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Physical manifestations of linguistic units include sources of variability due to factors of speech
production which are by definition excluded from counts of linguistic symbols. In this work we
examine whether linguistic laws hold with respect to the physical manifestations of linguistic units
in spoken English. The data we analyze comes from a phonetically transcribed database of acous-
tic recordings of spontaneous speech known as the Buckeye Speech corpus. First, we verify with
unprecedented accuracy that acoustically transcribed durations of linguistic units at several scales
comply with a lognormal distribution, and we quantitatively justify this ‘lognormality law’ using
a stochastic generative model. Second, we explore the four classical linguistic laws (Zipf’s law,
Herdan’s law, Brevity law, and Menzerath-Altmann’s law) in oral communication, both in physical
units and in symbolic units measured in the speech transcriptions, and find that the validity of these
laws is typically stronger when using physical units than in their symbolic counterpart. Additional
results include (i) coining a Herdan’s law in physical units, (ii) a precise mathematical formulation
of Brevity law, which we show to be connected to optimal compression principles in information
theory and allows to formulate and validate yet another law which we call the size-rank law, or (iii)
a mathematical derivation of Menzerath-Altmann’s law which also highlights an additional regime
where the law is inverted. Altogether, these results support the hypothesis that statistical laws in
language have a physical origin.
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I. INTRODUCTION

The so-called linguistic laws –statistical regularities
emerging across different linguistic scales (i.e. phonemes,
syllables, words or sentences) that can be formulated
mathematically [1]– have been postulated and studied
quantitatively over the last century [1–5]. Notable
patterns which are nowadays widely recognized include
Zipf’s law which addresses the rank-frequency plot
of linguistic units, Herdan’s law (also called Heaps’
law) on the sublinear vocabulary growth in a text,
the brevity law which highlights the tendency of more
abundant linguistic units to be shorter, or the so-called
Menzerath-Altmann law which points to a negative
correlation between the size of a construct and the size
of its constituents.

Despite the fact that spoken communication predates
written communication, the vast majority of studies
on linguistic laws have been conducted using writ-
ten corpora or transcripts [6, 7] –to the neglect of
oral communication–, with some notable exceptions
[8–11]. As a matter of fact, linguistics and cognitive
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science are traditionally based on a foundation of
symbolic representation. For instance, Harley states
that language itself is “a system of symbols and rules
that enable us to communicate" [12], and Chomsky
assumes that the symbolic nature is presupposed to
construct linguistic models [13]. Chomsky goes even
further, adding that “it is tacitly assumed that the
physical signal is determined, by language-independent
principles, from its representation in terms of phonetic
symbols" ([13], pp.107). In some sense, this perspective
intends to construct their linguistic models focusing on
symbols, giving more credit to the visual communication
underlying writing than the orality and the acoustic
origin of language – as if symbolism preceded acoustics.
Under such paradigm [14] that we could term as the
symbolic hypothesis, the abovementioned statistical laws
would emerge in language use as a consequence of its
symbolic representation.
However, language use also has important non-symbolic
aspects like variations in acoustic duration, prosody
and speech intensity which carry non-verbal informa-
tion complementing the (purely symbolic) transcribed
text [15] with well-known acoustic implications in e.g.
clinical linguistics [16]. For instance, a given word or
sentence can be spoken in different ways, with different
intonations, and therefore its duration admits a certain
variability [8] that could have semantic consequences [17].
These variations cannot be explained –by construction–
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using symbolic language representations, and therefore
one would not expect physical measures to follow the
linguistic laws without an additional explanation.

To address this important issue, here we have conducted
a systematic exploration of linguistic laws in a large
corpus of spoken English (Buckeye Corpus) [18, 19]
which has been previously manually segmented, hence
having access at the same time to both (i) symbolic
linguistic units (the transcription of phonemes, words
and breath-groups (BG, defined by pauses in the speech
for breathing or longer)) and (ii) the physical quantities
attached to each of these units, which altogether allow
a parallel exploration of statistical patterns of oral
communication in both the actual physical signal and
its text transcription.

We first explore the time duration of linguistic units at
several scales and are able to verify with unprecedented
accuracy that these systematically comply with a log-
normal distribution (LND). This apparently universal
regularity –which we might even call a lognormality law–
is then justified in the lights of a simple stochastic model
that is able to explain quantitatively the onset of LNDs
at word and breath-group linguistic scales just assuming
lognormality at the phoneme scale.

In a second step, we address the parallel investigation
of classical linguistic laws in oral communication in both
the actual acoustic signal and its text transcription. We
certify that the classical Zipf’s law emerges in oral tran-
scribed communication at word and phoneme level, es-
tablishing that we are facing a ‘standard’ corpus. We
then find that Herdan’s law holds in physical magnitudes
of time duration and we are able to analytically link the
exponent of this law with the one found for the case of
symbolic units. We subsequently show that Zipf’s law
of abbreviation also holds in spoken language, and to
the best of our knowledge we obtain for the first time
experimental evidence of an exponential law dependency
between the frequency of a linguistic element and its size,
a relation which we mathematically explain invoking to
information-theoretic arguments [20]. This new mathe-
matical formulation of Zipf’s law of abbreviation in turn
enables the mathematical formulation of yet another law
relating the size and the rank of words.
Notably, such patterns are boosted when measuring size
using physical magnitudes (time duration) rather than
written magnitudes (number of phonemes or charac-
ters). This emphasis is even stronger for the Menzerath-
Altmann law, which we show to hold better only if size of
linguistic units is measured in physical terms (time du-
ration) rather than in symbolic units. We also include a
model that explains the origin of this fourth law.
We end up discussing the relevance of each of our results
and finally briefly analyse the implication of these on
the validity of the symbolic hypothesis vs a novel ‘phys-
ical hypothesis’, and the consequences of this potential
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Figure 1: Sketch of the database and analysis. In (A) we
show the waveform of a speech sample and the alignment for
three linguistic levels of symbolic transcription: phonemes,
words and breath groups (BG). In (B) we showcase how the
same symbolic unit (the word okay) may show a wide di-
versity within speech communication (number of phonemes,
phoneme type, duration...). We combine all this information
in order to (C) characterize statistical patterns and linguis-
tic laws in both symbolic and physical magnitudes at three
different levels, and discuss the relationship between them.

paradigm shift within theoretical linguistics.

II. MATERIAL AND METHODS

The so-called Buckeye Corpus database contains
conversational speech by native English speakers gath-
ering approximately 8 · 105 phonemes, 3 · 105 words and
5 · 104 Breath Groups with time-aligned phonetic labels
[18, 19, 21]. Recordings are based on interviews with 40
native central Ohio speakers and balanced for age, gen-
der and gender of interviewer (interviews are essentially
monologues of each interviewee), and technical details
on the phonetic segmentation are reported in the SI.

Accordingly, we had access to speech recordings seg-
mented with their symbolic transcriptions at the
phoneme and word levels. The corpus also included
transcriptions of pauses that we used to define a third,
larger unit of analysis, roughly corresponding to the
so-called Breath Group (BG). BGs are typically defined
by pauses in the speech for breathing or longer [22],
a fundamental quantity for example in the study of
verbal fluency [23]. While one can a priori assume
that punctuation in written texts could drive pauses
and therefore help to define BGs directly from written
texts, such an issue is not so clear in spontaneous
communication, and in general BGs cannot be directly
inferred from transcribed speech. Transcribed breaks in
the Buckeye Corpus included pauses, silences, abrupt
changes in pitch or loudness, or interruptions [18, 19].
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Each segmented unit included physical magnitudes such
as time onset and time duration.

We then use this manual segmentation to make a parallel
analysis of linguistic patterns based on (classical) sym-
bolic units and –when possible– complementing those
with analysis of the respective patterns based on physical
(time duration) magnitudes. In Figure 1 we depict an
example for an illustration purposes, where we show
a manually segmented word (okay) which is described
by standard linguistic measures such as the precise list
of phonemes composing it. The particular nature of
oral communication sometimes allows a given word to
be composed by different sets of phonemes (in Figure
1 we show several different phonetic transcriptions of
the word okay found in the corpus). Note that this
source of variability is by construction absent in written
texts and clearly enriches oral communication. On top
of this, note that the same word can be spoken with
different time duration along speech, due to different
factors including prosody, conversational context, etc
[8]. For instance, the word okay is found a number of
times over the corpus, and for each event we annotate
its time duration. We can therefore estimate a time
distribution for this word, from which a mean or median
value can be extracted. In general, every phoneme, word
and breath-group (BG) which is manually segmented
has an associated time duration, hence empirical time
duration distributions can be estimated for these differ-
ent linguistic scales. The mean, mode and median of
the time duration distribution of phonemes, words and
BGs are reported in table I. Taking advantage of the
segmentation and alignment of the oral corpus with the
corresponding text [18, 19], we have also computed the
statistics referring to the number of characters of each
linguistic level, of phonemes per word and BG, and of
words per BG.

As we will show in next section, the probability distri-
butions of phoneme, word and BG size (in time duration
or other magnitudes) are heavy-tailed (more concretely
subexponential in the classification of Voitalov et al
[24]) so the mean or the standard deviation are not
necessarily informative enough, this is why we also
report the most frequent value (mode) and the median.
Due to the inherent uncertainties in the segmentation
and the known existence of outliers, extreme cases are
better represented by percentiles 10 and 90 than by the
minimum and maximum values. See SI for a thorough
discussion on how basic speech metrics collected in this
corpus compare with the ones found in other works.

The number of words per BG, of phonemes per word and
BG, and of characters per phoneme, word and BG are
also depicted in table I. The fact that the most com-
mon BG is formed by a single word –with the dubious
element um as the most frequent– influences our results
(i.e. the mode of the number of phonemes per word and

Time duration t (seconds)
N Mean 〈t〉 Std Mode Median p10 p90

Phoneme 8 · 105 0.08 0.06 0.05 0.07 0.03 0.14
Words 3 · 105 0.24 0.17 0.12 0.2 0.08 0.45
BG 5 · 104 1.4 1.2 0.4 1.1 0.3 3.1

Number of characters
Mean Std Mode Median p10 p90

Phoneme 1.4 0.5 1 1.3 2 2
Words 4 2 4 4 2 7
BG 24 23 2 17 3 54

Number of phonemes
Words 3 1.6 2 3 1 5
BG 18 17 2 13 2 40

Number of words
BG 6 6 1 4 1 13

Table I: Parameters across linguistic levels. Number of
elements considered (N), Mean, Standard deviation (Std),
Mode, Median and percentiles 10 (p10) and 90 (p90) of a
physical magnitude (time duration distribution) vs symbolic
ones (number of characters, number of phonemes and number
of words) for the three linguistic levels (phoneme, words and
BGs). Since speakers sometimes omit or add phonemes to
the same word, the number of characters per phoneme is ob-
tained indirectly averaging number of phonemes and number
of characters in the word. The p10 and p90 percentiles give
us an account of the range of durations, without considering
outliers.

.

per BG is 2), reflecting nevertheless the characteristics
of spontaneous speech where discursive markers abound:
they are key elements in verbal fluency, many of which
are brief linguistic elements (so, okay, well...) [25].
Furthermore, the conditions of the Buckeye corpus are
interview-like conversational speech (where interviewer
makes questions and the analysis is then performed on
the interviewee): this significant trait probably makes
the abundance of dubious elements [25] (e.g. um) large.

III. RESULTS

A. Lognormality law

Here we analyze the marginal distribution of the phys-
ical magnitude under study: the time duration each seg-
mented linguistic unit, at all scales (phonemes, words
and BGs). For a given linguistic level –e.g., words– we
measure the time duration of all events (different words
and repetitions) found in the corpus. That is to say,
we don’t use the time average of each word, but con-
sider each event as a different sample. In the main panel
of Figure 2 we then show the time duration distribu-
tions for phonemes (orange squares), words (blue circles)
and BG (green diamonds) in the Buckeye Corpus (see
also Figs 3-5). Using the method of Maximum Likeli-
hood Estimation (MLE) [26], we have fitted the data to
five possible theoretical distributions: Lognormal (LND),
Beta, Gamma, Weibull and Normal (we use Kolmogorov-
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LND Model selection 〈L(θ̂)〉 Goodness of fit Dks
µ σ LND Beta Gamma Weibull Normal LND Beta Gamma Weibull Normal

Phoneme -2.68 0.59 1.8 1.76 1.76 1.69 1.48 0.014 0.052 0.05 0.081 0.128
Word -1.62 0.66 0.63 0.63 0.63 0.61 0.45 0.015 0.014 0.018 0.035 0.099
BG 0.025 0.86 -1.29 -1.31 -1.31 -1.32 -1.64 0.036 0.047 0.045 0.047 0.13

Table II: Estimated Lognormal distribution (LND) parameters (µ, σ) for time duration distributions of phonemes, words
and breath groups (BG). Distribution candidates are fitted using MLE and model selection is based on maximizing the mean
log-likelihood 〈L(θ̂)〉. On the right side of the table we depict Kolmogorov Smirnov goodness of fit distance Dks for different
alternative distributions (data is more plausible to follow the distribution with lower values of Dks). All tested distributions
are defined with two parameters and inside each category level are evaluated in same conditions.
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Figure 2: Universal lognormal time duration distribu-
tion. (Outer panel) Estimated time duration distribution of
all breath groups (green diamonds), words (blue circles) and
phonemes (orange squares) in the English Buckeye database
(a logarithmic binning has been applied to the histograms,
and solid lines are guides for the eye). In each case the curves
fit well to a lognormal distribution (see the text and table II
for a model selection). (Inner panel) We check the validity of
the lognormal hypothesis by observing that, when rescaling
the values of each distribution t′ = log(t)−〈log(t)〉

σ(log(t))
, all data col-

lapse into a universal standard Gaussian (solid black line is
N (0, 1)).

Smirnov distance Dks for goodness of fits, and mean log-
likelihood for model selection, see table II). We have con-
firmed that both phonemes and BG are best explained
by LNDs

Lognormal(x;µ, σ) =
1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 ,

whereas for the case of words, LND, Beta and Gamma
are similarly plausible statistical fits. In the inset
panel of Figure 2 we re-scale all the time duration
variables t′ = log(t)−〈log(t)〉

σ(log(t)) . If all distributions are well
described by LNDs, the resulting data should collapse
to a standard Gaussian N (0, 1), in good agreement with
our results. Note at this point that the Buckeye Corpus
is multi-speaker, hence data comes from a variety of
speakers. Nevertheless, the lognormality law still holds
for individual speakers (see SI).
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Figure 3: Phoneme duration is Lognormally dis-
tributed. Empirical time duration distribution of phonemes
(orange squares) in the English Buckeye database. Black dot-
ted line is a maximum likelihood estimation (MLE) fit to a
lognormal distribution, with MLE parameters (−2.68, 0.59)
(see table II for goodness of fit and alternative fits).

LNDs are indeed very commonly found across natural
and behavioral sciences [27–29] and it is well-known
[30, 31] that the frequency distribution of string
length in texts (in both letters and phonemes) is well-
approximated at every level by the LND (see [28] and
references therein). Previous studies have proposed that
LND is indeed consistent for spoken phonemes in several
languages [30, 32–35], and this distribution has also been
found, although overlooked, in the distribution of word
durations for English [8]. However, to the best of our
knowledge this is the first study in which LNDs have
been reported at various linguistic levels at the same
time.
Can we justify the onset of clear LNDs for the time
duration of phonemes, words and BGs? To date, most
of the theoretical work connecting the presence of LND
for the time duration of linguistic units reduce to an
extremely vague analogy and reminiscence of stochastic
multiplicative processes and the central limit theorem in
logarithmic space [27, 32]. The mechanistic origin for
the robust duration distribution of phonemes is therefore
an open problem which we won’t address here, although
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Figure 4: Word duration is lognormally distributed.
Empirical time duration distribution of words (blue circles)
in the English Buckeye database. Black dotted line is the
MLE fit to a LND distribution (see table II for goodness of
fit). Blue dashed line is the theoretical prediction of Eq.1 (see
the text for details). (Inset panel) Estimated distribution of
number of phonemes per word P (n) from which n is randomly
sampled.

it could be speculated that this is a consequence of some
underlying physiological or cognitive process [36]. We
now assume that LND for the time duration of phonemes
as a working hypothesis (nonetheless validated by the
experimental evidence reported in Figure 2), and we
provide a (mechanistically justified) mathematical
model that explaines why, in that case, both words
and BG should have a duration which themselves
approximates a Lognormal distribution, which we show
to be not just qualitatively correct but also offers an ex-
cellent quantitative agreement with the empirical results.

A simple stochastic model – Consider a random vari-
able (RV) Y ∼ Lognormal(µ, σ) that models the time
duration tph of a given phoneme. Since words are con-
structed by concatenating a certain number of phonemes
n, the duration of a given word tw can then be modelled
as another RV Z such that

Z =

n∑
i=1

Yi, (1)

where we assume Yi ∼ Lognormal(µ, σ) and n ∼ P (n)
is in general yet another random variable. For the
sake of parsimony, we initially consider the case of
independent RVs: how is Z distributed when the RVs Yi
and n are sampled independently? Since the Lognormal
distribution has finite mean and variance the central
limit theorem (CLT) should hold and Z should be
Gaussian as n → ∞. Interestingly, this is a limit
theorem and thus the Gaussian behavior is only deemed
to be recovered in the limit of large n. However this is
quite not the case in our context: not only n is a finite
yet fluctuating random variable, furthermore, according
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Figure 5: Breath-Groups are lognormally distributed
Time duration distribution of all breath groups (green dia-
monds) in the English Buckeye database. Black dotted line is
the MLE fit to a LND distribution (see table II for goodness
of fit). The green dashed line is the theoretical prediction
of Eq.1 where a Gaussian error term with positive mean is
included to model for VOT (see the text for details). (Inset
panel) Semi-log plot of the estimated distribution of number
of words per BG W (n) from which n is randomly sampled
in the theoretical model. Note that this distribution is ex-
ponential, suggesting that BG segmentation of the corpus is
statistically compliant with a Poisson process.

to table I, the average number of phonemes per word
is just 〈n〉phon = 〈tw〉/〈tph〉 = 0.24/0.08 ≈ 3, whereas
in the case of the average number of words per (oral)
BG, we find 〈n〉words ≈ 6, both in principle sufficiently
far from the large n limit where CLT holds in the
lognormal case (see SI for an exploration). While for
small n there is no closed form for P (Z) in the general
case, it is agreed that the CLT does not kick in [37]
and actually the LND is often a good approximation
for P (Z) (see [38] and references therein), and one can
approximate the first two moments of Z using e.g. the
so called Fenton-Wilkinson approximation [39]. We have
numerically checked that this is indeed the case provided
that Yi are sampled from reasonably similar LNDs (see
SI for details). In other words, this simple stochastic
model can already explain the emergence of LND for the
duration of words solely based on the assumption that
phoneme durations also follow a LND. Subsequently,
one can redefine Yi = tw with the time duration of
a word –which now is justified to follow a LND– and
Z = tBG with the time duration of a BG, hence this
very same model also explains the emergence of LNDs
of BG durations.

Moreover, in order to be quantitatively accurate, instead
of sampling n from a synthethic probability distribu-
tion we can sample it from the actual distribution of
phonemes per word P (n) (reported in the inset panel
of Fig. 4). In other words, in order to construct
words according to Eq.1, each Yi is sampled from the
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phoneme time distribution P (tph), whereas the number
of phonemes per word n is sampled from the real
distribution P (n) instead of a synthetic one. The results
of this version of the model is plotted, for the case
of words, as a dashed blue curve in Figure 4, finding
an excellent quantitative agreement with the empirical
distribution.
One could proceed to do a similar exercise for the case of
BGs, where the number of words per BG n is a random
variable which is sampled from the actual distribution
W (n), as reported in semi-log scales in the inset of
Figure 5. Note, incidentally, that W (n) is exponentially
decaying, suggesting that the segmentation of BGs
is statistically analogous to a (memoryless) Poisson
process. In any case, such procedure is, in this case,
problematic: observe that manual segmentation tends
to have a systematic error which is more prominent
in the case of BGs due to the fact that one needs to
determine the transition points between speech and
silence (i.e., errors do not cancel out in this case∗).
This is indeed known to be a nontrivial problem due
to the so-called Voice Onset Time effect (VOT) at the
beginning of some Breath Groups and other phonetic
phenomena, possibly amplified by the fact that manual
segmentation tends to be conservative (see SI for de-
tails). These sources of error will thus systematically
add a small positive bias to the true time duration
of each BG. Thus, we decide to model this bias by a
Gaussian error term with (small) positive mean, which
is systematically added to the time duration random
variable Z, so that Z → Z + ξ, where ξ ∼ N (µξ, σξ).
In the main panel of Figure 5 we report the prediction
of this model when ξ ∼ N (0.14, 0.07) (green dashed
curve), showing excellent agreement with the empirical
distribution (note that µξ and σξ can safely vary within a
20% range and the agreement would still be remarkable).

Tackling non-independence. The stochastic model
discussed above is already able to quantitatively repro-
duce the time duration distributions of words and BGs,
even if we assumed that the random variables Yi and
n were independent. This is however a rather strong
assumption which is not true in general: it is easy to
see that if these were independent then e.g. Menzerath-
Altmann law shouldn’t hold. Possible sources of inter-
action between random variables include dependence be-
tween n and Yi and serial correlations between Yi and
Yi+1. To assess the case of serial correlations, we have
estimated the mutual information I(t, t+ 1) between du-
ration of subsequent linguistic units for both phonemes
inside a word and words inside a BG. The mutual in-
formation I(X1, X2) is an information-theoretic measure

∗Note that segmentation errors might take place when segment-
ing words as well, however in this case they tend to cancel out –what
is erroneously added to one word is removed from the subsequent
segmented word– and thus these errors have zero mean.

that evaluates lack of independence by quantifying how
much information is shared by two random variables X1

and X2:

I(X1, X2) =
∑
xi∈X1

∑
xj∈X2

p(xi, xj) log

(
p(xi, xj)

p(xi)p(xj)

)
,

(2)
such that I(t1, t2) → 0 if t1 and t2 are independent. In
practice, finite size effects prevent this quantity to van-
ish exactly, so a robust analysis requires comparing the
numerical estimate with respect to a proper null model.
Note that we use here I instead of other methods such
as Pearson or Spearman correlation coefficients because
we cannot assume a priori any particular dependence
structure (such as linear correlation or monotonic depen-
dency).
We found I(t1, t2)phon = 3 · 10−2 and I(t1, t2)words =
2 · 10−2 for phonemes and words respectively, to be com-
pared with the results for a null model where we keep
fixed the number of words and phonemes per word but we
shuffle the phoneme allocation, hence breaking possible
correlations. We find Irand(t1, t2)phon = 3 ·10−4±2 ·10−5

and Irand(t1, t2)word = 2 · 10−4 ± 3 · 10−5 for phonemes
and words respectively. In both cases mutual informa-
tion is two orders of magnitude stronger from what is
expected due to chance, safely concluding that the RVs
Yi in Eq. 1 are indeed not independent. In the section
devoted to Menzerath-Altmann we further examine the
properties of these correlations for the case of words, and
in supplementary material we exploit these to build an
independent model that also accounts for experimental
time duration distribution of BGs once we add such de-
pendence structure.
Importantly, as opposed to the previous case, there do
exists limit theorems for Z and small n when {Yi} are
not independent. A theorem of Beaulieu [40] states that
the probability distribution of a sum of positively cor-
related Lognormal random variables having a specified
correlation structure approaches a LND with probability
one, so we safely conclude that Eq.1 provides a sound
justification for the emergence of LND regardless of the
underlying correlation structure. Incidentally, this limit
theorem is also valid for some joint Lognormal random
variables having dissimilar marginal distributions, as well
as identically distributed random variables, hence we
don’t require that the intraphonemic time duration of all
phonemes be identical for this theorem to hold (we ac-
knowledge that intraphonemic variability exists but leave
this fine-grained structure for a future work).

B. Zipf’s law

We now turn to explore the emergence of linguistic
laws in oral communication, and start our analysis with
Zipf’s law. After some notable precursors [41–43], George
Kingsley Zipf formulated and explained in [44] and [45]
one of the most popular quantitative linguistic observa-
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Figure 6: Zipf’s law. Outer panel: Log-log frequency-rank
plots for of phonemes (orange squares) and words (blue cir-
cles). We have found two regimes of power law for the case
of words with exponents (α1 = 0.63, α2 = 1.41) and breaking
point at rank r = 49. We fitted phonemes rank distribution to
a Yule-distribution f(r) ∼ r−bcr with parameters b = 0.25,
c = 0.96. All fittings (including estimation of the breaking
point) were performed using MLE.

tions known in his honor as Zipf’s Law. He observed
that the number of occurrences (frequency f) of words
with a given rank r is well approximated by a power-law
dependence

f(r) ∼ r−α (3)

This is a solid linguistic law proven in many written
corpus [5] and in spoken language [6], even though its
variations have been discussed [46], as is the case of the
evolution of the exponent in the ontogeny of language
[7] or even in aphasia [47].
Zipf originally proposed a theoretical exponent α ∼ 1
[45], but other authors have shown that α may vary for
oral English typically between 0.6 and 1.5 [6, 7] (note
that the actual fitting of a power-law is not trivial, and
different proposals coexist [48, 49], here we use MLE).
Other authors have further justified the existence of two
different scaling regimes: one kernel of very versatile
communication elements and one set of almost unlimited
lexicon [50, 51], whereas other authors support that this
is an artifact of mixing texts [52].

Here we analyse the written transcriptions of the Buckeye
corpus, and summarise our results for the frequency-rank
word plot in Figure 6, finding that our results in spon-
taneous conversation agree with previous studies. We
indeed find that a double power law scaling should be
preferred from a model selection point of view accord-
ing to a Bayesian Information Criterion (BIC, see SI for
details), with exponents α1 ∼ 0.63 and α2 ∼ 1.41 with
breaking point in rank r = 49 (the precise breaking point
is found using MLE). We also find, in compliance with
Williams et al [52], that when we disentangle contribu-
tions from different speakers, the double power law seems

100 102 104 106

Time elapsed T (seconds)

100

102

104
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ry
 V

= = 0.63
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V(L)
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Words elapsed L

Figure 7: Herdan’s law. Sublinear increase of number of dif-
ferent words (V ) used during spontaneous speech versus time
elapsed T (blue circles) and total number of words spoken
L (green diamonds), where each line is the result of a dif-
ferent permutation in the way of concatenating the different
speakers of the multi-author corpus (10 permutations). After
a transient range, we find a robust scaling regime V ∼ Lβ

and V ∼ T γ for about three decades. The exponents coincide
β = γ ≈ 0.63 (see the text for a justification).

to smear out (see SI).
The relationship between the exponent of Zipf’s law and
syntax has been discussed previously [7, 53]. Accordingly,
the exponents found in the Buckeye corpus would be in
the range expected for a low syntactic complexity, typical
of spontaneous speech, with a predominance of discursive
markers [25], although more research is needed in this re-
gard.
In the same figure, we have also analysed Zipf’s law at
phoneme level. While the limited number of phonemes
precludes the onset of distributions ranging over one
decade –and therefore limits the interpretability of these
results– some previous studies [54] have stretched the
analysis and proposed the onset of Zipf’s law in phoneme
distributions, proposing a fit of this frequency-rank plot
in terms of a Yule distribution f(r) ∼ r−bcr (note that
a power law distribution is a particular case of Yule dis-
tribution which can also be explained as a power law
with exponential cut-off). Accordingly, we have fitted
the transcribed phonemes to a Yule distribution using
MLE, finding b = 0.25, and c = 0.96.

C. Herdan’s law

We now move to the second linguistic law under study.
Although with little-known precedents [55], Herdan’s
law [56] (also known as Heaps’law [57]) states that the
mean number of new different words V grows sublinearly
with the size of the text L: V ∼ Lβ , β < 1. Interestingly,
some scholars have derived an inverse relationship
between Zipf’s and Herdan’s exponents β = 1/α2 using
different assumptions (see [58] or [59] for a review). As
Zipf’s law, Herdan’s law is robust although there are
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slight deviations that have been well explained by new
formulations [6, 58–60].

Here we explore the emergence of Herdan’s law by mea-
suring the appearance of new words as conversations
draw on using either total number of words L (classical
approach) and elapsed time T , and we report our results
in Figure 7. Since the corpus is multi-author, we have
performed several permutations of the order in which the
corpus concatenates each of the individual speakers, and
plot each of these permutations as a different line (10
permutations). Results hold independently of the per-
mutation so we can rule out that such arbitrary ordering
is playing any role in the specific value of the exponents.
Green diamonds depict the increase of vocabulary as a
function of the total number of words appearing in the
conversation as it draws on. For words, we find a first
linear regime where each word is new, followed up by a
transition into a stable sublinear regime that holds for
about three decades with exponent β ≈ 0.63. This evi-
dence is in agreement with previous results [6]. Note that
the exponent β is approximately consistent with the one
found for the second regime of Zipf’s law (1/1.41 ≈ 0.7)
and others reported for different corpus [6, 58, 61].
In the same figure we also depict (blue circles) the vo-
cabulary growth as a function of the time elapsed T , i.e.
we count how many new words appear in a given conver-
sation as the conversation draws on, and we measure the
size of the vocabulary V as a function of the elapsed time
T . Note that this formulation is strongly related with the
speech rate of conversation which might vary greatly be-
tween speakers, context or intentionally of the speaker.
Whereas here we find that the transient is dependent on
the specific permutation of speakers, all curves then tran-
sition into a permutation-independent, stable and robust
sublinear regime V ∼ T γ with approximately the same
exponent γ ≈ β ≈ 0.63.
This later result can be explained analytically in the fol-
lowing terms. Consider Eq.1 and concatenate a total of
L words, each having a duration modelled by a random
variable Y (which we know is lognormal according to
previous sections). Assuming there are no silences be-
tween words, the concatenation variable τ =

∑L
i=1 Y is a

random variable that can be identified with the elapsed
time of a conversation after L words. The average time
T = E(τ) and since the expected value is a linear oper-
ator, it follows that T =

∑L
i=1 E(Y ) = E(Y ) · L (note

that taking expected values is justified when L is large
by virtue of the law of large numbers, see SI Figure S7
for an empirical validation). Since we find T ∝ L, this
implies that if Herdan’s law holds for L, a similar law
with the same exponent should hold for T , i.e. β = γ.

D. Brevity law

The third linguistic law under analysis is Brevity law,
also known as Zipf’s law of abbreviation. It qualitatively
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Figure 8: Brevity law: words. On the main panel we dis-
play for each word (grey dots) the scatter plot between its
median time duration (in seconds) and its frequency of oc-
currence. Blue circles is the result of applying logarithmic
binning to frequencies (see the text and SI for details). Up-
per right panel shows the same relationship but considering
the median number of phonemes per word, while bottom left
panel represents the number characters per word. All pan-
els are semi-log plots. Spearman test S systematically shows
strong negative correlation slightly higher for time duration
(S ∼ −0.35) than for symbolic representation of phonemes
and characters (S ∼ −0.26) (a two-sided p-value for a hy-
pothesis test whose null hypothesis is that two sets of data
are uncorrelated provides p-value � 10−3 in all the cases, i.e.
safely rejecting the null hypothesis of uncorrelation), support-
ing the Zipf’s law of Abbreviation in every case. Data in the
inset panels are then fitted to theoretical eq.4, whereas data
in the main panel is fitted using to theoretical eq.5. In every
case there is a remarkable agreement between the theoretical
equations (which fit the grey dot data) and the binned data.
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Figure 9: Brevity law: phonemes. Scatter plot between
the frequency of each phoneme and its median time dura-
tion (grey dots). Orange squares is the result of applying
a logarithmic binning over frequencies (see SI for details).
Spearman correlation test shows a weak negative correlation
(S ∼ −0.2) with p-value p < 0.05, but strong negative corre-
lation (S ∼ −0.5) and p-value < 10−3 when we only consider
the subset phonemes with frequencies f > 50.
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states that the more frequently a word is used, the
‘shorter’ that word tends to be [44, 45, 62]. Word size
has been measured in terms of number of characters,
according to which the law has been verified empirically
in written corpus from almost a thousand languages
of eighty different linguistic families [63], and similarly
logograms tend to be made of fewer strokes in both
Japanese and Chinese [64, 65]. The law has also been
observed acoustically when word size is measured in
terms of word time duration [8, 66, 67], and recent
evidence even suggests that this law also holds in the
acoustic communication of other primates [68]. Despite
all this empirical evidence, and while the origin of Zipf’s
law of abbreviation has been suggested to be related to
optimization principles [45, 69–71], to the best of our
knowledge the law remains qualitative and a precise
mathematical formulation is lacking.

Here we start by studying brevity law qualitatively in
oral speech at the level of phonemes and words (it is not
possible to check at BG level due to lack of statistics).
At word level, we consider three cases: (i) the tendency
of more frequent words to be composed of less characters,
(ii) the tendency of more frequent words to be composed
by a smaller number of phonemes and finally (iii) the
tendency of speakers to articulate more frequent words
in less time (i.e. the more frequent a word, the shorter
its duration). Results are summarised in Figure 8,
showing that brevity law indeed holds in all three cases.
In these figures we scatter-plot the frequency of each
word versus the three different definitions of word size
(median time duration, number of phonemes, number
of characters). Blue dots are the result of applying a
logarithmic binning over the frequencies axis in order to
counterbalance low sampling effects (see SI for additional
details on this procedure).
At the phoneme level, we compare the frequency of
phonemes with their median time duration in Figure
9. As suggested by Spearman correlation test, we find
that Zipf’s law of Abbreviation holds even at such a
low linguistic level. In this way, the more frequent is a
phoneme, the shorter it will be in terms of duration. We
haven’t addressed the law at the phoneme scale with
respect to the number of characters as this assignation
is ambiguous due to the fact that a given word can
have different phonetic transcriptions (see panel A in
Fig.1), and it is not obvious how to assign the number of
characters to the phoneme composition of each of these.

A mathematical formulation of brevity law – An
information-theoretic principle of compression [20] has
been recently invoked to elucidate the origin of Zipf’s law
for the frequency of words [72]. A similar approach can
be undertaken here. In order to compress information, a
classical rule of thumb is to codify information by assign-
ing shorter labels to more frequent symbols (e.g. the most
frequent symbol shall be assigned the shorter label, the
second most frequent symbol shall be assigned the second

shorter label, and so on). The size of this label is called
the description length, which here we associate to either
of the three possible definitions of size we have considered
(median time duration, number of phonemes, number of
characters). In information-theoretic terms, if a certain
symbol i has a probability pi of appearing in a given sym-
bolic code with a D-ary alphabet, then its minimum (op-
timal) expected description length `∗i = − logD (pi) [20].
Deviating from optimality can be effectively modelled by
adding a pre-factor, such that the description length of
symbol i is `i ∼ − 1

λD
logD (pi), where 0 < λD ≤ 1. Iden-

tifying pi with the frequency of a given word and ` with
its ‘size’, the derivation above directly yields a mathe-
matical formulation of Zipf’s law of Abbreviation as:

f ∼ D−λD`, 0 < λD ≤ 1 (4)

where f is the frequency of a linguistic element, ` is its
size in whichever units we measure it (some property
of the time duration distribution, number of phonemes,
number of characters), D is the size of the alphabet (the
number of different linguistic elements at the particu-
lar linguistic level under study), and λD an exponent
which quantifies deviation from compression optimality
(the closer this exponent is to one, the closer to optimal
compression).
A fit to Eq.4 is shown (red dashed lines) in the upper right
and lower left inset panel of Figure 8. When word size
is measured in number of characters (i.e. the alphabet
consists of letters and thus D = 26), we find λD ≈ 0.6,
whereas for word size measured in terms of number of
phonemes (i.e. for an alphabet with D = 64 phonemes
consisting in 41 phonemes plus 23 phonetic variations in-
cluding flaps, stops, and nasals, see SI), we find λD ≈ 0.5.
Note that both fits are performed to the data (not to the
binned data), but these are in turn in excellent agree-
ment to the binned data (blue circles).
On the other hand, when word size is measured in terms
of time duration, there is no natural alphabet, so D is
a priori not well-defined (time is a continuous variable).
We can nonetheless express equation 4 as

f ∼ exp(−λ`), λ > 0 (5)

where λ is now just a fitting parameter not directly
quantifying the distance to optimal compression, and
` is some measure of ‘centrality’ of the time duration
distribution. In the main panel of 8 we plot (red dashed
line) a fit of Eq.5 to the data when ` is measured in terms
of the median time duration, finding λ ≈ 20.6 (again, the
fit is performed to the noisy data cloud, but the result is
in excellent quantitative agreement to the binned data).
A similar fit to the case of phonemes is presented in Fig.9.

Connecting Brevity Law and Zipf’s law: the size-
rank law – Zipf and Herdan laws are known to be con-
nected and under certain conditions their exponents are
related via α = 1/β [59, 60]. Now since Zipf’s law and
the newly formulated brevity law involve word frequen-
cies, we can now connect these to propose an additional



10

100 101 102 103 104

Rank r 

0.2

0.5

0.8
data
binned data
Eq. 7

Figure 10: Size-rank law for words. Linear-log scatter
plot of the median time duration ` of each word as a function
of its rank r (gray dots). Blue circles are the same data after
a logarithmic binning. Black line is Eq.7 with θ1 = α1

λ
= 0.03

and θ2 = α2
λ

= 0.07, where α1, α2 and λ are the two Zipf’s
exponents and brevity exponent respectively.

law. Putting together Eqs. 3 and 5, our theory predicts
that the ‘size’ `i of word i is related with its rank ri

`i =
α

λ
log(ri) +K = θ log(ri) +K, (6)

where α and λ are Zipf and brevity laws exponents re-
spectively, andK a normalization constant. θ is therefore
a parameter combining Zipf and Brevity exponents in a
size-rank plot, and Eq.6 can indeed be understood as a
new linguistic law by which the larger linguistic units
tend to have a higher rank following a logarithmic rela-
tion.
In the case of double power-law Zipf laws (Figure 6) we,
would have different exponents for r ≥ 50 or r < 50 so
Eq.6 would reduce to:{

`i = θ1 log(ri) +K1, if ri ≤ r∗

`i = θ2 log(ri) +K2, if ri > r∗
(7)

where θ1 = α1

λ , θ2 = α2

λ , and α1, α2 are the exponents
before and after the breaking point r∗. We illustrate
the validity of Eq.7 by considering time duration as `.
In this scenario, λ ≈ 20, α1 ≈ 0.63 and α2 ≈ 1.41, so
θ1 ≈ 0.03 and θ2 ≈ 0.07. In Figure 10 we depict a r
vs ` scatter plot of all the words, where blue dots are
the result of applying a logarithmic binning (again, to
counterbalance low sampling effects). The black line is
Eq.7 with θ1 = 0.03 and θ2 = 0.07, showing an excellent
agreement with the binned data.

E. Menzerath-Altmann law

To round off we finally consider the fourth classical lin-
guistic law. After some precedents in experimental pho-
netics [73], Paul Menzerath experimentally observed a

negative correlation between the ‘length’ of a phonetic
constructs and the length of its constituents [10, 11].
Later Gabriel Altmann formalised this observation for
various linguistic levels [74, 75], proposing a mathemat-
ical formulation called thereafter Menzerath-Altmann’s
law (MAL), which in its most popular form relates the
size n of a language construct (the whole) and the size y
of its constituents y (the parts) via

y(n) = anb exp(−cn), (8)

where a, b, c are free parameters that depend on lan-
guage [5, 76] (see also [77, 78] for subsequent attempts
of reformulation).
The interpretation and justification of this formulation
remains unclear [76], and while this law was originally
explored phonetically [10], most of the works address
written texts [1, 68, 76, 79–82].

Two different regimes – As an initial comment, note
that when both exponents b, c < 0, Eq.8 has always a
finite minimum at n∗ = b/c above which the tendency
inverts, i.e. the law would be a decreasing function
for n < n∗ and an increasing function for n > n∗

leading, in this latter case to a ‘the larger the whole, the
larger the size of its constituents’ interpretation. This
rather trivial observation seems to have been unnoticed,
and the right-end of MAL’s standard formulation
has been systematically overlooked in the literature
–perhaps due to the fact that this regime is hard to
find experimentally–, even if Menzerath himself already
observed this tendency in his seminal works [10, 11].

A mechanistic model for MAL – Second, and before
addressing to which extent MAL holds in oral communi-
cation, we now advance a model that provides a mecha-
nistic origin for its precise mathematical formulation. Let
t(n) be the average time duration of a construct (breath-
group) formed by n constituents (words). Then the mean
duration of a word inside that construct is y(n) = t(n)/n.
Let us assume that a BG formed by n words can be gener-
atively explained by adding a new word to a BG formed
by n − 1 words. Under no additional information, one
can trivially express that the new word has a duration
equivalent to the average duration of words in the BG,
i.e.

t(n) = t(n− 1) +
t(n− 1)

n− 1
=

(
1 +

1

n− 1

)
t(n− 1). (9)

This defines a simple multiplicative process which can be
solved as

t(n) = t(1)

n∏
j=2

(
1 +

1

j − 1

)
= nt(1),

yielding y(n) = t(1), i.e. a constant quantity. We can
call this the ‘order-0 approximation’ to MAL. Now, in
section III.A we found that word time duration is indeed
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correlated within a BG as the mutual information be-
tween the duration of a given word and the subsequent
one is much larger to what expected by chance. One can
take into account this correlation in several ways. The
simplest way is to assume a linear relation by which the
size of the n-th constituent of a construct is just a con-
stant fraction 0 < κ2 < 1 of the average of the previous
n − 1 constituents (i.e. the size of the construct grows
slower than linearly with the number of constructs due to
linear correlations). Then Eq.9 is slightly modified into

t(n) = t(n− 1) + κ2
t(n− 1)

n− 1
=

(
1 +

κ2
n− 1

)
t(n− 1),

(10)
such that

t(n) = t(1)

n∏
j=2

(
1 +

κ2
j − 1

)
.

The expression above is in total agreement with eq. 12 in
[78], although the authors in [78] don’t solve this equation
and simply propose it as a ‘formula’. Now it is easy to
see using Gamma functions that

n∏
j=2

(
1 +

κ2
j − 1

)
=

Γ(n+ κ2)

Γ(1 + κ2)Γ(n)
,

where Γ(z) is the Gamma function. Invoking the fact
that ∀α ∈ C, limn→∞ Γ(n + α)/[Γ(n)nα] = 1, we can
approximate in this case

y(n) =
t(n)

n
∼ t(1)

Γ(1 + κ2)
nκ2−1, (11)

which for κ2 < 1 is a decaying power-law relation, some-
times called the restricted MAL law [83]. This would be
the ‘order-1 approximation’ to MAL.
We can continue the procedure and in the next level of
simplicity (‘order-2’), we can add another pre-factor κ1,
such that the generative model reads then

t(n) = κ1

(
1 +

κ2
n− 1

)
t(n− 1),

such that

t(n) = t(1)

n∏
j=2

κ1

(
1 +

κ2
j − 1

)
. (12)

Note that if κ1 < 1 we can risk eventually finding an
average time duration t(n) smaller than t(n − 1), which
is unphysical, so a safe assumption is setting κ1 ≥ 1.
While Eq.12 does not have an easy closed-form solution,
we can analytically approximate it. By taking logarithms
and Taylor-expanding log(1 + κ2/(j − 1)) ≈ κ2/(j − 1),
Eq.12 reads

log t(n) ≈ log(t(1)κn−11 ) +

n∑
j=2

κ2
j − 1

.

Using harmonic numbers Hn [84], we have

n∑
j=2

κ2
j − 1

= κ2(Hn − 1/n) ∼ log nκ2 + κ2γ +O(1/n),

where γ = 0.5772 . . . is the Euler-Mascheroni constant.
Putting these results altogether, taking exponentials and
using y(n) = t(n)/n, we end up with

y(n) ≈ t(1) exp(κ2γ)

κ1
nκ2−1κn1 ,

which is indeed MAL (Eq.8) with a = t(1) exp(κ2γ)/κ1,
b = κ2 − 1 and c = − log κ1. Note that since 0 < κ2 < 1,
then necessarily b < 0, and since we had set κ1 ≥ 1, that
also means that c < 0, and therefore we expect in full
generality that MAL displays its two regimes.
Furthemore, the model we provide not only gives a mech-
anistic interpretation for the origin of Eq.8, but also
shows that actually two parameters (κ1, κ2) are enough
to fit the law instead of three, and these two parame-
ters quantify the way correlations between the duration
of words take place.
As an additional comment, note that if instead of Eq.12
we decide to model correlations by exponentiating by a
factor κ2, i.e.

t(n) = t(1)

n∏
j=2

κ1

(
1 +

1

j − 1

)κ2

, (13)

then this equation is exactly solvable as
∏n
j=2(1 + 1/[j−

1])κ2 = [Γ(n+ 1)/Γ(n)]κ2 = nκ2 , hence in this latter case
there is no approximation and we find

y(n) =
t(1)

κ1
nκ2−1κn1 ,

i.e. again Eq.8 with a = t(1)/κ1, b = κ2 − 1,
c = − log(κ1). Notice however that Eq.13 is probably
harder to interpret than Eq.12 (see SI Figure S7 for a
successful prediction of BGs time duration distribution
solely based on the models above).

MAL is fulfilled better in physical units – Once
the origin of Eq.8 has been clarified, we now explore
to which extent MAL holds in oral communication at
two linguistic levels: (i) BG vs word and (ii) word vs
phoneme. For case (i) we measure the size of each BGs
in terms of number of words and then compare this
quantity against the size of the constituents (words)
using three different measures: (a) mean number of
characters in the constituent words, (b) mean number of
phonemes in the constituent words and (c) mean time
duration of the constituent words. Accordingly, cases
(i.a) and (i.b) relate different linguistic levels whereas
(i.c) provide a link with quantities which are inherently
‘oral’.
Results for the BG vs word scale are shown in Figure 11.
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a b c R2

BG vs words size (in time units) 0.364 −0.227 −6.7 · 10−3 0.7
BG vs words (in number of phonemes) 3.22 −4.7 · 10−2 −1.85 · 10−4 0.05
BG vs words size (in number of chars) 4.16 −2.14 · 10−2 −7.4 · 10−4 0.05
Words vs phoneme size (in time units) 0.18 −0.23 −7 · 10−3 0.9

Table III: Parameter fits of the Buckeye corpus to Menzerath-Altmann’s law (Eq.8) for different linguistic levels (BG, words
and phonemes). Fitting of MAL to the mean values (mean size of constituent vs mean size of linguistic construct) has been
done using Levenberg-Marquardt algorithm (note that blue circles in Fig 11 are the result of a linear binning). R2 (coefficient
of determination) is used to determine the goodness of the fit. Accordingly, MAL only holds most significantly when measuring
constituent size in time units.
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Figure 11: Menzerath-Altmann law: BG vs Words. Re-
lation between BG size (measured in number of words) vs the
mean size of those words. The mean size of words can be ex-
pressed in terms of mean time duration (main panel), mean
number of phonemes (upper right panel) or mean number of
characters (lower left panel). Each gray point represents one
BG, whereas blue circles are the mean duration of BGs (for
exposition purposes, a linear binning has further been applied
to smooth out the data and reveal the emergence of two dif-
ferent MAL regimes; equivalent plots without this additional
binning are reported in the SI). Red dotted line is a fit to
Menzerath-Altmann law (Eq.8). The law clearly holds only
when constituent size is measured in physical units (see table
III).

In all cases we have plotted each individual instance of
a BG as gray dots, and blue circles correspond to linear
binned data. For the sake of exposition, we have further
applied a linear binning of the data with 10 bins (see
SI for the more standard plots using non-binned data
and additional details). This additional binning helps to
visually reveal the emergence of the second MAL regime.
The red dashed line is a fit of the data to Eq.8 using a
Levenberg-Marquardt algorithm (see table III for fitting
parameters). We find that MAL between a construct
and its constituents is only shown to hold significantly
when the constituent size is measured in physical (time)
units according to R2 (when the law is measured in
symbolic units, one could even say that the order-0
approximation provided by Eq.9 is the adequate model).
We find b, c < 0 so Eq.8 indeed is non-monotonic in this
case and, interestingly, the law fits indeed the whole
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Figure 12: Menzerath-Altmann law: Words-
Phonemes. We show the relation between words size
(measured in number of phonemes) and the mean time
duration of those phonemes. Orange squares are mean
duration of words with that size. Each gray point represents
one word and dotted line is a fit to Menzerath-Altmann law
(Eq.8).

range including the regime where the interpretation of
MAL inverts, with a transition located at a BG size
b/c ≈ 34 words.
For case (ii) we ensemble words with the same number
of phonemes and then compute mean time duration of
those phonemes, see Figure 12 for results. Again in this
case MAL is found to hold.

Average speech velocity – Finally, observe that when
word size is measured in time duration, y(n) in Eq.8
is indeed the average time duration per word in a BG
with n words, hence we can define an average speech ve-
locity v(n) = n/[ny(n)] = 1/y(n). Different speakers
will therefore have different speech velocity, and this can
also vary along their speech. Now, for the range of pa-
rameters where y(n) is non-monotonic, v(n) will be non-
monotonic as well, and the critical point n∗ = b/c which
fulfils v′(n∗) = 0 defines, assuming MAL, a maximal limit
(optimal efficiency limit) for the number of words per sec-
ond. For the fitted parameters found in the corpus, we
plot v(n) in Fig.13, finding an optimal efficiency limit at
around 4.8 words per second, achieved when BGs last
about n∗ ≈ 34 words. The average number of words in
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Figure 13: Speech velocity function. When word size
is measured in time units, v(n) = 1/y(n), where y(n) is
Menzerath-Altmann’s law (MAL, Eq.8) defines the speaker’s
speech velocity. This function is in good agreement with
empirical data (blue circles) and is maximal for BGs with
n∗ ≈ 34 words. Experimentally however, we observe BGs
with an average size of about 6 words, hence suggesting a
suboptimal speech velocity. The critical point n∗ indeed sep-
arates a classical regime n < n∗ where the standard interpre-
tation of MAL holds, and an inverted regime n > n∗ where
the interpretation of the law switches.

a BG in the Buckeye corpus is however around 6 (for
which the speech velocity is only about 4 words/second),
meaning that on average speakers chat more slowly. We
can imagine a number of reasons why speakers in the
Buckeye corpus have on average a slightly suboptimal ef-
ficiency, from obvious ones where conversational speech
is performed in a relaxed environment where the speakers
are not in need to optimize information transmission per
unit time, to more speculative ones where lung capacity
(which imposes a physiological limit to BG size) plays a
limiting role.

IV. DISCUSSION

Linguistic laws –traditionally explored in the context
of written communication– are validated here with
unprecedented accuracy within oral communication,
both in the acoustic space spanned by time duration
and in symbolically transcribed speech. Since oral
communication predates written communication, it is
sensible to wonder whether the emergence of linguistic
laws in the latter context are indeed just a consequence
of their emergence in the former. In that case, the
question of why and how these complex patterns first
emerged in orality directly would point towards inves-
tigating how the cognition and physiology of human
beings evolved according to, among other gradients,
an evolutive pressure driven by human interaction and
their need to communicate. These questions also suggest
the need to perform comparative studies [68, 85] that

explore the emergence of similar complex structures in
the oral communication of other species, a task which
is theoretically possible even if the underlying language
code is unknown [86].

It is now worth discussing the breadth and depth of
our specific results. The first one deals with the time
duration distribution of linguistic units in oral commu-
nication. We have certified that the time duration of
phonemes, words and breath-groups in our database
are lognormally distributed, and coined this universal
character as the lognormality law. Furthermore, we were
able to mechanistically explain these traits at the word
and breath-group (BG) level through the introduction
of a stochastic generative model, which is able to
hierarchically explain the time duration distribution at
a certain linguistic level from the one emerging at the
linguistic level immediately below. Remarkably, this
model also predicts the correct quantitative shape of
the word and BG time duration distributions, and the
sole assumption we make is that phonemes themselves
are also lognormal, an hypothesis that we empirically
validate and is supported by previous analysis [8]. Note
that lognormality of phonemes has been discussed previ-
ously in the context of multiplicative processes [87] and
Markov chains [32], however we consider that a sound
explanation for its origin is still lacking, an issue –which
we speculate is a byproduct of underlying physiological
processes [36]– that is left as an open problem for future
work. Finally, note that our models do not require
a multi-speaker context: while the Buckeye-Corpus is
multi-speaker, individual analysis are also in agreement
with the model (see SI).

On a second step we turned to investigate more
traditional linguistic laws in the context of oral com-
munication, and started with Zipf’s law. Our results
for this case, where we find two scaling regimes (Figure
6), on agreement with [6, 50] and in line with [52], who
claims that double power law scalings is expected in
multi-author corpus (see SI for a clarification of this
aspect). Since each word can be spoken in different ways
(e.g. with different time durations and energy release),
it is not obvious how to explore Zipf’s law in physical
units, however see [86].

Then we turned to Herdan’s law, where we found that
the standard law V ∼ Lβ holds also in oral commu-
nication, and that a newly defined one –where we use
accumulated time elapsed T (in seconds) instead of total
number of words L– holds as well and with the same ex-
ponent, an observation that we were able to analytically
justify. These findings reinforce the idea that statistical
patterns observed in written language naturally follow
from analogous ones emerging in oral speech. As a
detail, note that the transition towards the stable regime
relates to the fact that the Buckeye Corpus consists of
concatenating multi-author corpus and therefore requires
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a speaker-dependent transient until the system reaches a
stable state, as previously found in some other studies [6].

Subsequently, we considered the third classical linguistic
law: the brevity law or Zipf’s law of abbreviation, where
shorter words tend to be used more frequently. To the
best of our knowledge, here we introduce for the first
time an explicit mathematical formulation of this law
(Eqs. 4 and 5) which we justify based on optimal com-
pression principles [20, 72]. This information-theoretic
formulation predicts that the law should emerge in
both symbolic and physical magnitudes. We were able
to show that this law (and its novel mathematical
formulation) indeed holds in oral communication when
measured both in the traditional setting (using number
phonemes or characters as a proxy for word size) and
when using physical magnitudes (using time duration to
measure word size). Since both brevity and Zipf’s law
address the frequency of linguistic units, we have also
been able to mathematically connect them to propose
a new size-rank law which we have also shown to hold
(Figure 10).
The principle of optimal compression provides yet
another reason why patterns in the acoustic setting
underpins the more commonly observed ones in written
texts: on average a word is composed by a small number
of phonemes or characters because this word –which
is a symbolic transcription of a spoken word– was
originally spoken fast (short time duration), not the
other way around. All the above notwithstanding, and
although the tendency to brevity is probably a universal
principle, we should also acknowledge that in certain
communicative contexts it may not be fulfilled if there
are other conflicting pressures such as sexual selection
[88], noise [89], long-distance calls [9] or other energetic
constraints [90].

We finally addressed Menzerath-Altmann’s law (MAL)
in oral communication at different scales (breath-group
vs words, and words vs phonemes). We first were able to
derive a mechanistic model based on the concatenation
of words that mathematically explains the onset of MAL
as proposed by Altmann. The law itself mathematically
predicts a second regime where the popular MAL inter-
pretation is inverted, and empirical results support the
presence of this second regime here (additional analysis
in other datasets should confirm whether the onset of
the second regime is generally appearing, or whether
this is just a mathematical artifact).
Interestingly, we find that MAL is fulfilled when the
constituent size is measured in physical units (time
duration, R2 = 0.7 and 0.9) but notably less so when
we use the more classic written units (R2 = 0.05
and 0.05, see table III). This is yet another indirect
indication supporting that written corpus is a discrete
symbolization that only captures the shadow of a richer
structure present in oral communication [8] in which
linguistic laws truly emerge, with a physical origin that

written texts would only capture partially. As a matter
of fact, working in time units enabled us to also define
a speech velocity function, which we have found to be
slightly below the optimal efficiency limit imposed by
the actual MAL, a deviation which was indeed expected
considering the fact that conversational speech is not
under stress to maximise informational content per
unit time. Note at this point that MAL has been
traditionally argued to emerge only in linguistic units
lying on adjacent levels [91], and under the symbolic
perspective words would not be considered the element
immediately below the breath group, and similarly the
phoneme is not the element immediately below the word
(i.e. the seminal work of Menzerath related words with
syllables [10]). Nonetheless, working with physical units
(time durations) MAL is fulfilled both between the BG
and word levels, and between the word and phoneme
levels.
It should also be noted that, to the best of our knowl-
edge, this is the first study relating acoustic levels
such as breath groups and words. As a matter of fact,
assuming that MAL has a purely physiological origin
[10, 11] that eventually percolated into a written corpus,
then breath-groups should indeed be more adequate
units to explore this law than sentences or clauses. BGs
are free from some of the problems emerging for sen-
tences and clauses [92], and actually are so universal that
they can also be measured in animal communication [68].

To conclude, we have thoroughly explored and ex-
plained a number of statistical patterns emerging in oral
communication, which altogether strongly suggest that
complexity in written texts –quantitatively summarised
in the so-called linguistic laws– is not necessarily an
inherent property of written language (the symbolic hy-
pothesis) but is in turn a byproduct of similar structures
already present in oral communication, thereby pointing
to a deeper, perhaps physiological origin [36, 93]. As a
constrast to the symbolic hypothesis, we coin this new
perspective as the physical hypothesis. The extent by
which the physical hypothesis holds has been previously
certified in prelinguistic levels [86] and to some extent in
phonology [94, 95] and ecological psychology [96]. In the
framework of linguistic laws, we argue that these must be
studied primarily by analyzing the acoustic magnitudes
of speech, since their recovery in written texts is due to
the extent to which they collapse and are a reflection of
orality. In Chomskyan terms, our results suggest that
linguistic laws come from non-symbolic principles of
language performance, rather than symbolic principles
of language representation. Also, we believe the physical
hypothesis allows a more objective analysis within
theoretical linguistics –including the classical debate on
linguistic universals– and avoids many espistemological
problems [97]. For instance, this paradigm does not
negate the symbolism of language, much on the contrary
it ultimately aims at explaining its origin without any
needs to postulate it a priori.
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Further work should be carried on to confirm our find-
ings, including similar analysis for additional physical
variables such as energy dissipation, and comparative
studies (i) in other languages and (ii) in oral communi-
cation for other species [86].
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