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Abstract—This work introduces a highly accurate and efficient
malware detection system based on 1-dimensional convolutional
neural networks. The system takes as input a binary file and
classifies it as malicious or benign. There is minimal pre-
processing of the binaries, with features discovery left to the
network during training. A crucial difference with other convo-
lutional neural networks (CNN) based approaches is the use of
1-dimensional convolutions; this methodological choice is shown
to have significant positive consequences for the detector. In order
to compare the detector with state-of-the-art techniques a TF-
IDF based benchmark malware detector is also implemented:
experiments show an improved accuracy of the proposed CNN
detector while maintaining similar training times. The system is
also compared, on a publicly available dataset of 11130 binaries,
with an existing embedding based CNN detector. The proposed
system outperforms, both in accuracy and training time the
embedding based CNN.

I. INTRODUCTION

Malware, or malicious software, is one of the primary
threats in digital security. Large resources, both labour and
monetary, are invested in anti-malware technologies to tackle
this problem [1]. As the efficiency of the anti-malware tech-
nologies has improved, so has the sophistication, potency and
domain of malware and their impact.

The complex nature of the digital ecosystem leaves many
domains for intrusive attacks. These domains are exploited by
malicious entities in ways that constantly change. Malware
have been particularly effective for intrusive attacks primarily
due to their ever evolving nature. This evolutionary nature
of modern-day malware is the key limitation of the popular
signature-based anti-malware technologies [18], [23]. More-
over, the multitude of available and new software in this
ecosystem makes it imperative for anti-malware technologies
to have high accuracy, as there is a large indirect cost for even
a small false positive rate. The need for high accuracy com-
pounded by the evanescent nature of malware make malware
detection a challenging practical problem to solve.

The field of machine learning has made invaluable con-
tributions in almost all major fields of research [9] with its
strongest impact on data-driven areas. Considering the nature
of the problem, this work aims at utilizing the effectiveness
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of modern machine learning algorithms as a more robust tool
for detection of malware. An attractive property of machine
learning techniques is their “generalization”, i.e., their ability
to effectively tackle a wide range of input even those that they
have not seen or trained on. As long as the premise holds that
the new malware are in some feature space and with some
notion of distance “close” to the previous malware, machine
learning tools can effectively generalize to new malware.

While there have been attempts at using these technologies
for the analysis of malware, it still remains a domain with a
lot of scope for investigation. With the development of new
architectures and methodologies, the field has proven to be
extremely versatile in terms of applications.

a) Contributions: This work presents a novel, deep
learning based detection system, which classifies binaries as
‘malicious’ or ‘benign’ in a static manner. The detection
model proposed is based on the notion of 1-dimensional
convolutional neural network i.e. neural networks with single
dimension input and single dimension filters being used for
the convolutional layers.

This paper argues 1-dimensional convolutional neural net-
work are a conceptually meaningful choice, as 2-dimensional
CNNs have problematic semantic interpretations.

Moreover such choice simplifies the model resulting in a
computationally lightweight implementation, taking around 20
minutes to complete training over a publicly available dataset
of 11130 binaries, with a resulting accuracy of 99.2%. The
detector is compared with the (only) CNN detector for which
results on the above dataset are available: the proposed system
improves on that detector both in accuracy and precision;
moreover there is a (minimum) five fold improvement in the
training time.

II. OVERVIEW OF MALWARE DETECTION

This section summarizes the major techniques that are being
used for detecting malicious pieces of software. Figure 1
shows a high-level view of the relation between the different
approaches.

a) Signature based techniques: The most popular tech-
nique that is employed to the task of malware detection is
based on static, signature matching ( [6]). It, and its variants,
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Fig. 1. Overview of techniques for malware detection

serve as the basis of the most popular anti-malware technolo-
gies in the market. This methodology follows the principle
of “code hoisting” and tries to provide a “confidence-centric”
measure of the files malicious potency.

In [14], the file in question is analyzed by the tool, which
tries to run the file through a set of known malicious code
patterns. The amount of matches it gets is equivalent to
the amount of confidence the tool has on the file being of
malicious nature. The signatures used by such tools vary
from the simple code sequences to more sophisticated regular
expression based code samples [2].

b) Feature based techniques: A commonly used tech-
nique is based on the idea of extracting distinguishing features
from files in question, which could then be used for detecting
malicious files.

The features extracted range from something as trivial as the
file size to a much more sophisticated feature based on n-grams
of files [21]. In [8], the authors worked on extracting n-grams
from sample binaries, which were then used as features for
training models for the task detecting malwares. The authors
from [19] aimed at utilizing the benefits of the n-gram based
approaches while trying to minimize the dimensionality of the
feature input space by evaluating the relative importance of the
various extracted n-grams. [11] used a similar strategy and
extract n-grams of operation codes from binaries, which are
then used for detection.

The technique from [25] is based on the idea document
classification techniques like TF-IDF for feature extraction.
These features are then used on various classifiers for detecting
malwares.

There have been techniques in the literature that uti-
lize compression-based distance metrics to analyze malicious
pieces of code. The work from [1] is based on the notion of
normalized information distance (NID) and employ this as a
distinguishing feature for training the classifier on.

Such techniques, which usually make use of a set of
features, rely on the fact that the classifier should be able
to generalize well based on the most distinguishing subset of
these features.

c) Other techniques: A popular class of techniques is
based on the notion of functional similarity between pieces of
code. These techniques are based on the idea of a distance-like
metric to quantify the amount of functional similarity between
two files.

These include control flow graph based approaches ( [2]),
along with works like [4] which use such graphs for computing
distance measures.

Another approach is based on model checking. In [14]
model checking is used for specifying the behaviour of pro-
grams and for detecting malicious chunks of code.

There have also been works which involve use of convo-
lutional neural networks (CNNs) [12] and variational autoen-
coders (VAEs) [26] for the purpose of analyzing and detecting
malware.

These methodologies are based on the idea of finding the
most relevant features, based on the structure of the file,
for detecting malicious behaviour. The robustness of these
techniques comes form the ability of deep neural networks to
generalize on new, unseen data. Such techniques are gaining
popularity due to their ability to utilize the large amounts of
data available.

A. Related Works

The successful use of CNNs for something significantly
different from image processing and computer vision was
demonstrated in [13], which uses it for the purpose of sen-
tence classification in natural language processing. That work
influenced a number of methodological choices made in this
work.

This paper differs from [13] in multiple ways, one of which
is the use of single dimensional filters for convolutional layers,
but the overlying concept presented in the work is closely
related to it.

Works like [17], [7] and [28] make use of deep learning
techniques for detecting malwares. In terms of the approach
taken, our work is the most similar to the work of [10], [17]
and [20], which in turn, follow similar approaches amongst
themselves. The idea being utilized in the works from [10]
and [20] is based on principle of a specific variation of
convolutional neural networks, where the filters (or feature
detectors), are two dimensional convolution which are allowed
to move in only one direction (either across x-direction or
across the y-direction). While [20] was focused on the input
size and computability of such single-dimensional-movement-
filter convolutional neural networks, the authors from [10] tried
to improve the aforementioned paper’s approach, while still
using the notion of an ‘embedding’ space and convolutional
neural networks. Our work makes use of convolutional neural
network, where the input is one dimensional (and consequently
the filters are one dimensional). As discussed in the later
sections of this work, our methodology improves upon the
performance from [10], while keeping it computationally effi-
cient, the major point of contention for [20].

The authors from [15] use sequences of system calls for
malware detection. Extracting system calls associated with



binaries requires the binary to be executed in a controlled
environment, which adds to the overhead in terms of compu-
tations involved. The model presented here works statically
and directly on the disassembled, sample binaries, thereby
eliminating the need for extracting system calls from sample
binaries.

Malware authors who are cognizant of the functioning of
anti-malware signature based techniques are able to circum-
vent through most checks with relative ease ( [18]). One of the
primary reasons for this seems to be the stringent signatures
that serve as the basis for these techniques, as being used in
[14]. This is primarily due to the fact that these techniques
do not employ statistical measures and have strict pattern
matching rules used in the malware detection process. Our
approach is based on statistical learning models, such that the
features learned are not as rigid as the ones being used by
traditional signature based techniques. Also, the work of [14]
relies on the file being represented in an appropriate manner,
which adds to the computational overhead of the task. Our
model involves minimal pre-processing, and is structured to
work on the existent representation of the sample binaries.

In this paper, we compare our deep learning based detector’s
functionality with a benchmark detector that we implemented,
which is closely related, in terms of the principles used, to the
works like [25], [11] and [27]. In the work of [24], the authors
work with multiple extracted features form binaries, some of
which revolve around the notion of capturing structure-related
attributes of binaries by collecting n-gram based statistics.
Consequently, due to the large number of detection tools built
around this principle, this work uses its own detection tool,
which is inspired from the aforementioned works from the
literature. Also, owing to the lack of public availability of
datasets being used in majority of the works presented as
observed by the authors for [20], this paper’s benchmark tool
tries to provide a detector, as explained in Section IV-A, based
on the classical techniques, which can be used for assessing
the performance of our proposed architecture in a reasonable
manner.

Apart from the popular classical techniques, this work also
addresses some of the issues with the other methodologies
used for malware detection. The graph based techniques, as
used in [3], [2] and [4] are primarily aimed at developing more
robust malware ‘signatures’. Their heavy reliance on graphical
representation of code usually do not scale well with files
which are large in size. Also, the similarity measures, which
happen to be graph based, are computationally expensive to
compute, thereby reducing the practicality of such techniques.
In this work, we have demonstrated the training and evaluation
performance of our model, by using a dataset which has files
of varied lengths.

For this work, we tried the implementation of another
benchmark detector based on the information theoretic ap-
proach for malware detection, similar to the ones used by [1].
We found the computational limitation of such an approach
during the attempted implementation. The pre-processing stage
was computationally expensive and could not match the prac-

ticality of the other approaches.
The deep neural networks based techniques are able to use

the large malware samples available and aim to automatically
extract relevant features for detecting malware. Given that
these neural networks receive the raw file as input, the features
that they are able to extract are constrained to be structural
in nature. Consequently, these techniques suffer from the
common drawbacks associated with deep learning approaches.
The techniques that use CNNs [12] for analysing suspected
files tend to represent the raw binary as an image, which may
not be an accurate representation due to the limitations of
representing a binary stream of data as a two dimensional
image. The use of more modern techniques, such as the one
from [26], need a lot of data for training and the training of
VAEs 1 remains a practical challenge.

III. PROPOSED METHODOLOGY FOR CNN

This section outlines the main components of the proposed
approach. We start by discussing the problem with 2 dimen-
sional representations of binaries.

A. Instruction Embedding: the distributional hypothesis

In order for traditional deep learning based CNN approaches
to be used for the task of malware detection, the binaries are
usually represented in a two dimensional way. This would
allow to leverage the benefits of CNN, including the most
relevant one which accounts for translational invariance 2.
There are two basic methodologies for representing binaries
in a 2 dimensional way: The first treats raw binaries as
images: this approach loses the structure of the code, and more
worryingly conflates vertical and horizontal proximity in the
2-d space (one meaningful, the other meaningless): for these
reasons it seems a poor methodological choice. The second
approach, more sophisticated, uses the notion of ‘embedding
space’, a concept borrowed from the NLP community and
used in malware detection in [20], [28], [17] and [10]. At
a high level, the essence of the embedding space approach
is to transform the n length binaries in a n × m matrix
where each row is a vector associated with an instruction. The
idea of projecting instructions into a high-dimensional vector
space has been borrowed from the field of natural language
processing, where the distributional hypothesis (“words that
occur in similar contexts tend to have similar meanings”) is
used to justify the approach [16]. The work from [16] shows
certain issues with the meaningfulness of embedding vectors in
some type of sentences, the prominent one being the problem
with contextuality. This problem stems from the fact that the
corpus from which the embeddings may be extracted, may
contain samples wherein semantically different words occur
nearby each other. Consequently, the embeddings extracted
would treat these words in a similar manner, given that their
context appears to be similar whereas their semantics is in fact
significantly different.

1Variational Autoencoders
2ability to detect features anywhere in the image



Apart from the conceptual issues elaborated above, the use
of 1-dimensional inputs to the CNN network has significant
performance advantages. This is further substantiated by the
results in Section VI, where we attribute the improvement
in training time to the decision of using single dimensional
inputs, instead of embedding vectors.

Summing up: by eliminating the need for two dimensional
representation of binaries, the proposed model is conceptually
simpler, able to work in a computationally efficient manner,
with no negative effect on the accuracy, and in case of works
with publicly available data-sets, even outperforming them,
thereby strengthening our assumptions regarding the issues
with embedding space based detectors.

B. 1-Dimensional Convolutional Neural Network

CNNs have been one of the major components of the use of
artificial neural networks for solving complex computer vision
problems.

The basis of CNNs is the convolution operation that is
carried out as a part of the convolutional layers. For most
of the computer vision tasks, a 2-dimensional version of this
operation is used, given that the network usually operates on
2-dimensional images. Typically such convolution can be seen
as a matrix of tunable parameters that scans through the image
from left to right an top to bottom; this operation is capable to
capture visual features (e.g. a straight line) whenever it may
occur in the image, in particular for example both vertical,
diagonal and straight lines.

A 1-dimensional convolution operation works on the same
principle, with the only major difference being the input and
the filter dimensions; it is hence a vector scanning the program
top to bottom, looking for features in this sequence.

In the example depicted in Fig. 2, the notion of 1-
dimensional convolution operation is shown with a 1-
dimensional 5 × 1 input vector, that is being acted upon by
another 1-dimensional 3× 1 weight vector. The 3× 1 vector,
moves in strides of 1, working on a 3×1 section of the input,
as it moves across it, producing a 3× 1 output vector.

Formally, given a weight vector ~W , of dimensions r × 1
(also called a filter or ‘receptive field’) acting on the input
vector ~T , a convolution with output z is defined as follows:

z = ~W ∗ ~T [p : p+ r] (1)

where p is the current position of the weight vector as it strides
along the input, to produce a vector of output values. In equa-
tion 1 the operation ∗ is the element-wise multiplication of the
weight vector with the input, followed by the summation of the
values obtained. The pseudo-code below is an implementation
of the operation ∗:

for i in len(W):
z = z + W[i]*T[p+i]

The values z, obtained as the filter moves across the input
together form the input vector to the subsequent layer.

After training the parameters get tuned so that each weight
vector is responsive to a specific feature in the binary. These

‘receptive fields’, when analyzed in the context of instruction
sequences extracted form binaries, turn out to work as in-
struction sub-sequence detectors. The convolutional layers of
weight vectors, of dimensions 3× 1 in our model, works as a
‘tri-gram’ detector. Following the training process, the weight
vectors get tuned to be activated at certain ‘tri-grams’, which
when present in certain combinations, result in the binary
being classifier as ‘malicious’.

Fig. 2. 1-Dimensional Convolution

The activation layer, conventionally, works on the output
of the preceding convolutional layer by applying a specific
function to the output vector values, in an element-wise
manner.

The detector uses the Rectified Linear Unit or ReLU activa-
tion function. Apart from being computationally advantageous,
the ReLU activation function is well studied and has known,
positive implications on the training process.

The dense layers are placed at the end of architecture,
receiving inputs from the previous convolutional and activation
layers. In essence, these layers are identical, in terms of
functionality, to the hidden layers of a traditional multi-layer
perceptron. The neurons in these layers are fully-connected, in
terms of the weights, and hence are ‘dense’ from a connectivity
point-of-view.

In case of a 1-dimensional CNN architecture, the dense
layers serve as the final stage for parametric operations, before
the class probabilities are generated.

IV. IMPLEMENTATION

This section describes the two architectures implemented:
the first is a TF-IDF based detector used as benchmark
implementation. The second architecture implemented, and
main contribution of this work, is based on 1-dimensional
convolutional neural networks.

A. TF-IDF n-gram based detector

1) Background on TF-IDF: Term frequency-inverse doc-
ument frequency, or TF-IDF, is a measure, which has been
used extensively in the field of information retrieval. It works
on the principle of utilizing a term’s relative commonness for
associating a weight with the said term. It estimates a term’s
relative commonness using a two-part formula, the elements
of which capture the frequency of the respective term while
accounting for its information content.

The TF-IDF measure value for a term t in document d from
the corpus C is

TF-IDFt,d = tft,d · idft,C (2)



Where tft,d is the term-frequency of the term t in document
d: Its value is the number of times t appears in the document
d divided by the total number of terms in d.

The problem with term-frequency on its own is that common
terms (like ‘and’, ‘that’ etc.) have high frequency yet are not
very important. The idft,C term addresses this problem.

The term idft,C in the formula (2) is the inverse document
frequency which is defined as the log of the number of
documents in the corpus divided by the number of documents
containing the term t:

idft,C = log
|C|

|{d ∈ C | t ∈ d}|
(3)

For terms which do not occur in a large number of doc-
uments of the corpus, the idft,C formula assigns a relatively
higher value as compared to the more commonly used terms
across the corpus. The aforementioned term is, hence, able
to improve the weights associated with individual terms that,
when encountered in a document, convey more information.

2) TF-IDF document vector: Let T = {t1, . . . , tn} be the
set of terms in all documents from the corpus. T provides a
basic standard vocabulary, against which, we can define TF-
IDF measure values for each d∈ C.

Given a document d, its associated TF-IDF vector is then
defined as:

~Dd = [TF-IDFt1,d · · ·TF-IDFtn,d]

This vector is a numerical representation of the structure of
d against a base set of terms.

Such vectorial representation of documents holds structural
information that can be leveraged in various pattern detection
tasks.

The TF-IDF detector involves the use of term frequency-
inverse document frequency measures of n-gram sequences
for extracting features from the subject binaries.

The detector here implemented has been influenced by
works in [21], [8] and [19].

For the purpose of developing a benchmark detector based
on classical feature-based techniques, we evaluated the per-
formance of n-gram and TF-IDF based features individually,
as summarized in Table I. Based on the results in Table I,
our design of using TF-IDF measures of bi-grams seems
reasonable, given that it happens to be the best performing
methodology.

3) Detector: The TF-IDF detector has the following two
components:

a) Feature Engineering: Given a binary file b, seen here
as a sequence of assembly instructions, we extract a list of bi-
grams. For example given the following snippet of assembly
code:

.text:00401314 pop eax

.text:00401315 call eax

.text:00401317 test eax, eax

.text:00401319 jnz short loc_401302

.text:0040131B pop edx

.text:0040131C push edx

We obtain the following list of bi-grams:

[’pop call’, ’call test’, ’test jnz’,
’jnz pop’, ’pop push’]

The ‘corpus’, C of ‘documents’, is defined as the set of all
list of bi-grams, one list for each binary file in the set.

The set G is the set of all bi-grams appearing at least once
in the corpus C. The set of bi-grams thus defined serves as the
‘vocabulary’ for calibrating the features using TF-IDF measure
values.

The corpus C is then processed in order to compute the TF-
IDF measures for each ‘document’ in C, such that for each d∈
C, we have a |G|-length vector of TF-IDF measure values. The
process followed is described in IV-A2, where the standard
vocabulary set T as described in section IV-A2 is the set of
bi-grams G.

This TF-IDF measure vector serves as the document’s input
feature that gets fed into the artificial neural network, which
uses it for the binary classification task of establishing as to
whether or not the input binary is malicious or benign.

b) Neural Network for the TF-IDF detector:: The TF-
IDF detector is built on top of a fully-connected artificial
neural network, which is trained on the TF-IDF measure
based features extracted from the binaries using the feature
engineering process.

The network uses a 2 hidden-layered, fully-connected, arti-
ficial neural network, where the 2 hidden layers are attached
to an input and an output layer. The hidden layers are each 64
neurons wide, with Rectified Linear Unit (ReLU) activation
functions and a dropout probability of 50%.

The final layer, which also serves as the output layer of
the network, uses the softmax function to produce prediction
values. The network uses the standard softmax cross-entropy
loss function and the Adam optimizer during the training
process.

B. Deep 1-D Convolutional Neural Network based detector

The second technique that the paper proposes for the task
of malware detection is based on the notion of convolutional
neural networks (CNN).

1) Data pre-processing: A binary file from the
dataset is represented as a list of instructions, e.g.
[’pop’,’call’,’test’,’jnz’,’pop’,’push’]
The processed binaries are then padded (with a fresh
character not used for the alphabet of instructions) such
that the resultant dataset has samples of the same length.
This dataset is utilized for training and evaluating the neural
network, which is described in the next section.

The pre-processing stage for this methodology differs from
the TF-IDF pre-processing as it doesn’t extract features from
the samples, thereby feeding into the neural network the raw
sequences of instructions extracted from sample binaries.

2) 1-D Convolutional Neural Network: The pre-processed
binaries, as described in the previous section, are fed into the
network, which, after a set of convolutions, activation and ma-
trix multiplication operations, outputs the class probabilities.



Fig. 3. 1-Dimensional CNN architecture

Method Accuracy Train time
Ngram 87.2% 150
TF-IDF 88.0% 180
TF-IDF+Ngram 93.7% 190

TABLE I
METHODOLOGY COMPARISON FOR BENCHMARK DETECTOR. TRAIN TIME

IS TIME PER EPOCH (IN SECONDS)

These probabilities are used for deciding whether or not a
binary is malicious.

The implementation consists of a neural network com-
posed of six 1-D convolutional layers followed by two fully-
connected, dense layer. Following the convention associated
with convolutional neural network, this work uses ReLU
(Rectified Linear Units) activation layers, in front of each of
the six convolutional layers. Figure 3 shows an overview of
the architecture.

Our architecture has differences from the other works using
CNNs for this task. In contrast with the them, these convolu-
tional layers used employ a single dimension filter on a single
dimension output, leading to an architecture with only single
dimensional components. Also, the model proposed in this
work doesn’t make use of any max-pool layers. In works like
[10], one of the reasons presented for using max-pool layers
is the need for a lower size input for the subsequent layers.
Due to the use of 1-dimensional input-filter convolutions for
the CNN model proposed here, we managed to achieve the
desired accuracy without the need for reducing input sizes.

The architecture uses a set of 16 filters for each of the six
convolutional layers. The individual filters have a window size
of 3× 1 and slide at a stride of 1 across the input vector. The
former of the two dense layers produces a 16 dimensional
output while the latter serves as the output layer, producing
the class probabilities.

Our architecture follows standard conventions, including use
of a 50% dropout rate for the neurons in the intermediary
layers. The network uses the Adam optimizer at the initial
learning rate of 0.0001 for minimizing the categorical cross-
entropy loss function during the training process.

V. EXPERIMENTS

The following section is divided into two parts, explaining
the datasets and the class distribution. For both datasets the
Portable Executable (PE) format file is used.
A. Dataset A

The dataset consists of a set of malware executables avail-
able from the Microsoft BIG Malware Dataset [22]. The be-
nign files in the dataset are system executables from Windows
10 installations.

For the malware binaries available from the Microsoft
BIG classification challenge [22], the asm files were already
provided. This dataset from Microsoft consisted of a number of
malware samples from 9 different malware families. The most
samples available are from Ramnit, Lollipop and Kelihos ver3
families, and hence form the majority of the subset used for
experiments. These comprise of computer worms, adwares and
botnets. For the set of benign binaries, we used a disassembler
to process it. Given that this methodology of collecting benign
binaries has been followed by a number of other works, we use
it to minimize the differences in the testing scenarios. Table II
describes the dataset split.

B. Dataset B

The second dataset is the one made available by the authors
from [10]. The dataset contains 11130 binary samples, of
which 6066 samples are labelled as malware and the rest
5064 are labelled as ‘trusted’. The malware samples in this
dataset have been downloaded from VirusShare and have been
verified by VirusTotal, making this dataset specific for viruses.
The benign samples were collected from application stores
(Tencent and Baidu). The dataset is downloadable from the
URL provided in [10] 3

Count Size Variance
Malware 1155 9.5 553.7
Benign 608 6.8 308.3

TABLE II
AVERAGE SIZE AND VARIANCE (IN MB) FOR BINARIES IN DATASET A.

Comparing the two dataset here are some pros and cons:
Dataset A contains binaries of varying sizes and more varied

nature, with the number of binaries belonging to the ‘benign’
class being significantly lower. This allows for the classifier
to learn on a more closely modelled real-world dataset, given
that binaries of various sizes may appear in practice.

For dataset B, the class sizes are almost the same, and the
size of binaries is not as different as in dataset A. This serves as
a reasonable dataset due to the much larger number of samples
available for the classifier to train on.

VI. RESULTS

Both architectures specified in the previous sections have
been implemented using Keras ( [5]) with Python 3.5. The
network architecture has the capability to be trained on a GPU,
if available.

3 https://github.com/deep-learning-malware/Dataset



For the purpose of training the network, we used the Adam
optimizer, at a learning rate of 0.0001, with a batch size of 16
samples, and the entire training set being considered for the
epochs.

The training epoch length for our 1-dimensional CNN
detector is 10, when run on an Ubuntu virtual machine from
Google Cloud’s compute engine suite, containing one Nvidia
Tesla P100 GPU for use.

The following subsections contain the results obtained dur-
ing the experiments conducted on the two datasets, with the
detectors from this work.

a) Benchmark Detection Tool’s Results: Dataset A: In
order to compare the performance of our system with the
benchmark detector implemented in this work, we split the
dataset A in two parts, the training set and the test set, with
a ratio of 80:20, respectively, for the two parts. The model
gets trained on the 80% training data, and is tested on the
remaining 20% of the data.

The performance of the benchmark detector is summarized
by the classification report, shown in Table III. The TF-IDF
based detector performs well on the ‘malware’ class, while the
performance drops for the samples from the ‘benign’ class. A
possible explanation for this behaviour may be the imbalance
between classes’ sizes in the dataset A.

The confusion matrix concrete values for the TF-IDF based
detector is shown in Table IV. The number of ‘False Positives’
by the benchmark detector is low, with an overall accuracy of
93.7%.

The ROC curve for this detector, Fig. 4, reflects, graph-
ically, the classification performance of this detector. The
curve, whose slope is a representation of the ratio between
True Positive Rate and the False Positive Rate for different
threshold values, depicts the detector’s performance against
varying threshold values. It can be seen from the curve, that
the classification performance of this detector reflects the
classification report values.

The performance of this classifier is comparable with the
performance of some of the other detectors in the literature
based on n-grams and TF-IDF. This sets for a fair comparison
with the CNN detector being proposed in this work.

precision recall f1-score support
Benign 85% 100% 92% 608
Malware 100% 91% 95% 1155
Average 92.5% 95.5% 93.5% 1763

TABLE III
CLASSIFICATION REPORT:TF-IDF-BASED BENCHMARK DETECTOR:

DATASET A

True diagnosis
Positive Negative

Positive 1046 2
Negative 109 606

Total 1155 608 1763
TABLE IV

CLASSIFICATION REPORT VALUES:TF-IDF-BASED BENCHMARK
DETECTOR: DATASET A

Fig. 4. ROC curve: TF-IDF-based benchmark detector : Dataset A

b) Proposed CNN-based Detector Results: Dataset A:
The performance of the 1-dimensional CNN based detector is
evaluated on the same dataset and using the same settings as
for the TF-IDF based benchmark detector.

The CNN-based detector was trained for a period of 10
epochs, following which the learning loss was seen to have
stabilized. Due to the use of one dimensional inputs for the
convolutions to work on in the detector as opposed to two
dimensional inputs, the training process was computationally
very efficient, as described in Section VI-A. The model archi-
tecture, which was deeper in terms of the number of layers as
compared to the benchmark detector, took a comparable time
for training, using the same resources.

We use the standard metrics to assess the classification
performance of the detector, including the ROC curve (Fig. 5)
and the classification report values (Table VII).

The classification report and the confusion matrix values for
the 1-D CNN shown in Table VII and Table VI respectively.
Results show that with the same amount of data given for
training, the CNN-based detector has a precision value of 94%
for the samples belonging to the ‘benign’ class, as compared
to the 85% precision obtained from the TF-IDF based detector.

Fig. 6 shows the performance of the detector on the test
set during the training process. The graphical representation
further shows the detector’s improvements on unseen data, as
it goes through the learning process.

The CNN-based detector has an accuracy of 97.51% on
dataset A, with relatively low ‘False Positive’ and ‘False
Negative values’.

c) Proposed CNN-based Detection Tool’s Results:
Dataset B: To test the efficiency and the accuracy of the
CNN-based model and compare to other works, we use the
dataset made available by the authors from [10]. This dataset
is described in Section V-B.

Various variations in the architecture of the proposed model,
as summarized by Table VIII, have been explored, and the
six-layered architecture produces the best results. The depth
of the architecture in the proposed CNN model improves



Technique Accuracy Precision Recall F1-score
Proposed model 99.2% 99.5% 99% 99%
EzNet 99% 99.4% 98.4% 98.9%

TABLE V
MODEL COMPARISON: CNN-BASED DETECTOR AND EZNET : DATASET B

Fig. 5. ROC curve: CNN-based detector : Dataset A

precision recall f1-score support
Benign 94% 99% 96% 608
Malware 99% 97% 98% 1155
Average 96.5% 98% 97% 1763

TABLE VI
CLASSIFICATION REPORT: CNN DETECTOR: DATASET A

the accuracy measure and doesn’t have any adverse impact,
computationally, on the training process. The increase in the
number of layers provides more parameters thereby increasing
the learning capacity of the model. The maximum accuracy is
reached by the architecture with 6 convolutional layers, with
no max-pool layers. Beyond this, increasing the layers doesn’t
impact the accuracy and makes the training computationally
expensive.

The dataset was split into two parts, 80% containing the
training data while the remaining 20% containing the testing
data, which was used during training to monitor the detector’s
learning. The training process lasted for a total of 10 epochs,
with the best accuracy being achieved on the 8th epoch.

The evaluation metric results are shown in Table XI holding
the classification report and Table XII holding the classifica-
tion report values.

The detector, on evaluation, has relatively low ‘False Posi-
tive’ and ‘False Negative’ values. This reflects the high overall
accuracy obtained. As expected while training this detector on
the smaller dataset A, it generalizes well on a much larger
dataset, while staying computationally efficient.

The detector performs with an overall accuracy of 99.2%,
with the recall and f1-score values of 99% and an average
precision score of 99.5%. Given this, the performance happens
to be better than the detector presented in [10] in terms of
the overall accuracy, precision, recall and f1-score percentages

True diagnosis
Positive Negative

Positive 1118 7
Negative 37 601

Total 1155 608 1763
TABLE VII

CLASSIFICATION REPORT VALUES: CNN-BASED DETECTOR: DATASET A

Fig. 6. Validation accuracy curve during training: CNN-based detector:
Dataset A

achieved, as summarized by Table V.
The proposed detector’s behaviour after training can be seen

in Fig. 7, where we plot of the output of the first 1-dimensional
convolutional layer, and in Fig. 8, plotting the the output of
the last 1-dimensional convolutional layer. In both plots the
x-axis represents the vector output of the convolutional layer,
the y-axis the value of the vector at that entry. We consider
the trained network and we randomly sampled 500 ‘benign’
binaries and 500 ‘malware’ binaries from dataset B, and pass
it through the network. A red dot in the plot is the average
value of the 500 ‘malware’ binaries for that vector entry. A
green dot is the average value of the benign binaries on that
vector entry.

Since the two plots have been generated after the model has
been trained, we can see the difference in the activations (from
the first filter) produced by ‘malware’ and ‘benign’ samples.
In particular, both figures show a clear separation between the
sections of the layer outputs that get activated by ‘malware’
and the ones activated by ‘benign’ samples.

A. Discussion

Based on the results from the experiments, the 1-
dimensional CNN-based detector here presented is a compu-
tationally light and accurate detection mechanism.



Architecture Best Accuracy Train time
3-layers 95.2 100
4-layers 95.8 110
5-layers 97.2 114
6-layers 99.2 130
7-layers 98.10 134

TABLE VIII
ARCHITECTURE COMPARISON: CNN-BASED DETECTOR: DATASET B.

EACH LAYER HAS 16 FILTERS. TRAIN TIME IS TIME PER EPOCH (IN
SECONDS)

precision recall f1-score support
Benign 97% 98% 98% 5064
Malware 98% 98% 98% 6066
Average 97.5% 98% 98% 11130

TABLE IX
CLASSIFICATION REPORT: TF-IDF BASED BENCHMARK DETECTOR:

DATASET B

Due to the unavailability of public datasets for comparisons
when it comes to classical feature-based approaches, we
implemented our benchmark tool and evaluate it against our
CNN proposed model. From the results obtained, the 1-D
CNN-based detector outperforms the TF-IDF based detector.
Apart from the overall accuracy value, where the CNN de-
tector achieves a 97.51% accuracy as compared to the 93.7%
accuracy obtained by the TF-IDF detector on dataset A, the
CNN-based detector, although being deeper, in terms of layers,
and making use of computationally heavier convolution layers,
seems to have training times comparable to the shallower
TF-IDF based classifier. In order to make a fair comparison
between the two approaches we used the same resources and
datasets.

For a more general comparison, we tested our CNN-based
detector with the one presented by [10] on their publicly
available dataset. Based on the results obtained, our 1-D CNN
detector achieves a better accuracy, while being computation-
ally light. As shown in Table IX and Table X, our proposed
detector, performs better than the benchmark detector on the
publicly available dataset as well. Furthermore, the EzNet
model with a single layer has a training time of 5,855.28 sec
( [10]), while the model presented in this work achieves the

Fig. 7. First layer output visualization for the CNN

True diagnosis
Positive Negative

Positive 5933 105
Negative 133 4959

Total 6066 5064 11130
TABLE X

CLASSIFICATION REPORT VALUES DATASET B:TF-IDF-BASED
BENCHMARK DETECTOR

precision recall f1-score support
Benign 100% 98% 99% 5064
Malware 99% 100% 99% 6066
Average 99.5% 99% 99% 11130

TABLE XI
CLASSIFICATION REPORT: CNN DETECTOR: DATASET B

said accuracy of 99.2% within a span of 10 epochs, with a per
epoch train time of 130 sec, leading to an overall training time
of 1,300 sec. We attribute this to use of a single dimension
input-filter convolutions, as discussed in Sec. III-A.

Limitations: The detector relies on the availability of
the disassembled code from a disassembler. There have been
techniques, explained in [18], which discuss obfuscation tech-
niques which make the disassembly of executables difficult.
More general machine learning based limitations including
constructed adversarial attacks may provide challenges to the
detector.

VII. CONCLUSION

Convolutional neural networks have led to impressive ad-
vances in the field of machine learning. Their success origi-
nated from their proven capability of automatically discovering
relevant features in images and their generalization capabili-
ties. This paper introduced a novel detection technique for
malware binaries based on convolutional neural networks. A
crucial difference with other CNN approaches is the use of

Fig. 8. Final layer output visualization for the CNN

True diagnosis
Positive Negative

Positive 6059 86
Negative 7 4978

Total 6066 5064 11130
TABLE XII

CLASSIFICATION REPORT VALUES: CNN DETECTOR: DATASET B



1-dimensional convolutions. This methodological choice is
justified in terms of its conceptual meaningfulness. The con-
ceptual simplification compared to 2-dimensional convolutions
has also practical implications; based on publicly available
datasets, it suggests it improves on the state of the art, both
in accuracy and training times with an at least five-fold
improvement in training time with respect to a comparable
detector. Further works of interest would be investigating
this methodology for classification of malware families and
the integration with static analysis techniques like abstract
interpretation to further improve robustness.
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