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Chern-Schwartz-MacPherson cycles of matroids

Lućıa López de Medrano, Felipe Rincón and Kristin Shaw

Abstract
We define Chern-Schwartz-MacPherson (CSM) cycles of an arbitrary matroid. These
are balanced weighted fans supported on the skeleta of the corresponding Bergman fan.
In the case that the matroid arises from a complex hyperplane arrangement A, we show
that these cycles represent the CSM class of the complement of A. We also prove that
for any matroid, the degrees of its CSM cycles are given by the coefficients of (a shift
of) the reduced characteristic polynomial, and that CSM cycles are valuations under
matroid polytope subdivisions.
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1. Introduction

Matroids are a combinatorial abstraction of independence in mathematics introduced
independently by Whitney and Nakasawa [NK09]. They axiomatize different notions
such as linear independence, algebraic independence, affine independence, and many
others. In particular, every hyperplane arrangement gives rise to a matroid, as we
describe in Section 3. Given an invariant of a hyperplane arrangement, it is thus
important to ask if it is an invariant of its underlying matroid.

In complex algebraic geometry, the Chern-Schwartz-MacPherson class is a gen-
eralization of the Chern class of a tangent bundle to the case of singular or
non-compact algebraic varieties over C. Given a hyperplane arrangement A in CPd,
its complement C(A) := CPd \ A embeds into the wonderful compactifications, as
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defined by De Concini and Procesi [DCP95]. In this paper we provide a combinatorial
description of the Chern-Schwartz-MacPherson class of C(A) in the maximal wonderful
compactification in terms of certain balanced polyhedral fans that depend only on the
underlying matroid. Our combinatorial definition generalizes to all matroids, whether
or not they are representable over C.

Any matroid M gives rise to a polyhedral fan B(M) called the Bergman fan of M
(Definition 1). Bergman fans of matroids are fundamental examples of linear spaces in
tropical geometry and are thus essential objects in the field. The Bergman fan B(M) of
a representable matroid M is the tropicalization of any linear space that represents M ,
while Bergman fans of non-representable matroids are non-realizable tropical varieties
[MS15], [BIMS15]. Regardless of whether or not a matroid is representable, the
tropical geometry of its Bergman fan is in many ways analogous to the geometry of a
classical non-singular algebraic variety. For example, Bergman fans of matroids have
a well-behaved intersection ring [Sha13], they exhibit a version of Poincaré duality
for tropical cohomology [JSS], and their Chow cohomology rings satisfy a version of
Hard Lefschetz and the Hodge-Riemann bilinear relations [AHK18a]. These powerful
properties were used in [AHK18a] to resolve Rota’s conjecture on the log-concavity
of the coefficients of the characteristic polynomial of a general matroid.

In this paper we define the Chern-Schwartz-MacPherson (CSM) cycles of an arbitrary
matroid as tropical cycles supported on the different skeleta of the corresponding
Bergman fan. This construction is motivated in part by the desire to have a more
general theory of characteristic classes in tropical geometry. Nonetheless, CSM cycles
of matroids are interesting combinatorial objects on their own and are useful from
a purely matroid-theoretical perspective. In fact, the CSM cycles of a matroid can
be thought of as balanced polyhedral fans that generalize its Bergman fan to lower
dimensions.

The k-th CSM cycle of a matroid M is a weighted fan supported on the k-dimensional
skeleton of the Bergman fan B(M), with weights coming from the product of beta
invariants of certain minors of M (Definition 5). The maximal dimensional CSM
cycle of M is equal to B(M) with weights equal to one on all top-dimensional cones,
while the zero dimensional CSM cycle of M is equal to the origin with multiplicity
(−1)r(M)−1β(M), where β(M) is the beta invariant of M and r(M) is the rank of
M . The CSM cycles of intermediate dimensions have weights that generalize these two
cases. Our first theorem is that for any k, this choice of weights on the k-skeleton of
B(M) does produce a tropical cycle.

Theorem 1.1. The k-th CSM cycle csmk(M) of a matroid M is a balanced fan.

Given a complex hyperplane arrangement A in CPd, elements in the Chow homology
A∗(WA) of the maximal wonderful compactification WA of the complement C(A) :=
CPd \ A can be represented by balanced fans supported on the Bergman fan B(MA)
of the matroid MA induced by A, see Section 3. Our second theorem relates the CSM
class of the complement C(A) to the CSM cycles of the matroid MA in the Chow
homology of W .
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Theorem 1.2. Let WA be the wonderful compactification of the complement C(A)
of an arrangement of hyperplanes A in CPd. Then

CSM(1C(A)) =
∑d
k=0 csmk(MA) ∈ A∗(WA).

The above theorem shows that the combinatorially defined CSM cycles of a matroid
have geometric meaning when the matroid is representable in characteristic 0.

For general matroids, we show in Section 4 that the CSM cycles are matroid
valuations. A matroid valuation is a function on the set of matroids that satisfies
an inclusion-exclusion property for matroid polytope subdivisions (Definition 6). The
class of matroid valuations includes many well-known invariants such as the Tutte
polynomial, the volume and Erhart polynomial of the matroid polytope, and the
Billera-Jia-Reiner quasisymmetric function [Spe08], [BJR09], [AFR10], [DF10].
Matroid valuations have gained significant attention recently and are very useful tools
for understanding the combinatorial structure of matroid polytope subdivisions and
tropical linear spaces [Spe08], [Spe09].

Theorem 1.3. For any k, the function csmk sending a matroid M to its
k-dimensional CSM cycle csmk(M) is a valuation under matroid polytope subdivisions.

Every tropical cycle in Rn has a degree (Definition 8). In Section 5 we show that the
degrees of the CSM cycles of a matroid are given by the coefficients of a shift of the
reduced characteristic polynomial. These coefficients are of enumerative interest. For
instance, they provide the h-vector of the broken circuit complex of a matroid.

Theorem 1.4. Suppose M is a rank d+ 1 matroid. Then

d∑
k=0

deg(csmk(M)) tk = χM (1 + t).

For matroids representable in characteristic 0, the above statement specialises to
a formula already found in different contexts ([Huh13, Theorem 3.5] and [Alu13,
Theorem 1.2]).

In Section 5, we state a conjectural description of Speyer’s g-polynomial using the
CSM cycles of a matroid. This polynomial matroid invariant was originally constructed
for matroids representable over a field of characteristic 0 via the K-theory of the
Grassmannian [Spe09]. This definition was later extended to all matroids in [FS12].
The fact that its coefficients are non-negative integers for matroids realizable in
characteristic 0 is the key ingredient in Speyer’s proof of the f -vector conjecture
in characteristic 0 [Spe09]. This conjectured formula describes the g-polynomial in
terms of intersection numbers of the CSM cycles of a matroid with certain tropical
cycles derived from them (Conjecture 1). This conjecture provides a Chow theoretic
description of this K-theoretic invariant. A proof of Conjecture 1 will appear in
forthcoming work of Fink, Speyer and the third author.
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Previous work

To end this introduction we would like to point out how the CSM cycles of matroids
are related to existing work in tropical geometry. In [Mik06], Mikhalkin introduced
the tropical canonical class KV of a tropical variety V . This is a weighted polyhedral
complex supported on the codimension-1 skeleton of V . The weight in KV of a
codimension-1 face F is val(F )− 2, where val(F ) is equal to the number of top-
dimensional faces of V adjacent to F . For the Bergman fan B(M) of a rank d+ 1
matroid M we have csmd−1(B(M)) = −KB(M), see Example 3. In the case of tropical
curves, this is the same definition of the canonical class used to study tropical linear
series and the Riemann-Roch theorem [BN07], [GK08], [MZ08].

It is important to notice that for an arbitrary tropical variety V , the weighted
polyhedral complexKV is in general not balanced. For instance, there is a 2-dimensional
tropical variety V ⊆ R4 presented in [BH, Section 5], for which it can be easily checked
that KV does not satisfy the balancing condition. This particular tropical variety
provides a counter-example to the strongly positive Hodge conjecture, and hence is
not realizable.

In general, Mikhalkin also suggested to define the Chern classes of a tropical variety
as tropical cycles supported on the skeleta of the variety, however, the weights of these
cycles were not defined. The definition of the CSM cycles for matroids presented here
extends to tropical manifolds, as defined for example in [MZ14] or [Sha]. These are
tropical varieties which are locally given by Bergman fans of matroids. In dimension
2, the canonical class and second Chern classes of (combinatorial) tropical surfaces
defined in [Car] and [Sha] coincide with − csm1(B(M)) and csm0(B(M)) respectively,
when the tropical surface is the Bergman fan of a rank 3 matroid M . These tropical
characteristic classes appear in a version of Noether’s formula in both of these papers.

Finally, Bertrand and Bihan equip with weights the skeleta of a complete intersection
of tropical hypersurfaces to produce tropical varieties [BB13]. In Remark 2, we address
when our constructions overlap and show that in these cases they coincide. The
connection described in Section 3 between the CSM cycles of matroids and the CSM
class of the complement of a complex hyperplane arrangement suggests there is a
relation between the weighted skeleta from [BB13] and the CSM classes of very affine
varieties.

Acknowledgements. We are very grateful to Benôıt Bertrand, Frédéric Bihan,
Erwan Brugallé, Gilberto Calvillo, Dustin Cartwright, Alex Fink, Eric Katz, Ragni
Piene, and David Speyer for illuminating discussions and to Erwan Brugallé for helpful
comments on a preliminary version of this manuscript. We are also grateful to an
anonymous referee for their comments which helped us to improve our paper.

2. CSM cycles of Bergman fans of matroids

In this section we define the Chern-Schwartz-MacPherson (CSM) cycles of a matroid
as a collection of weighted rational polyhedral fans (Definition 5). We then prove that
these fans are balanced (Theorem 2.3).

We start by fixing some notation. Throughout we will always consider the standard
lattice Zn+1 ⊆ Rn+1, and we will denote by {e0, e1, . . . , en} the standard basis of this
lattice. For any subset S ⊆ {0, . . . , n}, let eS :=

∑
i∈S ei ∈ Zn+1. The quotient vector
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space Rn+1/1 := Rn+1/R · e{0,...,n} is spanned by the lattice Zn+1/1 := Zn+1/Z ·
e{0,...,n}.

A polyhedral fan Σ in Rn+1 is called rational if every cone of Σ is defined by a
collection of inequalities each of the form 〈α,x〉 ≤ 0 with α ∈ Zn+1. If Σ is a rational
polyhedral fan in Rn+1 whose lineality space contains R · e{0,...,n}, we also refer to its
image in Rn+1/1 as a rational polyhedral fan.

We will assume the reader has some knowledge of the basics of matroid theory;
this can be found, for example, in [Whi86], [Whi87]. We denote by Matn+1 the set
of matroids on n+ 1 elements labeled 0, 1, . . . , n. Every matroid has an associated
rational polyhedral fan, called its Bergman fan. Given a set of vectors {v1, . . . ,vr} in
a real vector space, we will denote by cone(v1, . . . ,vr) := {

∑r
i=1 λivi | λi ∈ R≥0} the

cone that they generate.

Definition 1. Let M ∈ Matn+1 be a matroid of rank d+ 1. If M is a loopless
matroid, the affine Bergman fan B̂(M) of M is the pure (d+ 1)-dimensional rational
polyhedral fan in Rn+1 consisting of the collection of cones of the form

σF := cone(eF1 , eF2 , . . . , eFk
) + R·e{0,...,n}

where F = {∅ ( F1 ( F2 ( · · · ( Fk ( {0, . . . , n}} is a chain of flats in the lattice of
flats L(M) of M . If M has a loop then we define B̂(M) = ∅.

The (projective) Bergman fan B(M) of M is the pure d-dimensional rational
polyhedral fan obtained as the image of B̂(M) in the quotient vector space Rn+1/1.

Example 1. Suppose M is the uniform matroid M = Ud+1,n+1. A subset F ⊆
{0, . . . , n} is a flat of M if and only if |F | ≤ d or F = {0, . . . , n}. The top-dimensional
cones of the Bergman fan B(M) are thus all cones of the form cone(eF1 , eF2 , . . . , eFd

)
with F1 ( · · · ( Fd ( {0, . . . , n} and |Fi| = i. Figure 1 shows the 2-dimensional
Bergman fan B(U3,4) in R4/1 ∼= R3.

e2

e3

e0 e1

Figure 1. The Bergman fan B(U3,4) in R4/1 ∼= R3.
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A pure dimensional polyhedral fan Σ is weighted if each top-dimensional cone
σ ∈ Σ is equipped with an integer weight wΣ(σ) ∈ Z. For a polyhedral fan Σ, we write
|Σ| :=

⋃
σ∈Σ σ for its support. If Σ is a weighted polyhedral fan, we define its support

to be the union of its top-dimensional cones of non-zero weight.

Let Σ be a pure d-dimensional rational weighted polyhedral fan in Rn+1/1. Suppose
τ ∈ Σ is a (d− 1)-dimensional cone, and consider the linear subspace Lτ := spanR(τ).
For any d-dimensional cone σ ∈ Σ such that σ ) τ , let vσ ∈ Zn+1/1 be such that

spanZ(vσ, Lτ ∩ (Zn+1/1)) = spanR(σ) ∩ (Zn+1/1).

The fan Σ satisfies the balancing condition at τ if
∑
σ)τ wΣ(σ)vσ ∈ Lτ . We say that

Σ is balanced if every (d− 1)-dimensional cone τ of Σ verifies the balancing condition.

Proposition 2.1 ([Stu02]). The Bergman fan of a matroid is a balanced fan when
equipped with weights equal to 1 on all its top-dimensional cones.

We will often not be concerned with the specific fan structure of a weighted
polyhedral fan, but only with its support and its weights. This prompts us to introduce
the notion of fan tropical cycles.

Definition 2. A fan tropical cycle in Rn+1/1 is a pure dimensional balanced
rational weighted fan in Rn+1/1 up to an equivalence relation. Given two such fans
Σ and Σ′, we have Σ ∼ Σ′ if |Σ| = |Σ′| and whenever σ ∈ Σ and σ′ ∈ Σ′ are top-
dimensional cones such that int(σ) ∩ int(σ′) 6= ∅ we have wΣ(σ) = wΣ′(σ

′).
The set of k-dimensional fan tropical cycles in Rn+1/1 is denoted by Zk(Rn+1/1).

This set forms a group under the operation of taking set theoretic unions along with
the addition of weight functions [AR10, Construction 2.13].

Definition 3. The matroidal tropical cycle associated to a matroid M ∈
Matn+1 is the tropical cycle represented by the polyhedral fan B(M) equipped with
weights equal to 1 on all its top-dimensional cones.

We will use the notation B(M) to denote both the Bergman fan of a matroid M and
the tropical cycle it defines.

We will define the CSM cycles of a matroid M by assigning a natural weight to each
cone of the Bergman fan B(M). The main ingredient to concoct these weights is the
beta invariant of a matroid.

Definition 4. Let L(M) be the lattice of flats of a matroid M . The Möbius
function of L(M) is the function µ : L(M)× L(M)→ Z defined recursively by

µ(F,G) :=


0 if F * G,

1 if F = G,

−
∑

F⊆G′(G
µ(F,G′) if F ( G.
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Let r denote the rank function of M . If M is a loopless matroid, the characteristic
polynomial χM (λ) of M is the polynomial

χM (λ) :=
∑

F∈L(M)

µ(∅, F )λr(M)−r(F ).

If M has a loop, we define χM (λ) ≡ 0. The reduced characteristic polynomial of
M is the polynomial

χM (λ) := χM (λ)/(λ− 1).

If M is a loopless matroid, the beta invariant of M is defined as

β(M) := (−1)r(M)
∑

F∈L(M)

µ(∅, F ) r(F ) = (−1)r(M)−1χM (1).

If M has a loop then β(M) is defined to be 0. The beta invariant of a matroid is
always non-negative, and furthermore, β(M) = 0 if and only if M is disconnected or
M consists of a single loop. For a more detailed exposition of these notions, see, for
instance, [Whi87, Chapter 7].

Example 2. Consider the uniform matroid M = Ud+1,n+1, discussed in Example
1. Its Möbius function satisfies µ(∅, F ) = (−1)|F | if |F | ≤ d, and µ(∅, {0, . . . , n}) =∑d
i=0(−1)i+1

(
n+1
i

)
. Its characteristic polynomial is thus equal to

χUd+1,n+1
(λ) =

d∑
i=0

(−1)i
(
n+ 1

i

)
(λd+1−i − 1),

and its reduced characteristic polynomial is equal to

χUd+1,n+1
(λ) =

d∑
i=0

(−1)i
(
n

i

)
λd−i.

The beta invariant of Ud+1,n+1 is β(Ud+1,n+1) =
(
n−1
d

)
.

The following is the central definition of our paper.

Definition 5. Suppose M ∈ Matn+1 is a rank d+ 1 matroid. For 0 ≤ k ≤ d, the
k-dimensional Chern-Schwartz-MacPherson (CSM) cycle csmk(M) of M is the
k-dimensional skeleton of B(M) equipped with weights on its top-dimensional cones.
If M is a loopless matroid, the weight of the cone σF corresponding to a flag of flats
F := {∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = {0, . . . , n}} is

w(σF ) := (−1)d−k
k∏
i=0

β(M |Fi+1/Fi),

where M |Fi+1/Fi denotes the minor of M obtained by restricting to Fi+1 and
contracting Fi. If M has a loop then we define csmk(M) := ∅ for all k.

We will prove in Theorem 2.3 that the CSM cycles of a matroid are balanced fans. As
the name suggests, we will often consider the CSM cycles of a matroid as fan tropical
cycles, as in Definition 2. We illustrate our definition with some examples.
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Figure 2. The CSM cycles csm0(U2,3) in B(U2,3) in R3/1 ∼= R2 and csm0(U2,4) in
B(U2,4) in R4/1 ∼= R3.

Example 3. The 0-dimensional CSM cycle of any rank d+ 1 matroid M ∈ Matn+1

is the origin in Rn+1/1 with weight equal to (−1)dβ(M). For example, the cycle
csm0(U2,3) consists of the origin with weight −1, while csm0(U2,4) is equal to the
origin with weight −2; see Figure 2.

The d-dimensional CSM cycle of a matroid M is equal to the matroidal tropical cycle
B(M). Indeed, if M is a rank d+ 1 loopless matroid and {∅ = F0 ( F1 ( · · · ( Fd (
Fd+1 = {0, . . . , n}} is a maximal chain of flats then all the matroids M |Fi+1/Fi are
uniform matroids of rank 1, which have beta invariant equal to 1.

The (d− 1)-dimensional CSM cycle of a matroid M consists of the codimension-
1 skeleton of B(M) with certain weights. The weight of a (d− 1)-dimensional face
σF is given by 2− val(σF ), where val(σF ) is the number of top-dimensional faces of
B(M) containing σF . This is because for any length d chain F = {∅ = F0 ( F1 ( · · · (
Fd−1 ( Fd = {0, . . . , n}} there is a unique j for which r(Fj+1) = r(Fj) + 2. For all
i 6= j the matroids M |Fi+1/Fi are uniform matroids of rank 1 as above. The matroid
M |Fj+1/Fj is of rank 2 and has beta invariant β(M) = val(σF )− 2.

Example 4. Let us consider again the case of the uniform matroid M =
Ud+1,n+1, with d < n (see Examples 1 and 2). If F := {∅ = F0 ( F1 ( · · · ( Fk (
Fk+1 = {0, . . . , n}} is a chain of flats in M , all the matroids M |Fi+1/Fi with i < k
are direct sums of coloops. Therefore, β(M |Fi+1/Fi) = 1 if r(M |Fi+1/Fi) = 1 and
β(M |Fi+1/Fi) = 0 otherwise. The weight of the cone σF in csmk(M) is thus zero
unless |Fi| = i for all i ≤ k. Equivalently, the cone σF is equipped with weight 0 unless
it is a top-dimensional cone of the Bergman fan B(Uk+1,n+1). In this case, the matroid
M |Fk+1/Fk = M/Fk is a uniform matroid of rank d+ 1− k on n+ 1− k elements.
By Example 2, its beta invariant is β(Ud+1−k,n+1−k) =

(
n−k−1
d−k

)
. It follows that, as a

tropical cycle, the CSM cycle csmk(Ud+1,n+1) is the Bergman fan B(Uk+1,n+1) equipped
with weight (−1)d−k

(
n−k−1
d−k

)
on all its top-dimensional cones. For example, the CSM

cycle csm1(U3,4) consists of the rays in directions e0, e1, e2, and e3, each equipped with
weight −1; see Figure 1.

Notice that some of the cones in the k-skeleton of B(M) can be assigned weight 0 in
csmk(M). The following proposition describes the support of csmk(M) in terms of the
coarse subdivision of |B(M)|, introduced in [AK06]. Cones of this coarse subdivision
correspond to equivalence classes of cones in B(M). Two cones σF and σF ′ associated
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to chains of flats F := {∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = {0, . . . , n}} and F ′ := {∅ =
F ′0 ( F ′1 ( · · · ( F ′l′ ( F ′l′+1 = {0, . . . , n}} are equivalent if and only if the matroids

M |F1/F0 ⊕M |F2/F1 ⊕ · · · ⊕M |Fk+1/Fk and M |F ′1/F ′0 ⊕M |F ′2/F ′1 ⊕ · · · ⊕M |F ′l′+1/F
′
l′

are equal. Such an equivalence class of cones of B(M) produces an m-dimensional cone
in the coarse subdivision, where m is the number of connected components of the
matroids described above.

Example 5. For M = Ud+1,n+1, the Bergman fan B(M) is described in Example
1. The coarse subdivision of B(M) has as top-dimensional cones all cones of the form
cone(ei | i ∈ I) with I ⊆ {0, . . . , n} and |I| = d.

Proposition 2.2. The support of csmk(M) is equal to the k-skeleton of the coarse
subdivision of |B(M)|.

Proof. If M is a loopless matroid, the weight of the cone σF corresponding to a
flag of flats F := {∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = {0, . . . , n}} is non-zero precisely
when all the loopless matroids M |Fi+1/Fi are connected. This happens precisely when
σF is contained in a k-dimensional cone of the coarse subdivision of |B(M)|.

Example 6. A matroid is called series-parallel if it is the matroid associated to
a series-parallel network; see [Oxl11, Section 5.4]. Equivalently, a matroid M is series-
parallel if and only if β(M) = 1 or M is a loop [Whi87, Theorem 7.3.4]. Furthermore,
any minor of a series-parallel matroid is either disconnected or a series-parallel matroid
[Oxl11, Corollary 5.4.12]. It follows that if M is a rank d+ 1 series-parallel matroid
then for any k, the weights on the top-dimensional cones of csmk(M) are all either 0
or (−1)d−k. In view of Proposition 2.2 we conclude that, as a tropical cycle, the CSM
cycle csmk(M) is equal to the k-skeleton of the coarse subdivision of |B(M)| with all
weights equal to (−1)d−k.

The main theorem in this section shows that CSM cycles are balanced fans.

Theorem 2.3. The CSM cycle csmk(M) of a matroid M is a balanced fan.

The proof follows from the case k = 1, which we prove in the next lemma.

Lemma 2.4. The CSM cycle csm1(M) of a matroid M is a balanced fan.

Proof. Let M ∈ Matn+1 be a rank d+ 1 matroid. We can assume that M has no
loops, as otherwise B(M) is empty. The only codimension-1 cone of csm1(M) is the
origin of Rn+1/1. The top-dimensional cones of csm1(M) are the cones σF = cone(eF )
with F a flat in L̂(M) := L(M)\{∅, {0, . . . , n}}. To show that csm1(M) is balanced at
the origin, we must show that

∑
w(σF )eF = 0 in Rn+1/1, where the sum is over all
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flats F ∈ L̂(M). This is equivalent to∑
F∈L̂(M)

β(M |F )β(M/F ) eF ∈ R·e{0,...,n} (2.1)

in the vector space Rn+1. For any 0 ≤ i ≤ n, the i-th coordinate of the sum in (2.1) is∑
F3i

β(M |F )β(M/F ), (2.2)

where the sum if over all flats F ∈ L̂(M) containing i. To prove (2.1) we must then
show that the sum in (2.2) is independent of the choice of i ∈ {0, . . . , n}.

For any F ∈ L̂(M), the lattice of flats of the matroid M |F is isomorphic to the
interval [∅, F ] of L(M), and the lattice of flats of M/F is isomorphic to the interval
[F, {0, . . . , n}] of L(M). These intervals correspond to loopless matroids, so the sum in
(2.2) is equal to

=
∑
F3i

(
(−1)r(F )

∑
F1⊆F

µ(∅, F1)r(F1)
)(

(−1)d+1−r(F )
∑
F2⊇F

µ(F, F2)(r(F2)− r(F ))
)

= (−1)d+1
∑
F3i

( ∑
F1⊆F

µ(∅, F1)r(F1)
)( ∑

F2⊇F

µ(F, F2)r(F2)
)
,

where the last equality follows from the fact that
∑
F2⊇F µ(F, F2) = 0. We can now let

F vary over all flats of L(M) that contain i including {0, . . . , n}, as this just adds the
constant term β(M)(d+ 1), which does not depend on i. Reordering the terms in the
summation we get

(−1)d+1
∑
F3i

∑
F1⊆F, F2⊇F

µ(∅, F1)µ(F, F2)r(F1)r(F2)

= (−1)d+1
∑
F1⊆F2

µ(∅, F1)r(F1)r(F2)
( ∑
F1⊆F⊆F2

F3i

µ(F, F2)
)
.

The condition that F1 ⊆ F and F 3 i is equivalent to F1 ∪ {i} ⊆ F , where F1 ∪ {i}
denotes the minimal flat of M containing F1 ∪ {i}. We can then rewrite the last sum
as

= (−1)d+1
∑
F1⊆F2

µ(∅, F1)r(F1)r(F2)
( ∑
F1∪{i}⊆F⊆F2

µ(F, F2)
)
.

If P is a poset with minimum element 0̂, maximum element 1̂, and 0̂ 6= 1̂, the Möbius
function µP satisfies

∑
p∈P µP(p, 1̂) = 0 [Sta97, Proposition 3.7.2]. The very last sum

in parenthesis is then equal to 0 whenever the interval [F1 ∪ {i}, F2] of L(M) is empty
or has more than one element, and it is equal to 1 when F1 ∪ {i} = F2. The above sum
is thus equal to

= (−1)d+1
∑
F1

µ(∅, F1)r(F1)r(F1 ∪ {i})

= (−1)d+1
(∑
F13i

µ(∅, F1)r(F1)r(F1) +
∑
F1 63i

µ(∅, F1)r(F1)(r(F1) + 1)
)

= (−1)d+1
(∑
F1

µ(∅, F1)r(F1)2 +
∑
F1 63i

µ(∅, F1)r(F1)
)
. (2.3)

The polynomial pi(λ) :=
∑
F1 63i µ(∅, F1)λd−r(F1) does not depend on i; in fact, if M has

no loops then pi(λ) = χ(λ) for any 0 ≤ i ≤ n (see [Whi87, Corollary 7.2.7]). If p′i(λ)
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denotes the derivative of pi(λ), we can write∑
F1 63i

µ(∅, F1)r(F1) = −p′i(1) + d
∑
F1 63i

µ(∅, F1) = −p′i(1) + d pi(1).

This shows that (2.3), and thus (2.2), does not depend on i, proving (2.1).

Proof Proof of Theorem 2.3. Let M ∈ Matn+1 be a loopless matroid of rank d+ 1.
The balancing property of csmk(M) for general k will follow from the case k = 1, which
was proved in Lemma 2.4. Let τF = cone(eF1 , . . . , eFk−1

) be a (k − 1)-dimensional cone
of B(M), corresponding to the chain of flats F := {∅ = F0 ( F1 ( · · · ( Fk−1 ( Fk =
{0, . . . , n}}. The k-dimensional cones adjacent to τF have the form σG := τF + R≥0 ·
eG, where G is a flat of M such that F ∪ {G} forms a chain of flats of length k + 1. Such
a flat G sits in exactly one of the open intervals (Fi, Fi+1) of L(M), with 0 ≤ i ≤ k − 1.
Denoting Mi := M |Fi+1/Fi and βi :=

∏
j 6=i β(Mj), in Rn+1 we have∑

G

w(σG) eG =

k−1∑
i=0

∑
G∈(Fi,Fi+1)

w(σG) eG

=

k−1∑
i=0

∑
G∈(Fi,Fi+1)

(−1)d−kβi β(M |G/Fi)β(M |Fi+1/G) eG

= (−1)d−k
k−1∑
i=0

βi

( ∑
G∈(Fi,Fi+1)

β(M |G/Fi)β(M |Fi+1/G) eG

)
.

The lattice of flats of Mi is isomorphic to the interval [Fi, Fi+1] of L(M), so the last
expression is equal to∑

G

w(σG) eG = (−1)d−k
k−1∑
i=0

βi

( ∑
G′∈L̂(Mi)

β(Mi|G′)β(Mi/G
′) (eG′ + eFi

)
)
.

By the balancing condition in the case k = 1 (Statement (2.1)), the very last sum in
parenthesis is a vector in the span of eFi+1

and eFi
. This shows that the whole sum∑

G w(σG)eG is a linear combination of eF0
, eF1

, . . . , eFk
, which means that it is in

span(τF ) ⊆ Rn+1. This proves that csmk(M) is balanced.

3. CSM classes of complements of hyperplane arrangements

The goal of this section is to relate the CSM class of the complement of a hyperplane
arrangement in CPd to the CSM cycles of the underlying matroid of the arrangement.

LetX be an algebraic variety over the complex numbers. The group of constructible
functions on X, denoted by C(X), is the additive group generated by the functions of
the form

1Y (x) :=

{
1 if x ∈ Y,
0 if x /∈ Y ;

where Y is a subvariety of X. Let C be the functor of constructible functions from
the category of complex algebraic varieties with proper morphisms to the category
of abelian groups. Let A∗ denote the functor from the category of complex algebraic
varieties to the category of abelian groups assigning to a variety X its Chow homology
group A∗(X).
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The Chern-Schwartz-MacPherson class is the unique natural transformation
CSM from C to A∗ such that, if X is smooth and complete then

CSM(1X) = c(TX) ∩ [X],

where TX is the tangent bundle of X and c(TX) denotes its Chern class. We refer the
reader to [Alu05a] for an introduction to these and other characteristic classes, as well
as to [Bra13] for an account of the interesting history of their development.

There are two important features of the CSM class. Firstly, the dimension zero part
of the CSM class of a variety gives the topological Euler characteristic:

deg CSM0(1X) = Eu(X).

Secondly, they satisfy an inclusion-exclusion property. Namely, for subvarieties Y1, Y2 ⊆
X, the CSM class satisfies

CSM(1Y1∪Y2
) = CSM(1Y1

) + CSM(1Y2
)− CSM(1Y1∩Y2

) ∈ A∗(X).

Given an arrangement A = {H0, . . . ,Hn} of n+ 1 hyperplanes in CPd, let C(A) :=
CPd \

⋃n
i=0Hi denote its complement. We will always assume that the hyperplane

arrangement A is essential, meaning that
⋂n
i=0Hi = ∅. The arrangement A defines a

rank d+ 1 matroid MA ∈ Matn+1 with rank function r : 2{0,...,n} → Z≥0 given by

r(I) = codimC
⋂
i∈I

Hi.

The flats of MA are in one to one correspondence with the linear subspaces of CPd
obtained as intersections of some of the hyperplanes in A. Note that we consider CPd
and ∅ to be two such subspaces, corresponding to the flats ∅ and {0, . . . , n}, respectively.
Indeed, any linear subspace L of CPd that occurs as the intersection of hyperplanes
in A has the form L = HF :=

⋂
i∈F Hi, where F is the flat F = {i | L ⊆ Hi}. The

collection of linear subspaces HF for F ∈ L(MA) ordered by reverse inclusion is a
lattice isomorphic to the lattice of flats LA := L(MA).

Given a hyperplane arrangement A in CPd, we denote by WA the maximal
wonderful compactification of its complement C(A), introduced by De Concini
and Procesi [DCP95]. For an introduction to this compactification and others from
a discrete or tropical-geometric point of view see [Fei05], [Den14]. The maximal
wonderful compactification WA is obtained from CPd by blowing up all linear subspaces
HF ⊆ CPd corresponding to flats F ∈ L̂A := LA \ {∅, {0, . . . , n}}, in order of increasing
dimension. The divisor D := WA \ C(A) is a simple normal crossing divisor, whose
irreducible components are the proper transforms of the linear subspaces HF . For any
F ∈ L̂A, we denote the proper transform of HF in WA by DF .

The Chow cohomology ring of the maximal wonderful compactification has a simple
combinatorial description. Consider the polynomial ring S := Q[xF | F ∈ L̂A], and
define the ideal I generated by∑

F3i xF −
∑
G3j xG for all i 6= j and xFxG if F * G and G * F.

Then the Chow cohomology ring of the maximal wonderful compactification is
isomorphic to the graded quotient ring A∗(WA) ∼= S/I. In this presentation, the
variable xF represents the Chow cohomology class Poincaré dual to the class of the
divisor DF . The ring A∗(WA) is generated by the monomials of the form xF1

· · ·xFk
,

where F1 ( · · · ( Fk is a chain of flats in L̂A [AHK18a, Proposition 5.5].

The Chow homology groups of the maximal wonderful compactification can be
described in polyhedral terms. A k-dimensional Minkowski weight of a d-dimensional
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rational fan Σ is a rational weighted balanced fan whose underlying fan is equal to the
k-dimensional skeleton of Σ. The sum of two k-dimensional Minkowski weights of Σ
is the Minkowski weight obtained by adding the weights cone by cone. We denote the
group of k-dimensional Minkowski weights of Σ by MWk(Σ).

Let Ak(WA) denote the k-th Chow homology group of WA. Then for every k there
is an isomorphism

Ak(WA) ∼= MWk(BA), (3.1)

where BA denotes the Bergman fan of the matroid MA. This isomorphism is obtained
from Kronecker duality Ak(WA) ∼= Hom(Ak(WA),Z) and the perfect pairing defined
by

Ak(WA) × MWk(BA) −→ Z
xF1
· · ·xFk

∩ Z 7−→ wZ(σF ),
(3.2)

where F1 ( · · · ( Fk is a chain of flats in L̂A [AHK18a, Proposition 5.6].

Using this machinery we prove the following theorem.

Theorem 3.1. Let WA be the maximal wonderful compactification of the
complement of an arrangement of hyperplanes A in CPd. Then

CSM(1C(A)) =
∑d
k=0 csmk(MA) ∈ A∗(WA) ∼= MW∗(BA).

The proof of Theorem 3.1 relies on the next sequence of lemmas. For any chain of
flats F ⊆ L̂A set KF :=

⋂
F∈F DF and K◦F := KF\

⋃
F /∈F DF .

Lemma 3.2. LetWA be the maximal wonderful compactification of the complement
of an arrangement of hyperplanes A in CPd. For any chain of flats F ⊆ L̂A we have

CSM(1K◦F ) =
(
c(TWA(− log(D))

∏
F∈F

xF

)
∩ [WA] ∈ A∗(WA).

Proof. In the maximal wonderful compactification WA, the divisor D = WA\C(A)
is a simple normal crossing divisor, so the lemma is a restatement of [Alu05b, Lemma
5.4].

Before the next lemma we describe the operations of quotienting and restricting
hyperplane arrangements. Given an arrangement A = {H0, . . . ,Hn} of hyperplanes
in CPd, let Â = {Ĥ0, . . . , Ĥn} denote the central hyperplane arrangement in Cd+1

obtained by coning over the arrangement A. Given a flat F ∈ LA, let ĤF =
⋂
i∈F Ĥi.

Then the quotient arrangement Â/F is the central arrangement of hyperplanes in the
vector space Cd+1/ĤF given by the collection {Ĥi/ĤF }i∈F . The quotient arrangement
A/F is the projectivization of this arrangement in P(Cd+1/ĤF ) ∼= CPr(F )−1. The
restriction arrangementA|F is the arrangement of hyperplanes inHF

∼= CPd−r(F ) given
by {Hi ∩HF }i 6∈F .

Remark 1. The matroid associated to the quotient arrangement A/F is the
restriction MA|F , and the matroid associated to the restriction arrangement A|F is the
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contraction MA/F . This reverse correspondence is due to the fact that we are working
with arrangements of hyperplanes in projective space instead of point configurations.

Lemma 3.3. Let WA be the maximal wonderful compactifiation of the complement
of an arrangement of hyperplanes A in CPd. For any chain of flats F = {∅ = F0 ( F1 (
· · · ( Fk ( Fk+1 = {0, . . . , n}} of the matroid MA we have

K◦F
∼=

k∏
i=0

C(A/Fi+1|Fi).

Proof. From [DCP95, Section 4.3], the subvariety KF of WA is naturally isomor-
phic to the product

∏k
i=0WAi

, where WAi
is the maximal wonderful compactification

of the complement of the arrangement Ai := A/Fi+1|Fi in P(ĤFi
/ĤFi+1

).
Firstly, consider the case when F = {∅ ( F ( {0, . . . , n}}. Then DF = KF ∼=

WA/F ×WA|F . For a flat F ′ such that F ′ ) F we have that KF ∩DF ′
∼= WA/F × EF ′ ,

where EF ′ is the proper transform of the subspace HF ′ of HF under the blow up of HF

to the maximal wonderful compactification WA|F . Similarly, for a flat F ′ such that F ′ (
F we have that KF ∩DF ′

∼= EF ′ ×WA|F , where in this case EF ′ is the divisor of WA/F
corresponding to the proper transform of the subspace P(ĤF ′/ĤF ) of P(Cd+1/ĤF ). By
removing all of these intersections we obtain K◦F

∼= C(A/F )× C(A|F ).
The general claim now follows by induction on the length of the chain F , in the same

way as in the proof of the canonical isomorphism KF ∼=
∏k
i=0WAi

in [DCP95].

The following lemma is the key to relate CSM classes of complements of hyperplane
arrangements to CSM cycles of matroids.

Lemma 3.4. Let A be an essential hyperplane arrangement in CPd. Then

Eu(C(A)) = (−1)dβ(MA).

Proof. The Euler characteristic of C(A) is the evaluation of the reduced characteris-
tic polynomial χMA(λ) at λ = 1 [CDF+, Section 1.4.5], which is equal to (−1)dβ(MA)
by Definition 4.

Lemma 3.5. LetWA be the maximal wonderful compactification of the complement
of an arrangement of hyperplanes A in CPd. For a chain of flats F = {∅ = F0 ( F1 (
· · · ( Fk ( Fk+1 = {0, . . . , n}} of the matroid MA, we have

Eu(K◦F ) = wcsmk(MA)(σF ).

Proof. By the behaviour of the Euler characteristic under Cartesian products and
Lemma 3.3, we have Eu(K◦F ) =

∏k
i=0 Eu(C(A/Fi+1|Fi)). Recall that the matroid

associated to the arrangement A/Fi+1|Fi is MA|Fi+1/Fi. In view of Lemma 3.4,
we then have Eu(K◦F ) = (−1)d−k

∏k
i=0 β(MA|Fi+1/Fi), which agrees exactly with

wcsmk(MA)(σF ) from Definition 5.
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Remark 2. Bertrand and Bihan have a method for equipping skeleta of stable
intersections of tropical hypersurfaces with integer weights to produce balanced tropical
cycles [BB13]. In their construction, the weights are up to sign equal to the Euler
characteristic of a non-degenerate complete intersection in a complex torus [BB13,
Theorem 5.9]. The situation they consider overlaps with our own in the case of the
stable intersection of fan tropical hyperplanes. These intersections give rise to the
class of Bergman fans of cotransversal matroids. Lemma 3.5 shows that our weights
correspond to the same Euler characteristics, so that up to sign, the tropical CSM
cycles we have defined coincide with the tropical cycles defined by Bertrand and Bihan
for Bergman fans of cotransversal matroids.

Proof Proof of Theorem 3.1. Using the perfect pairing given in (3.2), it is enough
to show that for any chain of flats F = {∅ ( F1 ( · · · ( Fk ( {0, . . . , n}} we have

xF1
· · ·xFk

∩ CSMk(1C(A)) = xF1
· · ·xFk

∩ csmk(MA).

The right hand side of the above equation is wcsmk(MA)(σF ), which by Lemma 3.5 is
equal to Eu(K◦F ). For the left hand side, first notice that

CSM(1C(A)) = c(TWA(− logD)) ∩ [WA],

by setting F = ∅ in Lemma 3.2. Applying Lemmas 3.2 and 3.5 once again we obtain

xF1 · · ·xFk
∩ CSMk(1C(A)) = xF1 · · ·xFk

∩
(
cd−k(TWA(− logD)) ∩ [WA]

)
=
(
xF1
· · ·xFk

cd−k(TWA(− logD))
)
∩ [WA]

= CSM0(1K◦F )

= Eu(K◦F ),

completing the proof of the theorem.

Remark 3. There are other wonderful compactifications of the complement of a
hyperplane arrangement A that generalize the maximal one considered here. These
compactifications arise from subsets of LA called building sets [DCP95]. For any
building set G ⊆ LA there is a nested set compactification WG of C(A), and the
irreducible components of DG := WG \ C(A) are in bijection with the elements of G.
Given a building set G ⊆ LA there is a birational map f : WA →WG consisting of
a composition of blow downs of the exceptional divisors (and their pushforwards)
corresponding to the flats in LA\G. These blowdowns are adaptive in the sense of
[Alu10, Lemma 1.3] and therefore we have f∗CSM(1C(A)) = CSM(1C̃(A)) ∈ A∗(WG),

where C̃(A) denotes the complement of A as a subset of WG . In this sense, the
combinatorial CSM cycle csm(MA) defined here encodes the CSM class of the
complement of the arrangement in any wonderful compactification.

4. CSM cycles are matroid valuations

In this section we prove that CSM cycles behave valuatively with respect to matroid
polytope subdivisions. We start with some general background on matroid polytopes
and their subdivisions.
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To a collection Γ of subsets of {0, . . . , n} we associate the polytope

Q(Γ) := convex{eS : S ∈ Γ} ⊆ Rn+1, where eS :=
∑
i∈S ei.

Given a matroid M ∈ Matn+1, the matroid polytope Q(M) is defined as the
polytope Q(Bases(M)) ⊆ Rn+1, where Bases(M) denotes the collection of bases of
M . The dimension of Q(M) is equal to n− c+ 1, where c is the number of connected
components of M .

Every face of a matroid polytope is again a matroid polytope, as we explain below. If
Q ⊆ Rn+1 is a polytope and v ∈ Rn+1, we denote by facev(Q) the face of Q consisting
of all x ∈ Q maximizing the dot product with the vector v, that is,

facev(Q) := {x ∈ Q | x · v ≥ x′ · v for all x′ ∈ Q}.

For any vector v ∈ Rn+1 there exists a unique cone of the form σF :=
cone(eS1

, . . . , eS`
) + R·e{0,...,n} with F a flag of subsets {∅ = S0 ( S1 ( · · · ( S` (

S`+1 = {0, . . . , n}} such that v ∈ int(σF ). In this case, the greedy algorithm for
matroids implies that

facev(Q(M)) = Q(M |S1/S0 ⊕M |S2/S1 ⊕ · · · ⊕M |S`+1/S`). (4.1)

Note that facev(Q(M)) is the matroid polytope of a matroid with at least `+ 1
connected components, and so facev(Q(M)) has dimension at most n− `.

Let vert(Q) denote the set of vertices of a polytope Q. A subdivision of a d-
dimensional polytope Q is a collection of d-dimensional polytopes S = {P1, . . . , Pm}
such that for all i we have vert(Pi) ⊆ vert(Q), Q = P1 ∪ · · · ∪ Pm, and if an intersection
Pi ∩ Pj is nonempty then it is a proper face of both Pi and Pj . If all polytopes in a
subdivision S of a matroid polytope Q(M) are again matroid polytopes, then S is
called a matroid polytope subdivision. A face of S is a face of any of the Pi, and
the set of faces of S is denoted faces(S). A face of S is an interior face if it is not
contained in the boundary of Q. The set of interior faces of S is denoted by int(S).

Example 7. Let n = 3, d = 1, and consider the uniform matroid M = U2,4. The
matroid polytopeQ(M) ⊆ R4 is a regular octahedron, contained in the hyperplane x0 +
x1 + x2 + x3 = 2. This matroid polytope admits three different non-trivial matroid
subdivisions, each of which decomposes it into two square pyramids; see Figure 3.

Definition 6. Let G be an arbitrary abelian group. A function f : Matn+1 → G
is a valuation under matroid polytope subdivisions, or simply a valuation†, if
for any matroid subdivision S of a matroid polytope Q = Q(M) we have

f(M) =
∑
F∈int(S) (−1)dim(Q)−dim(F )f(MF ),

where MF denotes the matroid whose matroid polytope is F .

There is a slightly different definition of matroid valuations which captures more
clearly the fact that f can be computed by inclusion-exclusion on matroid polytopes
[AFR10, Definition 3.1]. This definition and the one given above are both equivalent
by [AFR10, Theorem 3.5].

†This use of the term valuation in this way is standard in convex geometry. It should not be confused
with the notion of a matroid valuation found in the theory of valuated matroids.
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Figure 3. A matroid subdivision of the polytope Q(U2,4).

Example 8. The beta invariant and the characteristic polynomial from Definition
4 are matroid valuations; see [Spe08], [AFR10]. This implies that if M ∈ Matn+1, for
any subdivision S of Q(M) we have

β(M) =
∑

F∈int(S)
dim(F )=n

β(MF ),

since the beta invariant of any disconnected matroid is equal to zero.

Example 9. For anyX ⊆ Rn+1, denote by iX : Matn+1 → Z the function assigning
1 to a matroid M if Q(M) ∩X 6= ∅, and 0 otherwise. If X is convex, and is either open
or closed, it was shown in [AFR10, Proposition 4.5] that iX is a matroid valuation.

The following is the main result of this section. Recall that the set of fan tropical
cycles Zk(Rn+1/1) forms a group under the operation of taking the union of supports
and adding the weight functions.

Theorem 4.1. For any k, the function csmk : Matn+1 → Zk(Rn+1/1) sending M
to csmk(M) is a valuation under matroid polytope subdivisions.

In order to prove Theorem 4.1 we need the following lemmas.

Lemma 4.2. Let S be a matroid polytope subdivision of a matroid polytope
Q ⊆ Rn+1. For any fixed nonzero vector v ∈ Rn+1 and face F0 of S, the function
jF0,v : faces(S)→ Z defined as

jF0,v(F ) :=

{
1 if facev(F ) ⊇ F0,

0 otherwise
(4.2)
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satisfies ∑
F∈int(S)

(−1)dim(Q)−dim(F ) jF0,v(F ) =

{
1 if F0 ⊆ facev(Q),

0 otherwise.
(4.3)

Proof. If the value of x · v is not constant when restricted to all x ∈ F0, then
facev(F ) + F0 for any F ∈ faces(S) and also for F = Q. In this case jF0,v ≡ 0 and
the statement is trivially true. Suppose v · x is constant for all x ∈ F0, and let x0

be a point in the relative interior of F0. Consider the open half-space H : = {x ∈
Rn+1 | v · x > v · x0}. Let C be a closed full-dimensional convex subset of H such that
C ∩ ∂H = x0 and the set vert(Q) ∩H is contained in the relative interior of C. Let iC
and iintC denote the matroid valuations discussed in Example 9. We will show that
jF0,v = iC − iintC . The statement of the lemma will then follow directly from the fact
that iC and iintC are both matroid valuations.

Consider any face F of the subdivision S. Assume first that F ⊆ Rn+1\H, so
iintC(F ) = 0. In this case, iC(F ) = 1 if and only if F ∩ C = {x0}, which is equivalent
to F ⊇ F0 and thus to facev(F ) ⊇ F0. It follows that iC(F )− iintC(F ) = jF0,v(F ),
as claimed. If on the other hand F ∩H 6= ∅ then, by the definition of C, we
have iC(F ) = iintC(F ) = 1. Moreover, facev(F ) is completely contained in a parallel
translate of the hyperplane ∂H lying inside H, and thus jF0,v(F ) = 0. Therefore
jF0,v(F ) = iC(F )− iintC(F ) for all F ∈ faces(S), as desired.

If S1 is a subdivision of the polytope Q1 ⊆ Rk1 and S2 is a subdivision of the polytope
Q2 ⊆ Rk2 , the subdivision S1 × S2 of Q1 ×Q2 ⊆ Rk1+k2 consists of all polytopes of the
form P1 × P2 with P1 ∈ S1 and P2 ∈ S2.

Lemma 4.3. Let Q1 ⊆ Rk1 and Q2 ⊆ Rk2 be polytopes, and suppose S is a
subdivision of the polytope Q := Q1 ×Q2 ⊆ Rk1+k2 . If each edge in faces(S) is also
an edge of Q1 ×Q2 then S = S1 × S2 with S1 a subdivision of Q1 and S2 a subdivision
of Q2.

Proof. The faces of Q have the form F1 × F2 with Fi a face of Qi. In particular, all
edges of Q have the form e1 × {w2} or {w1} × e2 with ei an edge of Qi and wi a vertex
of Qi. We will refer to edges of the form e1 × {w2} as “vertical” edges, and {w1} × e2 as
“horizontal” edges. Fix a polytope P ∈ S and a vertex (v1,v2) ∈ vert(P ) ⊆ vert(Q1 ×
Q2). Let V1 := {w ∈ vert(Q1) : (w,v2) ∈ P} and V2 := {w ∈ vert(Q2) : (v1,w) ∈ P}.
We will show that vert(P ) = V1 × V2, which implies the desired result.

To prove the inclusion vert(P ) ⊆ V1 × V2, consider any vertex (u1,u2) ∈ vert(P ). By
assumption, any edge of P is also an edge of Q, so it is either vertical or horizontal. We
claim that we can find a path from (v1,v2) to (u1,u2) in the edge graph of P which is
a sequence of vertical edges followed by a sequence of horizontal edges. The edge graph
of P is connected, so there exists a path γ from (v1,v2) to (u1,u2). Suppose that in γ
there is horizontal edge immediately followed by a vertical edge. Label the three vertices
in this part of the path by (ai,bi), (ai,bi+1) and (ai+1,bi+1). These three vertices are
in vert(P ), and since P cannot have the diagonal edge from (ai,bi) to (ai+1,bi+1),
the polytope P must also contain the vertex (ai+1,bi). We can then alter γ to pass
by this vertex instead of (ai,bi+1), which replaces the horizontal edge followed by a
vertical edge with a vertical edge followed by a horizontal one. Repeatedly applying
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this procedure we can produce the desired path. Now, once γ has the desired form, the
vertex of P which connects the last vertical edge of γ to its first horizontal edge must be
(v1,u2). Therefore, (v1,u2) ∈ vert(P ) and so u2 ∈ V2. An analogous argument finds a
path from (u1,u2) to (v1,v2) consisting of horizontal edges followed by vertical edges.
From this we can also conclude that u1 ∈ V1, as desired.

For the reverse inclusion vert(P ) ⊇ V1 × V2, suppose (u1,u2) ∈ V1 × V2. By the
definition of V1 and V2 we have (u1,v2), (v1,u2) ∈ vert(P ). We can thus find a
path γ1 of edges in P starting at (v1,v2) and ending at (u1,v2). Moreover, by the
argument in the previous paragraph, we can assume that γ1 consists of only vertical
edges. Similarly, there is a path γ2 in P from (v1,v2) to (v1,u2) consisting of only
horizontal edges. Suppose that γ1 = (v1,v2)→ (a1,v2)→ · · · → (as,v2)→ (u1,v2)
and γ2 = (v1,v2)→ (v1,b1)→ · · · → (v1,bt)→ (v1,u2). Again, as P cannot contain
any edges through the interior of a quadrangle of Q, applying an inductive argument
to the successive quadrangles formed by the two paths we arrive at the conclusion that
every (ai,bj) is in vertP , and also (w1,w2) ∈ vertP . This completes the proof of the
lemma.

Corollary 4.4. If S is a matroid polytope subdivision of the matroid polytope
Q(M1 ⊕ · · · ⊕Mk) then S = S1 × · · · × Sk with Si a subdivision of Q(Mi) for all i.

Proof. Matroid polytopes can be characterized in terms of their edges: A polytope
Q with vertices in {0, 1}n+1 is a matroid polytope if and only if all its edges are
translations of vectors of the form ei − ej for distinct i, j ∈ {0, 1, . . . , n} [GGMS87].
Moreover, the edges of a matroid polytope Q(M) are in correspondence with pairs of
bases A,B of M satisfying |A \B| = |B \A| = 1. This implies that if S is a matroid
polytope subdivision ofQ then all the edges of S were already edges ofQ. The statement
of the corollary now follows from Lemma 4.3 and the fact that Q(M1 ⊕ · · · ⊕Mk) ∼=
Q(M1)× · · · ×Q(Mk).

Proof Proof of Theorem 4.1. We want to show that for any matroid M ∈ Matn+1

and any matroid subdivision S of Q = Q(M),

csmk(M) =
∑
F∈int(S)(−1)dim(Q)−dim(F ) csmk(MF ).

Denote by G the free abelian group generated by the symbols [F ] with F a face of
S. Consider the homomorphism βk : G → Z where βk([F ]) is equal to the product
of the beta invariants of all the connected components of MF if MF has exactly
k + 1 connected components, and 0 otherwise. In particular, if dim(F ) 6= n− k then
βk([F ]) = 0.

Let F be a flag of subsets F := {∅ = S0 ( S1 ( · · · ( Sk ( Sk+1 = {0, . . . , n}}, and
denote σF := cone(eS1

, . . . , eSk
) + R·e{0,...,n}. Fix a vector v in the relative interior of

σF . By Equation 4.1, for any matroid N ∈ Matn+1 we have

facev(Q(N)) = Q(N |S1/S0 ⊕N |S2/S1 ⊕ · · · ⊕N |Sk+1/Sk).

If r(N) = d+ 1, it follows that the weight of the cone σF in the cycle csmk(N) is

wcsmk(N)(σF ) = (−1)d−kβk([facev(Q(N))]),
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so it suffices to show that

βk([facev(Q)]) = βk

( ∑
F∈int(S)

(−1)dim(Q)−dim(F )[facev(F )]

)
. (4.4)

Starting from the right side of the above equation, we can write

βk

( ∑
F∈int(S)

(−1)dim(Q)−dim(F )[facev(F )]

)
= βk

( ∑
G∈faces(S)

dim(G)=n−k

aG [G]

)
,

where

aG :=
∑

F∈int(S)
facev(F )=G

(−1)dim(Q)−dim(F ).

For any face F ∈ int(S) we have dim(facev(F )) ≤ n− k, as v is contained in the cone
σF defined by a flag of k non-trivial flats. Therefore, for G of dimension n− k, the
condition facev(F ) = G is equivalent to facev(F ) ⊇ G. The coefficient aG is thus equal
to

aG =
∑

F∈int(S)

(−1)dim(Q)−dim(F )jG,v(F ),

where jG,v denotes the function in Lemma 4.2. By Lemma 4.2, the coefficient aG is
equal to 1 if G ⊆ facev(Q) and 0 otherwise. We have now shown that

βk

( ∑
F∈int(S)

(−1)dim(Q)−dim(F ) [facev(F )]

)
= βk

(∑
G∈I

[G]

)
,

where I is the subset of faces(S) consisting of the faces of dimension n− k contained
in facev(Q).

If dim(facev(Q)) < n− k then βk(facev(Q)) = 0 and also I = ∅, so Equation (4.4)
is trivially true. Now assume that the dimension of facev(Q) is equal to n− k. In
this case, the faces in I are the top-dimensional polytopes in the subdivision S ′ of
facev(Q) induced by S. Since facev(Q) = Q(M |S1/S0 ⊕M |S2/S1 ⊕ · · · ⊕M |Sk+1/Sk),
we can apply Corollary 4.4 to conclude that this subdivision must have the form S ′ =
S ′1 × · · · × S ′k+1, where S ′i = {P i1, . . . , P imi

} is a subdivision of Q(M |Si/Si−1) for 1 ≤
i ≤ k + 1. Therefore, we have

βk

(∑
G∈I

[G]

)
=
∑
J

k+1∏
i=1

β(MP i
Jj

) =

k+1∏
i=1

mi∑
j=1

β(MP i
j
).

By Example 8 we have
∑mi

j=1 β(MP i
j
) = β(M |Si/Si−1) for all i, and so

βk

(∑
G∈I

[G]

)
=

k+1∏
i=1

β(M |Si/Si−1) = βk([facev(Q)]),

which proves Equation (4.4) and the statement of the theorem.

5. Polynomial invariants from CSM cycles

In this section we show how CSM cycles of matroids behave under deletions and
contractions, and we use this to express their degrees in terms of the coefficients of
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the characteristic polynomial. We also provide a conjectural presentation of Speyer’s
g-polynomial of a matroid in terms of CSM cycles.

5.1. Deletion and contraction of CSM cycles

Recall that {e0, e1, . . . , en} denotes the standard basis of the lattice Zn+1 ⊆ Rn+1.
Fix i ∈ {0, . . . , n}, and let πi : Rn+1 → Rn denote the linear projection that forgets the
i-th coordinate. With this projection in mind, we label the elements of the standard
basis of Zn ⊆ Rn by ek for k 6= i. We will also denote by πi the induced map πi :
Rn+1/1→ Rn/1.

Let M be a loopless matroid in Matn+1. The flats of the deletion M\i and the
contraction M/i of i from M are

L(M \ i) = {F\i | F ∈ L(M)} and L(M/i) = {F\i | F ∈ L(M) and i ∈ F};

see, for example, [Whi86, Section 7]. The map πi sends the cone σF of the Bergman
fan B(M) corresponding to a flag of flats F := {∅ ( F1 ( · · · ( Fk ( {0, . . . , n}} in M
to the cone σF ′ where F ′ is the flag F ′ := {∅ ⊆ F1 \ i ⊆ · · · ⊆ Fk \ i ⊆ {0, . . . , n} \ i}.
It follows that the image of B(M) under πi is the Bergman fan B(M\i). Let δ denote
the restriction of πi to B(M). The surjective map δ : B(M)→ B(M\i) is called the
deletion map with respect to the element i.

The next proposition states that when i is not a coloop of M this deletion map is an
open tropical modification along a tropical rational function f : Rn/1→ R. We
refer the reader to [Sha13] and [BIMS15] for an introduction to tropical modifications
and tropical rational functions.

Proposition 5.1 ([Sha13, Proposition 2.25]). Let M ∈ Matn+1 be a loopless
matroid and assume i ∈ {0, . . . , n} is not a coloop of M . Then the deletion map
δ : B(M)→ B(M\i) is an open tropical modification along a tropical rational function
f : Rn/1→ R such that divB(M\i)(f) = B(M/i).

Proposition 5.1 is expressing the following fact. If i is not a coloop of M then M
and M\i are matroids of the same rank, and thus their Bergman fans are of the same
dimension. The map δ is one to one except above a codimension-1 subset of B(M\i),
which is exactly the Bergman fan B(M/i). The pre-image of δ over any point in B(M/i)
is a half-line in direction ei. The Bergman fan B(M) can be obtained from the graph of
f restricted to B(M\i) by adding cones in the direction ei over the image of B(M/i).

Example 10. Consider the uniform matroid M = U3,4 on the set {0, 1, 2, 3}. Then
M\3 is the uniform matroid U3,3 and M/3 is the uniform matroid U2,3. As we have
seen in Example 5, the Bergman fan B(M) is the union of the cones in R4/1 of the
form cone{ei, ej} for all distinct i, j ∈ {0, 1, 2, 3}. The Bergman fan B(M \ 3) is all
of R3/1, and B(M/3) is the union of the three rays in R3/1 in the directions ei for
i ∈ {0, 1, 2}. Let π3 : R4 → R3 be the linear projection with kernel generated by e3. This
map induces the deletion map δ : B(U3,4)→ B(U3,3), depicted in Figure 4. The tropical
rational function f : R3/1→ R from Proposition 5.1 is in this case f(x0,x1,x2) =
min{x0,x1,x2}.
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Figure 4. The deletion map δ : B(U3,4)→ B(U3,3).

A deletion map between Bergman fans induces pushforward and pullback maps on
tropical cycles.

Definition 7 ([Sha13, Definition 2.16]). Let δ : B(M)→ B(M\i) be the deletion
map with respect to a non-coloop element i of the loopless matroid M . For any k, the
pushforward and pullback maps on tropical cycles are maps

δ∗ : Zk(B(M))→ Zk(B(M\i)) and δ∗ : Zk(B(M\i))→ Zk(B(M)).

The pushforward of a tropical cycle Z ∈ Zk(B(M)) is supported on the polyhedral
complex δ(Z), and has weights described in [Sha13, Definition 2.16(1)]. The pullback
of a cycle Z ∈ Zk(B(M\i)) is the modification of Z along the tropical polynomial
function f : Rn/1→ R associated to δ by Proposition 5.1.

Both the pushforward and pullback maps induced by a deletion map δ : B(M)→
B(M\i) are group homomorphisms. Moreover, the composition δ∗δ

∗ is the identity in
Zk(B(M\i)) [Sha13, Proposition 2.23].

We now use the pushforward and pullback homomorphisms to relate the CSM cycles
of a matroid with the CSM cycles of its deletion and contraction with respect to a
non-coloop element i.

Proposition 5.2. Let δ : B(M)→ B(M\i) be the deletion map with respect to a
non-coloop element i of the loopless matroid M . Then

csmk(M) = δ∗ csmk(M\i)− δ∗ csmk(M/i) (5.1)
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and

δ∗ csmk(M) = csmk(M\i)− csmk(M/i). (5.2)

For the proof of Proposition 5.2 we need the following matroidal result, which we
record as a separate lemma.

Lemma 5.3. Let S ⊆ T be subsets of the ground set of a matroid M , and suppose
i ∈ T \ S.
a) If T \ i is a flat of M then i is a coloop of M |T/S.
b) If S ∪ i is a flat of M but S is not a flat of M then i is a loop of M |T/S.
c) If S, T are flats of M but T \ i is not a flat of M then i is neither a loop nor a

coloop of M |T/S.

Proof. Recall that the circuits of the minor M |T/S are the minimal nonempty
subsets of the form C \ S, where C is a circuit of M contained in T [Whi86, Section
7]. This description implies that i is a coloop of M |T/S if and only if in M the element
i is not in the closure of T \ i. Similarly, i is a loop of M |T/S if and only if in M the
element i is in the closure of S. The three assertions in the lemma follow directly from
these facts.

Proof Proof of Proposition 5.2. The second equation follows directly from the first
one by applying δ∗. To prove (5.1), suppose σF is a k-dimensional cone of B(M)
corresponding to the flag of flats F := {∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = {0, . . . , n}}
in M . The cone δ(σF ) is the cone σF ′ where F ′ := {F ′0 ⊆ F ′1 ⊆ · · · ⊆ F ′k ⊆ F ′k+1} is the
chain of flats of M \ i defined by F ′l := Fl \ i for all l.

Assume first that σF is contained in the graph of the function f : Rn/1→ R restricted
to B(M\i), where f is the tropical rational function of the modification δ. In this case
σF ′ has the same dimension as σF , and so the chain F ′ has also length k + 1. By
the pullback formula for tropical cycles, the weight of the cone σF in δ∗(csmk(M\i)−
csmk(M/i)) is equal to the weight of the cone σF ′ in the cycle csmk(M\i)− csmk(M/i).
To show that σF has the same weight in both cycles, we thus need to show that

k∏
l=0

β(M |Fl+1/Fl) =

k∏
l=0

β((M\i)|F ′l+1/F
′
l ) +

k∏
l=0

β((M/i)|F ′l+1/F
′
l ). (5.3)

Letm be such that i /∈ Fm and i ∈ Fm+1. For any l < m, by Lemma 5.3 a) the element
i is a coloop in M |(Fl+1 ∪ i)/Fl, and thus its deletion is the same as its contraction,
i.e., M |Fl+1/Fl = (M\i)|F ′l+1/F

′
l = (M/i)|F ′l+1/F

′
l . Moreover, since σF is in the graph

of the function f , for any l ≥ m we have that Fl+1 \ i is not a flat of M , otherwise
the cone of B(M) corresponding to the chain of flats {F ′0 ⊆ F ′1 ⊆ · · · ⊆ F ′l+1 ⊆ Fl+2 ⊆
· · · ⊆ Fk+1} would be below the graph of f , contradicting Proposition 5.1. Therefore,
by Lemma 5.3 b), for any l > m we have that i is a loop in M |Fl+1/(Fl \ i), and
thus again M |Fl+1/Fl = (M/i)|F ′l+1/F

′
l = (M \ i)|F ′l+1/F

′
l . When l = m, Lemma 5.3

c) shows that i is neither a loop nor a coloop of M |Fm+1/Fm, and so we have

β(M |Fm+1/Fm) = β((M\i)|F ′m+1/F
′
l ) + β((M/i)|F ′m+1/F

′
m).

Multiplying all these equations proves Equation (5.3). This shows that the cycles
csmk(M) and δ∗(csmk(M\i)− csmk(M/i)) agree in the graph Γf of the function f .
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By the pullback formula for tropical cycles, any cone of the cycle δ∗(csmk(M\i)−
csmk(M/i)) is either contained in Γf or it contains the direction ei. Moreover,
the weights of the cones contained in Γf , together with the balancing condition,
determine the pullback cycle completely. Similarly, each k-dimensional cone of the
coarse subdivision of |B(M)| is either in Γf or it contains the ei direction. Since the
support of the cycle csmk(M) is the k-skeleton of this coarse subdivision (Proposition
2.2), the weights in csmk(M) of the cones in the ei direction are also determined by
the weights of the cones in Γf together with the balancing condition. This shows that
the cycles csmk(M) and δ∗(csmk(M\i)− csmk(M/i)) must be the same.

5.2. Degrees of CSM cycles and the characteristic polynomial

We now relate the degrees of the CSM cycles of a matroid to the coefficients of its
characteristic polynomial. If Z and Z ′ are two tropical cycles in Rn+1/1, we denote by
Z · Z ′ their stable intersection, and by Zk the stable intersection of k copies of Z; see
[MS15, Section 3.6].

Definition 8. The degree of a 0-dimensional tropical cycle Z in Rn+1/1 is
deg(Z) :=

∑
z∈Z wZ(z). The degree of a k-dimensional tropical cycle Z in Rn+1/1

is

deg(Z) := deg(Z · B(Un,n+1)k).

Example 11. Consider the uniform matroid Ud+1,n+1. By Example 4 we have

csmk(Ud+1,n+1) = (−1)d−k
(
n− k − 1

d− k

)
B(Uk+1,n+1)

for all 0 ≤ k ≤ d. The degree of B(Uk+1,n+1) is 1, and so deg(csmk(Ud+1,n+1)) =
(−1)d−k

(
n−k−1
d−k

)
.

The following result generalizes [Huh13, Theorem 3.5] and [Alu13, Theorem 1.2] to
all matroids, not necessarily representable in characteristic 0. Recall that χM denotes
the reduced characteristic polynomial of the matroid M .

Theorem 5.4. If M ∈ Matn+1 is a rank d+ 1 matroid then

d∑
k=0

deg(csmk(M))tk = χM (1 + t).

Example 12. The 0-dimensional CSM cycle of a rank d+ 1 matroid M has degree
equal to (−1)dβ(M), which is equal to the constant coefficient χM (1) of the polynomial
χM (1 + t). The d-dimensional CSM cycle of M is equal to the tropical cycle B(M),
which has degree 1 if M is loopless and 0 otherwise. This is the leading coefficient of
χM (1 + t).

Remark 4. Huh and Katz express the coefficients of the reduced characteristic
polynomial of a matroid in terms of degrees of products of tropical cycles [HK12]. In
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[AHK18b], Adiprasito, Huh, and Katz show that for all matroids, these classes behave
like numerically effective classes, which leads them to establish that the coefficients
of χM (t) form a log-concave sequence. The expression for the reduced characteristic
polynomial is

χM (t) =

d∑
k=0

(−1)d−kAkBd−ktk,

where, as Minkowski weights on the Bergman fan of M , the classes A and B are
A = B(Un,n+1) and B = σ(B(Un,n+1)). Here σ : Rn → Rn is the map defined by
σ(xi) = −xi. Substituting t+ 1 into the above expression gives another expression for
the coefficients of the shifted reduced characteristic polynomial. Thus by Theorem 5.4,
this gives another formula for the degrees of the CSM cycles of a matroid. Namely, for
all k we have

deg(csmd−k(M)) =

k∑
i=0

(−1)i
(
d− i
d− k

)
deg(Ak−iBi). (5.4)

Although these Minkowski weights have the same degree, the next example shows that
they do not represent the same class.

Example 13. In this example, we compare the self-intersection of the two cycles
in Equation 5.4 when k = 1, in the case where M is a matroid of rank 3 obtained as
a parallel connection of U2,m+1 and U2,n+1. The two cycles we wish to compare are
csm1(M) and 2A−B. Computing the degrees of their self-intersections we obtain

deg[(2A−B)2] = deg(4A2 − 4A ·B +B2) = 4− 4b1 + b2,

where χM (t) = t2 − b1t+ b2. Since M is a parallel connection we have χM (t) =
χU2,m+1

(t) · χU2,n+1
(t) = (t−m)(t− n), and so deg[(2A−B)2] = 4− 4(m+ n) +mn.

A formula for the self-intersection of csm1(M) when d = 2 is given in [Sha, Proposition
3.18 (2)]. This formula can be rewritten as deg[csm1(M)2] = 8− 4(m+ n) + 2mn.
Therefore, if mn 6= 4, the two cycles have different self-intersections, and thus in
particular csm1(M) 6= 2A−B.

We require the next proposition to prove Theorem 5.4.

Proposition 5.5. Let δ : B(M)→ B(M\i) be the deletion map with respect to a
non-coloop element i of M . For any k-dimensional tropical cycle Z ∈ Zk(B(M\i)), we
have

deg(Z) = deg(δ∗Z).

Proof. To aid with notation we assume that i = n. The tropical cycle B(Un−1,n) ∈
Zn−2(Rn/1) is the tropical hypersurface of the tropical polynomial h(x0, . . . ,xn−1) =
min{x0,x1, . . . ,xn−1} on Rn/1. Let Cn denote the matroid consisting of a single coloop
n. Then B(Un−1,n ⊕ Cn) ∈ Zn−1(Rn+1/1) is also a tropical hypersurface defined by
the polynomial h̃(x0, . . . ,xn) = h(x0, . . . ,xn−1). Let π : Rn+1/1→ Rn/1 be the map
induced by the linear projection Rn+1 → Rn which forgets the n-th coordinate. Then
π∗ div(h) = div(h̃), which implies that π∗B(Un−1,n) = B(Un−1,n ⊕ Cn).
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We have that π∗δ
∗Z = δ∗δ

∗Z = Z. Applying the projection formula in [AR10,
Proposition 4.8] yields

B(Un−1,n)k · Z = B(Un−1,n)k−1 · (div(h) · π∗δ∗Z)

= B(Un−1,n)k−1 · (π∗(π∗ div(h) · δ∗Z))

= B(Un−1,n)k−1 · π∗(B(Un−1,n ⊕ Cn) · δ∗Z).

Repeatedly applying this argument k times we obtain B(Un−1,n)k · Z = π∗(B(Un−1,n ⊕
Cn)k · δ∗Z). The degree of a zero cycle is preserved under the pushforward map, and
so we have deg(Z) = deg(B(Un−1,n ⊕ Cn)k · δ∗Z).

We will now show that deg(δ∗Z) = deg(B(Un−1,n ⊕ Cn)k · δ∗Z). Let X :=
B(Un,n+1)− B(Un−1,n ⊕ Cn). Since n is not a coloop of M , the support of the tropical
cycle X is contained in the closed connected component of Rn+1/1 defined by

Γf (B(M\n))− := {x ∈ Rn+1/1 | x · en ≤ f(π(x))}.

To compute the stable tropical intersection δ∗Z ·X, denote by Xε the translate of X
by εen for ε < 0. Then Xε ∩ δ∗Z = ∅, and so δ∗Z ·X = 0. Moreover, we have

δ∗Z ·
[
B(Un,n+1)k − B(Un−1,n ⊕ Cn)k

]
= δ∗Z ·X ·

k−1∑
j=0

B(Un,n+1)k−1−j · B(Un−1,n ⊕ Cn)j

 ,
which is equal to zero by the associativity of the intersection product. This shows the
equality of degrees deg(Z) = deg(δ∗Z) and proves the lemma.

Proof Proof of Theorem 5.4. Both the reduced characteristic polynomial and the
CSM cycles satisfy a recursion via deletions and contractions. More precisely, if M is
a loopless matroid and i is not a coloop of M , we have

χM (λ) = χM\i(λ)− χM/i(λ) and csmk(M) = δ∗(csmk(M\i)− csmk(M/i)),

where the equality on the right-hand side follows from Proposition 5.2. Since degree is
preserved under pullbacks by Proposition 5.5, in this case we have

deg(csmk(M)) = deg(csmk(M\i))− deg(csmk(M/i)). (5.5)

If M has any loops then

χM (λ) = 0 and csmk(M) = ∅.

It thus suffices to check the statement for matroids M with no loops and where all the
elements are coloops, i.e., M = Ud+1,d+1. In this case, the tropical cycle B(M) is the
same as Rn+1/1 equipped with weight 1 everywhere. The only non-trivial CSM cycle
is csmd(B(M)) = B(M), which is of degree 1. Therefore

n∑
k=0

(−1)kdeg(csmk(M))tk = td,

whereas by Example 2,

χM (t+ 1) =

d∑
k=0

(−1)d−k
(
d

k

)
(t+ 1)k = td,

confirming the desired result.
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5.3. Conjecture: The g-polynomial as intersection numbers

In this section we give a conjectured presentation of Speyer’s g-polynomial of a
matroid using CSM cycles. For a general rank d matroid M on n elements, its g-
polynomial gM (t) is a polynomial in Z[t] defined by way of the K-theory of the
Grassmannian Gr(d, n) [FS12]. The polynomial (−1)c(M)gM (t), where c(M) is the
number of connected components of M , is a valuative matroid invariant in the sense
of Section 4 [FS12, Section 4]. In fact, the g-polynomial can be defined as the unique
matroid invariant in Z[t] such that (−1)c(M)gM (t) is a matroid valuation and gM (t) = tc

whenever M is a direct sum of c series-parallel matroids.

Conjecture 1 describes the coefficients of the g-polynomial as intersection numbers
in the Bergman fan of M between CSM cycles and certain tropical cycles defined
recursively from them. This formula would offer a Chow theoretic description of this
matroid invariant from K-theory.

There is an intersection product for tropical cycles contained in Bergman fans
of matroids [Sha13], [FR13]. If M ∈ Matn+1 is a loopless rank d+ 1 matroid
and Zk(B(M)) denotes the group of k-dimensional tropical cycles whose support is
contained in B(M), this intersection product gives rise to a bilinear pairing

Zd−k(B(M))×Zd−l(B(M))→ Zd−k−l(B(M))

for any k, l such that k + l ≤ d. In particular, for any Z ∈ Zk(B(M)), the intersection
product B(M) · Z in the matroidal cycle B(M) is simply Z.

Using this product we define a collection of new tropical cycles nk(M) ∈ Zk(B(M))
for k = 0, . . . , d. Firstly, we set

nd(M) := csmd(M) = B(M).

Let A be the tropical cycle in Zd−1(B(M)) obtained by taking the tropical stable
intersection in Rn+1/1 of B(M) with the standard tropical hyperplane B(Un,n+1). For
k < d we define nk(M) recursively by the formula

nd−k(M) := (−1)kAk −

[
k−1∑
i=0

csmd−k+i(M) · nd−i(M)

]
, (5.6)

where the intersection products above are now in B(M).

Conjecture 1. The g-polynomial of a loopless rank d+ 1 matroid M ∈ Matn+1

is equal to

gM (t) =

d∑
k=0

(−1)d−k deg(csmk(M) · nd−k(M)) tk+1, (5.7)

where the intersection products occur in the matroidal cycle B(M) of M .

Example 14. For a loopless matroid M of rank d+ 1, Formula (5.6) gives

nd−1(M) = −A− csmd−1(M),

nd−2(M) = A2 +A · csmd−1(M) + csm2
d−1(M)− csmd−2(M).
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The linear, quadratic, and cubic coefficients of the polynomial on the right hand side
of Equation (5.7) are up to sign

csm0(M) · nd(M) = csm0(M) = (−1)dβ(M),

− csm1(M) · nd−1(M) = deg(csm1(M)) + csm1(M) · csmd−1(M),

csm2(M) · nd−2(M) = deg(csm2(M)) + deg(csm2(M) · csmd−1(M))

+ csm2(M) · csm2
d−1(M)− csm2(M) · csmd−2(M).

Consider the case d = 2, so M ∈ Matn+1 is a matroid of rank 3 and B(M) is a
2-dimensional tropical cycle. The intersection products above are

csm0(M) · n2(M) = β(M),

− csm1(M) · n1(M) = deg(csm1(M)) + csm2
1(M),

csm2(M) · n0(M) = 1 + deg(csm1(M)) + csm2
1(M)− β(M).

For simplicity, let us assume that M has no double points. By repeatedly applying
Equation (5.5), we find that deg(csm1(M)) = −(n− 2). Moreover, the formula for
intersection products of tropical cycles in 2-dimensional Bergman fans in [BS15,
Definition 3.6] gives us

csm2
1(M) = (n− 2)2 −

∑
F∈L(M)
r(F )=2

(|F | − 2)2.

It can be verified that these formulae produce the coefficients of the g-polynomials in
the examples of rank 3 matroids presented in [Spe09, Section 10].

Example 15. Suppose M is the uniform matroid M = Ud+1,n+1. In this case
we have A = B(Ud,n+1) ∈ Zd−1(B(M)) and Ak = B(Ud−k+1,n+1) ∈ Zd−k(B(M)). By
Example 4, we have csmk(M) = (−1)d−k

(
n−k−1
d−k

)
Ad−k.

We claim that nd−k(M) =
(
n−d−1

k

)
Ak for all 0 ≤ k ≤ d. This formula is true when

k = 0, so assume that it holds for all l < k and proceed by induction. By Formula (5.6)
we have

nd−k(M) =

[
(−1)k −

k−1∑
i=0

(−1)k−i
(
n− d+ k − i− 1

k − i

)(
n− d− 1

i

)]
Ak.

Then the fact that nd−k(M) =
(
n−d−1

k

)
Ak follows from the binomial identity

(−1)k =

k∑
i=0

(−1)k−i
(
m+ k − i
k − i

)(
m

i

)
when m = n− d− 1. From these expressions we conclude that

deg
[
(−1)d−k csmk(M) · nd−k(M)

]
=

(
n− k − 1

d− k

)(
n− d− 1

k

)
.

This coincides with the formula for the coefficients of the g-polynomial for uniform
matroids [Spe09, Proposition 10.1].
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