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Recent progress in the field of molecular electronics has revealed the fundamental importance of
the coupling between the electronic degrees of freedom and specific vibrational modes. Considering
the examples of a molecular dimer and a carbon nanotube double quantum dot, we here theoretically
investigate transport through a two-site system that is strongly coupled to a single vibrational
mode. Using a quantum master equation approach, we demonstrate that, depending on the relative
positions of the two dots, electron-phonon interactions can lead to negative differential conductance
and suppression of the current through the system. We also discuss the experimental relevance of
the presented results and possible implementations of the studied system.

I. INTRODUCTION

Molecular electronics has long promised reduced en-
ergy consumption, increased capability, as well as
cheaper manufacturability of electronic circuits. How-
ever, the field is only now entering a new phase of research
based on single-molecule devices1,2. There now exist sev-
eral methods which enable efficient fabrication of single-
molecule junctions. Break junctions3,4 and graphene
nanogaps5,6 allow single molecules to bridge the gap be-
tween a source and a drain electrodes, whilst alternative
approaches rely on various scanning probe techniques7,8.
This is not only paving the way towards practical molec-
ular electronics, but also allows for experimental inves-
tigation of charge transport through complex molecular
structures.

The effects of the electron-phonon coupling on the
charge transport properties of single-molecule devices
have been observed experimentally in a variety of molec-
ular systems9–14 and carbon nanotube (CNT) quantum
dots15–19. These differ significantly from typical solid-
state quantum dots in several respects. The electronic de-
grees of freedom are often strongly coupled to specific vi-
brational modes (rather than entire phonon baths). They
thus bear some resemblance to quantum-shuttles20–23

and other mesoscopic systems24,25. The specific im-
pact of the electron-phonon coupling on charge trans-
port can vary greatly from one nanoscopic system to an-
other, depending on the number of vibrational modes
and electronic states involved in the transport as well
as the strength of interactions between them. Coupling
to a single vibrational mode typically results in equally
spaced conductance peaks as consecutive vibrational lev-
els enter the bias window.26 Additional less trivial ef-
fects have also been demonstrated. These include: neg-
ative differential conductance (NDC), rectification, local
cooling, as well as large asymmetries in the conductance
maps13,27–35. Strong electron-phonon coupling has also
been experimentally shown to suppress current through
single-molecule junctions36,37 and CNT quantum dots15

(so-called Franck-Condon (FC) blockade38).

(a) Carbon nanotube double quantum dot

(b) Molecular dimer-based single-molecule junction

FIG. 1. Schematic illustrations of molecular double quantum
dot systems discussed. Both sites are coupled to the same vi-
brational mode as well as to respective electrodes. Exemplary
phonon modes are schematically depicted above. (a) shows
a carbon nanotube with a pair of quantum dots (in purple)
formed by applying a gate potential (as labelled). (b) depicts
a single molecule junction based on a zinc-porphyrin dimer
bridging a pair of graphene electrodes. Each of the porphyrin
sites acts as a quantum dot.

Long recognised as important39, the role of electron-
phonon coupling in these systems has been investigated
theoretically in the past using different methodologies.
They are primarily based on rate equation33,40–42, quan-
tum master equation29,43–48 or non-equilibrium Green’s
functions27,49–53 methods, although other approaches
have also been suggested54,55. Even though quantum
master equation methods are typically limited to a per-
turbative treatment of the lead-molecule (lead-quantum
dot) interactions, they provide a powerful and yet in-
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tuitive technique for investigating vibrationally-coupled
quantum transport. They can be used to account for
the interactions between electronic degrees of freedom
and single vibrational modes, or whole phonon baths56,57

(also with nontrivial spectral structure), or both of those
simultaneously58.

Here, we study transport properties of a double quan-
tum dot (DQD) coupled to a single vibrational (phonon)
mode, depicted schematically in Fig. 1. Possible experi-
mental implementations of such a system include carbon
nanotube DQDs which can be nowadays almost routinely
fabricated59–61 (Fig. 1(a)), and certain single-molecule
junctions (Fig. 1(b)). Carbon nanotubes can be either
metallic or semiconducting, depending on their chirality.
In semiconducting carbon nanotubes it has been experi-
mentally demonstrated that potential along the nanotube
channel can be manipulated using electrostatic gates to
define single or double quantum dot systems62–64. The
vibrational frequencies as well as the strengths of the
electron–phonon coupling usually depend on the micro-
scopic details of the carbon nanotube, such as its chirality
and radius65,66.

DQDs in single-molecule junctions can be realised by
using a two-site molecular system provided the location
of the charge carrier can always be well approximated
as being on one of the sites (or not on the DQD at all).
Several examples of such molecules have recently been
investigated67,68. While the role of electron-phonon cou-
pling in such systems remains largely unexplored exper-
imentally, it has attracted some attention from a the-
oretical perspective69–73. A similar model to the one
considered here has previously been studied by Santa-
more et al. in Ref. 74. The authors assumed completely
filled (empty) density of states on the source (drain)
electrode, thermalised vibrational mode, as well as ig-
nored the vibrational effects in lead-dot couplings. Under
these assumptions, it was demonstrated that the trans-
port through this system can be greatly enhanced if the
energy difference between the sites is on resonance with
the frequency of the vibrational mode.

In this work we derive a quantum master equation
where we treat the quantum dot-leads coupling pertur-
batively, but describe the electron-phonon interactions
exactly. In contrast to the work of Santamore et al., our
theoretical treatment allows us to study the system un-
der a finite bias as well as correctly account for the (non-
equilibrium) behaviour of the vibrational mode. Using
this approach, we demonstrate that, depending on the
relative phase difference in electron-phonon coupling con-
stants between the two sites, coupling to a single bosonic
mode can lead to current suppression and negative dif-
ferential conductance. Finally, we discuss possible exper-
imental implications of the presented results. Taken to
the appropriate parameter regimes, we believe our model
applies to both two-site molecular systems as well as CNT
double quantum dots, and will provide the theoretical
groundwork for experimental studies of these systems.

FIG. 2. Schematic illustration of a double quantum dot stud-
ied in this work. The two sites are coupled to each other with
the strength J . The rates of electron hopping between the
electrodes and respective sites are given by γL, γR - see text.
Note that our model may apply to either a transverse or a
longitudinal vibrational mode (as sketched in Fig. 1), pro-
vided the coupling strength of charge state to a single mode
dominates.

II. MODEL

In this work we consider a double quantum dot or,
equivalently, a molecular dimer system in which the two
sites couple to a single harmonic oscillator (which we in-
terchangeably also refer to as a vibrational or a phonon
mode). Each of the sites, hereafter denoted as left (L)
and right (R), is also coupled to a respective lead consti-
tuting a fermionic reservoir, as schematically depicted in
Fig. 2. Henceforth, it will be assumed that ~ = 1 and
the electron charge e = 1.

A. Hamiltonian

The total Hamiltonian for this system is given by:

H = H0 +He−ph +Hcoup +Htun , (1)

where

H0 = Hmol +Hosc +Hleads . (2)

H0 describes the energy levels εL and εR of the double
quantum dot (Hmol), the harmonic oscillator of frequency
ω (Hosc), and the source and drain electrodes (Hleads) as
follows:

Hmol = εLa
†
LaL + εRa

†
RaR , (3)

Hosc = ωb†b , (4)

Hleads =
∑
i,ki

εkic
†
ki
cki (5)

with i = {L,R}. Here, a†i (aki) and c†i (cki) are the
creation (annihilation) operators for an electron in state
|i〉 on the double quantum dot and in state |ki〉 on the
left or right lead, respectively, while b† (b) is the raising
(lowering) operator of the vibrational mode. The vibra-
tional basis consists of states |vj〉 which are eigenstates
of the Hosc Hamiltonian with eigenvalues ω vj . Here, vj
is the vibrational quantum number which can take non-
negative integer values.
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The two dots are coupled to each other with strength
J as described by Hcoup, and to the harmonic oscillator
with strengths gL and gR expressed by He−ph:

Hcoup = J(a†LaR + a†RaL) , (6)

He−ph = a†LaL(gL b
† + g∗Lb) + a†RaR(gR b

† + g∗Rb) . (7)

The electron-phonon coupling constants feature a
position-dependent phase75–78. The origin of these
phases will be discussed in the next section. Taking the
position in the middle of the dots as the origin of the
coordinate system, these are given by gL = |gL|e−iq·d/2
and gR = |gR|eiq·d/2, where q is the wavevector of the
phonon mode and d is the separation between the two
dots. Henceforth, the difference in phases of electron-
phonon coupling will be denoted as ξ = q · d. Finally,
the operator Htun accounts for the tunnel coupling be-
tween the sites and respective leads,

Htun =
∑
i,ki

(Vkic
†
ki
ai + V ∗kickia

†
i ) . (8)

The assumption that the leads couple to distinct sites
rather than to entire (delocalized) orbitals is well justi-
fied for tunnel coupling due to an exponential distance
dependence of the tunnelling efficiency.

The electron-phonon coupling term can be eliminated
from the above Hamiltonian by performing the polaron
(Lang-Firsov) transformation79,80:

H̄ = eSH e−S , (9)

where S = a†LaL ω
−1(gLb

†−g∗Lb)+a
†
RaR ω

−1(gRb
†−g∗Rb).

The transformed Hamiltonian then becomes:

H = H̄mol +Hosc +Hleads + H̄coup + H̄tun ; (10)

H̄mol = ε̄La
†
LaL + ε̄Ra

†
RaR ; (11)

H̄coup = J(X†LXRa
†
LaR +X†RXLa

†
RaL) ; (12)

H̄tun =
∑
i,ki

(VkiXic
†
ki
ai + V ∗kiX

†
i ckia

†
i ) . (13)

The energy levels of the two sites are now renormalized
(polaron-shifted) such that ε̄i = εi− |gi|2/ω and the fac-

tors X†i (Xi) are the displacement operators:

X†i = exp

(
gi
ω
b† − g∗i

ω
b

)
, (14)

which can be evaluated explicitly in the vibrational
basis81 (see also discussion in Appendix C).

B. Phase difference in electron-phonon couplings

As introduced above, we consider coupling elements
for the two dots differing by a phase factor ξ = q · d.
Since most the interesting effects we present in this work

arise from these phases, we here briefly sketch an intuitive
derivation of their origin and remark on their experimen-
tal relevance for the two model systems considered in this
work.

Generically, the Hamiltonian accounting for coupling
between vibrational modes and charge carriers can be
written as80:

He−ph =
∑
q

Mq %(q) (bq + b†−q) , (15)

where Mq is a coupling element characterising the na-
ture of the interaction. In a typical solid state setting,
this can be obtained from first principles (see Ref. 80 for
bulk piezoelectric and deformation potential coupling, or
Ref. 60 for the case of carbon nanotubes). The depen-
dence of the electron-phonon coupling on the microscopic
details of the carbon nanotubes can be absorbed into the
effective coupling constants in the Hamiltonian (15)66, as
verified by a number of experimental studies15,60,82. We
therefore proceed under the assumption that all micro-
scopic details of the CNT systems we consider here (that
are relevant in the Coulomb regime) can be adequately
mapped onto the Hamiltonian (1). By contrast, in a
molecular setting ab-initio methods such as DFT might
provide an informed choice83, or one may resort to an
effective coupling strength extracted from experimental
data.

Since we only need to consider additional transport
electrons (charge carriers), the charge density operator
in Eq. (15), %(q), is given by:

%(q) =
∑
i

a†iai

∫
dr e−iq·rΨi(r)† Ψi(r) , (16)

where a†i (ai) is the creation (annihilation) operator for
a charge carrier on i-site. Here, we have assumed that
the wavefunctions are orthogonal, 〈Ψi(r)|Ψj(r)〉 = δij .

In the case of a double quantum dot the electron-
phonon interaction Hamiltonian can then be written as:

He−ph =
∑
q

(gL,q a
†
LaL + gR,q a

†
RaR)(bq + b†-q) , (17)

where the coupling elements are given by Mi,q multiplied
by the Fourier transform of the electron density on the
site i:

gi,q = Mi,q P[Ψi(r)] . (18)

If the wavefunctions ΨR and ΨL are identical but centred
at ±d/2, respectively, the coupling elements become by
the shift property of the Fourier transform84:

gL,q = e−iq·d/2Mi,q P[Ψ(r)] , (19)

gR,q = eiq·d/2Mi,q P[Ψ(r)] , (20)
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and in the case of symmetric electron-phonon coupling
|gL,q| = |gR,q| = gq as:

gL,q = e−iq·d/2gq , (21)

gR,q = eiq·d/2gq . (22)

Finally, since the summation in equation (17) runs across
the entire Brillouin zone, the coupling Hamiltonian can
be more compactly written as:

He−ph =
∑
i,q

a†iai (g∗i,qbq + gi,qb
†
q) . (23)

Under the assumption that the electronic degrees of free-
dom predominantly couple to a single phonon mode, the
Hamiltonian (23) reduces to the one in equation (7).

Since the choice of origin is arbitrary, the important
quantity in the transport through the DQD is not the
phase of electron-phonon coupling itself but rather the
phase difference between the two sites. Consider for ex-
ample a longitudinal mode propagating through a carbon
nanotube, as schematically shown in Fig. 1(a). Differ-
ence in phases is given by ξ = q · d which in this case

reduces to:

ξ = |q| × |d| = 2πd

Λ
, (24)

where Λ is the wavelength of the relevant phonon. Thus,
what determines the value of ξ is the separation between
the two sites in relation to Λ. In the case of CNT double
quantum dots it may be possible to change the value of ξ
by shifting the relative positions of the two dots by using
different electrostatic gate electrodes. Changing the dis-
tance between the two sites (with respect to the phonon
mode) is not possible in single-molecule junctions. There,
ξ is an immutable property of a given vibrational mode.

C. Quantum Master Equation

We proceed to trace out the degrees of freedom asso-
ciated with the source and drain electrodes within the
Born-Markov approximation85. In other words, the dot-
lead coupling is treated as a second-order perturbation.
This approach is justified here since the electron-phonon
coupling is larger than or comparable to the Vki matrix
elements86,87. Let us also remark here that no approxi-
mation has been made with regards to the interdot cou-
pling. As shown in the Appendix A, this leads to the
following master equation description of the dynamics of
the double quantum dot and phonon system:

dρ̄

dt
= −i

[
H̄S, ρ̄(t)

]
+
∑
i

γi
2

(
a†iW

†
i ρ̄(t)aiXi + a†iX

†
i ρ̄(t)aiWi − aiXia

†
iW
†
i ρ̄(t)− ρ̄(t)aiWia

†
iX
†
i

)
+
∑
i

γi
2

(
aiYiρ̄(t)a†iX

†
i + aiXiρ̄(t)a†iY

†
i − a

†
iX
†
i aiYiρ̄(t)− ρ̄(t)a†iY

†
i aiXi

)
, (25)

where H̄S = H̄mol + Hosc + H̄coup. The first term in
equation (25) describes the coherent evolution within
the double quantum dot while subsequent terms ac-
count for incoherent hopping on and off the DQD at
rates γi = 2π|Vi|2. The matrix elements of the Wi

and Yi operators in the vibrational basis are given
by: 〈vm|Wi|vp〉 = fi(ε̄i + ω(vm − vp))〈vm|Xi|vp〉 and
〈vm|Yi|vp〉 = (1 − fi(ε̄i + ω(vm − vp)))〈vm|Xi|vp〉. Here,
fi(ε) denotes the Fermi distribution function for the i-
lead, fi(ε) = 1/(e(ε−µi)/kT + 1) and the chemical poten-
tial of the leads is determined by the applied bias volt-
age Vb: µL = +Vb/2 and µR = −Vb/2, respectively. We
assume that only one additional electron can be found
on the DQD at any given time due to strong electron-
electron repulsion. This is the so-called sequential tun-
nelling regime. Instead of including an explicit electron-
electron interaction term, this is ensured by excluding
the multiply charged states from the Hilbert space for

the electronic degrees of freedom. It then spans only
three (orthogonal) states |L〉, |R〉 and |E〉 corresponding
to an electron occupying left or right dot, and the DQD
being empty, respectively. The overall ME is also trace-
preserving Tr[ρ̄(t)] = 1, so that the the maximum elec-
tron population of the DQD is indeed equal to 1.

D. Electric Current

To determine the value of the stationary electric cur-
rent flowing through the system one has to first solve
quantum master equation (25) in the steady-state limit:

dρ̄stat

dt
= 0 (26)
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and then compute the expectation value of the current
operator in the stationary state:

I = 〈Ii〉stat = Tr(Iiρ̄stat). (27)

Here Ii is the operator for the current flowing through
the i-electrode. Due to current conservation, the current
flowing through the left and right electrode is identical
so that I = 〈IL〉stat = 〈IR〉stat. An explicit form of the
current operators is given in the Appendix B.

III. RESULTS AND DISCUSSION

The time-evolution of the studied system has to be de-
scribed in a truncated Hilbert space. We have included
n = 100 vibrational states, which yields numerical con-
vergence. Equation (26), given in a Hilbert space of di-
mension 3n × 3n, is solved using Krylov-subspace tech-
niques in a way analogous to the one described by Flindt
et al.20. The method amounts to solving equation (26)
in a subspace with reduced dimension 9n2 × j (j is typi-
cally around 40) by means of Arnoldi iteration, avoiding
an explicit evaluation of the Liouvillian88–90. Generally,
preconditioning is required to produce correct results.
The outcomes of these calculations were tested against
increasing the dimension of the Krylov subspace (j) and
by comparing them to the results obtained using a direct
method in smaller vibrational Hilbert spaces.

We distinguish two different parameter regimes de-
pending on the relative magnitudes of dot-lead (γL, γR)
and inter-dot couplings (J). First, a strong inter-dot
coupling regime where the coupling between the sites
is much stronger than between the dots and the leads
(J � γL, γR) and second, a weak inter-dot coupling
regime where the opposite is true (γL, γR > J). We will
describe the transport properties in both these regimes
in the following subsections.

A. Strong inter-dot coupling regime

In this section we study a double quantum dot system
that is weakly coupled to the source and drain electrodes
(as compared to inter-dot coupling J). Figure 3(a) shows
the I − V characteristics for such a system. For simplic-
ity we consider a completely symmetric case such that
ε̄L = ε̄R, |gL| = |gR|, and γL = γR. As expected, the
system with strong inter-dot coupling behaves similarly
to a single quantum dot (single-site molecular junction)
coupled to a vibrational mode. The onset in the I − V
trace occurs when the chemical potential of the source
electrode is equal to the polaron-shifted energy of the left
dot ε̄L. The current through the system then increases
in a stepwise manner as consecutive vibrational levels fall
within the bias window. The peaks in the differential con-
ductance are separated by 2ω and the relative heights of
these steps can be explained qualitatively by considering

the values of the |〈vm|X|0〉|2 elements (accounting for the
Franck-Condon overlap between the vibrational ground-
state and the mth vibrational excited state)29,31,38.

(a) Current-voltage characteristics

(b) Populations of the sites as a function of bias voltage

FIG. 3. Current-voltage characteristics and voltage-
dependent populations of the sites in a strongly coupled two-
site molecular system. The calculation was performed for a
symmetric system: ε̄L = ε̄R = 0.05 eV. The energy of the
vibrational mode was taken to be ω = 0.02 eV, the electron-
phonon coupling constants |gL| = |gR| = 0.018 eV, the cou-
pling between the sites J = 0.3 eV91 and between the sites
and the leads as γL = γR = 0.001 eV. The temperature was
assumed to be 10 K leading to appreciable thermal broaden-
ing.

Unlike in the case for a single-site molecule, however,
the phase difference in the electron-phonon coupling con-
stant between the sites can result in an overall cur-
rent suppression, especially for low vibrational levels, as
shown in Fig. 3(a). It is important to stress that the
incoherent hopping (on and off the leads) is independent
of the phase of electron-phonon coupling. The reason
the transport is retarded in the presence of phase differ-
ence in electron-phonon coupling between the sites can
be explained as follows: when the two sites couple to the
vibrational mode with the same phase (so that ξ = 2π

or a multiple thereof) the factor X†LXR in the inter-dot
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FIG. 4. Current at bias voltage Vb = 2ε̄L + ω (first step
in the current-voltage characteristics). The calculation was
performed for a symmetric system: ε̄L = ε̄R = 0.05 eV. The
energy of the vibrational mode was taken to be ω = 0.02 eV,
the electron-phonon coupling constants |gL| = |gR| = 0.018
eV, the coupling between the sites, and the leads is γL =
γR = 0.001 eV and the temperature was assumed to be 10 K.

coupling Hamiltonian H̄coup [see Eq. (12)] becomes an

identity operator on the vibrational space, X†LXR = 11.
This means that coherent transitions between the sites
take place without any vibrational excitations. However,
if the sites couple to the vibrational mode with different
phases this is no longer the case and the coherent evo-
lution within the DQD will be accompanied by phonon
emission. Higher vibrational states produced in such a
way will then be less efficient in tunnelling out to the
leads due to poorer Franck-Condon overlap leading to
an overall suppression of the current. Interestingly, at
large bias voltage, the trend can reverse such that cou-
pling in antiphase results in a marginally higher current.
There, the higher vibrational states are formed during in-
coherent hopping of an electron from the leads onto the
DQD and the coherent transition between the sites can
increase the populations of lower-lying vibrational states.
However, this subtle effect may be difficult to observe in
practical situations.

As shown in Fig. 3(b), the populations on the two sites
are equal independently of the applied bias and of phase
difference in the electron-phonon coupling. This should
come as no surprise given that the two sites are strongly
coupled and the system is entirely symmetric.

Let us now consider the dependence of the current
through the molecule (at the bias voltage Vb = 2ε̄L + ω)
on the strength of inter-site coupling J in the limit
J � γL, γR. In the case of ξ = 0 the transport is virtually
independent of J as it is limited by incoherent hopping
rates γi, as demonstrated in Fig. 4. However, as dis-
cussed above, when ξ is nonzero the internal dynamics
of the system becomes relevant. For ξ = π/2 and ξ = π,
increasing the strength of the inter-site coupling J leads
to a reduction of current. This surprising result can be
understood by recalling that for nonzero ξ the coherent

transition between the sites ‘produces’ higher vibrational
states which then lead to the observed current suppres-
sion. The stronger the coupling J , the greater the degree
of vibrational excitation which accumulates before the
electron tunnels out into the leads.

Finally, let us stress that one should expect this param-
eter regime (where the inter-dot coupling J is stronger
than the coupling to the leads) to be appropriate in the
case of most single-molecule junctions68,91. The strength
of the electron-phonon coupling in these systems is of-
ten estimated experimentally by considering the rela-
tive heights of the Franck-Condon steps15,37. As shown
above, one has to be careful in using the same approach
for two- or multiple-site systems, where the phase differ-
ence in electron-phonon coupling becomes relevant. An-
other surprising conclusion from the presented results is
that the intramolecular dynamics can quite significantly
affect the transport properties of the studied system in
this parameter regime, despite the fact that the trans-
port efficiency is limited by hopping between the leads
and the molecular system.

B. Weak inter-dot coupling regime

Let us now consider the reverse situation, that is, when
the two dots are weakly coupled to each other but inter-
act with the electrodes more strongly (this parameter
regime can be realised in CNT double quantum dots, see
for example Ref. 92). As we will now discuss, this case de-
livers very different and much richer physical phenomena.
Once again, we shall first focus on a symmetric system.
As before, when there is no phase difference in the vibra-
tional coupling between the sites, one observes a stepwise
increase in the current through the system, see Fig. 5(a).
This can again be explained by vibrational effects in the
tunnel coupling between the sites and the leads. Even
though the bottleneck in the transport is the coherent
hopping between the sites, vibrational effects in connec-
tion with incoherent hopping on (and off) the molecule
will play an important role as long as the hopping rates
γi and inter-site coupling J are comparable.

Moving on to the case of nonzero ξ, we can see that a
difference in phase between the electron-phonon coupling
elements still induces a current suppression. In addition,
the phase difference leads to negative differential conduc-
tance – a decrease in current with increasing bias voltage.
In this parameter regime, it is the inter-site transition
that limits the overall transport rate. Hence, what is cru-
cial now is how the phase difference in electron-phonon
couplings affects the |L〉 ↔ |R〉 transition. It turns out
that this transition is suppressed for nonzero ξ, resulting
in the observed current suppression, and is even less ef-
ficient for higher vibrational states (as discussed below),
giving rise to the negative differential conductance shown
in Fig. 5(a).

Since it is the coherent hopping between the sites that
is the rate-limiting step in the overall charge transport,
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(a) Current-voltage characteristics

(b) Populations of the sites as a function of bias voltage

FIG. 5. Current-voltage characteristics and voltage-
dependent populations of the sites in a strongly coupled two-
site molecular system. The model is identical to the one used
in Fig. 3 except for the coupling between the sites, J = 0.01
eV, and between the sites and the leads: γL = γR = 0.05 eV.

the populations of the two sites are no longer equal (Fig.
5(b)). In the case of ξ = 0, populations of the two sites
increase with the applied bias voltage. However, if the
sites couple to the vibrational mode with different phases,
an increase in Vb is accompanied by a decrease in the
population of the right site (correlating with the current
through the DQD). This demonstrates a rather different
physical origin of observed effects as compared with the
ones reported in section III A (c.f. Fig. 3(b)).

To understand the origin of the NDC in more detail,
let us now consider transport through the two-site sys-
tem for different values of electron-phonon coupling con-
stant. Current-voltage characteristics for different val-
ues of λ = |g|/ω are shown in Fig. 6(a). The position
of the maximum value of the current shifts depending
on the value of λ. This can be qualitatively related to

the magnitudes of the diagonal elements of the X†LXR

operator (Fig. 8 in Appendix C). As can be seen in
Eq. (12) the displacement operators affect the overall ef-
ficiency of the coherent hopping between the sites. One

(a) Current-voltage characteristics, ξ = π

(b) Current at bias voltage Vb = 2ε̄L + ω

FIG. 6. Current-voltage characteristics (a) and current at
bias voltage Vb = 2ε̄L + ω (b) for a symmetric DQD: ε̄L =
ε̄R = 0.05. The energy of the vibrational mode was taken
to be ω = 0.02 eV, the electron-phonon coupling constants
|gL| = |gR| = λω, the inter-site coupling, J = 0.01 eV and
between the sites and the leads, γL = γR = 0.05 eV, T = 10K.

can notice that the maximum current occurs at bias volt-
age for which the vibrational level v, corresponding to

the largest |〈v|X†RXL|v〉|2 matrix element enters the bias
window (compare Fig. 6(a) and Fig. 8). The relative
magnitudes of the steps in the current-voltage character-
istics cannot be, however, as easily correlated with values

of 〈v|X†RXL|v〉. The observed value of current is a result
of a complex interplay between vibrational effects during
hopping on and off the DQD and the dynamics within
the system.

It is interesting to consider the value of current at the
first step of the I − V trace (at Vb = 2ε̄L + ω) as a
function of λ and ξ, see Fig. 6(b). Two overlapping ef-
fects become apparent: Firstly, a decrease in transport
efficiency as the electron-phonon coupling (λ) increases -
this is fundamentally an example of the Franck - Condon
blockade38,41. Secondly, the current decreases as the dif-
ference in phases of electron-phonon coupling ξ deviates
from 0 (or 2π) - the effect described and explained above.
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FIG. 7. Current-voltage characteristics for a detuned DQD:
ε̄L = 0.05 eV, ε̄R = 0.15 eV. The energy of the vibrational
mode was taken to be ω = 0.02 eV, the electron-phonon cou-
pling constants |gL| = |gR| = 0.018 eV, the inter-site cou-
pling, J = 0.01 eV and between the sites and the leads,
γL = γR = 0.05 eV, T = 10K.

Finally, let us consider a case in which the energy lev-
els of the two sites are detuned (for example due to an
asymmetric structure of the molecule or an applied gate
voltage). The current-voltage characteristics for this sit-
uation is shown in Fig. 7. Introducing an energy gap be-
tween the sites decreases the current through the DQD as
it decreases the efficiency of |L〉 ↔ |R〉 transition. More-
over, for a considerable detunning between the sites the
NDC, observed in ε̄L = ε̄R case, is lifted. Now, higher
vibrational states (on the left site) are in fact more effi-
cient in tunnelling from the left to right site, especially
into lower vibrational states (on the right site). Thus, in-
creasing the bias voltage (coinciding with increasing pop-
ulations of higher vibrational levels) leads to an overall
increase in the current through the DQD.

IV. CONCLUSIONS

In this paper, we have derived a quantum master equa-
tion that can account for a transport through a two-site
molecular system (or a carbon nanotube double quantum
dot) that is coupled to a single vibrational mode. The
method used here is perturbative and relies on a Born-
Markov approximation with respect to lead-dot coupling
but, unlike most previous studies of similar model sys-
tems (with the notable exception of Ref. 73), treats
electron-phonon interactions exactly. Using it we have
demonstrated that, depending on the phase difference
in electron-phonon couplings ξ, one can observe current
suppression and/or negative differential conductance in
transport through the studied system. The role of ξ in vi-
brationally coupled charge transport remained, thus far,
largely unexplored. We have also explained the phys-
ical origin of the observed effects by analysing the de-
rived quantum master equation as well as considering

the bias voltage-dependence of the on-site populations.
For simplicity, we have mostly limited our discussion to
symmetric systems with γL = γR and |gL| = |gR|. Con-
sidering asymmetry may well be necessary to account for
future experimental observations, however, it is a trivial
modification to our model presented in this work. We
would also expect to observe similar effects to the ones
described here (current suppression and NDC in relevant
parameter regimes) in systems where |gL| 6= |gR| even in
the absence of phase difference in electron-phonon cou-
pling constants. Once again, these would be caused by
vibrational excitations or suppression of the |L〉 ↔ |R〉
transition.

The phenomena described here are non-equilibrium ef-
fects and can naturally be lifted by very fast damping of
the vibrational mode. Fast relaxation of the harmonic
oscillator will bring the vibrational states of the system
back to their ground state (at least at sufficiently low
temperature) diminishing the current suppression and
NDC effects described in this work. Vibrational relax-
ation times in CNT quantum dots and molecular junc-
tions can be, however, quite long, as it has been observed
experimentally18,36. One also has to bear in mind that
in real systems the electronic degrees of freedom are typ-
ically coupled to more than one vibrational mode. We
expect our analysis, however, to provide a reasonable de-
scription of the transport characteristics when coupling
to one of the vibrational modes is dominant, as it is often
the case15,27,36,60.

Finally, we have also discussed experimental relevance
of the reported findings. We believe that our model is ca-
pable of describing the behaviour of both two-site single-
molecule junctions (for which strong inter-site coupling
regime is most likely going to be applicable) and car-
bon nanotube double quantum dots (in which case the
weak inter-site coupling regime may be more appropri-
ate). While testing the theoretical predictions described
here in an experiment may not be trivial, we believe that
observing the effects we discuss should certainly be pos-
sible and would offer an exciting glimpse onto the rich
tapestry of non-equilibrium effects in quantum transport.
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Appendix A: Derivation of Quantum Master
Equation

The time-evolution of the density matrix for the entire
system (χ̄) can be described in the polaron-transfered
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frame by:

dχ̄

dt
= −i[H̄, χ̄] . (A1)

In the interaction picture of H̄0 = H̄mol +Hosc +Hleads,
equation (A1) becomes:

dχ̃(t)

dt
= −i[H̃coup(t) + H̃tun(t), χ̃(t)] , (A2)

where

H̃tun(t) = eiH̄0tH̄tune
−iH̄0t

=
∑
i,ki

(
Vkic

†
ki
ei(εki

−ε̄i)taiX̃i(t) + H.c.
)

(A3)

and similarly H̃coup(t) = eiH̄0tH̄coupe
−iH̄0t and X̃i(t) =

eiH̄0tXie
−iH̄0t.

Integrating equation (A2) and substituting the solu-
tion into the second commutator, one obtains:

dχ̃(t)

dt
= −i[H̃coup(t), χ̃(t)]− i[H̃tun(t), χ̃(0)]

−
∫ t

0

ds [H̃tun(t), [H̃tun(s) + H̃coup(s), χ̃(s)]] . (A4)

We shall now make a series of assumptions commonly
known together as Born-Markov approximation. Firstly,
we will assume that the fermionic reservoirs interact
weakly with the double quantum dot and that they al-
ways remain in thermal equilibrium. Then, the total den-
sity matrix can be written as: χ̃(τ) = ρ̃(τ) ⊗ R0 where
ρ(t) is a density matrix describing the double quantum
dot and phonon system while R0 accounts for the ther-
mal state of the source and drain electrodes. Given that
the second commutator vanishes, after tracing out the
fermionic reservoirs equation (A4) becomes:

dρ̃

dt
= −i[H̃coup(t), ρ̃(t)]

−
∫ t

0

ds Trleads[H̃tun(t), [H̃tun(s), ρ̃(s)⊗R0]] , (A5)

where in the terms linear in H̃tun vanish when traced out
within Born approximation79 .
Expanding the commutators, the above can be written

as:

dρ̃

dt
= −i[H̃coup(t), ρ̃(t)]

−
∑
i,ki

∫ t

0

ds hki(t− s)
(
ãi(t)ã

†
i (s)ρ̃(s)− ã†i (s)ρ̃(s)ãi(t)

)
−
∑
i,ki

∫ t

0

ds h̄ki(s− t)
(
ã†i (t)ãi(s)ρ̃(s)− ãi(s)ρ̃(s)ã†i (t)

)
−
∑
i,ki

∫ t

0

ds hki(s− t)
(
ρ̃(s)ãi(s)ã

†
i (t)− ã

†
i (t)ρ̃(s)ãi(s)

)
−
∑
i,ki

∫ t

0

ds h̄ki(t−s)
(
ρ̃(s)ã†i (s)ãi(t)− ãi(t)ρ̃(s)ã†i (s)

)
,

(A6)

where hki(τ) ≡ |Vki |2 fi(εki) eiεki
τ , h̄ki(τ) ≡ |Vki |2 [1 −

fi(εki)] e
iεki

τ with the Fermi distribution given by:

fi(εki) = Trres(R0c
†
ki
cki) = 1/(e(εki

−µi)/kT − 1). Here,

ãi(τ) (ã†i (τ)) denotes a polaron-transformed annihilation
(creation) operator in the interaction picture so that:

ãi(τ) = aie
−iε̄iτ X̃i(τ).

We can now employ the Markov approximation which
replaces ρ̃(s) with ρ̃(t) so that the evolution of the state
at time t depends only on the present state. Furthermore,
we will replace s with t−s′ and extend the upper limit of
the integral to infinity, obtaining a Markovian equation
that is local in time:

dρ̃

dt
= −i[H̃coup(t), ρ̃(t)] +

∑
i,ki

∫ ∞
0

ds′

− hki(s′)
(
ãi(t)ã

†
i (t− s

′)ρ̃(t)− ã†i (t− s
′)ρ̃(t)ãi(t)

)
− h̄ki(−s′)

(
ã†i (t)ãi(t− s

′)ρ̃(t)− ãi(t− s′)ρ̃(t)ã†i (t)
)

− hki(−s′)
(
ρ̃(t)ãi(t− s′)ã†i (t)− ã

†
i (t)ρ̃(t)ãi(t− s′)

)
− h̄ki(s′)

(
ρ̃(t)ã†i (t− s

′)ãi(t)− ãi(t)ρ̃(t)ã†i (t− s
′)
)
.

(A7)

The sum over the energy levels in (A7) can be replaced
with an integral. The integral over s′ can be performed
by using the relation:∫ ∞

0

dτe±iΩτ = πδ(Ω)± iP
Ω

(A8)

(where P denotes Cauchy’s Principle Value) and ignor-
ing the imaginary terms (which only lead to a minute
renormalisation of the Hamiltonian)85. Performing inte-
gration over εki and then moving back to the Schrödinger
picture leads to equation (25) given in section II of the
paper.
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Appendix B: Current operators

The current operator for the current flowing through
L/R-electrode is given by:

Ii =
d |i〉〈i|

dt
. (B1)

Equivalently, due to trace-preserving property of equa-
tion (25), current can also be expressed as the rate of
change of the empty population at the i-electrode:

Ii =
d |E〉〈E|

dt

∣∣∣∣
i

, (B2)

which, using equation (25), is given by the superoperator:

Iiρ̄ =
γi
2

(a†iW
†
i ρ̄(t)aiXi + a†iX

†
i ρ̄(t)aiWi

− aiYiρ̄(t)a†iX
†
i − aiXiρ̄(t)a†iY

†
i ) . (B3)

Appendix C: Displacement Operators

Properties of the displacement operators are discussed
in detail, for example, in Ref. 69 and 81. Here, we focus
on the effect the phase difference in electron-phonon cou-

plings ξ has on the X†LXR and X†RXL operators. They
can be written as:

X†LXR = exp

[(
gL − gR

ω

)
b† −

(
g∗L − g∗R

ω

)
b

]
(C1)

(disregarding the exp[ iIm(gLg
∗
R/ω

2)] factor) and its Her-
mitian conjugate, accordingly. For the symmetric case
studied in the paper gL = ge−iξ/2 and gR = geiξ/2 so
that:

X†LXR = exp(α b† − α∗b) , (C2)

where α = 2i
g

ω
sin(ξ/2). The diagonal elements in the

vibrational basis of this operator are given by:

〈v|X†RXL|v〉 = exp(−|α|2/2) Lv(|α|2) , (C3)

where v is a vibrational quantum number and Lv is a
Laguerre polynomial of order v. From this it can be

seen that although the magnitude of 〈v|X†RXL|v〉 de-
pends non-trivially on v, due to the exponential term
it should be maximum at ξ = 0 and decrease towards
ξ = π. Similarly, for a given ξ, its magnitude should also

decrease with increasing λ =
g

ω
. One can see that these

trends correlate well with the conductance of the DQD
(see Figure 6(b)).

Let us also consider the square-moduli of diagonal

matrix elements of X†LXR operators for different values
of λ (as used in calculation in Figure 6(a)) shown in
Figure 8. As discussed in Section III A, a two fold

(a) λ = 0.5 (b) λ = 0.75

(c) λ = 1 (d) λ = 1.25

FIG. 8. Square-moduli of diagonal matrix elements of X†
LXR

operators for different values of λ as used in Figure 6(a).

connection can be made between these values and the
I − V characteristics shown in Figure 6(a). Firstly, the
magnitudes can be roughly correlated with the overall
magnitude of the calculated current, and secondly, the
maximum conductance coincides with the bias voltage
for which vibrational level |L, v〉 corresponding to the

maximum absolute value of 〈v|X†RXL|v〉 falls into the
bias window. This further supports the interpretation
presented in the paper.
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van der Zant, J. Phys. Condens. Matter 26, 474205 (2014).
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10 T. Böhler, A. Edtbauer, and E. Scheer, Phys. Rev. B 76,
125432 (2007).

11 N. P. de Leon, W. Liang, Q. Gu, and H. Park, Nano Lett.
8, 2963 (2008).

12 E. A. Osorio, M. Ruben, J. S. Seldenthuis, J. M. Lehn,
and H. S. J. van der Zant, Small 6, 174 (2010).

13 S. W. Wu, G. V. Nazin, X. Chen, X. H. Qiu, and W. Ho,
Phys. Rev. Lett. 93, 236802 (2004).

14 W. H. A. Thijssen, D. Djukic, A. F. Otte, R. H. Bremmer,
and J. M. van Ruitenbeek, Phys. Rev. Lett. 97, 226806
(2006).

15 R. Leturcq, C. Stampfer, L. Inderbitzin, K.and Durrer,
C. Hierold, E. Mariani, M. G. Schultz, F. von Oppen, and
K. Ensslin, Nat. Phys. 5, 327 (2009).

16 B. Lassagne, Y. Tarakanov, J. Kinaret, D. Garcia-Sanchez,
and A. Bachtold, Science 325, 1107 (2009).
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