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ABSTRACT: Graphene provides a two-dimensional plat-
form for contacting individual molecules, which enables
transport spectroscopy of molecular orbital, spin, and
vibrational states. Here we report single-electron tunneling
through a molecule that has been anchored to two graphene
leads. Quantum interference within the graphene leads
gives rise to an energy-dependent transmission and
fluctuations in the sequential tunnel-rates. The lead states
are electrostatically tuned by a global back-gate, resulting in
a distinct pattern of varying intensity in the measured
conductance maps. This pattern could potentially obscure
transport features that are intrinsic to the molecule under
investigation. Using ensemble averaged magneto-conductance measurements, lead and molecule states are disentangled,
enabling spectroscopic investigation of the single molecule.
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Graphene electrodes are advantageous for use in single-
molecule devices,1−5 because unlike metal electrodes,
they do not suffer from high atomic mobility and

screening.1,3 Large area single-layer graphene can be grown and
patterned into devices with electrodes separated by nanogaps,6,7

and molecules bridging the gap can be anchored to the
electrodes via covalent bonding4 or π−π-stacking.1−3,8,9
However, the nontrivial density of states and transmission in
graphene nanostructures, combined with the fact that graphene
can be electrostatically gated, can lead to the observation of
transport features in graphene-based single-molecule devices
that are not intrinsic to the molecule under investigation, but
are rather a property of the leads. Experimental and theoretical
studies have shown that quantum interference in graphene
ribbons10−13 and nanoconstrictions14 lead to conductance
fluctuations at cryogenic temperatures. Quantum confinement
in the source and drain electrodes of semiconductor single-
electron transistors results in the observation of density of
states oscillations in the sequential electron tunneling transport
through these devices.15,16 It is therefore to be expected that
quantum interference effects in graphene electrodes will also
influence the charge transport in single-molecule devices.
Here we present a transport spectroscopy investigation of a

graphene-based single-electron transistor where we attribute
the sequential electron tunneling to the presence of a single

molecule bridging the graphene nanogap. While the charge
island is most likely formed by an individual zinc-porphyrin
dimer, the observed transport features are completely
independent of the type of molecule used, and in fact can
also be observed in graphene quantum dots in a similar device
geometry (see Supporting Information, where we present
experimental data of zinc-porphyrin monomers and graphene
quantum dots). Our experiments show how the graphene leads
couple electrostatically to a global back-gate, and that
hybridization between the lead and molecule states results in
distinct fluctuation patterns as a function of gate and bias
voltage. This behavior is captured by a simple tight-binding
model, which we solve both analytically and numericially.
Finally, we present a strategy to recover transport features that
are intrinsic to the molecule, and might be obscured by the
density of states fluctuations in the leads, by disentangling lead
and molecular states.

RESULTS AND DISCUSSION
We measured charge transport in single-molecule transistors at
4.2 K (sample A) and 20 mK (sample B) as a function of bias
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voltage Vb and gate voltage Vg. Individual molecules were
contacted using chemical vapor deposition (CVD) grown
graphene nanogaps on a silicon substrate with a 300 nm
thermally grown oxide layer that was prepatterned with metal
(Cr/Au) contacts. The single-layer nature of the graphene was
confirmed by Raman spectroscopy.14 The graphene nanogaps
were fabricated using feedback-controlled electroburning.7

Single zinc-porphyrin dimer molecules were deposited from a
chloroform solution, and were identified by comparing current
maps as a function of Vb and Vg before and after deposition (see
Supporting Information).
We have measured a total of 171 successfully electroburnt

devices (meaning they were successfully burnt, did not break
during the wire-bonding and cool-down procedure, and
resulted in a measurable tunnel current at 77 K.) From these
171 devices, 109 were measured again at 77 K after the
molecular deposition after which 26 devices appeared empty
before the deposition (i.e., no Coulomb diamonds) and showed
sequential tunneling after molecular deposition. We observed
conductance fluctuation in 4 devices.
The conductance through the single zinc-porphyrin dimers

was investigated via single-electron tunneling from a metallic
source reservoir via the left graphene lead, through the
molecule, to the metallic drain reservoir via the right graphene
lead (Figure 1a). The silicon substrate was used as a backgate to
apply Vg. In contrast with metal-based single-molecule
transistors, where the metal electrodes screen the gate electric
field, in our devices the electrostatic gating influences both the
molecular orbital states and the states in the graphene leads
(Figure 1b). Previous experiments using partially electroburnt
graphene nanoconstrictions have shown that the transmission

of our graphene leads fluctuates as a function of Vb and Vg,
which we attribute to either universal conductance fluctuations
(UCFs) resulting from random disorder or the presence of
multimode Fabry-Peŕot interferences.14 These fluctuations in
the graphene leads influence the transmission through the
molecule as orbital states are tuned in and out of resonance
with the lead states.
Figure 1c shows the differential conductance measured as a

function of the applied bias and gate voltage for sample A. The
data reveal a dense set of positive and negative conduction
resonances visible as red and blue lines of positive slope that we
attribute to fluctuations in the graphene leads. A striking feature
of the data is that the red and blue lines do not run parallel to
the lines at the edges of white regions of suppressed
conductance. In what follows, we will discuss the origin of
the conduction resonances and analyze the electrostatic gating
of the molecule and the lead states.
For charge to flow through a molecule, electrons need to be

added and removed from it. The energy required to add one
electron to the molecule, i.e., its electron affinity, is given by the
electrochemical potential μM(N) = U(N) − U(N − 1), where
U(N) is the total energy of the N-electron redox state.17 This
electrochemical potential consists of the discrete orbital energy
plus the electrostatic contribution to the energy, which depends
linearly on the source (drain) Vs(d) and gate Vg voltage as μM =
−|e|(Cs,MVs + Cd,MVd + Cg,MVg)/(Cs,M + Cd,M + Cg,M), where the
capacitance Cs(d,g),M describes the electrostatic interaction
between the source (drain, gate) electrode and the molecule.18

Electrons can tunnel through the molecule when its electro-
chemical potential is within the bias window defined by the
electrochemical potentials μs = −|e|Vs and μd = −|e|Vd in the

Figure 1. Measurement and theory of a graphene-based single-electron transistor. (a) Schematic depiction of the device. Graphene lead
electrodes are connected to gold reservoirs left and right; a single molecule bridges the gap between the graphene electrodes. Details on the
fabrication and the setup are provided in Figure S1. (b) Schematic energy diagram of the graphene−molecule−graphene junction. (c)
Measured differential conductance G = dI/dVb as a function of bias and gate voltage (sample A). (d) Equivalent circuit diagram of (a) and (b);
the Ohmic approximation for a tunnel barrier is valid in the low bias regime of (c) and (e). (e) Calculated differential conductance as a
function of bias and gate voltage.
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source and drain reservoirs, respectively. When μd is outside
this bias window, electrons do not have the necessary energy to
occupy/empty an orbital, resulting in diamond-shape regions of
Coulomb blockade in the conductance versus bias and gate
voltage map. The slopes of these Coulomb diamonds are given
by the conditions μM = μd and μM = μs. When the device is
biased asymmetrically and the gate voltage is set relative to one
of the electrodes, in our case the drain, i.e., Vs = Vb and Vd = 0,
these conditions yield the slopes Cg,M/(Cd,M + Cg,M) and
−Cg,M/Cs,M.
Similar to the molecular orbital states, the states in the

graphene leads shift linearly as a function of the applied bias
and gate voltage. The energy shift of the states in the left lead,
which is coupled to the source reservoir, is given by ΔϵL = −|e|
(Cs,LVs+Cg,LVg/(Cs,L+Cg,L), and for the right lead coupled to the
drain reservoir ΔϵR = −|e|(Cd,RVd+Cg,RVg/(Cd,R+Cg,R). In the
case of asymmetric biasing, lines in the conductance map for
which a molecular orbital aligns with a state in the left lead have
a slope given by μM = ΔϵL, which yields

=
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and for states in the right lead μM = ΔϵR yields

=
+ −

+
dV
dV

C C C C C

C C C C

( )b

g

g,R s,M d,M d,R g,M

g,R s,M d,R s,M (2)

When the lead states are clamped to the electrochemical
potential of the reservoirs, i.e., if the capacitive coupling
between the leads and the gate is zero, the slope of the lines for
which the molecular orbitals align with the lead states run
parallel to the edges of the Coulomb diamonds. Parallel lines in
conductance maps resulting from disorder and confinement in
the leads of single-electron transistors have been studied
extensively, for example in STM-fabricated devices in silicon.15

However, when there is capacitive coupling between the leads
and the gate, these lines no longer run parallel to the edges of
the Coulomb diamonds, and resonances between molecular
and lead states shift in and out of the bias window.
From the slopes of the edges of the Coulomb diamonds in

Figure 1c we infer that the ratio Cg,M/Cs,M = (33 ± 1) × 10−3,
and Cg,M/Cd,M = (20 ± 1) × 10−3. The relatively strong
coupling to the source and drain electrodes compared to the
gate electrode is due to the fact that the backgate is separated
from the device by a 300 nm layer of SiO2. Next, we estimate
the electrostatic coupling of the lead states to the backgate. We
only observe conduction resonances with positive slopes, which
implies that we predominantly probe the left lead. From the
positive slope of the conduction resonances we find Cg,L/Cs,L =
(7 ± 1) × 10−3, indicating that the gate coupling to the
molecule is approximately 3−5 times stronger than to the lead
states. We attribute the difference in gate coupling between the
molecule and the lead states to the higher carrier concentration
in the graphene leads, which results in a more effective
screening of the gate electric field. The average spacing between
the conduction resonances is approximately 5 meV, which is
consistent with the conductance fluctuations we have
previously observed in partially electroburnt graphene nano-
constrictions.14

We will now discuss the hybridization between the lead states
and the molecular orbitals as they are tuned in and out of

resonance. The current through a molecular orbital is given by
the Landauer formula19

∫= − | | −I
e

h
T E f E f E dE

2
( )[ ( ) ( )]L R (3)

where f L,R denotes the Fermi distribution of the reservoirs,
which in the case of asymmetric biasing depends on the bias
voltage Vb and temperature T as f L = [exp((E−eVb)/kBT) +
1]−1 and f R = [exp(E/kBT) + 1]−1.
To investigate the role of scattering in the leads on the

transmission through the molecular orbital we employ a simple
Hückel (tight-binding) model as shown in Figure 2a. The

molecule is represented by a single site at n = 0 with an on-site
energy μM and a hopping integral γL,R to the left and right lead,
respectively. The left and right leads are represented by semi-
infinite chains with on-site energies ϵL,R and nearest-neighbor
hopping integrals αL,R. We introduce scattering into the left and
right compound electrodes at n = −NL and n = NR by adjusting
the hopping integrals βL,R.
Traditionally one would regard this structure as a

complicated scatterer (S) consisting of the region between
−NL ≤ n ≤ NR (shaded gray in Figure 2b) and two simple
crystalline leads (shaded orange in Figure 2b) along which
electrons propagate ballistically into and from the reservoirs.
For such a system,

= Γ Γ †T E G G( ) 4Tr[ ]A SS B SS (4)

where ΓA and ΓB describe the level broadening due to contact
with the crystalline semi-infinite leads, A and B. In this
expression, the scatterering region is a complex combination of
the molecule and graphene and GSS is the Green’s function of
the scattering region in the presence of the simple crystalline
leads. Our aim is to separate the contributions to scattering
from the molecule and graphene and therefore we adopt an
alternative formulation20 in which the left graphene, and left
semi-infinite lead, i.e., the region n < 0, are regarded as a
compound electrode (L) and the right graphene and right semi-
infinite lead (n > 0) form the right compound electrode (R).
This viewpoint is encapsulated in the following alternative
expression for the transmission coefficient, which is mathemati-
cally equivalent to eq 4

Figure 2. Partitioning the molecule-lead system. (a) Schematic
depiction of the Hu ̈ckel model. (b) Partitioning of the system into
simple electrodes A and B with a complex scattering region S, and
(c) into “compound electrodes” L and R and a simple scatting site
M.
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= Γ Γ †T E G G( ) 4Tr[ ]L MM R MM (5)

In this equation, the level broadening due to contact between
the molecule and the left and right compound electrodes are
described by

Γ =
−

−

†

H
g g
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H
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−

−
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g g
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2R MR
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where gLL(RR) is the Green’s function of the isolated left(right)-
hand compound electrode, and HL(R)M denotes the coupling
between the left(right) compound electrode and the molecule.
The Green’s function of the molecule in the presence of the
compound electrodes is given by

μ= − − Σ − Σ −G E( )MM M L R
1

(8)

where the self-energies of the left and right compound
electrode are

σΣ = = − ΓH g H iL ML LL LM L L (9)

σΣ = = − ΓH g H iR MR RR RM R R (10)

Using eqs 5 and 6−10, we obtain the Breit−Wigner formula
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Γ Γ
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2

L R
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In the case of the simple Hückel model, this implies that the
tunnel-rate ΓL is proportional to the local density of states at
site n = −1 and ΓR is proportional to the local density of states
at site n = +1. Both the tunnel-rates and the energy shifts
depend on the electrode density of states, which in turn is
determined by the random locations of scattering centers
within the graphene electrodes. The self-energies of the
compound electrodes in the Hückel model can be found
numerically by decimation (for details see Supporting
Information), or analytically by solving Dyson’s equation (see
Supporting Information). The latter yields

γ
α
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− −
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where xL = βL
2/αL

2 − 1 and kL = cos−1 (ϵL − E)/2α. Similarly ΓR
is obtained by replacing L by R in the above expression. Here
we have derived the transmission for a simple one-dimensional
Hückel model, however eqs 4 and 5 are completely general, and
the transmission function will depend on the details of the
system Hamiltonian (see Supporting Information for a more
sophisticated system Hamiltonian). Experimentally, we find
that the position of the molecular energy level with respect to
the Fermi energy of the leads and the strength of the coupling
between the molecule and the graphene leads varies
significantly from device to device.
Figure 3a,b shows the real and imaginary part of the self-

energies for strong and weak reflections in the leads. For strong
reflection (βL,R

2 = 0.1αL,R
2 ) we find sharp peaks in the imaginary

part of the self-energies, i.e., the density of states at the surface
sites (n = ± 1), arising from quasi-bound states between the
molecule and the reflection sites (n = −NL, NR). By contrast,
for weak reflections (βL,R

2 = 0.9αL,R
2 ) we find a small sinusoidal

modulation of both the tunnel-rates ΓL,R and the energy shift

σL,R. The tunnel-rate is maximum on resonance with the quasi-
bound lead states while the hybridization energy changes sign
upon crossing the resonance condition. The transmission as a
function of energy and electrochemical potential of the
molecule μM (Figure 3c) shows both the effect of the
modulation of the tunnel-rate and the hybridization energy.
The transmission is maximum upon resonance, reflecting the
increase in tunnel-rate, and a avoided crossing appear around
the resonance condition due to level repulsion resulting from
the hybridization between the molecular orbital and the lead
states.
To calculate the current and differential conductance as a

function of bias and gate voltage as shown in Figure 1e, we
introduce the experimentally extracted capacitive coupling
parameters to the on-site energies as discussed in the previous
section. By choosing αL,R = 1 eV and NL = NR = 1000 we obtain
an energy-level spacing between the quasi-bound lead states of
2 meV, close to the observed energy spacing in our experiment.
We find that choosing the hopping integrals γL = 4 μeV and γR

Figure 3. Tunnel-rate and hybridization energy. (a,b) Real and
imaginary part of the surface Green’s function calculated for αL,R =
3 eV, ϵL,R = 0 eV and l = 1000. (c) Transmission as a function of
energy E and on-site potential μM for γL,R = 20 meV.
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= 20 meV results in a good qualitative agreement between the
experimental and theoretical differential conductance maps.
Due to strong asymmetry in coupling strength between the left
and right lead, i.e. ,ΓL ≪ ΓR, the amplitude of the Breit−Wigner
resonance ∼ ΓL and is only sensitive to states in the left lead.
The conductance fluctuations observed in the sequential

tunnelling regime arise from interference effects in the leads,
which can either be the result of scattering of random
impurities leading to universal conductance fluctuations
(UCFs, see Figure 4a), or Fabry-Peŕot (FP, see Figure 4b)
interferences resulting from reflections at potential barriers.
UCFs can be observed if electron waves scatter along closed
trajectories and the phase coherence length lϕ is larger than the
mean free path. This scattering leads to random, energy
dependent interferences within segments of lϕ

2 inside the
conductor which appear as aperiodic conductance fluctuations

as a function of gate voltage. When a magnetic field is applied
perpendicular to the graphene leads, electron waves acquire an
additional phase due to the vector potential, resulting in an
Aharonov−Bohm phase ΔBAB = Φ0/S, where Φ0 = h/e, for a
trajectory enclosing an area S. When the conductance is
measured for different magnetic fields within the correlation
field scale ΔBc ≈ Φ0/(Lx + Ly), where Lx and Ly correspond to
the smallest relevant dimension in x and y direction, similar
features corresponding to a specific impurity configuration are
observed in each conductance curve.21,22 However, when the
increments in external magnetic field are larger than ΔBc, a
different impurity configuration is probed for each conductance
curve. As a result, UCFs can be suppressed by ensemble
averaging measurements recorded at B > ΔBc, denoted by ⟨...⟩B.
This technique was successfully used to distinguish between
UCF and weak-localization effects in nanowires23 and carbon
nanotubes.24 Theoretically, the UCFs can be reduced by a
factor of √N where N is the size of the ensemble.24 Figure 4f
shows bias traces as a function of magnetic field recorded at Vg
= 29.75 V of sample B measured at 20 mK (indicated by the
dotted line in Figure 4c). We recorded 40 traces in B⊥ = Bz
(Figure 4d) and 40 traces in B∥ = Bx,y (Figure 4e). For a phase
coherence length lϕ ≈ 400 nm14 found in our graphene samples
ΔBc ≈ 25 mT, and therefore ΔB⊥, ΔB∥ > ΔBc. While the out-
of-plane magnetic field changes the conductance fluctuations
(Figure 4e), the in-plane field up to 6 T does not affect the
oscillations (see Figure 4d). The fact that only the out-of-plane
magnetic field influences the conductance fluctuations further
strengthens our assumption that they are intrinsic to two-
dimensional graphene leads rather than the molecule. By
comparing the conductance at B = 0 with the data averaged
over B we find a reduction of UCFs of var(G(B = 0))/
var(⟨G(B)⟩B) ≈ 6 very close to the theoretical value of

≈40 6.3.
Single- and multimode FP interference effects have

previously been observed in graphene ribbons and nano-
constrictions.14 The Lorentz force acting on the electrons in a
FP cavity will curve their trajectories when an external magnetic
field is applied, which leads to the semiclassical (kinetic) phase
difference ϕWKB between two neighboring trajectories.25 In
addition, bent trajectories enclosing an area S will accumulate
an Aharonov−Bohm phase ϕAB = eB⊥S/ℏ = Φ/Φ0. Finally,
back-reflected electrons in graphene acquire a Berry phase
ϕBerry, which is π for single-layer graphene and can take values
between 0 and 2π in bilayer graphene depending on its carrier
density and asymmetry parameter, which is defined as the
difference in on-site energies of the two graphene layers.26

Since the Berry phase is not affected by the external magnetic
field, and therefore does not play a role in magnetic-field
averaging, it can be ignored in this discussion. The resonance
condition for Fabry-Peŕot interferences is met when ϕWKB +
ϕAB + ϕBerry = 2πj, where ∈ j . Variations of the external
magnetic field will change this condition and thus shift the
conductance maxima due to the combined influence on ϕWKB
and ϕAB (see Supporting Information). Ensemble averaging of
the magneto-conductance traces will therefore result in the
suppression of density of states fluctuations. This behavior can
be illustrated by a tight-binding model shown in Figure 5a, in
which the leads contain circular regions through which a
magnetic flux can pass. Again the transmission coefficient can
be obtained analytically as a function of the flux Φ passing
through each of the loops. This is imposed via a Peierls
substitution by adding a phase factor θ = 2πΦ/Φ0 to nearest

Figure 4. Magnetic field dependence of conductance fluctuations.
(a,b) Schematic depiction of Universal Conductance Fluctuations
and Fabry-Peŕot interference. (c) Differential conductance map
measured at B = 0 T (sample B). (d,e) Differential conductance
measured as a function of bias voltage and magnetic field in (∥) and
out (⊥) of the device plane. (f) Differential conductance measured
at B = 0 T compared with the ensemble averaged differential
conductance.
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neighbor hopping integrals. In the absence of a magnetic field,
Figure 5b,c shows an example of the transmission and
differential conductance, which reflects the density of states
fluctuations in such a model. The ensemble averaged curves
show a strong reduction of the fluctuations, in correspondence
with the experimental results.

CONCLUSIONS
In this work we have investigated the role of density of states
fluctuations in single-molecule devices contacted to single-layer
graphene nanoelectrodes. By analyzing local measurements of
the quasi-bound lead states, we find that the electrostatic
coupling to the global back-gate is weaker than the gate
coupling to the molecule. This enables electrostatic control
over the hybridization between lead and molecule states. While
the effect of quantum interference is in most cases detrimental
to the investigation of molecular properties, because intensity
variations in the conductance maps are hard to distinguish from
the molecular features, it may provide a pathway toward
interference-based molecular transistors. If the energy-spacing
between the quasi-bound lead states can be increased by further
quantum confinement, they may act as an energy filter for the
transport through the molecular orbitals.27,28

Our approach of ensemble averaging magnetoconductance
traces provides an effective way of distinguishing between
features that are intrinsic to the molecule and those that are the
result of quantum interference in the leads. This provides a
useful tool for the spectroscopic investigation of single
molecules, for example for the identification of vibrational
states.29 However, orbital excited states are likely to shift as a
function of the magnetic field due to their orbital angular
momentum, and will therefore not be amenable to the
ensemble averaging technique described in this work. The
same holds for single-molecule magnets, which exhibit a large
magnetic anisotropy. Nevertheless, the fact that the con-
ductance lines resulting from the lead states do not run parallel
to the edges of the Coulomb diamond may still be used to
distinguish between lead and molecular states. In the case
where magnetic ensemble averaging is not possible, e.g., when
studying magnetic molecules, a coplanar gate30 could
potentially reduce the effects of density of states fluctuations
in the leads as it will only gate the molecule states locally.

To conclude, our results highlight the importance of the
electronic properties of the lead electrodes in single-molecule
electronics. While graphene may be a material system that is
very well suited to host these devices, further understanding of
the hybridization between graphene and molecules will be
needed to develop these devices into a technology. Atomically
precise control of the structure and edge termination of the
graphene leads,31 together with stacked two-dimensional
material approaches32 could enable functional graphene-
molecule hybrid systems.

METHODS
Devices are fabricated using feedback-controlled electroburning of
CVD grown graphene ribbons that were wet-transferred onto a pre-
patterned Si/SiO2 chip containing Au/Cr contact pads. We deposit
molecules from a 10 μM chloroform solution. Devices were measured
in an Oxford Instruments Triton 200 dilution refrigerator and a
custom-built liquid helium dipper. Measurements were performed
using low-noise, battery powered electronics. We measure the
transport characteristics of the device before and after molecular
deposition and select those device that only show Coulomb blockade
after deposition.
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