we impose that the total

mass within them is the same, i.e. the sum of the proper masses of the black holes is

equal to the total mass of the fluid of dust, as previously. This ensures we are also
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Figure 5.5: The ratio of the deceleration parameter in the lattice universe, compared
to the corresponding FLRW universe, in each of the six possible tessella-
tions of the 3-sphere. Each curve corresponds to a different value of Λ,
in units of M−2

T .

choosing which of the infinite family of solutions that satisfy Equation (5.20) to use.

From this, we have expressions for the energy densities which are given by

ρL =
MT

2π2

1

a3
L

and ρF =
MT

2π2

1

a3
F

, (5.23)

where MT =
∑

iMi is the total mass in the universe and where aL and aF denote the

global scale factors in the lattice and fluid models respectively. We have also taken

the volume of a hypersurface of constant t to be given by V = 2π2a3. Regarding the

scale factors, these were previously calculated in [3], and can be seen in the final

column of Table 3.2.

We can now calculate the ratio of deceleration parameters in Equation (5.22)

as a function of the combination ΛM2
T . It can be seen that in the limit Λ → ∞,

both qL and qF → −1. For small values of Λ the deceleration parameters qL and

qF are both large and positive (diverging in the limit Λ → 0, as discussed above).

These properties are true for each of the six tessellations of the 3-sphere and are

non-surprising due to the form of the expression in Equation (5.22).

Fig. 5.5 shows the ratio of our two deceleration parameters, evaluated at different

values of Λ. As the number of masses increases the ratios tend to unity for all values

of Λ. This is to be expected, as for large values of N we have aL ≈ aF , which implies

ρL ≈ ρF and therefore qL/qF ≈ 1. When Λ is large, 100M−2
T , the ratio of deceleration
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parameters is approximately unity regardless of N . When Λ is very small, the ratio

of deceleration parameters reduces to ρL/ρF = (aF/aL)3. This is shown by the

curves corresponding to 0.1M−2
T and 0.01M−2

T , which are indistinguishable from each

other. On the other hand, for intermediate values of Λ, when 4πρF = Λ, the same

ratio diverges. Using Equation (5.23) and the fact that aF = 4MT

3π
this occurs at

Λ ≈ 8.33M−2
T , for which the green curve is a good indicator of this divergence in

ratio. All values of Λ below this critical value give qL/qF < 1, while all values above

it give qL/qF > 1.

5.7 Numerical Evolution

The work in this thesis provides initial data for the constraint equations, which can

be evolved using numerical relativistic techniques to satisfy the evolution equations.

When Λ = 0 the initial hypersurface is time-symmetric, meaning that evolving the

initial data in either direction in time means evolving it towards a cosmological

singularity, where numerical errors are likely to increase. Therefore, we believe the

work in this chapter has certain benefits over the corresponding work without Λ.

Furthermore, the work in this chapter is particularly interesting because the addition

of a cosmological constant Λ allows for expanding hypersurfaces as we have seen. It

would therefore be of interest to numerically evolve the initial data and see the effects

this has. We can go one step further and impose a constraint on our initial data such

that the hypersurfaces are always expanding, as we believe our own Universe is.

To do this we look at the first Friedmann equation in Equation (2.81) and demand

that firstly, if the universe is no longer expanding, then

H = ȧ/a = 0 iff
8πρ

3
− k

a2
+

Λ

3
= 0. (5.24)

Using the fact that ρ = ρ0a
3
0/a

3, this can be rewritten as

8πρ0a
3
0

3
− ka+

Λ

3
a3 = 0

=
8πρ0a

3
0

3

(
1− 3ka

8πρ0a3
0

+
Λ

8πρ0a3
0

a3

)
= 0.

(5.25)

From Equation (5.20) we have that 8πρ0/3 = k/a2
0 which can be rearranged to give

a0 = 8πc/(3k) where c = ρ0a
3
0. Choosing a0 = 1 gives Equation (5.25) as being

1− a+
Λ

8πρ0

a3 = 0. (5.26)
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There are no points where this is satisfied, and hence no points where H = 0, if

Λ/(8πρ0) > 4/27. Defining density parameters for Λ and matter respectively as,

ΩΛ ≡
Λ

3H2
0

and Ωm ≡
8πρ0

3H2
0

, (5.27)

finally gives this bound as

ΩΛ >
4

27
Ωm, (5.28)

as the criteria to be satisfied for eternal expansion. If we substitute in the Planck

value for the density parameters for matter, which is 0.3, we see that eternal expansion

occurs provided ΩΛ > 0.044, which at ΩΛ = 0.7, is most always satisfied.

An advantage of our work providing the initial data is that it is exact. Previous

attempts have made use of numerical solutions where numerical errors will only grow

during the time evolution, thus our work minimises the growth of these errors by

being an exact solution.

5.8 Discussion

In this chapter we provided and studied exact initial data for a universe that contains

regularly arranged black holes in a hyperspherical universe and in the presence of

a cosmological constant. We determined the proper mass of the black holes by

considering the constant mean curvature foliation of the Schwarzschild-de Sitter

spacetime, and found that the intrinsic geometry remains unchanged from the Λ = 0

case. We then found expressions for the locations of the black hole and cosmological

horizons and determined numerical values for the positions of these horizons in each

of the six possible lattice universes. We found that there are upper bounds on the

value of ΛM2
0 , where M0 is the proper mass of the black holes in this spacetime, and

that this upper bound converges to the Schwarschild-de Sitter value as the number of

masses in the universe is increased. These results give qualitative agreement with the

numerical work found performed in [169] when considering the inner black hole and

cosmological horizons, but appear to disagree when considering the outer horizons.

We expect that the source of this disagreement is due to the freedom that exists to

change the scale of the size of the cells in the flat lattice that the authors of this

study had been considering. No such freedom exists in the hyperspherical lattices

that we have studied, which makes them much more rigid, and thus changes the

relationship between the positions of black hole horizons and cosmological horizons.

We then studied the change in deceleration parameter due to inhomogeneity in
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spaces of this type, by comparing to positively curved FLRW models that contain

the same cosmological constant and dust with the same total proper mass. We found

that the backreaction effect from inhomogeneity decreases as the number of masses

is increased, and as the value of the cosmological constant becomes large.

Finally we found an interesting requirement for our models to be eternally expand-

ing, which could prove useful for future numerical evolution, and would allow our

models to be compared to those that exist in the literature that have had the time

evolution studied.

In this chapter and the preceding one we have completed our analyses and discussion

of generalising the existing black hole lattices to those that start to resemble the

complexity and nature of our own Universe, by adding structure and considering

expanding hypersurfaces. In the following chapters we extend the lattices in a slightly

different way, to include electric charge as well as an alternative gravitational theory.

These constitute more mathematical explorations into backreaction in inhomogeneous

cosmologies.



6 Solutions with Charged Black

Holes

This chapter is based on [37] and the calculations presented here were performed by

Rashida Bibi.

6.1 Introduction

In this chapter we extend our existing catalogue of black hole lattice initial data to

include electric charge. This allows for Reissner-Nordström-like black holes [172] as

well as other types of charged astrophysical bodies [173] to be included in cosmology.

We find that as the magnitude of the charge is increased, the discrepancy between

the charged lattice models and the corresponding FLRW solutions reduces and that

the horizon size of each black hole decreases.

There are several motivations for including electric charge. Firstly, it offers a

generalisation of existing models, analogous to the generalisation from Schwarzschild

to Reissner-Nordström in the study of static black holes. We expect this to give new

mathematical and physical insights into the nature of these inhomogeneous cosmolo-

gies. By definition, an FLRW universe forbids regions of charged spacetime due to

the homogeneity requirement, thus our addition of charge and inhomogeneity allows

us to investigate a previously unexplored area, and the cosmological consequences

of such universes. As before, we use the black hole lattices to study this problem

in a well-defined and precise way. In addition, this work generalises the well-known

Majumdar-Papapetrou and Kastor-Traschen solutions for multiple extremal black

holes with |q| = m [104, 105, 107] to the case where the black holes have |q| 6= m.

Finally, the inclusion of electric charge offers a way to break the discrete rotational

symmetries that might otherwise exist within these lattice cosmologies, as we find

that the black holes must necessarily contain non-identical charges.

This rest of this chapter is organised as follows: in section 6.2 we review the

Einstein-Maxwell constraint equations on a time-symmetric hypersurface. In section

116
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6.3 we derive initial data for a cosmological model that contains electrically charged

black holes and specifically focus on the 8-mass cubic lattice. The apparent horizons

are considered in section 6.4 before being compared to a Friedmann cosmology in

section 6.5. Finally we conclude in section 6.6.

6.2 Einstein-Maxwell

The Einstein-Maxwell equations that govern electromagnetic fields in the presence of

gravitation are given by

R µ
ν −

1

2
δ µν R =

1

2

(
FναF

αµ − 1

4
δ µν FαβF

αβ

)
≡ 8πT µ

ν , (6.1)

where R µ
ν is the Ricci tensor, and R is the Ricci scalar. The Faraday tensor is

denoted by F µ
ν , and obeys the following differential relations,

∇νF
µν = 0 and ∇[αFµν] = 0. (6.2)

Our aim is to solve these equations to obtain the geometry of a universe that contains

N electrically charged black holes.

To find the relevant initial data for this system, we start by choosing a spacelike

hypersurface with metric hij and normal uµ. The Hamiltonian and momentum

constraint equations from Equation (6.1) are then given by

R+K2 −KijK
ij = 16πρ (6.3)

Dj

(
K j
i − δ

j
i K
)

= 8πSi, (6.4)

respectively, where R is the Ricci curvature scalar of the initial 3-dimensional space,

Kij is the extrinsic curvature of this 3-space in the 4-dimensional spacetime, and

where the energy and momentum densities are given by

ρ ≡ Tµνu
µuν and Si ≡ −δ ji uµTµj, (6.5)

respectively. All indices in these expressions are raised and lowered with the metric

of the 3-space hij.

If we choose a time-symmetric initial hypersurface and matter fields then Kij = 0,

while Fiµ = −Eiuµ and Fij = 0. This means that ρ = EiE
i and Si = 0 and the



6.3: Initial Data 118

energy constraint Equation (6.3) becomes

R = 2EiE
i (6.6)

whilst the momentum constraint Equation (6.4) is satisfied trivially. Simultaneously,

the differential relations from Equation (6.2) imply

DiE
i = 0. (6.7)

We have a solution to the constraint equations if Equations (6.6) and (6.7) are both

satisfied. This provides the initial data for a unique evolution under the six remaining

Einstein-Maxwell equations in Equation (6.1) and the three evolution equations in

Equation (6.2) [174].

Let us now make the following ansätze. We proceed analogously as in previous

chapters and write the metric as

ds2 = Ω2ψ2h̃ijdx
idxj, (6.8)

where ψ and Ω are functions of all spatial coordinates and where h̃ij is the metric of

a conformal 3-dimensional space of curvature R̃ = constant. Secondly, we choose as

in [166],

Ei = ∂i[ln(Ω/ψ)]. (6.9)

The time-symmetric constraint Equations (6.6) and (6.7) then become

D̃2Ω =
R̃
8

Ω and D̃2ψ =
R̃
8
ψ, (6.10)

where D̃2 indicates a covariant Laplacian with respect to the metric h̃ij. These are

both Helmholtz equations for the two functions Ω and ψ. Solutions to this are well

known, and as long as Ω and ψ are not directly proportional, it can be seen that

Ei 6= 0. The reader may note that for periodic lattices of black holes the equations

in Equation (6.10) can have positive energy solutions only if R̃ is positive (see [162]

for proof).

6.3 Initial Data

Proceeding in the usual way we choose h̃ij to be the metric of a 3-sphere. By noting

that Equations (6.10) are both linear and by recognising that f ∝ 1/ sin(r/2) is a
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solution, we can write solutions to these equations more generally as

Ω =
N∑
i=1

ci
2 sin (ri/2)

, (6.11)

ψ =
N∑
i=1

di
2 sin (ri/2)

, (6.12)

where i runs from 1 to N , ci and di are two sets of N constants (yet to be determined),

and ri denotes the value of the r coordinate after rotating the sphere so that the

ith pole is located at ri = 0. As previously, these solutions contain N poles on the

conformal 3-sphere located at arbitrarily chosen locations. Each of these poles will

correspond to an electrically-charged mass point at the centre of a black hole in a

cosmological model.

A slice through Reissner-Nordström

We must now relate the constants ci and di to the charge and mass of each of the

black holes in order for the geometry to be fully specified. We expect that each

of these constants will be some combination of both mass and charge. To find the

relation, recall that the Reissner-Nordström solution in (t, σ, θ, φ) coordinates with

mass m and charge q can be written as

ds2 = −
(

1− 2m

σ
+
q2

σ2

)
dt2 +

dσ2(
1− 2m

σ
+ q2

σ2

) + σ2
(
dθ2 + sin2 θdφ2

)
. (6.13)

Transforming from σ to ρ as follows,

σ = ρ

(
1 +

m

2ρ

)2

− q2

4ρ
, (6.14)

allows us to write a time-symmetric slice as

ds2 =

(
1 +

m− q
2ρ

)2(
1 +

m+ q

2ρ

)2 (
dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2

)
. (6.15)

We still need to write this metric in the form of Equations (6.8), (6.11) and (6.12), in

order to transform the conformal 3-space plane to a sphere. To do this, we perform

one final coordinate transformation given by ρ = k tan(r/2), where k is a constant,
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and obtain

ds2 =
k2

4

(
1

cos(r/2)
+

m− q
2k sin(r/2)

)2(
1

cos(r/2)
+

m+ q

2k sin(r/2)

)2

ds̃2, (6.16)

where ds̃2 is the usual line-element on a 3-sphere. Finally, choosing 2k =
√
m− q

√
m+ q,

we get

ds2 =

( √
m+ q

2 sin(r/2)
+

√
m− q

2 cos(r/2)

)2( √
m− q

2 sin(r/2)
+

√
m+ q

2 cos(r/2)

)2

ds̃2. (6.17)

This result is of exactly the form that we would have obtained from considering

Equations (6.8), (6.11) and (6.12) with one mass positioned at r = 0 and a second

mass positioned at r = π. The two geometries are formally identical if we further

choose c1 = d2 =
√
m+ q and c2 = d1 =

√
m− q. This means that the time-

symmetric initial data for the Reissner-Nordström solution is a special case of our

more general initial data, with one mass of charge +q at r = 0 and a second mass of

charge −q at r = π.

N arbitrarily positioned charged black holes

Let us now consider the general case where N masses are at arbitrarily chosen

positions. By using Equation (6.16), and in the vicinity of a mass point, we can

relate ci and di to the mass mi of each of the black holes in any arbitrary distribution

of points. First we rotate coordinates as before such that the ith mass appears at

r = 0. We can then expand the terms in Equation (6.8) to find in the limit r → 0,

ds2 =

(
ci
r

+
∑
j 6=i

ci
2 sin (rij/2)

)2(
di
r

+
∑
j 6=i

di
2 sin (rij/2)

)2

ds̃2, (6.18)

where rij is the coordinate distance between the positions of the ith and jth masses.

Comparing this equation with the expanded version of Equation (6.16) at r = 0

allows us to read off the coefficients of the leading-order terms to obtain:

k =
1

2cidi

(
ci
∑
j 6=i

dj
2 sin (rij/2)

+ di
∑
j 6=i

cj
2 sin (rij/2)

)
− q2

i

2cidi
, (6.19)

and

mi = ci
∑
j 6=i

dj
2 sin (rij/2)

+ di
∑
i 6=j

cj
2 sin (rij/2)

. (6.20)
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The former of these equations is a relation between the coordinate systems of the

Reissner-Nordström solution and our multi-black hole solution around one of our

mass points. The latter however is an expression for the mass of each of our black

holes. The above analysis shows that the geometry of space in the vicinity of any one

of the black holes will be similar to a Reissner-Nordström black hole with mass m,

where m is given by Equation (6.20), provided a multi-black hole solution is specified

with a full set of c′is and d′is.

We will now identify the electric charge of each of our black holes. A general

definition of electric charge within a region Ω is given by [166]

qi ≡
1

4π

∫
∂Ω

Ein
idS (6.21)

where Ei is the electric field and ni is the unit inward-pointing normal. For our black

holes it is convenient to take the boundary ∂Ω to correspond to asymptotic infinity,

on the far side of the Einstein-Rosen bridge. This gives

ni =

(
−1

ψΩ
, 0, 0

)
, (6.22)

and dS = ψ2Ω2r2 sin θdθdφ. In both of these expressions Ω and ψ should be evaluated

in the limit r → 0. Evaluating Equation (6.21) in this limit, and using Equations

(6.11), (6.12) and (6.22) gives

qi = ci
∑
j 6=i

dj
2 sin (rij/2)

− di
∑
j 6=i

cj
2 sin (rij/2)

. (6.23)

This equation is an expression for the charge on the mass at position ri = 0, and

can equally be used to evaluate the charge on every other black hole in our solution.

The total charge in the universe is zero and is independent of how the black holes

are distributed and their masses, as we note that Equation (6.23) immediately gives∑
i qi = 0. Physically this makes sense, as lines of flux can only end on masses in a

closed cosmology.

Adding and subtracting the Equations (6.20) and (6.23) gives the following

mi + qi = ci
∑
j 6=i

dj
sin (rij/2)

, (6.24)

mi − qi = di
∑
j 6=i

cj
sin (rij/2)

, (6.25)
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however, this is still a system of non-linear equations, which makes it difficult to

solve for the ci and di directly, after the desired mi and qi have been specified.

A periodic universe with eight charged black holes

The simplest solution to Equations (6.24) and (6.25) is the case where all but one of the

black holes is extremal, with mi = qi. If the one exceptional black hole is labelled i = 1,

then vanishing total charge means that we must have q1 = −
∑

i 6=1 qi = −
∑

i 6=1mi.

The only solutions to Equations (6.24) and (6.25) then have m1 = −q1, and we have

the initial data for a Majumdar-Papapetrou [104, 105] solution with spatial infinity

transformed into the black hole with i = 1. We wish to extend these results to

consider non-extremal black holes. We do this in the next section, in which an exact

solution for ci and di can be found once the mass and charge of each of the black

holes has been specified.

Determining the sets of constants ci and di

For simplicity and in the rest of this chapter, our analyses considers only one of

the six lattice models - the 8-mass cubic lattice. Physically this corresponds to

considering a 4-dimensional Euclidean embedding space, within which a hypercube is

placed within a 3-sphere, and by ensuring that the vertices of the hypercube are all

touching the hypersphere simultaneously (i.e. by circumscribing the cube with the

sphere). Lines can be drawn between the points where these two structures touch,

which are just the edges of eight equal-sized cubes, and as we have seen are the

primitive lattice cells of this particular tiling.

An interesting feature arises in the regular 8-mass universe, in that each of the

black holes is antipodal to another black hole, just as in the time-symmetric slice

through the Reissner-Nordström solution discussed in the previous section. This can

be verified by looking at the final column of Table 4.2 in chapter 4. This lists the

coordinates of the location of each mass in both a set of Cartesian coordinates in

the 4-dimensional Euclidean embedding space, as well as in a set of hyperspherical

polar coordinates intrinsic to the 3-space itself. The reader should note that the χ

coordinates in chapter 4 are simply the r coordinates used in this chapter. Taking a

hint from the existence of the time-symmetric Reissner-Nordström geometry, we can

now choose the ci and di of these 8 masses such that the ci from each mass is equal



6.4: Apparent Horizons 123

to the di of the antipodal mass,

c1 = c3 = c5 = c7 = d4 = d6 = d8 = e− f (6.26)

c2 = c4 = c6 = c8 = d3 = d5 = d7 = e+ f (6.27)

where e and f are constants (yet to be determined). From Equations (6.24) and

(6.25) this choice then allows us to determine that

m1 = m2 = m3 = m4 = m5 = m6 = m7 = m8 = (1 + 6
√

2)e2 + f 2 (6.28)

q1 = −q2 = q3 = −q4 = q5 = −q6 = q7 = −q8 = −2(1 + 3
√

2)ef. (6.29)

Each of the 8 black holes has an identical mass to the others, while having an equal

and opposite electric charge to its antipodal partner. This is simplest way to satisfy

the requirements of vanishing total electric charge of all black holes and some degree

of regularity.

Finally, it is now straightforward to solve Equations (6.28) and (6.29) for e and f

to get

e =

√
(19 + 6

√
2)m+

√
(433 + 228

√
2)m2 − (91 + 120

√
2)q2√

(182 + 240
√

2)
, (6.30)

and f = −q/2(1 + 3
√

2)e, where m = mi is the mass of each black hole and |q| = |qi|
is the magnitude of the charge on each black hole (with sign chosen so that q = q1).

We now have an explicit solution where half of the black holes have positive charge

while the other half have negative charge, but all black holes have equal mass.

6.4 Apparent Horizons

As shown in previous chapters, it is of interest to determine the location of the horizons

around each of the black holes, and this chapter is no exception. For this work, it will

be to ensure that there is no overlap in the horizons corresponding to different black

holes, so that the solution can reasonably be referred to as a cosmological model. As

before, the position of the apparent horizon can be determined from the initial data

and we will therefore use this surface to approximate the location of the horizon of

each of our black holes. Recall the apparent horizon is the outermost marginally

outer trapped surface. As our initial data is time-symmetric, this surface must be an
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extremal surface in this 3-space. Proceeding in the same way as in section 4.3, it is

enough to use the area method to approximate its location. Analogously to Equation

(4.15), we rotate our 3-sphere until one of the masses appears at r = 0. Then the

area of any sphere centered on this mass is given by

A =

∫ 2π

0

∫ π

0

ψ2Ω2 sin2 r sin θdθdφ (6.31)

where r = constant. Integrating and minimising then gives us a good approximation

to the location of the black hole horizon. The true area of the apparent horizon is

that of a minimal sphere in the initial geometry, meaning this method of assuming a

sphere of constant coordinate radius to approximate the apparent horizon necessarily

produces a slight overestimate of the horizon area. However, as long as the horizons

are well separated, this error is expected to be very small [82].

Figure 6.1 shows the results of calculating the position of the apparent horizon in

this way, where we display the r coordinate of the apparent horizon as a fraction

of the coordinate distance between neighbouring black holes. It is clear that the

black hole horizons in our 8-mass model never touch, as when q/m→ 0, the horizon

extends about 27% of the way to the halfway point between black holes, as expected

from previous work. The horizon then shrinks back towards the centre of the black

hole as the charge on the black hole is increased, to either positive or negative values,

until it reaches zero in the limit q/m→ ±1. Our results show similar behaviour to

what should be expected from a maximal slice through a Reissner-Nordström black

hole.

6.5 FLRW Comparison

We further extend previous results concerning cosmologies filled with uncharged

black holes and consider the cosmological effects of electrical charge. As before,

we compare the scale of the cosmological region at the maximum of expansion

between our charged lattice universes and their FLRW counterparts. The initial data

constructed in section 6.3 can immediately be seen to be at such a maximum, as it

was chosen to be time-symmetric. The line element containing the scale factor at

the corresponding moment of time in a spatially closed and dust dominated FLRW

model is given by Equation (3.16). By comparing this number to the scale of the

cosmological region in our black hole spacetime we can then deduce the effect of

discretely distributed electric charges with the mass condensed into a finite number
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Figure 6.1: The position of the apparent horizon around one of our black holes rmin,
displayed as a fraction of the coordinate distance to the halfway point
between black holes rhalf . The value of rmin → 0 as q/m→ ±1.

of points.

For these charged lattices, we can determine the scale of the cosmological region

by calculating the proper length of one of the edges of one of our lattice cells, exactly

as definition D2 in Equation (3.18) and in [3]. If we rotate our solution until a cell

edge lies along a curve with θ and φ being constant, then the proper length of the

edge is given by

d =

∫ r2

r1

√
grrdr =

∫ r2

r1

ψΩdr, (6.32)

where r1 and r2 are the coordinates of the end-points of the edge in question (i.e.

the vertices of the lattice cell). The proper length of a curve that subtends the same

angle in a closed FLRW model is given by

dFLRW =

∫ r2

r1

a (tmax) dr = (r2 − r1) a (tmax) , (6.33)

where a(tmax) is the scale factor.

In general, the value of dFLRW will depend only on the total mass in the space M

(once the locations of the cell vertices have been chosen), whilst the value of d will

depend on both the mass of the black holes and their charge (m and q). Proceeding

as before we choose each cosmology to have the same total proper mass, i.e. M = 8m.

It is manifest that the relevant comparison of scales in the two cosmologies will be

given by a/aFLRW = d/dFLRW . This ratio is a function of only the charge to mass
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Figure 6.2: The scale of the cosmological region in our black hole lattice at the
maximum of its expansion, compared to a spatially closed dust domi-
nated FLRW model with the same mass. The orange line correspond to
measuring the scale of the black hole universe along a curve that joins
cells that contain three black holes with the same charge, whilst the blue
line corresponds to two black holes with the same charge and a third
with the opposite charge.

ratio of the black holes q/m, and reduces to the measure of cosmological backreaction

studied previously in [3] in the limit q → 0.

The value of the ratio of scale factors as a function of q/m is displayed in Figure

6.2. When q/m→ 0 we recover the results of the uncharged case, and as q/m→ ±1

the black holes become extremal. The difference from the predicted scale factor from

FLRW cosmology is greatest when the black holes are uncharged. Thus, increasing

the charges on the black holes decreases the discrepancy with FLRW, but the scale

of the cosmological region in our black hole cosmology is always greater than that of

the corresponding FLRW model, even when the black holes approach extremality.

The two curves in Figure 6.2 correspond to the situations where the three cells that

meet along the cell edge under investigation all contain black holes that have the

same charge (orange line), or when two of the cells have the same charge and the

other has the opposite charge (blue line). These two curves therefore describe every

cell edge that exists within our eight-black hole modelas t, e rehsults do not depend

on whether the same charges in these two situations are positive or negative; the

ratio of scale factors is the same in either case.
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6.6 Discussion

We have presented an analysis of a lattice of regularly arranged, charged black holes at

maximum of expansion. This generalises existing work in the literature and provides

insight into the effect that electric charge has on cosmological physics. We have

found that the only solutions that exist are those that have zero net charge. We then

applied this analysis to a specific model containing eight black holes, and found a

relatively simply way of obtaining an uncharged universe overall - by demanding that

black holes exist in antipodal pairs, and that each black hole has equal and opposite

charge to its antipodal partner. We investigated the size of the apparent horizon as a

function of this charge to mass ratio and found that as the magnitude of the charge

of the black holes is increased the size of the apparent horizon decreases. In the

limit where the black hole charges become extremal the apparent horizons recede to

zero radius. We then compared this model to an FLRW model with positive spatial

curvature containing the same total mass in dust and found that as the magnitude

of the charge on the black holes was increased, the discrepancy between lattice and

FLRW was reduced, with the largest discrepancy corresponding to the case where

there is no charge.

Our work in this chapter completes our extension of the black hole lattices as far

as general relativity is concerned. To recap, we have considered new initial data,

either in the form of charged masses or a cosmological constant, as well as alternative

arrangements of the masses themselves. In the next chapter we go one step further,

and extend our lattices to a scalar-tensor theory of gravity, Brans-Dicke.



7 Solutions in Brans-Dicke

Gravity

This chapter is based on [38].

7.1 Introduction

The preceding three chapters of this thesis have all shared a common theme - they have

involved generalisations of the black hole lattices all within the same gravitational

theory, general relativity. Here, and in our final chapter, we present some of the

first steps to further generalise using an alternative gravitational theory. The theory

we use is the one first introduced by Brans and Dicke [52], and introduced here in

this thesis in section 2.1.5. While much work has been performed on understanding

virtually every aspect of these theories (see e.g. [46, 175]), it is still the case that very

little is known about their cosmological solutions away from the limits of homogeneity

and isotropy. To date, the only studies in this area have been limited to highly

symmetric matter configurations [176] or theories with well chosen self-interaction

potentials [177]. We address this deficit by studying inhomogeneous cosmological

configurations that admit no global symmetries, but which allow progress to be made

using exact methods. We expect the spacetimes that result from our investigation to

shed light on the consequences of structure formation in these theories, including the

degree to which Newton’s constant is allowed to vary in space near massive objects.

By extending the results of previous studies to new theories of gravity, we allow

the general relativistic results to be considered within a wider context. It also

significantly extends what is currently known about inhomogeneous cosmological

models in scalar-tensor theories of gravity – a field that is severely restricted by the

additional complexity of the field equations.

This final chapter is organised as follows: in section 7.2 we derive the relevant

constraint equations for our initial data problem. In section 7.3 we investigate

solutions to these equations, including expressions for the proper masses and scalar

128



7.2: Deriving the Constraint Equations 129

charges for each of the point-like objects in section 7.4. Section 7.5 then contains

a review of Friedmann cosmology in Brans-Dicke theory, and proceeds to compare

the scale of our inhomogeneous models to these perfectly homogeneous and isotropic

solutions in section 7.5.1. Finally, we conclude in section 7.6.

7.2 Deriving the Constraint Equations

It is not necessarily the case that alternative theories of gravity admit a well-posed

initial value problem. For certain simple Horndeski theories (the most general

scalar-tensor theories), of which Brans-Dicke is a subset, then there is an initial

value problem which is indeed well-posed [178]. This allows us to proceed as in

previous chapters and formulate the field equations as a set of Hamiltonian and

momentum constraint equations. Recall the Lagrangian density for the Brans-Dicke

theory, Equation (2.12), which when varied with respect to the appropriate fields,

gave the field equations in Equations (2.13) and (2.14). Before we can construct our

lattices by finding suitable initial data, we first need to derive the Hamiltonian and

momentum constraint equations that correspond to these field equations. This is

done by performing the usual 3 + 1 decomposition, using the irrotational timelike

unit normal nµ and the projection tensor hµν = gµν + nµnν . All quantities can

then be split into a temporal part, by contracting with nµ, and a spatial part, by

projecting with hµν . In particular, the Gauss-Codazzi-Mainardi equations can be

used to project the Einstein tensor such that

2Gµνn
µnν = R+K2 −KµνK

µν , (7.1)

where Kµν = −h ρ
µ h

σ
ν ∇ρnσ is the extrinsic curvature of the hypersurfaces orthogonal

to nµ, K is its trace, and R is the Ricci curvature scalar of the space orthogonal to

nµ. As well as this we find

− h ν
µ Gνσn

σ = DνK
ν
µ −DµK, (7.2)

where Dµ is the torsion-free covariant derivative on the hypersurface orthogonal to nµ

that is compatible with hµν , and which is defined such that DµKνρ = h σ
µ h

τ
ν h

χ
ρ ∇σKτχ

(for example). For general relativity in vacuum, the left-hand sides of both Equations

(7.1) and (7.2) are zero. For Brans-Dicke theory, however this is not the case - the

left-hand side is instead functions of the scalar field, φ.
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When Tµν = 0, we can use Equation (2.13) to write the Hamiltonian constraint as

R+K2 −KµνK
µν = 2

2φ
φ

+
2

φ
nµnν∇µ∇νφ+

ω

φ2
(∇φ)2 +

2ω

φ2
nµnν∇µφ∇νφ , (7.3)

where we have used gµνn
µnν = −1. The first and second terms on the right-hand

side of Equation (7.3) can then be used to write

2

φ
(2φ+ nµnν∇µ∇νφ)

=
2

φ
Knµ∇µφ+

2

φ
(−Knµ∇µφ+ gµν∇µ∇νφ+ nµnν∇µ∇νφ)

=
2

φ
Knµ∇µφ+

2

φ
(−Knµ∇µφ+ hµν∇µ∇νφ)

=
2

φ
Knµ∇µφ+

2

φ

(
∇ν(n

ρnµ)h ν
ρ ∇µφ+ hµν∇µ∇νφ

)
=

2

φ
Knµ∇µφ+

2

φ

(
∇ν(h

ρ
µ )h ν

ρ ∇µφ+ hµν∇µ∇νφ
)

=
2

φ
Knµ∇µφ+

2

φ

(
∇ν(h

ρ
µ∇µφ)h ν

ρ

)
=

2

φ
Knµ∇µφ+

2

φ
DµD

µφ ,

(7.4)

while the third and fourth terms can be written as

ω

φ2
(gµν∇µφ∇νφ+ 2nµnν∇µφ∇νφ)

=
ω

φ2
((hµν − nµnν)∇µφ∇νφ+ 2nµnν∇µφ∇νφ)

=
ω

φ2
(hµν∇µφ∇νφ+ nµnν∇µφ∇νφ)

=
ω

φ2
(DµφD

µφ+ nµ∇µφn
ν∇νφ) .

(7.5)

Combining these results we have that the Hamiltonian constraint can be written

as

R+K2 −KµνK
µν − 2K

φ̇

φ
− 2

φ
D2φ− ω

φ2
φ̇2 − ω

φ2
DµφD

µφ = 0 , (7.6)

where ˙ = nµ∇µ and D2 = DµD
µ.

Similarly, for the momentum constraint we have

DµK
µ
ν −DνK

=
2φ
φ
h µ
ν nµ +

ω

2

(∇φ)2

φ2
h µ
ν nµ −

ω

φ2
h µ
ν n

ρ∇µφ∇ρφ−
1

φ
h µ
ν n

ρ∇µ∇ρφ .
(7.7)
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The first and second terms on the right-hand side of this equation can immediately

be seen to vanish, as h µ
ν nµ = 0. The third term is simply −ωφ̇Dνφ/φ

2. Finally the

last term can be written as

−1

φ
h µ
ν n

ρ∇µ∇ρφ = −1

φ
h µ
ν ∇µ(nρ∇ρφ) +

1

φ
h µ
ν (∇µn

ρ)∇ρφ

= −1

φ
Dνφ̇−

1

φ
K ρ
ν ∇ρφ .

(7.8)

Combining these results we have that the momentum constraint can be written as

DµK
µ
ν −DνK +

1

φ
K µ
ν Dµφ+

1

φ
Dνφ̇+

ω

φ2
φ̇Dνφ = 0 . (7.9)

Equations (7.6) and (7.9) are the final version of the Hamiltonian and momentum

constraint equations we wish to use and are consistent with other similar results

derived in the literature [179].

Finally, we wish to write the scalar field Equation (2.14) as a set of constraint and

evolution equations. For convenience this is done by introducing new variables π ≡ φ̇

and ψµ ≡ Dµφ. The set of evolution equations for φ, π and ψµ are then given in

vacuum by

φ̇ = π,

π̇ = Dµψ
µ +Kπ + ṅµψµ,

ψ̇µ = Dµπ + ṅµπ + nµṅ
νψν +K ν

µ ψν ,

(7.10)

with the only constraint being

ψµ −Dµφ = 0 . (7.11)

This last equation is of course just the definition of the variable ψµ, and must therefore

be satisfied identically. We note that these equations are the same as those considered

in [155], for a minimally coupled scalar field in Einstein’s theory1.

The only equations that need to be satisfied in order to fully specify the initial

data of a vacuum spacetime in this theory are therefore just Equations (7.6) and

(7.9). In the next section of this paper we will solve these equations in order to find

initial data for a universe filled with point-like masses.

1Except for a missing term +K ν
µ ψν , on the right-hand side of Equation (13) of that paper.
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7.3 Initial Data

In order to simplify the constraint equations we can choose the extrinsic curvature

to vanish, such that Kij = 0. A hypersurface that satisfies this condition is time-

symmetric, as we have seen before, and in a cosmological context corresponds to

a maximum of expansion. It also provides an analogous situation to the general

relativistic studies that have already been performed for this situation. In this case

the Hamiltonian and momentum constraint equations then become

R− 2

φ
D2φ− ω

φ2
φ̇2 − ω

φ2
DiφD

iφ = 0 , (7.12)

and
1

φ
Diφ̇+

ω

φ2
φ̇Diφ = 0 , (7.13)

and where we are now using Latin indices to denote coordinates on the 3-dimensional

initial hypersurface, such that Di is a covariant derivative with respect to the metric

hij of this space.

Equation (7.13) is satisfied if either φ̇ = 0 or φ̇ ∝ φ−ω. The former of these

corresponds to a scalar field that is also time-symmetric at the initial hypersurface.

The latter case is not time-symmetric, and offers a potentially interesting scenario

to study, but in this case we are unable to find solutions to the corresponding

Hamiltonian equation. We therefore restrict our attention to the φ̇ = 0 case, for

which the Hamiltonian constraint (7.12) becomes

R = (ω + 2)ψ̃iψ̃
i + 2Diψ̃

i , (7.14)

where we have defined ψ̃i ≡ ψi/φ = Diφ/φ. This single equation is a profound

simplification of the initial system of constraint equations, but is still a non-linear

differential equation for the variable ψ̃ in terms of the 3-curvature R. We will

now show that through a change of variables we can express this as a set of linear

equations which therefore admit solutions that can be linearly superposed.

Suppose that the geometry of an initial hypersurface can be written as

ds2 = Ω4(r, θ, ϕ) ds̃2
3 (7.15)

where ds̃2
3 = dr2 + sin2 r(dθ2 + sin2 θdϕ2) is the line-element of a hypersphere, and r,

θ and ϕ are hyperspherical polar coordinates. The change of variables we wish to
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perform is then given by

Ω = χaσ1−a and φ = χsσ−s , (7.16)

where a is a constant, s = (1 − 2a ± τ)/(2 + ω) and τ =
√

1 + 4a(1− a)(3 + 2ω).

In this case Equation (7.14) is satisfied by any solutions of the following two linear

equations,

D̃2σ = κ1 σ (7.17)

D̃2χ = κ2
χ , (7.18)

where D̃2 is the Laplacian operator on the conformal hypersphere described by ds̃2,

and κ1 and κ2 are constants. If we choose s = (1− 2a− τ)/(2 + ω), then κ1 satisfies

κ1 =
3(2 + ω)− (1 + 2a(3 + 2ω)− τ)κ2

(7 + 4ω − 2a(3 + 2ω) + τ)
. (7.19)

If one were to choose s = (1− 2a+ τ)/(2 + ω), then the sign of τ would need to also

be changed in this expression. However, in what follows we will use the first choice

of s (this will be explained when we compare our solution to known exact solutions).

Equations (7.17) and (7.18) are both Helmholtz equations, which have the following

smooth solutions [155]:

σ(r, θ, ϕ) =
N∑
i

αi
sin {
√

1− κ1(π − ri)}
sin {
√

1− κ1 π} sin {ri}
, (7.20)

χ(r, θ, ϕ) =
N∑
i

γi
sin {
√

1− κ2(π − ri)}
sin {
√

1− κ2 π} sin {ri}
, (7.21)

where αi and γi are two sets of constants, which are explained further on. Each of the

terms in each of these two sums can be seen to diverge at ri = 0, and remain smooth

and single valued everywhere else. Both σ and χ therefore contain N poles, which

we take to be located at N distinct locations on the conformal hypersphere. The

meaning of ri, as used in each of the different terms in these two equations, should

therefore be taken to mean the value of the r coordinate after rotating coordinates

so that the pole for that particular term appears at r = 0. In this sense, we are using

a different set of hyperspherical polar coordinates for each term, so that we can write

every term in the same form.
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7.3.1 Comparison with the Brans Solution

The solutions given in Equations (7.20) and (7.21) contain 2N + 3 free parameters:

αi, γi, ω, κ2 and a. We wish to understand these degrees of freedom and make sense

of this, so we will compare our solution with the spherically symmetric, vacuum

Brans solution. The line-element for the Brans solution is given by [46]

ds2 = −e2α0

(
1− B

r

1 + B
r

) 2
λ

dt2 + e2β0

(
1 +

B

r

)4
(

1− B
r

1 + B
r

) 2(λ−c−1)
λ

ds̃2, (7.22)

where ds̃2 = dr2 + r2(dθ2 + sin2 θdϕ2), λ2 ≡ (c+ 1)2 − c(1− ω c/2) and c, B, α0 and

β0 are constants. This solution also has a scalar field φ which can be written as

φ = φ0

(
1− B

r

1 + B
r

) c
λ

, (7.23)

where again φ0 is another constant. By comparing this solution with Equations (7.15)

and (7.16) and requiring that s = (1− 2a− τ)/(2 + ω), the following identification

can be made:

s =
c

λ
and a =

λ− c− 1

2λ
. (7.24)

For the choice of s = (1 − 2a + τ)/(2 + ω), our solution satisfies the constraint

equations if we identify s with −c/λ and a with 1− (λ− c− 1)/λ. This shows that

the choice in the sign of τ in the parameter s is degenerate with the identification of

χ and σ with either
(
1− B

r

)
or
(
1 + B

r

)
.

It is known that if c = −1/(2 + ω), then Equation (7.22) reduces to the Schwarzschild

solution as ω →∞ [52]. Making this choice for c then gives us

s = −
√

2√
2 + ω

√
3 + 2ω

and a =
1

2
− 1 + ω√

2
√

2 + ω
√

3 + 2ω
, (7.25)

as well as

κ1 =
3− 2κ2 + κ2

√
6+4ω
2+ω

2 +
√

6+4ω
2+ω

, (7.26)

where s = a = 0 and κ1 = 3/4 in the limit ω →∞. This reduces the number of free

parameters in our solutions to 2(N + 1): αi, γi, ω and κ2. We will investigate further

the meaning of these remaining degrees of freedom in what follows.
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7.4 Proper Mass and Scalar Charge

Proper Mass

We proceed as in the previous chapters of this thesis, in that in order to determine the

proper mass of each of the point-like objects in our solution, we need to view them

from infinity in the asymptotically flat region on the far side of the Einstein-Rosen

bridge. Taking this limit ri → 0 gives

ds2 →
(
γi
ri

+Bi

)4a(
αi
ri

+ Ai

)4−4a

ds̃2, (7.27)

where

Ai = − αi
√

1− κ1

tan {
√

1− κ1π}
+
∑
j 6=i

αj
sin {
√

1− κ1(π − rij)}
sin {
√

1− κ1π} sin {rij}
, (7.28)

Bi = − γi
√

1− κ2

tan {
√

1− κ2π}
+
∑
j 6=i

γj
sin {
√

1− κ2(π − rij)}
sin {
√

1− κ2π} sin {rij}
, (7.29)

where rij is the coordinate distance between points i and j (after rotating so that

mass i appears at r = 0). We have also used the fact that in the limit ri → 0, then

ds̃2
3 → ds̃2 as sin2 r → r2. Defining a new coordinate r′i ≡ α 2−2a

i γ 2a
i /ri means that in

the limit ri → 0 then r′i →∞. Inserting this into Equation (7.27) gives

ds2 →
(

1 + 4
(1− a)α 1−2a

i γ 2a
i Ai + aα 2−2a

i γ 2a−1
i Bi

r′i

)
ds̃′2 , (7.30)

where ds̃′2 = dr′i
2 + r′i

2dΩ2. Similarly, in the limit r → ∞ the static, spherically

symmetric Brans solution in Equation (7.22) becomes

ds2 → e2β0

(
1 + 4

(c+ 1)

λ

B

r

)
ds̃2. (7.31)

which, up to an overall constant rescaling of units, can be compared to Equation

(7.30) to give B(c+ 1)/λ = (1− a)α 1−2a
i γ 2a

i Ai + aα 2−2a
i γ 2a−1

i Bi. We now recall that

the parameter B in the Brans solution is related to its mass m by B = mλ/2 [52].

Further recalling c = −1/(2 + ω) means we can now read off an expression for the

proper mass of each of the point masses in our solution,

mi = 2

(
2 + ω

1 + ω

)(
γi
αi

)2a−1

((1− a)γiAi + aαiBi) . (7.32)
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Scalar Charge

As well as mass we can also derive an expression for the scalar charge, qi, of each of

the objects in our solution. This method will be analogous to the one used to derive

an expression for the electric charge of a point mass in section 6.3, in particular,

Equation (6.21). We therefore define our scalar charge as

qi ≡
1

4π

∫
∂iφn

idA , (7.33)

where ni is the unit inward pointing normal and dA is an area element as r → 0, such

that ni = (−σ−2+2aχ−2a, 0, 0) and dA = σ4−4aχ4ar2 sin θ dθ dφ. As for the proper

mass, we evaluate σ and χ in the asymptotic limit r → 0. This gives an expression

for the scalar charge of the ith mass as

qi = s

(
γi
αi

)s+2a−1

(γiAi − αiBi) , (7.34)

which has a pleasing symmetry with the expression for the proper masses given in

Equation (7.32). It is straightforward to verify that in the limit ω →∞, we recover

qi → 0 as expected. These results show that the proper mass mi and scalar charge qi

of each mass are directly related to the values of the parameters αi and γi, and that

by specifying a value of mi and qi for each of our points we are essentially setting

the values of αi and γi. This leaves only the values of ω and κ2 as the remaining two

degrees of freedom. The former of these corresponds to a choice of the gravitational

theory being considered, as it appears as a coupling constant in the generating

Lagrangian. We interpret the latter as corresponding to the amount of scalar field in

the background cosmology, as explained below.

7.4.1 Background Scalar Field

We choose to depict the conformal factor Ω and scalar field φ for the 8-mass cubic

lattice, as already introduced in the previous chapters. Figures 7.1 to 7.4 depict

these quantities for different choices of the parameter κ2. In each of these diagrams

have set ω = α = γ = 1, and taken a surface at r = π/2. The slice taken through

this configuration in these figures is a great sphere, and is chosen so that six of the

eight points are positioned within that sphere. In each of the figures, the distance of

the surface from the centre is the value of the field (Ω or φ) at that point, whilst the

angular positions of the surfaces correspond to individual points on the great sphere

r = π/2.
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Figure 7.1: Conformal factor Ω (left) and scalar field φ (right), for κ2 = 0.1.

Figure 7.2: Conformal factor Ω (left) and scalar field φ (right), for κ2 = 0.4.

In Figure 3, for κ2 = 0.75 there is no scalar charge on any of the masses, as the

value of the scalar field is represented by a constant unit sphere. Mathematically this

can be seen in Equation (7.26), where we have that κ1 = κ2 for κ2 = 0.75. Setting all

of the αi parameters to be equal to each other, and likewise for γi, then implies from

Equations (7.28) and (7.29) that γiAi = αiBi. Finally it is manifest from Equation

(7.34) that qi = 0.

For values of κ2 < 0.75 the scalar field is largest at the positions of the masses

at a maximum value of 1, whereas for κ2 > 0.75 the scalar field is smallest at the

positions of the masses (as shown by the dimples in Figure 7.4). Changing the value

of κ2 can therefore be interpreted as increasing or decreasing the background value

of the scalar field. We note that changing the value of κ2 has very little effect on the

geometry of the initial hypersurface itself, but that changing ω has a very significant

effect on the scalar field distribution, with the shape of the corresponding figures

again approaching a spherical shape in the limit ω →∞. The distribution of φ in

Figures 7.1 to 7.4 can be directly linked to the distribution of Newton’s constant, G,

via Equation (2.15).
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Figure 7.3: Conformal factor Ω (left) and scalar field φ (right), for κ2 = 0.75.

Figure 7.4: Conformal factor Ω (left) and scalar field φ (right), for κ2 = 0.9.

7.4.2 General Relativistic Limit

We wish to investigate how (and if) the lattice cosmologies constructed above differ

from their general relativistic counterparts, and how they approach them in the limit

ω → ∞. Of principle interest in this regard will be the scale of the cosmological

region of each of the respective solutions. In order to extract this quantity we define

aBDL
0 ≡ (χ2aσ2−2a) |vertex, where the right-hand side is being evaluated at the vertex

of one of the primitive cells from which the lattice is constructed (i.e. at one of the

points which is furthest away from all nearby masses). A similar quantity, aGRL
0

has already been calculated to measure the scale of the cosmological region in the

corresponding general relativistic lattice [3].

We now wish to compare the values of aBDL
0 and aGRL

0 for two lattices that contain

the same number of objects, located at the same positions, and with the same total

proper mass. We again choose to consider the 8-mass cubic lattice, as discussed in the

previous section. We find that the quantity aBDL
0 /aGRL

0 changes as a function of the

coupling parameter of the theory, ω, but also as a function of parameter that controls

the background value of the scalar field κ2, where κ2 ≥ 1. In order to uniquely specify

a solution in the case of the Brans-Dicke lattices we also need to specify a value for

the proper mass and scalar charge of each black hole, qi = q. Regarding the proper
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Figure 7.5: Ratio of scale factors aBDL
0 /aGRL

0 for the BD and GR lattice cosmologies,
for different values of ω and κ2 (with m = 9.48 and γ = 1). The inset
shows a close-up of the intersection of the lines with κ2 ≥ 0.3 and the
y-axis.

mass, we set this to be the value found in the general relativistic case, as shown in

Table VI of [3]. There, the ratio of effective mass to proper mass was found to be

0.11. Setting the effective mass to unity, for simplicity, then yields mi = m = 9.48,

and here we take this to set the value of the αi parameters. For the scalar charge q,

we find that scale factor of the cosmology is insensitive to the specific value chosen

for q, therefore we can instead set γi = 1 for simplicity. We display our results in

Figure 7.5

All our results show a convergence towards the general relativistic value of the

scale factor as ω →∞, as expected. For ω . 103, however, our solutions are very

different from the general relativistic ones, with the scale factor taking a smaller

value in every case. These plots make it clear that scale of the cosmological solutions

is strongly dependent on κ2 for small values of ω, but that in the limit ω →∞ all

dependence on κ2 drops out. Finally we interpret the independence of the value of

the scale factor to the particular value of q as demonstrating that the majority of

the gravitational influence of each point particle is dominated by its mass, and not

its scalar charge.

7.5 Brans-Dicke Friedmann Cosmology

In this section we wish to make a comparison between the initial data for an

inhomogeneous universe described above, and the corresponding homogeneous and
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isotropic dust-filled Friedmann cosmologies that exist in Brans-Dicke theory. Our

approach to this will be to compare cosmologies that contain the same total mass

and background scalar field value, at a moment of time-reversal symmetry, similarly

to previous chapters.

To do this we need to solve the field equations for homogeneous and isotropic

dust-filled spacetimes, which are given by

H2 =
8πρ

3φ
− k

a2
−H φ̇

φ
+
ω

6

φ̇2

φ2
,

φ̈

φ
=

8πρ

φ(2ω + 3)
− 3H

φ̇

φ
,

(7.35)

where ρ = ρ0a
3
0/a

3, H = ȧ/a and where over-dots denote differentiation with respect

to the proper time of comoving observers.

We immediately note that if we require H = φ̇ = 0 then Equation (7.35) implies

that the spatial curvature k must be positive (and given by k = 8πρa2/3φ, assuming

ρ and φ are both positive valued quantities). Choosing units where k = 1, we find

that there exist solutions given by [180]

a(t) =
3φ0

8πρ0a3
0

− 2πρ0a
3
0

φ0(3 + 2ω)
(t− t0)2 , (7.36)

where φ0 and t0 are constants, and where φ = φ0a
−2. This clearly corresponds to a

universe with a time-symmetric evolution, with a maximum of expansion at t = t0.

The intrinsic geometry of the hypersurface at maximum of expansion is therefore

given by

ds2 =
9φ2

0

64π2ρ2
0a

6
0

ds̃2 =
9π2φ2

0

16M2
ds̃2 , (7.37)

where in the last equality we have used the fact that ρ = M/V = M/2π2a3, and

where M and V are the mass and spatial volume of the hypersphere. This gives us

the scale of the maximum of expansion of such a universe in terms of the total mass

of the matter content M , and the constant associated with the scalar field, φ0.

In order to compare cosmologies with the same total mass, we choose to consider

solutions in which M = Nm, where N is the total number of identical point-like

masses in the inhomogeneous solution and m is the proper mass of each of them.

The second condition we need to implement is on the value of φ0. To do this, we

require that the background value of the scalar field in the inhomogeneous solutions

must equal that of the Friedmann cosmology. Using the fact that the scalar field in

the inhomogeneous solutions is given by φ = χsσ−s, and equating it to the value of
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φ at the maximum of expansion of the Friedmann models, we find

χsσ−s =
16M2

9π2φ0

⇒ φ0 =
16M2

9π2χsσ−s
, (7.38)

where χ and σ are to be given values associated with the cosmological background.

There is clearly some freedom in choosing how this should be done, as both quantities

are in general non-constant functions of spatial position. Here we proceed as in

the previous section and choose the location that is farthest from all masses, at

the vertex of one of the primitive cells of the lattice, analogous to definition D1,

Equation (3.17) in chapter 3. This is is the closest thing to taking a ‘background

value’ in an inhomogeneous cosmology. We will also evaluate the scale factor in the

inhomogeneous solutions at the same point in order to make a fair comparison.

7.5.1 Multi-level Comparisons

We can now write the scale factors for Brans-Dicke lattice (BDL) cosmologies, and

the corresponding Brans-Dicke Friedmann (BDF) cosmologies, as

aBDL
0 = χ2aσ2−2a and aBDF

0 =
4Nm

3πχsσ−s
, (7.39)

where χ and σ are both to be evaluated at the locations farthest from all masses. A

comparison of aBDL
0 and aBDF

0 will then give a numerical quantification for the effects

of structurisation of matter in Brans-Dicke cosmologies.

From the analyses in the previous two sections, we can illustrate the various

comparisons that we can now perform. This is show in Figure 7.6. The branch labelled

“1” corresponds to the comparison between discrete and continuous cosmologies in

the general relativistic case, as initiated in [3] and reviewed in [129]. The work in

section 7.4.2 provides the first (and currently only) steps to understand branch “2”

of this diagram. We will investigate the remaining two branches in the remainder of

this chapter.

Comparison of Friedmann Cosmologies

For branch “3”, we again choose to consider the 8-mass model discussed above, and

again choose the proper mass of each of our sources to have mi = m = 9.48 (so that

the total mass in the corresponding Friedmann solution is M = 75.84). We also set

the parameter γi from Equation (7.21) to be equal to γ = 1 for each particle. Under

these conditions, we plot the ratio of scales in the Friedmann cosmologies for the



7.5: Brans-Dicke Friedmann Cosmology 142

BD Lattice GR Lattice

BD Friedmann GR Friedmann

ω →∞
“2”

“4”

ω →∞
“3”

“1”

Figure 7.6: Schematic diagram showing four different cosmologies, and the compar-
isons that are possible between them.

Brans-Dicke theory and general relativistic case in Figure 7.7. The value of aBDF
0

approaches the general relativistic value as ω → ∞, as expected, and similarly to

Figure 7.5. For small ω the scale of the Brans-Dicke Friedmannian cosmology is

much larger than its general relativistic counterpart, which contrasts the behaviour

in the previous graph.

Comparison of Brans-Dicke Cosmologies

Finally for branch “4”, we plot the ratio of scales in the lattice and Friedmann

cosmologies in the Brans-Dicke theory in Figure 7.8, using the exact same conditions

as previously. The value of aBDL
0 /aBDF

0 for the 8-mass lattice can be clearly seen to

approach the general relativistic value of 1.236 calculated in [3], as ω → ∞. For

small ω, on the other hand, the scale of the lattice cosmology is much smaller than

its Friedmann counterpart, by as much as 50% for κ2 = 0.1. It is interesting that

there are small values of ω where the theory is far from a general relativistic one

(for example, ω = 10, κ2 = 0.1) but the process of constructing either a lattice

cosmology or a fluid one makes no difference as far as the ratio of scale factors

is concerned (for these values it is approximately 1). If these are viable theories

of gravity, we can construct cosmologies where there is no backreaction, however

we note that the Brans-Dicke coupling parameter is very well constrained to be

ω ' 40, 000 to 2σ from solar system tests [181]. Our global scale of our models show

rapid convergence to their general relativistic counterparts for values of ω this large,

and should therefore should not be expected to give any detectable difference on very

large scales if the governing theory is to be compatible with solar system constraints.

Nevertheless, in such cases the scalar field can still vary considerably in the vicinity of

the masses themselves, and may also give potential deviations from general relativity

in their future evolution, as more extreme environments are encountered. Theory



7.5: Brans-Dicke Friedmann Cosmology 143

a0
BDF

a0
GRF

0 1 2 3 4 5

1.00

1.05

1.10

1.15

1.20

1.25

1.30

κ2
0.1

0.3

0.5

0.75

0.8

0.9

Log10[ω]

Figure 7.7: Ratio of scales of BD to GR Friedmann cosmologies for m = 9.48 and
γ = 1.

a0
BDL

a0
BDF

0 1 2 3 4 5

0.6

0.8

1.0

1.2

κ2
0.1

0.3

0.5

0.75

0.8

0.9

Log10[ω]

Figure 7.8: The ratio of scales, aBDL
0 /aBDF

0 , for Brans-Dicke Lattice and Friedmann
cosmologies (with m = 9.48 and γ = 1).

independent variations on the Newton’s constant can also be used to constrain these

models [58, 59]. Such constraints tend to be imposed on the time variation of G,

and are found from a number of different observations to be constrained at the level

Ġ/G . 10−12 per year. Numerical evolution of our initial data would allow us to

investigate the behaviours that are compatible with these bounds, but this will be

left for future studies.
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7.6 Discussion

In this final chapter we have provided, for the first time, exact initial data for a

cosmological model in a scalar-tensor theory of gravity that contains a regular array

of point-like particles. This was achieved by first deriving the relevant constraint

equations (in section 7.2), and then by imposing the condition that the extrinsic

curvature vanishes on the initial hypersurface. We found a simple set of solutions to

these constraint equations, in terms of a pair of conformal factors, which reduces

in the appropriate limits to the known static, spherically symmetric vacuum Brans

solution. Comparison to this exact solution then allowed us to derive expressions

for the proper mass and scalar charge for each of the particles in our cosmologies.

We found that the scalar charge of each of the black holes vanishes in the general

relativistic limit, when ω →∞, and that the spatial variation of Newton’s constant

depended on both the scalar charge of the individual bodies as well as a cosmological

background value.

We considered both the general relativistic limit of a specific realisation of our

lattice solutions, as well as a comparison between comparable discrete and continuous

cosmological solutions in Brans-Dicke theory. In both cases it was found that our new

solutions approached the expected limits as ω →∞, and that order one deviations

from the general relativistic results were possible when ω was small. In these latter

cases the solutions were also found to be sensitive to the value of the parameter κ2,

which controls the background value of the scalar field.



8 Conclusions and Future Work

The black hole lattices in [3] were generalised and extended to include new phenomena,

motivated by their use as inhomogeneous cosmological models. The lattices are

constructed from a superposition of Schwarzschild masses, tessellating a 3-sphere.

This choice of hypersurface solves the time-symmetric constraint equations of general

relativity and therefore is an exact solution to the Einstein field equations, including all

relativistic effects. The first generalisation was to include the effects of structuration.

This was doing by splitting the masses up and moving them along well-defined

paramaterised trajectories, where we could control the extent of clustering. The

next generalisations involved the addition of extra fields, specifically a cosmological

constant Λ and electric charge. Our final generalisation involved moving away from

general relativity to consider the lattices in the context of a scalar-tensor theory of

gravity - Brans-Dicke theory. This involved deriving the constraint equations and

solving them with a suitable choice of initial data. In each of our generalisations we

compared the lattices to their FLRW counterparts, and where appropriate, calculated

interaction energies, proper masses, scalar charges, deceleration parameters, and the

location of apparent horizons.

8.1 Summary of Key Findings

We summarise the key findings of this thesis below:

• Backreaction is found to decrease when either one of the following happens:

◦ The number of masses in the black hole lattices increases regardless of the

setting.

◦ For structuration, when interaction energies between clustered masses are

taken into account.

◦ For charge, when the black holes are extremal.

◦ For a cosmological constant, when the value of Λ is large (∼ 100M−2
T ).
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◦ For Brans-Dicke gravity, when certain combinations of the coupling pa-

rameter ω and the scalar field background κ2 are used (ω = 10, κ2 = 0.1).

• In the lattices with structuration, for black holes very close together, an extra

apparent horizon appears, which gets smaller as the number of masses is

increased. This horizon cannot be approximated by a spherical surface.

• This horizon appears for a certain critical value of the parameter λ. Within

this, we can treat it as an effective n-mass model, where n is one of the 6

original black hole lattices.

• When interaction energies are not taken into account, the size of the lattice

cosmology can be approximately 30% of its Friedmann counterpart.

• In the lattices with Λ, for a constant mean curvature slice through Schwarzschild-

de Sitter, the intrinsic geometry of the hypersurface is the same as a time-

symmetric slice through Schwarzschild.

• For some combinations of the number of masses and value of the cosmological

constant Λ, the ratio of lattice to FLRW deceleration parameters can be less

than zero.

• Inner and outer horizons can exist, in expanding or contracting hypersurfaces.

The location of these are given by Equation (5.18), with extremal values for

which this is satisfied tending to the Schwarzschild-de Sitter value as the number

of masses increases.

• In the lattices with charge, antipodal black holes have the same mass but

opposite charge.

• The apparent horizons disappear as the black holes become more extremal.

• Finally, in the lattices in Brans-Dicke gravity, a suitable time-symmetric ansatz

for the hypersurface can solve the derived constraint equations.

• A new parameter κ2 can be interpreted as the amount of background scalar

field in the background cosmology.

• The appropriate general relativity values are recovered in the limit ω →∞.
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8.2 Future Work

As shown in this thesis, the original black hole lattices enjoy many extensions and

generalisations, which are certainly not limited to what we have presented here.

There are many ways in which they can be extended, some of which we will discuss

here.

The first is a follow on from chapter 4, where we constructed a two-level hierarchy

of structures - the individual masses themselves, and the clustered black hole mass.

The Universe we observe contains many hierarchical levels of structure, see Equation

(2.107), so an appropriate avenue of exploration would be to split the masses up

again and perform a similar process, adding in an extra level of structuration. This

would allow for a deeper understanding of the role of interaction energies, and shed

light on whether they combine over many scales to alter the scale of the cosmology.

Furthermore, when we considered the interaction energies between masses, we only

took into account pairwise interactions. Further study could include a numerical

analysis of many-body interaction energies between all masses inside a cluster, again

to fully investigate the role of the interaction energies.

The lattices we considered were inhomogeneous, but isotropic. The cosmological

principle states that the Universe is homogeneous and isotropic on large scales,

therefore the latter of these could be relaxed in our cosmological models, meaning we

would compare our lattices to Bianchi solutions. There are many of these, and can

be classified according to their isometries. The simplest way of proceeding for our

lattices would be to remove some of the black holes, to create a degree of anisotropy,

and calculate the effects this has on the scales of the cosmologies.

Much progress regarding backreaction has been the use of the Buchert averaging

scheme, introduced in section 2.4. It was used in [182] where the authors considered

a perturbed Einstein-de Sitter model with periodic dust overdensities. This averaging

scheme is not applicable to our black hole lattices, as the spatial volume of a domain

containing a mass would be infinite. A way to circumvent this would be to construct

an LTB version of the lattices, and smooth out the mass of the black holes into

some region, whilst still keeping a degree of inhomogeneity. This would then allow

the Buchert averaging scheme to used, and informative comparison between other

approaches such as the one discussed above.

Finally, we note that the growing field of numerical cosmological can answer a lot

of questions about backreaction that toy models cannot, due to their reliance on

symmetries and highly idealised matter distributions. The models with a cosmological

constant form a starting point for full numerical evolution, in that we showed a
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criteria for eternal expansion based on the density parameters, Equation (5.28).

Originally, the time evolution involves evolving towards a singularity. The addition

of Λ prevents this and allows for the evolution of backreaction to be calculated.

Calculating the time evolution of the initial data allows for the propagation of

light and therefore observables to be investigated, as we have seen in section 2.4.4.

Although this was done in [149], the initial data was constructed numerically, and

they found oscillations in the redshift due to tensor modes from the initial data

construction. This arises from a lack of an asymptotically flat region, as there is no

domain for the gravitational waves to escape to. Starting from an exact solution and

then numerically evolving may reduce the noise from these modes if evolved, which

our data may be capable of. The optical properties in the models with Λ would

also be worthwhile to pursue, as these models expand eternally and do not collapse.

Both of these would allow for further conclusions to be drawn about the effect of

inhomogeneities on the propagation of light.
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