
1

Analysis of microarray and next generation sequencing data for
classification and biomarker discovery in relation to complex

diseases

A thesis submitted by

Vahid Elyasigomari

in partial fulfilment of
the requirements of the degree of

Doctor of Philosophy

in the

School of Engineering and Material Science
Queen Mary, University of London

2017

2

PhD Thesis Declaration

I, Vahid Elyasigomari, confirm that the research included within this thesis is my own work

or that where it has been carried out in collaboration with, or supported by others, that this

is duly acknowledged below and my contribution indicated. Previously published material is

also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original, and does

not to the best of my knowledge break any UK law, infringe any third party’s copyright or

other Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check the

electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree by

this or any other university.

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author.

Signature:

Date:

Details of collaboration and publications:

• Elyasigomari, V., Mirjafari, M. J., Screen, H R C., and Shaheed, M H. (2015), Cancer

classification using a novel gene selection approach by means of shuffling based on data

clustering with optimization, Journal of Applied Soft Computing. 35(1), pp 43-51.

• Elyasigomari, V., Lee, D., Shaheed, M H. (2017), Development of a two-stage gene

selection method that incorporates a novel hybrid approach using the cuckoo optimization

algorithm and harmony search for cancer classification. Journal of Biomedical Informatics.
67(1), pp 11-20.

3

Abstract

This thesis presents an investigation into gene expression profiling, using microarray and

next generation sequencing (NGS) datasets, in relation to multi-category diseases such as

cancer. It has been established that if the sequence of a gene is mutated, it can result in the

unscheduled production of protein, leading to cancer. However, identifying the molecular

signature of different cancers amongst thousands of genes is complex. This thesis investigates

tools that can aid the study of gene expression to infer useful information towards

personalised medicine.

For microarray data analysis, this study proposes two new techniques to increase the

accuracy of cancer classification. In the first method, a novel optimisation algorithm, COA-GA,

was developed by synchronising the Cuckoo Optimisation Algorithm and the Genetic Algorithm

for data clustering in a shuffle setup, to choose the most informative genes for classification

purposes. Support Vector Machine (SVM) and Multilayer Perceptron (MLP) artificial neural

networks are utilised for the classification step. Results suggest this method can significantly

increase classification accuracy compared to other methods.

An additional method involving a two-stage gene selection process was developed. In this

method, a subset of the most informative genes are first selected by the Minimum Redundancy

Maximum Relevance (MRMR) method. In the second stage, optimisation algorithms are used

in a wrapper setup with SVM to minimise the selected genes whilst maximising the accuracy

of classification. A comparative performance assessment suggests that the proposed algorithm

significantly outperforms other methods at selecting fewer genes that are highly relevant to

the cancer type, while maintaining a high classification accuracy.

In the case of NGS, a state-of-the-art pipeline for the analysis of RNA-Seq data is

investigated to discover differentially expressed genes and differential exon usages between

normal and AIP positive Drosophila datasets, which are produced in house at Queen Mary,

University of London. Functional genomic of differentially expressed genes were examined

and found to be relevant to the case study under investigation. Finally, after normalising the

RNA-Seq data, machine learning approaches similar to those in microarray was successfully

implemented for these datasets.

4

Table of Contents

Abstract	...	3	

Table	of	Contents	...	4	

List	of	Figures	..	8	

List	of	Tables	...	11	

Acknowledgments	..	13	

Chapter	1:	Introduction	..	14	

1.1:	Background	...	14	

1.2:	Motivations	...	16	

1.3:	Aim	and	Objectives	...	16	

1.4:	Contributions	...	17	

1.5:	Outline	of	the	Thesis	...	18	

1.6:	Publications	...	19	

1.7:	Utilised	microarray	datasets	throughout	this	thesis	...	20	

1.7.1:	Leukaemia	dataset	...	20	

1.7.2:	Lymphoma	dataset	...	20	

1.7.3:	Prostate	dataset	...	21	

Chapter	2:	Background	and	Recent	Developments	...	22	

2.1:	Gene	Expression	..	24	

2.2:	DNA	Microarray	...	25	

2.2.1:	cDNA	Microarrays	..	25	

2.2.2:	Oligonucleotide	Microarray	..	27	

2.3:	Next	Generation	Sequencing	Technology	(NGS)	...	29	

2.3.1:	Roche/454	FLX	Pyrosequencer	...	30	

2.3.2:	Illumina	Genome	Analyser	...	31	

2.3.3:	Applied	Biosystems	SOLiD	Sequencer	...	34	

2.3.4:	NGS	Raw	Data	File	Formats	and	Quality	Scores	for	Detected	Nucleotides	36	

2.4:	Gene	Expression	Profiling	Using	NGS	Technology	(RNA-Seq)	...	38	

2.5:	Analytical	challenges	for	microarray	and	NGS	data	in	respect	to	profiling	and	understanding	

diseases	..	39	

2.6:	Summary	...	40	

5

Chapter	3:	Overview	of	Machine	Learning	Approaches	for	Microarray	Data	Analysis	41	

3.1:	Introduction	..	41	

3.2:	Design	..	41	

3.3:	Pre-Processing	...	42	

3.4:	Unsupervised	Classification	...	44	

3.4.1:	K-means	..	45	

3.4.2:	Fuzzy	C-means	..	46	

3.4.3:	Hierarchical	Clustering	...	47	

3.4.4:	Self-Organising	Map	...	48	

3.4.5:	Binarisation	of	Consensus	Partition	Matrices	(Bi-CoPaM)	...	50	

3.4.6:	Unification	of	clustering	results	from	multiple	datasets	using	external	specifications	

(UNCLES)	...	54	

3.5:	Supervised	Classification	...	55	

3.5.1:	Support	Vector	Machine	...	55	

3.5.2:	Multilayer	Perceptron	(MLP)	Artificial	Neural	Network	...	59	

3.6:	Feature	Selection	..	64	

3.7:	Overfitting	...	66	

3.8:	Summary	...	68	

Chapter	4:	Effects	of	Data	Clustering	Prior	to	Gene	Selection	on	Cancer	Classification	69	

4.1:	Introduction	..	69	

4.2:	Optimisation	Based	Clustering	Techniques	...	70	

4.2.1:	Proposed	Cost	Function	..	70	

4.2.2:	Genetic	Algorithm	(GA)	..	71	

4.2.3:	Particle	Swarm	Optimisation	(PSO)	..	72	

4.2.4:	Cuckoo	Optimisation	Algorithm	(COA)	...	74	

4.2.5:	Proposed	COA-GA	Algorithm	for	Clustering	...	76	

4.3:	Gene	Ranking	and	Selection	..	77	

4.4:	Classification	and	Performance	Evaluation	...	79	

4.4.1:	Classification	Methods	...	79	

4.4.2:	Performance	Evaluation	...	80	

4.5:	Investigating	the	Effects	of	Conventional	Clustering	Methods	on	Classification	Performance	80	

4.5.1:	Methods	...	80	

4.5.2:	Results	..	82	

4.6:	Proposed	Gene	Selection	Based	on	Shuffle	Technique	...	86	

6

4.6.1:	Methods	...	86	

4.6.2:	Results	..	88	

4.7:	Summary	...	94	

Chapter	5:	Two	Stage	Gene	Selection	for	Cancer	Classification	Using	Microarray	Data	96	

5.1:	Introduction	..	96	

5.2:	Proposed	Method	...	98	

5.3:	Discretisation	of	Data	..	99	

5.4:	First	Stage	Gene	Selection	Using	Minimum	Redundancy	Maximum	Relevance	(MRMR)	102	

5.5:	Second	Stage	Selection	Using	Evolutionary	Algorithms	..	104	

5.5.1:	Harmony	Search	Algorithm	(HS)	...	105	

5.5.2:	Proposed	Algorithm	COA-HS	..	107	

5.6:	Results	...	109	

5.7:	Summary	...	112	

Chapter	6:	Gene	Expression	Analysis	using	RNA-Seq	Data	..	114	

6.1:	Overview	of	RNA-Seq	Data	Analysis	..	114	

6.1.1:	RNA-Seq	Experimental	Considerations	...	114	

6.1.2:	Pre-Processing	of	RNA-Seq	Data	..	115	

6.1.3:	RNA-Seq	Alignment	..	116	

6.1.4:	Creating	a	Count	Table	...	118	

6.1.5:	Normalisation	...	118	

6.1.6:	Modelling	Raw	Counts,	Dispersion	and	Differential	Gene	Expression	120	

6.1.7:	Alternative	Splicing	Analysis	...	124	

6.2:	Pipeline	for	Analysis	of	RNA-Seq:	a	Case	Study	...	126	

6.2.1:	Utilised	RNA-Seq	Data	..	127	

6.2.2:	Pre-processing	..	128	

6.2.3:	Alignment	of	the	Reads	to	a	Reference	Genome	..	131	

6.2.4:	Differential	Gene	Expression	..	133	

6.2.5:	Differential	Exon	Usage	Analysis	..	143	

6.2.6:	Gene	Annotation	and	Biological	Relevance	of	Selected	Genes	...	151	

6.2.7:	Classification	..	154	

6.2.8:	Summary	..	156	

Chapter	7:	Conclusions	and	Future	Research	..	158	

7.1:	Analysis	of	Microarray	Data	..	158	

7

7.2:	Analysis	of	RNA-Seq	Data	..	160	

7.3:	Suggestions	for	Future	Work	...	161	

Appendix	1:	R-code	for	diffrential	gene	expression	analysis	...	162	

Appendix	2:	R-code	for	diffrential	exon	usage	...	166	

Appendix	3:	Diffrentially	expressed	genes	...	169	

References	..	178	

8

List of Figures

Figure 2.1: Cell structure [32]. .. 22	

Figure 2.2: Chromatin structure adapted from [33]. .. 23	

Figure 2.3: Process of transcription and translation adapted from [37]. 24	

Figure 2.4: Microarray glass [45] ... 25	

Figure 2.5: DNA microarrays technology modified from [47]. ... 26	

Figure 2.6: Affymetrix GenChip lithography [50]. .. 27	

Figure 2.7: Affymetrix expression array design adapted from [51]. 28	

Figure 2.8: Affymetrix GenChip microarray modified from [53]. 28	

Figure 2.9: Sample preparation in Roche/454 [61]. ... 30	

Figure 2.10: Amplification step in Roche/454 [61]. .. 30	

Figure 2.11: Sequencing by synthesis step in Roche/454 [61]. .. 31	

Figure 2.12: Sequencing by synthesis step in Roche/454 [62]. .. 31	

Figure 2.13: Sample preparation for Illumina sequencer [64]. ... 32	

Figure 2.14: Bridge amplification for Illumina sequencer [64]. ... 32	

Figure 2.15: Sequencing by synthesis step in Illumina sequencer [64]. 33	

Figure 2.16: Pseudo colour enhanced image [65]. .. 33	

Figure 2.17: Outline of SOLiD sequencing technology adapted from [66]. 35	

Figure 2.18: FASTQ format ... 37	

Figure 2.19: FASTA format .. 37	

Figure 2.20: RNA-Seq procedure [86]. ... 39	

Figure 3.1: Pre-processing of microarray data. ... 42	

Figure 3.2: Gene expression matrix. .. 44	

Figure 3.3: Chart of divisive hierarchical clustering scheme. .. 47	

Figure 3.4: Linkage methods ... 48	

Figure 3.5: SOM neural network adapted from [108]. ... 49	

Figure 3.6: Flowchart of Bi-CoPaM adapted from [115] ... 51	

Figure 3.7: UNCLES flowchart with type B of external specifications adapted from [118] ... 54	

Figure 3.8: Support vector machine classifier. .. 56	

Figure 3.9: A perceptron with m inputs and a bias. ... 59	

Figure 3.10: MLP Artificial neural network. ... 62	

Figure 3.11: Feature selection methods. .. 65	

Figure 3.12: Train and test performance when changing the number of parameters in the

classifier model adapted from [162]. ... 66	

9

Figure 3.13: Microarray data analysis. .. 68	

Figure 4.1: Immigration of a cuckoo towards goal habitat. .. 75	

Figure 4.2: Flowchart of COA-GA. .. 77	

Figure 4.3: Proposed microarray data analysis procedure. ... 81	

Figure 4.4: MLP vs SVM performance without clustering. ... 86	

Figure 4.5: Proposed shuffle method. .. 88	

Figure 4.6: Accuracy and sensitivity of MLP classifier results for three cancer datasets when

no clustering is used, compared to using the shuffle technique with COA-GA for clustering.91	

Figure 4.7: Accuracy and sensitivity of SVM classifier results for three cancer datasets when

no clustering is used, compared to using the shuffle technique with COA-GA for clustering.92	

Figure 4.8: Cost minimisation for four algorithms over 100 iterations for leukaemia. 93	

Figure 4.9: Cost minimisation for four algorithms over 100 iterations for lymphoma. 93	

Figure 4.10: Cost minimisation for four algorithms over 100 iterations for prostate cancer. 94	

Figure 5.1: Schematic of the general methodology for gene selection. 99	

Figure 5.2: Frequency plots before (a) and after (b) discretisation for lymphoma dataset. 101	

Figure 5.3: Frequency plots before (a) and after (b) discretisation for prostate dataset. .. 101	

Figure 5.4: Frequency plots before (a) and after (b) discretisation for leukaemia dataset. 101	

Figure 5.5: Analogy between musical improvisation process and optimisation process. 105	

Figure 5.6: Flowchart of COA-HS. .. 108	

Figure 5.7: Accuracy of SVM for selected genes by MRMR. .. 109	

Figure 6.1: Junction reads [253]. ... 117	

Figure 6.2: RNA-Seq alignment methods. ... 117	

Figure 6.3: Count table for RNA-Seq. ... 118	

Figure 6.4: Variance-mean dependence adapted from [260]. ... 123	

Figure 6.5: Flattened exons’ locations. ... 125	

Figure 6.6: RNA-Seq data analysis. .. 125	

Figure 6.7: RNA-Seq analysis workflow. ... 127	

Figure 6.8: Initial FASTQC output. ... 129	

Figure 6.9: Per GC content for mutated sample after SortMeRna 131	

Figure 6.10: Exons grouped by gene in GRangesList format. ... 133	

Figure 6.11: RangedSummarizedExperiment format. ... 134	

Figure 6.12: Density of mean counts for each sample. .. 135	

Figure 6.13: Probability of observing a given number of counts for all samples. 136	

Figure 6.14: Natural scale for sample-sample visualisation. ... 137	

Figure 6.15: Log2 normalised counts scale for sample-sample visualisation. 137	

10

Figure 6.16: rlog scale for sample-sample visualisation. .. 138	

Figure 6.17: PCA plot for all samples. .. 138	

Figure 6.18: Dispersion estimates versus the mean normalised count from DESeq2. 139	

Figure 6.19: Results of DESeq2. .. 140	

Figure 6.20: MA plot of results using adjusted p-value > 0.1. .. 141	

Figure 6.21: MA plot of results using adjusted p-value > 0.1 and log2 fold changes of at least

double or half. ... 141	

Figure 6.22: Heat map of top 25 differentially expressed genes. 142	

Figure 6.23: R/Bioconductor session information for differential gene expression. 143	

Figure 6.24: Count table in DEXSeqDataFrame. .. 145	

Figure 6.25: Density of mean counts for all samples including group A (1-6) and B (7-12).

... 146	

Figure 6.26: Probability of observing a given number of counts for all samples including group

A (1-6) and B (7-12). .. 147	

Figure 6.27: Dispersion estimates versus the mean normalised count from DEXSeq. 148	

Figure 6.28: Results of DEXSeq. .. 149	

Figure 6.29: MA plot for differential exon usage. .. 149	

Figure 6.30: Mean expression level for exons of the FBgn0000382 gene. 150	

Figure 6.31: R/Bioconductor session information for differential exon usage. 151	

Figure 6.32: Log2 fold change of genes contributing to metabolic process of chitin. 153	

Figure 6.33: Log 2 fold change of genes contributing to chitin-based cuticle development.

... 153	

Figure 6.34: Schematic of the general methodology for RNA-Seq classification. 154	

Figure 6.35: Accuracy of SVM classifier. ... 155	

11

List of Tables

Table 2.1: Comparison of next-generation sequencing platforms. 29	

Table 2.2: Summary of three quality score formats. .. 37	

Table 3.1 Activation functions ... 60	

Table 4.1: Basic information of microarray data. ... 82	

Table 4.2: Number of genes in each cluster when data is clustered into two groups 82	

Table 4.3: MLP classifier performances including the mean sensitivity, specificity, accuracy,

and standard deviation (SD) for leukaemia. .. 83	

Table 4.4: MLP classifier performances including the mean sensitivity, specificity, accuracy,

and standard deviation (SD) for prostate cancer. .. 84	

Table 4.5: SVM classifier performances including the mean sensitivity, specificity, accuracy,

and standard deviation (SD) for leukaemia. .. 85	

Table 4.6: SVM classifier performances including the mean sensitivity, specificity, accuracy,

and standard deviation (SD) for prostate cancer. .. 85	

Table 4.7: Basic information of the microarray data used in this study. 89	

Table 4.8: The mean sensitivity (SE), specificity (SP), accuracy (AC), and standard deviation

(SD) of classification results for MLP and SVM classifiers when integrating different clustering

algorithms in the shuffle technique for the leukaemia dataset. ... 89	

Table 4.9: The mean sensitivity (SE), specificity (SP), accuracy (AC), and standard deviation

(SD) of classification results for MLP and SVM classifiers when integrating different clustering

algorithms in the shuffle technique for the lymphoma dataset cancer. 90	

Table 4.10: The mean sensitivity (SE), specificity (SP), accuracy (AC), and standard deviation

(SD) of classification results for MLP and SVM classifiers when integrating different clustering

algorithms in the shuffle technique for the prostate dataset cancer. 90	

Table 5.1: Basic information of the microarray data used in this study. 98	

Table 5.2: Discretisation of gene expression data. .. 100	

Table 5.3: Results of using HS with different PAR and HMCR values. 107	

Table 5.4: Means and standard deviations for the number of selected genes, sensitivity,

specificity, and accuracy of SVM classifier for 20 runs of optimisation algorithms for prostate

cancer dataset. .. 110	

Table 5.5: Means and standard deviations for the number of selected genes, sensitivity,

specificity, and accuracy of SVM classifier for 20 runs of optimisation algorithms for leukaemia

cancer dataset. .. 110	

12

Table 5.6: Means and standard deviations for the number of selected genes, sensitivity,

specificity, and accuracy of SVM classifier for 20 runs of optimisation algorithms for Lymphoma

cancer dataset. .. 111	

Table 6.1: Library size affect. .. 119	

Table 6.2: Summary of results for seven normalisation methods; 0 indicates not satisfactory,

1 indicates satisfactory, and 2 denotes very satisfactory (modified from [265]). 120	

Table 6.3: Estimated size factor for each sample using DESeq. 135	

Table 6.4: Estimated size factors for each sample using DEXSeq. 145	

Table 6.5: GO analysis. ... 152	

13

Acknowledgments

First, I would like to express my utmost appreciation and thanks to my first supervisor Dr

Hasan Shaheed, for his invaluable guidance regarding the academic aspects of my research

and for encouraging me during difficult times while working on my PhD. He has made the last

four years of research at Queen Mary University an exciting experience. I would also like to

specifically acknowledge my second supervisor, Professor Hazel Screen, who always gave me

detailed constructive feedback and encouraged me in my academic pursuits.

I also thank Professor Marta Korbonits and Dr Sayka Barry, who are based at the Barts and

London School of Medicine, and who provided me with the RNA-Seq and microarray datasets.

My profound gratitude goes to my parents, who have always been supportive and have

made tremendous sacrifices to make sure I get the best education. I will always remember all

their acts of kindness and would like to dedicate this thesis to them.

14

Chapter 1: Introduction

1.1: Background

A basic question in regulatory biology is ‘how is it possible that all humans can have a

99.9% identical genome, but still be different?’ Each individual has a 100% identical genome

in different organs, but each organ has a different shape and functionality. The answer is

that different cells types express a different set of genes through a phenomenon known as

gene expression, in which the information from the DNA is transcribed to RNA, and then

translated to proteins that form the cell shapes and their functionalities.

Many studies have shown that if the sequence of a gene is mutated, it can result in an

unscheduled production of protein, which can lead to diseases such as cancer [1].

Furthermore, recent research suggested that cancer could also form without any change

happening in the underlying gene sequence itself, through epigenetic modifications such as

histone modification and DNA methylation [2]. The invention of microarray technology paved

the way to quantify the gene expressions of thousands of genes simultaneously. More

recently, a more sophisticated technology known as Next Generation Sequencing (NGS) has

improved gene expression quantification and allowed investigation of epigenetic modifications

on a wide scale in genomes.

Microarray technology can be used in a range of scientific fields and can contribute to the

diagnoses of diseases. Although cancer is a complex disease that arises from multiple genetic

factors, it is known that the level of gene expression could carry a signature for a disease. A

vast majority of fatal diseases have a unique gene expression profile that can be observed

using microarray technology. The main field that microarray gene expression is applied in is

profiling cancerous tissue. Measuring the gene expression of diseased tissue enables

researchers to understand tumours and discover possible markers for them. For example,

15

some prognostic markers were discovered based on gene expression profiles by Sorlie et al
[3] which are used for overall survival in breast cancer.

Analyses of gene expression data produced by microarray technology can be classified into

two different types; namely supervised and unsupervised learning (clustering). Clustering

divides data sets into several groups such that the similarity within a group is greater than

that among groups. Since copious amounts of gene expression data is produced with

microarrays, it is useful to group genes such that genes with similar expression patterns are

put into one cluster, where the genes within the cluster are known as co-expressed genes.

Research suggests that genes in one cluster have related functions [4–6]. In machine learning,

procedures that use annotated samples are referred to as supervised learning [7]. Therefore,

in supervised learning, classes are predefined and the objective is to train a set of data to

form a classifier for classification of future observations.

Recently, microarray technology has been used to determine subtypes of certain cancers

based on differences in the expression level of key genes [8–10]. This approach has become

known as cancer classification, and provides detailed information on the genetic makeup of

each individual cancer patient, thereby potentially improving the accuracy of treatment

decisions made by doctors [11]. During microarray analysis, the number of genes is

significantly higher than the number of samples [12,13] and classification with a high degree

of accuracy is challenging, due to the phenomenon of the so called curse of dimensionality

[14,15]. In order to overcome this problem, gene selection mechanisms have been introduced,

by which only the most important genes are selected and used for classification purposes [16–

19]. There are several advantages to this process of minimising the number of genes and only

selecting the meaningful genes that are more predictive during classification, and this will be

explained in detail in chapter 3.

Whilst microarray technology is widely used and has greatly contributed in gene expression

research over the years, it does have its limitations, such as the noise produced during the

experiments [20]. Therefore, over the last few years, new sequencing technologies have been

developed including next generation sequencing (NGS) technology. The arrival of NGS

technologies in the marketplace has changed the scientific perspective on basic, applied and

clinical research. NGS technologies have the ability to produce millions of sequence reads in

each run, which makes it possible to sequence the whole genome easily. As a result, it allows

large-scale evolutionary and comparative studies to be performed. NGS technologies have

been used in different projects, such as RNA expression profiling, mutation discovery, defining

DNA-protein interaction, and whole-genome sequencing [20].

16

RNA expression profiling, which utilises NGS technology, can provide gene expression

quantification on a genome-wide scale, providing a tool to not only discover differentially

expressed genes between conditions, but also one that enables researchers to investigate

differentially expressed isoforms, and differential exon usage across different conditions.

Furthermore, RNA-Seq data can be used to discover novel transcripts using statistical analysis

[21].

1.2: Motivations

Over the last 20 years, there has been a revolution in biological sciences and technologies

like microarray and NGS, which provide an overwhelming volume of data that requires

computational tools to sift through this data to provide useful information for more informed

treatment decisions. Most types of cancers are treatable if they can be detected at an early

stage. The determination of cancer type and stage is also crucial when choosing an

appropriate treatment. Therefore, the development of computational tools is an important

topic, and more research is needed to make the most out of the available data.

Although several methods have been proposed to increase the accuracy of classification

[22,23], more research is still needed to propose new models that can further increase the

prognosis and classification accuracy of diseases such as cancer. Achieving high classification

accuracy is of the utmost importance for personalised medicine, as it would lead to more

informed decisions by doctors and subsequently save patients’ lives. Since the invention of

NGS and RNA-Seq, there have been numerous pipelines to investigate the analysis of such

data. Nevertheless, due to the rapid development of statistical methods for RNA-Seq, the

proposed pipelines have undergone several changes to improve the results. Hence, it is

essential to provide a state-of-the-art pipeline to enhance scientific discoveries and their

implementation into clinical practice.

1.3: Aim and Objectives

This thesis presents an investigation into the analysis of gene expression using microarray

and next generation sequencing data for multi-category diseases like cancer, in order to create

useful information towards personalised medicine. The objectives of this thesis are described

below:

• Explore different methods for analysing gene expression data

• Incorporate machine learning techniques to cluster and classify gene expression data

17

• Assess optimisation-based algorithms for data clustering to enhance the accuracy of cancer

classification

• Investigate the impact of data clustering prior to gene selection on classification accuracy

• Develop novel gene selection models to select the highly informative genes using

microarray data

• Identify differential gene expression and differential exon usage using RNA-Seq

1.4: Contributions

In this study, different approaches are adopted to improve prognosis and classification of

multi-category diseases such as cancer using microarray and NGS data towards more

personalised medicine. The main contributions of this investigation are as follows:

• An innovative gene selection approach using the shuffle method prior to cancer

classification is proposed. It is noted that in cancer classification using clustering based

gene selection, changing the number of clusters results in the selection of different sets of

genes due to the random initialisation of centroid protocol for clustering methods. This

results in a variation in the accuracy of classification. In order to overcome this problem,

the shuffle method is proposed, in which genes with a higher rate of repetition are selected

after six runs of the clustering algorithm.

• A novel optimisation algorithm, COA-GA, has been developed by integrating the Cuckoo

Optimisation Algorithm (COA) [24] and the Genetic Algorithm (GA) [25] to enhance

classification performance. The proposed algorithm (COA-GA) not only outperforms COA,

GA and Particle Swarm Optimisation (PSO) at achieving a better classification performance,

but also reaches a better minimum with only few iterations.

• It is additionally confirmed that traditional clustering does not have any impact on gene

selection and classification performance. However, optimisation based clustering is shown

to enhance the accuracy of gene selection and classification.

• The performances of two well-known classification methods, SVM and MLP, are assessed.

To examine the performance of these two methods, different cancer datasets including

leukaemia, prostate, and lymphoma were utilised in different setups. Higher classification

18

accuracy is observed in all cases, with the SVM classifier being compared to MLP when

analysing gene expression datasets.

• A novel optimisation algorithm, COA-HS, has been developed to enhance gene selection.

This optimisation algorithm was then used in a two-stage gene selection method, MRMR-

COA-HS, in order to select a few genes that could provide high accuracy in cancer

classification. Comparative performance assessment of the proposed method with other

evolutionary algorithms, suggest that the proposed algorithm significantly outperforms

other methods in selecting a lower number of genes, while maintaining the highest

classification accuracy. The functions of all selected genes using this method were

investigated further, and it was confirmed that the selected genes are biologically relevant

to each type of cancer.

• A state-of-the-art pipeline for RNA-Seq data is proposed. This pipeline was used to analyse

a set of RNA-Seq data, which was produced at the Genome Centre of Queen Mary

University. In the proposed pipeline, differential gene expression, and differential exon

usage were investigated in detail. Furthermore, functional genomics of differentially

expressed genes were investigated, and some key genes were identified for the case study

under investigation that can be used as biomarkers. Finally, the application of data

classification for RNA-Seq data was explored, and methods similar to those in microarray

classification were successfully implemented.

1.5: Outline of the Thesis

Chapter 2 presents a review of recent developments. Initially, a brief overview of the

biological aspects of the thesis such as gene expression phenomena is given. Then, it explores

different types of microarray technologies like cDNA and oligonucleotide microarray. Different

NGS technologies are then investigated, and a unique method for each technique is explained.

At the end of the chapter, the techniques that incorporate NGS technology such as RNA-Seq

are assessed.

Chapter 3 describes the main steps required for microarray analysis, including pre-

processing, clustering, and classification. In this chapter, several clustering methods such as

K-means, C-means, Hierarchical clustering, self-organising map, Bi-CoPaM and UNCLES are

investigated. Then the most widely used classification methods such as SVM and MLP artificial

19

neural networks are briefly explained. Afterwards, the importance of gene selection before

classification is investigated

Chapter 4 concerns the effect of gene clustering prior to gene selection on the classification

performance. Initially, the effects of traditional data clustering methods on the classification

performance are investigated. Then, the effect of optimization based clustering algorithms on

the performance of SVM and MLP classifiers is investigated and compared to conventional

methods.

Chapter 5 presents the development of a two-stage gene selection process, using MRMR

and the COA-HS algorithm. In this chapter, the MRMR method is described first. Then the use

of optimization algorithms for gene selection as well as the proposed objective function are

explained. To this end, different optimization algorithms such as GA, PSO, COA, and HS are

investigated. The use of the Leave-One-Out Cross-Validation (LOOCV) method to evaluate the

performance of our proposed method is then explained.

Chapter 6 is divided into two main sections. The first section describes the main steps

required for RNA-Seq analysis, including experimental considerations in design, pre-processing

and quality assessment, alignment, building a count table, and normalisation. Then the

concept of differential expression at the gene and transcripts levels are examined, and some

of the well-known software for such analyses are identified. In the second section of this

chapter a state-of-the-art pipeline for RNA-Seq analysis is presented. In this chapter, RNA-

Seq data from AIP deficient Drosophila is used as the case study (6 samples). Initially, different

pre-processing steps are explained in order to eliminate biological and technical noises that

present in RNA-Seq data. Approaches used to create a count table after mapping the samples

to a reference genome are then explained. Finally, downstream analysis and classification are

explored.

Chapter 7 consists of conclusions, discussion, and future work.

1.6: Publications

Publications extracted from this thesis are outlined below.

• Elyasigomari, V., Mirjafari, M. J., Screen, H R C., and Shaheed, M H. (2015), Cancer

classification using a novel gene selection approach by means of shuffling based on data

clustering with optimization, Journal of Applied Soft Computing. 35(1), pp 43-51.

• Elyasigomari, V., Lee, D., Shaheed, M H. (2017), Development of a two-stage gene

selection method that incorporates a novel hybrid approach using the cuckoo optimization

20

algorithm and harmony search for cancer classification. Journal of Biomedical Informatics.
67(1), pp 11-20.

1.7: Utilised microarray datasets throughout this thesis

In respect to cancer gene expression studies, there are several benchmark microarray data

sets including leukaemia, lymphoma, and prostate cancer data sets which are also used in this

research. Brief explanation on these datasets are given in following subsections.

1.7.1: Leukaemia dataset

This dataset was taken from a collection of leukaemia samples by Golub et al., (1999). In

total 72 patients participated in their study. As a result, 72 samples were obtained from bone

marrow (63 samples) or peripheral blood (9 samples) of these patients and the gene

expression for these samples were measured using Affymetrix high-density oligonucleotide

arrays (Affymetrix Hgu6800 chips) that contained 7129 genes. From 72 patients, 47 were

associated with acute lymphoblastic leukaemia (ALL) and 25 were diagnosed with acute

myeloblastic leukaemia (AML) [26].

Although the original study was designed for leukaemia classification in the case of two

class classification, the 47 samples from ALL could be further categorised into ALL B-CELL (38

samples), ALL T-CELL (9 samples) which made it possible for some studies to use this dataset

for multiclass classification. It is noted that this dataset has been used by many authors to

test the accuracy of their techniques. Golub and his colleagues normalised this dataset such

that overall intensities for each chip became equivalent by re-scaling intensity values [27].

The original dataset available from the Broad institute can be accessed using the link:
http://portals.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=43

1.7.2: Lymphoma dataset

Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy of mature B

lymphocytes. The DLBCL dataset provided by Alizadeh et al., (2000) consists of 47 samples

and each sample contains 4,026 genes. 24 samples were obtained from germinal centre B-

like DLBCL, and the remaining 23 samples were acquired from activated B-like DLBCL. For the

measurement of gene expression levels, specialised cDNA microarray was used which

consisted of genes that had known to have immunologic/oncologic importance or had

expressed in lymphoid cells [28].

21

In the process of hybridization, a tumour mRNA sample was used for the fluorescent cDNA

targets (labelled with dye Cy5) and for the fluorescent cDNA reference a mRNA sample was

used from lymphoma cell lines and labelled by Cy3. Then the GenePix 4000 microarray scanner

was used to obtain the fluorescent images. In order to calibrate the fluorescent ratios for all

arrays a single scaling factor was calculated such that on each array the median fluorescence

ratio of well-measured spots was 1.0 [28]. This scaling factor was applied to all fluorescence

ratio for each array. It is noted that fluorescent intensities above 1.4 times of background was

considered as well measured. The fluorescent ratios then were log-transformed (base 2). In

order to eliminate the effect of the amount of RNA in the reference pool each data point was

centred by subtracting the median value for all genes [29]. The original dataset available from

Lymphoma/Leukemia Molecular Profiling Project can be accessed using following link

https://llmpp.nih.gov/lymphoma/index.shtml.

1.7.3: Prostate dataset

Prostate cancer is one the most common heterogeneous cancer among humans. Singh et
al., (2002) used microarray expression analysis to investigate important genes and

pathological features that underlie global biological differences in prostate cancer. In their

experiment, total RNA was isolated from 55 samples that were obtained from patient with

prostate cancer and 53 samples that were acquired from healthy individuals. These samples

were labelled by biotin and hybridized to HU95Av2 microarrays that contained 12,600 genes

and expressed sequence tags [30].

Affymetrix GeneChip software was used to calculate the average differences. The average

pixel mean and standard deviation values for each probe set and the standard deviation of

the average difference for all genes were calculated. Based on these calculations some

samples which had high standard deviation were removed from the experiment and 102

samples including 50 healthy and 52 cancerous samples were chosen as high quality samples.

These samples then were scaled to a reference sample. Afterwards, the relative variation of

expression for each gene was computed using the minimum and maximum expression values

of the gene across all samples. The original dataset available from the Broad institute can be

accessed using following link:
http://portals.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=75

22

Chapter 2: Background and Recent Developments

All living organisms are composed of cells. All cells are characterised by a plasma

membrane, which encapsulates the cytoplasm and provides internal space where important

functions are carried out (see Figure 2.1). In this internal compartment, different components

are present, such as ribosomes and the nucleus. Ribosomes are organelles that process the

cell’s genetic information to create protein. In the nucleus, the heredity information is stored

in the form of Deoxyribonucleic Acid (DNA). Most DNA molecules are double-stranded helices

consisting of four different nucleotides which are: guanine (G), adenine (A), thymine (T) and

cytosine (C) [31].

Figure 2.1: Cell structure [32].

In humans, the complete set of genetic information that is required for normal functioning

of the body consists of 3 billion base pairs of DNA packaged into 23 chromosomes. Each cell

contains almost 2 meters of DNA, and each human roughly consists of 50 trillion cells. If all

23

of the DNA was uncoiled, it would wrap around the Earth’s equator 2.5 million times [33]. So

the question is: how is this incredible amount of DNA stored in a nucleus?

The answer to this question lies in the fact that certain proteins compact chromosomal DNA

into the microscopic space of the eukaryotic nucleus. These proteins are called histones, and

the resulting DNA-protein complex is called chromatin.

As can be seen in Figure 2.2 point A, at the simplest level chromatin is a double-stranded

helical structure of DNA. At point B, DNA is wrapped around eight histones 1.65 times to form

a nucleosome. Histones are positively charged proteins named H1, H2A, H2B, H3, and H4

[34]. Since DNA is negatively charged, histones bind with DNA very tightly. A nucleosome

with the H1 histone is known as a chromatosome (point C). At point D, it is illustrated how

nucleosomes fold up to form a 30-nm fibre. This 30-nm fibre folds up more to form loops

averaging 300-nm in length. Afterwards, the 300-nm fibres are compressed and folded to

produce a fibre that is 250-nm in width and 700-nm in length (point E). Finally, tight coiling

of the 250-nm fibre produces the chromatid of a chromosome [33].

Figure 2.2: Chromatin structure adapted from [33].

24

2.1: Gene Expression

Gene expression refers to all the processes that convert genetic information from the DNA

sequence of genes into gene products. These products can range from proteins to functional

RNAs that result from protein and non-protein coding genes respectively. A gene is a segment

of DNA that consists of information used to code for a protein. The genetic information that

codes for the production of amino acids is stored as three-letter codes, called codons, and the

sequence of codons defines the primary structure of the final proteins [35].

Gene expression involves two steps: the first step is “transcription”, which refers to the

synthesis of a ribonucleic acid (RNA) molecule using DNA, which occurs within the cell nucleus.

In this step, the transcription factor connects to the part of DNA referred to as the TATA box

(also called the Goldberg-Hogness box). Afterwards, the RNA polymerase binds to the

transcription factor, thereby adding energy (adenosine triphosphate (ATP)) to the process. At

this point, the transcription starts, and then finally the process is terminated by the RNA

polymerase, and the newly formed RNA is released from the DNA (see Figure 2.3). Then it

travels in the form of messenger RNA (mRNA) to the edge of the nucleus, where it gains

access to the cytoplasm through a tiny hole called a nuclear pore [36].

The second step is “translation”, which is carried out in the cytoplasm. This step refers to

the process of facilitating the codon within the mRNA for the synthesis of a special protein. In

this step, two important components are utilised: the ribosome (rRNA) and transfer RNA

(tRNA). After mRNA is exported to the cytoplasm, it is attached to the ribosome. Amino acids

are carried by tRNA, and can only be added to the chain of growing protein if the tRNA aligns

to its complementary mRNA codon. Therefore, as the name suggests, the genetic information

translates into chain of proteins [36].

Figure 2.3: Process of transcription and translation adapted from [37].

25

2.2: DNA Microarray

Microarray technology is a powerful way to quantify gene expression. By using microarray,

it is possible to examine the expression level of thousands of genes in one experiment. It can

be used to compare the expression of many genes under different conditions, such as

cancerous cells versus normal cells. Although there are several microarray technologies that

exist to date like exon arrays [38], high resolution tiling arrays [39], and Illumina bead arrays

[40], two technologies are specifically used in practice, cDNA and oligonucleotide microarray

[41].

2.2.1: cDNA Microarrays

In the case of cDNA microarrays, the production of arrays begins with the selection of total

or partial fragments of cDNA to be printed on the array. Partial fragments of cDNA are known

as expressed sequence tags (ESTs). cDNA clones are usually selected from available

databases, including Unigene [42], dbEST [43], and GeneBank [44]. The chosen cDNA clones

are then amplified using polymerase chain reaction (PCR), and purified before using high-

speed robots to print them on a coated glass surface. These immobilised cDNA clones on the

glass are known as microarray probes, and each probe represents a specific gene (see Figure

2.4).

Figure 2.4: Microarray glass [45]

When comparing the gene expressions of two samples, the first step is extracting RNA from

the cells and amplifying it using a polymerase chain reaction (PCR). After the PCR products

are cleaned, they are reverse transcribed into cDNA by using an enzyme reverse transcriptase

and nucleotides labelled with different fluorescent dyes by chemically attaching the dye

molecules to the ends of the corresponding cDNA strands [46]. For example, cDNA from cells

grown in cancerous conditions are labelled with a red dye (Cy5) and cDNA from cells grown

26

in healthy conditions are labelled with a green dye (Cy3). Once the samples have been labelled

with different fluorescent dyes known as probes, they can be hybridised onto the same glass

slide of the array, where any cDNA sequence attaches to its complementary sequence on the

glass. Unattached materials are gently removed and the glass is left to dry. The spots are then

excited by a laser and scanned afterwards. Specifically, two scans are required for each

microarray. The first scan is for the red fluorescent and the second scan is to detect the green

fluorescent. After these two scans, a three-colour image is typically composed, containing

red, yellow, and green spots, which refers to highly expressed, equal expressed and less

expressed genes correspondingly [41]. It is shown in Figure 2.5 that some spots are shown

in black, which can be explained by the fact that none of the samples contain significant

amounts of the corresponding type of RNA, or a mistake in the hybridisation process.

Figure 2.5: DNA microarrays technology modified from [47].

Once the image is generated, it is analysed to identify the spots using special software,

where the background hybridisation can be estimated and the intensity is calculated for each

spot. Afterwards, the expression ratio is calculated as a primary comparison tool to relate the

intensity of red and green lights as below:

 𝑇" =
𝑅"
𝐺"

 (2.1)

where 𝑇" , 𝑅" and 𝐺" are the expression ratio, the intensity of the sample and the intensity

of the reference (healthy) samples respectively.

27

2.2.2: Oligonucleotide Microarray

In contrast to the cDNA microarray that uses the complete gene sequence as targets,

oligonucleotide microarrays (single-channel) use a number of short oligonucleotide sequences

(usually 20-70 nucleotides long) that represent a specific gene. These oligonucleotide

sequences can be either spotted or synthesised on the array surface. Although there are

varieties of oligonucleotide arrays, Affymetrix GenChip is the most widely used technique [48].

In Affymetrix GenChip, a short stretch of oligonucleotide strands is used, and the spots are

synthesised through photolithography. The fabrication of the array is based on the sequential

addition of nucleotides to the microarray surface (wafer), which is chemically protected from

nucleotide additions until exposure to UV light. Photolithographic masks are used to place

nucleotides on specific probe sites, and the sequential addition of lithographic masks

determines the order of sequential synthesis on the array (Figure 2.6). In this method, each

gene is represented by 25 pairs (25-mer) of oligonucleotide [49].

Figure 2.6: Affymetrix GenChip lithography [50].

One strand of the 25-mer sequence is known as a perfect match (PM) and the other is

referred to as a mismatch. The sequence of the nucleotide in the perfect match probe is

exactly complimentary to a particular gene, and thus measures the expression of the gene.

However, the mismatch probe differs from the perfect match probe by a single base nucleotide

at the centre position of the probe, which prevents the target from binding to the gene

transcript (see Figure 2.7). The main reason for using the mismatch probe is to determine the

28

background and nonspecific hybridisation that contributes to the measured signal for the

perfect match oligonucleotide probe [36].

Figure 2.7: Affymetrix expression array design adapted from [51].

In the process of achieving expression, RNA is extracted from the sample and after

amplification, is labelled with chemical biotin. Then the labelled RNA is added to the Affymetrix

array to bind with the relevant oligonucleotide probe. After washing the unattached materials,

fluorescent stain that is capable of attaching to the biotin on the RNA is added to the array.

The array is then scanned to obtain an image. In contrast to cDNA, Affymetrix arrays use a

single dye colour (one channel), and therefore each sample should be added to a separate

array and cannot be hybridised (see Figure 2.8) [41]. The hybridisation intensity of the perfect

match and the mismatch is computed and subtracted from each probe by Microarray Suite

software. As a result, the absolute intensity value for each probe is acquired. Afterwards the

intensity of the perfect match is subtracted from the intensity of the mismatch probe.

Therefore, the average intensity for each gene can be calculated. Then the intensity is

converted into a ratio. Eventually, as in cDNA, the data is stored in the form of the gene

expression ratio [52].

Figure 2.8: Affymetrix GenChip microarray modified from [53].

29

2.3: Next Generation Sequencing Technology (NGS)

DNA sequencing refers to the precise identification of the order of nucleotides (A, G, T and

C) in a DNA sample. Over the last 4 decades, there have been major advancements in DNA

sequencing technologies. In 1975, DNA sequencing by primed synthesis with DNA polymerase

was investigated by Sanger and Coulson [54], and this method was then improved by utilising

chain-terminating inhibitors [55]. The automated readout of the sequence was successful

when fluorescent tags were added to the chain terminator [56]. This innovation is known as

First Generation Sequencing technology or Automated Sanger Sequencing. Over the last

decade, technological advancements in the field of sequencing have introduced Second

Generation Sequencing also known as Next Generation Sequencing (NGS) [57]. Not only has

the cost of sequencing with the new methods been significantly reduced, but this technology

is also capable of producing a significant amount of data in a shorter time [20,58].

Although there are several next generation sequencing platforms available, three platforms

are more widely used: Roche 454, Illumina, and SOLiD [59]. The amount of reads and the

length of each read (base pair) are varied across different platforms [60], but each platform

has their own advantages and disadvantages [58], which are listed in Table 2.1.

Table 2.1: Comparison of next-generation sequencing platforms.

Technology Read
length

BP per
run

Advantages Disadvantages

ILLUMINA 30–40
(bp)

1 Gb The most
commonly used

platform.

Low multiplexing
capability of samples

ROCHE 454 200–300
(bp)

80–
120 Mb

Fast run times;
Longer reads

High cost; high error
rates in homo-polymer

repeats

SOLID 35 (bp) 1–3 Gb Inherent error
correction by two-

base encoding

Long run time

All NGS platforms detect the order of nucleotides through 3 primary steps. The first step is

the random fragmentation of DNA and ligation with some custom adaptors, known as sample

preparation. Then the amplification step follows in which the fragments are amplified to

produce a detectable signal. The last step is to perform sequencing reaction and detection of

nucleotides in a sequential order one by one. In the following sections, the details of Roche

30

454 FLX Pyrosequencer, Illumina genome analyser, and SOLiD Applied Biosystems are

analysed.

2.3.1: Roche/454 FLX Pyrosequencer

In this method, DNA is converted into sequence data through three main steps which are:

DNA sample preparation, loading DNA samples onto beads, and finally sequencing DNA with

the Genome Sequencer FLX instrument. Sample preparation starts with random fragmentation

of DNA (400-600 bp), then the adaptors are attached to these fragments. Finally, the double-

stranded DNA fragments are separated into single strands (see Figure 2.9).

Figure 2.9: Sample preparation in Roche/454 [61].

In the second step, the fragments that are attached to adaptors are put onto micron-sized

beads, which have a complimentary sequence to the adapter, then through using emulsion-

based PCR, around ten million copies of each DNA fragment that is immobilised on the capture

beads are produced (see Figure 2.10). Emulsion refers to a method where a single DNA

molecule is isolated in aqueous micro-reactors by utilising water and oil emulsion. This

amplification is required to generate sufficient signals that are detectable in the sequencing

step [20].

Figure 2.10: Amplification step in Roche/454 [61].

31

The last step is sequencing through synthesis. For this step, the beads are put into a well

on a PicoTiter Plate along with an enzyme that helps the sequencing reaction (see Figure

2.11).

Figure 2.11: Sequencing by synthesis step in Roche/454 [61].

To accomplish this objective, starting from one end of the single-stranded fragment and

based on the order of nucleotides in the strand, the enzyme synthesises the complimentary

fragment through the sequential adding of nucleotides. Each time a nucleotide is added, a

light is emitted which is then recorded by a camera (see Figure 2.12).

Figure 2.12: Sequencing by synthesis step in Roche/454 [62].

2.3.2: Illumina Genome Analyser

The Illumina Genome analyser converts DNA into sequenced data through three steps:

sample preparation, cluster generation, and sequencing. After the random fragmentation of

DNA, the ends of these fragments need to be repaired by adding the complementary

nucleotides to the appropriate end of the fragment. Afterwards the ends of the fragment are

phosphorylated, and a single A base is added to its 3’ ends. Finally the adapters are ligated

(see Figure 2.13) [63].

32

Figure 2.13: Sample preparation for Illumina sequencer [64].

In the second step, the prepared fragments are attached to a flow cell on a solid surface

that has their complementary adapters. Once they are attached, the other side of the fragment

also attaches to the solid surface and forms a bridge. Then a replica of the fragments forms,

and they detach from each other. This cycle, known as bridge amplification, continues until

clusters are formed [20].

Figure 2.14: Bridge amplification for Illumina sequencer [64].

33

The final step is the detection of nucleotide sequences through sequence by synthesis. For

this reason, DNA polymerase is added to the clusters on the slide and flooded by nucleotides.

These nucleotides are engineered to have different colours corresponding to the base, and

modified in such a way that the polymerase can extend by one base at a time through the

use of a terminator. Once a nucleotide is attached to the fragment, the remaining unattached

nucleotides are removed and a camera detects which nucleotide (C, A, G or T) is attached.

Then the terminator is removed, and the slides are flooded by nucleotides again, and this

process is repeated until the whole fragment is sequenced (see Figure 2.15). Although the

sequencing and detection of nucleotides is done for one base at a time for each fragment, it

is done for millions of fragments at the same time (see Figure 2.16) [64].

Figure 2.15: Sequencing by synthesis step in Illumina sequencer [64].

Figure 2.16: Pseudo colour enhanced image [65].

34

2.3.3: Applied Biosystems SOLiD Sequencer

The process of detecting the order of nucleotides by SOLiD (Sequencing by Oligonucleotide

Ligation and Detection) technology is carried out through three steps: sample preparation,

amplification and sequence by ligation. The sample preparation step is similar to other NGS

platforms and consists of DNA fragments that are ligated to oligonucleotide adapters [66].

These ligated fragments are then amplified using emulsion based PCR as explained in Section

2.3.1 for Roche 454.

The sequencing by synthesis step in SOLiD technology is different from other NGS

platforms, as this is done by DNA ligase (see Figure 2.17) as opposed to using a polymerase

[64,67]. Initially a sequencing primer is hybridised to the P1 adaptor, which is attached to the

bead. A mixture of Di-base probes that is labelled with four different fluorescent dyes races

to ligate to the sequencing primer. After ligation, the fluorescent dyes are excited, and

subsequently an image is taken. Afterwards, unextended strands are capped and fluorophores

are cleaved. A new cycle starts 5 bases away from the priming site, by attaching another Di-

base probe, and this is repeated for 7 cycles. Then the first sequencing primer is detached,

and a new primer is attached to the temple sequence (reset), and another 7 cycles is repeated

for the new primer. In total, 5 rounds of this primer reset is performed (n, n-1, n-2, n-3, and

n-4). As can be seen in Figure 2.17, eventually 35 bases are sequenced twice, thus improving

sequencing accuracy [20].

35

Figure 2.17: Outline of SOLiD sequencing technology adapted from [66].

36

2.3.4: NGS Raw Data File Formats and Quality Scores for Detected

Nucleotides

The RNA-Seq experiment generates tens of millions of sequence tags, known as short

reads, which can be encoded into different file formats depending on the NGS platforms such

as the FASTQ [68] and FASTA/QUAL [69] formats. While encoding the short reads, not only

the sequence of each read is preserved, but the quality value of detected nucleotides for each

read is also determined. Although the quality scores across different platforms cannot be

compared, all NGS platforms use a Phred-like score [70,71], which is logarithmically related

to the probability that a base call is incorrectly identified (P).

 𝑄'()*+ = −10× log34 𝑃 (2.2)

There are three types of quality scores that are used. The first scoring method is known as

the Sanger quality score, which is used in Sanger FASTQ formats, and uses ASCII values from

33-126 to encode Phred scores from 0-93. Later by using logarithmic mapping, Solexa, Inc.

(Illumina, Inc.), introduced another quality scoring method in which Solexa scores were used,

ranging from -5 to 62 and represented by ASCII characters from 59 to 126 [68]. Solexa scores

can be calculated by Equation 2.3.

 𝑄6789:; = −10× log34
𝑃

1 − 𝑃
 (2.3)

Equations 2.4 and 2.5 are used to convert Phred scores to Solexa-scale quality scores and

vice versa.

 𝑄'()*+ = 10× log34(10
=>?@ABC
34 + 1) (2.4)

 𝑄6789:; = 10× log34(10
=FGHIJ

34 − 1) (2.5)

More recently, Illumina, Inc. introduced a new format used from Genome Analyser Pipeline

1.3 onwards. In this format, the Phred scores ranging from 0-62 are represented by ASCII

characters from 64-126 [68]. Table 2.2 shows a summary of the three different FASTQ

formats.

37

Table 2.2: Summary of three quality score formats.

FASTQ format uses 4 lines to encode each read (see Figure 2.18). The first line begins with

the character ‘@’ and is followed by a sequence identifier and an optional description. The

second line contains the order of nucleotides for the read. Line 3 begins with the ‘+’ character

and is optionally followed by the same sequence identifier. Lastly, line 4, which has the same

length as line 2, indicates the quality of detected nucleotides for the read using ASCII

characters [68,72].

@title
sequence
+Optional text
Quality

@Sequence Identifier
ACCCCAGGATCAACACTTCACATGCATTAGCAGAGAGAGATAAATCAA
+
=>=??A?<@B@A:?B?D;AC@@CAAAD<AAA:99?:@=?@B@77C><4

Figure 2.18: FASTQ format

FASTA format uses 2 lines to encode each read. The first line begins with the character ‘>’

and is followed by a sequence identifier and an optional description. The second line contains

the order of nucleotides for the read (see Figure 2.19).

@title
sequence

> Sequence Identifier
ACCCCAGGATCAACACTTCACATGCATTAGCAGAGAGAGATAAATCAA

Figure 2.19: FASTA format

Illumina encodes the reads and corresponding quality scores in the FASTQ format. Roche

454 encodes the reads in FNA format, which is a type of FASTA format, and also encodes the

corresponding quality scores in a separate QUAL format which is also similar to FASTA format

[73]. In contrast, since SOLiD output is based on colour space and not sequence space, this

technology uses the CSFASTA (Colour Space FASTA) format to encode the sequence of a read,

and QUAL format for the corresponding quality score [74].

Description

ASCII characters Quality scores
Range Offset Type Range

Sanger standard 33-126 33 Phred 0 to 93
Solexa 59-126 64 Solexa -5 to 62

Illumina 64-126

64 Phred 0 to 62

38

2.4: Gene Expression Profiling Using NGS Technology (RNA-Seq)

The importance of mRNA in gene expression and its role in identifying the informative

genes that cause disease was investigated in Section 2.1 and 2.2, where microarray was used

to determine the expression of genes. Microarray is a reliable and robust method which has

been proven over decades, and even considering the drop in cost of NGS technology,

microarray is still more economical. However, microarray technology has several limitations.

For instance, since microarrays are designed by hybridisation probes for which the sequence

of the probes is already known, this means that this technology is ineffective at finding new

genes, detecting structural variations, discovering transcripts, and analysing isoform

composition. However, RNA-Seq technology can overcome these limitations [75]. Whilst

comparative studies of microarray gene expression and RNA-Seq [21,76,77] suggest that the

results of both platforms correlate well, a wider spectrum of gene expression levels could be

obtained when RNA-Seq is used, resulting in a more detailed insight into gene expression.

Further studies, prove that RNA-Seq outperforms microarray at discovering new isoforms

[78,79], and at transcriptome profiling [80,81].

RNA-Seq or the Whole Transcriptome Shotgun Sequencing workflow consists of several

steps (see Figure 2.20). First, the total RNA consisting of messenger RNA (mRNA), ribosomal

RNA (rRNA), and other small RNAs is extracted from a cell. The next step is the isolation of

RNA content. In this step, due to the fact that over 90% of total RNA is made of rRNA, which

can hinder the detection of mRNA, it is necessary to remove rRNA. One solution for this issue

is to use poly (A) to enrich mRNA, which can only be used if the interest is in analysing mRNA

alone, as this method eliminates all other non-poly RNAs. Another solution is to use rRNA-

depletion technique, such as using exonuclease to digest rRNA, or using subtractive

hybridisation [82–84]. Furthermore, if a study is interested in other small RNAs, several

strategies are available to enrich such small RNAs, either by using commercially available kits

or performing size selection by using polyacrylamide gel electrophoresis [85].

The next step is fragmentation of RNA to reduce the chance of secondary structure

formation, and to provide a homogeneous coverage of entire transcripts [75]. The final step

is to convert single stranded RNAs to double stranded cDNAs by utilising a reverse

transcriptase. This last step is done because most sequencing technologies are currently

unable to sequence RNA itself. Once the cDNA libraries are formed, various NGS platforms

can be used to sequence them as discussed in Section 2.3.

39

Figure 2.20: RNA-Seq procedure [86].

2.5: Analytical challenges for microarray and NGS data in respect

to profiling and understanding diseases

Although gene expression profiling is a viable tool for diagnosis and prognosis of diseases,

the analysis of microarray and NGS data is characterised as being very challenging [87]. In

regard to microarray data, although only few samples are used, the expressions of thousands

of genes are measured. This creates a challenge as the methods that could be implemented

for analysis of microarray data needs to account for the nature of high dimensionality of such

data [88]. To overcome this challenge and extract useful information among the pool of

microarray data, machine learning techniques and various statistical approaches have been

facilitated. These methods range from finding differentially expressed genes via statistical

40

methods to clustering and classification of diseases through machine learning techniques [46].

It is noted that over that last decade, the use of machine learning to classify diseases have

become an area of intensive research [22]. However, high classification accuracy of diseases

such as cancer is still highly challenging and more research is required where new methods

could be implemented to further increase the classification accuracy.

With regard to NGS data, although the exploration of gene expression through RNA-Seq

technique is more feasible, the analysis of such data is more computationally challenging when

compared to microarray data [89]. For instance, a significant number of the short reads that

are produced from a RNA-Seq experiment are map across splice junctions so that the task of

mapping these reads to a reference genome is very challenging. Furthermore, after mapping

these reads, the process of counting these reads over genomic locations inherits a significant

challenge and one required to apply some statistical modelling such as discrete distributions

to model these counts [90]. There exist several main challenges when analysing RNA-Seq as

addressed in Chapter 6 later.

2.6: Summary

In this chapter a review of recent developments in measuring gene expression was

presented. Initially, a brief overview of the biological aspects of the thesis such as gene

expression phenomena was given. Afterwards, different types of microarray technologies such

as cDNA and oligonucleotide microarray were explored. Then, different NGS technologies were

investigated and a unique approach for each technique was explained in order to have a good

understanding of how NGS data is produced. The common formats of NGS data such as

Sanger, Solexa, and Illumina were then explained. Finally, the RNA-Seq technique utilising

NGS technology to measure gene expression was introduced.

41

Chapter 3: Overview of Machine Learning

Approaches for Microarray Data Analysis

3.1: Introduction

There are several steps for a successful microarray data analysis including design, pre-

processing, inference, classification, and validation. Since each step plays an important role in

the final results, there have been numerous studies to optimise each step. The design step is

vital, as it determines the initial quality and quantity of the information to work with, and this

step is carried out in a wet laboratory. Pre-processing is usually the first step for the analysis

of microarray data, during which the images from microarray chips are processed and

systematic variations are removed, followed by the transformation and normalisation steps.

After pre-processing, depending on the purpose of the experiment, inference and/or

classification of the data follows. Finally, the results from the previous steps are validated

[46].

3.2: Design

Research suggests that the design of microarray experiments directly affects the efficiency

and validity of the information obtained [91,92]. There are 2 factors that are essential to take

into consideration when designing a microarray experiment.
The first factor is related to the importance of having biological replicates in the experiment.

In general, there are two types of replicates, technical and biological replicates. Biological

replicates refer to the replicates that are produced from different biological samples. In

contrast, technical replicates are obtained from the same sample, but processed in a different

42

microarray experiment. One advantage of biological replicates compared to technical

replicates is that the latter can only estimate the measurement variation between samples

from different experiments. However, biological replicates not only can be used for this

purpose, but they can also measure the variation between different biological samples. For

instance, they can be used to find out which genes are differentially expressed between

different samples [46].
The second factor is related to the number of required samples for a microarray experiment

to provide enough information for a valid analysis. Several studies confirm that for a

differential expression analysis using statistical inference, at least 5 biological replicates for

each sample group are required [93,94]. With regards to a number of replicates for a

classification purpose, a study by Dobbin and Simon [95] proposed a formula to calculate this

number based on the relative sizes of different sources of variability.

3.3: Pre-Processing

As was discussed in Sections 2.2.1 and 2.2.2, as a result of microarray experiments, several

images in TIFF format are produced that contain intensity signals. The first action towards a

meaningful analysis is the pre-processing of these images and extraction of useful information

to form a gene expression matrix [96,97]. Figure 3.1 shows the important steps for pre-

processing microarray data.

Figure 3.1: Pre-processing of microarray data.

Image analysis is the first step in the pre-processing of microarray data, and deals with the

process of extracting information from images. This provides the basis for further microarray

analysis. This step involves quantifying spots on the microarray. To this end after identifying

the spots on the microarray, first spot signal and background intensity are measured. Then

based on these measurements, the initial intensity for each spot is calculated by subtracting

the spot signal from the background intensity [98].

In the second step, the expression ratio for each gene is calculated. This is done by utilising

the spot intensities of two samples and relating them by using a metric called expression ratio

through the following equation.

Image	
analysis

Expression	
ratio

Transformati
on

Normalisat
ion

Gene	
expression	
matrix

43

 𝑇" =
𝑅"
𝐺"

 (3.1)

where 𝑇" is the expression ratio of gene 𝑘, 𝑅" is the spot intensity of sample 1, and 𝐺" is the

spot intensity of sample 2. The expression ratio is a relevant way to represent expression

differences. For example, genes that have equal levels of expression in two experimental

conditions will have an expression ratio of 1. However, the interpretation of data from this

method can be confusing when a gene has a higher or lower expression. For example, a gene

that is highly expressed by a factor of 4, based on the formula 𝑇" =
)L
ML
= N

3
 has an expression

ratio of 4. However, if it has a lower expression by a factor of 4, the expression ratio becomes

0.25 (𝑇" =
)L
ML
= 3

N
). Thus lower expression is mapped between 0 and 1 while higher

expression is mapped between 1 and infinity. Logarithmic transformation is used to eliminate

this inconsistency in the mapping intervals, where higher expression and lower expression are

treated equally. For instance, if the expression ratio is 1, then log2 (1) equals 0 represents no

change in expression. If the expression ratio is 4, then log2 (4) equals +2 and for an expression

ratio of log2 (1/4) equals -2.

The next step is the normalisation of data. In the human genome, there are some genes

known as housekeeping genes. The expression level of these genes should not change across

different conditions. However, in some cases the data from the expression ratio suggests that

an average expression ratio of such genes deviates from 1. This implies some sources of

systematic variation that affect the measured expression levels of genes. In order to overcome

this problem, the data needs to be normalised. There are several methods of normalisation,

like total intensity normalisation, mean log centring, and linear regression. In these methods,

a normalisation factor is calculated and then it is used to rescale the intensity of each gene

[99].

After these pre-processing steps, the data can be represented in the form of a matrix, and

each row in the matrix (see Figure 3.2) corresponds to a particular gene, while each column

either corresponds to an experimental condition or a specific time point at which expression

of the genes has been measured.

44

Figure 3.2: Gene expression matrix.

3.4: Unsupervised Classification

Data clustering, which also refers to unsupervised classification, is a way of finding

similarities in data when no prior information on the structure of data is available [100]. In a

clustering task, data is divided into groups in which data points within each group (cluster)

are very similar to each other, yet different from other clusters. Microarray gene expression

data can be clustered based on genes (row), samples (column), or both genes and samples

which provides useful information for data visualisation and the interpretation of experimental

results. Clustering based on both genes and samples referred to as bi-clustering [101] which

is useful in uncovering functionally linked gene sets under different experimental conditions.

Since genes that have similar expression pattern are grouped together in clustering methods,

one can hypothesise that if two genes are within a similar cluster, the respective genes can

be co-expressed and have a related function.

Despite the fact that there are several clustering methods available such as K-means, Fuzzy

C-means and Hierarchical, all methods use a similarity measure to calculate the distance

between data points, so that similarities and dissimilarities of all data points can be quantified

and clustered respectively [102]. Among the several similarity measuring methods like

Covariance, Manhattan Distance, Average Dot Product, Pearson Correlation Coefficient, and

Euclidian Distance, the latter two are most commonly used.

In the Pearson Correlation, the linear association between gene 𝑎 and 𝑏 is calculated by

Equation 3.2.

𝑃𝑎𝑏 =

(𝑥R; − 𝑥;)(𝑥RS − 𝑥S)
T
RU3

(𝑥R; − 𝑥;)V (𝑥RS − 𝑥S)V
T
RU3

T

RU3

(3.2)

where 𝑥R; and 𝑥RS are respectively the gene expression for gene 𝑎 and 𝑏 in sample 𝑚 and

45

𝑥; and 𝑥S are the mean expression of genes 𝑎 and 𝑏 from all samples. The value of correlation

between gene 𝑎 and 𝑏, (𝑃𝑎𝑏) can range from -1, which means a perfect negative correlation,

to 1 which means a perfect positive correlation. If both genes appear to be independent of

each other, the correlation value will be assigned to zero.

In Euclidian distance method, the distance between gene 𝑎 and 𝑏 is calculated by Equation
3.3.

 𝐸𝑎𝑏 = (𝑥R; − 𝑥RS)V
T

RU3

 (3.3)

where 𝑥R; and 𝑥RS are respectively the gene expression for gene 𝑎 and 𝑏 in sample 𝑚. The

Euclidian distance between gene 𝑎 and 𝑏, (𝐸𝑎𝑏) can range from 0 to ∞.

3.4.1: K-means

K-means clustering is a simple and fast method that aims to partition	𝑛 genes into 𝑘

clusters, where data within a cluster is nearer to the centre of their cluster than other clusters.

It is noted that the number of clusters (𝑘) should be specified in advance. The means of

clusters are updated, along with iterations. If that microarray data contains 𝑛 genes with

expression	(𝑥3, 𝑥V, … , 𝑥]), and each 𝑥 is a d-dimensional factor, 𝑛 genes will be separated into
𝑘 subsets with unknown centres (𝜇3, 𝜇V, … , 𝜇"), under the condition that 𝑘	 ≤ 𝑛. The objective

of the K-mean algorithm is to minimise the cost function 𝐻 (see Equation 3.4), such that the

centre of each cluster has the minimum aggregation distance between the centre of a cluster

and the points within that cluster [103].

 𝐻 = 𝑎ab 𝑥a − 𝜇b
V]

aU3

"

bU3

 (3.4)

where 𝑥a − 𝜇b
V is the Euclidian distance between the 𝑖𝑡ℎ gene (𝑥a), and the centroid for the

𝑗𝑡ℎ cluster; 𝑎ab is the membership value which is either one if 𝑥a is assigned to 𝑗𝑡ℎ cluster or

zero otherwise. The K-mean algorithm clusters the data through the following iterative

procedure:

Step 1: Random selection of cluster centres (𝜇b) where the number of clusters are

predefined (𝑘).

46

Step 2: Assign each point (𝑥a) to its nearest cluster centre. This is done by determining

the membership matrix 𝑎ab using the following equation:

 𝑎ab =
1
0				

𝑖𝑓		 𝑥a − 𝜇b
V
	≤ 		 𝑥a − 𝜇h V						𝑓𝑜𝑟	𝑎𝑙𝑙									𝑗 ≠ 𝑧

𝑒𝑙𝑠𝑒
 (3.5)

Step 3: Compute the cost function 𝐻 using Equation 3.4.

Step 4: Update the cluster centres as below:

 𝜇b =
𝑎a,b	𝑥a

]

aU3

𝑎a,b
]

aU3

 (3.6)

Step 5: Steps 2, 3 and 4 are cycled through continuously until they coincide with set values

(e.g. the number of iterations).

3.4.2: Fuzzy C-means

Fuzzy C-means clustering relies on the basic idea behind K-mean clustering, with the

difference that in the C-means method, each data point belongs to a cluster with a degree of

membership grade. In K-means, each data point either belongs to a certain cluster or not. In

other words, in fuzzy C-means, each data point can belong to more than one cluster with a

degree of belonging specified by membership grades between 0 and 1. Fuzzy C-means also

utilise a cost function and similar to K-means, its objective is to minimise the cost function

[104]. The fuzzy C-means algorithm clusters the data by the following iterative procedure:

Step 1: Initialise the membership matrix 𝑎a,b

p with random values between 0 and 1, such

that the constraint in Equation 3.7 is satisfied.

 𝑎a,b
p = 1						𝑓𝑜𝑟								𝑖 = 1,2, … , 𝑛

"

bU3
 (3.7)

Step 2: The cluster centres are updated using the following expression:

 𝜇b =
𝑎a,b
p 	𝑥a

]

aU3

𝑎a,b
p

]

aU3

 (3.8)

where 𝑓 > 1	is the exponent of the membership values, and it is a real-valued number

controlling the fuzziness of the clusters.

47

Step 3: Compute the cost function according to Equation 3.9:

 𝐻 = 𝑎a,b
p 𝑥a − 𝜇b

V]

aU3

"

bU3

 (3.9)

Step 4: Compute a new membership matrix using following equation:

𝜇b =
1

𝑥a − 𝜇b
𝑥a − 𝜇h

V
ps3

"

aU3

(3.10)

Step 5: Steps 2, 3 and 4 are cycled through continuously until they coincide with set values.

3.4.3: Hierarchical Clustering

There are two types of hierarchical clustering approaches: agglomerative and divisive, both

of which involve building some type of dendrogram or tree that reveals the relationships

between the data objects. The agglomerative approach starts by assuming that each object

belongs to its own cluster. Afterwards, it identifies which clusters are the closest to others

using a distance metric. Each iteration of this approach creates bigger and bigger clusters at

each level, until all data objects are put into one big cluster. In contrast, the divisive approach

works exactly the opposite, where at the start all objects belong to one big cluster (see Figure

3.3). When the iteration starts, it finds the best division of the data objects, so that there is

the highest similarity among objects within clusters, and the most dissimilarity between

clusters. This process continues, until all objects are in their own clusters [5,105].

Figure 3.3: Chart of divisive hierarchical clustering scheme.

Cluster 1
(G1,	G2,	G3,	G4,	G5,	G6)

Cluster	1
(G1, G2,	G3)

Cluster	1
(G1,	G2)

Cluster	1	
G1

Cluster	2
G2

Cluster	2
(G3)

Cluster	3
G3

Cluster	2
(G4, G5,	G6)

Cluster 3
(G4,	G5)

Cluster	4
G4

Cluster	5
G5

Cluster	4
(G6)

Cluster	6
G6

48

Hierarchical clustering partitions genes based on the measurement of distance. The most

commonly used method for measuring distance in this context is Euclidean distance. The

calculation of distance between a pair of sub-clusters depends on linkage criteria, which is a

way of defining the similarity of clusters based on the similarities of cluster members. There

are four linkage methods that can be used: single, average, complete, and the distance

between centroids (see Figure 3.4), in which clusters are linked based on the similarity of the

closest members, the average similarity, and the similarity of the furthest members [106].

Figure 3.4: Linkage methods

3.4.4: Self-Organising Map

The Self-Organizing Map (SOM) which is based on neural network was developed by

Kohonen [107]. SOM utilises a competition and cooperation means to attain unsupervised

learning using winner takes all (WTA) algorithms. A SOM network consists of two layers

including a Kohonen layer and an input layer (see Figure 3.5). In the Kohonen layer, neurons

are organised in a geometric pattern, usually 2-dimentional lattice. Each neuron in the input

layer is fully coupled with all neurons in the Kohonen layer and each has a weight vector,

𝑤a, 𝑖 = 1,2, . . , ℎ which is randomly initialised. ℎ represents the number of neurons in the

Kohonen layer. Also, each neuron in the Kohonen layer is linked to adjacent neurons by a

neighbourhood relation. The objective of SOM is to discover a suitable mapping from the 𝑛

dimensional input data (𝑥a, 𝑖 = 1,2, … , 𝑛) to a two-dimensional lattice configuration [108].

49

Figure 3.5: SOM neural network adapted from [108].

To this end, the Euclidean distances between input data and weight vectors are calculated.

Then for each data vector the best match unit (BMU) is obtained through Equation 3.11, which

refers to the unit that minimises the Euclidean distance between the input data and weight

vectors [109].

 𝐵𝑀𝑈 = 𝑎𝑟𝑔min
b

𝑥a − 𝑤b (3.11)

Once the BMU is chosen, this unit is then allowed to update its weight vector. Since in the

Kohonen layer neurons are linked to adjacent neurons, when the BMU is chosen, all

neighbouring neurons within a width and radius of BMU also will be updated. By defining a

set of activated neuron adjacent to BMU as 𝑁~, the activated neurons can update their weights

at time 𝑡	using Equation 3.12 [109].

 𝑤b 𝑡 + 1 =
𝑤a 𝑡 + ℎ 𝑡 	[𝑥a − 𝑤a 𝑡], 𝑖 ∈ 𝑁6		

𝑤b 𝑡 , 𝑖 ∉ 𝑁6
 (3.12)

where ℎ 𝑡 is the neighbourhood function and can be calculated as below:

 ℎ 𝑡 = 𝛼 𝑡 𝑒𝑥𝑝 −
𝑟�T� − 𝑟aV

2𝜎V(𝑡)
 (3.13)

50

where 𝑟a denotes the location of neuron 𝑖 on the grid map, 𝛼 𝑡 is the learning rate, and

𝜎 𝑡 is the kernel width function around BMU. Both 𝛼 𝑡 and 𝜎 𝑡 are monotonically shrinking

over time. As the process continuous and new input vectors are given to the map, the

neighbourhood radius and the learning rate progressively shrink to zero so that only BMU can

be updated. The SOM algorithm clusters the data by the following iterative procedure [109]:

Step 1: The topology of SOM is defined and the weight of each neuron is randomly

initialised (𝑤a(0), 𝑖 = 1,2, . . , ℎ).

Step 2: The distance between the input vector and the weights of each neuron is calculated

and BMU is identified using Equation 3.11.

Step 3: The active radius around BMU is calculated which is then decreases over time.

Step 4: The weights of the BMU and the neurons within the active radius are updated using

Equation 3.12.

Step 5: Steps 2, 3 and 4 are cycled through continuously until convergence.

3.4.5: Binarisation of Consensus Partition Matrices (Bi-CoPaM)

In order to improve reliability and robustness of clustering procedure, ensemble clustering

methods such as graph-based and hypergraph-based methods [110], kernel-based methods

[111], relabelling and voting [112], and non-negative matrix factorization [113] have been

proposed. In these methods, the results of various clustering algorithms for the same dataset

are merged to build a consensus clustering outcome.

More recently, the binarisation of consensus partition matrices (Bi-CoPaM) that is a

tuneable consensus clustering method was proposed by Abu-Jamous et. al [114,115]. This

clustering method takes into account various datasets while employs several single clustering

algorithms to detect the subset of features which incessantly correlate among many clustering

results [116]. This method outperforms conventional clustering algorithms in that each feature

can be assigned to multiple clusters at the same time or not assigned to any clusters at all

[117].

Assuming time series microarray datasets, Bi-CoPaM performs clustering independently for

each dataset in the first stage and datasets are not combined. This means within each dataset

51

all features are homogenous as they have the same experimental design. However, in the

next stages the created clusters from each dataset are merged in respect to memberships

which is not influenced by the time profiles of the feature in their datasets to create one set

of partitions. This method provides the infrastructure for multiple heterogeneous datasets to

be analysed together [118]. Figure 3.6 illustrates the Bi-CoPaM flowchart.

Figure 3.6: Flowchart of Bi-CoPaM adapted from [115]

Bi-CoPaM performs clustering through four main steps as follow:

Step 1: Partitions generation. In this step, R partition results, 𝑈3, 𝑈V, … , 𝑈) , are

created by facilitating R different clustering algorithms. Each 𝑈 matrix consists of 𝐾 rows

corresponding to number of clusters and 𝑀 columns corresponding to the number of genes.

Each element in the matrix, 𝑈ab� , denotes the membership of the 𝑖𝑡ℎ gene in the 𝑗𝑡ℎ cluster

based on the 𝑟𝑡ℎ partition.

Step 2: Relabelling. The objective of relabelling is to make sure that the 𝑖𝑡ℎ cluster in

each generated partition correspond to each other by means of rearranging the clusters. The

min-max approach is utilised to rearrange the clusters to achieve this objective as follow

[115,117]:

52

A) First a dissimilarity matrix, 𝐷6×6 , is composed. In this matrix, each element (𝐷ab)

denotes the dissimilarity between the 𝑖𝑡ℎ row of the partition 𝑈 and the 𝑗𝑡ℎ row of the

reference partition 𝑈�9p.

B) Then in the 𝐷 matrix the minimum of each column is calculated.

C) Afterwards, the maximum value from the calculated minimums is selected by which the

clusters from 𝑈 and 𝑈�9p that have this maximum are coordinated to correspond to

each other.

D) Then the selected row that was used for matching the clusters in step C is removed

from 𝐷 matrix.

E) Steps B to D are repeated till 𝐷 matrix is empty and all clusters from 𝑈 and 𝑈�9p are

matched.	
	

After relabelling the rearranged matrix of 𝑈 is shown by 𝑈 which is presented as follow.

𝑈 = 	𝑎𝑟𝑔𝑚𝑎𝑥	∀�9�R � Γ(𝑈�9p, 𝑝𝑒𝑟𝑚(𝑈))

(3.14)

where 𝑝𝑒𝑟𝑚(𝑈) denotes the permutation of the rows of 𝑈 and Γ() is the similarity measure

[114].

Step 3: CoPaM generation.
The R relabelled partition matrices are utilised to create a single fuzzy CoPaM in which each

single element represents a fuzzy membership of a gene in a cluster based on the number of

times that the genes appeared in that cluster. The membership value ranges from 0,

representing absolutely no consistency to 1 which denotes absolute consistency. It is noted

that the summation of fuzzy membership values for each given element across all clusters

should be 1. To generate the CoPaM matrix the values of the first partition are used to

instantiate an intermediate fuzzy CoPaM,	𝑈a]�. The remaining partitions are then fused to the

	𝑈a]� one after another and in each step when a partition is fused, this partition is relabelled

according to the 	𝑈a]�. Once all partitions are fused, the 	𝑈a]� is assigned as the CoPaM

matrix	𝑈∗. If 	𝑈a]�(�) denotes the intermediate matrix after 𝑔 partition is fused, the generation

of CoPaM can carried out by the following three steps [115]:

53

a) 	𝑈a]�(3) = 	 	𝑈3

b) 𝑓𝑜𝑟	𝑘 = 2	𝑡𝑜	𝑅

1. 𝑈" = 𝑅𝑒𝑙𝑎𝑏𝑒𝑙𝑒𝑑	(𝑈", 	𝑈a]�("s3))

2. 	𝑈a]�(") = 3
"
𝑈" + "s3

"
	𝑈a]�("s3)

c) 	𝑈∗ = 	 	𝑈a]�)

Step 4: Binarisation.
In general, the binarisation is performed in CoPaM so that each gene is included only in

one cluster and excluded from other clusters. However, Bi-CoPaM generates a pseudo-

partition matrix, 𝐵∗, with 𝐾 rows corresponding to the number of clusters and 𝑀 column which

allows a gene to be included in multiple clusters, not assigned to any clusters or assigned to

only one cluster by assigning a multiple 1s, no 1, or a unique 1 in columns accordingly. Several

techniques have been proposed to generate the Bi-CoPaM including intersection binarisation

(IB), maximum value binarisation (MVB), top binarisation (TB), different thresholding

binarisation (DTB) [119]. In all methods, the binarisation status is monitored using two

measurements namely 	𝑀�] which denotes the number of genes that belongs to none of the

clusters and 	𝑀R�8�a that denotes the number of genes that belongs to multiple clusters. For

instance, in IB approach binarisation leads to 	𝑀R�8�a= 0 and 	𝑀�] ≥ 0 where a gene is

assigned to a cluster if all partitions map this gene to all that cluster which can be

mathematically expressed as follow:

 𝑏a,b∗ =
1										, 			𝑢a,b∗ = 1
0								, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.15)

In TB method, each gene is not only assigned to the maximum membership value cluster,

but also assigned to other clusters where its membership values are within a definite variance

𝛿 less than the maximum which leads to 	𝑀R�8�a ≥ 0 and 	𝑀�] = 0. TB method mathematically

expressed as follow:

 𝑏a,b∗ =
1										, 			𝑢a,b∗ − 𝑢",b∗ ≥ 	−𝛿	,			𝐾 ≥ 	𝑘 ≥ 	1		𝑘 ≠ 𝑖	
0																										,																																							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.16)

In DTP method, each gene is assigned to the maximum membership value cluster on a

condition that the value of nearest candidate cluster is as far from the maximum as a minimum

of a definite variance 𝛿. This technique leads to 	𝑀R�8�a = 0 and 	𝑀�] ≥ 0 when 𝛿 > 0 and

the value of 	𝑀�] correlates with the value 𝛿. DTP method mathematically expressed as in

Equation 3.17.

54

 𝑏a,b∗ =
1										, 			𝑢a,b∗ − 𝑢",b∗ ≥ 	𝛿	,			𝐾 ≥ 	𝑘 ≥ 	1		𝑘 ≠ 𝑖	
0																										,																																							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.17)

3.4.6: Unification of clustering results from multiple datasets using

external specifications (UNCLES)

Abu-Jamous, et al., [118] proposed a method to examine multiple gene expression datasets

at once by unifying the clustering results in order to discover a subset of genes that are co-

expressed across all datasets while taking into account one of two types (type A and B)

external specifications. Type A, is similar to that in Bi-CoPaM where the objective is to identify

a subset of genes that are consistently co-expressed in all datasets. In contrast, type B allocate

all datasets into two subsets of datasets, the negative subset,		𝑆s, and the positive subset,

	𝑆�. The objective of type B is to identify a subset of genes that are poorly co-expressed in

	𝑆s, while a consistent co-expression of the selected subset of genes can be observed in 	𝑆�

(See Figure 3.7).

Figure 3.7: UNCLES flowchart with type B of external specifications adapted from [118]

Type B UNCLES is performed in several steps as follow. In the first step, Bi-CoPaM (type

A) that utilises DTP binarisation with parameters 	𝛿� and 	𝛿s is performed on both subsets of

datasets 𝑆� and 	𝑆s respectively. Afterwards, the selected genes that resulted from Bi-CoPaM

on the 𝑆� subset are excluded from the result of 𝑆s. It can be noted that type B take

advantages of two parameters (𝛿� and 	𝛿s) compared to one parameter in type A. The

parameter 	𝛿�	regulates the tightness of clusters in 𝑆� subsets so that the co-expressed genes

in this subset can be included in the final results and 	𝛿s controls the how tight the clusters

in	𝑆s subset can be so that its co-expressed genes could be excluded from the final results.

For instance, at a pair of (𝛿� and 0) will result in creating empty clusters as 	𝛿s = 0 means all

the genes will be excluded from the final results [120].

55

3.5: Supervised Classification

In supervised classification, the objective is to design a class predictor to distinguish two

or more classes of samples from each other (e.g. healthy vs cancerous). The class predictor

is designed based on the currently available data from different diagnostic classes, which

refers to training or learning samples. In this procedure, first the classifier is trained, and then

the classifier is used to find the diagnostic class of new samples [7]. When designing a

classifier, based on the available information within the training set of data, one needs to

develop decision rules and mathematical formulas with a particular classifier design strategy,

so that the classifier can make diagnostic or prognostic predictions. There exists several

classifier design approaches that can be used for microarray gene expression classification,

including Linear Discriminate Analysis (LDA) [7], k Nearest Neighbours (k-NN) [121], Support

Vector Machines (SVM) [122], Multilayer perceptron (MLP) [123], and other types of Artificial

Neural Networks [7].

LDA classification is based on the identification of linear combinations of features that are

able to best distinguish between two classes of samples. This classification method is closely

related to the analysis of variance method (ANOVA), and its objective is to maximise the ratio

of between-class variance for datasets whereby a maximum separability between different

diagnostic classes can be achieved [7]. k-NN classification is based on the concept of similarity

measurement (e.g. Euclidian distance or Pearson’s correlation) in which the distances between

unknown samples (test samples) and known samples is calculated. Subsequently, the class

membership of unknown samples is assigned based on 𝑘, the closest known samples. One of

the advantages of k-NN is low computational consumption compared to other classification

methods [124]. In this thesis, two of the most widely used classifiers, SVM and the MLP neural

network are investigated in detail.

3.5.1: Support Vector Machine

SVM is an efficient classification method typically used for a two-class classification

problem. SVM chooses a hyperplane, which provides the maximum separation distance in two

classes [125]. Given some training data, a set of 𝑁 points of the form (𝑋a, 𝑦a):

 𝐷 = 𝑋a, 𝑦a |	𝑋a ∈ ℝ�, 𝑦a ∈ −1, 1 	 aU3� (3.18)

where 𝑦a is either 1 or −1, indicating the class to which the point 𝑋a belongs. Each 𝑋a is a p-

dimensional real vector. The objective is to find a maximum margin hyperplane that divides

the points having 𝑦a = 1 from those having 𝑦a = −1. A hyperplane can be written by

56

expression 𝑊�𝑋a +𝑏 = 0, where 𝑊 is the normal vector to the hyperplane, 𝑋a is the input

vector (𝑋a = 𝑋3, 𝑋V, … , 𝑋�), and 𝑏 is the bias.

If the data is linearly separable, two hyperplanes can be selected, which provides the

maximum separation distance for two classes (see Figure 3.8). The selection of the hyperplane

is done in such a way that data is separated into two sections with a defined gap (margin)

between separated data. The main objective is to maximise this gap to provide better

classification results [126] .

Figure 3.8: Support vector machine classifier.

In Figure 3.8, the blue lines are margin lines, and can be mathematically presented by

Equations 3.19 and 3.20. The red line is the maximum-margin hyperplane that is

mathematically formulated by Equation 3.21, whose position is in the middle of both margin

hyperplanes. By using geometry, the distance between margin hyperplanes can be calculated

by Equation 3.22.

 𝑊� 𝑋a + 𝑏 = −1 (3.19)

 𝑊� 𝑋a + 𝑏 = +1 (3.20)
 𝑊� 𝑋a + 𝑏 = 0 (3.21)

 𝑑 =
2
𝑊 	V

 (3.22)

As it was discussed earlier, the objective is to maximise the distance between two margin

hyperplanes which mathematically can be illustrated as Equation 3.23.

57

 𝑚𝑎𝑥
2
𝑊 V 				𝑜𝑟				𝑚𝑎𝑥

1
𝑊

										𝑜𝑟								𝑚𝑖𝑛 𝑊 								𝑜𝑟									𝑚𝑖𝑛
𝑊 V

2
 (3.23)

It is also crucial to prevent data points from falling into the margin. For this reason, the

following constraint needs to be added:

𝑊�𝑋a + 𝑏	 ≥ 1,												𝑦 = 1

	
	𝑊�𝑋a + 𝑏	 ≤ −1, 𝑦 = −1

 (3.24)

Equation 3.25 can be obtained by rewriting the above constraint:

 𝑦a	(𝑊�𝑋a + 𝑏) 	≥ 1, 1 ≤ 𝑖 ≤ 𝑛 (3.25)

In order to solve this optimisation problem that has such a constraint, the Lagrange method

is utilised so that the constrained become unconstrained [127]. To this end, the problem can

be stated in the Lagrange format as follows:

 𝐿(𝑊, 𝑎, 𝑏) =
𝑊 V

2
	− 		𝛼a 		𝑦a 𝑊�𝑋a + 𝑏 − 1	

�

aU3

 (3.26)

Gradient with respect to 𝑊 and derivation with respect to 𝑏 will result in:

 ∇¡𝐿(𝑊, 𝑎, 𝑏) = 0	 ⟹ 𝑊 = 		𝛼a	𝑦a𝑋a

�

aU3

 (3.27)

𝜕𝐿(𝑊, 𝑎, 𝑏)

𝜕𝑏
= 0	 ⟹ 		𝛼a	𝑦a = 0

�

aU3

 (3.28)

Afterwards, these are substituted in the Lagrange formula as shown by the following

equation.

 𝐿(𝑎) = 		𝛼a −
1
2
	 		𝛼a𝛼b	𝑦a	𝑦b𝑋a𝑋b		

�

bU3

�

aU3

�

aU3

 (3.29)

Under the constraining conditions:

58

𝛼a > 0
	

		𝛼a	𝑦a = 0
�

aU3

 (3.30)

In Equation 3.29, by using a quadratic program, vector 𝛼a = (𝛼3, 		𝛼V, … , 		𝛼�) is created. It

is noted that the majority of the 𝛼a values are zero, and the value for 𝛼 is only positive for

support vectors. This means that one only needs to sum the equation over the support vectors.

It is important to note that when classifying with SVM, at the same time the dimension of data

is significantly reduced. As can be seen in Figure 3.8, the data has 15 dimensions while after

using SVM the data effectively has 3 dimensions (pointed out by filled circle and squares

shapes). Once the alphas that meet the criteria for support vectors are defined, they can be

used and plugged into Equation 3.27 to calculate 𝑊. Then, the value for 𝑏 can be calculated

by the following expression:

 𝑦]	(𝑊	. 𝑋a 	+ 𝑏) = 1 (3.31)

Finally, the classifier can be designed as shown below:

 𝑓(𝑋]9¤) = 		𝛼a	𝑦a 𝑋a	 . 𝑋]9¤ + 𝑏
~¥

aU3

 (3.32)

where	𝑠𝑣 is the number of support vectors, 𝑋a	. 𝑋]9¤ is the dot products of the input vector

sample and the unknown vector.

If the data is not linearly separable, then the nonlinear SVM is utilised by applying kernel

trick [128]. In general, when kernel trick is applied on a pair of data, it can implicitly map this

data to a higher dimensional space so that a linear classifier can be used to separate highly

non-linear data. Training and classification process in nonlinear SVM is similar to that in linear

SVM. The only difference between linear and nonlinear methods is that the nonlinear kernel

function is used in nonlinear SVM. It is noted that when kernel trick is used the coordinates

of the data in the higher dimensional space is not computed but rather the inner products of

the data pairs is calculated which eliminates the computational power required for explicit

computation of the coordinates [128,129]. In the case of non-linearly separable data the

classifier can be designed as follows:

 𝑓(𝑋]9¤) = 		𝛼a	𝑦a𝑘 𝑋a	. 𝑋]9¤ + 𝑏
~¥

aU3

 (3.33)

59

where 𝑘 𝑋a	. 𝑋]9¤ is a kernel function such as a polynomial, Gaussian or Hyperbolic tangent

[130].

3.5.2: Multilayer Perceptron (MLP) Artificial Neural Network

• Single layer perceptron:

Artificial neural networks mimic biological neural networks like that of the human brain

[131]. In biology, the fundamental unit of a biological neural network is a neuron, and in

artificial neural networks the fundamental unit is an artificial neuron. One of the widely used

models for an artificial neuron is McCulloch-Pitts (MP) model [132]. The model is constructed

in such a way that it has one input layer of MP neurons feeding forward one output layer of

neurons, referred to as a perceptron (see Figure 3.9). Each input has a weight (𝑤). In a

perceptron, an initially weighted sum of all its inputs is calculated and fed to a single variable

function, which is also known as the activation function. The activation function then uses the

information from the weighted sum to decide to fire or otherwise [133]. In other words, in its

simplest form a perceptron is a network that can classify linearly separable patterns. To this

end, initially the network should be trained in order to learn the values of the weights and

biases to correctly respond to each input vector with the corresponding target classes.

Figure 3.9 shows a perceptron with 𝑚 inputs (𝑥 3, 	𝑥 V, 	𝑥 §, … , 𝑥 R), and corresponding

synaptic weight for each input (𝑤3, 	𝑤V, 	𝑤§, … , 	𝑤R), a bias (𝑏), activation function (𝑓), and 𝑦

is the output and can be mathematically presented by Equation 3.34.

 𝑦 = 𝑓 𝑥a	𝑤a

R

aU3

+ 𝑏 = 𝑓(𝑥𝑤� + 𝑏) (3.34)

Figure 3.9: A perceptron with m inputs and a bias.

60

Table 3.1 depicts some commonly used activation functions, as well as their formulations,

and the illustrations of the signal shapes.
Table 3.1 Activation functions

Function

name

Formulation Signal shape

Step

𝑓 𝑥 = 0, 𝑥 < 0
1, 𝑥 ≥ 0

Signum

𝑓 𝑥 = −1, 𝑥 < 0
1, 𝑥 ≥ 0

Sigmoid

𝑓 𝑥 =
1

1 + 𝑒s©:

Hyperbolic
tangent

𝑓 𝑥 = tanh 𝑥 =
2

1 + 𝑒sV:
− 1

For classification purposes, initially the network should be trained in order to learn the

values of the weights and biases in order to minimise the error rate (error rate = desired

output - actual output) [7]. A perceptron convergence algorithm can be used to train a single

layer perceptron (SLP). In this algorithm the problem is solved in several steps that use the

following parameters [134].

61

Input vector 𝑥 𝑛 = [+1, 𝑥 3(𝑛), 	𝑥 V(𝑛), 	𝑥 §(𝑛), … , 𝑥 R(𝑛)]
�

Weight vector 	𝑤 𝑛 = [𝑏, (𝑤3 𝑛 , 	𝑤V 𝑛 , 	𝑤§ 𝑛 , … , 	𝑤R 𝑛]�

Actual output 𝑦(𝑛) = 𝑓 	𝑤a 𝑛 	𝑥a 𝑛R
aU4 = 𝑓(𝑤� 𝑛 𝑥(𝑛))

Desired output 𝑑 𝑛 = +1, 𝑥 𝑛 ∈ 𝑐𝑙𝑎𝑠𝑠1
−1, 𝑥 𝑛 ∈ 𝑐𝑙𝑎𝑠𝑠2

where 𝑛 denotes the epoch number for applying the algorithm. It is noted that the input for

bias (𝑏) is equal to +1, and referred to as a synaptic weight of 𝑏 in the weight vector. In the

output, the summation operator starts at zero and 	𝑤4 𝑛 represents the weight of bias. The

task of learning is done through four or five steps as follow:

1. Initialisation of weight vector in which 𝑤 𝑛 = 0. Define the number of epochs to be

performed (𝑛 = 1,2, 3… , ℎ).

2. Activation of perceptron using input vector 𝑥	(𝑛)

3. For each instance in the input vector (with known class), the activation output of the

signum function is computed using 𝑦	(𝑛)

4. Updating the weight vector using 𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜂 𝑑 𝑛 − 𝑦 𝑛 𝑥 𝑛 , where 𝜂 is

the learning rate parameter.

5. If the epoch number is less than ℎ, increment epoch by one and go to step 2, otherwise

stop.

• Multilayer perceptron:

The feedforward connection of at least two perceptrons leads to the formation of a

multilayer perceptron (MLP) which can be used for classification of data even if the data is not

linearly separable [135]. Each perceptron is fully connected to all perceptrons in the next

layer, and a bias presents for each perceptron. In the MLP structure, the first and last layers

are called input and output layers respectively, because they represent inputs and outputs of

the overall network. The remaining layers are called hidden layers. Figure 3.10 illustrates a

typical MLP configuration with two hidden layers. In this configuration, the input layer consists

of 𝑁 input features. The first hidden layer consists of 2 perceptrons, and each receives 𝑁

inputs from the input features. The second hidden layer consists of 3 perceptrons, and each

perceptron is fed by 2 inputs which are the outputs from the first hidden layer. Finally, the

62

output layer consists of one perceptron that has 3 inputs from the second hidden layer’s

outputs. All perceptrons have bias 𝑏.

Figure 3.10: MLP Artificial neural network.

An activation function should meet several criteria, including being differentiable,

monotonic, and continuous in order to be used in MLP learning [136]. This criterion is

important because in later stages of training, one can apply gradient descent to find an

optimum solution. Therefore, it is important to remember that both step and sign activation

functions cannot be used. Between the hyperbolic tangent and sigmoid functions, the latter

one is most widely used [137].

The training (learning) is usually done by error back propagation algorithms, which are

based on error correcting learning rules [138]. Compared to SLP, where all inputs are directly

connected to the neuron that produces the output, in MLP the inputs have indirect effects on

the output. The main idea in MLP is to calculate the error rate at the output layer (layer L)

and then back propagate them to the perceptron in the previous layer (L-1), after which the

weight is updated accordingly to minimise the errors. The back propagation algorithm is

performed through several steps. Initialisation of weight vectors is the first step, and the

number of epochs to be performed (𝑛 = 1,2, 3… , ℎ) is also defined at this step. The second

step is the forward computation step, where the output activation functions for each layer and

the error for the output layer is calculated. In this respect, we denote 𝑙 for layer (1 ≤ 𝑙 ≤ 𝐿),

63

𝑖 for inputs (0 ≤ 𝑖 ≤ 𝑑8s3), and 𝑗 for outputs (0 ≤ 𝑗 ≤ 𝑑8). For the first step the objective is to

determine the parameters of 𝑤ab
(8) as the synaptic weight of neuron	𝑖 in layer 𝑙 [134]. The

function that is used to calculate the output signal for each layer (𝑥b
(8)) is shown by Equation

3.35.

 𝑦b
(8) 𝑛 = 𝜃(𝑠b

8) = 𝜃 𝑤ab
(8) 𝑛 𝑦a

(8s3) 𝑛
	±@²³

a

 (3.35)

where 𝜃 is the activation function (sigmoid), 𝑛 is the epoch number and 𝑦a
(8s3) is the output

activation function of neuron	𝑖 in the previous layer 𝑙 − 1. To solve the problem, the stochastic

gradient decent (SGD) method can be applied. The error can be defined as a function of

weight vector 𝑒(𝑤ab
(8)). Therefore, to apply SGD we need the gradient of 𝑒(𝑤ab

(8)) as follows:

 ∇𝑒 𝑤ab
8 = ∇𝑒 𝑊 =

𝜕𝑒 𝑊

𝜕𝑤ab
8 (3.36)

In order to acquire the gradient of the error, we can rewrite ∇𝑒 𝑊 as follows:

𝜕𝑒 𝑊

𝜕𝑤ab
8 =

𝜕𝑒 𝑊

𝜕𝑠b
8 ×

𝜕𝑠b
8

𝜕𝑤ab
8 (3.37)

where
´~µ

@

´¤¶µ
@ = 𝑦a

(8s3), the value of which is already calculated by Equation 3.35. Therefore,

one only needs to calculate ´9 ¡

´~µ
@ = 𝛿b

(8). To calculate the 𝛿 for the final layer where 𝑙 = 𝐿

and 𝑗 = 1 the following expression is used:

 𝛿3
(·) =

𝜕𝑒 𝑊

𝜕𝑠3
· (3.38)

For the final layer, it is noted that using the mean squared error, 𝑒 𝑊 = (𝑥3
(·) − 𝑦")V,

where 𝑦3
(·) = 𝜃(𝑠3

·) and 𝑦" is a constant and presents the desired value. Therefore, 𝛿	for the

output layer can be computed by the following expression:

64

 𝛿3
(·) = 𝜃¸(𝑠3

·) (3.39)

where 𝜃¸ is the derivative of the sigmoid activation function [134].

The third step, backward computation, aims to calculate the error of previous layers

through back propagation using the error from the output layer using the following

equations:

 𝛿3
8s3 =

𝜕𝑒 𝑊

𝜕𝑠a
8s3 =

𝜕𝑒 𝑊

𝜕𝑠b
8 ×

𝜕𝑠b
8

𝜕𝑥a
8s3 ×

𝜕𝑥a
8s3

𝜕𝑠a
8s3

	± @

bU3

 (3.40)

 𝛿3
8s3 = 𝛿b

(8)×𝑤ab
8 ×𝜃¸(𝑠a

8s3)
	± @

bU3

 (3.41)

Finally, the weights are updated using equation 3.42:

 𝑤ab
8 = 𝑤ab

8 − 𝜂𝑥a
(8s3)𝛿b

8 (3.42)

This step terminates an epoch, so that if the number of epochs is less than ℎ, steps 2 and

3 are repeated, otherwise the final value of 𝑤ab
8 is returned as the final weights.

Although there are several training algorithms based on back-propagation, such as gradient

descent [139] , conjugate gradient [140], Bayesian regularisation [141], resilient [142], scaled

conjugate gradient [143], and Levenberg-Marquardt [144], the last one is the most widely

used.

3.6: Feature Selection

During microarray analysis, the number of genes is significantly higher than the number of

samples [12,13] and classification to a high level of accuracy is challenging, due to large

number of genes and small sample size [14,15]. This concept refers to as the course of

dimensionality which is a term that was introduced by Belham to explain the challenge initiated

by the exponential expansion in volume related to adding extra dimension to Euclidian space

[145]. In order to overcome this problem, gene selection mechanisms have been introduced,

by which only the most important genes are selected and used for classification purposes [16–

19]. There are several advantages to this process of minimising the number of genes, and

only selecting the meaningful genes which are more predictive during classification. By having

65

fewer genes, not only is the processing time for classification significantly decreased, but the

chance of misclassification is also reduced. Furthermore, inputting a high number of genes

into the classifier can cause the classifier to be over-fitted [146].

Gene selection methods, based on their interaction with the classifier, can be categorised

into three approaches: filter methods, wrapper methods, and embedded methods [146,147].

Filter methods assess the relevance of genes by only looking at the general characteristics of

the data, and ignoring the impact of selected genes on the classification performance [148].

Wrapper gene selection initiates a search procedure in the space of possible gene subsets.

The selected genes are then evaluated based on their power to improve classification accuracy

[149–151]. In the embedded gene selection method, feature selection is linked to the

classification stage, but this connection is much stronger than in the wrapper method. This is

because gene selection in embedded methods is included in the classifier construction, and

the classifier is used to provide a criterion for feature selection [152,153] (see Figure 3.11).

More recently, evolutionary algorithms have been utilised for gene selection within the

framework of wrapper methods [154,155].

Figure 3.11: Feature selection methods.

Each gene selection approach has advantages and disadvantages [146]. For instance,

although the filter method is simple and computationally efficient, its performance lags behind

other approaches. This is because the classifier performs independently, and is not involved

in the selection of genes [156]. Conversely, while the wrapper and embedded methods, which

incorporate the gene selection task into the classification task, can achieve higher classification

66

accuracy, they suffer from scalability problems due to their high computational cost and are

not practical for large datasets [157,158].

3.7: Overfitting

As discussed in Section 3.5, in a classification task there exist two main phases namely

training and testing. In the training phase, the classifier model is build using training data

and in the second phase the model is evaluated using test data. It is important to note that

the test data should not be used in the training phase, otherwise the result of validation would

be optimistic. The main aim when building a classifier model is not only to perform well on

the training data, but to be able to generalise this model to perform well on the test data and

other unseen data [159]. Overfitting is a phenomenon that occurs when a model is too

complex (too many parameters) that the model memorises the training data rather than learn

to generalise from the data. In other word, overfitting happens when fitting the data in the

model more than it is warranted [160].

As illustrated in Figure 3.12, initially as the number of parameters in a model increases the

error rate of classifier decreases for both training and test data. However, after the 5th

parameter is included in the model, the error rate for test data starts to increase while the

training data exhibits a low classification error. Therefore, if overfitting takes place the model

performs very well on the training data, however this model would have a poor prediction

power when applied to the test data due to the lack of generalisation [161]. The impact of

overfitting could be in a higher magnitude on the classification performance for unseen data

if the training data consists of stochastic noise.

Figure 3.12: Train and test performance when changing the number of parameters in the classifier

model adapted from [162].

67

Overfitting can be prevented if methods such as hold out validation, k-fold cross validation,

or leave one out cross validation (LOOCV) are implemented in the model. These methods

basically determine the point where further training will not result in enhancing the

generalisation power of the classifier. In general, in a cross validation task the data is split

into two parts where the training is done on one part and validation is performed on the other

part. Therefore, the principle of cross validation emphasis on separating a part of data from

the training stage to validate the performance of the model on this part of data which is not

seen by the model before. Cross validation is widely accepted in machine learning society

where it is being use for model selection [163].

In holdout validation, the data is split into two parts (e.g. 70% - 30%). The training is

usually performed on the higher chunk of data (70% of data), then the model is evaluated on

the remaining part (30 % of data). Since splitting the data is a random process, one usually

tend to repeat the splitting several times and consequently repeating training and evaluation

several times. Then report the final accuracy as the average accuracies that obtained from all

repetitions [164].

K-fold cross validation is commonly used technique for assessing the prediction

performance of a classifier model. In this method data is split into k equal chunks where the

training is performed on k-1 chunks and the testing is carried out on the remaining chunk.

This process is repeated k times, where each time a new chunk is chosen for test phase and

the remaining k-1 chunks for training. Therefore, testing is performed on all chunks separately.

The final accuracy of the model is determined by averaging the accuracies in each iteration.

Similar to hold out validation, to acquire a robust estimate of the classification performance

the k-fold cross validation should be ran multiple times while reshuffle the data each time.

Then the final estimate is reported as the average accuracies obtained in each iteration.

LOOCV is a special case of k-fold cross validation where k is equal to the number of samples

[164].

The K-fold cross validation can be used for model selection. In the above, the cross

validation using k-fold cross validation was discussed. In a model selection task using k-fold

the task is somewhat similar to holdout method whilst here the splitting of data refers to a

“three-way holdout”. In this approach, the data initially is split into two parts namely test and

training set. The test set is preserved for the final evaluation of the model. The training set is

then used for k-fold cross validation. Once the training and validation is done, the performance

is accessed based on the test data [163].

68

3.8: Summary

In this chapter, the steps required for microarray analysis were described including: pre-

processing, clustering, and classification (see Figure 3.13). It was explained that the design

step is a crucial step towards a successful analysis. Then the importance of pre-processing of

microarray data was explored, and it was concluded that, first, systematic variation of

microarray images should be removed; and the importance of transformation and

normalisation of the data before starting the main analysis was pointed out. Furthermore,

unsupervised and supervised classification methods were described. It was elaborated that

unsupervised analysis can provide useful information for data visualisation and the

interpretation of experimental results; several clustering methods such as K-means, C-means,

hierarchical, SOM, Bi-CoPam and UNCLES clustering methods were investigated. Then the

importance of supervised classification methods in class prediction was mentioned, and

methods such as SVM and the MLP artificial neural network were briefly explained. Afterwards,

the vital role of feature selection before classification was investigated. Finally, the pitfalls of

overfitting and how to account for it were discussed

Figure 3.13: Microarray data analysis.

Microarray	
data

Pre-
processing

Clustering Gene	
selection

Classification

69

Chapter 4: Effects of Data Clustering Prior to Gene

Selection on Cancer Classification

4.1: Introduction

In order to enhance classification performance, two main areas including gene selection

and classifier design are important to be investigated. Furthermore, it is referenced from the

literature that grouping data (clustering) has also been implemented for microarray data

analysis in a number of investigations [165]. The main characteristic of such approaches is

that there is no prior information on the group structure of the data, and frequently used in

microarray analysis to facilitate the visual display of experimental results.

In this chapter, the effects of gene clustering prior to gene selection on classification

accuracy is investigated. In this context, the aim of clustering applications is to partition	𝑛

genes (total number of genes) with 𝑚 dimension (𝑚 sample) into a given number of clusters.

Once the data is clustered, a set of genes is selected based on gene ranking across all clusters

for classification purposes. In order to fully investigate the effects of clustering on classification

accuracy, not only are conventional clustering methods such as K-means, fuzzy C-Means and

hierarchical methods used, but some optimisation algorithms are also utilised including PSO,

GA, and COA for clustering purposes. Furthermore, a novel optimisation algorithm called COA-

GA is proposed for clustering tasks.

70

4.2: Optimisation Based Clustering Techniques

In order to investigate the effects of optimisation based clustering methods on classification

performance, three optimisation algorithms, specifically GA [25], PSO [166], and COA [24]

were used. A new hybrid optimisation algorithm, COA-GA, was also developed, merging the

recently invented COA and the traditional GA algorithms for data clustering. In the following

subsections, first the design of the cost function for clustering tasks will be given. Then, details

of optimisation algorithms including GA, PSO, COA will be described. Finally, the newly

proposed hybrid COA-GA algorithm are explained.

4.2.1: Proposed Cost Function

In an optimisation problem, the optimisation algorithm iterates until a fitness function (cost

function) conforms to a threshold set beforehand. Therefore, in order to use the optimisation

algorithm for the purpose of clustering microarray gene expression data, a cost function needs

to be defined with the objective to minimise the distance between data within each cluster,

while maximising the distance between clusters. The design of the cost function is depicted

below.

1. An evolutionary algorithm randomly creates an initial population from microarray data

(POP).

𝑃𝑂𝑃 =
𝑋3,3 ⋯ 𝑋3,�
⋮ ⋱ ⋮

𝑋R,3 ⋯ 𝑋R,�

where 𝑚 is the population size which is supplied by evolutionary algorithm, and 𝑝 is

the product of number of samples (𝑠) in the data set and number of clusters (c).

2. For each row of the POP matrix steps 3 to 9 are repeated.

3. Candidate centres are acquired by reshaping a row of the POP matrix with dimension

of 𝑐	×	𝑠 as follows:

𝐶𝑎𝑛𝑑𝑖𝑡𝑎𝑡𝑒𝐶𝑒𝑛𝑡𝑒𝑟𝑠 =
𝑋3,3 ⋯ 𝑋3,~
⋮ ⋱ ⋮
𝑋¿,3 ⋯ 𝑋¿,~

4. Then the distances between each increment of data (gene) and candidate cluster

centres are calculated:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑋3,3 ⋯ 𝑋3,¿
⋮ ⋱ ⋮
𝑋a,3 ⋯ 𝑋a,¿

71

 where 𝑖 is the number of genes.

5. “Minimum values” for each gene in the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 matrix is found, thereby a gene will

be assigned to the cluster which has the minimum value for that gene.

6. Distance between all clusters is calculated and assigned to variable B.

7. Distance between all clusters is calculated as follow. First by using “dist” function of

MATLAB the Euclidian distance between all clusters are calculated. This produce a

distance matrix whose dimension is 𝑐	×	𝑐. Then the upper triangular part of this matrix

is selected and the sum of columns is calculated which results in a vector that has 𝑐

elements. Finally, the sum of this vector is computed which results in a single value.

This value is assigned to variable 𝐵.

8. In order to ensure each suggested cluster centre contains at least one gene, a term

called “𝑝𝑒𝑛𝑎𝑙𝑡𝑦” is defined. If a cluster contains at least one gene, this term will

become zero, otherwise it will be 10e4 (essentially to skip unsuitable cluster centres).

9. Finally, the cost for the selected row is calculated as below:

 𝐶𝑜𝑠𝑡 = 𝑠𝑢𝑚 𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑣𝑎𝑙𝑢𝑒𝑠 +
1
𝐵
+ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (4.1)

10. Since steps 3-9 are repeated 𝑚 times, a matrix containing cost values whose dimension

is 𝑚×1 will be acquired and return.

The objective is to supply this cost function to an evolutionary algorithm whereby the

chosen population by the algorithm can be examined in terms of their profit value. The cost

function will be updated by each iteration of algorithm. Through some initial experiments, it

was observed that the cost function could be minimised up to 100 iterations beyond which no

further cost minimisation was observed. Therefore, in order to control the computational time,

it was decided to run all optimisation algorithms 100 times in this research and compare their

performances.

4.2.2: Genetic Algorithm (GA)

The genetic algorithm is an evolutionary computing method that was first introduced by

John Holland in 1975 [25]. Since then, this algorithm has been used for solving many

computational problems that require searching through a huge number of possibilities for

solutions. By using a genetic algorithm, many different possibilities are explored

simultaneously in an efficient way. The foundation for the method comes from the behaviour

of living organisms in nature. In biology, an enormous set of possibilities lies in a set of possible

genetic sequences, and the desired solutions are highly fit organisms that can survive and

72

reproduce in their environments. In a genetic algorithm, a potential solution to the problem is

named as a chromosome. In the first step of this algorithm, an initial set of chromosomes,

referred to as initial population is selected. From this population, some individuals are

randomly opted to transfer to the next generation without any change occurring to them

through a natural selection process [167].

In the selection method, a fitness function (cost function) is used for evaluating the quality

of every chromosome. According to the principles of evolution, chromosomes with higher

fitness scores tend to remain for producing offspring [168]. Therefore, the probability that an

individual is transferred to the next generation is defined by how good its fitness function is.

Each gene in the chromosome represents a specific characteristic. If all the chromosomes are

transferred to the next generation, the next generation’s properties will be identical to the

previous generation’s properties. However, in reality, this is not the case. In fact, two events

take place in chromosomes. The first event is mutation, where the random substitution of

some nucleotides within each chromosome occurs. The role of mutation is to increase the

possibility of exploring untouched areas of the design space, preventing premature

convergence. The number of genes that undergo mutation is very low (less than 10%).

However, this random variation is really important. The second event is crossover, where the

beginning of one chromosome sticks to the end of another chromosome (genetic

recombination). The number of genes that undergo crossover is higher than that for mutation

[169]. The cost minimisation plot is acquired to visualise how GA minimises the cost function

over 100 iterations. The pseudo-code of GA is given below.

1. Initialise population.

2. Calculate fitness.

3. Sort fitness value of the population.

4. Choose the best fit solution to be the parental pair for reproduction.

5. Crossover the chromosomes at a random position using single point crossover.

6. Mutation.

7. Evaluate cost for the new offspring’s chromosomes and mutated chromosomes.

8. If the number of iterations is less than 100, go to step 2.

9. Save the best profit so far as the ‘best answer’.

4.2.3: Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation was first introduced by Eberhart in 1995, and was intended

for simulating the social behaviour of the movement of organisms in a bird flock or fish school.

73

This kind of action is an automatic and interactively updated system [166]. PSO has already

been implemented in many research areas, such as function optimisation, artificial neural

networks, and fuzzy system control.

Particle swarm optimisation (PSO) is a method that optimises an issue by iteration, which

tries to achieve the best result for a given function. In PSO algorithms, a population (or swarm)

consists of several particles or candidate solutions. These particles are moved around in the

search space based on its own memory and information received from other particles in order

to find the best solution [170]. Like genetic algorithm, a fitness function is used for

determining the fitness value of each particle. The fitness value also needs to be optimised.

In the progress of movement, the position of each particle is adjusted by the change of

velocity, which is based on its own experience and particles around it. The velocity represents

the rate at which a particle changes its position. This kind of movement can be represented

as:

 𝑣
	
𝑖 𝑘 + 1 = 𝑣

	
𝑖 𝑘 + 𝛾

	
1𝑖 𝑝

	
𝑖 − 𝑥

	
𝑖 𝑘 + 𝛾

	
2𝑖(𝐺 − 𝑥

	
𝑖 𝑘) (4.2)

 𝑥
	
𝑖 𝑘 + 1 = 𝑥

	
𝑖 𝑘 + 𝑣

	
𝑖 𝑘 + 1 (4.3)

where, 𝑣 and 𝑥	are the velocity and position of 𝑖𝑡ℎ particle; 𝑘 represents irritation level; 𝑝 is
the best position found by 𝑖𝑡ℎ particle (personal best); 𝐺 accounts for the best position found

by the swarm (global best); 𝛾
	
1𝑖	 and 𝛾

	
2𝑖 are random numbers on the interval [0,1] applied

to 𝑖𝑡ℎ particle. The above movement iteration will stop after a set number of times [171]. The

cost minimisation plot is acquired to visualise how PSO minimises the cost function over 100

iterations. The pseudo-code of PSO is given below.

1. Initialise population (n particles).

2. Calculate the fitness of each particle.

3. Position of the best-fit particle is chosen as the global best position.

4. Move all of the particles towards the global best position.

5. For each particle, if (fitness of current position < fitness of personal best) then personal

best = current position.

6. Update personal best position for each particle.

7. Global best fitness value is retained.

8. If number of iteration is less than 100, go to step 2.

9. Save the global best from 100 iterations as the ‘best answer’.

74

4.2.4: Cuckoo Optimisation Algorithm (COA)

COA is a population-based optimisation algorithm that was proposed by Rajabion in 2011

[24] that was inspired by the life of the cuckoo bird. The cuckoo’s behaviour in laying eggs is

unique in the sense that a cuckoo never builds its own nest when laying eggs, and instead

uses other birds’ nests to lay its eggs. In doing so, if the cuckoo’s eggs are similar to the host’s

eggs, it is likely that the cuckoo’s eggs will hatch and become mature cuckoos. If the cuckoo’s

eggs are discovered by the host bird, the foreign eggs will be destroyed. In the COA algorithm,

each egg in a nest represents a potential solution and each cuckoo represents a successful

new solution. The objective of the COA is to find the nest with the highest probability of an

egg’s survival. Therefore, the more eggs that survive after being placed in a host nest, the

greater the level of profit assigned to that nest. When the time comes for the migration of the

newly matured cuckoos, they will move towards the best nest with the highest survival rate,

and lay eggs within a radius of it. This radius is known as the egg laying radius (ELR), and

can be calculated by Equation 4.4.

 ELR	 = α	×
Number	of	current	cuckoo¸s	eggs

total	number	of	eggs
×	 var

high − var

	
low (4.4)

where 𝛼 is an integer, intended to control the maximum value of ELR, 𝑣𝑎𝑟
	

𝑙𝑜𝑤 and 𝑣𝑎𝑟

ℎ𝑖𝑔ℎ

are respectively the minimum and maximum values in the gene expression dataset.

Around 10 % of the laid eggs are sufficiently dissimilar to the nest’s eggs and are killed by

the host bird; the rest would remain until they turn into mature cuckoos and form societies.

Each society has its own habitat area to live in [172]. When the time for egg laying approaches

for newly matured cuckoos, they migrate towards the best habitat among all societies (goal

point). As illustrated in Figure 4.1, when cuckoos move towards the goal point they can deviate

by 𝜙, where 𝜙 is a number between Ð
	Ñ
	𝑎𝑛𝑑 -	Ð

	Ñ
, in which case they can only fly λ amount of

the distance between the current habitat and the goal point (d) in that iteration, where 𝜆 is a

random number between 0 and 1 [24].

75

Figure 4.1: Immigration of a cuckoo towards goal habitat.

When all cuckoos have migrated toward the goal point and new habitats have been

specified, each cuckoo is allocated some eggs. Then after the number of eggs dedicated to

each bird is considered, an egg laying radius (ELR) is calculated for each cuckoo, and this step

concludes one iteration in the algorithm. In the new iteration, the new egg laying process

starts. Due to the fact that there is always equilibrium in any birds’ population, a number

𝑁
	

𝑀𝑎𝑥	is provided in the COA algorithm to control and limit the maximum number of live

cuckoos in the environment [173]. After some iterations, all the cuckoo populations move to

the optimum habitat. This habitat will produce the maximum profit, and there will be the least

egg losses in this best habitat [173]. The functional immigration formula in COA is defined as:

 𝑋
	

𝑁𝑒𝑥𝑡ℎ𝑎𝑏𝑖𝑡𝑎𝑡 = 𝑋
	

𝐶𝑢𝑟𝑟𝑒𝑛𝑡ℎ𝑎𝑏𝑖𝑡𝑎𝑡 + 𝐹×(𝑋𝑔𝑜𝑎𝑙𝑝𝑜𝑖𝑛𝑡 − 𝑋
	

𝐶𝑢𝑟𝑟𝑒𝑛𝑡ℎ𝑎𝑏𝑖𝑡𝑎𝑡) (4.5)

where 𝐹 is a parameter that causes deviation. The cost minimisation plot is acquired to

visualise how COA minimises the cost function over 100 iterations [174]. The COA algorithm

follows the steps listed below [24].

1. Initialise cuckoo habitats with some random points in the profit function.

2. Dedicate some eggs to each cuckoo.

3. Define ELR for each cuckoo.

4. Allow cuckoos to lay eggs inside their corresponding ELR.

5. Kill the eggs that are recognised by host birds (if two eggs are in the same position).

6. Let eggs hatch and chicks grow.

7. Evaluate the position of each newly grown cuckoo (profit value).

8. Limit cuckoos' maximum number in the environment, and kill those who live in the

worst habitats.

76

9. Assign the current maximum profit using the cuckoo with highest profit value.

10. Cluster cuckoos (using k-mean), find the best group, and select goal habitat.

11. Let new cuckoo population immigrate toward goal habit.

12. Get the position of all cuckoos and their profit values and update maximum profit.

13. If the number of iteration is less than 100, go to step 2.

14. Save the positions of cuckoo with highest profit value as the ‘best answer’.

In the COA algorithm like other optimisation algorithms there are few parameters that are

important to set as follow. Default values are used.

• Number of initial population.

• Maximum number of cuckoos to control how many cuckoos can live at the same

time in each iteration.

• Minimum number of eggs for each cuckoo.

• Maximum number of eggs for each cuckoo.

• λ variable to controls distance between the current habitat and the goal point.

• Radius coefficient to control the egg laying radius.

• Number of k-means clusters.

4.2.5: Proposed COA-GA Algorithm for Clustering

A new algorithm is developed by hybridising COA and GA. Figure 4.2 shows the flowchart

of the COA-GA algorithm. First, the COA chooses the best population (pop 1) as discussed in

Section 4.2.4, and the profit value (fitness value) is calculated for this population. 50% of the

chosen population undergoes the crossover operation, which is intended to prevent premature

convergence as it creates more solutions in a given population [169]. After crossover, a 20%

mutation is applied to the population, which increases the chance of discovering a better

solution by maintaining diversity within the population. Crossover and mutation are important

aspects of GA, increasing the possibility of exploring untouched areas of the solution space in

each iteration of the algorithm, which COA alone could not reach. The output of these

processes is termed population 2 (pop 2), and the profit value is determined for this

population.

Pop 2 and pop 1 profit values are compared, and the population with the higher profit value

is retained (population with better positioning) and input into the next iteration of the

algorithm. This process is repeated 100 times, refining the cost function with each iteration.

77

Figure 4.2: Flowchart of COA-GA.

4.3: Gene Ranking and Selection

As it was discussed in Section 3.6, gene selection is an essential task in microarray data

analysis, due to the fact that only small numbers of genes are informative for each cancer

type, and the presence of other genes reduces the classification accuracy. In this chapter, in

order to facilitate a quick search and therefore reduce the computational time, the filter

method of gene selection is used to score the genes. In this method, gene scoring is performed

78

by utilising a signal-to-noise ratio (SNR) criterion. The general expression for SNR is shown in

Equation 4.6.

 𝑆𝑁𝑅 = 	
𝑆𝑖𝑔𝑛𝑎𝑙
𝑁𝑜𝑖𝑠𝑒

= 	
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 (4.6)

There are several SNR-based ranking methods such as the signed Fisher discriminant ratio

(Signed.FDR), Fisher discriminant ratio (FDR), symmetric divergence (SD), and T-statistics

that can be used for gene ranking [118, 188, 189]. A summary of these methods is provided

below.

Name Criterion

Signed-FDR
𝜇+𝑖 − 𝜇

−
𝑖

𝜎+𝑖 + 𝜎
−
𝑖

(4.7)

FDR
𝜇+𝑖 − 𝜇

−
𝑖
2
	

𝜎+𝑖
2
	 + 𝜎

−
𝑖
2
	

(4.8)

SD
𝜎+𝑖

2
	

𝜎
−
𝑖
2
	

+
𝜎
−
𝑖
2
	

𝜎+𝑖
2
	

− 1 +
1
2

𝜇+𝑖 − 𝜇
−
𝑖
2
	

𝜎+𝑖
2
	 + 𝜎

−
𝑖
2
	

(4.9)

T-test
𝜇+𝑖 − 𝜇

−
𝑖

𝑟+𝑖
2
	

𝑁� +
𝑟
−
𝑖
2
	

𝑁s

(4.10)

where	𝜇+𝑖 and 𝜎+𝑖 are the mean and standard deviation respectively of the class (I) of gene 𝑖,

and 𝜇
−
𝑖 and 𝜎

−
𝑖 are the mean and standard deviation of the class (II) of gene 𝑖 respectively.

𝑁� and 𝑁s are the number of samples in class (I) and class (II) respectively. 𝑟+𝑖
2
	 and

𝑟
−
𝑖
2
	 can be calculated based on following equations:

 𝑟+𝑖
2
	 =

	𝑥a" − 𝜇
+
𝑖
2
	"	∈	¿8;~~Ö

𝑁� − 1
 (4.11)

 𝑟
−
𝑖
2
	 =

	𝑥a" − 𝜇
−
𝑖
2
	"	∈	¿8;~~ÖÖ

𝑁s − 1
 (4.12)

79

In this chapter, after clustering is performed the genes in each cluster were ranked using

symmetric divergence method (See Equation 4.9) which is a filter based ranking technique.

The total number of best genes to be selected from all clusters is set to be 𝑁
	
𝑔 = 25. The

number of best genes to be selected from each cluster is calculated using Equation 4.13.

 𝑁𝑘𝑔 = 𝑟𝑜𝑢𝑛𝑑 (𝑁
	
𝑔 − 𝑞)

𝐹
	

𝑠𝑐𝑜𝑟𝑒(𝑋
	
𝑖, 𝑡)

R
	
"

aU3
𝐹

	
𝑠𝑐𝑜𝑟𝑒(𝑋

	
𝑖, 𝑡)

R
aU3

+ 1 (4.13)

where 𝑁𝑘𝑔	is the number of best genes selected from cluster 𝑘, 𝑁
	
𝑔 is the total number of best

genes to be obtained from all clusters,	𝑞 is the number of clusters, 𝑚 is the total number of

genes, 𝑚
	
𝑘	is the number of genes in cluster 𝑘 and 𝐹

	
𝑠𝑐𝑜𝑟𝑒 𝑋

	
𝑖, 𝑡 is the criterion used for gene

ranking (Equation 4.9). In this study, at least one gene is selected from each cluster. In this

respect, the number of clusters is subtracted from the total number of required genes and

then the number of genes in each cluster is added by one [165].

4.4: Classification and Performance Evaluation

In most cases, before classification the data is divided into two partitions: test and training

sets. For both the training and test data, hold out validation is applied to get accurate

classification result. After partitioning the data, the classifier trains itself by using the training

data, and then tests its prediction power across the test data. Finally, the prediction outcome

is compared to the testing target, and as a result the accuracy of the classifier is calculated.

4.4.1: Classification Methods

In this study, the SVM (see Section 3.5.1) and MLP (see Section 3.5.2) artificial neural

networks are used as the classifiers. In the case of the SVM classifier, the build of the

hyperplane is based on the structural risk minimisation principle. The error rate of the learning

machine for the test data is bounded by the training error rate, as well as one term that

depends on the Vapnik-Chervonenkis (VC) dimension [177,178]. The input data is first

mapped in the feature space, in relevance to the kernel function. Then the system

automatically searches for an optimised linear division [179].
In the case of MLP, the classifier has 25 inputs that are fed by the 25 selected genes; one

hidden layer consisting of 30 neurons, and one output. Sigmoid and pure linear activation

functions are used for the hidden and output layers respectively as the activation functions.

The Levenberg–Marquardt algorithm [180] is used for training purposes, and the maximum

80

number of iterations is set to be 100. 70% of the data is used for training and 30% is used

for testing the classifier performance. In order to reduce the effects of random selection on

the training and testing data, the neural network has been trained and tested 100 times,

where in each iteration, different training and testing data sets were used.

4.4.2: Performance Evaluation

After the classification task, the performance of both classifiers is evaluated. The evaluation

is carried out in the forms of sensitivity, accuracy, and specificity. There are 4 possible

outcomes from the classifier. The first possibility is a true positive (TP), which refers to the

case that a diseased sample is correctly diagnosed. The second possibility is a false positive

(FP), in which a healthy sample is incorrectly identified as a diseased case. The third possibility

is a true negative (TN), which indicates the case where a healthy sample is correctly spotted.

The final possibility is a false negative (FN), which refers to the case that the diseased sample

is incorrectly identified as healthy [165]. The percentage value for the evaluation criteria

(sensitivity, specificity and accuracy) can be calculated using equations 4.14-4.16.

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛�'

𝑛�' + 𝑛Ù'
×100 (4.14)

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑛��

𝑛�� + 𝑛Ù�
×100

(4.15)

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛�' + 𝑛��

𝑛�' + 𝑛�� + 𝑛Ù' + 𝑛Ù�
×100 (4.16)

where 𝑛�', 𝑛��, 𝑛Ù� and 𝑛Ù' correspond to the number of 𝑇𝑃, 𝑇𝑁, 𝐹𝑁 and 𝐹𝑃 respectively

as a result of the classifier test stage.

4.5: Investigating the Effects of Conventional Clustering

Methods on Classification Performance

4.5.1: Methods

The general methodology used in this section is illustrated in Figure 4.3. The gene

expression data for prostate and leukaemia cancer was used for this investigation. First, the

data was indexed by using the available information on the classes of data (e.g. healthy vs

cancerous). The data was indexed in two groups and stored separately in two matrixes

81

referred to as IndexClass1 and IndexClass2. After the genes were indexed, 3 conventional

clustering methods (K-means, fuzzy C-means, and hierarchical) were utilised to partition

genes based on their similarity. The number of clusters was pre-defined.

For each dataset, the following steps were performed six independent times, each time

choosing a different number of clusters (𝑘 = 1, 2,3,4,5,6). If data is clustered into one, this

means no clustering was performed.

1. Data is clustered into k cluster.

2. Symmetric divergence (see Equation 4.9) was used for gene ranking.

3. The top 25 ranked genes were selected using Equation 4.13.

4. The selected genes were then fed to the SVM (see Section 3.5.1) and MLP (see Section

3.5.2) classifiers.

5. Classification performances for both classifiers were evaluated in terms of sensitivity,

accuracy, and specificity as explained in Section 4.4.2.

Note that the performance of clustering is assessed based on their effect on the classification

performance. Changing the number of clusters results in selection of different genes due to

the method of gene selection (Equation 4.13) which is affected by the gene ranking within

each cluster and the number of genes in each cluster. Therefore, each clustering method will

result in deferent selected genes which subsequently will result in different classification

performances.

Figure 4.3: Proposed microarray data analysis procedure.

82

4.5.2: Results

Basic information on the datasets used in this research is listed in Table 4.1, including the

number of genes, samples, and the two classes.
Table 4.1: Basic information of microarray data.

Dataset Number of genes Samples Class1 Class2
Leukaemia 7,129 72 48 (ALL) 25 (AML)
Prostate 12,600 102 50 (Normal) 52 (Cancerous)

At the first stage of microarray analysis, data was clustered in order to find any hidden

connections throughout it without any annotations. In order to investigate how each clustering

algorithm distributes genes into different clusters, the number of clusters was set to two. After

running each clustering algorithm, the number of genes in each cluster was observed (see

Table 4.2). It is noteworthy that genes are not equally partitioned, and each clustering method

partitions genes differently. The differences between the numbers of genes across two

clusters are more pronounced when the K-means and fuzzy C-means algorithms are used. In

contrast, the information suggests that hierarchical clustering divides genes into clusters more

equally.
Table 4.2: Number of genes in each cluster when data is clustered into two groups

 K-Means C-Means Hierarchical

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2

Number of genes for
Prostate 117 12483 184 12416 6189 6411

Number of genes for
Leukaemia 140 6989 135 6994 1603 5526

In order to investigate the effects of clustering on classifier performance, different

conventional clustering methods (K-means, fuzzy C-means, and hierarchical) were used. For

each type of clustering, the classifier performance has been tested by partitioning data into

different amounts of clusters (1, 2, 3, 4, 5, and 6 clusters), where 1 cluster means no clustering

was used. After clustering, the top 25 genes were selected using the filter method of gene

selection (Equation 4.13) and fed to the classifiers.

To investigate the performance of the MLP classifier for the selected genes, the selected

genes (25 genes) were fed to the MLP and mean sensitivity, specificity, and accuracy were

calculated. Also, standard deviations for these terms were calculated. In the case of the

leukaemia dataset, as can be seen from

83

Table 4.3, when no clustering (1 cluster) was used, sensitivity, specificity, and accuracy

are found to be 81.1%, 83%, and 89.8% respectively. This yielded more accurate results

compared to when clustering was used, apart from the case of K-means clustering when data

was partitioned into 6 clusters, and 82.1%, 83.5%, and 90.1% were acquired for sensitivity,

specificity and accuracy respectively. In respect to the prostate cancer dataset (See Table

4.4), in some clustering cases such as using K-means with 3 clusters, C-means with 2 clusters,

and hierarchical with 5 clusters, a slightly better classification performance for the MLP

classifier was observed. This was compared to the case when no clustering was used, in which

84.9%, 89.1%, and 87% were acquired for sensitivity, specificity, and accuracy respectively.

The results from both datasets suggest that clustering may not necessarily enhance the MLP

classifier performance.

Table 4.3: MLP classifier performances including the mean sensitivity, specificity, accuracy, and

standard deviation (SD) for leukaemia.

 Number of clusters
1 2 3 4 5 6

Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD

K-m
eans

Sensitivity 81.1/15.2 80.3/16.4 80.9/16.2 79.1/17.3 81/15.0 82.1/13.3

Specificity 83/12.9 82.7/13.5 82.6/13.7 82.8/14.0 82.5/13.6 83.5/12.2

Accuracy 89.8/8.2 87.6/8.9 89.1/8.5 88.9/9.3 89.6/8.3 90.1/7.9
C-m

eans

Sensitivity 81.1/15.2 81/15.4 80.4/16.4 80.9/16.0 81.1/15.2 79.9/17.9

Specificity 83/12.9 82.9/12.9 82.1/13.3 82.5/13.1 82.9/13.0 82.3/13.7

Accuracy 89.8/8.2 89.3/8.4 89.1/8.9 88.4/9.4 88.9/9.1 88.4/9.4

H
ierarchical

Sensitivity 81.1/15.2 81/15.4 80.9/16.4 80.2/16.9 79.9/17.0 80.5/16.6

Specificity 83/12.9 82.3/13.4 82.9/13.0 83/12.9 82.6/13.2 81.9/14.2

Accuracy 89.8/8.2 88.2/9.4 89.4/8.0 89/8.6 88.8/9.1 89.5/7.9

84

Table 4.4: MLP classifier performances including the mean sensitivity, specificity, accuracy, and

standard deviation (SD) for prostate cancer.

 Number of clusters
1 2 3 4 5 6

Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD

K-m
eans

Sensitivity 84.9/12.1 84.7/12.5 85.1/11.6 84.7/12.5 84.2/12.8 83.6/13.1

Specificity 89.1/9.1 88.6/10.4 89.8/8.7 88.5/10.5 88.9/10.1 88.3/10.9

Accuracy 87/10.9 86.7/11.3 87.1/10.7 86.9/11.0 84.6/12.3 86.8/11.5

C-m
eans

Sensitivity 84.9/12.1 85.2/11.5 84.2/12.6 84.3/12.5 83.6/13.0 83.9/13.4

Specificity 89.1/9.1 89.7/8.9 87/11.3 88.6/10.1 89.1/9.2 87/11.3

Accuracy 87/10.4 87.1/10.3 85.2/11.5 86.5/11.0 85.1/11.6 85.9/11.1

H
ierarchical

Sensitivity 84.9/12.1 84.3/12.6 84.2/12.9 84.8/12.2 85/11.5 83/13.7

Specificity 89.1/9.1 88.1/10.6 89/9.4 87.5/11.1 90.3/8.1 89/9.4

Accuracy 87/10.4 86.9/10.5 86/11.0 86.5/10.7 87.8/9.9 86.4/10.6

In the next step, in order to investigate the effects of clustering on the SVM classifier, the

selected genes (25 genes) were fed to the SVM classifier, and mean sensitivity, specificity and

accuracy were calculated. Table 4.5 gives information on the sensitivity, specificity, and

accuracy of the SVM classifier when different clustering methods were used, and the data was

partitioned in different amounts of clusters for the leukaemia dataset. It can be seen from

Table 4.5 that when data clustering is not applied (1 cluster), sensitivity, specificity, and

accuracy were calculated 95%, 97.7%, and 98.1% respectively. An improvement of 0.7% and

0.8% in accuracy was observed when data was clustered into 4 partitions via K-means and C-

means respectively compared to the case when no clustering was used. Furthermore, in the

case when data was clustered into 3 partitions using C-means, improvement in all performance

criteria was achieved compared to when no clustering was utilised. In the case of the prostate

cancer dataset, as can be seen from Table 4.6 when clustering was not applied (1 cluster), a

higher classification performance was achieved excluding two cases where C-means clustering

was used to cluster the data into 3 and 5 partitions.

85

Table 4.5: SVM classifier performances including the mean sensitivity, specificity, accuracy, and

standard deviation (SD) for leukaemia.

 Number of clusters
1 2 3 4 5 6

Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD

K-m
eans

Sensitivity 95/5.1 94.9/5.0 94.3/5.7 95/5.1 94.4/5.9 93.5/6.8

Specificity 97.2/4.1 97/4.2 96.8/4.5 96.8/4.3 96.8/4.5 96.5/4.9

Accuracy 98.1/3.4 98/3.6 97.1/4.3 98.8/3.1 97.5/4.1 97.7/3.9

C-m
eans

Sensitivity 95/5.1 94.6/5.4 95.5/4.6 95/5.4 94.9/5.1 94.6/5.5

Specificity 97.2/4.1 97.1/4.1 97.8/3.8 96.7/4.6 96.5/4.8 96.9/4.1

Accuracy 98.1/3.4 97.8/3.7 98.7/3.1 98.9/2.9 97.2/3.9 97.4/3.8

H
ierarchical

Sensitivity 95/5.1 95/5.3 94.8/5.6 94.5/5.9 94.9/5.0 94.6/5.4

Specificity 97.2/4.1 97.1/4.2 97.2/4.1 96.9/4.3 96.3/4.9 96.8/4.5

Accuracy 98.1/3.4 97.7/3.7 97.9/3.4 97.7/3.4 98.1/3.2 97.6/4.0

Table 4.6: SVM classifier performances including the mean sensitivity, specificity, accuracy, and

standard deviation (SD) for prostate cancer.

 Number of clusters
1 2 3 4 5 6

Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD
K-m

eans

Sensitivity 89.4/8.3 88.6/9.1 88.8/9.1 89.1/9.2 89.1/9.2 89.3/8.4

Specificity 93/6.8 92.8/6.9 92.9/6.9 92.1/7.3 90.5/8.8 92.7/7.2

Accuracy 90.1/7.6 89.8/7.8 89.6/8.0 89.3/7.9 89.7/7.8 90/7.6

C-m
eans

Sensitivity 89.4/8.3 89/9.1 89.9/8.1 88.6/9.1 89.7/9.0 89.4/9.3

Specificity 93/6.8 92.6/7.1 93.3/6.5 92.6/7.1 93.1/6.7 92.9/6.9

Accuracy 90.1/7.6 89.2/8.2 91.4/7.1 89.6/7.9 91.2/7.2 89/8.4

H
ierarchical

Sensitivity 89.4/8.3 89.1/8.9 89/9.2 89.1/8.9 88.9/9.3 88.5/9.5

Specificity 93/6.8 92.8/7.0 93/6.8 92.1/7.3 93/6.3 91.8/7.6

Accuracy 90.1/7.6 89.8/ 89.5/7.8 90.1/7.6 89.7/8.0 88.9/9.2

86

Figure 4.4 illustrates a comparative performance between SVM and MLP for the leukaemia

and prostate cancer datasets when no clustering was applied. It can be seen that the SVM

classifier has a better sensitivity, specificity, and accuracy compared to that of the MLP

classifier in both datasets.

Figure 4.4: MLP vs SVM performance without clustering.

4.6: Proposed Gene Selection Based on Shuffle Technique

4.6.1: Methods

In the previous section, the impact of conventional data clustering on classification

performance was investigated, and it was determined that conventional clustering may not

have any significant effect on classification performance. In order to fully investigate the effect

of data clustering on classification performance, this section investigates the effect of

optimisation based clustering methods on the performance of the SVM and MLP classifiers

compared to conventional methods. A novel gene selection approach called shuffling is

proposed to enhance the selection of the most informative genes

• Novel shuffle technique to enhance gene selection

 In cancer classification, using clustering based gene selection (grouping genes before gene

selection) and changing the number of clusters, both result in selection of different sets of

genes (see Equation 4.13). As such, different classification accuracies are obtained. The

95
97.2 98.1

89.4

93
90.1

81.1
83

89.8

84.9

89.1
87

70

75

80

85

90

95

100

Accuracy	 Sensitivity	 Specificity	 Accuracy	 Sensitivity	 Specificity	

(%)

Leukaemia																																																																						Prostate

SVM MLP

87

differences in the selected genes could occur because the initial centroid protocol for clustering

is not specified, but selected randomly [181]. Since the clustering outcome is highly dependent

on the initial centroids, it often transpires that better results would have been achieved with

other initial points. The standard solution is to try the algorithm a few times with different

initial points [182]. As demonstrated in Section 4.5.2, differences in the selected genes can

influence the classification performance, so by creating a method to reinforce the selected

genes a more robust classification can be performed.

To overcome this problem, a technique called shuffling is proposed in this study. This

requires that the data is clustered 6 times, setting different numbers of clusters, ranging from

1 to 6 in each case. As a result, the number of clusters in the first run is set to one, implying

no clustering is used, hence the algorithm goes straight to the gene selection step and selects

the top 20 genes. In the second run, data is partitioned in two clusters, while the clustering

algorithm iterates 100 times to minimise the cost function to achieve clusters that are more

accurate. After 100 iterations of the clustering algorithm, gene selection is carried out

according to the number of clusters and the population in each cluster. Therefore, depending

on the number of clusters, different sets of genes are selected. A similar procedure to the

second run carries on until the final run, in which data is clustered into six partitions.

The reason for merging the outputs of a clustering algorithm when the number of clustered

varied from 1-6 was to assure reinforcement for the selected genes by the clustering

algorithm. To shed light on this lets assume we choose 20 genes when K-mean clustering is

used and the number of clustered is equal to two. If we run the K-mean again while the

number of clusters are three, a slightly different set of 20 genes will be selected which is due

to the nature of selection criteria across different clusters that depends both on the number

of genes in the cluster and the ranking of genes in that cluster (see Equation 4.13). If run

the algorithm for four clusters, again a different set of 20 genes will be selected. It should be

noted that although a different set of genes are selected each time, some genes could be

repeatedly selected while changing the number of clusters. Since in the proposed shuffle

technique the gene selection is done six times when changing the number of clusters from 1-

6, and each time 20 genes are selected, a total 120 genes are acquired. However, some of

the 120 genes are similar and repeatedly selected while varying the number of clusters by the

same clustering algorithm. These 120 genes are then ranked based on their repetitions of

being selected by the clustering algorithm. Therefore, when choosing the 25 most repeated

genes we reinforce the selected genes that are chosen by the algorithm and do not rely solely

on one outcome of the algorithm. In another word, this introduces a more robust gene

selection. The number of final selected genes were chosen 25 to correlate with the number

88

of selected genes in Section 4.5.1. Furthermore, as it was discussed in Section 4.4.1 the MLP

classifier contains 25 input neurons and the 25 selected genes also correlate to this. This was

done to ensure the same setup for classifiers in Sections 4.5 and this section (4.6). After

selecting 25 most repeated genes, these genes were fed into the MLP and SVM classifiers.

Finally, sensitivity, accuracy, and specificity for both SVM and MLP are calculated.

The proposed methodology that incorporates the shuffle technique and the new

optimisation algorithm, COA-GA, that was explained in Section 4.2.5, is illustrated in Figure

4.5.

Figure 4.5: Proposed shuffle method.

4.6.2: Results

Basic information relating to the datasets used in this study is listed in Table 4.7, including

the number of genes, number of samples, and the two classes for each dataset.

89

Table 4.7: Basic information of the microarray data used in this study.

Cancer Genes Samples Class1 Class2
Leukaemia 7,129 72 48 (ALL) 25 (AML)
Lymphoma
Prostate

4,026
12,600

47
102

24(germinal centre B-DLCL)
50 (Normal)

23 (active B-DLCL)
52 (Cancerous)

 In order to investigate the effects of clustering on the classifier performance, different

clustering methods have been used with the shuffle method. These were compared to

classification accuracy when no clustering was used, in order to determine the factor providing

the greatest increases in classification. In that case, the data was scored based on Equation

4.9, and the 25 genes with the highest scores were extracted for the purpose of classification.

Table 4.8, Table 4.9, and Table 4.10 compare how different clustering algorithms with the

shuffle method affect the classification accuracy, sensitivity, and specificity of SVM and MLP

classifiers for leukaemia, lymphoma, and prostate cancers respectively.

Table 4.8: The mean sensitivity (SE), specificity (SP), accuracy (AC), and standard deviation (SD)

of classification results for MLP and SVM classifiers when integrating different clustering algorithms in

the shuffle technique for the leukaemia dataset.

 MLP SVM
Method SE/SD SP/SD AC/SD SE/SD SP/SD AC/SD
K-means 80.1/16.3 81.0/14.9 86.2/10.8 97.2/3.6 99.8/1.9 98.7/3.2
C-means 82.6/13.6 83.2/13.2 86.7/10.4 96.8/4.3 99.6/2.1 98.8/2.3
Hierarchical 82.8/13.1 82.0/14.2 90.0/7.6 94.6/5.3 96.8/3.8 96.0/4.1
GA 98.2/3.7 87.4/9.1 91.0/6.3 99.0/2.1 99.6/1.9 99.5/2.0
PSO 91.0/7.1 84.2/10.9 90.5/7.8 99.6/1.9 99.4/2.1 99.3/2.2
COA 95.2/5.7 85.8/10.1 93.9/6.2 99.5/1.9 99.5/1.9 99.5/1.9
COA-GA 95.6/5.3 84.9/10.6 93.9/6.6 99.6/2.1 99.9/0.8 99.7/1.1
No cluster 82.0/13.1 83.4/12.9 90.0/7.8 96.0/3.9 98.0/2.5 98.9/2.1

It is noted that in all datasets, the SVM classifier has a higher accuracy, specificity, and

sensitivity compared to the MPL classifier. In the case of leukaemia when using the SVM

classifier when no clustering was used, sensitivity, specificity, and accuracy were 96%, 98%,

and 98.9% respectively, which is comparable to the results when K-means, C-means and

hierarchical clustering were used. However, K-means clustering slightly outperforms the C-

means and hierarchical clustering by reaching a sensitivity of 97.2% and specificity of 99.8%.

Interestingly, in all cases in which optimisation algorithms were used, a higher classification

accuracy, sensitivity, and specificity were reached. For both classifiers, COA-GA shows a better

performance compared to other optimisation methods. For instance, in the case of SVM, by

using COA-GA, sensitivity, specificity, and accuracy reach 99.6%, 99.9%, and 99.7%

90

respectively.

Table 4.9: The mean sensitivity (SE), specificity (SP), accuracy (AC), and standard deviation (SD)

of classification results for MLP and SVM classifiers when integrating different clustering algorithms in

the shuffle technique for the lymphoma dataset cancer.

 MLP SVM
Method SE/SD SP/SD AC/SD SE/SD SP/SD AC/SD
K-means 86.3/10.2 96.2/4.4 86.4/10.0 90.3/7.5 100/0.0 88.3/8.9
C-means 88.3/8.8 96.7/4.2 87.5/9.1 89.3/7.8 100/0.0 88.5/8.8
Hierarchical 85.9/10.9 97.1/3.9 87.8/8.8 89.6/7.6 100/0.0 88.8/8.7
GA 89.4/7.6 98.7/2.5 90.9/7.3 91.2/6.8 100/0.0 92.4/5.2
PSO 89.1/7.9 98.5/2.8 90.3/7.2 91.8/6.2 100/0.0 92.9/4.9
COA 91.2/6.9 98.9/2.2 91.6/6.8 92.3/5.3 100/0.0 93.1/4.2
COA-GA 92.1/6.1 99.5/1.8 92/5.9 93.2/4.9 100/0.0 93.9/3.8
No cluster 87.4/9.2 96.6/3.9 87.7/9.1 90.1/7.9 100/0.0 88.9/8.6

Similar trends appear across all three data sets, whereby optimisation based clustering

yields a better classification accuracy, sensitivity, and specificity. For instance, in the case of

lymphoma when SVM is used and COA-GA is applied for clustering data, an accuracy of 93.9%

is achieved, compared to 88.9% when no clustering is used (see Table 4.9). For the same

dataset, it can be seen that a specificity of 100% is achieved with all algorithms for the SVM

classifier. For prostate cancer, as presented in Table 4.10, the classification accuracy,

sensitivity, and specificity when utilising traditional clustering methods are comparable to the

case in which no clustering is used. In contrast, an improvement of 5.1% is seen for SVM

accuracy, and 5% for MLP accuracy when COA-GA is used compared to when no clustering is

applied.

Table 4.10: The mean sensitivity (SE), specificity (SP), accuracy (AC), and standard deviation (SD)

of classification results for MLP and SVM classifiers when integrating different clustering algorithms in

the shuffle technique for the prostate dataset cancer.

 MLP SVM
Method SE/SD SP/SD AC/SD SE/SD SP/SD AC/SD
K-means 86.1/10.3 90.7/7.1 89.9/7.9 90.1/7.6 94.3/4.5 91.4/6.4
C-means 84.2/11.1 90.9/6.9 89.6/8.1 90.9/7.1 94.6/4.3 91.2/6.8
Hierarchical 86.0/10.3 90.3/7.4 89.0/8.8 91.0/6.8 93.3/4.9 90.4/7.3
GA 90.8/7.1 92.1/5.9 92.1/5.9 95.9/4.2 96.0/3.8 94.3/4.6
PSO 90.5/7.3 92.9/5.3 92.8/5.4 94.6/4.4 96.8/3.7 94.4/4.5
COA 91.5/6.5 93.1/4.9 93.4/4.7 96.1/3.9 98.6/2.8 95.9/4.1
COA-GA 92.4/5.9 94.6/4.1 94.2/4.3 96.9/3.6 99.5/2.1 96.6/3.8
No cluster 86.0/10.4 90.7/7.2 89.2/8.4 90.4/7.5 94.5/4.4 91.5/6.3

91

Figure 4.6 and Figure 4.7 illustrate the differences in classification accuracy, sensitivity, and

specificity when no clustering is used compared to COA-GA clustering for the MLP and SVM

classifiers respectively. It can be seen that SVM outperforms the MLP classifier in all cases.

Furthermore, the performance is enhanced for both classifiers when the shuffle method

integrated with COA-GA is used, compared to that when no clustering is applied prior to gene

selection. These results suggest that the shuffle technique with the proposed algorithm (COA-

GA) can improve cancer classification performance, and better results could be achieved if

SVM is used compared to those if MLP was used as the classifier.

Figure 4.6: Accuracy and sensitivity of MLP classifier results for three cancer datasets when no

clustering is used, compared to using the shuffle technique with COA-GA for clustering.

80 82 84 86 88 90 92 94 96 98 100

Accuracy	

Sensitivity

Specificity	

Accuracy	

Sensitivity

Specificity	

Accuracy	

Sensitivity

Specificity	

(%)

Le
uk
ae
m
ia
				
		

Ly
m
ph

om
a	
			
			
		

Pr
os
ta
te

COA-GA	clustering No	clustering

92

Figure 4.7: Accuracy and sensitivity of SVM classifier results for three cancer datasets when no

clustering is used, compared to using the shuffle technique with COA-GA for clustering.

Figure 4.8, Figure 4.9, and Figure 4.10 show the cost function minimisation for COA-GA,

COA, GA, and PSO over 100 iterations for leukaemia, lymphoma, and prostate cancer

respectively.

For the leukaemia dataset, GA has reached its minimum by the 91st iteration, and the best-

cost value reached is 1.500 ×106. By contrast, PSO has reached its minimum by the 85th

iteration, and the best-cost value reached is 1.943×106, indicating that GA has outperformed

PSO as it further minimises the cost function. However, the COA algorithm reaches its

minimum 2.429×105 at 13 iterations, whilst COA-GA could minimise the cost value to

2.400×105 at 13 iterations. It can be seen that all four methods reached their minimum after

some itterations. However, COA and COA-GA notably outperform GA and PSO, finding a

better minimum for the cost function, as well as having faster convergence, whilst COA-GA

performed the best among the four algorithms.

A very similar trend in cost minimisation capabilities for all algorithms is observed for the

cases of and lymphoma (Figure 4.9). It is notable that in the lymphoma dataset, the COA-GA

algorithm significantly outperforms other algorithms, and when compared to COA

performance, COA-GA continues to minimise the cost function after the 11th iteration, while

COA reached its minimum at this iteration. In the case of prostate cancer (Figure 4.10), it can

be seen that COA-GA and COA show the best performance, where COA-GA outperforms COA.

80 82 84 86 88 90 92 94 96 98 100

Accuracy	

Sensitivity

Specificity	

Accuracy	

Sensitivity

Specificity	

Accuracy	

Sensitivity

Specificity	

(%)

Le
uk
ae
m
ia
				
			
			
	

Ly
m
ph

om
a		
			
			
	

Pr
os
ta
te

COA-GA	clustering No	clustering

93

However, it is clear that in this case, PSO significantly outperforms GA opposite to the case of

leukaemia and lymphoma where GA outperformed PSO.

Figure 4.8: Cost minimisation for four algorithms over 100 iterations for leukaemia.

Figure 4.9: Cost minimisation for four algorithms over 100 iterations for lymphoma.

94

Figure 4.10: Cost minimisation for four algorithms over 100 iterations for prostate cancer.

4.7: Summary

In this chapter, the effects of data clustering prior to gene selection on classification

performance was investigated. To this end, first the effects of conventional data clustering

methods on classification performance for cancer datasets were investigated. This approach

included three steps (i) clustering, (ii) gene selection, and (iii) classification. Three different

methods, K-means, fuzzy C-means, and hierarchical clustering; and two classification

methods, support vector machine (SVM) and multi-layered perceptron (MLP) neural networks

were studied. The results obtained suggest that conventional clustering methods may not

impact the classifier performance. This has been observed in the case of both classifiers. The

results also suggest that the performance of the SVM classifier is better than that of the MLP

artificial neural networks.

In the next step, in order to fully examine the effect of data clustering on classification

performance, the effect of optimisation based clustering algorithms on the performance of the

SVM and MLP classifiers were investigated and compared to conventional methods. A novel

approach to enhance gene selection called the shuffle technique was proposed, in which a

new hybrid algorithm, COA-GA, was implemented for clustering microarray data. The

performance of the proposed algorithm was tested against other well-known optimisation

95

algorithms including PSO, GA, and COA. The results suggested that data clustering with

optimisation based clustering methods prior to gene selection via the proposed method

significantly enhance the performance of both classifiers. However, clustering data via

conventional clustering methods did not have any impact on any of the classifiers’

performances that were used in this investigation. It was also explained that when no

clustering was used, the results were comparable with the cases where conventional clustering

methods were used. Comparative analysis between the proposed hybrid algorithm, COA-GA,

with other optimisation algorithms like PSO, GA, and COA, suggested that COA-GA significantly

outperforms other algorithms at reaching a better minimum in fewer iterations. In the final

part of this chapter, better classification performance was achieved when SVM was used

compared to when the MLP classifier was used for all cancer datasets.

96

Chapter 5: Two Stage Gene Selection for Cancer

Classification Using Microarray Data

5.1: Introduction

It is now well established that early diagnosis of tumours can greatly increase the rate of

cancer survival by providing the right treatment at early stages. However, methods such as

X-ray imaging and computed tomography (CT) usually detect such tumours in later stages of

cancer formation. Nevertheless, invasive methods such as surgery could detect malignancies,

with the downside of potential severe side effects, and therefore such methods are not

recommended for benign cases [183]. In this respect, over the last few decades gene

expression profiling using microarray technology has attracted many scientists towards the

early detection and classification of cancer [184,185].

However, as discussed in Chapters 1 and 2, due to the so-called ‘curse of dimensionality’

problem, the prognosis and classification tasks remain challenging to date. High classification

accuracy is of the utmost importance for personalised medicine. Since there are two important

factors that can enhance the classification performance, gene selection and classifier method,

computer scientists have proposed different methods to increase the efficiency of each factor.

With regards to the gene selection factor, numerous studies have been carried out with

the objective of increasing the classification accuracy [146,186]. For example, Golub et al.,
[26] proposed a signal-to-noise ratio method, which was also used later in different studies

[187]. Cho et al. [188] investigated several methods such as Pearson’s correlation, Euclidean

distance, information gain, and mutual information to select the most informative genes

97

among different cancer types including colon, lymphoma, and leukaemia. In the above

methods, genes are first ranked based on the relevant criterion, and then the top 𝑛 genes are

selected for classification purpose. Several classification methods have been proposed for such

analysis, and LDA, k-NN, SVM, and MLP artificial neural networks were discussed in Section

3.6. Most of these gene selection approaches, known as filter methods, have greatly

contributed to early detection and classification of cancer by providing useful information for

medical experts. Nevertheless, the downside of the filter methods, which is ignoring feature

dependencies and interaction with classifiers, can lead to poor classification accuracy.

To address this problem, evolutionary algorithms such as GA and PSO have been applied

for the purpose of gene selection. These methods essentially are heuristic optimisation

algorithms that find the optimum subset of features to achieve the best classification accuracy,

which is feasible as these methods are combined with the classification step in the form of a

hybrid setup. For instance, Lee et al. proposed a gene selection method using an adaptive

genetic algorithm combined with a KNN classifier to achieve a good classification accuracy for

colon cancer datasets [189]. Shen et al. proposed a method combining discrete PSO and SVM

for the selection of the most informative genes. The result of this study suggested that the

SVM performance was significantly enhanced when PSO is used (91.7%) compared to the

case when no gene selection was applied (83%) for a colon cancer dataset[179]. Since finding

the local optimum is challenging for most optimisation algorithms, some studies proposed

hybrid optimisation methods to overcome this problem. For example, Li et al. proposed a

hybrid method combining PSO and GA that used SVM as the classifier [154]. This method was

applied to different cancer datasets, and the result suggested that their proposed method can

select the most informative genes that enhance classification accuracy.

The vast majority of these studies focus on increasing the classification accuracy rather

than the number of selected genes. Biomarker identification is another area of ongoing

research, where it is important to identify a small number of genes in order to spot patterns.

For instance, choosing a few genes that are all differentially expressed across different

samples [190,191]. Works of research argue that the ideal classification task should result in

the highest classification accuracy with less genes [192]. Therefore, it is essential to create a

model for cancer classification that meets both objectives for tumour classification. To date,

it has been possible to achieve the highest classification for some cancer datasets. However,

even in these cases, several genes are needed to be used to achieve the highest classification.

Therefore, in this chapter, the main objectives are to select the optimum number of most

informative genes that can best distinguish between two cancer types to achieve the highest

classification accuracy. To accomplish these objectives, a new optimisation algorithm which

98

combines the cuckoo optimisation algorithm (COA) and harmony search (HS), is proposed

(COA-HS), which will be used in a two-stage gene selection method.

5.2: Proposed Method

The general methodology used in this study is illustrated in Figure 5.1. First, the data was

discretised into nine states. After this pre-processing stage, the top 100 genes which are the

most relevant and least redundant were selected using the minimum redundancy and

maximum relevance (MRMR) feature selection (a filter method [193]). The selected genes

were fed to a wrapper setup that consisted of the COA-HS algorithm and SVM classifier, to

choose the minimum number of genes that provide 100% accuracy. Using two-stage gene

selection combines the advantages of both filter and wrapper methods of gene selection.

Finally, the classification performance for the selected genes was measured in terms of

accuracy via the leave-one-out cross validation method (LOOCV). In order to validate the

performance of COA-HS, the results were compared to those established with other

evolutionary algorithms, such as the genetic algorithm (GA), particle swarm optimisation

algorithm (PSO), harmony search algorithm (HS), and cuckoo optimisation algorithm (COA).

Microarray data for three cancer types (leukaemia, prostate, and lymphoma) was used in

this study. Gene expression data for leukaemia [26] and prostate cancer [30] was obtained

from the Broad Institute (www.broadinstitute.org); Gene expression data for lymphoma [28]

was obtained from the Lymphoma/Leukaemia Molecular Profiling Project (llmpp.nih.gov).

Basic information relating to the datasets used in this study is provided in Table 5.1, including

the number of genes, the number of samples and the two classes for each dataset.

Table 5.1: Basic information of the microarray data used in this study.

Microarray
dataset

Number
of genes

Number
of samples

Class1 Class2

Leukaemia 7,129 72 47 (ALL) 25 (AML)

Prostate

Lymphoma

12,600

4,026

102

47

50 (Normal)

24 (Germinal centre B-DLCL)

52 (Cancerous)

23 (Active B-DLCL)

99

Figure 5.1: Schematic of the general methodology for gene selection.

5.3: Discretisation of Data

Discretisation is the process of converting continuous values into discrete counterparts, and

this technique is frequently used as a pre-processing step in the analysis of biological data for

several reasons. For instance, some gene selection and classification methods only accept

discrete values as their input. Although the representation of data is changed through this

process, it is assumed that the biological information within the data is preserved. In fact,

several studies suggest that using discrete values can lead to more efficient learning processes

[194–196]. Furthermore, Peng et al. investigated the performance of continuous and discrete

values of microarray data in classification performance, and suggested that discrete values

lead to a better classification performance [193].

In the context of microarray gene expression data, there are several discretisation methods

that can be applied, which can be categorised into supervised and unsupervised methods. In

the supervised method, gene expression data is discretised while taking into consideration the

class information of each gene (healthy vs cancerous). In contrast, in unsupervised methods,

gene expression values are discretised without any impact from their class label. In this

chapter, the unsupervised approach is the focus. In unsupervised cases, there exists two

100

pathways. One method is discretising data based on absolute values of gene expression, and

another is discretising based on variation between time points [197,198].

In this chapter, data is discretised using absolute values of gene expression in order to

reduce the noise in the gene expression data, and to enhance the accuracy of classification

results [199]. Gene expression values for each gene were categorised into a nine-state

variable based on the mean value (μ) and standard deviation (σ) for that gene. For each gene,

the nine states showed whether the gene was not expressed (state zero) or if expressed, how

much it was over-expressed (states +1 to +4) or under-expressed (states -1 to -4). Table 5.2

details the different states utilised in the discretisation of data.

Table 5.2: Discretisation of gene expression data.

Data States Data States
μ <d< μ-1/2 σ 0 μ <d< μ+1/2 σ 0

μ-1/2 σ <d< μ-σ -1 μ+1/2 σ <d< μ+σ 1
μ-σ <d< μ-3/2 σ -2 μ+σ <d< μ+3/2 σ 2
μ-3/2 σ<d< μ-2σ -3 μ+3/2 σ<d< μ+2σ 3

d < μ-2σ -4 d > μ+2σ 4

As mentioned earlier, Peng et al. (2005) concluded that discrete values lead to a better

classification performance for microarray data. A study by Gallo et al., (2015) suggests that

although the number of states in a discretisation task depends on the inference of the

algorithm that the data is prepared for, there is a trade-off between computational complexity

and the loss of information when choosing the number of states. On the one hand, by

increasing the number of states one can better preserve the information. On the other hand,

by increasing the number of states the computational complexity also significantly increases

[198]. In this study data was discretised into nine states. To visualise the effects of

discretisation, the frequency plots before and after discretisation for lymphoma (see Figure

5.2), prostate (see Figure 5.3), and leukaemia (see Figure 5.4) cancer datasets are provided.

101

Figure 5.2: Frequency plots before (a) and after (b) discretisation for lymphoma dataset.

Figure 5.3: Frequency plots before (a) and after (b) discretisation for prostate dataset.

Figure 5.4: Frequency plots before (a) and after (b) discretisation for leukaemia dataset.

102

5.4: First Stage Gene Selection Using Minimum Redundancy

Maximum Relevance (MRMR)

The goal of feature selection in a classification task is to identify a subset of features that

best characterise the statistical significance of the classification task [46]. Since utilising

wrapper methods for gene selections are computationally expensive when dealing with gene

expression data due to existence of thousands of genes, filter methods are usually used for

gene selection or applied to reduce the dimension of the data before applying a wrapper

technique. Feature entropy is an appropriate metric to identify such informative genes.

Entropy refers to the initial uncertainty of the output class [200], and can be calculated using

Equation 4.1.

 H	 A = − 𝑃; 𝑎 log(𝑃; 𝑎)
�C

;U3

 (4.1)

where {𝑃; 𝑎 	|	𝑎 = 1, 2, … , 𝑁;}	 is the probability density for different classes. A conditional

entropy is used to define the mean uncertainty with respect to the feature vector, which can

be calculated via following expression:

H A|B = 𝑃 𝑏 𝑃; 𝑎|𝑏 log(𝑃; 𝑎|𝑏)

�C

;U3

�â

SU3

(4.2)

where 𝑏 is the input feature vector with 𝑁S samples and 𝑃; 𝑎|𝑏 is the conditional probability

of class 𝑎 from feature vector 𝑏. Initial entropy is usually larger than conditional entropy;

however, in the case of total independence between the output class and feature, both

entropies have equal values. Mutual information that quantifies the mutual dependencies of

two variables 𝐴 and 𝐵 can be defined based on Equation 4.3.

 I	 A; B = 	H A − H A|B (4.3)

This equation can be rewritten as:

 	I	 A; B = p(a; b) log
p(a; b)
p(a)p(b)

æ∈çè∈é

 (4.4)

103

where 𝑝(𝑎)	and 𝑝(𝑏) are the probability density functions of variables 𝐴 and 𝐵 respectively,

and 𝑝	(𝑎; 	𝑏)	is the combined probability density function of both variables. Mutual information

between two variables 𝐴 and 𝐵 defines how much information about variable 𝐵 one can gain

by only looking at variable 𝐴.
Minimum redundancy maximum relevance feature selection (MRMR), which is a filter

method, uses mutual information to select those genes that were mutually maximally

dissimilar, but with the highest relevance to the target class [193]. First, in order to choose a

subset of genes that best represents the entire dataset, the minimum redundancy was

calculated using the following equation.

 minW ,W =
1
|TV|

I(gì; gí)
	îï,îð∈ñ

 (4.5)

where 𝑇 denotes the total number of important genes that were required to be extracted, and

𝐼(𝑔a; 𝑔b) represents the mutual information of gene 𝑖 and gene 𝑗. Next, the mutual information

between genes (𝑔a) and the corresponding classes (𝐶), 𝐼 𝑔a; 𝐶 were calculated to quantify

the relevancy of each gene with regards to its class. Subsequently the maximum relevancy

was acquired using Equation 4.6. Maximum relevancy selected the top 𝑇 genes in the

descending order of 𝐼 𝑔a; 𝐶 [193].

 max V , V =
1
|T	|

I(gì; C)
	îï∈ñ

 (4.6)

Since both conditions 𝑊 and 𝑉 were equally important, MRMR combines both. This

combination could be carried out by two methods, namely MRMRMIQ and MRMRMID, which

combine both conditions as Equation 4.7 and Equation 4.8 respectively. In this study, MRMRMIQ

was used, which is formulated as Equation 4.9.

max(V − W)

 (4.7)

 max(
V
W
) (4.8)

 MRMR÷øù = maxì∈úû(
I gì; C

1
|T	| I(gì; gí)	îï∈ñ

) (4.9)

In the proposed method for the first stage selection, by using Equation 4.9, the top 100

genes which were mutually maximally dissimilar were extracted and fed to the second stage

104

of selection, which used an evolutionary algorithm to select the minimum number of genes

that gives the maximum accuracy for the SVM classifier.

5.5: Second Stage Selection Using Evolutionary Algorithms

Fundamentally, optimisation is the process of finding the best solution among all possible

solutions. Population based optimisation algorithms initially choose a random set of solutions

(initial population), and this population is enhanced via an iterative process. For each iteration,

a cost function is established to quantify the outcome of the optimisation task. Since the

problem in this study is defined as classification of microarray data while achieving higher

accuracy through the minimum number of selected genes, the cost function is designed as

follows.

 Cost	function =
a

Accuracy
+ NOG (4.10)

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the accuracy of SVM classifier measured by the LOOCV method and ranges

from 0 to 1, 𝑁𝑂𝐺 is the number of selected genes which ranges from 1 to 100, and 𝑎 is a

coefficient. Since the accuracy was more important than the number of selected genes, 𝑎 was

set to 1000 in order to give the accuracy more weight in the cost function. Therefore, by

minimising the cost function, the number of selected genes is minimised while the accuracy

is maximised.

It should be noted that both terms in Equation 5.10 are important for the cost function.

For instance, if an algorithm selects 20 genes and gives 0.98 for accuracy, this would result

in a cost value of 1040.4. If in another case this algorithm chooses 8 genes and give 0.97 for

accuracy, this would result in a cost value of 1038.99. In this scenario, the latter would be

more preferable for the algorithm although the accuracy of the preferred case is less.

However, if scenario changes such that 0.98 accuracy is acquired by 17 genes, which leads

to a cost value of 1037.4, then the algorithm prefers this option than the case of 0.97 with 8

genes. The value for 𝑎 was chosen 1000 as it was observed that this will result in better

outcomes. For instance, if 𝑎 was chosen 100 and 35 genes were selected by an algorithm that

resulted in 0.9 accuracy this would give a cost value of 146.1. If 3 genes were selected and

the accuracy for the 3 genes was 0.7, this results in a cost value of 145. In this scenario, the

algorithm would prefer the latter case although in the latter case the accuracy is only 0.7. as

a result, the algorithm might select less number of genes, but it leads to a poor classification

performance.

105

In respect to LOOCV method, one sample is treated as a test sample, whilst the remaining

samples are used for training the SVM, and the accuracy is calculated. If there are 𝑁 samples,

this procedure is repeated 𝑁 times, each time with a different sample, and the average

accuracy is calculated for the selected genes. SVM was used for the classification of selected

genes, as the SVM classifier is a powerful classification algorithm and has been demonstrated

to exhibit excellent performance in a variety of biological classification tasks [201]. The LOOCV

method was chosen as it can overcome data overfitting [202].

A new hybrid optimisation algorithm, COA-HS, was developed by combining the recently

invented COA [24] and HS algorithms. The results were compared with the GA, PSO, COA,

and HS algorithms. Details of GA, PSO, and COA algorithm can be seen in Section 4.2.2,

Section 4.2.3, and Section 4.2.4 respectively. Details of HS and the proposed COA-HS will be

described in the following subsections.

5.5.1: Harmony Search Algorithm (HS)

The harmony search (HS) is a musically-inspired optimisation algorithm [203]. In jazz,

musicians improvise their instruments’ pitch in order to find a perfect harmony, which can be

achieved through three options. The first option is to play a pitch from memory. The second

option is to play a random pitch within the acceptable range of available pitches. Finally, they

can play a pitch adjacent to a pitch in their memory. In the HS algorithm, these options are

respectively referred to as harmony memory (HM), pitch adjustment rate (PAR) and harmony

memory consideration rate (HMCR). Figure 5.5 illustrates the analogy of the musical

improvisation process and optimisation process.

Figure 5.5: Analogy between musical improvisation process and optimisation process.

106

The HS algorithm has been successfully applied to various optimisation problems, such as

feature selection [204], discrete design variables [205], and continuous optimisation problems

[206].

The harmony search algorithm follows a number of steps as demonstrated below. The cost

minimisation plot is acquired to visualise how HS minimises the cost function over 100

iterations.

1. Initialise HMCR and PAR.

2. Initialise harmony memory (HM).

3. Improvise a new harmony memory.

4. Update harmony memory (HM).

5. If the number of iterations is less than 100, go to step 3.

6. Save the best harmony memory as the ‘best answer’.

It is noted that HMCR and PAR values affect the performance of the HS algorithm. For

instance, HMCR is important in the convergence of the algorithm as this parameter is used to

warrant the best fitted solutions are considered as the features of new solutions. The value

for this parameter ranges between 0 to 1. It is recommended to choose a value in a range of

[0.70 - 0.9] to make ensure enough exploitation [207,208]. This parameter act as crossover

rate in genetic algorithm. For instance, if its value is 0.8 this means there is 80 % probability

that the value of variables in HM will be chosen for new solutions. PAR is also very important

parameter in improvisation process and act like the mutation parameter in the genetic

algorithm. This parameter defines whether the variables of the new solutions should be altered

to the value of its neighbour variable. PAR value also ranges from 0 to 1, and determines the

probability of changing the variable values. The recommended range of values for PAR is [0.1

- 0.3] [208,209]. In order to ensure the optimum values for HMCR and PAR are selected for

the cost function and related datasets, the recommended ranges for HMCR and PAR were

investigated. To this end the HS algorithm was ran 100 iterations and the final cost value was

obtained for leukaemia, prostate, and lymphoma datasets (See Table 5.3). It was observed

that the optimum values for HMCR and PAR across all datasets were 0.9 and 0.3 respectively

and therefore these values were used for this research.

107

Table 5.3: Results of using HS with different PAR and HMCR values.

HMCR PAR Leukaemia Prostate Lymphoma
0.7 0.1 1031 1054 1028
 0.2 1028 1053 1027
 0.3 1030 1052 1027
0.8 0.1 1029 1055 1032
 0.2 1031 1057 1030
 0.3 1032 1052 1029
0.9 0.1 1027 1056 1027
 0.2 1022 1050 1027
 0.3 1021 1045 1023

5.5.2: Proposed Algorithm COA-HS

For this study, a new algorithm was developed by combining the COA and HS algorithms

(see Figure 5.6). As discussed, in the COA algorithm (Section 4.5.3), each egg in a nest

represents a solution, and each cuckoo represents a new solution. Therefore, in the analysis

of gene expression data, a solution refers to a gene. The COA-HS algorithm starts with the

initialisation of the cuckoos. After the initial population lay eggs, the profit values of the eggs

are calculated by evaluating the cost function. These solutions (eggs) are then fed to the HS

algorithm in order to explore more solutions. These can be provided by the improvisation

process through HMCR and PAR, which were set to 0.9 and 0.3 respectively. As a result, a

better solution can be achieved by preventing premature convergence of the COA.

After the HS algorithm stops, the profit value for the solutions suggested by the HR are

calculated through the cost function. Then the profit values of the solutions suggested by the

COA and HS are compared, and the solution (egg) with the higher profit value is chosen to

survive. Afterwards, these eggs grow and become cuckoos and the survival rate of each

cuckoo is calculated. Then all cuckoos move towards the nest with the highest survival rate

and lay eggs within the ELR of the best nest (best position). This means that the space of

solutions is refined towards the best solution, concluding one iteration of the COA-HS

algorithm. This process is repeated 100 times, and each time the cuckoos lay eggs in a further

improved position, which results in finding a better solution based on evaluating the cost

function.

108

Figure 5.6: Flowchart of COA-HS.

109

5.6: Results

To select the minimum number of genes that can best distinguish between two classes of

cancer, first the number of candidate genes was reduced to 100 using MRMR. These 100

genes were then fed to our proposed algorithm COA-HS to select the best genes while

maintaining the highest accuracy. The SVM classifier was used for classification where the

Gaussian kernel was employed. The accuracy of the SVM classifier was measured after cross

validating using the LOOCV method.

In order to account for possible overfitting, the gene expression samples in each dataset

were split into two sets of 25% and 75%. In the splitting task the ratio of class I and class II

data (each dataset had two classes) was considered to ensure in each set both classes are

presented. The set with 75 % of data was used for training and cross validating the classifier

model. Once an optimisation algorithm select the best genes based on the cost function in the

second stage of gene selection, the trained model that was used to select the final genes was

then used to classify unseen data where the set of 25% of data was used.

Figure 5.7 illustrates the accuracy of the SVM classifier for the top 100 genes selected via

MRMR. Initially, as the number of genes increases up to 5-6 genes, the accuracy increases.

After initial increase, in some instances the classification accuracy was reduced as the number

of genes increased. For example, in the case of the prostate cancer dataset, the classification

accuracy for the first 8 genes is 97%, but the accuracy reduces as the number of genes

increases, attaining values of 91-93% when 90-100 genes are used.

Figure 5.7: Accuracy of SVM for selected genes by MRMR.

110

The selected 100 genes from MRMR were input to different optimisation algorithms which

used the cost function defined in Section 5.5. Each optimisation algorithm was ran 20 times.

In each run, the algorithm was iterated 100 times. So in each run after 100 iteration, the

trained classifier’ model for the final selected genes was used to examine the performance of

the SVM model on unseen data (on the set of 25%) and the performance was measured in

terms of sensitivity, specificity, and accuracy. These values were recorded and after 20 run,

the means and standard deviations for these values were computed. Tables 5.4, 5.5, and 5.6

give information on the performance of each optimisation algorithms after 20 run (each run

100 iteration) for prostate, leukaemia, and lymphoma cancer datasets respectively.

Furthermore, in the following tables, the means and standard deviations of the selected genes

by each algorithm are provided.

Table 5.4: Means and standard deviations for the number of selected genes, sensitivity,

specificity, and accuracy of SVM classifier for 20 runs of optimisation algorithms for prostate

cancer dataset.

Number of

Genes

Sensitivity

Specificity

Accuracy

Mean SD Mean SD Mean SD Mean SD

GA 41.80 3.22 98.40 1.80 98.72 1.08 97.35 2.08

PSO 35.90 5.03 97.57 2.43 98.96 1.45 97.40 2.61

HS 28.20 4.53 98.73 1.99 98.72 1.36 98.09 2.63

COA 16.70 4.83 98.85 1.79 99.06 1.29 98.70 2.68

COA-HS 8.40 3.12 99.33 1.96 99.92 1.36 98.97 2.37

Table 5.5: Means and standard deviations for the number of selected genes, sensitivity,

specificity, and accuracy of SVM classifier for 20 runs of optimisation algorithms for

leukaemia cancer dataset.

Number of

Genes

Sensitivity

Specificity

Accuracy

Mean SD Mean SD Mean SD Mean SD

GA 29.30 2.86 99.32 1.42 99.51 1.12 98.20 1.61

PSO 14.50 3.40 99.17 1.87 99.33 1.24 98.85 1.92

HS 31.10 3.73 99.64 1.57 99.54 1.19 98.41 1.67

COA 8.00 2.93 99.31 1.34 99.87 1.04 99.29 1.54

COA-HS 6.50 2.72 99.42 1.18 99.61 1.23 99.36 1.36

111

Table 5.6: Means and standard deviations for the number of selected genes, sensitivity,

specificity, and accuracy of SVM classifier for 20 runs of optimisation algorithms for

Lymphoma cancer dataset.

Number of

Genes

Sensitivity

Specificity

Accuracy

Mean SD Mean SD Mean SD Mean SD

GA 28.80 2.81 99.40 0.87 99.51 0.78 98.70 1.12

PSO 13.40 2.98 99.49 0.93 99.64 0.88 98.92 1.19

HS 29.70 3.33 99.17 1.87 99.33 0.92 98.05 1.94

COA 7.70 2.16 99.36 1.74 99.61 1.16 99.27 1.84

COA-HS 5.10 1.99 99.91 0.90 99.87 0.71 99.45 1.04

Overall, COA-HS and COA outperformed GA, PSO, and HS in that these two algorithm

selected significantly less number of genes while achieving better means for accuracy,

sensitivity and specificity. In respect to prostate cancer dataset, as can be seen if Table 5.4

after 20 run of COA-HS a mean of 8.4 genes was selected to achieve a mean of 98.92 % for

accuracy which is the highest accuracy acquired across different algorithms employed in this

research. However, it is noted that in this dataset, GA had smaller standard deviations for

accuracy and specificity when compared to other algorithms. Regarding leukaemia dataset,

COA-HS outperformed other algorithms in most cases apart from the mean specificity and its

standard deviation, where COA had a better performance (See Table 5.5). Finally, in Table

5.6 it can be seen that COA-HS achieved slightly better results when compared COA in all

criteria and had significantly higher performance when compared to HS, GA, and PSO. It is

noted that although GA had a mean of 28.8 for the selected genes, this algorithm had small

standard deviations for all three classification performance measures when compared to PSO,

GA and COA.

It was observed that in each run of an optimisation algorithm different combination of

genes were selected and each algorithm tend to select different number of genes. In respect

to the proposed algorithm, COA-HS, the final selected genes after each run were recorded

and after 20 run the genes were ranked based of how many times they were repeated for

each dataset. In the following the genes which were selected at least 10 times after 20 run of

the COA-HS algorithm for each dataset are investigated.

112

In respect to prostate cancer, 37639_at and 38087_s_at were selected. 37639_at was a

probe-set for Hepsin gene, also known as HPN, is a gene that encodes a type II

transmembrane serine protease. Expression of the encoded protein is associated with the

growth and progression of prostate cancer [210]. Klezovitch et al., [211] demonstrated that

hepsin was highly expressed by 10 fold in prostate cancer. 38087_s_at is a probe-set for S100

calcium binding protein A4 gene. This gene is a protein coding gene and its gene ontology

annotation associated with poly (A) RNA binding and identical protein binding. This gene has

been selected as a signature for prostate cancer classification in many studies [212–214].

Regarding leukaemia dataset, Zyxin gene was found to be selected at least 10 times out

of 20 runs of COA-HS algorithm. This gene is a focal-adhesion-associated phosphoprotein that

involves in the control of actin assembly. Literature suggests that in the signal transduction

pathway this gene could act as a messenger that control the adhesion-stimulated changes in

gene expression [215]. Several studies have identified this gene as prominent in leukaemia

cancer classification [26,216–218].

For lymphoma dataset one gene was found that at least was selected 10 times out of 20

runs namely GENE1296X gene. This gene is known as MCL1 gene which is a protein coding

gene that encodes an anti-apoptotic protein that is a member of the Bcl-2 family. It is known

that Bcl-2 plays an important role in some cancers such as leukaemia and lymphoma [219].

This gene has previously been selected for its discriminatory power in lymphoma cancer

classification [220].

5.7: Summary

In this chapter, a two-stage gene selection process using MRMR and the COA-HS

algorithm was proposed in order to minimise the number of genes that could provide high

accuracy in cancer classification. To this end, first MRMR was used to reduce the number of

genes to 100, so that the computational time could be reduced for an optimisation algorithm.

The 100 candidate genes were then used as an input for the second stage of gene selection,

during which COA-HS was combined with the SVM classifier and acted as a wrapper gene

selection method. The LOOCV method was used to evaluate the performance of our proposed

method, and the results were compared to other optimisation algorithms such as PSO, GA,

HS, and COA. To account for overfitting, 75 % of data was used for training and cross-

validation and the remaining 25% was used to report the performance of the classifier model.

113

Each optimisation algorithm was ran 20 times and in each run the algorithm iterated 100

times. The means and standard deviations fore sensitivity, specificity, and accuracy of SVM

classifier for each algorithm were computed. The results suggested that the COA-HS

outperforms other optimisation algorithms in reaching a higher classification performance

whilst selecting the least number of genes among other optimisation algorithms.

114

Chapter 6: Gene Expression Analysis using RNA-

Seq Data

In this chapter, first an overview of RNA-Seq data analysis will be explored in Section 6.1.

Then in Section 6.2 a state-of-the-art pipeline for RNA-Seq analysis will be investigated.

6.1: Overview of RNA-Seq Data Analysis

As it was discussed in Chapter 1, RNA-Seq overcomes several limitations of microarray

technology when measuring gene expression and more recently, has therefore become a

popular choice for measuring gene expression. There are several steps towards a successful

RNA-Seq data analysis, including experimental considerations in design, pre-processing and

quality assessment, alignment, building a count table, normalisation, and downstream

analysis.

6.1.1: RNA-Seq Experimental Considerations

In order to accurately answer a biological question, adequate information should be

provided within a RNA-Seq experiment. For this reason, several experimental considerations

need to be addressed, such as sequencing depth and the number of replicates. Sequencing

depth for a sample refers to the number of reads that have been sequenced for the sample.

Research suggests that there is a direct relation between the number of transcripts that can

be discovered, and the depth of sequencing [75]. However, the biological question is the main

factor in defining the adequate number of reads for a valid analysis. For instance, around five

million mapped reads would be sufficient to identify the highly expressed genes, compared

115

with a range of 100 million reads that might be adequate if low expressed genes needed to

be quantified [239]. Furthermore, for some studies, a few thousand reads is adequate, such

as the 20 thousand reads that were used for splenic tissue to successfully differentiate the

cell types [240].

There are two types of replicates in RNA-Seq, technical and biological replicates. In general,

the number of replicates depends on both biological and technical variability. Although some

studies show that increasing the depth of sequencing can improve transcription identification

[241] and quantification of gene expression [242], others suggest that by sequencing less

reads and increasing the number of replicates in an experiment, a greater statistical power

can be achieved [243].

In order to design RNA-Seq experiment, an optimum number of replicates and sequencing

depth should be calculated, where tools like Scotty fulfil this objective [244]. Scotty calculates

the variability between replicates and the frequency at which new RNAs are quantified by

utilising prototype data. T-test is used to estimate the power and sample size. Furthermore,

empirical distributions can also be taken from publicly available datasets that are pre-loaded

in Scotty [244]. To model the power first empirical observations are used to select theoretical

distributions. These distributions are then used to fit the observed data. The software

estimates the variance between different replicates from same condition which essentially is

the determinant factor on deciding the number of replicates required. Busby et al., [244]

argue that although there exists a substantial heterogeneity among different experiments such

that biological variation is less that technical variations, the estimate for sample size is more

accurate if users supply Scotty with their own data.

6.1.2: Pre-Processing of RNA-Seq Data

As discussed in Sections 2.3.4 once the RNA-Seq short reads are sequenced by an NGS

platform, the output of such platform is usually in a FASTQ format. The first step upon

receiving FASTQ files is pre-processing, which is vital for removing technical and biological

contaminations from the data, so that one can investigate more interesting variations from

the datasets. Technical contaminations include low quality reads and technical sequences,

such as adaptors. Concerning the read quality, the PHRED score is used as a standard

measurement, and ranges between 0-40. In general, read quality increases towards the 5’

end of the reads, and bad quality reads are observed towards the 3’ ends. For a valid analysis,

reads with a Phred score of less than 20 should be removed, as these reads introduce errors

and lead to noise in read counts. Three popular tools to aid in the visualisation of read quality

and other important metrics for NGS data are the FASTQC [245], NGSQC [73], and HTQC

116

[246] software. In order to remove bad quality reads, one can use software such as FASTX

[247], Cutadapt [248], or Trimmomatics [249] to trim out the bad quality reads based on a

given threshold.

With regards to technical sequences like adaptors, it is also essential to remove these

sequences before the mapping step, especially if the reads are mapped to a reference

genome. This is due to the fact that adaptors contain sequences from similar nucleotides to

that of the organism sequences that are introduced artificially, which therefore could hinder

the ratio of mappability and consequently create artefacts in the downstream analysis.

Mappability refers to the state of being mappable for the reads that can be mapped to a

reference genome. It is important to note that in the case of RNA-Seq data, duplicate reads

are often observed. This is normal, as they can be the results of highly expressed genes, and

not due to a PCR amplification step. Therefore, it is safe to ignore the duplication level in the

RNA-Seq quality control step. Biological contaminations include the presence of polyA tails,

rRNA, and mtDNA. Since up to 95% of RNA is rRNA, it is essential to carefully remove rRNA

and concentrate on the remaining 5% of mRNA, which can result in a meaningful downstream

analysis. A popular tool to remove rRNA content is the SortMeRNA toolkit [250].

6.1.3: RNA-Seq Alignment

In RNA-Seq, in order to find the locations of short reads, the sequenced reads must be

aligned to a reference genome or a transcriptome assembly [251]. Mapping RNA-Seq reads is

particularly challenging, as in most cases the reads are formed from mRNA and not DNA,

which means some reads might overlap an exon-exon junction, at which the location’s intron

has been removed [89]. If RNA-Seq reads are aligned to a reference genome, it provides more

information to discover novel transcripts and isoforms. However, in this method, reads should

be able to be split, as some reads might be mapped to two exons (see Figure 6.1). This

method is done by spliced-aware aligner software, either by using prior information of

exon/intron boundary annotations, which are usually available to download in a GTF format

from the Ensembl website, or without this information which is known as de novo spliced

alignment [252]. It is noted that by supplying the GTF file, the quality of alignments could be

improved significantly.

117

Figure 6.1: Junction reads [253].

If transcription discovery is not the objective of RNA-Seq, the sequenced reads can be

aligned to a reference transcriptome, which is fast and useful for transcript quantification and

is limited to identifying known exons and junctions. This method is done by unspliced aligner

software, which aligns the reads to a reference transcriptome without allowing any large gaps.

Finally, if a reference genome or transcriptome are not available, the alignment can be done

by de novo assembly of the transcript sequences using de Bruijn graphs [254]. Figure 6.2

summarises different methods for RNA-Seq alignment.

Figure 6.2: RNA-Seq alignment methods.

118

6.1.4: Creating a Count Table

After reads are successfully mapped to a reference, the read alignment information is

usually presented in a SAM format, which stands for sequence alignment/map. However, this

information is then converted into BAM format, which is the binary version of the SAM format,

in order to reduce the file size and index its content better. Since a BAM file only contains the

genomic locations of the reads, in order to count how many reads are mapped to unique

regions, a list of genomic features (e.g. genes or exons) containing the start and end positions

of such regions are required.

One simple method is to count the number of reads for every exon of each gene [21,75].

However, this method can ignore the reads that are mapped to other places than annotated

exons [251]. Another method to quantify the reads is to count the reads along the total length

of the gene, so that all reads from the coding sequences will be counted [255]. A number of

R/Bioconductor packages, such as GenomicAlignments [256], Rsubread [257], and

EasyRNASeq [258] can be utilised to obtain the count table. Furthermore, a popular python

based software called HTSeq [259] can be used to achieve this objective. As a result, a matrix

is formed in which each column corresponds to a sample, and each row corresponds to a

genomic feature and its corresponding counts. The first column specifies a list of genomic

features, and the rest of the columns specify the number of counts for genomic features (see

Figure 6.3).

Figure 6.3: Count table for RNA-Seq.

As the number of reads that overlap a gene is directly related to the length of transcripts,

all of these methods can encounter the same problem due to initial random RNA

fragmentation. Therefore, a normalisation step based on transcript length and sequencing

depth is essential, which will be discussed in the next section.

6.1.5: Normalisation

In order to remove biases and artefacts that can affect the downstream analysis the

normalisation step is an essential task to be carried out on the RNA-Seq count table. Gene

119

length bias is the first issue that should be accounted for in the normalisation task. For

example, if the number of counts for gene 𝑛 is 30 reads, and for gene 𝑚 is 60, at first it can

be inferred that gene 𝑚 is expressed more than gene 𝑛. However, if genes 𝑛 and 𝑚 have

lengths of 30 and 60 bp respectively, it should be noted that both genes actually have the

same level of expression.

The next bias is the library size, which corresponds to the total number of reads for each

sample. As illustrated in Table 6.1, if the total number of reads for replicate two is double

those of replicate one, although each gene in replicate 2 might appear to have an expression

twice those of gene 1, in fact none of these genes are differentially expressed.

Table 6.1: Library size affect.

 Replicate 1 Replicate 2
Gene 1 10 20

Gene 2 20 40

… … …

Gene n 30 60

Total Reads 1000 2000

A simple method to correct such a bias is to plot both replicates against each other and

calculate the slope. Ideally the slope of such a plot should be 1, however if it deviates from

1, one can normalise such biases by using the obtained slope number. Other biases such as

GC content and batch effect are also important to take into consideration.

In order to overcome these biases, several normalisation methods have been proposed,

including reads per kilobase per one million mapped reads (RPKM) [75], DESeq [260], quantile

(Q) [261], total count (TC), upper quantile (UQ) [262], trimmed mean of M-value (TMM)

[263], and median normalisation methods. The most commonly used method for single-end

reads is RPKM. In the case of paired-end reads, a similar approach called FPKM (fragments

per kilobase per one million mapped fragments) is used, so that the two reads that come from

one fragment are counted as one [264]. RPKM simply normalises the reads for each gene

through the following expression:

 𝑅𝑃𝐾𝑀 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑔𝑒𝑛𝑒

𝐺𝑒𝑛𝑒	𝑙𝑒𝑛𝑔𝑡ℎ	 𝑖𝑛	𝑏𝑝	𝑢𝑛𝑖𝑡 	×	𝐿𝑖𝑏𝑟𝑎𝑟𝑦	𝑠𝑖𝑧𝑒	(𝑖𝑛	𝑚𝑖𝑙𝑙𝑖𝑜𝑛	𝑟𝑒𝑎𝑑𝑠	𝑢𝑛𝑖𝑡)	
×10ÿ (6.1)

120

Dillies et al., performed a comparative analysis between different normalisation methods

[265] in terms of their power in intra-variance (group variance), count distribution, clustering,

and false positive rate. In their study the performance of different methods was reported in

terms of not satisfactory, satisfactory, and very satisfactory (see Table 6.2). The results

suggest that the RPKM and TC methods are not very suitable if large differences exist in library

size (count distribution). In contrast, DESeq and TMM methods provided very satisfactory

results. These two methods are used in two popular R/Bioconductor packages called DESeq

[260] and EdgeR [266] respectively.

Table 6.2: Summary of results for seven normalisation methods; 0 indicates not satisfactory, 1

indicates satisfactory, and 2 denotes very satisfactory (modified from [265]).

Method Distribution Intra-
Variance

Housekeeping Clustering False
Positive Rate

TC 0 1 1 0 0

UQ 2 2 1 2 0

MED 2 2 0 2 0

DESeq 2 2 2 2 2
TMM 2 2 2 2 2
Q 2 0 1 2 0

RPKM 0 1 1 0 0

Overall, if one wishes to find differentially expressed genes within the same sample, RPKM

can provide satisfactory results and is more simple. However, if the objective is to find

differentially expressed genes across different samples, the DESeq and TMM methods can

provide very satisfactory results.

6.1.6: Modelling Raw Counts, Dispersion and Differential Gene Expression

From a biological view point, a very interesting question is ‘which genes are differentially

expressed across different conditions?’ One way to investigate this question is to look at the

number of counts for each genomic location, for example genes, isoforms, or transcripts.

Research suggests that the number of counts for a gene is a good indication of the abundance

of that gene. However, when comparing this between different conditions (healthy vs

cancerous), the observed counts are done separately. In this respect, statistical tests should

be performed to see if the differences in read counts between two conditions are actually

significant, or observed due to natural random variation. It is noted that if reads are sampled

121

independently, the number of observed reads would follow a multinomial distribution that is

known to be well approximated by Poisson distribution. Several studies have used this model

to identify differentially expressed genes [267,268]

The Poisson model provides a useful tool for estimating the probability that a read from

condition one could map to a given gene, as well as estimating the probability that a read in

condition two could map to the same gene. Consequently, one can tell in which condition the

probability of observing more reads for a given gene is higher, which leads to the concept of

differential gene expression. In the Poisson distribution model, the variance is equal to the

mean, and this makes this model very simple as there is no need to estimate the variance

[267]. However, it is important to investigate whether this distribution is feasible for RNA-Seq

datasets or not, due to the fact that several sources of noise exist in such datasets. One source

of noise is referred to as shot noise, and denotes the existence of variance in counts [260]. It

is known that this follows a Poisson distribution. Standard deviation (𝜎) of such noises is equal

to the square root of the mean count (𝜇). Another source of noise is the sample noise that

includes biological and technical noises. Research suggests that the Poisson model performs

well for technical replicates, as the variance is equal to the mean [21]. However, this research

suggests that in the case of biological replicates, actual variance could be predicted

inaccurately by the Poisson distribution model, since genes with higher mean counts have a

higher variance than the mean, which can lead to an increase in false discovery rates (type1

errors). This phenomenon is referred to as an overdispersion problem in the literature

[269,270].

Negative binomial distribution has more recently been used in order to overcome the

overdispersion problems that the previous model encountered [260,266]. This model includes

an extra parameter that accounts for dispersion, and can be seen below.

𝑦 = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑎𝑏, 1/𝑎)	 (6.2)

where 𝑎𝑏 is the mean (𝜇), and (1/𝑎) is the dispersion parameter (∅). In this distribution,

variance can be calculated by the following expression:

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑦 = 𝑣 + 𝑣V∅ (6.3)

In the above expression, 𝑣 accounts for shot noise, which is related to Poisson sampling

noise, and 𝑣V∅ accounts for technical and biological noise. Usually the first step towards

differential expression analysis when dealing with biological replicates is to estimate these

122

parameters. In order to have a good estimation for these parameters, all methods that are

proposed for identifying differentially expressed genes make some assumptions about the

form of underlying distribution. This is due to the fact that the number of samples are small,

and without assumptions, the correct estimation would be impossible [271].

Two of the well-known R/Bioconductor packages that use the negative binomial approach

are edgeR [266] and DESeq [260]. However, these methods differ by which the dispersion

parameters are estimated, as well as using different hypothesis testing approaches to find

differentially expressed genes.

In DESeq, the number of reads for gene 𝑖 in sample 𝑗 (𝑅ab) is modelled via negative binomial

distribution as shown by following expression:

𝑅ab = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜇ab, 𝜎abV)	 (6.4)

where 𝜇ab is the mean and 𝜎abV is the variance. Initially, 𝜇ab is calculated, which is proportional

to a size factor (𝑆b) that accounts for the sequencing depth, multiplied by a variable that

accounts for the gene expression number for gene 𝑖 in sample 𝑗 (𝑄ab). Next, the variance is

calculated by the following expression:

𝜎abV = 𝜇ab + 𝑆bV𝑣a,�(b) (6.5)

where 𝑣a,�(b) is the per gene raw variance and is the smooth function of 𝑄ab. As the general

form of a negative binomial, the above expression also accounts for shot noise and biological

variations.

In the edgeR Bioconductor package [266], data is also modelled via negative binomial

distribution, as shown by the following expression:

𝑌�a = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀a𝑃�b,∅�)	 (6.6)

where 𝑀a is the read counts, 𝑃�b is the relative abundance of gene 𝑔 in condition 𝑗 to which

sample 𝑖 belongs, and ∅� is the dispersion. 𝑀a𝑃�b is equal to the mean (𝜇�a), and the variance

can be calculated as follows:

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑌�a) = 𝜇�a + 𝜇�a∅� (6.7)

123

Once the parameters of mean and variance are modelled, a generalised linear model (GLM)

is fitted into the data to get the variance-mean dependence. Figure 6.4 illustrates the fitted

line for mean and variance by the Poisson (purple line) model, DESeq (orange line), and edgeR

(dashed orange). Generally, in all fitted lines in Figure 6.4 as the mean count increases, the

variance also increases. However, the fitted line from Poisson model is linear which fits well

only for the lower mean counts and poorly estimates mean and variance for the higher mean

counts. In contrast, the fitted lines by edgeR and DESeq are nonlinear and fit well for all

ranges of mean and variance [260].

Figure 6.4: Variance-mean dependence adapted from [260].

In order to identify differentially expressed genes, the null hypothesis of 𝜇3 = 𝜇V is

investigated, where 𝜇3 and 𝜇V	are the mean expression values for conditions 1 and 2

respectively. For both conditions 1 and 2, the summation of reads across all replicates (𝑘a3	and

𝑘aV) for each gene is calculated. The overall sum is equal to 𝑘a3 + 𝑘aV. Finally, the probability

of observing the actual sum is calculated using a Wald test. The Wald test provides p-values

for each gene, and based on a threshold, one can determine differentially expressed genes.

Most packages now implement the Benjamini-Hochberg procedure to control the FDR.

124

6.1.7: Alternative Splicing Analysis

So far, the statistical methods for differential gene expression were investigated. However,

RNA-Seq data provides information that sheds light on differential analysis at the transcript

level and alternative splicing. Each gene contains several transcripts, and each transcript from

a gene can differ from other transcripts from the same gene in its starting and ending sites,

as well as differing from the inclusion of exons. The translation of different transcripts results

in different protein structures and functions, which leads to the importance of the transcript’s

expression for the phenotype of cells and investigating diseases. The advances in informatics

approaches have paved the way to look into differential exon usage and differential isoform

expression.

A pioneering approach to identify differential exon usage is the DEXSeq [272] method,

which is implemented in a R/Bioconductor package. Simply put, the differential exon usage

approach identifies the exons that are expressed differently across different conditions within

each gene. In this method, the relative usage of each exon is used in order to identify the

conditionally specific usage of exons, which can be calculated by the following expression:

𝑈𝑠𝑎𝑔𝑒	𝑜𝑓	𝑒𝑥𝑜𝑛𝑠 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑚𝑎𝑝𝑝𝑖𝑛𝑔	𝑡𝑜	𝑡ℎ𝑒	𝑒𝑥𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑚𝑎𝑝𝑝𝑖𝑛𝑔	𝑡𝑜	𝑜𝑡ℎ𝑒𝑟	𝑒𝑥𝑜𝑛	𝑓𝑜𝑟	𝑠𝑎𝑚𝑒	𝑔𝑒𝑛𝑒
 (6.8)

DEXSeq has a similar approach to the DESeq package in finding differential exon usage,

where the main steps are count normalisation, dispersion estimation, and differential testing

that returns a p-value. However, one of the major differences is preparing annotations that

can allow counting reads that overlap exons. For this reason, after the reads are mapped to

a genome reference, an annotation file with exon coordinates is used to count the number of

reads in each exonic location. Since some exons can be seen more than once in an annotation

file due to their inclusion in multiple transcripts, they can overlap each other. In such cases,

in order to make sure each exon is counted only once, DEXSeq uses a flattened form of

annotation file in which exons from the same coordinates are flattened into counting bins

[272] (See Figure 6.5).

125

Figure 6.5: Flattened exons’ locations.

In contrast to differential exon usage, where the focus is at the exon level, in differential

isoform expression, the unit of study is the isoform and the objective is to identify isoforms

that are expressed differently across conditions for the same gene. Zheng and Chen [273]

proposed a method based on the hierarchical Bayesian model called BASIS to provide a

platform for differential expression at the isoform level across two conditions. A more popular

tool that allows differential analysis at the transcript level for more than two samples is Cuffdiff

[274]. Similar to DESeq and DEXSeq, Cuffdiff also hypothesises that the number of reads that

are mapped to a transcript is propositional to its abundance, and uses a negative binomial

model for read counts. Furthermore, in the Cuffdiff method, a scaling factor is used to correct

the sequencing depths across different samples, and the Benjamini-Hochberg method is used

to control for FDR. This method produces very accurate results, as both biological and

technical variations are taken into consideration in its statistical model to look for differential

isoform expression [274,275]. More recently, a new approach has been proposed that allows

the identification of differential gene expression and differential isoform expression at the

same time using a hierarchical likelihood ratio test [276].

Figure 6.6: RNA-Seq data analysis.

126

6.2: Pipeline for Analysis of RNA-Seq: a Case Study

In this Section, a state-of-the-art pipeline for RNA-Seq analysis will be investigated. Figure

6.7 illustrates the steps in this pipeline. Whilst there have been numerous studies to improve

RNA-Seq data manipulation, quality control, and downstream analysis, the analysis of RNA-

Seq when examining gene expression remains challenging compared to microarray data. Since

the methods to analyse NGS data in general are essentially statistical approaches,

R/Bioconductor, a free source software, has become a popular tool to implement such

analysis. There are several reasons for the popularity of performing NGS analysis in

R/Bioconductor. For example, this software is easily accessible due to its affordability.

Furthermore, it is a platform assisting with the statistical challenges of NGS data, and can be

used for annotation and handling large datasets.

There are numerous Bioconductor packages to use for RNA-Seq analysis. This has led to

the suggestion of several pipelines for this kind of analysis. However, due to the rapidly

developing nature of statistical approaches for RNA-Seq, the proposed pipelines have also

undergone several changes to improve their results. In this chapter, we investigate a state-

of-the-art pipeline for pre-processing and analysis of RNA-Seq that can pave the way to extract

biologically relevant results from large datasets. Figure 6.7 illustrates the steps required for

this pipeline. Usually RNA-Seq data is in the format of FASTQ, and the first step towards a

successful downstream analysis is the pre-processing step. The pre-processing step is divided

into four processes that are shown in orange in Figure 6.7. Once the qualities of reads are

satisfactory, the alignment step follows. Finally, different downstream analysis, such as

differential gene expression, differential exon usage, GO and pathway analysis, and

classification approach are performed.

127

Figure 6.7: RNA-Seq analysis workflow.

6.2.1: Utilised RNA-Seq Data

It is observed that a mutation in the aryl hydrocarbon receptor interacting protein (AIP)

gene occurs in familial isolated pituitary adenoma (FIPA). This leads to early onset acromegaly

in patients, and in most cases, invasive pituitary adenoma forms as a result. It is established

that patients with positive for AIP have bigger body sizes than normal. Ascertaining

pathogenicity of missense mutations is an abstruse task and to date around 70 AIP variants

have been identified. However, it is still unclear how pituitary tumorigenesis can be caused by

AIP inactivation. In this study, we used RNA-Seq data produced by Aflorei [277] at the

Genome Centre of Queen Mary University of London.

Drosophila was investigated as a subject of interest by Aflorei [277]. The Drosophila AIP

orthologue (CG1847) gene encodes a protein that resembles the human AIP. In brief, CG1847

defective flies were generated through in vivo RNAi knockdown to get a putative null allele of

CG1847. In order to investigate the differentially expressed genes and underlying molecular

128

mechanisms as a result of the loss of AIP, RNA-Seq data was produced from mutant (3

samples) versus control (3 samples) male larvae.

To produce this RNA-Seq data, Aflorei first isolated total RNA using Qiagen RNeasy

MicroKits and the samples were purified by the DNase I. Nanodrop was used to measure the

RNA samples and Agilent 2100 bioanalyzer was used to examine the quality of the extracted

RNA. Then, the RNA samples were normalized to 500 ng/μl and the normalised samples from

both mutant and control were used to produce the cDNA libraries for the Illumina HiSeq 1500

platform. In this platform one lane was used to sequence all libraries and as a result around

30 million reads for each sample was acquired [277]. Each sample contained two files which

corresponded to forward and reverse strands of short RNA-Seq reads.

6.2.2: Pre-processing

All analyses shown below are performed in Mac OS X with 16 GB of ram and an 8 core

processor. The first step after receiving the RNA-Seq data (usually in FASTQ format) is to

perform quality control assessments like examining the overall sequence quality,

overrepresented reads, and the GC content of the data. A popular software to illustrate this

information is FASTQC. To run FASTQC, all FASTQ files should be saved in one folder, and

then the directory of the terminal is changed to that folder. Afterwards, FASTQC can be run

for FASTQ files by using terminal. For the purpose of demonstration, the pre-processing steps

are only shown for one sample here, and the same procedure can be repeated for all samples.

fastqc -t 8 ForwardRead.fastq ReverseRead.fastq
-t 8 option takes advantage of multicore processor capability to speed up the time for analysis.

Two files (a zip and an HTML file) are created for each FASTQ file as a result of this command.

By opening the HTML files, different analysis metrics such as basic statistics, per base

sequencing quality, per base sequence content, per base GC content, per sequence GC

content, sequence duplication level, overrepresented sequences, and Kmer content can be

observed. Details for each metric are well-explained on the developer’s website [245]. Four

of the important metrics for one of the mutated samples acquired from FASTQC are shown

below.

129

Figure 6.8: Initial FASTQC output.

First, one should consider quality trimming and adaptor removal if required based on

FASTQC results. From the per base sequencing quality graph (Figure 6.8 B), it can be

discerned that all reads have a quality higher than 20 based on the Phred score, therefore

there is no need for removing any reads. However, if bad quality reads are observed, one can

use software such as FASTX [247], Cutadapt [248], or Trimmomatic [249] to trim out the bad

quality reads based on a given threshold. Since in the data that we received, adaptors had

already been removed by the Genome Centre, the FASTQC metric on adaptor contamination

indicates no contamination. In the presence of adaptors, the graph related to the adaptor

contamination would identify the sequence of adaptor. By using software like FASTX and

supplying the relevant sequence of the adaptor, one could remove them.

From Figure 6.8 C, it can be seen that there is a presence of noise in the first 10-12

nucleotides, which is in fact a universal bias from the Illumina RNA-Seq data. Since we are

interested in differential gene expression and these biases are universal, these biases would

cancel each other, and therefore one can safely ignore them. However, if the objective was

to quantify gene expression, it would be essential to trim these nucleotides.

Figure 6.8 D shows the distribution of GC content per read. In this figure, the blue line

presents the theoretical distribution of GC content by FASTQC, and the red line indicates the

actual distribution of GC content. Ideally, the actual distribution should follow the theoretical

distribution. However, as shown in this figure, the actual distribution presents a shoulder on

130

the left side of the graph. Practical observations suggest that if a shoulder is presented on the

left side of the actual distribution, it is more likely to be due to the enrichment of A/T content.

However, a shoulder on the right side is more likely caused by the presence of rRNA.

Nevertheless, due to the nature of RNA-Seq data generation, rRNA will often be present.

Therefore, in the next step, a software called SortMeRna [250] is used to account for rRNA

molecules. SortMeRna performs the removal of rRNA in three steps. First, the forward and

reverse reads of a given sample should be merged together as shown below:

merge-paired-reads.sh ForwardRead.fastq ReverseRead.fastq MergedReads.fastq

Then the resulting MergedReads.fastq can be used in the main command of SortMeRna as

follows:
sortmerna --ref $SORTMERNA_DB --reads MergedReads.fastq --aligned MergedReadsWithrRNA --

other MergedReadsWithoutrRNA --paired_in --fastx

where SORTMERNA_DB is the environmental variable for the SortMeRna database, and should

be saved prior to the command. Argument “--reads” indicates the merged reads, “--aligned”

indicates the reads which contain rRNA, “--other” represents those reads which are rRNA free,

the “--paired_in” argument makes both paired reads goes to a single file, and “--fastx”

indicates that the output file should be in the FASTQ format. In the next step, the merged

reads (MergedReadsWithoutrRNA) that are rRNA free should be unmerged using the following

command.

unmerge-paired-reads.sh MergedReadsWithoutrRNA.fastq ForwardRead.fastq ReverseRead.fastq

After this step, another assessment on the read quality should be made by the FASTQC

software, in order to make sure satisfactory results are acquired through the following

command:

fastqc -t 8 ForwardRead.fastq ReverseRead.fastq

It is noted that by using SortMeRna, the shoulder on the left side of figure 7.2 D has been

reduced to less than 400,000 from 460,000 before using SortMeRna (see Figure 6.9).

However, other metrics remained the same as expected. In this step, the initial total reads

before applying SortMeRna was 31,497,483; and after SortMeRna the total number of reads

was 30,797,917; resulting in a reduction of 699,566 reads.

131

Figure 6.9: Per GC content for mutated sample after SortMeRna

Although the rRNA content has been removed, there is still a shoulder on the left side of

the GC for the distribution. In this situation, it is advisable to check the overrepresented

sequences in “Blast”, which is an NCBI utility [278] in order to reveal the nature of these

sequences. By blasting these sequences, it becomes clear that these overrepresented

sequences are mostly related to mitochondrial sequences. Since we will be mapping the reads

to the Drosophila genome, the reads originated from mitochondria will not be mapped.

Therefore, this step should be satisfactory for the pre-processing step.

6.2.3: Alignment of the Reads to a Reference Genome

After the pre-processing step is completed, and the quality of reads has been assessed to

be satisfactory, the reads can be aligned to either a reference genome or transcripts. In this

demonstration, the goal is to map the reads to a reference genome. Although several aligner

software have been developed so far, there are two approaches that can be used to do the

alignment task, which are the Burrows-Wheeler transformation (BWT) [279] and maximum

exact matches (MEM) [280]. Since the objective is to align RNA-Seq to a reference genome,

it is essential to use a spliced-aware aligner like TopHat [255] or STAR [281].

In this research, STAR, which is an ultrafast universal RNA-Seq aligner based on MEM

protocol, is chosen to aid in the alignment process. First, a genome index should be generated

so that the STAR software is aware of exon-exon junctions when doing the alignment. In

order to generate the indexed genome, a reference genome in FASTA format, and a genome

annotation file in a GTF format are required. The corresponding files for Drosophila are

132

downloaded from the Ensemble website [282]. The command to generate the indexed

genome is shown below.

STAR \
--runMode genomeGenerate \
--genomeDir StarGenome \
--genomeFastaFiles Drosophila_melanogaster.BDGP5.dna.toplevel.fa \
--sjdbGTFfile Drosophila_melanogaster.BDGP5.dna.toplevel.gtf \
--sjdbOverhang 100

The first parameter (--runMode) specifies the mode in which STAR should be run. The

second parameter (--genomeDir) defines the output directory. The third and fourth

parameters point STAR to the FASTA file and GTF file respectively. The last parameter

(sjdbOverhang) denotes the sequencing read length, and a default value of 100 is used. Once

this step is done, the genome index is saved in the directory specified by the second parameter

(--genomeDir). This folder is used in the next step to align the reads to it as shown below.

STAR \
--runMode alignReads \
--genomeDir StarGenome \
--readFilesIn ForwardRead.fastq ReverseRead.fastq \
--sjdbGTFfile Drosophila_melanogaster.BDGP5.dna.toplevel.gtf \
--outSAMtype BAM

where the third parameter (--readFilesIn) directs STAR to do forward and reverse reads of

the sample, and the last parameter (--outSAMtype) specifies the output should be in the

format of BAM. Once this command is successfully finished, several files will be created,

including a file whose name ends with Aligned.out.bam that contains the alignment in BAM

format. It is essential to sort this file by sequencing position and then index it for further

analysis by using a tool called samtools [283] as shown below.

samtools sort -n Aligned.out.bam

samtools index Aligned.out.bam

This step concludes the alignment phase. The steps required for differential analysis at the

gene, exon, and isoform levels differ from the point of counting the number of reads for each

genomic location. This is due to the fact that different models are required to count the reads

for different downstream analysis. Therefore, the analysis of differential expressions is divided

into the three separate sections described in the next section.

133

6.2.4: Differential Gene Expression

Differential gene expression is divided into four subsections, which are counting reads over

genes, normalisation, dispersion estimation, and testing for differential gene expression. The

R/Bioconductor code written for this analysis can be found in appendix 1.

6.2.4.1: Counting Reads Over Genes

In order to count the number of reads over each gene, in addition to the aligned reads, a

gene model is required and can be accessed in the GTF or GFF3 format on Ensembl website

[282]. The latest release of the GTF file for Drosophila was acquired from the Ensembl website

for this analysis (Drosophila_melanogaster.BDGP5.76.gtf). A transcript database (TxDb

format) called TxDbFromGFF was then created from this GTF file using the GenomicFeatures

package (makeTxDbFromGFF command). This database can be utilised to create a separate

file for the genomic locations of interest that is ranged-based and includes genes, exons, and

transcripts. Since we are dealing with exons in RNA-Seq, a list of exons for each gene

(GRangesList format) is then created using exons with a command from the GenomicFeatures

package, and saved as an ExonByGenes object. Each gene in the GRangesList is stored in the

Granges format. The length of the observed GRangesList for Drosophila is 15682; and a

snapshot of the list acquired via R/Bioconductor is shown below.

Figure 6.10: Exons grouped by gene in GRangesList format.

134

Once the previous step is done, a count table was created by using the summarizeOverlaps

function from the GenomicAlignments package and saved as a RangedSummarizedExperiment

object. This function can count the reads for each gene for all samples simultaneously, as this

function accepts a file path to all of the BAM files that need to be processed. As a result, this

function creates a file (RangedSummarizedExperiment format) containing three main

components (see Figure 6.11), including samples’ information, actual count matrix, and

genomic ranges, which can be accessed using the colData, assay, and rowRanges commands

respectively. The resulting count matrix has a dimension of 6 (samples) by 15682 (genes) for

Drosophila datasets. Samples’ information is primarily an empty component, and can be

supplied using samples’ information, such as samples’ names and corresponding conditions in

a character vector format.

Figure 6.11: RangedSummarizedExperiment format.

Analysis of the literature suggests that the DESeq2 package is mostly used for differential

gene analysis, and therefore this package is chosen as the preferred method for this analysis

[284]. In order to use DESeq2, the RangedSummarizedExperiment format should be

converted into a DESeqDataSet class object that provides extra manoeuvrability in datasets,

as the DESeqDataSet class has an argument called design formula that accounts for the group

condition of a sample for further analysis.

6.2.4.2: Sample Normalisation and Visualisation

In order to make a valid conclusion about data through visualisation methods like PCA

plots, the variations due to gene length and sequencing depth should be taken into account,

which is done during the normalisation step. Based on the comparative analysis from Section

6.6, DESeq normalisation provides very satisfactory results, and therefore will be used for this

purpose. As discussed in Section 6.1.5, a size factor that is directly related to the ratio of

library sizes is utilised in the DESeq package to normalise the data. This means if all samples

135

are sequenced at the same level, a size factor equal to one will be allocated to all of the

samples.

In order to calculate the size factors for all samples, the estimateSizeFactors function from

the DESeq2 package was used on the DESeqDataSet object. Table 6.3 shows the information

on the estimated size factor for each sample.

Table 6.3: Estimated size factor for each sample using DESeq.

 Control5 Control7 Control8 Mutated5 Mutated6 Mutated7

Size factor 1.09 1.06 0.97 1.00 0.87 1.03

In order to check whether the normalisation method is satisfactory, the density of mean

counts for each sample was plotted, and if it is observed that the densities from all samples

almost overlap each other, that is a good indicator for a successful normalisation outcome

(see Figure 6.12).

Figure 6.12: Density of mean counts for each sample.

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

densities

mean counts

D
en

si
ty

Control5
Control7
Control8
Mutated5
Mutated6
Mutated7

136

Another way to validate a proper normalisation is to investigate the probability of observing

a given number of counts from the datasets, which can be identified using an empirical

cumulative distribution function (ECDF). Similar to density graphs, in ECDF graph samples

should almost overlap each other in order to conclude that samples are normalised to provide

satisfactory results. Figure 6.13 shows the observed probabilities for different mean counts

from the ECDF function. It can be seen from Figure 6.13 that the observed probability for a

given number of counts is almost similar for all samples, which provides evidence for a

successful normalisation.

Figure 6.13: Probability of observing a given number of counts for all samples.

In order to see the similarities and differences between samples at this stage, a principal

component analysis (PCA) can be very informative. However, PCA and other statistical

approaches such as clustering are applied to homoscedastic data, which refers to a group of

datasets in which the variance is the same for different ranges of mean values within a sample

[285]. Due to the nature of RNA-Seq data, the variance increases with the mean value. In

order to illustrate the difference in variance for different numbers of counts, two samples

(control7 and control8) were plotted against each other (see Figure 6.14). In Figure 6.14,

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

ecdf

mean counts

Fn
(x

)

Control5
Control7
Control8
Mutated5
Mutated6
Mutated7

137

each dot refers to a gene and it can be seen that genes with a higher number of counts have

higher variances.

Figure 6.14: Natural scale for sample-sample visualisation.

One method to overcome this issue is to use a logarithmic scale instead of the normalised

counts. As illustrated in Figure 6.15, this method provides a more constant variance across

different ranges. However, by using this method, higher variation can be observed in the

lower counts region. The variation in lower counts can be the result of Poisson noise for genes

with lower counts, it can also be accounted for by the fact that the differences for genes with

lower counts are maximised when a logarithm is applied.

Figure 6.15: Log2 normalised counts scale for sample-sample visualisation.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

Control7

C
on

tro
l8

0 5 10 15 20

0
5

10
15

20

Control7

C
on

tro
l8

138

The regularised logarithm transformation (rlog) and variance stabilising normalisation (vst)

methods are useful approaches to correct for the variation in the lower counts region [284].

For genes with higher counts, rlog and vst act like a normal logarithm, however for lower

counts of genes the values shrink. Figure 6.16 shows the effect of an rlog transformation on

the counts. It can be seen that the rlog method stabilises the variance at different levels of

the mean, and provides a satisfactory data format that prevents biases from affecting further

analysis.

Figure 6.16: rlog scale for sample-sample visualisation.

Now that the datasets adhere to the characteristics for homoscedastic data, PCA can be

applied to visualise the samples relations to each other. It can be seen from Figure 6.17 that

a clear separation of two group conditions (control and mutated) is presented by using a PCA

plot, which validates the experimental design for two conditions. In this plot, each dot

represents a sample.

Figure 6.17: PCA plot for all samples.

0 5 10 15 20

0
5

10
15

20

Control7

C
on

tro
l8

−5

0

5

−20 −10 0 10 20
PC1: 86% variance

P
C

2:
 6

%
 v

ar
ia

nc
e

group
Control

Mutated

139

6.2.4.3: Dispersion Estimation for Differential Gene Expression

As previously discussed in Section 6.6, DESeq uses negative binomial distribution to

calculate the dispersion parameter with results from biological variations in order to test for

differential expression. Figure 6.18 illustrates the dispersion acquired by the

estimateDispersions function from DESeq2 package. The black dots are the estimated

dispersion for each gene, the red line presents the fitted line which is derived from a

generalised linear model. The black dots are then shrunken towards the fitted line to form the

blue dots, which are the final estimates of dispersion for each gene. The black dots that are

surrounded by blue circles present the dispersion outliers that refer to genes which have very

high dispersion estimates. The final estimates that are shown in blue are then used for

hypothesis testing [284].

Figure 6.18: Dispersion estimates versus the mean normalised count from DESeq2.

140

6.2.4.4: Differential Gene Expression Test

A Wald test is used in order to check for differentially expressed genes. A function called

nbinomWaldTest in the DESeq2 package uses the dispersion estimates and the calculated size

factors to test for the significance of the coefficient in a negative binomial generalised linear

model. Then the results of this test can be extracted by the results function, in which the

Benjamini-Hochberg method is used to return the adjusted p-value. Using the above functions,

and filtering out those genes with an adjusted p-value grater that 0.1, 4591 genes were

identified as being differentially expressed across two conditions. A snapshot of the results is

shown in Figure 6.19.

Figure 6.19: Results of DESeq2.

One of the useful methods for visualising the results is an MA plot [286]. The X-axis of an

MA plot shows the mean normalised counts, and the Y-axis represents the log2 fold changes

in normal vs mutated samples (see Figure 6.20). Each dot in the MA plot represents a gene,

and those shown in red are identified as differentially expressed genes using an adjusted p-

value of 0.1 as the threshold. It shows that genes with lower mean normalised counts that

present high variability are accounted for using a shrinkage method to prevent those genes

from dominating the results.

141

Figure 6.20: MA plot of results using adjusted p-value > 0.1.

In order to take a more conservative approach to testing for differentially expressed genes,

we select those genes that have log2 fold changes of at least double or half of that between

two conditions, and then filter the results based on an adjusted p-value of 0.1. Using this

approach, 186 genes were identified as differentially expressed genes and are depicted in the

MA plot in Figure 6.21.

Figure 6.21: MA plot of results using adjusted p-value > 0.1 and log2 fold changes of at least

double or half.

1e−01 1e+01 1e+03 1e+05

−4
−2

0
2

4

Control vs. Mutated

mean of normalized counts

log
 fo

ld
ch

an
ge

1e−01 1e+01 1e+03 1e+05

−4
−2

0
2

4

Control vs. Mutated

mean of normalized counts

lo
g

fo
ld

 c
ha

ng
e

142

Another useful way to visualise differentially expressed genes is a heat map. To this end,

first differentially expressed genes from the previous step (186 genes) should be sorted based

on their adjusted p-value. Since homoscedastic data should be used in order to have a valid

statistical approach to calculate the distance between the genes, the data from the rlog

transformation step should be utilised. By having the gene names form the sorted genes, the

relevant dataset is extracted from the rlog matrix. Using an R/Bioconductor package called

pheatmap for the top 25 differentially expressed genes, the heat map in Figure 6.22 is

acquired. A clear trend can be seen from the heat map, in which the genes on the upper part

of the heat map are highly expressed in control samples, while those genes in the lower part

are highly expressed in the mutated samples.

Figure 6.22: Heat map of top 25 differentially expressed genes.

C
o

n
tro

l5

C
o

n
tro

l7

C
o

n
tro

l8

M
u

ta
te

d
5

M
u

ta
te

d
6

M
u

ta
te

d
7

FBgn0034441

FBgn0034440

FBgn0034712

FBgn0085307

FBgn0043783

FBgn0085359

FBgn0025620

FBgn0036575

FBgn0032809

FBgn0002939

FBgn0030345

FBgn0032810

FBgn0051288

FBgn0039027

FBgn0085250

FBgn0036228

FBgn0033789

FBgn0250833

FBgn0033591

FBgn0034887

FBgn0030841

FBgn0038439

FBgn0039387

FBgn0035508

FBgn0038958

−1.5

−1

−0.5

0

0.5

1

143

The information on the used packages and their versions is listed in Figure 6.23:

R/Bioconductor session information for differential gene expression.

Figure 6.23: R/Bioconductor session information for differential gene expression.

6.2.5: Differential Exon Usage Analysis

After aligning the RNA-Seq short reads similar to those in Section 6.1.3, one can investigate

which exons are expressed differently across two conditions (normal vs mutated). As

discussed in Section 6.1.7, to create a valid exon model in which an exon is only counted

once, it is required to work with a flattened annotation file (GTF file). However, after creating

this file, similar steps to differential gene expression are followed, including counting reads

over genes, normalisation, dispersion estimation, and testing for differential exon usage. The

R/Bioconductor code written for this analysis can be found in appendix 2.

6.2.5.1: Preparing the Flattened Annotation File

In order to create a flattened file (GFF format) from the annotated file (GTF file), first the

relevant GTF file for Drosophila (the same version that was used for aligning reads using

144

STAR) is downloaded from the Ensembl website (Drosophila_melanogaster.BDGP5.76.gtf).

Then using Unix terminal and a python file provided by the DEXSeq package

(dexseq_prepare_annotation.py), one can easily create the flattened file as shown below:

Python DEXSeq/python_scripts/dexseq_prepare_annotation.py --aggregate=no Drosophila_melanogaster.BDGP5.76.gtf

Drosophila_melanogaster.BDGP5.76.gff

where the argument --aggregate specifies if an exon cannot be assigned to a unique gene, it

should be ignored.

6.2.5.2: Counting Reads Over Exon Bins and Creating a DEXSeq Object

The DEXSeq package provides a python file (dexseq_count.py) that uses a HT-Seq

functionality (htseq-count) that has been modified to count the number of reads over exons.

Using Unix terminal, a .txt formatted file can be created that contains these counts as shown

below:

DEXSeq/python_scripts/dexseq_count.py --format=bam --paired=yes --stranded=no Drosophila_melanogaster.BDGP5.76.gff

control7.bam control7.txt

 The above command should be run for each alignment file, separately changing the last

two arguments’ names to correspond to the sample name under process. Since the aligned

files are in BAM format, paired end, and not strand specific, this information is supplied by

argument --format, --paired, and --strand respectively. After running the above command six

times, each time for different samples, six .txt formatted files are acquired that are used for

further analysis after being imported into R/Bioconductor.

By using the DEXSeqDataSetFromHTSeq function from DEXSeq package, the required data

frame for DEXSeq is then created. This function includes four arguments that need to be

provided. The first argument accepts a character formatted file containing the directory path

to count files (.txt files). The second argument is the sample information, which includes 6

rows and 2 columns. Each row corresponds to a sample, the first column is the sample names

and the second column contains information on sample conditions, which is similar to the

sample information provided in Section 6.2.4.1. The third argument is the design formula that

specifies we are looking for exon expression differences based on different conditions. Finally,

the last argument is a character formatted file that contains the directory to the GFF files that

was created using the python command.

145

The resulting file from the DEXSeqDataSetFromHTSeq function is saved as

DEXSeqDataFrame which is in the DEXSeqDataSet format, and its information can be accessed

similarly to that of the DESeqDataSet format explained in Section 6.2.4.1. The resulting

DEXSeqDataFrame file for the six Drosophila samples has a dimension of 77026 by 12. The

rows of the matrix correspond to the exon IDs, and several rows can be related to a given

gene depending on the number of exons for that gene. The first six columns correspond to

six samples, each column contains the number of reads assigned to the respective exon ID in

a given gene, and we refer to them as the group 𝐴 columns. The next six rows provide

information on the sum of reads that are assigned to other exons within the same gene, and

we refer to them as the group 𝐵 columns. The DEXSeq package compares these two groups

in order to identify an exon as being differentially expressed or not. Figure 6.24 illustrates the

first 5 rows of this matrix for five exons that originate from two genes.

Figure 6.24: Count table in DEXSeqDataFrame.

6.2.5.3: Normalisation of Counts

Similarly to differential gene expression analysis, it is also essential to account for the

variation in the sequencing depths across different samples in differential exon usage. Using

the estimateSizeFactors function of DEXSeq on DEXSeqDataFrame, the corresponding

normalisation factors for samples can be calculated (12 columns as above). The table below

gives the information on the estimated size factors for each sample.

Table 6.4: Estimated size factors for each sample using DEXSeq.

 Control5 Control7 Control8 Mutated5 Mutated6 Mutated7

Size factors
for Group A

column

1.07 1.05 0.94 1.01 0.87 1.10

Size factors
for Group B

column

1.07 1.05 0.94 1.01 0.87 1.10

146

To find out if the calculated size factors are satisfactory for further analysis, two plots were

investigated, including the density of mean counts plot (see Figure 6.25) and the ECDF plot

(see Figure 6.26). Two clear distributions can be seen from Figure 6.25 that correspond to

both the group A and B columns, and since the line graphs for samples in each group almost

overlap, it can be concluded that a satisfactory normalisation was performed. A similar trend

is observed in the ECDF plot that provide further evidence to support this conclusion.

Figure 6.25: Density of mean counts for all samples including group A (1-6) and B (7-12).

0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

densities

mean counts

D
en

si
ty

1
2
3
4
5
6
7
8
9
10
11
12

147

Figure 6.26: Probability of observing a given number of counts for all samples including group A

(1-6) and B (7-12).

6.2.5.4: Dispersion Estimation for Differential Exon Usage

For differential exon usage, it is also essential to account for biological variations across

samples, so that more interesting variations can be addressed. Figure 6.27 depicts dispersions

obtained by the estimateDispersions function from the DEXSeq package, which is actually the

same function as that of DESeq2, and the resulting figure can be interpreted as such.

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf

Mean counts

Fn
(x

)

1
2
3
4
5
6
7
8
9
10
11
12

148

Figure 6.27: Dispersion estimates versus the mean normalised count from DEXSeq.

6.2.5.5: Testing for Differential Usage of Exons

A likelihood ratio test (chi-squared distribution) is then used to test for differential exon

usage [272]. This test is performed using the testForDEU function from the DEXSeq package,

which uses the calculated dispersions and size factors and returns a p-value. Adjusted p-

values are also provided using the Benjamini-Hochberg method that can be used for multiple

testing. Then the log2 fold changes and the exon usage coefficient are calculated using the

estimateExonFoldChanges function. The results of these steps are saved as meta data for the

DEXSeqDataFrame object, and can be accessed using the DEXSeqResults function. By filtering

the data using an adjusted p-value of 0.1, 1053 exons were identified as being differently

used across the control and mutated samples that correspond to 622 genes. A snapshot of

the results is shown in Figure 6.28.

149

Figure 6.28: Results of DEXSeq.

 The figure below shows an MA plot in which the red dots represent the exons that are

differently used across two conditions and identified as significant using an adjusted p-value

of 0.1. It is shown that most of the exons that are identified as significant have a higher

number of counts.

Figure 6.29: MA plot for differential exon usage.

150

The results of DEXSeq can be visualised using the plotDEXSeq function. Figure 6.30

illustrates the mean expression level for the exons of the FBgn0000382 gene that has the

lowest adjusted p-value from the result of the analysis. The transcript models that can be

used to visualise isoform expression of this gene are also included.

Figure 6.30: Mean expression level for exons of the FBgn0000382 gene.

10

100

150
200

300

400

500
600

E
xp

re
ss

io
n

E001 E002 E003 E004 E005 E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 E016

1988267 1990652 1993037 1995423 1997808 2000193 2002578 2004964 2007349 2009734

FBgn0000382 + Control Mutated

151

The information on the used packages and their versions is listed in Figure 6.31.

Figure 6.31: R/Bioconductor session information for differential exon usage.

6.2.6: Gene Annotation and Biological Relevance of Selected Genes

It is essential to annotate the differentially expressed genes by adding the Entrez ID or

gene symbol, which can be done using the AnnotationDbi package. A list of all of the

differentially expressed genes (186 genes) including their symbol names can be seen in

Appendix 3. First, the biological relevancies of the differentially expressed genes were

investigated using the Web tool DAVID (database for annotation, visualisation, and integration

discovery) [287]. Three gene ontology (GO) terms including biological process, molecular

function, and cellular component were selected.

Table 6.5 gives information on GO terms and the corresponding gene names within each

term. With regards to terms for biological processes, ten genes (see Figure 6.32) contribute

to the metabolic process of chitin. One of the main substances in the exoskeletons of insects

152

is chitin [288], and all of the genes that contributed to the metabolic process of chitin are

highly expressed, which results in the production of more chitin. Since it is known that AIP

positive leads to a bigger body size, enrichment of this term as a result of these 10 genes

would suggest that these genes contribute to body size and are linked to CG1847. Another

main substance that contributes to the exoskeletons of insects is cuticle [288], which is also

shown as an enriched term in the biological process of GO analysis. Ten genes (see Figure

6.33) that are all highly expressed lead to the enrichment of this term in the biological process.

In a previous study, it was shown that a mutation of TwdlD that is in the same family of

proteins as TwdlG, TwdlV, and TwdlZ changes body shape in Drosophila [289]. These two

biological process terms (chitin and cuticle) also appeared in the molecular function of GO

analysis with the lowest p-value observed. Proteolysis and the lipid catabolic process are both

known to contribute to the breakdown of protein and lipids respectively.

Table 6.5: GO analysis.

GO Term genes P-value

Biological process

metabolic process of chitin

chitin based cuticle development

proteolysis

lipid catabolic process

Phagocytosis

10

10

15

4

5

9.8E-5

2.6E-4

1.8E-3

9.4E-2

9.4E-1

Cellular

component

extracellular region

extracellular matrix

integral component of plasma membrane

extracellular space

17

6

7

9

2.3E-6

4.7E-3

7.8E-3

1.5E-2

Molecular

function

chitin binding

structural constituent of chitin-based cuticle

serine-type endopeptidase activity

transferase activity, transferring acyl groups

lipase activity

structural constituent of chitin-based larval cuticle

carbohydrate binding

11

11

10

4

4

6

5

1.5E-7

6.4E-7

2.0E-3

2.1E-3

3.5E-3

4.1E-3

4.8E-3

153

Figure 6.32: Log2 fold change of genes contributing to metabolic process of chitin.

Figure 6.33: Log 2 fold change of genes contributing to chitin-based cuticle development.

Using the functional annotation chart of DAVID for pathway analysis, two terms from the

KEGG pathway [290] were enriched, including glycerolipid metabolism and folate biosynthesis.

Research suggests that glycerolipid metabolism can control cell growth and cellular function

[291]. Three genes including CG4582, CG5665, and CG6753 were identified to

contribute to this pathway. Furthermore, two genes, CG3264 and CG8147 led to

0

0.5

1

1.5

2

2.5

3

3.5

log2	Fold	Change

0

0.5

1

1.5

2

2.5

3

3.5

4

log2	Fold	Change

154

the enrichment of the folate biosynthesis pathway. Folate is known to be important in the

formation of new cells and their maintenances [292].

6.2.7: Classification

In order to apply a similar methodology to that of microarray for classification purpose of

RNA-Seq data, it is essential to normalise RNA-Seq data as explained in Section 6.2.4.2. Since

it was observed that the rlog transformation performed better compared to other methods

like vst, in this pipeline the rlog of the count is used for classification purposes. Once the

transformed count matrix is acquired, those features that have zero counts are removed. The

resulting matrix can then be treated like microarray gene expression, and the standard

procedure for classification analysis such as feature selection, designing a classifier, and

classifier validation can be followed.

Our proposed method for feature selection and classification in Chapter 5 (MRMR-COA-HS)

was utilised for RNA-Seq classification. Figure 6.34 illustrates the steps to be performed for

the proposed method. In brief, RNA-Seq data is first discretised into nine states (see Section

5.3). Then, the top 100 features were selected using the MRMR filter method of feature

selection (see Section 5.4) in the first stage of selection. This was done in order to reduce the

computational time for the second stage of selection. In the second stage, the proposed COA-

HS was utilised in a wrapper setup with the SVM classifier to minimise the number of selected

features, while maintaining a high accuracy for classification. A cost function similar to that in

Section 5.5 was used for COA-HS, and the LOOCV model of validation was used to assess the

performance of the SVM classifier.

Figure 6.34: Schematic of the general methodology for RNA-Seq classification.

155

Following the proposed method (See Figure 6.34), 100 features were selected in the first

stage of gene selection. In the second stage of gene selection these 100 features were used

as input for COA-HS algorithm that is wrapper method and uses SVM to evaluate the features

in terms of their power to discriminate between two experimental conditions. After 100

iterations of COA-HS, six genes were selected which led to 100% classification accuracy. The

selected genes include CG9021, CG14960, TwdlG, Osi24, CG6741, and CG9154. Figure 6.35

illustrates comparative performance assessments of the SVM classifier for the selected six

features, and those 100 features that were selected after the first stage of selection using

MRMR. It can be seen that when 100 genes were used for classification purposes, an accuracy

of 95.8% was achieved compared to 100% SVM classifier accuracy using the selected six

genes as its input.

Figure 6.35: Accuracy of SVM classifier.

As mention in Section 6.2.4.4, when DESeq Bioconductor package was used to determine

differentially expressed genes, 186 genes were selected based on an adjusted p-value of 0.1

and log2 fold changes of at least double or half of that between two conditions. In the

classification analysis using MRMR-COA-HS when normalised counts were used, in fact four

genes (CG9021, CG14960, TwdlG, and Osi24) out of the six selected genes by the classification

method were also among the 186 genes selected by DESeq Bioconductor package. CG6741

and CG9154 genes that were selected by the classification method and were not found to be

differentially expressed by DESeq, were then investigated to determine whether they have

biological relevance for the dataset under investigation. It was found that the CG9154 gene

is a protein coding gene, and its biological process is the positive regulation of transcription

156

from the RNA polymerase II promoter. The CG6741 gene is also a protein coding gene, and

its biological process is involved with compound eye development. To date, there is limited

amount of information available in the literature in regard to the selected genes. However,

further exploration in the roles of these genes could shed more light on the function of these

genes.

6.2.8: Summary

In this chapter, first an overview of RNA-Seq data analysis was given. Then a state-of-the-

art pipeline for RNA-Seq analysis was investigated.

In respect to the overview of RNA-Seq data analysis, different steps required for successful

RNA-Seq analysis were explored (see Figure 6.6). First, the importance of experimental

consideration in the design of RNA-Seq was pointed out with regards to sequencing depth and

number of replicates. Then the sources of possible contaminations in such experiments were

explored, including technical and biological contaminations, and how one can eliminate such

contaminations as a pre-processing step towards a successful RNA-Seq downstream analysis.

It was discussed that the first step after pre-processing is aligning the short reads, either to

reference transcripts or a reference genome. The aligner software should be spliced-aware if

short reads are mapped to a reference genome, to account for exon-exon junctions. Examples

of such aligners are STAR and TopHat. The aligner software usually creates a BAM file, which

contains the genomic coordinates that reads are mapped to, and from this file a count matrix

is then formed that summarises the number of reads for each genomic feature depending on

the objective of the study. Several software was introduced to create the count table. Then

different normalisation methods including RPKM were explored that aid in accounting for gene

length and library size biases. In Section 6.1.6, statistical methods for modelling raw counts

and estimating overdispersion that present in RNA-Seq data due to biological variation were

investigated including the negative binomial model. Finally, the concept of differential

expression at gene and transcript levels were examined, and some of the well-known software

for such analysis were identified.

In respect to the state-of-the-art RNA-Seq analysis pipeline, details of this pipeline were

outlined (see Figure 6.7). To perform the analysis, RNA-Seq data from Drosophila, including

three normal and three AIP positive samples were used. Since there are many different

R/Bioconductor packages, a state-of-the-art pipeline was implemented to perform the RNA-

Seq analysis for differential gene expression, differential exon usage, sample classification,

annotation, and pathway analysis. Initially all samples were quality checked, and when

required, pre-processing steps were performed to eliminate noise and low quality RNA-Seq

157

reads. Then the data was mapped to the Drosophila genome using the STAR aligner. These

steps were carried out using OSX terminal. Afterwards, the data was imported into the

R/Bioconductor software, and the initial differential gene expression analysis was carried out.

Several steps were required for this analysis, including counting reads, normalisation,

dispersion estimation, and differential gene expression tests, all of which were explored in

detail. As a result, 186 genes were identified as differentially expressed. Furthermore, the

relevancies of these genes were investigated using gene annotation and tools like DAVID. It

was observed that the selected genes play an active role in biological processes, such as chitin

and cuticle development. It is noted that both of these substances are related to the main

structure for Drosophila body size. It is also known that cases that are AIP positive usually

lead to bigger body sizes. Therefore, the selected genes could be used as a biomarker for

such cases. Furthermore, a differential exon usage analysis was performed to identify any

exon that is expressed differently across two conditions. Similar steps to that for differential

gene expression were performed. It was observed that 1053 exons were differently used

across control and mutated samples that correspond to 622 genes, with gene CG3954

(FBgn0000382) having the smallest p-value. Finally, the use of machine learning for RNA-Seq

data was investigated. To this end, the proposed method for microarray data in Chapter 4

was implemented for RNA-Seq data classification. Initially, the count matrix was normalised

and transformed using the rlog method, so that the data could have the characteristics of

those in homoscedastic data. The transformed count matrix then underwent a two-stage

feature selection in order to select the most informative features. As a result of classification,

six genes were identified that achieve 100% classification accuracy for the SVM classifier. Four

out of six genes were previously identified as differentially expressed. However, features

including CG6741 and CG9154 were not observed in the previous analysis.

158

Chapter 7: Conclusions and Future Research

Recent advances in gene expression have paved the way for investigating it on a genome-

wide scale. This has been possible with the help of technologies such as microarray and next

generation sequencing, which in principle are very different one from another. This is because

the resulting datasets from each technology require different approaches for a successful

analysis. This thesis presented an investigation into the analysis of gene expression from both

technologies, and provided new methods towards a more successful analysis for multi-

category diseases.

7.1: Analysis of Microarray Data

With regards to microarray technology, cancer classification is of the utmost importance.

It improves personalised medicine by providing information for better treatment decisions by

doctors. However, highly accurate disease classification remains challenging due to the curse

of dimensionality in these datasets. Therefore, one of the main objectives of this study was

to design solutions to enhance the classification accuracy of microarray data.

Different steps were required to achieve a high classification accuracy, such as gene

selection, clustering, and different classifiers, which were explored. It was noted in Chapter 3

that in order to have a successful analysis, several aspects should be considered prior to the

analysis such as the design of the microarray experiment and pre-processing, in order to

remove systematic errors that present in microarray data. A detailed investigation into

unsupervised methods such as K-mean, C-mean, hierarchical clustering, SOM, Bi-CoPaM, and

UNCLES were carried out, and the importance of these methods in the visualisation and

interpretation of experimental results was pointed out. With regards to the gene selection

step, different methods such as filter and wrapper approaches were examined, and two

classifiers, SVM and the MLP artificial neural network were studied. Several cancer datasets

159

including leukaemia, prostate cancer, and lymphoma were used to test the proposed methods

for enhancing classification performances.

Several original contributions have been made to this thesis that enhanced the accuracy of

cancer classification. For example, a novel gene selection method, in which optimisation based

clustering algorithms were utilised in order to cluster microarray data prior to gene selection

was developed. This method incorporated a shuffling technique to choose the most

informative genes and consequently led to a better classification performance. In this method,

a new optimisation algorithm, COA-GA, was also proposed, for which a comparative

performance assessment with other optimisation algorithms suggested that the proposed

algorithm outperforms other optimisation algorithms such as PSO, GA, and COA in reaching a

better minimum in fewer iterations. This ultimately resulted in better classification. However,

it was noted that traditional clustering methods such as K-means, C-means, and hierarchical

may not have any effects on the classification performance. Furthermore, from a comparative

analysis between SVM and MLP, it was observed that the SVM classifier performs better than

MLP for microarray cancer classification.

Another method with regard to microarray technology was developed that is called MRMR-

COA-HS, which selects the most informative genes in two stages and provides high

classification accuracy for cancer datasets under investigation. In the proposed method,

initially the most relevant genes were selected using MRMR, which is a filter method, to reduce

the computational time for the second stage of the selection process. In the second stage, a

novel optimisation algorithm called COA-HS was proposed, and the cost function was designed

so that the number of selected genes would be minimised while maximising the accuracy of

the SVM classifier. The LOOCV method was used to examine the performance of the proposed

method, and the results were compared to other algorithms such as PSO, GA, HS, and COA.

Overall, this approach resulted in a high classification accuracy for all optimisation algorithms

mentioned above. However, it was observed that COA-HS outperformed other methods, by

both achieving a higher classification accuracy for all datasets, and selecting a lower number

of genes to achieve its accuracy compared to other optimisation methods. Since each

algorithm was ran 20 times, those gene that were selected at least 10 times out of 20 runs

where then further investigated and found to be biologically relevant to each cancer dataset.

This part of the thesis provides new approaches that enhance prognosis and classification

of cancer using microarray data that provides reliable classification results, which can lead to

more informed decisions by doctors.

160

7.2: Analysis of RNA-Seq Data

With regards to next generation sequencing (RNA-Seq), the required primary analysis for

successful downstream analysis includes several steps such as pre-processing, alignment of

short reads to a reference genome, creation of a count table, and normalisation. However,

depending on the downstream analysis, the statistical modelling of the count table and

normalisation can differ. Since the introduction of RNA-Seq, the preferred platform for the

analysis of such a dataset has been R/Bioconductor, and therefore numerous packages have

been proposed to aid in a successful analysis. This has led to an overwhelming number of

choices that one can opt for, and many studies have proposed pipelines to use specific

software to perform such analyses from start to downstream analysis of choice. However, due

to advances in statistical methods that applied to RNA-Seq, these pipelines have undergone

several changes. This thesis investigated a state-of-the-art pipeline that uses more cited,

recently developed software, and can be used for different steps towards downstream

analysis, such as differential gene expression and differential exon usage. Nevertheless, there

has not been enough research to apply classification for RNA-Seq thus far, as the focal point

for this dataset is finding the features, including genes, exons, and isoforms that are being

used differently across different conditions. Therefore, as a part of the proposed pipeline, the

classification approach that was used for two-stage gene selection with microarray was utilised

to pave the way for using statistical methods from microarray in next generation sequencing

for classification purposes.

To investigate this pipeline, RNA-Seq data from AIP deficient Drosophila that was produced

in house at Queen Mary University of London was used. Initially, a differential gene expression

analysis was performed, and important steps including counting reads, normalisation,

dispersion estimation, and differential gene expression tests were investigated, and the

required packages for these steps were pointed out. As a result of the differential gene

expression analysis, 186 genes were identified as differentially expressed. By examining the

functions of the differentially expressed genes, it was discovered that these genes are

essential in biological processes such as chitin and cuticle development, both of which are

important factors for Drosophila’s body size. Since AIP-deficient cases can lead to a bigger

body size, the selected differentially expressed genes were deemed to play a direct role in the

case study under investigation, and can be used as biomarkers.

Differential exon usage was then investigated to provide information for alternative

splicing, in which similar steps to that for differential gene expression were identified to be

important for a successful analysis, while the differences in modelling count were also pointed

161

out. As a result of this analysis, 622 genes were identified to have exons that are differently

expressed across control and mutated samples (1053 exons).

Finally, the classification was successfully performed for RNA-Seq data. The count table

was normalised and then treated as a microarray matrix for classification. For classification

purposes, the MRMR-COA-HS method that was proposed in Chapter 4 for microarray data was

used. As a result, six genes were selected that led to 100% classification accuracy for SVM.

Two out of six of the selected genes by MRMR-COA-HS were not found to be differentially

expressed when performing differential gene analysis.

7.3: Suggestions for Future Work

Future work for this research can be divided into two parts. The first part concerns

microarray data analysis, and the limitations of the proposed methods being that they are

designed for a two-class classification task. However, this can be expanded on for multi-class

classifications in number of ways. For instance, a library for SVM is proposed to achieve this

objective that is known as LIBSVM [293], and can be used instead of simple SVM. The

proposed methods for classification in Chapter 4 and Chapter 5 can be used for extra

microarray datasets to further validate these methods, and upon successful validation, these

methods could be used as a benchmark for cancer classification. The proposed optimisation

algorithms can be used for other optimisation-based problems too, as they outperform other

algorithms such as GA, PSO, HS, and COA at achieving a better minimum in fewer iterations.

This can reduce the computational time significantly, while providing better results at the

same time. Finally, gene selection also plays an important role in achieving high classification

accuracy. Therefore, it is worth investigating new feature selection methods that have recently

been proposed for other scientific fields like text classification, for the purpose of cancer

classification.

The second part relates to RNA-Seq data. As mentioned in Section 6.2.7, once the count

table is normalised appropriately, statistical approaches that used for microarray data can be

applied in a similar fashion. Therefore, as a future study, one could investigate different

clustering methods to identify hidden patterns within RNA-Seq data that could not be observed

with other analyses. Furthermore, differential isoform analysis has recently attracted many

researchers, and the objective is to observe which isoforms are expressed differently across

different experimental conditions. The most cited tool for differential isoform analysis to date

is cufflink [264], which would be a good starting point for such analysis.

162

Appendix 1: R-code for diffrential gene expression

analysis

#TO USE PARALLEL COMPUTING

library("BiocParallel")

register(MulticoreParam(5))

#***********************1. READING DATA INTO R**

#==============================dir to datasets

dir="/Users/Main-Data"

#==============================dirs to bam files

AlignedFiles <- list.files(dir, ".bam$", full.names = TRUE)

#==============================dir to gtf file

GTFfile <- file.path(dir, "Drosophila_melanogaster.BDGP5.76.gtf")

#==============================read in bamfiles by Rsamtools

library(Rsamtools)

BAMFileList <- BamFileList(AlignedFiles,yieldSize=10^5)

#============================== create sample table

 SampleInfo = data.frame(

 row.names = c("Control5","Control7","Control8","Mutated5","Mutated6","Mutated7"),

 condition = c("Control","Control","Control","Mutated", "Mutated","Mutated"))

#**************************2. COUNT THE READS ***

library(GenomicFeatures)

TxDbFromGFF <- makeTxDbFromGFF(GTFfile, format="gtf")

ExonByGenes <- exonsBy(TxDbFromGFF, by="gene")

length(ExonByGenes)

summary(elementNROWS(ExonByGenes))

setSessionTimeLimit(cpu = Inf, elapsed = Inf)

library(GenomicAlignments)

 RangedSummarizedExperiment <- summarizeOverlaps(ExonByGenes, BAMFileList,

mode="Union",

singleEnd=FALSE,

ignore.strand=TRUE,

fragments=TRUE)

###add column data

colData(RangedSummarizedExperiment) <- DataFrame(SampleInfo)

Visualizing sample-sample distances

plot(assay(RangedSummarizedExperiment)[,2:3])

********************3 CREATE OBJECT FOR DESEQ2 ***

Creating a DESeqDataSet object

library(DESeq2)

 DESeqDataFrame <- DESeqDataSet(RangedSummarizedExperiment , design= ~ condition)

163

#**********************4 NORMALIZATION**

DESeqDataFrame <- estimateSizeFactors(DESeqDataFrame)

sizeFactors(DESeqDataFrame)

colSums(counts(DESeqDataFrame))

library(geneplotter)

multidensity(counts(DESeqDataFrame, normalized = T),

 xlab="mean counts", xlim=c(0, 1000))

multiecdf(counts(DESeqDataFrame, normalized = T),

 xlab="Mean counts", xlim=c(0, 1000))

#============exploratory data analysis

loggeomeans <- rowMeans(log(counts(DESeqDataFrame)))

hist(log(counts(DESeqDataFrame)[,1]) - loggeomeans,

 col="grey", main="", xlab="", breaks=40)

log.norm.counts <- log2(counts(DESeqDataFrame, normalized=TRUE) + 1)

log.norm <- normTransform(DESeqDataFrame)

rs <- rowSums(counts(DESeqDataFrame))

mypar(1,1)

not normalised

boxplot(log2(counts(DESeqDataFrame)[rs > 0,] + 1))

normalised

boxplot(log.norm.counts[rs > 0,])

plot(log.norm.counts[,2:3])

rld transformation

rld <- rlog(DESeqDataFrame)

plot(assay(rld)[,2:3])

vsd transformation

vsd <- varianceStabilizingTransformation(DESeqDataFrame)

plot(assay(vsd)[,2:3])

#The principal components (PCA) plot

plotPCA(rld, intgroup="condition")

#**************** 5 Differential gene expression**

DESeqDataFrame <- estimateDispersions(DESeqDataFrame)

plotDispEsts(DESeqDataFrame)

#test for differential analysis

DESeqDataFrame <- nbinomWaldTest(DESeqDataFrame)

DESeq2Results <- results(DESeqDataFrame, pAdjustMethod = "BH")

summary(DESeq2Results)

table(DESeq2Results$padj < 0.1)

DESeq2ResultsFoldChange <- results(DESeqDataFrame, lfcThreshold=1)

table(DESeq2ResultsFoldChange$padj < 0.1)

#####FIND DIFFERENTIALLY EXPRESSED GENES#######

#The top "n" high and low expressed genes by adjpval:

n = 5

#Differential-Expressed-Genes with adjusted p-value <0.1

164

 DiffExprGenes <- DESeq2ResultsFoldChange[which(DESeq2ResultsFoldChange$padj < 0.1),]

dim(DiffExprGenes)

#all differentially expressed genes

DiffExprGenesbyPadj<- DiffExprGenes[order(DiffExprGenes$padj),]

 write.csv(as.data.frame(DiffExprGenesbyPadj), file="Diff-Exp-Genes.csv")

#sort it by the log2 fold change estimate

 DiffExprGenesSortedByfoldChange <- DiffExprGenes[order(DiffExprGenes$log2FoldChange),]

#TOP UP and DOWN:

 DiffExprGenesbyPadjFold <- rbind(head(DiffExprGenesSortedByfoldChange,n),tail(DiffExprGenesSortedByfoldChange,n))

DiffExprGenesbyPadjFold

 write.csv(as.data.frame(DiffExprGenesbyPadjFold), file="Diff-Exp-Genes-TOP30.csv")

DiffExprGenesbyPadjFold[c(1:5,(2*n-4):(2*n)), c('baseMean','log2FoldChange','padj')]

#****************6 VISUALISING THE RESULTS ***

#============================== Dispersion plot

plotDispEsts(DESeqDataFrame)

dev.off()

#============================== MA-plot

 plotMA(DESeq2ResultsFoldChange, main='Control vs. Mutated', ylim=c(-4,4))

#============================== Plot top gene

Examine the counts for the top gene

mypar(1,2)

 plotCounts(DESeqDataFrame, gene=which.min(DESeq2ResultsFoldChange$padj), intgroup="condition")

#the gene which had lowest expression log-fold0change

 plotCounts(DESeqDataFrame, gene=which.min(DESeq2ResultsFoldChange$log2FoldChange), intgroup="condition")

#the gene which had which had highest expression log-fold0change

 plotCounts(DESeqDataFrame, gene=which.max(DESeq2ResultsFoldChange$log2FoldChange), intgroup="condition")

#============================== Heatmap

library(pheatmap)

DiffExprGenesbyPadj<- DiffExprGenes[order(DiffExprGenes$padj),]

SortedGenes <- DiffExprGenesbyPadj

 topgenes <- head(rownames(SortedGenes),25)

topgenes <- rownames(SortedGenes)

#topgenes <- head(rownames(DiffExprGenesDoubleOrHalf),)

matrix from rld for the selected genes

mat <- assay(rld)[topgenes,]

#Fourth, we subtract the rowMeans from this matrix to have a uniform plot

mat <- mat - rowMeans(mat)

pheatmap(mat)

165

#********************6 RESULTS ***********************************

#============================== Export results into CSV

write.csv(as.data.frame(resSort), file="results.csv")

#============================== Annotation

#simply add symbol to the genes

DiffExprGenes$SYMBOL <- mapIds(org.Dm.eg.db,

 keys=row.names(DiffExprGenes),

 column="SYMBOL",

 keytype="FLYBASE",

 multiVals="first")

#simply add entrez to the genes

DiffExprGenes$ENTREZID <- mapIds(org.Dm.eg.db,

 keys=row.names(DiffExprGenes),

 column="ENTREZID",

 keytype="FLYBASE",

 multiVals="first")

dim(DiffExprGenes)

write.csv(as.data.frame(DiffExprGenes), file="Annotation.csv")

getwd()

#============================== Session Information

Packages_used_in_this_analysis= session_info()

166

Appendix 2: R-code for diffrential exon usage

#TO USE PARALLEL COMPUTING

multicoreWorkers()

BPPARAM = MulticoreParam(workers=5)

#**********************1. PREPERATION *************************************

######Done in TERMINAL

#######1.1 Preparing the annotation

#following should be run once to create flattened gff from gtf file.

python/Library/Frameworks/R.framework/Versions/3.3/Resources/library/DEXSeq/python_scripts/dexseq_prepare_annot

ation.py --aggregate=no Drosophila_melanogaster.BDGP5.76.gtf Drosophila_melanogaster.BDGP5.76.gff

######1.2. counting reads

#following should be run for all samples

gff_file is the output file from perevious command

gff_file=Drosophila_melanogaster.BDGP5.76.gff

#change "bam_file" in sequence with desired bam file for all samples (note that the samples should be sorted by name

using samtools) #"samtools sort -n sample.bam sample_SortedByName"

bam_file=Mut_4_sortmerna_STAR_SortedByName.bam

out=$bam_file.dexseq_noaggregate.txt

python/Library/Frameworks/R.framework/Versions/3.3/Resources/library/DEXSeq/python_scripts/dexseq_count.py –

format=bam --paired=yes --stranded=no $gff_file $bam_file $out

#**********************2. READING DATA INTO**

dir="/Users/Main-Data"

CountFilePaths = list.files(dir, pattern="txt$", full.names=TRUE)

basename(CountFilePaths)

class(CountFilePaths)

flattenedFilePath = list.files(dir, pattern="gff$", full.names=TRUE)

basename(flattenedFilePath)

#sample table

SampleInfo = data.frame(

row.names = c("Control5","Control7","Control8","Mutated5","Mutated6","Mutated7"),condition =

c("Control","Control","Control","Mutated", "Mutated","Mutated"))

167

#**********************3. CREATE OBJECT***

library("DEXSeq")

DEXSeqDataFrame = DEXSeqDataSetFromHTSeq(

 CountFilePaths,

 sampleData=SampleInfo,

 design= ~ sample + exon + condition:exon,

 flattenedfile=flattenedFilePath)

#**********************3. NORMALIZATION **

#measure relative sequencing depth using SizeFactor

DEXSeqDataFrame = estimateSizeFactors(DEXSeqDataFrame)

sizeFactors(DEXSeqDataFrame)

library(geneplotter)

mypar(1,1)

multidensity(counts(DEXSeqDataFrame, normalized = T),

 xlab="mean counts", xlim=c(0, 1000))

multiecdf(counts(DEXSeqDataFrame, normalized = T),

 xlab="Mean counts", xlim=c(0, 1000))

dev.off()

#Dispersion estimation (second line to parallel so quick)

DEXSeqDataFrame = estimateDispersions(DEXSeqDataFrame, BPPARAM=BPPARAM)

plotDispEsts(DEXSeqDataFrame)

DEXSeqDataFrame = testForDEU(DEXSeqDataFrame, BPPARAM=BPPARAM)

DEXSeqDataFrame = estimateExonFoldChanges(DEXSeqDataFrame, fitExpToVar="condition", BPPARAM=BPPARAM)

results table

DEXSeq_Results = DEXSeqResults(DEXSeqDataFrame)

plotMA(DEXSeq_Results, cex=0.8)

table (DEXSeq_Results$padj < 0.1)

table(tapply(DEXSeq_Results$padj<0.1,DEXSeq_Results$groupID,any))

DifferntialExons <- DEXSeq_Results[which(DEXSeq_Results$padj < 0.1),]

dim(DifferntialExons)

#you added next 3 line for extra...

TopGenesSorted <- DifferntialExons[order(DifferntialExons$padj),]

dim(TopGenesSorted)

TopGeneSortedNames <- rownames(TopGenesSorted)

TopGeneSortedNames

write.csv(as.data.frame(TopGenesSorted), file="different-exon-usage-ordered.csv")

168

#=====================4 VISUALIZATION================================

head(TopGeneSortedNames)

mypar(1,1)

#draw the fitted expression levels of each of the exons of gene FBgn0010909 for each condotion

plotDEXSeq(DEXSeq_Results, "FBgn0000382", legend=TRUE, cex.axis=1.2, cex=1.3, lwd=2)

visualize the transcript models, which can be useful for putting differential exon usage results into the context of

isoform expression.

plotDEXSeq(DEXSeq_Results, "FBgn0000382", displayTranscripts=TRUE, legend=TRUE, cex.axis=1.2, cex=1.3, lwd=2)

#the count values from the individual samples. The counts are normalized by dividing them by the size factors

plotDEXSeq(DEXSeq_Results, "FBgn0000382", expression=FALSE, norCounts=TRUE, legend=TRUE, cex.axis=1.2,

cex=1.3, lwd=2)

#create browsable, detailed overview over all analysis results, allowing a more detailed exploration of the results.

#saved in getwd()

setwd("~/Desktop")

DEXSeqHTML(DEXSeq_Results, FDR=0.1, color=c("#FF000080", "#0000FF80"),BPPARAM=BPPARAM)

#conclude by adding the session information:

sessionInfo()

169

Appendix 3: Diffrentially expressed genes

Flyba
se ID

base
Mean

log2Fold
Change

lfcSE stat pvalu
e

padj SYM
BOL

ENT
REZID

FBgn0

000075

1038.

397315

2.526047

508

0.341

702061

4.466

017866

7.97E-

06

0.001

0503

amd 3518

8

FBgn0

000451

14644

.71198

2.843459

658

0.323

419394

5.699

90449

1.20E-

08

3.26E-

06

ect 4413

5

FBgn0

001078

2665.

015746

1.919381

491

0.241

009289

3.814

713925

0.000

136341

0.013

031473

ftz-f1 4004

5

FBgn0

001254

2965.

431248

2.595988

359

0.474

081053

3.366

488387

0.000

761318

0.054

784259

ImpE

2

3843

2

FBgn0

002939

81.62

736955

-

2.606831679

0.380

153678

-

4.226795

04

2.37E-

05

0.002

853866

nina

D

3261

60

FBgn0

003254

147.5

194289

2.088461

151

0.270

785153

4.019

648557

5.83E-

05

0.006

45829

rib 4485

5

FBgn0

003292

875.6

831834

2.246260

366

0.305

565891

4.078

532329

4.53E-

05

0.005

206083

rt 3929

7

FBgn0

004577

454.9

501129

1.803923

997

0.240

977466

3.336

096153

0.000

849638

0.060

790365

Pxd 2768

671

FBgn0

004778

3817.

224852

2.050250

037

0.326

177318

3.219

87452

0.001

282467

0.088

229515

Ccp8

4Af

4082

0

FBgn0

005638

814.4

345336

2.730871

678

0.466

614407

3.709

426139

0.000

20773

0.018

774509

slbo 3788

9

FBgn0

010357

42393

.87984

1.993751

662

0.288

267337

3.447

326615

0.000

566164

0.043

632318

beta

Try

4790

1

FBgn0

011236

1454.

890547

1.856952

2

0.199

134459

4.303

384785

1.68E-

05

0.002

132887

ken 3778

5

FBgn0

022700

3227.

900865

2.594146

329

0.225

107891

7.081

699023

1.42E-

12

1.62E-

09

Cht4 4981

5

FBgn0

023214

246.6

377467

1.697836

664

0.191

694199

3.640

364009

0.000

272253

0.023

310225

edl 3714

9

FBgn0

023496

618.2

178408

2.944139

821

0.493

328797

3.940

860195

8.12E-

05

0.008

542682

Lip1 4397

3

FBgn0

024366

1121.

55349

2.933553

265

0.273

614267

7.066

712148

1.59E-

12

1.66E-

09

CG11

409

3107

8

FBgn0

025620

3854.

774333

-

2.636650132

0.168

748745

-

9.698739

601

3.05E-

22

1.91E-

18

CG13

360

3102

5

FBgn0

026077

12177

.82717

1.879845

452

0.190

166412

4.626

713218

3.72E-

06

0.000

516859

Gasp 4074

5

FBgn0

029573

75.24

284505

2.867661

816

0.355

492104

5.253

736429

1.49E-

07

2.79E-

05

CG14

770

3108

5

170

FBgn0

029644

7952.

622331

3.267378

435

0.467

424099

4.850

794896

1.23E-

06

0.000

197395

CG14

421

3128

5

FBgn0

029646

6200.

465874

2.493103

03

0.327

908682

4.553

411098

5.28E-

06

0.000

726259

CG14

423

3128

7

FBgn0

029647

125.1

989681

2.760635

906

0.409

943526

4.294

825497

1.75E-

05

0.002

189056

CG17

959

3128

8

FBgn0

029649

2037.

288165

3.261732

193

0.335

527722

6.740

820635

1.57E-

11

1.04E-

08

CG41

16

3129

1

FBgn0

029681

3458.

528909

2.687863

788

0.489

809553

3.445

959308

0.000

569036

0.043

632318

CG15

239

3134

3

FBgn0

029804

1206.

38051

2.562657

415

0.289

667218

5.394

664352

6.87E-

08

1.41E-

05

CG30

97

3150

3

FBgn0

029836

209.9

607695

2.280402

057

0.309

161463

4.141

531881

3.45E-

05

0.004

11397

CG59

28

3153

9

FBgn0

029838

844.9

113309

2.142365

834

0.281

221154

4.062

161814

4.86E-

05

0.005

518933

CG46

66

3154

1

FBgn0

030001

116.5

196895

2.243672

082

0.309

744248

4.015

157956

5.94E-

05

0.006

524758

cyr 3173

3

FBgn0

030345

196.0

794296

-

2.237414887

0.230

097203

-

5.377791

95

7.54E-

08

1.52E-

05

CG18

47

3214

4

FBgn0

030541

7250.

550331

2.540801

714

0.482

461816

3.193

624165

0.001

404989

0.095

488625

CG11

584

3236

3

FBgn0

030570

257.5

31827

2.746819

933

0.513

866457

3.399

365554

0.000

675424

0.049

746947

CG12

540

3239

3

FBgn0

030590

699.8

078851

2.590481

204

0.465

741849

3.414

941575

0.000

637957

0.048

119632

CG95

18

3241

6

FBgn0

030591

822.5

87806

2.839263

252

0.298

486279

6.161

969178

7.18E-

10

2.73E-

07

NA NA

FBgn0

030617

3858.

591576

2.106950

165

0.300

110059

3.688

48071

0.000

225597

0.019

753158

CG90

95

3244

7

FBgn0

030798

269.8

140113

2.423634

287

0.251

825883

5.653

248463

1.57E-

08

4.04E-

06

CG13

003

3267

5

FBgn0

030841

714.9

641447

3.418263

815

0.369

413724

6.546

220839

5.90E-

11

2.96E-

08

CG85

68

3272

8

FBgn0

030921

9.131

19017

2.768949

651

0.508

130653

3.481

288998

0.000

499007

0.039

544707

CG62

90

3282

7

FBgn0

031001

506.1

244901

2.126314

79

0.235

749115

4.777

599238

1.77E-

06

0.000

270882

CG78

84

3291

4

FBgn0

031178

1872.

958243

1.657625

749

0.204

589207

3.214

371655

0.001

307303

0.089

446701

CG10

918

3312

3

FBgn0

031646

746.7

619245

2.646407

01

0.316

681037

5.198

944104

2.00E-

07

3.64E-

05

CG28

37

3369

6

FBgn0

031734

1179.

178447

1.775166

655

0.242

814766

3.192

419755

0.001

410861

0.095

488625

CG11

147

3380

3

FBgn0

031747

37.31

851468

2.502008

569

0.367

962502

4.081

960965

4.47E-

05

0.005

177352

CG90

21

3381

8

171

FBgn0

031918

2063.

622471

2.457048

651

0.307

180707

4.743

294802

2.10E-

06

0.000

30974

CG60

55

3402

7

FBgn0

031976

62.78

110609

2.089744

306

0.292

660552

3.723

577706

0.000

196419

0.018

217533

CG73

67

3409

4

FBgn0

032399

639.0

601013

3.138659

109

0.337

521008

6.336

373316

2.35E-

10

1.02E-

07

CG67

85

3462

0

FBgn0

032598

281.0

145396

3.046362

585

0.366

752466

5.579

683239

2.41E-

08

5.80E-

06

ChLD

3

3500

2

FBgn0

032809

121.0

419833

-

2.23774438

0.382

089836

-

3.239406

714

0.001

197786

0.082

859025

CG13

078

3525

1

FBgn0

032810

598.3

81953

-

1.773314306

0.179

722862

-

4.302815

432

1.69E-

05

0.002

132887

CG13

077

3525

2

FBgn0

033252

685.3

860171

2.472291

582

0.306

857151

4.797

970577

1.60E-

06

0.000

247763

CG12

769

3577

0

FBgn0

033277

14.52

04193

2.604084

773

0.471

34139

3.403

233427

0.000

665934

0.049

338193

CG14

760

3580

2

FBgn0

033359

3705.

520771

2.715607

514

0.462

473712

3.709

632506

0.000

20756

0.018

774509

CG82

13

3590

2

FBgn0

033362

354.7

217517

2.810657

024

0.303

51295

5.965

666457

2.44E-

09

7.63E-

07

CG81

72

3590

5

FBgn0

033365

2166.

036299

2.979695

243

0.297

766931

6.648

472476

2.96E-

11

1.77E-

08

CG81

70

3590

8

FBgn0

033591

1198.

586745

3.293991

815

0.302

7424

7.577

372088

3.53E-

14

5.52E-

11

CG13

216

3618

1

FBgn0

033645

206.2

280837

2.440257

68

0.305

179113

4.719

384841

2.37E-

06

0.000

344413

CG13

196

3625

0

FBgn0

033725

3270.

447136

1.848011

407

0.206

181781

4.112

930851

3.91E-

05

0.004

614667

Cpr4

9Ac

3634

8

FBgn0

033789

8291.

694862

1.539726

732

0.153

808741

3.509

077115

0.000

449665

0.036

324189

CG13

324

3643

4

FBgn0

033799

319.9

401669

1.654431

673

0.177

406919

3.688

873452

0.000

225249

0.019

753158

GLaz 3644

7

FBgn0

033873

1785.

958312

2.742416

28

0.312

633891

5.573

344184

2.50E-

08

5.90E-

06

CG63

37

3653

0

FBgn0

033874

864.3

875756

2.582984

795

0.464

203519

3.410

109425

0.000

649368

0.048

687061

CG63

47

3653

1

FBgn0

033942

3723.

476803

2.485664

048

0.349

792079

4.247

27756

2.16E-

05

0.002

630429

Cpr5

1A

3661

3

FBgn0

034022

3422.

058761

3.095653

683

0.339

398137

6.174

617527

6.63E-

10

2.60E-

07

CG12

964

3671

4

FBgn0

034295

13429

.84478

1.643877

972

0.198

528772

3.243

247644

0.001

181754

0.082

204153

CG10

911

3705

8

FBgn0

034301

1863.

70151

2.496183

6

0.454

553381

3.291

54652

0.000

996381

0.070

48413

CG57

56

3706

4

FBgn0

034391

3126.

528667

2.920209

936

0.326

32483

5.884

351299

4.00E-

09

1.19E-

06

CG15

080

3716

7

172

FBgn0

034440

3511.

464161

-

3.193595625

0.266

957392

-

8.217025

215

2.09E-

16

8.71E-

13

CG10

073

3722

5

FBgn0

034441

2316.

093438

-

2.565279811

0.338

098322

-

4.629658

617

3.66E-

06

0.000

515287

CG10

081

3722

6

FBgn0

034563

201.5

651125

2.501854

098

0.381

514718

3.936

556114

8.27E-

05

0.008

624809

CG15

649

3737

1

FBgn0

034565

150.9

980751

3.035617

131

0.385

973516

5.273

981363

1.33E-

07

2.53E-

05

CG15

650

3737

3

FBgn0

034661

1646.

309969

2.593161

43

0.329

154383

4.840

164712

1.30E-

06

0.000

205616

CG43

86

3748

6

FBgn0

034712

3264.

174879

-

3.15775266

0.191

393875

-

11.27388

562

1.77E-

29

2.21E-

25

CG32

64

3754

0

FBgn0

034887

503.0

059627

3.338272

661

0.347

692259

6.725

121418

1.75E-

11

1.10E-

08

St1 3774

2

FBgn0

034956

271.9

316357

2.475585

443

0.272

721252

5.410

599399

6.28E-

08

1.33E-

05

CG43

24

3783

0

FBgn0

035428

809.4

703383

2.199595

748

0.308

910323

3.883

313895

0.000

103042

0.010

239635

CG14

960

3840

3

FBgn0

035429

1452.

571677

2.867468

348

0.318

973924

5.854

611335

4.78E-

09

1.39E-

06

CG12

017

3840

4

FBgn0

035508

173.5

583366

3.342023

767

0.385

902486

6.068

952274

1.29E-

09

4.61E-

07

CG15

005

3850

6

FBgn0

035557

640.6

155625

2.677183

162

0.326

793681

5.132

238654

2.86E-

07

5.12E-

05

CG11

353

3856

0

FBgn0

035626

166.3

649886

2.295881

86

0.233

591391

5.547

64391

2.90E-

08

6.66E-

06

lin-

28

3863

9

FBgn0

035845

851.4

435201

2.576808

616

0.334

986299

4.707

083909

2.51E-

06

0.000

361649

CG13

675

3890

7

FBgn0

035941

98.26

495142

2.260484

359

0.344

973537

3.653

858122

0.000

258329

0.022

307159

CG13

313

3902

2

FBgn0

036110

840.8

394539

2.714708

131

0.489

491664

3.503

038476

0.000

459983

0.036

919534

Cpr6

7Fb

3922

5

FBgn0

036131

2161.

780567

2.407517

048

0.311

691442

4.515

738509

6.31E-

06

0.000

858729

CG12

522

3924

8

FBgn0

036196

792.5

309707

1.582529

324

0.172

058626

3.385

644411

0.000

710113

0.051

394967

CG11

658

3931

9

FBgn0

036228

571.4

842534

1.491848

302

0.136

591102

3.600

880986

0.000

317141

0.026

472794

obst-

G

3935

5

FBgn0

036289

2395.

032659

2.338080

567

0.272

675258

4.907

23132

9.24E-

07

0.000

150205

CG10

657

3942

3

FBgn0

036382

345.0

961671

2.006802

714

0.250

352256

4.021

544408

5.78E-

05

0.006

45829

CG13

737

3953

1

FBgn0

036575

433.1

188544

-

2.264070775

0.238

454263

-

5.301103

698

1.15E-

07

2.22E-

05

CG51

57

3977

1

173

FBgn0

036780

856.6

358463

2.615435

082

0.475

625762

3.396

441514

0.000

682681

0.049

987453

CG73

30

4000

7

FBgn0

036781

930.0

477101

2.547079

011

0.324

847083

4.762

483926

1.91E-

06

0.000

288472

CG13

699

4000

8

FBgn0

036948

28421

.72702

1.894607

789

0.241

226313

3.708

582942

0.000

208422

0.018

774509

CG72

98

4021

0

FBgn0

036956

162.2

100151

2.202457

279

0.340

813854

3.528

193666

0.000

418406

0.034

018575

CG13

813

4021

8

FBgn0

036977

72.46

96503

2.634501

254

0.307

102836

5.322

325503

1.02E-

07

2.00E-

05

CG56

65

4024

3

FBgn0

036985

4237.

03805

2.137661

525

0.278

542264

4.084

340762

4.42E-

05

0.005

172475

zye 4025

5

FBgn0

037099

590.1

885778

2.293752

504

0.377

029721

3.431

433738

0.000

6004

0.045

561247

CG71

73

4039

2

FBgn0

037179

15.78

884717

2.691857

667

0.498

607093

3.393

168069

0.000

690892

0.050

294552

CG14

453

4048

4

FBgn0

037197

92.52

924304

2.559564

662

0.450

534949

3.461

584202

0.000

537006

0.041

763065

CG13

239

4050

3

FBgn0

037225

3658.

104599

3.070978

482

0.346

156995

5.982

772303

2.19E-

09

7.23E-

07

Twdl

G

4053

5

FBgn0

037227

6331.

82759

2.791184

742

0.351

859179

5.090

629571

3.57E-

07

6.29E-

05

Twdl

V

4053

7

FBgn0

037323

1838.

844261

2.114858

506

0.206

174392

5.407

356839

6.40E-

08

1.33E-

05

CG26

63

4064

9

FBgn0

037395

206.3

007536

3.047413

927

0.364

511418

5.616

871862

1.94E-

08

4.87E-

06

CG10

280

4074

0

FBgn0

037409

685.0

994053

3.060535

318

0.323

536395

6.368

789879

1.91E-

10

8.52E-

08

Osi2

4

4075

5

FBgn0

037413

55.51

156657

2.737382

059

0.448

471864

3.874

004586

0.000

107061

0.010

472779

Osi5 4075

9

FBgn0

037417

97.53

603954

3.777118

434

0.400

544607

6.933

356207

4.11E-

12

3.22E-

09

Osi1

0

4076

4

FBgn0

037424

12688

.4681

3.007385

399

0.354

618835

5.660

684655

1.51E-

08

4.02E-

06

Osi1

5

4077

1

FBgn0

037427

655.5

234419

3.276846

071

0.343

992374

6.618

885316

3.62E-

11

2.06E-

08

Osi1

7

4077

4

FBgn0

037940

54.35

356116

3.753032

283

0.394

469413

6.979

07668

2.97E-

12

2.66E-

09

CG14

720

4141

5

FBgn0

038017

6949.

029124

2.250778

793

0.338

124572

3.699

165624

0.000

216309

0.019

345787

CG41

15

4149

9

FBgn0

038070

154.7

350195

2.590173

948

0.221

664508

7.173

786933

7.30E-

13

9.13E-

10

CG67

53

4155

7

FBgn0

038132

1006.

855882

3.012169

756

0.304

875579

6.599

970268

4.11E-

11

2.24E-

08

CG15

887

4163

1

FBgn0

038315

923.0

509382

2.852268

068

0.334

373273

5.539

521895

3.03E-

08

6.66E-

06

CG14

866

4185

4

FBgn0

038394

363.4

609589

3.625249

608

0.337

040236

7.789

128195

6.75E-

15

2.11E-

11

CG10

264

4194

8

174

FBgn0

038405

1221.

174021

1.919287

097

0.237

288258

3.874

136487

0.000

107003

0.010

472779

CG89

27

4196

4

FBgn0

038439

216.5

79382

3.325792

785

0.403

55451

5.763

267974

8.25E-

09

2.30E-

06

Cad8

9D

4200

6

FBgn0

038447

29.46

901072

2.351366

707

0.361

640204

3.736

771218

0.000

186398

0.017

548076

CG14

892

4201

6

FBgn0

038485

196.4

795915

1.743468

392

0.186

757312

3.980

933244

6.86E-

05

0.007

409542

CG52

55

4207

3

FBgn0

038511

2283.

081735

2.999870

086

0.258

589849

7.733

753239

1.04E-

14

2.18E-

11

CG58

73

4210

0

FBgn0

038526

423.0

94618

2.504163

588

0.340

168777

4.421

815557

9.79E-

06

0.001

263395

CG14

327

4211

8

FBgn0

038717

626.3

982949

2.434477

48

0.273

548165

5.243

966754

1.57E-

07

2.89E-

05

CG17

751

4233

6

FBgn0

038727

1425.

956602

2.237778

569

0.320

307215

3.864

348071

0.000

111386

0.010

811378

CG74

32

4234

7

FBgn0

038784

10269

.70844

1.837831

856

0.230

235034

3.639

028526

0.000

273668

0.023

310225

CG43

62

4241

0

FBgn0

038958

274.2

3965

3.404024

963

0.365

410484

6.578

970954

4.74E-

11

2.47E-

08

CG13

857

4262

7

FBgn0

038967

814.1

957875

2.956147

635

0.311

458565

6.280

603129

3.37E-

10

1.36E-

07

CG13

847

4263

6

FBgn0

039027

38.51

726964

3.317311

922

0.398

672532

5.812

56981

6.15E-

09

1.75E-

06

CG70

31

4270

4

FBgn0

039167

904.6

29394

3.113628

479

0.302

268113

6.992

561856

2.70E-

12

2.60E-

09

CG17

786

4287

9

FBgn0

039200

240.2

44505

2.816051

728

0.367

521628

4.941

346551

7.76E-

07

0.000

129525

CG13

616

4291

7

FBgn0

039264

985.8

322974

2.699475

409

0.478

855012

3.549

03962

0.000

386639

0.031

641214

CG11

786

4299

8

FBgn0

039344

35.14

684974

2.962235

641

0.443

663494

4.422

801667

9.74E-

06

0.001

263395

CG45

82

4308

6

FBgn0

039387

254.3

21468

3.344159

079

0.385

177816

6.085

914041

1.16E-

09

4.27E-

07

MCO

3

4313

4

FBgn0

039527

1933.

073994

1.985694

098

0.265

522106

3.712

286384

0.000

205395

0.018

774509

CG56

39

4331

4

FBgn0

039648

153.1

104062

3.102357

21

0.348

936981

6.025

034102

1.69E-

09

5.72E-

07

CG14

515

4345

4

FBgn0

039686

317.9

784797

1.860571

454

0.263

715841

3.263

252791

0.001

101412

0.077

043481

CG15

506

4349

8

FBgn0

039758

232.6

510322

2.171471

35

0.209

778225

5.584

332447

2.35E-

08

5.76E-

06

CG97

37

4360

0

FBgn0

039896

850.9

113595

1.823793

637

0.210

656216

3.910

606834

9.21E-

05

0.009

37187

yello

w-h

4377

9

FBgn0

040359

799.3

923516

3.131009

37

0.288

15691

7.395

308939

1.41E-

13

1.96E-

10

CG11

380

3106

5

FBgn0

040360

249.9

676448

2.823746

301

0.261

918116

6.963

039937

3.33E-

12

2.78E-

09

CG14

626

3106

4

175

FBgn0

040743

199.4

056257

3.962775

62

0.386

497679

7.665

700938

1.78E-

14

3.18E-

11

CG15

919

5021

6

FBgn0

043783

1477.

466614

-

2.197578101

0.336

252887

-

3.561539

978

0.000

368686

0.030

370506

CG32

444

4040

6

FBgn0

043791

177.1

648172

2.312558

546

0.323

2346

4.060

699399

4.89E-

05

0.005

518933

CG81

47

4113

5

FBgn0

043792

2470.

115964

2.707029

213

0.262

748294

6.496

823213

8.20E-

11

3.95E-

08

CG30

427

3798

6

FBgn0

044050

94.16

830224

2.928785

153

0.390

799489

4.935

485354

8.00E-

07

0.000

13172

Ilp3 3915

1

FBgn0

050413

437.2

95572

1.626553

735

0.167

616219

3.738

025706

0.000

185471

0.017

548076

CG30

413

2466

01

FBgn0

050471

384.7

264778

2.628846

554

0.294

025428

5.539

81526

3.03E-

08

6.66E-

06

CG30

471

2466

33

FBgn0

051041

1595.

279987

2.496467

019

0.298

33739

5.016

022351

5.28E-

07

9.05E-

05

CG31

041

3185

67

FBgn0

051148

1170.

48899

2.224463

952

0.189

960999

6.445

870264

1.15E-

10

5.33E-

08

CG31

148

4279

6

FBgn0

051268

2384.

16131

2.649256

576

0.273

04164

6.040

311555

1.54E-

09

5.35E-

07

CG31

268

3186

52

FBgn0

051288

1807.

037009

-

1.518578192

0.131

855429

-

3.932930

138

8.39E-

05

0.008

683638

CG31

288

3186

64

FBgn0

051475

532.2

568151

1.696174

663

0.189

100096

3.681

514072

0.000

231853

0.020

159939

CG31

475

4230

3

FBgn0

051561

97.02

923901

2.521370

788

0.446

990151

3.403

589059

0.000

665067

0.049

338193

Osi1

6

3188

01

FBgn0

051871

526.3

401686

1.964862

602

0.214

078808

4.507

043969

6.57E-

06

0.000

885046

CG31

871

3446

3

FBgn0

051876

2105.

087876

2.390712

001

0.324

061209

4.291

510248

1.77E-

05

0.002

200002

Cpr3

0F

3189

97

FBgn0

052036

80.70

230495

3.007754

784

0.339

44977

5.914

733074

3.32E-

09

1.02E-

06

CG32

036

3910

5

FBgn0

052037

276.3

550629

1.940926

864

0.295

891003

3.179

977952

0.001

472863

0.099

148991

CG32

037

3261

83

FBgn0

052188

3180.

667606

2.790142

036

0.519

666

3.444

793459

0.000

571496

0.043

632318

CG32

188

3179

01

FBgn0

052279

933.1

522457

2.119493

514

0.225

437035

4.965

881109

6.84E-

07

0.000

115717

Drsl2 3840

8

FBgn0

052569

26.21

81452

2.692885

98

0.434

166251

3.899

165301

9.65E-

05

0.009

746676

Twdl

Z

3180

92

FBgn0

052645

1692.

411499

2.776798

419

0.320

407271

5.545

437264

2.93E-

08

6.66E-

06

CG32

645

3226

4

FBgn0

053003

612.2

696276

2.716429

681

0.491

068694

3.495

294451

0.000

473539

0.037

765492

CG33

003

3188

26

FBgn0

053257

15.55

724931

2.657231

043

0.499

83789

3.315

537046

0.000

914672

0.065

071649

CG33

257

2768

960

176

FBgn0

053341

46.54

943518

2.538743

177

0.399

221064

3.854

363699

0.000

116031

0.011

175571

CG33

341

2768

683

FBgn0

066365

6778.

379785

2.749856

66

0.469

456715

3.727

407886

0.000

193459

0.018

076888

dyl 3853

1

FBgn0

083951

270.9

500486

2.381500

928

0.374

226929

3.691

612814

0.000

222837

0.019

753158

CG34

115

4379

880

FBgn0

083978

1811.

219604

2.228169

638

0.339

411943

3.618

522161

0.000

29629

0.025

039146

CG17

672

4379

911

FBgn0

085250

28.20

301248

3.446473

732

0.446

476939

5.479

507496

4.27E-

08

9.21E-

06

CG34

221

5740

574

FBgn0

085307

1297.

804474

-

2.434512489

0.358

8914

-

3.997065

65

6.41E-

05

0.006

982637

CG34

278

5740

656

FBgn0

085359

1038.

844324

-

2.191178871

0.342

471958

-

3.478179

283

0.000

504832

0.039

754738

CG34

330

2768

869

FBgn0

085411

333.6

603528

2.821328

435

0.267

339572

6.812

790266

9.57E-

12

6.66E-

09

CG34

382

5740

788

FBgn0

085473

54.61

45945

2.734003

252

0.483

167949

3.588

820936

0.000

332177

0.027

544284

CG34

444

5740

745

FBgn0

086359

1030.

367418

1.759463

861

0.193

3514

3.927

894305

8.57E-

05

0.008

794756

Inva

dolysin

4958

0

FBgn0

086673

1144.

405303

3.172317

977

0.364

089204

5.966

444361

2.42E-

09

7.63E-

07

CG13

272

3501

3

FBgn0

250833

422.6

595185

3.476190

951

0.358

023624

6.916

278106

4.64E-

12

3.42E-

09

CG34

461

5740

547

FBgn0

250839

1123.

171955

2.204801

634

0.347

325865

3.468

793297

0.000

522802

0.040

912487

CG20

16

4061

2

FBgn0

250862

629.1

878903

2.178523

292

0.275

183035

4.282

688762

1.85E-

05

0.002

266649

CG42

237

3226

1

FBgn0

259167

328.6

910856

2.212757

444

0.255

235632

4.751

520909

2.02E-

06

0.000

30094

CG42

272

3180

20

FBgn0

259192

449.3

045321

2.853011

055

0.365

452138

5.070

461658

3.97E-

07

6.90E-

05

CG42

296

5354

4

FBgn0

259229

159.4

715749

3.012918

962

0.318

947835

6.311

122835

2.77E-

10

1.16E-

07

CG42

329

3331

2

FBgn0

259233

2011.

419033

2.767968

658

0.488

785841

3.617

061927

0.000

297966

0.025

039146

CG42

331

4294

8

FBgn0

259237

640.4

62088

1.639999

857

0.161

057215

3.973

742226

7.08E-

05

0.007

571688

CG42

335

4255

8

FBgn0

259748

145.1

888565

2.828067

112

0.323

395097

5.652

736013

1.58E-

08

4.04E-

06

CG42

397

8673

976

FBgn0

260386

1091.

148792

2.124334

085

0.250

35638

4.490

934422

7.09E-

06

0.000

944555

mtg 4097

0

FBgn0

262111

422.6

767546

2.363427

222

0.283

242986

4.813

631007

1.48E-

06

0.000

231971

f 3271

8

FBgn0

262811

1268.

222916

2.296528

358

0.243

014172

5.335

196493

9.54E-

08

1.90E-

05

CG43

182

1279

8293

177

FBgn0

262889

101.8

137617

4.100158

818

0.400

166026

7.747

181453

9.40E-

15

2.18E-

11

CG43

244

1279

8420

FBgn0

263020

212.2

563649

2.287214

71

0.324

478817

3.967

022321

7.28E-

05

0.007

722293

CG43

315

1279

8419

FBgn0

263038

2962.

390736

2.527443

741

0.465

819683

3.279

045082

0.001

04159

0.073

268246

CG43

333

3483

0

FBgn0

263760

374.3

951922

2.240283

663

0.319

306618

3.884

303023

0.000

102624

0.010

239635

CG43

677

1446

2616

FBgn0

264562

1513.

428971

2.068282

72

0.230

524771

4.634

13417

3.58E-

06

0.000

509995

Hr4 3116

2

178

References

[1] B. Marte, Cell division and cancer, Nature. 432 (2004) 293. doi:10.1038/432293a.

[2] P. Cheung, P. Lau, Epigenetic regulation by histone methylation and histone variants., Mol. Endocrinol. 19 (2005) 563–

573. doi:10.1210/me.2004-0496.

[3] T. Sorlie, C.M. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, et al., Gene expression patterns of breast carcinomas

distinguish tumor subclasses with clinical implications., Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 10869–74.

doi:10.1073/pnas.191367098.

[4] A. Ben-Dor, R. Shamir, Z. Yakhini, Clustering gene expression patterns., J. Comput. Biol. 6 (1999) 281–297.

doi:10.1089/106652799318274.

[5] M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein, Cluster analysis and display of genome-wide expression patterns,

Proc. Natl. Acad. Sci. 95 (1998) 14863–14868. doi:10.1073/pnas.95.25.14863.

[6] G. Yi, S.-H. Sze, M.R. Thon, Identifying clusters of functionally related genes in genomes., Bioinformatics. 23 (2007)

1053–1060. doi:10.1093/bioinformatics/btl673.

[7] M.H. Asyali, D. Colak, O. Demirkaya, M.S. Inan, Gene Expression Profile Classification: A Review, Curr. Bioinform. 1

(2006) 55–73. doi:10.2174/157489306775330615.

[8] E. Blaveri, J.P. Simko, J.E. Korkola, J.L. Brewer, F. Baehner, K. Mehta, et al., Bladder cancer outcome and subtype

classification by gene expression, Clin. Cancer Res. 11 (2005) 4044–4055. doi:10.1158/1078-0432.CCR-04-2409.

[9] Z. Cai, R. Goebel, M.R. Salavatipour, G. Lin, Selecting dissimilar genes for multi-class classification, an application in

cancer subtyping., BMC Bioinformatics. 8 (2007) 206. doi:10.1186/1471-2105-8-206.

[10] R. Wesolowski, B. Ramaswamy, Gene expression profiling: Changing face of breast cancer classification and

management, Gene Expr. 15 (2011) 105–115. doi:10.3727/105221611X13176664479241.

[11] H. Hijazi, C. Chan, A classification framework applied to cancer gene expression profiles., J. Healthc. Eng. 4 (2013) 255–

83. doi:10.1260/2040-2295.4.2.255.

[12] a Antoniadis, S. Lambert-Lacroix, F. Leblanc, Effective dimension reduction methods for tumor classification using gene

expression data, Bioinformatics. 19 (2003) 563–570. doi:10.1093/bioinformatics/btg062.

[13] J. Cao, L. Zhang, B. Wang, F. Li, J. Yang, A fast gene selection method for multi-cancer classification using multiple

support vector data description, J. Biomed. Inform. 53 (2015) 381–389. doi:10.1016/j.jbi.2014.12.009.

[14] A. Jain, D. Zongker, Feature Selection: Evaluation, Application, and Small Sample Performance, IEEE Trans. Pattern

Anal. Mach. Intell. 19 (1997) 153–158. doi:10.1109/34.574797.

[15] C.E. Gillies, M.R. Siadat, N. V. Patel, G.D. Wilson, A simulation to analyze feature selection methods utilizing gene

ontology for gene expression classification, J. Biomed. Inform. 46 (2013) 1044–1059. doi:10.1016/j.jbi.2013.07.008.

[16] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support vector machines, Mach.

Learn. 46 (2002) 389–422. doi:10.1023/A:1012487302797.

[17] R.M. Luque-Baena, D. Urda, M. Gonzalo Claros, L. Franco, J.M. Jerez, Robust gene signatures from microarray data

using genetic algorithms enriched with biological pathway keywords, J. Biomed. Inform. 49 (2014) 32–44.

doi:10.1016/j.jbi.2014.01.006.

[18] P.A. Mundra, J.C. Rajapakse, Gene and sample selection using T-score with sample selection., J. Biomed. Inform. 59

(2016) 31–41. doi:10.1016/j.jbi.2015.11.003.

[19] Z. Mao, W. Cai, X. Shao, Selecting significant genes by randomization test for cancer classification using gene expression

179

data, J. Biomed. Inform. 46 (2013) 594–601. doi:10.1016/j.jbi.2013.03.009.

[20] E.R. Mardis, Next-generation DNA sequencing methods., Annu. Rev. Genomics Hum. Genet. 9 (2008) 387–402.

doi:10.1146/annurev.genom.9.081307.164359.

[21] J.C. Marioni, C.E. Mason, S.M. Mane, M. Stephens, Y. Gilad, RNA-seq: An assessment of technical reproducibility and

comparison with gene expression arrays, Genome Res. 18 (2008) 1509–1517. doi:10.1101/gr.079558.108.

[22] M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix, et al., Molecular classification of cutaneous malignant

melanoma by gene expression profiling., Nature. 406 (2000) 536–540. doi:10.1038/35020115.

[23] L.J. Van’t Veer, H. Dai, M.J. van De Vijver, Y.D. He, A.A. Hart, M. Mao, et al., Gene expression profiling predicts clinical

outcome of breast cancer, Nature. 415 (2002) 530–536. doi:10.1038/415530a.

[24] R. Rajabioun, Cuckoo optimization algorithm, Appl. Soft Comput. J. 11 (2011) 5508–5518.

doi:10.1016/j.asoc.2011.05.008.

[25] J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control,

and Artificial Intelligence, Q. Rev. Biol. 1 (1975) 211. doi:10.1086/418447.

[26] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, et al., Molecular classification of cancer:

class discovery and class prediction by gene expression monitoring., Science. 286 (1999) 531–537.

doi:10.1126/science.286.5439.531.

[27] B. Bioinformatics, T. Jirapech-Umpai, S. Aitken, Feature selection and classification for microarray data analysis:

Evolutionary methods for identifying predictive genes, (n.d.). doi:10.1186/1471-2105-6-148.

[28] a a Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, a Rosenwald, et al., Distinct types of diffuse large B-cell

lymphoma identified by gene expression profiling., Nature. 403 (2000) 503–11. doi:10.1038/35000501.

[29] S. Dudoit, J. Fridlyand, T.P. Speed, Comparison of Discrimination Methods for the Classification of Tumors Using Gene

Expression Data, J. Am. Stat. Assoc. 97 (2002) 77–87. doi:10.1198/016214502753479248.

[30] D. Singh, P.G. Febbo, K. Ross, D.G. Jackson, J. Manola, C. Ladd, et al., Gene expression correlates of clinical prostate

cancer behavior, Cancer Cell. 1 (2002) 203–209. doi:10.1016/S1535-6108(02)00030-2.

[31] G.J. Tortora, B. Derrickson, Principles of Anatomy and Physiology, 2014. doi:10.1016/S0031-9406(05)60992-3.

[32] DISEASES PICTURES, (2012). http://diseasespictures.com/wp-content/uploads/2012/07/Cytoplasm-5.jpg (accessed

December 21, 2015).

[33] A. Annunziato, DNA Packaging: Nucleosomes and Chromatin, Nat. Educ. 1 (2008) 26.

http://www.nature.com/scitable/topicpage/dna-packaging-nucleosomes-and-chromatin-310.

[34] B. Li, M. Carey, J.L. Workman, The Role of Chromatin during Transcription, Cell. 128 (2007) 707–719.

doi:10.1016/j.cell.2007.01.015.

[35] C. Mathé, M.-F. Sagot, T. Schiex, P. Rouzé, Current methods of gene prediction, their strengths and weaknesses.,

Nucleic Acids Res. 30 (2002) 4103–4117. doi:10.1093/nar/gkf543.

[36] M.B. Avison, Measuring Gene Expression, New York, 2008. doi:10.1086/586945.

[37] C.M. O’Connor, J.U. Adams, Essentials of Cell Biology, MA: NPG Education, Cambridge, 2010.

http://www.nature.com/scitable/ebooks/essentials-of-cell-biology-14749010.

[38] K. Kapur, Y. Xing, Z. Ouyang, W.H. Wong, Exon arrays provide accurate assessments of gene expression., Genome Biol.

8 (2007) R82. doi:10.1186/gb-2007-8-5-r82.

[39] T.C. Mockler, J.R. Ecker, Applications of DNA tiling arrays for whole-genome analysis, Genomics. 85 (2005) 1–15.

doi:10.1016/j.ygeno.2004.10.005.

[40] J.B. Fan, K.L. Gunderson, M. Bibikova, J.M. Yeakley, J. Chen, E. Wickham Garcia, et al., [3] Illumina Universal Bead

Arrays, Methods Enzymol. 410 (2006) 57–73. doi:10.1016/S0076-6879(06)10003-8.

[41] C.A. Harrington, C. Rosenow, J. Retief, Monitoring gene expression using DNA microarrays, Curr. Opin. Microbiol. 3

(2000) 285–291. doi:10.1016/S1369-5274(00)00091-6.

[42] G.D. Schuler, M.S. Boguski, E.A. Stewart, L.D. Stein, G. Gyapay, K. Rice, et al., A gene map of the human genome.,

Science. 274 (1996) 540–6. http://www.ncbi.nlm.nih.gov/pubmed/8849440 (accessed March 21, 2016).

[43] M.S. Boguski, T.M. Lowe, C.M. Tolstoshev, dbEST--database for “expressed sequence tags”., Nat. Genet. 4 (1993) 332–

3. doi:10.1038/ng0893-332.

180

[44] D.A. Benson, M.S. Boguski, D.J. Lipman, J. Ostell, GenBank., Nucleic Acids Res. 25 (1997) 1–6.

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=146400&tool=pmcentrez&rendertype=abstract (accessed

March 21, 2016).

[45] H. Ledford, The death of microarrays?, Nature. 455 (2008) 847–847. doi:10.1038/455847a.

[46] D.B. Allison, X. Cui, G.P. Page, M. Sabripour, Microarray data analysis: from disarray to consolidation and consensus,

Nat Rev Genet. 7 (2006) 55–65. doi:10.1038/nrg1749.

[47] V. Trevino, F. Falciani, H.A. Barrera-Saldaña, DNA microarrays: a powerful genomic tool for biomedical and clinical

research., Mol. Med. 13 (2007) 527–541. doi:10.2119/2006-00107.Trevino.

[48] N. Jiang, L.J. Leach, X. Hu, E. Potokina, T. Jia, A. Druka, et al., Methods for evaluating gene expression from Affymetrix

microarray datasets, BMC Bioinformatics. 9 (2008) 284. doi:10.1186/1471-2105-9-284.

[49] M.D. Robinson, T.P. Speed, A comparison of Affymetrix gene expression arrays., BMC Bioinformatics. 8 (2007) 449.

doi:10.1186/1471-2105-8-449.

[50] M.B. Miller, Y.-W. Tang, Basic concepts of microarrays and potential applications in clinical microbiology., Clin. Microbiol.

Rev. 22 (2009) 611–33. doi:10.1128/CMR.00019-09.

[51] W.H. Koch, Technology platforms for pharmacogenomic diagnostic assays., Nat. Rev. Drug Discov. 3 (2004) 749–761.

doi:10.1038/nrd1496.

[52] P. Baldi, G.W. Hatfield, DNA microarrays and gene expression: from experiments to data analysis and modeling,

Cambridge University Press, Cambridge, 2002.

[53] NHGRI, DNA Microarray Technology, Natl. Hum. Genome Res. Inst. (2015). https://www.genome.gov/10000533/dna-

microarray-technology/ (accessed March 16, 2017).

[54] F. Sanger, A.R. Coulson, A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase,

J. Mol. Biol. 94 (1975). doi:10.1016/0022-2836(75)90213-2.

[55] F. Sanger, S. Nicklen, a R. Coulson, DNA sequencing with chain-terminating inhibitors., Proc. Natl. Acad. Sci. U. S. A.

74 (1977) 5463–7. doi:10.1073/pnas.74.12.5463.

[56] L.M. Smith, J.Z. Sanders, R.J. Kaiser, P. Hughes, C. Dodd, C.R. Connell, et al., Fluorescence detection in automated

DNA sequence analysis., Nature. 321 (1986) 674–679. doi:10.1038/321674a0.

[57] J. Shendure, H. Ji, Next-generation DNA sequencing, Nat Biotechnol. 26 (2008) 1135–1145. doi:10.1038/nbt1486.

[58] M.L. Metzker, Sequencing technologies - the next generation., Nat. Rev. Genet. 11 (2010) 31–46. doi:10.1038/nrg2626.

[59] C.S. Pareek, R. Smoczynski, A. Tretyn, Sequencing technologies and genome sequencing, J. Appl. Genet. 52 (2011)

413–435. doi:10.1007/s13353-011-0057-x.

[60] O. Morozova, M.A. Marra, Applications of next-generation sequencing technologies in functional genomics, Genomics.

92 (2008) 255–264. doi:10.1016/j.ygeno.2008.07.001.

[61] How is genome sequencing done?, 454 Life Sci. (2016). http://www.454.com/downloads/news-events/how-genome-

sequencing-is-done_FINAL.pdf (accessed February 12, 2016).

[62] European Bioinformatics Institute, 454 sequencing | EMBL-EBI Train online, EBI Online Train. Course. (2012).

https://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-practical-course/what-next-generation-

dna-sequencing/454-seque (accessed March 3, 2017).

[63] S. Linnarsson, Recent advances in DNA sequencing methods - general principles of sample preparation, Exp. Cell Res.

316 (2010) 1339–1343. doi:10.1016/j.yexcr.2010.02.036.

[64] W.J. Ansorge, Next-generation DNA sequencing techniques, N. Biotechnol. 25 (2009) 195–203.

doi:10.1016/j.nbt.2008.12.009.

[65] E.H. Margulies, Next-Generation Sequencing Technologies, NHGRI Curr. Top. Genome Anal. . (2010) 1–37.

https://www.genome.gov/pages/research/intramuralresearch/dircalendar/currenttopicsingenomeanalysis2010/ctga201

0_lec05_color.pdf (accessed April 3, 2017).

[66] A. Valouev, J. Ichikawa, T. Tonthat, J. Stuart, S. Ranade, H. Peckham, et al., A high-resolution, nucleosome position

map of C. elegans reveals a lack of universal sequence-dictated positioning, Genome Res. 18 (2008) 1051–1063.

doi:10.1101/gr.076463.108.

[67] J. Shendure, G.J. Porreca, N.B. Reppas, X. Lin, J.P. McCutcheon, A.M. Rosenbaum, et al., Accurate multiplex polony

181

sequencing of an evolved bacterial genome., Science. 309 (2005) 1728–1732. doi:10.1126/science.1117389.

[68] P.J.A. Cock, C.J. Fields, N. Goto, M.L. Heuer, P.M. Rice, The Sanger FASTQ file format for sequences with quality scores,

and the Solexa/Illumina FASTQ variants, Nucleic Acids Res. 38 (2009) 1767–1771. doi:10.1093/nar/gkp1137.

[69] W.R. Pearson, D.J. Lipman, Improved tools for biological sequence comparison., Proc. Natl. Acad. Sci. U. S. A. 85 (1988)

2444–2448. doi:10.1073/pnas.85.8.2444.

[70] B. Ewing, L. Hillier, M. Wendl, P. Green, Base-calling of automated sequencer traces usingPhred. I. Accuracy assessment,

Genome Res. 8 (1998) 175–185. doi:10.1101/gr.8.3.175.

[71] B. Ewing, P. Green, Base-calling of automated sequencer traces using phred. II. Error probabilities, Genome Res. 8

(1998) 186–194. doi:10.1101/gr.8.3.175.

[72] S. Deorowicz, S. Grabowski, Compression of genomic sequences in FASTQ format., Bioinformatics. 27 (2011) 1–3.

doi:10.1093/bioinformatics/btr014.

[73] R.K. Patel, M. Jain, NGS QC toolkit: A toolkit for quality control of next generation sequencing data, PLoS One. 7 (2012).

doi:10.1371/journal.pone.0030619.

[74] L. Soreq, N. Salomonis, A. Guffanti, H. Bergman, Z. Israel, H. Soreq, Whole transcriptome RNA sequencing data from

blood leukocytes derived from Parkinson’s disease patients prior to and following deep brain stimulation treatment,

Genomics Data. 3 (2015) 57–60. doi:10.1016/j.gdata.2014.11.009.

[75] A. Mortazavi, B. a Williams, K. McCue, L. Schaeffer, B. Wold, Mapping and quantifying mammalian transcriptomes by

RNA-Seq., Nat. Methods. 5 (2008) 621–628. doi:10.1038/nmeth.1226.

[76] J.H. Malone, B. Oliver, Microarrays, deep sequencing and the true measure of the transcriptome., BMC Biol. 9 (2011)

34. doi:10.1186/1741-7007-9-34.

[77] I. Nookaew, M. Papini, N. Pornputtapong, G. Scalcinati, L. Fagerberg, M. Uhlén, et al., A comprehensive comparison of

RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with

microarrays: A case study in Saccharomyces cerevisiae, Nucleic Acids Res. 40 (2012) 10084–10097.

doi:10.1093/nar/gks804.

[78] J.R. Bradford, Y. Hey, T. Yates, Y. Li, S.D. Pepper, C.J. Miller, A comparison of massively parallel nucleotide sequencing

with oligonucleotide microarrays for global transcription profiling., BMC Genomics. 11 (2010) 282. doi:10.1186/1471-

2164-11-282.

[79] N. Raghavachari, J. Barb, Y. Yang, P. Liu, K. Woodhouse, D. Levy, et al., A systematic comparison and evaluation of

high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell

disease., BMC Med. Genomics. 5 (2012) 28. doi:10.1186/1755-8794-5-28.

[80] S. Zhao, W.P. Fung-Leung, A. Bittner, K. Ngo, X. Liu, Comparison of RNA-Seq and microarray in transcriptome profiling

of activated T cells, PLoS One. 9 (2014). doi:10.1371/journal.pone.0078644.

[81] S.B. Montgomery, M. Sammeth, M. Gutierrez-Arcelus, R.P. Lach, C. Ingle, J. Nisbett, et al., Transcriptome genetics using

second generation sequencing in a Caucasian population., Nature. 464 (2010) 773–7. doi:10.1038/nature08903.

[82] D. O’Neil, H. Glowatz, M. Schlumpberge, Ribosomal RNA depletion for efficient use of RNA-seq capacity, Curr. Protoc.

Mol. Biol. (2013). doi:10.1002/0471142727.mb0419s103.

[83] W. Zhao, X. He, K.A. Hoadley, J.S. Parker, D.N. Hayes, C.M. Perou, Comparison of RNA-Seq by poly (A) capture,

ribosomal RNA depletion, and DNA microarray for expression profiling., BMC Genomics. 15 (2014) 419.

doi:10.1186/1471-2164-15-419.

[84] S. He, O. Wurtzel, K. Singh, J.L. Froula, S. Yilmaz, S.G. Tringe, et al., Validation of two ribosomal RNA removal methods

for microbial metatranscriptomics., Nat. Methods. 7 (2010) 807–12. doi:10.1038/nmeth.1507.

[85] S.E. V Linsen, E. de Wit, G. Janssens, S. Heater, L. Chapman, R.K. Parkin, et al., Limitations and possibilities of small

RNA digital gene expression profiling, Nat Meth. 6 (2009) 474–476. http://dx.doi.org/10.1038/nmeth0709-474.

[86] K.R. Kukurba, S.B. Montgomery, RNA Sequencing and Analysis., Cold Spring Harb. Protoc. 2015 (2015) 951–69.

doi:10.1101/pdb.top084970.

[87] L. Li, L. Cheng, G. Jiang, A. Zhou, Biostatistics Challenges and Strategies for Differential Transcriptome Analysis from

Microarray to Deep Sequencing in Statistics, Ann. Biometrics Biostat. 2 (2015).

https://www.jscimedcentral.com/Biometrics/biometrics-2-1014.pdf (accessed April 17, 2017).

182

[88] S. Tabakhi, A. Najafi, R. Ranjbar, P. Moradi, Gene selection for microarray data classification using a novel ant colony

optimization, Neurocomputing. 168 (2015) 1024–1036. doi:10.1016/j.neucom.2015.05.022.

[89] F. Ozsolak, P.M. Milos, RNA sequencing: advances, challenges and opportunities., Nat. Rev. Genet. 12 (2011) 87–98.

doi:10.1038/nrg2934.

[90] L. López-Kleine, C. González-Prieto, Challenges Analyzing RNA-Seq Gene Expression Data, Open J. Stat. 6 (2016) 628–

636. doi:10.4236/ojs.2016.64053.

[91] M.K. Kerr, Design considerations for efficient and effective microarray studies, Biometrics. 59 (2003) 822–828.

[92] Y.H. Yang, T. Speed, Design issues for cDNA microarray experiments., Nat. Rev. Genet. 3 (2002) 579–588.

doi:10.1038/nrg863.

[93] D.B. Allison, G.L. Gadbury, M. Heo, J.R. Fernández, C.-K. Lee, T. a. Prolla, et al., A mixture model approach for the

analysis of microarray gene expression data, Comput. Stat. Data Anal. 39 (2002) 1–20. doi:10.1016/S0167-

9473(01)00046-9.

[94] P. Pavlidis, Q. Li, W.S. Noble, The effect of replication on gene expression microarray experiments, Bioinformatics. 19

(2003) 1620–1627. doi:10.1093/bioinformatics/btg227.

[95] K. Dobbin, R. Simon, Sample size determination in microarray experiments for class comparison and prognostic

classification, Biostatistics. 6 (2005) 27–38. doi:10.1093/biostatistics/kxh015.

[96] Z. Wu, A review of statistical methods for preprocessing oligonucleotide microarrays., Stat. Methods Med. Res. 18 (2009)

533–41. doi:10.1177/0962280209351924.

[97] K. Shakya, H.J. Ruskin, G. Kerr, M. Crane, J. Becker, Comparison of microarray preprocessing methods, in: Adv. Exp.

Med. Biol., 2010: pp. 139–147. doi:10.1007/978-1-4419-5913-3_16.

[98] J. Quackenbush, D. Dembélé, P. Kastner, Microarray data normalization and transformation, BMC Bioinformatics. 15

(2002) 14. doi:10.1038/ng1032.

[99] T. Park, S.-G. Yi, S.-H. Kang, S. Lee, Y.-S. Lee, R. Simon, Evaluation of normalization methods for microarray data.,

BMC Bioinformatics. 4 (2003) 33. doi:10.1186/1471-2105-4-33.

[100] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data.pdf, 1988. doi:10.1126/science.311.5762.765.

[101] B. Pontes, R. Giráldez, J.S. Aguilar-Ruiz, Biclustering on expression data: A review, J. Biomed. Inform. 57 (2015) 163–

180. doi:10.1016/j.jbi.2015.06.028.

[102] J.M. Claverie, Computational methods for the identification of differential and coordinated gene expression, Hum. Mol.

Genet. 8 (1999) 1821–1832. doi:10.1093/hmg/8.10.1821.

[103] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An efficient k-means clustering algorithm:

analysis and implementation, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 881–892.

doi:10.1109/TPAMI.2002.1017616.

[104] D. Dembéle, P. Kastner, Fuzzy C-means method for clustering microarray data, Bioinformatics. 19 (2003) 973–980.

doi:10.1093/bioinformatics/btg119.

[105] S.C. Johnson, Hierarchical clustering schemes, Psychometrika. 32 (1967) 241–254. doi:10.1007/BF02289588.

[106] F.D. Gibbons, F.P. Roth, Judging the quality of gene expression-based clustering methods using gene annotation,

Genome Res. 12 (2002) 1574–1581. doi:10.1101/gr.397002.

[107] T. Kohonen, Self-organized formation of topologically correct feature maps, Biol. Cybern. 43 (1982) 59–69.

doi:10.1007/BF00337288.

[108] C.D. Klose, Self-organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical

data, Comput. Geosci. 10 (2006) 265–277. doi:10.1007/s10596-006-9022-x.

[109] B. Abu-Jamous, R. Fa, A.K. Nandi, Integrative Cluster Analysis in Bioinformatics, John Wiley & Sons, Ltd, Chichester,

UK, 2015. doi:10.1002/9781118906545.

[110] J. Einbeck, L. Evers, K. Hinchliff, Data Compression and Regression Based on Local Principal Curves, in: Springer, Berlin,

Heidelberg, 2009: pp. 701–712. doi:10.1007/978-3-642-01044-6_64.

[111] V. Laparra, S. Jiménez, G. Camps-Valls, J. Malo, Nonlinearities and Adaptation of Color Vision from Sequential Principal

Curves Analysis, Neural Comput. 24 (2012) 2751–2788. doi:10.1162/NECO_a_00342.

[112] J. Einbeck, G. Tutz, L. Evers, Local principal curves, Stat. Comput. 15 (2005) 301–313. doi:10.1007/s11222-005-4073-

183

8.

[113] U. Ozertem, D. Erdogmus, Locally Defined Principal Curves and Surfaces, J. Mach. Learn. Res. 12 (2011) 1249–1286.

http://www.jmlr.org/papers/volume12/ozertem11a/ozertem11a.pdf (accessed April 23, 2017).

[114] B. Abu-Jamous, R. Fa, D.J. Roberts, A.K. Nandi, A. Naranuntarat, L. Wodicka, et al., Paradigm of Tunable Clustering

Using Binarization of Consensus Partition Matrices (Bi-CoPaM) for Gene Discovery, PLoS One. 8 (2013) e56432.

doi:10.1371/journal.pone.0056432.

[115] B. Abu-Jamous, R. Fa, D.J. Roberts, A.K. Nandi, Yeast gene CMR1/YDL156W is consistently co-expressed with genes

participating in DNA-metabolic processes in a variety of stringent clustering experiments, J. R. Soc. Interface. 10 (2013).

http://rsif.royalsocietypublishing.org/content/10/81/20120990 (accessed April 23, 2017).

[116] C. Liu, B. Abu-Jamous, E. Brattico, A. Nandi, Clustering consistency in neuroimaging data analysis, in: 2015 12th Int.

Conf. Fuzzy Syst. Knowl. Discov., IEEE, 2015: pp. 1118–1122. doi:10.1109/FSKD.2015.7382099.

[117] B. Abu-Jamous, R. Fa, D.J. Roberts, A.K. Nandi, Comprehensive analysis of multiple microarray datasets by binarization

of consensus partition matrix, in: 2012 IEEE Int. Work. Mach. Learn. Signal Process., IEEE, 2012: pp. 1–6.

doi:10.1109/MLSP.2012.6349787.

[118] B. Abu-Jamous, R. Fa, D.J. Roberts, A.K. Nandi, UNCLES: method for the identification of genes differentially consistently

co-expressed in a specific subset of datasets., BMC Bioinformatics. 16 (2015) 184. doi:10.1186/s12859-015-0614-0.

[119] B. Abu-Jamous, R. Fa, A. Nandi, D. Roberts, Binarization of consensus partition matrix for ensemble clustering, in: Proc.

... Eur. Signal Process. Conf. (EUSIPCO)., [IEEE], 2012. http://ieeexplore.ieee.org/document/6333845/ (accessed May

6, 2017).

[120] B. Abu-Jamous, R. Fa, D.J. Roberts, A.K. Nandi, M-N scatter plots technique for evaluating varying-size clusters and

setting the parameters of Bi-CoPaM and Uncles methods, in: 2014 IEEE Int. Conf. Acoust. Speech Signal Process., IEEE,

2014: pp. 6726–6730. doi:10.1109/ICASSP.2014.6854902.

[121] N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, Am. Stat. 46 (1992) 175–185.

doi:10.1080/00031305.1992.10475879.

[122] T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, D. Haussler, Support vector machine classification

and validation of cancer tissue samples using microarray expression data, Bioinformatics. 16 (2000) 906–914.

doi:10.1093/bioinformatics/16.10.906.

[123] Z. Wang, Y. Wang, J. Xuan, Y. Dong, M. Bakay, Y. Feng, et al., Optimized multilayer perceptrons for molecular

classification and diagnosis using genomic data., Bioinformatics. 22 (2006) 755–761. doi:10.1093/bioinformatics/btk036.

[124] A.K. Jain, R.P.W. Duin, J. Mao, Statistical pattern recognition: a review, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000)

4–37. doi:10.1109/34.824819.

[125] A. Statnikov, C.F. Aliferis, I. Tsamardinos, D. Hardin, S. Levy, A comprehensive evaluation of multicategory classification

methods for microarray gene expression cancer diagnosis, Bioinformatics. 21 (2005) 631–643.

doi:10.1093/bioinformatics/bti033.

[126] C.J.C.J.C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discov. 2 (1998)

121–167. doi:10.1023/A:1009715923555.

[127] U. Maulik, Analysis of gene microarray data in a soft computing framework, Appl. Soft Comput. J. 11 (2011) 4152–4160.

doi:10.1016/j.asoc.2011.03.004.

[128] H. Xiong, S. Szedmak, J. Piater, Scalable, accurate image annotation with joint SVMs and output kernels,

Neurocomputing. 169 (2015) 205–214. doi:10.1016/j.neucom.2014.11.096.

[129] S. Yin, J. Yin, Tuning kernel parameters for SVM based on expected square distance ratio, Inf. Sci. (Ny). 370 (2016)

92–102. doi:10.1016/j.ins.2016.07.047.

[130] N. Cristianini, J. Shawe-Taylor, An introduction to support Vector Machines: and other kernel-based learning methods,

(1999). http://dl.acm.org/citation.cfm?id=345662 (accessed May 29, 2016).

[131] S. Haykin, Neural networks-A comprehensive foundation, New York IEEE Press. Herrmann, M., Bauer, H.-U., Der, R.

psychology (1994) pp107-116. doi:10.1017/S0269888998214044.

[132] W.S. McCulloch, W.H. Pitts, A logical calculus of ideas imminent in nervous activity, Bull. Math. Biophys. 5 (1943) 115–

133. doi:10.1007/BF02478259.

184

[133] K.J. Hunt, D. Sbarbaro, R. Zbikowski, P.J. Gawthrop, Neural networks for control systems-A survey, Automatica. 28

(1992) 1083–1112. doi:10.1016/0005-1098(92)90053-I.

[134] S.S. Haykin, Neural Networks and Learning Machines, 3rd ed., Pearson, New Jersey, 2009.

https://books.google.co.uk/books?id=KCwWOAAACAAJ.

[135] S. Osowski, K. Siwek, T. Markiewicz, MLP and SVM networks–a comparative study, Proc. 6th Nord. Signal Process. Symp.

2004 (2004) 37–40.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.6753&rep=rep1&type=pdf.

[136] A. Blumer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth, Learnability and the Vapnik-Chervonenkis dimension, J. ACM.

36 (1989) 929–965. doi:10.1145/76359.76371.

[137] I.S. Isa, Z. Saad, S. Omar, M.K. Osman, K.A. Ahmad, H.A.M. Sakim, Suitable MLP network activation functions for breast

cancer and thyroid disease detection, in: Proc. - 2nd Int. Conf. Comput. Intell. Model. Simulation, CIMSim 2010, 2010:

pp. 39–44. doi:10.1109/CIMSiM.2010.93.

[138] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature. 323 (1986)

533–536. doi:10.1038/323533a0.

[139] L. Bottou, Stochastic Gradient Learning in Neural Networks, Proc. Neuro-Nımes. 91 (1991).

[140] M.J.D. Powell, Restart procedures for the conjugate gradient method, Math. Program. 12 (1977) 241–254.

doi:10.1007/BF01593790.

[141] F.D. Foresee, M.T. Hagan, Gauss-Newton approximation to Bayesian regularization, Proc. 1997 Int. Jt. Conf. Neural

Networks. (1997) 1930–1935. doi:10.1109/ICNN.1997.614194.

[142] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: The RPROP algorithm, in: IEEE

Int. Conf. Neural Networks - Conf. Proc., 1993: pp. 586–591. doi:10.1109/ICNN.1993.298623.

[143] M.F. Moller, A Scaled Conjugate-Gradient Algorithm for Fast Supervised Learning, Neural Networks. 6 (1993) 525–533.

doi:Doi 10.1016/S0893-6080(05)80056-5.

[144] M.T. Hagan, M.B. Menhaj, Training Feedforward Networks with the Marquardt Algorithm, IEEE Trans. Neural Networks.

5 (1994) 989–993. doi:10.1109/72.329697.

[145] T.R. Shultz, S.E. Fahlman, S. Craw, P. Andritsos, P. Tsaparas, R. Silva, et al., Curse of Dimensionality, in: Encycl. Mach.

Learn., Springer US, Boston, MA, 2011: pp. 257–258. doi:10.1007/978-0-387-30164-8_192.

[146] Y. Saeys, I. Inza, P. Larranaga, A review of feature selection techniques in bioinformatics, Bioinformatics. 23 (2007)

2507–2517. doi:10.1093/bioinformatics/btm344.

[147] A.L. Blum, P. Langley, Selection of relevant features and examples in machine learning, Artif. Intell. 97 (1997) 245–271.

doi:10.1016/S0004-3702(97)00063-5.

[148] Y.Q. Zhang, J.C. Rajapakse, Machine Learning in Bioinformatics, John Wiley & Sons, Inc, New Jersey, 2008.

doi:10.1002/9780470397428.

[149] I. Inza, B. Sierra, R. Blanco, Gene selection by sequential search wrapper approaches in microarray cancer class

prediction, J. Intell. Fuzzy Syst. 12 (2002) 25–33.

[150] I. Inza, P. Larrañaga, R. Blanco, A.J. Cerrolaza, Filter versus wrapper gene selection approaches in DNA microarray

domains, Artif. Intell. Med. 31 (2004) 91–103. doi:10.1016/j.artmed.2004.01.007.

[151] R. Ruiz, J.C. Riquelme, J.S. Aguilar-Ruiz, Incremental wrapper-based gene selection from microarray data for cancer

classification, Pattern Recognit. 39 (2006) 2383–2392. doi:10.1016/j.patcog.2005.11.001.

[152] I. Guyon, S. Gunn, M. Nikravesh, L.A. Zadeh, eds., Feature Extraction: Foundations and Applications, Springer, Berlin,

2006.

[153] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, A review of feature selection methods on synthetic data,

Knowl. Inf. Syst. 34 (2012) 483–519. doi:10.1007/s10115-012-0487-8.

[154] S. Li, X. Wu, M. Tan, Gene selection using hybrid particle swarm optimization and genetic algorithm, Soft Comput. 12

(2008) 1039–1048. doi:10.1007/s00500-007-0272-x.

[155] B. Sahu, D. Mishra, A novel feature selection algorithm using particle swarm optimization for cancer microarray data,

in: Procedia Eng., 2012: pp. 27–31. doi:10.1016/j.proeng.2012.06.005.

[156] G. Chandrashekar, F. Sahin, A survey on feature selection methods, Comput. Electr. Eng. 40 (2014) 16–28.

185

doi:10.1016/j.compeleceng.2013.11.024.

[157] J.R. Cano, F. Herrera, M. Lozano, Using evolutionary algorithms as instance selection for data reduction in KDD: an

experimental study, IEEE Trans. Evol. Comput. 7 (2003) 561–575. doi:10.1109/TEVC.2003.819265.

[158] C. Garcia-Osorio, A. de Haro-Garcia, N. Garcia-Pedrajas, Democratic instance selection: A linear complexity instance

selection algorithm based on classifier ensemble concepts, Artif. Intell. 174 (2010) 410–441.

doi:10.1016/j.artint.2010.01.001.

[159] K.A. Ross, C.S. Jensen, R. Snodgrass, C.E. Dyreson, C.S. Jensen, R. Snodgrass, et al., Cross-Validation, in: Encycl.

Database Syst., Springer US, Boston, MA, 2009: pp. 532–538. doi:10.1007/978-0-387-39940-9_565.

[160] H.M. Nguyen, I. Couckuyt, L. Knockaert, T. Dhaene, D. Gorissen, Y. Saeys, An alternative approach to avoid overfitting

for surrogate models, in: Proc. 2011 Winter Simul. Conf., IEEE, 2011: pp. 2760–2771. doi:10.1109/WSC.2011.6147981.

[161] Yi Liu, T. Khoshgoftaar, Reducing overfitting in genetic programming models for software quality classification, in: Eighth

IEEE Int. Symp. High Assur. Syst. Eng. 2004. Proceedings., IEEE, n.d.: pp. 56–65. doi:10.1109/HASE.2004.1281730.

[162] D.; Nee, Common Pitfalls in Machine Learning, (2015). http://danielnee.com/2015/01/common-pitfalls-in-machine-

learning/ (accessed May 21, 2017).

[163] Y. Zhang, Y. Yang, Cross-validation for selecting a model selection procedure, J. Econom. 187 (2015) 95–112.

doi:10.1016/j.jeconom.2015.02.006.

[164] S. Yadav, S. Shukla, Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality

Classification, in: 2016 IEEE 6th Int. Conf. Adv. Comput., IEEE, 2016: pp. 78–83. doi:10.1109/IACC.2016.25.

[165] A. Rahideh, M.H. Shaheed, Cancer classification using clustering based gene selection and artificial neural networks, in:

2nd Int. Conf. Control. Instrum. Autom., IEEE, 2011: pp. 1175–1180. doi:10.1109/ICCIAutom.2011.6356828.

[166] J. Kennedy, R. Eberhart, Particle swarm optimization, Proc. ICNN’95 - Int. Conf. Neural Networks. 4 (1995) 1942–1948.

doi:10.1109/ICNN.1995.488968.

[167] R.L. Haupt, S.E. Haupt, Practical Genetic Algorithms, 2nd Editio, John Wiley & Sons, Inc, New Jersey, 2004.

[168] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1st ed., Boston, MA, USA, 1989.

doi:10.1007/s10589-009-9261-6.

[169] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press Cambridge, Massachusetts, 1996.

[170] J. Kennedy, R.C. Eberhart, Y. Shi, Swarm Intelligence, Morgan Kaufmann Publishers, San Francisco, 2001.

[171] M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space,

IEEE Trans. Evol. Comput. 6 (2002) 58–73. doi:10.1109/4235.985692.

[172] I. Fister, X.-S. Yang, D. Fister, Cuckoo Search and Firefly Algorithm: Theory and Applications, in: X.-S. Yang (Ed.),

Springer International Publishing, Cham, 2014: pp. 49–62. doi:10.1007/978-3-319-02141-6_3.

[173] H. Kahramanli, A Modified Cuckoo Optimization Algorithm for Engineering Optimization, Int. J. Futur. Comput. Commun.

1 (2012) 199–201. doi:10.7763/IJFCC.2012.V1.52.

[174] V. Elyasigomari, M.S. Mirjafari, H.R.C. Screen, M.H. Shaheed, Cancer classification using a novel gene selection approach

by means of shuffling based on data clustering with optimization, Appl. Soft Comput. 35 (2015) 43–51.

doi:10.1016/j.asoc.2015.06.015.

[175] S. Wang, D. Li, X. Song, Y. Wei, H. Li, A feature selection method based on improved fisher’s discriminant ratio for text

sentiment classification, Expert Syst. Appl. 38 (2011) 8696–8702. doi:10.1016/j.eswa.2011.01.077.

[176] M.-W. Mak, S.-Y. Kung, Fusion of feature selection methods for pairwise scoring SVM, Neurocomputing. 71 (2008)

3104–3113. doi:10.1016/j.neucom.2008.04.024.

[177] V.N. Vapnik, An overview of statistical learning theory., IEEE Trans. Neural Netw. 10 (1999) 988–99.

doi:10.1109/72.788640.

[178] V. Cherkassky, The nature of statistical learning theory~., IEEE Trans. Neural Netw. 8 (1997) 1564.

doi:10.1109/TNN.1997.641482.

[179] Q. Shen, W.-M. Shi, W. Kong, B.-X. Ye, A combination of modified particle swarm optimization algorithm and support

vector machine for gene selection and tumor classification., Talanta. 71 (2007) 1679–1683.

doi:10.1016/j.talanta.2006.07.047.

[180] K. Levenberg, A method for the solution of certain non-linear problems in least squares, Q. Appl. Math. 2 (1944) 164–

186

168.

[181] R. Cordeiro De Amorim, B. Mirkin, Minkowski metric, feature weighting and anomalous cluster initializing in K-Means

clustering, Pattern Recognit. 45 (2012) 1061–1075. doi:10.1016/j.patcog.2011.08.012.

[182] J. Macqueen, Some methods for classification and analysis of multivariate observations, Proc. Fifth Berkeley Symp. Math.

Stat. Probab. 1 (1967) 281–297. doi:citeulike-article-id:6083430.

[183] M.K. Gould, J. Fletcher, M.D. Iannettoni, W.R. Lynch, D.E. Midthun, D.P. Naidich, et al., Evaluation of patients with

pulmonary nodules: When is it lung cancer? ACCP evidence-based clinical practice guidelines (2nd edition), Chest. 132

(2007). doi:10.1378/chest.07-1353.

[184] B. Chandra, K. V. Naresh Babu, Classification of gene expression data using Spiking Wavelet Radial Basis Neural Network,

Expert Syst. Appl. 41 (2014) 1326–1330. doi:10.1016/j.eswa.2013.08.030.

[185] T. Nguyen, A. Khosravi, D. Creighton, S. Nahavandi, Hidden Markov models for cancer classification using gene

expression profiles, Inf. Sci. (Ny). 316 (2015) 293–307. doi:10.1016/j.ins.2015.04.012.

[186] R.K. Sivagaminathan, S. Ramakrishnan, A hybrid approach for feature subset selection using neural networks and ant

colony optimization, Expert Syst. Appl. 33 (2007) 49–60. doi:10.1016/j.eswa.2006.04.010.

[187] J. Jaeger, R. Sengupta, W.L. Ruzzo, Improved gene selection for classification of microarrays., Pac. Symp. Biocomput.

64 (2003) 53–64.

[188] S.-B. Cho, H.-H. Won, Machine learning in DNA microarray analysis for cancer classification, Proc. First Asia-Pacific

Bioinforma. Conf. Bioinforma. 2003-Volume 19. (2003) 189–198.

[189] C.P. Lee, W.S. Lin, Y.M. Chen, B.J. Kuo, Gene selection and sample classification on microarray data based on adaptive

genetic algorithm/k-nearest neighbor method, Expert Syst. Appl. 38 (2011) 4661–4667.

doi:10.1016/j.eswa.2010.07.053.

[190] Y. Peng, W. Li, Y. Liu, A Hybrid Approach for Biomarker Discovery from Microarray Gene Expression Data for Cancer

Classifi cation, Cancer Inform. 2 (2006) 301–311.

[191] Y. Liu, U. Aickelin, J. Feyereisl, L.G. Durrant, Wavelet feature extraction and genetic algorithm for biomarker detection

in colorectal cancer data, Knowledge-Based Syst. 37 (2013) 502–514. doi:10.1016/j.knosys.2012.09.011.

[192] O.H. Fang, N. Mustapha, M.N. Sulaiman, Integrative Gene Selection for Classification of Microarray Data, Comput. Inf.

Sci. 4 (2011). www.ccsenet.org/cis (accessed September 3, 2016).

[193] H. Peng, F. Long, C. Ding, Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance,

and Min-Redundancy, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005) 1226–1238. doi:10.1109/TPAMI.2005.159.

[194] M. Richeldi, M. Rossotto, Machine Learning: ECML-95: 8th European Conference on Machine Learning Heraclion, Crete,

Greece, April 25--27, 1995 Proceedings, in: N. Lavrac, S. Wrobel (Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg,

1995: pp. 335–338. doi:10.1007/3-540-59286-5_81.

[195] B.S. Chlebus, S.H. Nguyen, Rough Sets and Current Trends in Computing: First International Conference, RSCTC’98

Warsaw, Poland, June 22--26, 1998 Proceedings, in: L. Polkowski, A. Skowron (Eds.), Springer Berlin Heidelberg, Berlin,

Heidelberg, 1998: pp. 537–544. doi:10.1007/3-540-69115-4_74.

[196] A. Tillander, Effect of data discretization on the classification accuracy in a high-dimensional framework, Int. J. Intell.

Syst. 27 (2012) 355–374. doi:10.1002/int.21527.

[197] M. Elloumi, A.Y. Zomaya, Biological Knowledge Discovery Handbook: Preprocessing, Mining and Postprocessing of

Biological Data, (2013). http://dl.acm.org/citation.cfm?id=2613615 (accessed May 17, 2016).

[198] C.A. Gallo, R.L. Cecchini, J.A. Carballido, S. Micheletto, I. Ponzoni, Discretization of gene expression data revised,

Briefings Bioinforma. . (2015). doi:10.1093/bib/bbv074.

[199] W. Li, Y. Yang, How Many Genes Are Needed for a Discriminant Microarray Data Analysis ?, Methods Microarray Data

Anal. (2001) 8. http://arxiv.org/abs/physics/0104029.

[200] T.M. Cover, J.A. Thomas, Entropy, relative entropy and mutual information, 1991. doi:10.1002/047174882X.ch2.

[201] L. Li, W. Jiang, X. Li, K.L. Moser, Z. Guo, L. Du, et al., A robust hybrid between genetic algorithm and support vector

machine for extracting an optimal feature gene subset, Genomics. 85 (2005) 16–23. doi:10.1016/j.ygeno.2004.09.007.

[202] A.Y. Ng, Preventing Overfitting of Cross-Validation Data, in: ICML ’97 Proc. Fourteenth Int. Conf. Mach. Learn., 1997:

pp. 245–253. doi:10.1007/s13398-014-0173-7.2.

187

[203] Zong Woo Geem, Joong Hoon Kim, G.V. Loganathan, A New Heuristic Optimization Algorithm: Harmony Search,

Simulation. 76 (2001) 60–68. doi:10.1177/003754970107600201.

[204] Y. Wang, Y. Liu, L. Feng, X. Zhu, Novel feature selection method based on harmony search for email classification,

Knowledge-Based Syst. 73 (2015) 311–323. doi:10.1016/j.knosys.2014.10.013.

[205] Z.W. Geem, Novel derivative of harmony search algorithm for discrete design variables, Appl. Math. Comput. 199 (2008)

223–230. doi:10.1016/j.amc.2007.09.049.

[206] E. Valian, S. Tavakoli, S. Mohanna, An intelligent global harmony search approach to continuous optimization problems,

Appl. Math. Comput. 232 (2014) 670–684. doi:10.1016/j.amc.2014.01.086.

[207] O.M. Alia, R. Mandava, D. Ramachandram, M.E. Aziz, Harmony search-based cluster initialization for fuzzy c-means

segmentation of MR images, in: TENCON 2009 - 2009 IEEE Reg. 10 Conf., IEEE, 2009: pp. 1–6.

doi:10.1109/TENCON.2009.5396049.

[208] S.S. Shreem, S. Abdullah, M.Z.A. Nazri, Hybridising harmony search with a Markov blanket for gene selection problems,

Inf. Sci. (Ny). 258 (2014) 108–121. doi:10.1016/j.ins.2013.10.012.

[209] M. Hadwan, M. Ayob, N.R. Sabar, R. Qu, A harmony search algorithm for nurse rostering problems, Inf. Sci. (Ny). 233

(2013) 126–140. doi:10.1016/j.ins.2012.12.025.

[210] J.A. Magee, T. Araki, S. Patil, T. Ehrig, L. True, P.A. Humphrey, et al., Expression profiling reveals hepsin overexpression

in prostate cancer, Cancer Res. 61 (2001) 5692–5696.

[211] O. Klezovitch, J. Chevillet, J. Mirosevich, R.L. Roberts, R.J. Matusik, V. Vasioukhin, Hepsin promotes prostate cancer

progression and metastasis, Cancer Cell. 6 (2004) 185–195. doi:10.1016/j.ccr.2004.07.008.

[212] W.M. Schmidt, M. Kalipciyan, E. Dornstauder, B. Rizovski, G.G. Steger, R. Sedivy, et al., Dissecting progressive stages

of 5-fluorouracil resistancein vitro using RNA expression profiling, Int. J. Cancer. 112 (2004) 200–212.

doi:10.1002/ijc.20401.

[213] Y. Yap, X. Zhang, M. Ling, X. Wang, Y. Wong, A. Danchin, Classification between normal and tumor tissues based on

the pair-wise gene expression ratio, BMC Cancer. 72 (2004). doi:10.1186/1471-2407-4-72.

[214] E. Glaab, J. Bacardit, J.M. Garibaldi, N. Krasnogor, I. Plaza-Menacho, Using Rule-Based Machine Learning for Candidate

Disease Gene Prioritization and Sample Classification of Cancer Gene Expression Data, PLoS One. 7 (2012) e39932.

doi:10.1371/journal.pone.0039932.

[215] E.J. van der Gaag, M.-T. Leccia, S.K. Dekker, N.L. Jalbert, D.M. Amodeo, H. Randolph Byers, Role of Zyxin in Differential

Cell Spreading and Proliferation of Melanoma Cells and Melanocytes, J. Invest. Dermatol. 118 (2002) 246–254.

doi:10.1046/j.0022-202x.2001.01657.x.

[216] D. V Nguyen, D.M. Rocke, Tumor classification by partial least squares using microarray gene expression data.,

Bioinformatics. 18 (2002) 39–50. http://www.ncbi.nlm.nih.gov/pubmed/11836210 (accessed June 11, 2017).

[217] Y. Wang, I. V. Tetko, M.A. Hall, E. Frank, A. Facius, K.F.X. Mayer, et al., Gene selection from microarray data for cancer

classification—a machine learning approach, Comput. Biol. Chem. 29 (2005) 37–46.

doi:10.1016/j.compbiolchem.2004.11.001.

[218] J. Li, L. Wong, Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging

patterns., Bioinformatics. 18 (2002) 725–34. http://www.ncbi.nlm.nih.gov/pubmed/12050069 (accessed June 11,

2017).

[219] P. Zhou, N.B. Levy, H. Xie, L. Qian, C.-Y.G. Lee, R.D. Gascoyne, et al., MCL1 transgenic mice exhibit a high incidence of

B-cell lymphoma manifested as a spectrum of histologic subtypes, Blood. 97 (2001) 3902–3909.

[220] Y. Kambayashi, M. Mohania, W. Wöss, Data Warehousing and Knowledge Discovery : 6th International Conference,

DaWaK 2004, Zaragoza, Spain, September 1-3, 2004. Proceedings, Springer-Verlag Berlin Heidelberg, 2004.

https://books.google.co.uk/books?id=VdXzBwAAQBAJ&pg=PA284&lpg=PA284&dq=GENE3968X&source=bl&ots=5WO

aVw_6ay&sig=sf2OLVxLDBKhSdFJ9ZlGbpPSobU&hl=en&sa=X&ved=0ahUKEwi42_3-

mLbUAhXFLsAKHSenAvAQ6AEIMTAD#v=onepage&q=GENE3968X&f=false (accessed June 11, 2017).

[221] T. Matsuo, K. Kuriyama, Y. Miyazaki, S. Yoshida, M. Tomonaga, N. Emi, et al., The percentage of myeloperoxidase-

positive blast cells is a strong independent prognostic factor in acute myeloid leukemia, even in the patients with normal

karyotype, Leukemia. 17 (2003) 1538–1543. doi:10.1038/sj.leu.2403010.

188

[222] R.F. Melhem, X.X. Zhu, N. Hailat, J.R. Strahler, S.M. Hanash, Characterization of the gene for a proliferation-related

phosphoprotein (oncoprotein 18) expressed in high amounts in acute leukemia, J. Biol. Chem. 266 (1991) 17747–17753.

[223] G. Roos, G. Brattsand, G. Landberg, Expression of Oncoprotein-18 in Human Leukemias and Lymphomas, 7 (1993).

[224] a Kumatori, K. Tanaka, N. Inamura, S. Sone, T. Ogura, T. Matsumoto, et al., Abnormally high expression of proteasomes

in human leukemic cells., Proc. Natl. Acad. Sci. U. S. A. 87 (1990) 7071–7075. doi:10.1073/pnas.87.18.7071.

[225] H. Katoh, K. Hiramoto, M. Negishi, Activation of Rac1 by RhoG regulates cell migration., J. Cell Sci. 119 (2006) 56–65.

doi:10.1242/jcs.02720.

[226] D. Yamazaki, S. Kurisu, T. Takenawa, Regulation of cancer cell motility through actin reorganization, Cancer Sci. 96

(2005) 379–386. doi:10.1111/j.1349-7006.2005.00062.x.

[227] Y. Li, B.F. Shen, C. Karanes, L. Sensenbrenner, B. Chen, Association between Lyn protein tyrosine kinase (p53/56lyn)

and the beta subunit of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors in a GM-CSF-

dependent human megakaryocytic leukemia cell line (M-07e)., J. Immunol. 155 (1995) 2165–2174.

[228] Y. Dai, M. Rahmani, S.J. Corey, P. Dent, S. Grant, A Bcr/Abl-independent, Lyn-dependent Form of Imatinib Mesylate

(STI-571) Resistance Is Associated with Altered Expression of Bcl-2, J. Biol. Chem. . 279 (2004) 34227–34239.

doi:10.1074/jbc.M402290200.

[229] R. Tiedt, B.A. Bartholdy, G. Matthias, J.W. Newell, P. Matthias, The RING finger protein Siah-1 regulates the level of the

transcriptional coactivator OBF-1, EMBO J. 20 (2001) 4143–4152. doi:10.1093/emboj/20.15.4143.

[230] O.H. Krämer, R.H. Stauber, G. Bug, J. Hartkamp, S.K. Knauer, SIAH proteins: Critical roles in leukemogenesis, Leukemia.

(2012) 792–802. doi:10.1038/leu.2012.284.

[231] C. Heit, B.C. Jackson, M. McAndrews, M.W. Wright, D.C. Thompson, G. a Silverman, et al., Update of the human and

mouse SERPIN gene superfamily., Hum. Genomics. 7 (2013) 22. doi:10.1186/1479-7364-7-22.

[232] F. Yagasaki, D. Wakao, Y. Yokoyama, Y. Uchida, I. Murohashi, H. Kayano, et al., Fusion of ETV6 to fibroblast growth

factor receptor 3 in peripheral T-cell lymphoma with a t(4;12)(p16;p13) chromosomal translocation, Cancer Res. 61

(2001) 8371–8374.

[233] C.K. Mavis, S.R. Morey Kinney, B.A. Foster, A.R. Karpf, Expression level and DNA methylation status of glutathione-S-

transferase genes in normal murine prostate and TRAMP tumors, Prostate. 69 (2009) 1312–1324.

doi:10.1002/pros.20976.

[234] J.-W. Liu, J.-J. Shen, A. Tanzillo-Swarts, B. Bhatia, C.M. Maldonado, M.D. Person, et al., Annexin II expression is reduced

or lost in prostate cancer cells and its re-expression inhibits prostate cancer cell migration, Oncogene. 22 (2003) 1475–

1485. doi:10.1038/sj.onc.1206196.

[235] W. Xin, D.R. Rhodes, C. Ingold, A.M. Chinnaiyan, M.A. Rubin, Dysregulation of the annexin family protein family is

associated with prostate cancer progression., Am. J. Pathol. 162 (2003) 255–61. doi:10.1016/S0002-9440(10)63816-3.

[236] M. Igawa, D.B. Rukstalis, T. Tanabe, G.W. Chodak, High Levels of nm23 Expression Are Related to Cell Proliferation in

Human Prostate Cancer, Cancer Res. 54 (1994) 1313–1318.

[237] N. Konishi, S. Nakaoka, T. Tsuzuki, K. Matsumoto, Y. Kitahori, Y. Hiasa, et al., Expression of nm23-H1 and nm23-H2

proteins in prostate carcinoma., Jpn. J. Cancer Res. 84 (1993) 1050–4.

[238] K. Imberg-Kazdan, S. Ha, A. Greenfield, C.S. Poultney, R. Bonneau, S.K. Logan, et al., A genome-wide RNA interference

screen identifies new regulators of androgen receptor function in prostate cancer cells, Genome Res. 23 (2013) 581–

591. doi:10.1101/gr.144774.112.

[239] D. Sims, I. Sudbery, N.E. Ilott, A. Heger, C.P. Ponting, Sequencing depth and coverage: key considerations in genomic

analyses., Nat. Rev. Genet. 15 (2014) 121–32. doi:10.1038/nrg3642.

[240] D.A. Jaitin, E. Kenigsberg, H. Keren-Shaul, N. Elefant, F. Paul, I. Zaretsky, et al., Massively parallel single-cell RNA-seq

for marker-free decomposition of tissues into cell types., Science. 343 (2014) 776–9. doi:10.1126/science.1247651.

[241] M.K. Iyer, A.M. Chinnaiyan, C.A. Maher, ChimeraScan: A tool for identifying chimeric transcription in sequencing data,

Bioinformatics. 27 (2011) 2903–2904. doi:10.1093/bioinformatics/btr467.

[242] S. Tarazona, F. García-Alcalde, J. Dopazo, A. Ferrer, A. Conesa, Differential expression in RNA-seq: A matter of depth,

Genome Res. 21 (2011) 2213–2223. doi:10.1101/gr.124321.111.

[243] Y. Liu, J. Zhou, K.P. White, RNA-seq differential expression studies: More sequence or more replication?, Bioinformatics.

189

30 (2014) 301–304. doi:10.1093/bioinformatics/btt688.

[244] M.A. Busby, C. Stewart, C.A. Miller, K.R. Grzeda, G.T. Marth, Scotty: A web tool for designing RNA-Seq experiments to

measure differential gene expression, Bioinformatics. 29 (2013) 656–657. doi:10.1093/bioinformatics/btt015.

[245] S. Andrews, FastQC: A quality control tool for high throughput sequence data, Bioinformatics. (2010) 1. doi:citeulike-

article-id:11583827.

[246] X. Yang, D. Liu, F. Liu, J. Wu, J. Zou, X. Xiao, et al., HTQC: a fast quality control toolkit for Illumina sequencing data.,

BMC Bioinformatics. 14 (2013) 33. doi:10.1186/1471-2105-14-33.

[247] Hannon-Lab, FASTX-Toolkit, (2010). http://hannonlab.cshl.edu/fastx_toolkit/ (accessed February 1, 2016).

[248] M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal. 17 (2011)

10. doi:10.14806/ej.17.1.200.

[249] A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics. 30 (2014)

2114–2120. doi:10.1093/bioinformatics/btu170.

[250] E. Kopylova, L. Noé, H. Touzet, SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data,

Bioinformatics. 28 (2012) 3211–3217. doi:10.1093/bioinformatics/bts611.

[251] A. Oshlack, M.D. Robinson, M.D. Young, From RNA-seq reads to differential expression results., Genome Biol. 11 (2010)

220. doi:10.1186/gb-2010-11-12-220.

[252] A. Conesa, P. Madrigal, S. Tarazona, D. Gomez-Cabrero, A. Cervera, A. McPherson, et al., A survey of best practices for

RNA-seq data analysis, Genome Biol. 17 (2016) 13. doi:10.1186/s13059-016-0881-8.

[253] M. Kostadima, R. Loos, RNA-seq: transcriptome assembly and differential expression, EMBL-EBI. (2012).

https://www.ebi.ac.uk/training/online/sites/ebi.ac.uk.training.online/files/user/18/private/rnaseq_kostadima.pdf

(accessed June 7, 2017).

[254] Y. Xie, G. Wu, J. Tang, R. Luo, J. Patterson, S. Liu, et al., SOAPdenovo-Trans: De novo transcriptome assembly with

short RNA-Seq reads, Bioinformatics. 30 (2014) 1660–1666. doi:10.1093/bioinformatics/btu077.

[255] C. Trapnell, L. Pachter, S.L. Salzberg, TopHat: Discovering splice junctions with RNA-Seq, Bioinformatics. 25 (2009)

1105–1111. doi:10.1093/bioinformatics/btp120.

[256] M. Lawrence, W. Huber, H. Pag??s, P. Aboyoun, M. Carlson, R. Gentleman, et al., Software for Computing and

Annotating Genomic Ranges, PLoS Comput. Biol. 9 (2013). doi:10.1371/journal.pcbi.1003118.

[257] Y. Liao, G.K. Smyth, W. Shi, The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote, Nucleic

Acids Res. 41 (2013). doi:10.1093/nar/gkt214.

[258] N. Delhomme, I. Padioleau, E.E. Furlong, L.M. Steinmetz, easyRNASeq: a Bioconductor package for processing RNA-

Seq data, Bioinformatics. in press (2012) in press. doi:10.1093/bioinformatics/bts477.

[259] S. Anders, P. Pyl, W. Huber, HTSeq--A Python framework to work with high-throughput sequencing data, bioRxiv.

(2014).

[260] S. Anders, W. Huber, Differential expression analysis for sequence count data, Genome Biol. 11 (2010) R106.

doi:10.1186/gb-2010-11-10-r106.

[261] B.M. Bolstad, B.M. Bolstad, R. a Irizarry, R. a Irizarry, M. �Strand, M. �Strand, et al., A comparison of normalization

metholds for high density oligonucleotide array data based on variance and bias, Bioinformatics. 19 (2003) 185–193.

doi:10.1093/bioinformatics/19.2.185.

[262] J.H. Bullard, E. Purdom, K.D. Hansen, S. Dudoit, Evaluation of statistical methods for normalization and differential

expression in mRNA-Seq experiments., BMC Bioinformatics. 11 (2010) 94. doi:10.1186/1471-2105-11-94.

[263] M. Robinson, A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome

Biol. 11 (2010) R25. doi:10.1186/gb-2010-11-3-r25.

[264] C. Trapnell, B. a Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, et al., Transcript assembly and quantification

by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation., Nat. Biotechnol. 28 (2010)

511–515. doi:10.1038/nbt.1621.

[265] M.A. Dillies, A. Rau, J. Aubert, C. Hennequet-Antier, M. Jeanmougin, N. Servant, et al., A comprehensive evaluation of

normalization methods for Illumina high-throughput RNA sequencing data analysis, Brief. Bioinform. 14 (2013) 671–

683. doi:10.1093/bib/bbs046.

190

[266] M.D. Robinson, D.J. McCarthy, G.K. Smyth, edgeR: A Bioconductor package for differential expression analysis of digital

gene expression data, Bioinformatics. 26 (2010) 139–140. doi:10.1093/bioinformatics/btp616.

[267] J.C. Marioni, C.E. Mason, S.M. Mane, M. Stephens, Y. Gilad, RNA-seq: an assessment of technical reproducibility and

comparison with gene expression arrays., Genome Res. 18 (2008) 1509–17. doi:10.1101/gr.079558.108.

[268] L. Wang, Z. Feng, X. Wang, X. Wang, X. Zhang, DEGseq: an R package for identifying differentially expressed genes

from RNA-seq data., Bioinformatics. 26 (2010) 136–8. doi:10.1093/bioinformatics/btp612.

[269] U. Nagalakshmi, Z. Wang, K. Waern, C. Shou, D. Raha, M. Gerstein, et al., The transcriptional landscape of the yeast

genome defined by RNA sequencing., Science. 320 (2008) 1344–9. doi:10.1126/science.1158441.

[270] M.D. Robinson, G.K. Smyth, Moderated statistical tests for assessing differences in tag abundance., Bioinformatics. 23

(2007) 2881–7. doi:10.1093/bioinformatics/btm453.

[271] Z. Fang, J.A. Martin, Z. Wang, Statistical methods for identifying differentially expressed genes in RNA-Seq experiments,

Cell Biosci. 2 (2012) 26. doi:10.1186/2045-3701-2-26.

[272] S. Anders, A. Reyes, W. Huber, Detecting differential usage of exons from RNA-seq data, Genome Res. 22 (2012) 2008–

2017. doi:10.1101/gr.133744.111.

[273] S. Zheng, L. Chen, A hierarchical Bayesian model for comparing transcriptomes at the individual transcript isoform level,

Nucleic Acids Res. 37 (2009). doi:10.1093/nar/gkp282.

[274] C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D.R. Kelley, et al., Differential gene and transcript expression analysis

of RNA-seq experiments with TopHat and Cufflinks., Nat. Protoc. 7 (2012) 562–78. doi:10.1038/nprot.2012.016.

[275] C. Trapnell, D.G. Hendrickson, M. Sauvageau, L. Goff, J.L. Rinn, L. Pachter, Differential analysis of gene regulation at

transcript resolution with RNA-seq., Nat. Biotechnol. 31 (2013) 46–53. doi:10.1038/nbt.2450.

[276] Y. Shi, H. Jiang, rSeqDiff: detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio

test, PLoS One. 8 (2013) e79448. doi:10.1371/journal.pone.0079448.

[277] Elena Daniela Aflorei, Application of a Drosophila melanogaster model to study Familial Isolated Pituitary Adenomas

syndrome pathogenesis in vivo, Queen Mary, University of London, 2016.

[278] M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, T.L. Madden, NCBI BLAST: a better web interface.,

Nucleic Acids Res. 36 (2008). doi:10.1093/nar/gkn201.

[279] M. Burrows; D. J. Wheeler, A block-sorting lossless data compression algorithm, (1994).

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf.

[280] Z. Khan, J.S. Bloom, L. Kruglyak, M. Singh, A practical algorithm for finding maximal exact matches in large sequence

datasets using sparse suffix arrays, Bioinformatics. 25 (2009) 1609–1616. doi:10.1093/bioinformatics/btp275.

[281] A. Dobin, C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, et al., STAR: ultrafast universal RNA-seq aligner,

Bioinformatics. 29 (2013) 15–21. doi:10.1093/bioinformatics/bts635.

[282] P. Flicek, M.R. Amode, D. Barrell, K. Beal, K. Billis, S. Brent, et al., Ensembl 2014, Nucleic Acids Res. 42 (2014).

doi:10.1093/nar/gkt1196.

[283] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, et al., The Sequence Alignment/Map format and

SAMtools, Bioinformatics. 25 (2009) 2078–2079. doi:10.1093/bioinformatics/btp352.

[284] M. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2,

bioRxiv. (2014).

[285] R. a van den Berg, H.C.J. Hoefsloot, J. a Westerhuis, A.K. Smilde, M.J. van der Werf, Centering, scaling, and

transformations: improving the biological information content of metabolomics data., BMC Genomics. 7 (2006) 142.

doi:10.1186/1471-2164-7-142.

[286] S. Dudoit, Y.H. Yang, M.J. Callow, T.P. Speed, Statistical methods for identifying differentially expressed genes in

replicated cDNA microarray experiments, Stat. Sin. 12 (2002) 111–139. #.

[287] G. Dennis Jr, B.T. Sherman, D.A. Hosack, J. Yang, W. Gao, C.H. Lane, et al., DAVID: Database for Annotation,

Visualization, and Integrated Discovery, Genome Biol. 4 (2003) P3. doi:10.1186/gb-2003-4-9-r60.

[288] J.E. Rebers, L.M. Riddiford, Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila

cuticle genes, J. Mol. Biol. 203 (1988) 411–423. doi:10.1016/0022-2836(88)90009-5.

[289] X. Guan, B.W. Middlebrooks, S. Alexander, S.A. Wasserman, Mutation of TweedleD, a member of an unconventional

191

cuticle protein family, alters body shape in Drosophila., Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 16794–9.

doi:10.1073/pnas.0607616103.

[290] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, M. Kanehisa, KEGG: Kyoto encyclopedia of genes and genomes,

Nucleic Acids Res. 27 (1999) 29–34. doi:10.1093/nar/27.1.29.

[291] W.R. Bishop, R.M. Bell, Functions of diacylglycerol in glycerolipid metabolism, signal transduction and cellular

transformation., Oncogene Res. 2 (1988) 205–18. http://www.ncbi.nlm.nih.gov/pubmed/3285300.

[292] C. Kappen, M.A. Mello, R.H. Finnell, J.M. Salbaum, Folate modulates Hox gene-controlled skeletal phenotypes, Genesis.

39 (2004) 155–166. doi:10.1002/gene.20036.

[293] C. Chang, C. Lin, LIBSVM : A Library for Support Vector Machines, ACM Trans. Intell. Syst. Technol. 2 (2011) 1–39.

doi:10.1145/1961189.1961199.

