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Abstract 

This thesis presents an investigation into gene expression profiling, using microarray and 

next generation sequencing (NGS) datasets, in relation to multi-category diseases such as 

cancer. It has been established that if the sequence of a gene is mutated, it can result in the 

unscheduled production of protein, leading to cancer. However, identifying the molecular 

signature of different cancers amongst thousands of genes is complex. This thesis investigates 

tools that can aid the study of gene expression to infer useful information towards 

personalised medicine.  

For microarray data analysis, this study proposes two new techniques to increase the 

accuracy of cancer classification. In the first method, a novel optimisation algorithm, COA-GA, 

was developed by synchronising the Cuckoo Optimisation Algorithm and the Genetic Algorithm 

for data clustering in a shuffle setup, to choose the most informative genes for classification 

purposes. Support Vector Machine (SVM) and Multilayer Perceptron (MLP) artificial neural 

networks are utilised for the classification step. Results suggest this method can significantly 

increase classification accuracy compared to other methods.   

An additional method involving a two-stage gene selection process was developed. In this 

method, a subset of the most informative genes are first selected by the Minimum Redundancy 

Maximum Relevance (MRMR) method. In the second stage, optimisation algorithms are used 

in a wrapper setup with SVM to minimise the selected genes whilst maximising the accuracy 

of classification. A comparative performance assessment suggests that the proposed algorithm 

significantly outperforms other methods at selecting fewer genes that are highly relevant to 

the cancer type, while maintaining a high classification accuracy.  

In the case of NGS, a state-of-the-art pipeline for the analysis of RNA-Seq data is 

investigated to discover differentially expressed genes and differential exon usages between 

normal and AIP positive Drosophila datasets, which are produced in house at Queen Mary, 

University of London. Functional genomic of differentially expressed genes were examined 

and found to be relevant to the case study under investigation. Finally, after normalising the 

RNA-Seq data, machine learning approaches similar to those in microarray was successfully 

implemented for these datasets.  
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Chapter 1: Introduction 

 

 

 

 

1.1: Background 

A basic question in regulatory biology is ‘how is it possible that all humans can have a 

99.9% identical genome, but still be different?’ Each individual has a 100% identical genome 

in different organs, but each organ has a different shape and functionality.  The answer is 

that different cells types express a different set of genes through a phenomenon known as 

gene expression, in which the information from the DNA is transcribed to RNA, and then 

translated to proteins that form the cell shapes and their functionalities.  

Many studies have shown that if the sequence of a gene is mutated, it can result in an 

unscheduled production of protein, which can lead to diseases such as cancer [1]. 

Furthermore, recent research suggested that cancer could also form without any change 

happening in the underlying gene sequence itself, through epigenetic modifications such as 

histone modification and DNA methylation [2]. The invention of microarray technology paved 

the way to quantify the gene expressions of thousands of genes simultaneously. More 

recently, a more sophisticated technology known as Next Generation Sequencing (NGS) has 

improved gene expression quantification and allowed investigation of epigenetic modifications 

on a wide scale in genomes.  

Microarray technology can be used in a range of scientific fields and can contribute to the 

diagnoses of diseases. Although cancer is a complex disease that arises from multiple genetic 

factors, it is known that the level of gene expression could carry a signature for a disease. A 

vast majority of fatal diseases have a unique gene expression profile that can be observed 

using microarray technology. The main field that microarray gene expression is applied in is 

profiling cancerous tissue. Measuring the gene expression of diseased tissue enables 

researchers to understand tumours and discover possible markers for them.  For example, 
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some prognostic markers were discovered based on gene expression profiles by Sorlie et al 
[3] which are used for overall survival in breast cancer. 

Analyses of gene expression data produced by microarray technology can be classified into 

two different types; namely supervised and unsupervised learning (clustering). Clustering 

divides data sets into several groups such that the similarity within a group is greater than 

that among groups. Since copious amounts of gene expression data is produced with 

microarrays, it is useful to group genes such that genes with similar expression patterns are 

put into one cluster, where the genes within the cluster are known as co-expressed genes. 

Research suggests that genes in one cluster have related functions [4–6]. In machine learning, 

procedures that use annotated samples are referred to as supervised learning [7]. Therefore, 

in supervised learning, classes are predefined and the objective is to train a set of data to 

form a classifier for classification of future observations. 

Recently, microarray technology has been used to determine subtypes of certain cancers 

based on differences in the expression level of key genes [8–10]. This approach has become 

known as cancer classification, and provides detailed information on the genetic makeup of 

each individual cancer patient, thereby potentially improving the accuracy of treatment 

decisions made by doctors [11]. During microarray analysis, the number of genes is 

significantly higher than the number of samples [12,13] and classification with a high degree 

of accuracy is challenging, due to the phenomenon of the so called curse of dimensionality 

[14,15]. In order to overcome this problem, gene selection mechanisms have been introduced, 

by which only the most important genes are selected and used for classification purposes [16–

19]. There are several advantages to this process of minimising the number of genes and only 

selecting the meaningful genes that are more predictive during classification, and this will be 

explained in detail in chapter 3.  

Whilst microarray technology is widely used and has greatly contributed in gene expression 

research over the years, it does have its limitations, such as the noise produced during the 

experiments [20]. Therefore, over the last few years, new sequencing technologies have been 

developed including next generation sequencing (NGS) technology. The arrival of NGS 

technologies in the marketplace has changed the scientific perspective on basic, applied and 

clinical research. NGS technologies have the ability to produce millions of sequence reads in 

each run, which makes it possible to sequence the whole genome easily. As a result, it allows 

large-scale evolutionary and comparative studies to be performed. NGS technologies have 

been used in different projects, such as RNA expression profiling, mutation discovery, defining 

DNA-protein interaction, and whole-genome sequencing [20]. 
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RNA expression profiling, which utilises NGS technology, can provide gene expression 

quantification on a genome-wide scale, providing a tool to not only discover differentially 

expressed genes between conditions, but also one that enables researchers to investigate 

differentially expressed isoforms, and differential exon usage across different conditions. 

Furthermore, RNA-Seq data can be used to discover novel transcripts using statistical analysis 

[21].  

1.2: Motivations  

Over the last 20 years, there has been a revolution in biological sciences and technologies 

like microarray and NGS, which provide an overwhelming volume of data that requires 

computational tools to sift through this data to provide useful information for more informed 

treatment decisions. Most types of cancers are treatable if they can be detected at an early 

stage. The determination of cancer type and stage is also crucial when choosing an 

appropriate treatment. Therefore, the development of computational tools is an important 

topic, and more research is needed to make the most out of the available data.  

Although several methods have been proposed to increase the accuracy of classification 

[22,23], more research is still needed to propose new models that can further increase the 

prognosis and classification accuracy of diseases such as cancer. Achieving high classification 

accuracy is of the utmost importance for personalised medicine, as it would lead to more 

informed decisions by doctors and subsequently save patients’ lives. Since the invention of 

NGS and RNA-Seq, there have been numerous pipelines to investigate the analysis of such 

data. Nevertheless, due to the rapid development of statistical methods for RNA-Seq, the 

proposed pipelines have undergone several changes to improve the results. Hence, it is 

essential to provide a state-of-the-art pipeline to enhance scientific discoveries and their 

implementation into clinical practice.  

1.3: Aim and Objectives 

This thesis presents an investigation into the analysis of gene expression using microarray 

and next generation sequencing data for multi-category diseases like cancer, in order to create 

useful information towards personalised medicine. The objectives of this thesis are described 

below: 

 

• Explore different methods for analysing gene expression data   

• Incorporate machine learning techniques to cluster and classify gene expression data  
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• Assess optimisation-based algorithms for data clustering to enhance the accuracy of cancer 

classification 

• Investigate the impact of data clustering prior to gene selection on classification accuracy 

• Develop novel gene selection models to select the highly informative genes using 

microarray data 

• Identify differential gene expression and differential exon usage using RNA-Seq 

1.4: Contributions 

In this study, different approaches are adopted to improve prognosis and classification of 

multi-category diseases such as cancer using microarray and NGS data towards more 

personalised medicine. The main contributions of this investigation are as follows: 

 

• An innovative gene selection approach using the shuffle method prior to cancer 

classification is proposed. It is noted that in cancer classification using clustering based 

gene selection, changing the number of clusters results in the selection of different sets of 

genes due to the random initialisation of centroid protocol for clustering methods. This 

results in a variation in the accuracy of classification. In order to overcome this problem, 

the shuffle method is proposed, in which genes with a higher rate of repetition are selected 

after six runs of the clustering algorithm. 
 

• A novel optimisation algorithm, COA-GA, has been developed by integrating the Cuckoo 

Optimisation Algorithm (COA) [24] and the Genetic Algorithm (GA) [25] to enhance 

classification performance. The proposed algorithm (COA-GA) not only outperforms COA, 

GA and Particle Swarm Optimisation (PSO) at achieving a better classification performance, 

but also reaches a better minimum with only few iterations.  

 

• It is additionally confirmed that traditional clustering does not have any impact on gene 

selection and classification performance. However, optimisation based clustering is shown 

to enhance the accuracy of gene selection and classification. 

 

• The performances of two well-known classification methods, SVM and MLP, are assessed. 

To examine the performance of these two methods, different cancer datasets including 

leukaemia, prostate, and lymphoma were utilised in different setups. Higher classification 
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accuracy is observed in all cases, with the SVM classifier being compared to MLP when 

analysing gene expression datasets. 

 

• A novel optimisation algorithm, COA-HS, has been developed to enhance gene selection. 

This optimisation algorithm was then used in a two-stage gene selection method, MRMR-

COA-HS, in order to select a few genes that could provide high accuracy in cancer 

classification. Comparative performance assessment of the proposed method with other 

evolutionary algorithms, suggest that the proposed algorithm significantly outperforms 

other methods in selecting a lower number of genes, while maintaining the highest 

classification accuracy. The functions of all selected genes using this method were 

investigated further, and it was confirmed that the selected genes are biologically relevant 

to each type of cancer. 

 

• A state-of-the-art pipeline for RNA-Seq data is proposed. This pipeline was used to analyse 

a set of RNA-Seq data, which was produced at the Genome Centre of Queen Mary 

University. In the proposed pipeline, differential gene expression, and differential exon 

usage were investigated in detail. Furthermore, functional genomics of differentially 

expressed genes were investigated, and some key genes were identified for the case study 

under investigation that can be used as biomarkers. Finally, the application of data 

classification for RNA-Seq data was explored, and methods similar to those in microarray 

classification were successfully implemented. 

1.5: Outline of the Thesis 

Chapter 2 presents a review of recent developments. Initially, a brief overview of the 

biological aspects of the thesis such as gene expression phenomena is given. Then, it explores 

different types of microarray technologies like cDNA and oligonucleotide microarray. Different 

NGS technologies are then investigated, and a unique method for each technique is explained. 

At the end of the chapter, the techniques that incorporate NGS technology such as RNA-Seq 

are assessed.  

Chapter 3 describes the main steps required for microarray analysis, including pre-

processing, clustering, and classification. In this chapter, several clustering methods such as 

K-means, C-means, Hierarchical clustering, self-organising map, Bi-CoPaM and UNCLES are 

investigated. Then the most widely used classification methods such as SVM and MLP artificial 
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neural networks are briefly explained. Afterwards, the importance of gene selection before 

classification is investigated 

Chapter 4 concerns the effect of gene clustering prior to gene selection on the classification 

performance. Initially, the effects of traditional data clustering methods on the classification 

performance are investigated. Then, the effect of optimization based clustering algorithms on 

the performance of SVM and MLP classifiers is investigated and compared to conventional 

methods. 

Chapter 5 presents the development of a two-stage gene selection process, using MRMR 

and the COA-HS algorithm. In this chapter, the MRMR method is described first. Then the use 

of optimization algorithms for gene selection as well as the proposed objective function are 

explained. To this end, different optimization algorithms such as GA, PSO, COA, and HS are 

investigated. The use of the Leave-One-Out Cross-Validation (LOOCV) method to evaluate the 

performance of our proposed method is then explained.  

Chapter 6 is divided into two main sections. The first section describes the main steps 

required for RNA-Seq analysis, including experimental considerations in design, pre-processing 

and quality assessment, alignment, building a count table, and normalisation. Then the 

concept of differential expression at the gene and transcripts levels are examined, and some 

of the well-known software for such analyses are identified. In the second section of this 

chapter a state-of-the-art pipeline for RNA-Seq analysis is presented. In this chapter, RNA-

Seq data from AIP deficient Drosophila is used as the case study (6 samples). Initially, different 

pre-processing steps are explained in order to eliminate biological and technical noises that 

present in RNA-Seq data. Approaches used to create a count table after mapping the samples 

to a reference genome are then explained. Finally, downstream analysis and classification are 

explored. 

Chapter 7 consists of conclusions, discussion, and future work. 

1.6: Publications 

Publications extracted from this thesis are outlined below. 

• Elyasigomari, V., Mirjafari, M. J., Screen, H R C., and Shaheed, M H. (2015), Cancer 

classification using a novel gene selection approach by means of shuffling based on data 

clustering with optimization, Journal of Applied Soft Computing. 35(1), pp 43-51.  

• Elyasigomari, V., Lee, D., Shaheed, M H. (2017), Development of a two-stage gene 

selection method that incorporates a novel hybrid approach using the cuckoo optimization 
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algorithm and harmony search for cancer classification. Journal of Biomedical Informatics. 
67(1), pp 11-20. 

1.7: Utilised microarray datasets throughout this thesis 

In respect to cancer gene expression studies, there are several benchmark microarray data 

sets including leukaemia, lymphoma, and prostate cancer data sets which are also used in this 

research. Brief explanation on these datasets are given in following subsections.   

1.7.1: Leukaemia dataset 

This dataset was taken from a collection of leukaemia samples by Golub et al., (1999). In 

total 72 patients participated in their study. As a result, 72 samples were obtained from bone 

marrow (63 samples) or peripheral blood (9 samples) of these patients and the gene 

expression for these samples were measured using Affymetrix high-density oligonucleotide 

arrays (Affymetrix Hgu6800 chips) that contained 7129 genes. From 72 patients, 47 were 

associated with acute lymphoblastic leukaemia (ALL) and 25 were diagnosed with acute 

myeloblastic leukaemia (AML) [26].  

Although the original study was designed for leukaemia classification in the case of two 

class classification, the 47 samples from ALL could be further categorised into ALL B-CELL (38 

samples), ALL T-CELL (9 samples) which made it possible for some studies to use this dataset 

for multiclass classification. It is noted that this dataset has been used by many authors to 

test the accuracy of their techniques. Golub and his colleagues normalised this dataset such 

that overall intensities for each chip became equivalent by re-scaling intensity values [27]. 

The original dataset available from the Broad institute can be accessed using the link: 
http://portals.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=43 

 

1.7.2: Lymphoma dataset 

Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy of mature B 

lymphocytes. The DLBCL dataset provided by Alizadeh et al., (2000) consists of 47 samples 

and each sample contains 4,026 genes. 24 samples were obtained from germinal centre B-

like DLBCL, and the remaining 23 samples were acquired from activated B-like DLBCL. For the 

measurement of gene expression levels, specialised cDNA microarray was used which 

consisted of genes that had known to have immunologic/oncologic importance or had 

expressed in lymphoid cells [28]. 
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In the process of hybridization, a tumour mRNA sample was used for the fluorescent cDNA 

targets (labelled with dye Cy5) and for the fluorescent cDNA reference a mRNA sample was 

used from lymphoma cell lines and labelled by Cy3. Then the GenePix 4000 microarray scanner 

was used to obtain the fluorescent images. In order to calibrate the fluorescent ratios for all 

arrays a single scaling factor was calculated such that on each array the median fluorescence 

ratio of well-measured spots was 1.0 [28].  This scaling factor was applied to all fluorescence 

ratio for each array. It is noted that fluorescent intensities above 1.4 times of background was 

considered as well measured. The fluorescent ratios then were log-transformed (base 2). In 

order to eliminate the effect of the amount of RNA in the reference pool each data point was 

centred by subtracting the median value for all genes [29]. The original dataset available from 

Lymphoma/Leukemia Molecular Profiling Project can be accessed using following link 

https://llmpp.nih.gov/lymphoma/index.shtml. 

1.7.3: Prostate dataset  

Prostate cancer is one the most common heterogeneous cancer among humans. Singh et 
al., (2002) used microarray expression analysis to investigate important genes and 

pathological features that underlie global biological differences in prostate cancer. In their 

experiment, total RNA was isolated from 55 samples that were obtained from patient with 

prostate cancer and 53 samples that were acquired from healthy individuals. These samples 

were labelled by biotin and hybridized to HU95Av2 microarrays that contained 12,600 genes 

and expressed sequence tags [30].  

Affymetrix GeneChip software was used to calculate the average differences. The average 

pixel mean and standard deviation values for each probe set and the standard deviation of 

the average difference for all genes were calculated. Based on these calculations some 

samples which had high standard deviation were removed from the experiment and 102 

samples including 50 healthy and 52 cancerous samples were chosen as high quality samples. 

These samples then were scaled to a reference sample. Afterwards, the relative variation of 

expression for each gene was computed using the minimum and maximum expression values 

of the gene across all samples. The original dataset available from the Broad institute can be 

accessed using following link: 
http://portals.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=75 
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Chapter 2: Background and Recent Developments 

 

 

 

 

All living organisms are composed of cells.  All cells are characterised by a plasma 

membrane, which encapsulates the cytoplasm and provides internal space where important 

functions are carried out (see Figure 2.1). In this internal compartment, different components 

are present, such as ribosomes and the nucleus. Ribosomes are organelles that process the 

cell’s genetic information to create protein. In the nucleus, the heredity information is stored 

in the form of Deoxyribonucleic Acid (DNA).  Most DNA molecules are double-stranded helices 

consisting of four different nucleotides which are: guanine (G), adenine (A), thymine (T) and 

cytosine (C) [31].  

 

Figure 2.1: Cell structure [32]. 

In humans, the complete set of genetic information that is required for normal functioning 

of the body consists of 3 billion base pairs of DNA packaged into 23 chromosomes. Each cell 

contains almost 2 meters of DNA, and each human roughly consists of 50 trillion cells. If all 
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of the DNA was uncoiled, it would wrap around the Earth’s equator 2.5 million times [33]. So 

the question is: how is this incredible amount of DNA stored in a nucleus?  

The answer to this question lies in the fact that certain proteins compact chromosomal DNA 

into the microscopic space of the eukaryotic nucleus. These proteins are called histones, and 

the resulting DNA-protein complex is called chromatin.    

As can be seen in Figure 2.2 point A, at the simplest level chromatin is a double-stranded 

helical structure of DNA. At point B, DNA is wrapped around eight histones 1.65 times to form 

a nucleosome. Histones are positively charged proteins named H1, H2A, H2B, H3, and H4 

[34]. Since DNA is negatively charged, histones bind with DNA very tightly.  A nucleosome 

with the H1 histone is known as a chromatosome (point C). At point D, it is illustrated how 

nucleosomes fold up to form a 30-nm fibre. This 30-nm fibre folds up more to form loops 

averaging 300-nm in length. Afterwards, the 300-nm fibres are compressed and folded to 

produce a fibre that is 250-nm in width and 700-nm in length (point E). Finally, tight coiling 

of the 250-nm fibre produces the chromatid of a chromosome [33]. 

 
Figure 2.2: Chromatin structure adapted from [33]. 
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2.1: Gene Expression 

Gene expression refers to all the processes that convert genetic information from the DNA 

sequence of genes into gene products. These products can range from proteins to functional 

RNAs that result from protein and non-protein coding genes respectively. A gene is a segment 

of DNA that consists of information used to code for a protein. The genetic information that 

codes for the production of amino acids is stored as three-letter codes, called codons, and the 

sequence of codons defines the primary structure of the final proteins [35]. 

Gene expression involves two steps: the first step is “transcription”, which refers to the 

synthesis of a ribonucleic acid (RNA) molecule using DNA, which occurs within the cell nucleus. 

In this step, the transcription factor connects to the part of DNA referred to as the TATA box 

(also called the Goldberg-Hogness box). Afterwards, the RNA polymerase binds to the 

transcription factor, thereby adding energy (adenosine triphosphate (ATP)) to the process. At 

this point, the transcription starts, and then finally the process is terminated by the RNA 

polymerase, and the newly formed RNA is released from the DNA (see Figure 2.3). Then it 

travels in the form of messenger RNA (mRNA) to the edge of the nucleus, where it gains 

access to the cytoplasm through a tiny hole called a nuclear pore [36]. 

The second step is “translation”, which is carried out in the cytoplasm. This step refers to 

the process of facilitating the codon within the mRNA for the synthesis of a special protein. In 

this step, two important components are utilised: the ribosome (rRNA) and transfer RNA 

(tRNA). After mRNA is exported to the cytoplasm, it is attached to the ribosome. Amino acids 

are carried by tRNA, and can only be added to the chain of growing protein if the tRNA aligns 

to its complementary mRNA codon. Therefore, as the name suggests, the genetic information 

translates into chain of proteins [36]. 

 

Figure 2.3: Process of transcription and translation adapted from [37]. 
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2.2: DNA Microarray 

Microarray technology is a powerful way to quantify gene expression. By using microarray, 

it is possible to examine the expression level of thousands of genes in one experiment. It can 

be used to compare the expression of many genes under different conditions, such as 

cancerous cells versus normal cells. Although there are several microarray technologies that 

exist to date like exon arrays [38], high resolution tiling arrays [39], and Illumina bead arrays 

[40],  two technologies are specifically used in practice, cDNA and oligonucleotide microarray 

[41]. 

2.2.1: cDNA Microarrays   

In the case of cDNA microarrays, the production of arrays begins with the selection of total 

or partial fragments of cDNA to be printed on the array. Partial fragments of cDNA are known 

as expressed sequence tags (ESTs). cDNA clones are usually selected from available 

databases, including Unigene [42], dbEST [43], and GeneBank [44]. The chosen cDNA clones 

are then amplified using polymerase chain reaction (PCR), and purified before using high-

speed robots to print them on a coated glass surface. These immobilised cDNA clones on the 

glass are known as microarray probes, and each probe represents a specific gene (see Figure 

2.4).  

 
Figure 2.4: Microarray glass [45] 

When comparing the gene expressions of two samples, the first step is extracting RNA from 

the cells and amplifying it using a polymerase chain reaction (PCR). After the PCR products 

are cleaned, they are reverse transcribed into cDNA by using an enzyme reverse transcriptase 

and nucleotides labelled with different fluorescent dyes by chemically attaching the dye 

molecules to the ends of the corresponding cDNA strands [46]. For example, cDNA from cells 

grown in cancerous conditions are labelled with a red dye (Cy5) and cDNA from cells grown 
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in healthy conditions are labelled with a green dye (Cy3). Once the samples have been labelled 

with different fluorescent dyes known as probes, they can be hybridised onto the same glass 

slide of the array, where any cDNA sequence attaches to its complementary sequence on the 

glass. Unattached materials are gently removed and the glass is left to dry. The spots are then 

excited by a laser and scanned afterwards. Specifically, two scans are required for each 

microarray. The first scan is for the red fluorescent and the second scan is to detect the green 

fluorescent.  After these two scans, a three-colour image is typically composed, containing 

red, yellow, and green spots, which refers to highly expressed, equal expressed and less 

expressed genes correspondingly [41]. It is shown in Figure 2.5 that some spots are shown 

in black, which can be explained by the fact that none of the samples contain significant 

amounts of the corresponding type of RNA, or a mistake in the hybridisation process.  

 

 
Figure 2.5: DNA microarrays technology modified from [47]. 

Once the image is generated, it is analysed to identify the spots using special software, 

where the background hybridisation can be estimated and the intensity is calculated for each 

spot. Afterwards, the expression ratio is calculated as a primary comparison tool to relate the 

intensity of red and green lights as below: 

 

 𝑇" =
𝑅"
𝐺"

 (2.1) 

 

where  𝑇" ,  𝑅" and 𝐺" are the expression ratio, the intensity of the sample and the intensity 

of the reference (healthy) samples respectively.  
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2.2.2: Oligonucleotide Microarray 

In contrast to the cDNA microarray that uses the complete gene sequence as targets, 

oligonucleotide microarrays (single-channel) use a number of short oligonucleotide sequences 

(usually 20-70 nucleotides long) that represent a specific gene. These oligonucleotide 

sequences can be either spotted or synthesised on the array surface. Although there are 

varieties of oligonucleotide arrays, Affymetrix GenChip is the most widely used technique [48]. 

In Affymetrix GenChip, a short stretch of oligonucleotide strands is used, and the spots are 

synthesised through photolithography. The fabrication of the array is based on the sequential 

addition of nucleotides to the microarray surface (wafer), which is chemically protected from 

nucleotide additions until exposure to UV light. Photolithographic masks are used to place 

nucleotides on specific probe sites, and the sequential addition of lithographic masks 

determines the order of sequential synthesis on the array (Figure 2.6). In this method, each 

gene is represented by 25 pairs (25-mer) of oligonucleotide [49].  

 

 
Figure 2.6: Affymetrix GenChip lithography [50]. 

One strand of the 25-mer sequence is known as a perfect match (PM) and the other is 

referred to as a mismatch. The sequence of the nucleotide in the perfect match probe is 

exactly complimentary to a particular gene, and thus measures the expression of the gene. 

However, the mismatch probe differs from the perfect match probe by a single base nucleotide 

at the centre position of the probe, which prevents the target from binding to the gene 

transcript (see Figure 2.7). The main reason for using the mismatch probe is to determine the 
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background and nonspecific hybridisation that contributes to the measured signal for the 

perfect match oligonucleotide probe [36].  

 

 
Figure 2.7: Affymetrix expression array design adapted from [51]. 

In the process of achieving expression, RNA is extracted from the sample and after 

amplification, is labelled with chemical biotin. Then the labelled RNA is added to the Affymetrix 

array to bind with the relevant oligonucleotide probe. After washing the unattached materials, 

fluorescent stain that is capable of attaching to the biotin on the RNA is added to the array. 

The array is then scanned to obtain an image. In contrast to cDNA, Affymetrix arrays use a 

single dye colour (one channel), and therefore each sample should be added to a separate 

array and cannot be hybridised (see Figure 2.8) [41]. The hybridisation intensity of the perfect 

match and the mismatch is computed and subtracted from each probe by Microarray Suite 

software. As a result, the absolute intensity value for each probe is acquired.  Afterwards the 

intensity of the perfect match is subtracted from the intensity of the mismatch probe. 

Therefore, the average intensity for each gene can be calculated. Then the intensity is 

converted into a ratio. Eventually, as in cDNA, the data is stored in the form of the gene 

expression ratio [52]. 

 

 
Figure 2.8: Affymetrix GenChip microarray modified from [53]. 
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2.3: Next Generation Sequencing Technology (NGS) 

DNA sequencing refers to the precise identification of the order of nucleotides (A, G, T and 

C) in a DNA sample. Over the last 4 decades, there have been major advancements in DNA 

sequencing technologies. In 1975, DNA sequencing by primed synthesis with DNA polymerase 

was investigated by Sanger and Coulson [54], and this method was then improved by utilising 

chain-terminating inhibitors [55]. The automated readout of the sequence was successful 

when fluorescent tags were added to the chain terminator [56]. This innovation is known as 

First Generation Sequencing technology or Automated Sanger Sequencing. Over the last 

decade, technological advancements in the field of sequencing have introduced Second 

Generation Sequencing also known as Next Generation Sequencing (NGS) [57]. Not only has 

the cost of sequencing with the new methods been significantly reduced, but this technology 

is also capable of producing a significant amount of data in a shorter time [20,58]. 

Although there are several next generation sequencing platforms available, three platforms 

are more widely used: Roche 454, Illumina, and SOLiD [59]. The amount of reads and the 

length of each read (base pair) are varied across different platforms [60], but each platform 

has their own advantages and disadvantages [58], which are listed in Table 2.1. 

 
Table 2.1: Comparison of next-generation sequencing platforms. 

Technology Read 
length 

BP per 
run 

Advantages Disadvantages 

ILLUMINA 30–40 
(bp) 

1 Gb The most 
commonly used 

platform. 

Low multiplexing 
capability of samples 

ROCHE 454 200–300 
(bp) 

80–
120 Mb 

Fast run times; 
Longer reads  

High cost; high error 
rates in homo-polymer 

repeats 

SOLID 35 (bp) 1–3 Gb Inherent error 
correction by two-

base encoding  

Long run time 

 

All NGS platforms detect the order of nucleotides through 3 primary steps. The first step is 

the random fragmentation of DNA and ligation with some custom adaptors, known as sample 

preparation. Then the amplification step follows in which the fragments are amplified to 

produce a detectable signal. The last step is to perform sequencing reaction and detection of 

nucleotides in a sequential order one by one. In the following sections, the details of Roche 
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454 FLX Pyrosequencer, Illumina genome analyser, and SOLiD Applied Biosystems are 

analysed. 

2.3.1: Roche/454 FLX Pyrosequencer  

In this method, DNA is converted into sequence data through three main steps which are: 

DNA sample preparation, loading DNA samples onto beads, and finally sequencing DNA with 

the Genome Sequencer FLX instrument. Sample preparation starts with random fragmentation 

of DNA (400-600 bp), then the adaptors are attached to these fragments. Finally, the double-

stranded DNA fragments are separated into single strands (see Figure 2.9). 

 

 

Figure 2.9: Sample preparation in Roche/454 [61]. 

In the second step, the fragments that are attached to adaptors are put onto micron-sized 

beads, which have a complimentary sequence to the adapter, then through using emulsion-

based PCR, around ten million copies of each DNA fragment that is immobilised on the capture 

beads are produced (see Figure 2.10). Emulsion refers to a method where a single DNA 

molecule is isolated in aqueous micro-reactors by utilising water and oil emulsion. This 

amplification is required to generate sufficient signals that are detectable in the sequencing 

step [20].  

 

 

Figure 2.10: Amplification step in Roche/454 [61]. 
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The last step is sequencing through synthesis. For this step, the beads are put into a well 

on a PicoTiter Plate along with an enzyme that helps the sequencing reaction (see Figure 

2.11).   

 

 

Figure 2.11: Sequencing by synthesis step in Roche/454 [61]. 

To accomplish this objective, starting from one end of the single-stranded fragment and 

based on the order of nucleotides in the strand, the enzyme synthesises the complimentary 

fragment through the sequential adding of nucleotides. Each time a nucleotide is added, a 

light is emitted which is then recorded by a camera (see Figure 2.12). 

 

 

Figure 2.12: Sequencing by synthesis step in Roche/454 [62]. 

2.3.2: Illumina Genome Analyser 

The Illumina Genome analyser converts DNA into sequenced data through three steps: 

sample preparation, cluster generation, and sequencing. After the random fragmentation of 

DNA, the ends of these fragments need to be repaired by adding the complementary 

nucleotides to the appropriate end of the fragment.  Afterwards the ends of the fragment are 

phosphorylated, and a single A base is added to its 3’ ends. Finally the adapters are ligated 

(see Figure 2.13) [63]. 
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Figure 2.13: Sample preparation for Illumina sequencer [64]. 

In the second step, the prepared fragments are attached to a flow cell on a solid surface 

that has their complementary adapters. Once they are attached, the other side of the fragment 

also attaches to the solid surface and forms a bridge. Then a replica of the fragments forms, 

and they detach from each other. This cycle, known as bridge amplification, continues until 

clusters are formed [20].  

 

 
Figure 2.14: Bridge amplification for Illumina sequencer [64]. 
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The final step is the detection of nucleotide sequences through sequence by synthesis. For 

this reason, DNA polymerase is added to the clusters on the slide and flooded by nucleotides. 

These nucleotides are engineered to have different colours corresponding to the base, and 

modified in such a way that the polymerase can extend by one base at a time through the 

use of a terminator. Once a nucleotide is attached to the fragment, the remaining unattached 

nucleotides are removed and a camera detects which nucleotide (C, A, G or T) is attached. 

Then the terminator is removed, and the slides are flooded by nucleotides again, and this 

process is repeated until the whole fragment is sequenced (see Figure 2.15). Although the 

sequencing and detection of nucleotides is done for one base at a time for each fragment, it 

is done for millions of fragments at the same time (see Figure 2.16) [64].  

 

 

Figure 2.15: Sequencing by synthesis step in Illumina sequencer [64]. 

 

 
Figure 2.16: Pseudo colour enhanced image [65]. 
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2.3.3: Applied Biosystems SOLiD Sequencer 

The process of detecting the order of nucleotides by SOLiD (Sequencing by Oligonucleotide 

Ligation and Detection) technology is carried out through three steps:  sample preparation, 

amplification and sequence by ligation. The sample preparation step is similar to other NGS 

platforms and consists of DNA fragments that are ligated to oligonucleotide adapters [66]. 

These ligated fragments are then amplified using emulsion based PCR as explained in Section 

2.3.1 for Roche 454.  

The sequencing by synthesis step in SOLiD technology is different from other NGS 

platforms, as this is done by DNA ligase (see Figure 2.17) as opposed to using a polymerase 

[64,67]. Initially a sequencing primer is hybridised to the P1 adaptor, which is attached to the 

bead. A mixture of Di-base probes that is labelled with four different fluorescent dyes races 

to ligate to the sequencing primer. After ligation, the fluorescent dyes are excited, and 

subsequently an image is taken. Afterwards, unextended strands are capped and fluorophores 

are cleaved. A new cycle starts 5 bases away from the priming site, by attaching another Di-

base probe, and this is repeated for 7 cycles. Then the first sequencing primer is detached, 

and a new primer is attached to the temple sequence (reset), and another 7 cycles is repeated 

for the new primer.  In total, 5 rounds of this primer reset is performed (n, n-1, n-2, n-3, and 

n-4). As can be seen in Figure 2.17, eventually 35 bases are sequenced twice, thus improving 

sequencing accuracy [20].   
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Figure 2.17: Outline of SOLiD sequencing technology adapted from [66]. 
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2.3.4: NGS Raw Data File Formats and Quality Scores for Detected 

Nucleotides  

The RNA-Seq experiment generates tens of millions of sequence tags, known as short 

reads, which can be encoded into different file formats depending on the NGS platforms such 

as the FASTQ [68] and FASTA/QUAL [69] formats. While encoding the short reads, not only 

the sequence of each read is preserved, but the quality value of detected nucleotides for each 

read is also determined. Although the quality scores across different platforms cannot be 

compared, all NGS platforms use a Phred-like score [70,71], which is logarithmically related 

to the probability that a base call is incorrectly identified (P). 

 

 𝑄'()*+ = −10× log34 𝑃 (2.2) 
 

There are three types of quality scores that are used. The first scoring method is known as 

the Sanger quality score, which is used in Sanger FASTQ formats, and uses ASCII values from 

33-126 to encode Phred scores from 0-93. Later by using logarithmic mapping, Solexa, Inc. 

(Illumina, Inc.), introduced another quality scoring method in which Solexa scores were used, 

ranging from -5 to 62 and represented by ASCII characters from 59 to 126 [68]. Solexa scores 

can be calculated by Equation 2.3. 

 𝑄6789:; = −10× log34
𝑃

1 − 𝑃
 (2.3) 

 

Equations 2.4 and 2.5 are used to convert Phred scores to Solexa-scale quality scores and 

vice versa.   

 𝑄'()*+ = 10× log34( 10
=>?@ABC
34 + 1) (2.4) 

 

 𝑄6789:; = 10× log34( 10
=FGHIJ

34 − 1) (2.5) 
 

More recently, Illumina, Inc. introduced a new format used from Genome Analyser Pipeline 

1.3 onwards.  In this format, the Phred scores ranging from 0-62 are represented by ASCII 

characters from 64-126 [68]. Table 2.2 shows a summary of the three different FASTQ 

formats.  
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Table 2.2: Summary of three quality score formats. 

 

 

 

 

 

FASTQ format uses 4 lines to encode each read (see Figure 2.18). The first line begins with 

the character ‘@’ and is followed by a sequence identifier and an optional description. The 

second line contains the order of nucleotides for the read. Line 3 begins with the ‘+’ character 

and is optionally followed by the same sequence identifier. Lastly, line 4, which has the same 

length as line 2, indicates the quality of detected nucleotides for the read using ASCII 

characters [68,72].  

 

@title 
sequence 
+Optional text 
Quality 

@Sequence Identifier  
ACCCCAGGATCAACACTTCACATGCATTAGCAGAGAGAGATAAATCAA 
+ 
=>=??A?<@B@A:?B?D;AC@@CAAAD<AAA:99?:@=?@B@77C><4 

Figure 2.18: FASTQ format 

FASTA format uses 2 lines to encode each read. The first line begins with the character ‘>’ 

and is followed by a sequence identifier and an optional description. The second line contains 

the order of nucleotides for the read (see Figure 2.19).  

 

@title 
sequence 

> Sequence Identifier 
ACCCCAGGATCAACACTTCACATGCATTAGCAGAGAGAGATAAATCAA 

Figure 2.19: FASTA format 

Illumina encodes the reads and corresponding quality scores in the FASTQ format. Roche 

454 encodes the reads in FNA format, which is a type of FASTA format, and also encodes the 

corresponding quality scores in a separate QUAL format which is also similar to FASTA format 

[73]. In contrast, since SOLiD output is based on colour space and not sequence space, this 

technology uses the CSFASTA (Colour Space FASTA) format to encode the sequence of a read, 

and QUAL format for the corresponding quality score [74].  

 

 
 

Description  

ASCII characters Quality scores 
Range Offset Type Range 

Sanger standard 33-126 33 Phred 0 to 93 
Solexa 59-126 64 Solexa -5 to 62 

Illumina 64-126 
 

64 Phred 0 to 62 
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2.4: Gene Expression Profiling Using NGS Technology (RNA-Seq) 

The importance of mRNA in gene expression and its role in identifying the informative 

genes that cause disease was investigated in Section 2.1 and 2.2, where microarray was used 

to determine the expression of genes. Microarray is a reliable and robust method which has 

been proven over decades, and even considering the drop in cost of NGS technology, 

microarray is still more economical. However, microarray technology has several limitations. 

For instance, since microarrays are designed by hybridisation probes for which the sequence 

of the probes is already known, this means that this technology is ineffective at finding new 

genes, detecting structural variations, discovering transcripts, and analysing isoform 

composition. However, RNA-Seq technology can overcome these limitations [75]. Whilst 

comparative studies of microarray gene expression and RNA-Seq [21,76,77] suggest that the 

results of both platforms correlate well, a wider spectrum of gene expression levels could be 

obtained when RNA-Seq is used, resulting in a more detailed insight into gene expression. 

Further studies, prove that RNA-Seq outperforms microarray at discovering new isoforms 

[78,79], and at transcriptome profiling [80,81]. 

RNA-Seq or the Whole Transcriptome Shotgun Sequencing workflow consists of several 

steps (see Figure 2.20). First, the total RNA consisting of messenger RNA (mRNA), ribosomal 

RNA (rRNA), and other small RNAs is extracted from a cell. The next step is the isolation of 

RNA content. In this step, due to the fact that over 90% of total RNA is made of rRNA, which 

can hinder the detection of mRNA, it is necessary to remove rRNA. One solution for this issue 

is to use poly (A) to enrich mRNA, which can only be used if the interest is in analysing mRNA 

alone, as this method eliminates all other non-poly RNAs. Another solution is to use rRNA-

depletion technique, such as using exonuclease to digest rRNA, or using subtractive 

hybridisation [82–84]. Furthermore, if a study is interested in other small RNAs, several 

strategies are available to enrich such small RNAs, either by using commercially available kits 

or performing size selection by using polyacrylamide gel electrophoresis [85]. 

The next step is fragmentation of RNA to reduce the chance of secondary structure 

formation, and to provide a homogeneous coverage of entire transcripts [75]. The final step 

is to convert single stranded RNAs to double stranded cDNAs by utilising a reverse 

transcriptase. This last step is done because most sequencing technologies are currently 

unable to sequence RNA itself. Once the cDNA libraries are formed, various NGS platforms 

can be used to sequence them as discussed in Section 2.3.  
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Figure 2.20: RNA-Seq procedure [86]. 

2.5: Analytical challenges for microarray and NGS data in respect 

to profiling and understanding diseases  

Although gene expression profiling is a viable tool for diagnosis and prognosis of diseases, 

the analysis of microarray and NGS data is characterised as being very challenging [87]. In 

regard to microarray data, although only few samples are used, the expressions of thousands 

of genes are measured. This creates a challenge as the methods that could be implemented 

for analysis of microarray data needs to account for the nature of high dimensionality of such 

data [88]. To overcome this challenge and extract useful information among the pool of 

microarray data, machine learning techniques and various statistical approaches have been 

facilitated. These methods range from finding differentially expressed genes via statistical 
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methods to clustering and classification of diseases through machine learning techniques [46]. 

It is noted that over that last decade, the use of machine learning to classify diseases have 

become an area of intensive research [22]. However, high classification accuracy of diseases 

such as cancer is still highly challenging and more research is required where new methods 

could be implemented to further increase the classification accuracy. 

With regard to NGS data, although the exploration of gene expression through RNA-Seq 

technique is more feasible, the analysis of such data is more computationally challenging when 

compared to microarray data [89]. For instance, a significant number of the short reads that 

are produced from a RNA-Seq experiment are map across splice junctions so that the task of 

mapping these reads to a reference genome is very challenging. Furthermore, after mapping 

these reads, the process of counting these reads over genomic locations inherits a significant 

challenge and one required to apply some statistical modelling such as discrete distributions 

to model these counts [90]. There exist several main challenges when analysing RNA-Seq as 

addressed in Chapter 6 later. 

2.6: Summary  

In this chapter a review of recent developments in measuring gene expression was 

presented. Initially, a brief overview of the biological aspects of the thesis such as gene 

expression phenomena was given. Afterwards, different types of microarray technologies such 

as cDNA and oligonucleotide microarray were explored. Then, different NGS technologies were 

investigated and a unique approach for each technique was explained in order to have a good 

understanding of how NGS data is produced. The common formats of NGS data such as 

Sanger, Solexa, and Illumina were then explained. Finally, the RNA-Seq technique utilising 

NGS technology to measure gene expression was introduced. 
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Chapter 3: Overview of Machine Learning 

Approaches for Microarray Data Analysis  

 

 

 

3.1: Introduction 

There are several steps for a successful microarray data analysis including design, pre-

processing, inference, classification, and validation. Since each step plays an important role in 

the final results, there have been numerous studies to optimise each step. The design step is 

vital, as it determines the initial quality and quantity of the information to work with, and this 

step is carried out in a wet laboratory. Pre-processing is usually the first step for the analysis 

of microarray data, during which the images from microarray chips are processed and 

systematic variations are removed, followed by the transformation and normalisation steps. 

After pre-processing, depending on the purpose of the experiment, inference and/or 

classification of the data follows. Finally, the results from the previous steps are validated 

[46].  

3.2: Design 

Research suggests that the design of microarray experiments directly affects the efficiency 

and validity of the information obtained [91,92]. There are 2 factors that are essential to take 

into consideration when designing a microarray experiment. 
The first factor is related to the importance of having biological replicates in the experiment. 

In general, there are two types of replicates, technical and biological replicates.  Biological 

replicates refer to the replicates that are produced from different biological samples. In 

contrast, technical replicates are obtained from the same sample, but processed in a different 
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microarray experiment. One advantage of biological replicates compared to technical 

replicates is that the latter can only estimate the measurement variation between samples 

from different experiments. However, biological replicates not only can be used for this 

purpose, but they can also measure the variation between different biological samples. For 

instance, they can be used to find out which genes are differentially expressed between 

different samples [46].  
The second factor is related to the number of required samples for a microarray experiment 

to provide enough information for a valid analysis. Several studies confirm that for a 

differential expression analysis using statistical inference, at least 5 biological replicates for 

each sample group are required [93,94]. With regards to a number of replicates for a 

classification purpose, a study by Dobbin and Simon [95] proposed a formula to calculate this 

number based on the relative sizes of different sources of variability.  

3.3: Pre-Processing  

As was discussed in Sections 2.2.1 and 2.2.2, as a result of microarray experiments, several 

images in TIFF format are produced that contain intensity signals. The first action towards a 

meaningful analysis is the pre-processing of these images and extraction of useful information 

to form a gene expression matrix [96,97]. Figure 3.1 shows the important steps for pre-

processing microarray data.  

 
Figure 3.1: Pre-processing of microarray data. 

Image analysis is the first step in the pre-processing of microarray data, and deals with the 

process of extracting information from images. This provides the basis for further microarray 

analysis. This step involves quantifying spots on the microarray.  To this end after identifying 

the spots on the microarray, first spot signal and background intensity are measured. Then 

based on these measurements, the initial intensity for each spot is calculated by subtracting 

the spot signal from the background intensity [98]. 

In the second step, the expression ratio for each gene is calculated. This is done by utilising 

the spot intensities of two samples and relating them by using a metric called expression ratio 

through the following equation.  

 

Image	
analysis

Expression	
ratio

Transformati
on

Normalisat
ion

Gene	
expression	
matrix
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 𝑇" =
𝑅"
𝐺"

 (3.1) 

   
where 𝑇" is the expression ratio of gene 𝑘, 𝑅" is the spot intensity of sample 1, and 𝐺" is the 

spot intensity of sample 2. The expression ratio is a relevant way to represent expression 

differences. For example, genes that have equal levels of expression in two experimental 

conditions will have an expression ratio of 1. However, the interpretation of data from this 

method can be confusing when a gene has a higher or lower expression. For example, a gene 

that is highly expressed by a factor of 4, based on the formula 𝑇" =
)L
ML
= N

3
  has an expression 

ratio of 4. However, if it has a lower expression by a factor of 4, the expression ratio becomes 

0.25 ( 𝑇" =
)L
ML
= 3

N
 ). Thus lower expression is mapped between 0 and 1 while higher 

expression is mapped between 1 and infinity. Logarithmic transformation is used to eliminate 

this inconsistency in the mapping intervals, where higher expression and lower expression are 

treated equally. For instance, if the expression ratio is 1, then log2 (1) equals 0 represents no 

change in expression. If the expression ratio is 4, then log2 (4) equals +2 and for an expression 

ratio of log2 (1/4) equals -2. 

The next step is the normalisation of data. In the human genome, there are some genes 

known as housekeeping genes. The expression level of these genes should not change across 

different conditions. However, in some cases the data from the expression ratio suggests that 

an average expression ratio of such genes deviates from 1. This implies some sources of 

systematic variation that affect the measured expression levels of genes. In order to overcome 

this problem, the data needs to be normalised. There are several methods of normalisation, 

like total intensity normalisation, mean log centring, and linear regression.  In these methods, 

a normalisation factor is calculated and then it is used to rescale the intensity of each gene 

[99].  

After these pre-processing steps, the data can be represented in the form of a matrix, and 

each row in the matrix (see Figure 3.2) corresponds to a particular gene, while each column 

either corresponds to an experimental condition or a specific time point at which expression 

of the genes has been measured.  
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Figure 3.2: Gene expression matrix. 

3.4: Unsupervised Classification 

Data clustering, which also refers to unsupervised classification, is a way of finding 

similarities in data when no prior information on the structure of data is available [100]. In a 

clustering task, data is divided into groups in which data points within each group (cluster) 

are very similar to each other, yet different from other clusters. Microarray gene expression 

data can be clustered based on genes (row), samples (column), or both genes and samples 

which provides useful information for data visualisation and the interpretation of experimental 

results. Clustering based on both genes and samples referred to as bi-clustering [101] which 

is useful in uncovering functionally linked gene sets under different experimental conditions. 

Since genes that have similar expression pattern are grouped together in clustering methods, 

one can hypothesise that if two genes are within a similar cluster, the respective genes can 

be co-expressed and have a related function. 

Despite the fact that there are several clustering methods available such as K-means, Fuzzy 

C-means and Hierarchical, all methods use a similarity measure to calculate the distance 

between data points, so that similarities and dissimilarities of all data points can be quantified 

and clustered respectively [102]. Among the several similarity measuring methods like 

Covariance, Manhattan Distance, Average Dot Product, Pearson Correlation Coefficient, and 

Euclidian Distance, the latter two are most commonly used. 

In the Pearson Correlation, the linear association between gene 𝑎 and 𝑏 is calculated by 

Equation 3.2.  

 
𝑃𝑎𝑏 =

(𝑥R; − 𝑥;)(𝑥RS − 𝑥S)
T
RU3

(𝑥R; − 𝑥;)V (𝑥RS − 𝑥S)V
T
RU3

T

RU3

 
(3.2) 

where 𝑥R; and 𝑥RS are respectively the gene expression for gene 𝑎 and 𝑏 in sample 𝑚 and 
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𝑥; and 𝑥S are the mean expression of genes 𝑎 and 𝑏 from all samples. The value of correlation 

between gene 𝑎 and 𝑏, (𝑃𝑎𝑏) can range from -1, which means a perfect negative correlation, 

to 1 which means a perfect positive correlation. If both genes appear to be independent of 

each other, the correlation value will be assigned to zero.  

In Euclidian distance method, the distance between gene 𝑎 and 𝑏 is calculated by Equation 
3.3. 

 𝐸𝑎𝑏 = (𝑥R; − 𝑥RS)V
T

RU3

 (3.3) 

where 𝑥R; and 𝑥RS are respectively the gene expression for gene 𝑎 and 𝑏 in sample 𝑚. The 

Euclidian distance between gene 𝑎 and 𝑏, (𝐸𝑎𝑏) can range from 0 to ∞.  

3.4.1: K-means  

K-means clustering is a simple and fast method that aims to partition	𝑛 genes into 𝑘 

clusters, where data within a cluster is nearer to the centre of their cluster than other clusters. 

It is noted that the number of clusters (𝑘) should be specified in advance. The means of 

clusters are updated, along with iterations. If that microarray data contains 𝑛 genes with 

expression	(	𝑥3, 𝑥V, … , 𝑥]), and each 𝑥 is a d-dimensional factor, 𝑛 genes will be separated into 
𝑘 subsets with unknown centres (	𝜇3, 𝜇V, … , 𝜇"), under the condition that 𝑘	 ≤ 𝑛. The objective 

of the K-mean algorithm is to minimise the cost function 𝐻 (see Equation 3.4), such that the 

centre of each cluster has the minimum aggregation distance between the centre of a cluster 

and the points within that cluster [103].  

 𝐻 = 𝑎ab 𝑥a − 𝜇b
V]

aU3

"

bU3

 (3.4) 

where 𝑥a − 𝜇b
V is the Euclidian distance between the 𝑖𝑡ℎ gene (	𝑥a), and the centroid for the 

𝑗𝑡ℎ cluster; 𝑎ab is the membership value which is either one if 𝑥a is assigned to 𝑗𝑡ℎ cluster or 

zero otherwise. The K-mean algorithm clusters the data through the following iterative 

procedure: 

 

Step 1: Random selection of cluster centres (𝜇b) where the number of clusters are 

predefined (𝑘). 
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Step 2: Assign each point (	𝑥a) to its nearest cluster centre. This is done by determining 

the membership matrix 𝑎ab using the following equation: 

 

 𝑎ab =
1
0				

𝑖𝑓		 𝑥a − 𝜇b
V
	≤ 		 𝑥a − 𝜇h V						𝑓𝑜𝑟	𝑎𝑙𝑙									𝑗 ≠ 𝑧

𝑒𝑙𝑠𝑒
 (3.5) 

 

Step 3: Compute the cost function 𝐻 using Equation 3.4. 

 

Step 4: Update the cluster centres as below:  

 𝜇b =
𝑎a,b	𝑥a

]

aU3

𝑎a,b
]

aU3

 (3.6) 

Step 5: Steps 2, 3 and 4 are cycled through continuously until they coincide with set values 

(e.g. the number of iterations). 

3.4.2: Fuzzy C-means  

Fuzzy C-means clustering relies on the basic idea behind K-mean clustering, with the 

difference that in the C-means method, each data point belongs to a cluster with a degree of 

membership grade. In K-means, each data point either belongs to a certain cluster or not. In 

other words, in fuzzy C-means, each data point can belong to more than one cluster with a 

degree of belonging specified by membership grades between 0 and 1. Fuzzy C-means also 

utilise a cost function and similar to K-means, its objective is to minimise the cost function 

[104]. The fuzzy C-means algorithm clusters the data by the following iterative procedure: 

 
Step 1: Initialise the membership matrix 𝑎a,b

p with random values between 0 and 1, such 

that the constraint in Equation 3.7 is satisfied. 

 𝑎a,b
p = 1						𝑓𝑜𝑟								𝑖 = 1,2, … , 𝑛

"

bU3
 (3.7) 

Step 2: The cluster centres are updated using the following expression: 

 𝜇b =
𝑎a,b
p 	𝑥a

]

aU3

𝑎a,b
p

]

aU3

 (3.8) 

where 𝑓 > 1	is the exponent of the membership values, and it is a real-valued number 

controlling the fuzziness of the clusters. 
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Step 3:  Compute the cost function according to Equation 3.9: 

 𝐻 = 𝑎a,b
p 𝑥a − 𝜇b

V]

aU3

"

bU3

 (3.9) 

Step 4: Compute a new membership matrix using following equation: 

 

𝜇b =
1

𝑥a − 𝜇b
𝑥a − 𝜇h

V
ps3

"

aU3

 

(3.10) 

Step 5: Steps 2, 3 and 4 are cycled through continuously until they coincide with set values.  

3.4.3: Hierarchical Clustering 

There are two types of hierarchical clustering approaches: agglomerative and divisive, both 

of which involve building some type of dendrogram or tree that reveals the relationships 

between the data objects. The agglomerative approach starts by assuming that each object 

belongs to its own cluster. Afterwards, it identifies which clusters are the closest to others 

using a distance metric. Each iteration of this approach creates bigger and bigger clusters at 

each level, until all data objects are put into one big cluster. In contrast, the divisive approach 

works exactly the opposite, where at the start all objects belong to one big cluster (see Figure 

3.3). When the iteration starts, it finds the best division of the data objects, so that there is 

the highest similarity among objects within clusters, and the most dissimilarity between 

clusters. This process continues, until all objects are in their own clusters [5,105]. 

 

 
Figure 3.3: Chart of divisive hierarchical clustering scheme. 
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Hierarchical clustering partitions genes based on the measurement of distance. The most 

commonly used method for measuring distance in this context is Euclidean distance. The 

calculation of distance between a pair of sub-clusters depends on linkage criteria, which is a 

way of defining the similarity of clusters based on the similarities of cluster members. There 

are four linkage methods that can be used: single, average, complete, and the distance 

between centroids (see Figure 3.4), in which clusters are linked based on the similarity of the 

closest members, the average similarity, and the similarity of the furthest members [106]. 

 

 
Figure 3.4: Linkage methods 

3.4.4: Self-Organising Map 

The Self-Organizing Map (SOM) which is based on neural network was developed by 

Kohonen [107]. SOM utilises a competition and cooperation means to attain unsupervised 

learning using winner takes all (WTA) algorithms. A SOM network consists of two layers 

including a Kohonen layer and an input layer (see Figure 3.5). In the Kohonen layer, neurons 

are organised in a geometric pattern, usually 2-dimentional lattice. Each neuron in the input 

layer is fully coupled with all neurons in the Kohonen layer and each has a weight vector, 

𝑤a, 𝑖 = 1,2, . . , ℎ which is randomly initialised. ℎ represents the number of neurons in the 

Kohonen layer. Also, each neuron in the Kohonen layer is linked to adjacent neurons by a 

neighbourhood relation. The objective of SOM is to discover a suitable mapping from the 𝑛 

dimensional input data (𝑥a, 𝑖 = 1,2, … , 𝑛) to a two-dimensional lattice configuration [108].  
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Figure 3.5: SOM neural network adapted from [108]. 

 

To this end, the Euclidean distances between input data and weight vectors are calculated. 

Then for each data vector the best match unit (BMU) is obtained through Equation 3.11, which 

refers to the unit that minimises the Euclidean distance between the input data and weight 

vectors [109].  

 

 𝐵𝑀𝑈 = 𝑎𝑟𝑔min
b

𝑥a − 𝑤b  (3.11) 

 

Once the BMU is chosen, this unit is then allowed to update its weight vector. Since in the 

Kohonen layer neurons are linked to adjacent neurons, when the BMU is chosen, all 

neighbouring neurons within a width and radius of BMU also will be updated. By defining a 

set of activated neuron adjacent to BMU as 𝑁~, the activated neurons can update their weights 

at time 𝑡	using Equation 3.12 [109]. 

 

 𝑤b 𝑡 + 1 =
𝑤a 𝑡 + ℎ 𝑡 	[𝑥a − 𝑤a 𝑡 ], 𝑖 ∈ 𝑁6		

𝑤b 𝑡 , 𝑖 ∉ 𝑁6
 (3.12) 

 

where ℎ 𝑡  is the neighbourhood function and can be calculated as below:  

 

 ℎ 𝑡 = 𝛼 𝑡 𝑒𝑥𝑝 −
𝑟�T� − 𝑟aV

2𝜎V(𝑡)
 (3.13) 
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where 𝑟a denotes the location of neuron 𝑖 on the grid map, 𝛼 𝑡  is the learning rate, and 

𝜎 𝑡  is the kernel width function around BMU. Both 𝛼 𝑡  and 𝜎 𝑡  are monotonically shrinking 

over time. As the process continuous and new input vectors are given to the map, the 

neighbourhood radius and the learning rate progressively shrink to zero so that only BMU can 

be updated. The SOM algorithm clusters the data by the following iterative procedure [109]: 

 

Step 1: The topology of SOM is defined and the weight of each neuron is randomly  

initialised (𝑤a(0), 𝑖 = 1,2, . . , ℎ). 

 

Step 2: The distance between the input vector and the weights of each neuron is calculated   

and BMU is identified using Equation 3.11.  

 

Step 3: The active radius around BMU is calculated which is then decreases over time. 

 

Step 4: The weights of the BMU and the neurons within the active radius are updated using  

Equation 3.12.  

 

Step 5: Steps 2, 3 and 4 are cycled through continuously until convergence.  

 

3.4.5: Binarisation of Consensus Partition Matrices (Bi-CoPaM) 

In order to improve reliability and robustness of clustering procedure, ensemble clustering 

methods such as graph-based and hypergraph-based methods [110], kernel-based methods 

[111], relabelling and voting [112], and non-negative matrix factorization [113] have been 

proposed.  In these methods, the results of various clustering algorithms for the same dataset 

are merged to build a consensus clustering outcome.  

More recently, the binarisation of consensus partition matrices (Bi-CoPaM) that is a 

tuneable consensus clustering method was proposed by Abu-Jamous et. al [114,115]. This 

clustering method takes into account various datasets while employs several single clustering 

algorithms to detect the subset of features which incessantly correlate among many clustering 

results [116]. This method outperforms conventional clustering algorithms in that each feature 

can be assigned to multiple clusters at the same time or not assigned to any clusters at all 

[117]. 

Assuming time series microarray datasets, Bi-CoPaM performs clustering independently for 

each dataset in the first stage and datasets are not combined. This means within each dataset 
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all features are homogenous as they have the same experimental design. However, in the 

next stages the created clusters from each dataset are merged in respect to memberships 

which is not influenced by the time profiles of the feature in their datasets to create one set 

of partitions. This method provides the infrastructure for multiple heterogeneous datasets to 

be analysed together [118]. Figure 3.6 illustrates the Bi-CoPaM flowchart.   

 

 
Figure 3.6: Flowchart of Bi-CoPaM adapted from [115] 

 
Bi-CoPaM performs clustering through four main steps as follow: 

 

Step 1: Partitions generation. In this step, R partition results, 𝑈3, 𝑈V, … , 𝑈) , are 

created by facilitating R different clustering algorithms. Each 𝑈 matrix consists of 𝐾 rows 

corresponding to number of clusters and 𝑀 columns corresponding to the number of genes. 

Each element in the matrix, 𝑈ab� , denotes the membership of the 𝑖𝑡ℎ gene in the 𝑗𝑡ℎ cluster 

based on the 𝑟𝑡ℎ partition.  

 

Step 2: Relabelling. The objective of relabelling is to make sure that the 𝑖𝑡ℎ cluster in 

each generated partition correspond to each other by means of rearranging the clusters. The 

min-max approach is utilised to rearrange the clusters to achieve this objective as follow 

[115,117]: 
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A) First a dissimilarity matrix, 𝐷6×6 , is composed. In this matrix, each element (𝐷ab) 

denotes the dissimilarity between the 𝑖𝑡ℎ row of the partition 𝑈 and the 𝑗𝑡ℎ row of the 

reference partition 𝑈�9p. 

B) Then in the 𝐷 matrix the minimum of each column is calculated.  

C) Afterwards, the maximum value from the calculated minimums is selected by which the 

clusters from 𝑈 and 𝑈�9p that have this maximum are coordinated to correspond to 

each other.  

 

D) Then the selected row that was used for matching the clusters in step C is removed 

from 𝐷 matrix.  

 

 

E) Steps B to D are repeated till 𝐷 matrix is empty and all clusters from 𝑈 and 𝑈�9p are 

matched.	
	

After relabelling the rearranged matrix of 𝑈 is shown by 𝑈 which is presented as follow.  

 

 

𝑈 = 	𝑎𝑟𝑔𝑚𝑎𝑥	∀�9�R � Γ(	𝑈�9p, 𝑝𝑒𝑟𝑚(𝑈)) 

 

(3.14) 

where 𝑝𝑒𝑟𝑚(𝑈) denotes the permutation of the rows of 𝑈 and Γ() is the similarity measure 

[114]. 

 

Step 3: CoPaM generation.   
The R relabelled partition matrices are utilised to create a single fuzzy CoPaM in which each 

single element represents a fuzzy membership of a gene in a cluster based on the number of 

times that the genes appeared in that cluster. The membership value ranges from 0, 

representing absolutely no consistency to 1 which denotes absolute consistency. It is noted 

that the summation of fuzzy membership values for each given element across all clusters 

should be 1. To generate the CoPaM matrix the values of the first partition are used to 

instantiate an intermediate fuzzy CoPaM,	𝑈a]�. The remaining partitions are then fused to the 

	𝑈a]� one after another and in each step when a partition is fused, this partition is relabelled 

according to the 	𝑈a]�. Once all partitions are fused, the 	𝑈a]� is assigned as the CoPaM 

matrix	𝑈∗.  If 	𝑈a]�(�) denotes the intermediate matrix after 𝑔 partition is fused, the generation 

of CoPaM can carried out by the following three steps [115]:  
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a) 	𝑈a]�(3) = 	 	𝑈3 

b) 𝑓𝑜𝑟	𝑘 = 2	𝑡𝑜	𝑅 

1. 𝑈" = 𝑅𝑒𝑙𝑎𝑏𝑒𝑙𝑒𝑑	(	𝑈", 	𝑈a]�("s3)) 

2. 	𝑈a]�(") = 3
"
𝑈" + "s3

"
	𝑈a]�("s3) 

c) 	𝑈∗ = 	 	𝑈a]� )  

 

Step 4: Binarisation.   
In general, the binarisation is performed in CoPaM so that each gene is included only in 

one cluster and excluded from other clusters. However, Bi-CoPaM generates a pseudo-

partition matrix, 𝐵∗, with 𝐾 rows corresponding to the number of clusters and 𝑀 column which 

allows a gene to be included in multiple clusters, not assigned to any clusters or assigned to 

only one cluster by assigning a multiple 1s, no 1, or a unique 1 in columns accordingly. Several 

techniques have been proposed to generate the Bi-CoPaM including intersection binarisation 

(IB), maximum value binarisation (MVB), top binarisation (TB), different thresholding 

binarisation (DTB) [119]. In all methods, the binarisation status is monitored using two 

measurements namely 	𝑀�] which denotes the number of genes that belongs to none of the 

clusters and 	𝑀R�8�a that denotes the number of genes that belongs to multiple clusters. For 

instance, in IB approach binarisation leads to 	𝑀R�8�a= 0 and 	𝑀�] ≥ 0 where a gene is 

assigned to a cluster if all partitions map this gene to all that cluster which can be 

mathematically expressed as follow:  

 𝑏a,b∗ =
1										, 			𝑢a,b∗ = 1
0								, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.15) 

 

In TB method, each gene is not only assigned to the maximum membership value cluster, 

but also assigned to other clusters where its membership values are within a definite variance 

𝛿 less than the maximum which leads to 	𝑀R�8�a ≥ 0 and 	𝑀�] = 0. TB method mathematically 

expressed as follow: 

 𝑏a,b∗ =
1										, 			𝑢a,b∗ − 𝑢",b∗ ≥ 	−𝛿	,			𝐾 ≥ 	𝑘 ≥ 	1		𝑘 ≠ 𝑖	
0																										,																																							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.16) 

 

In DTP method, each gene is assigned to the maximum membership value cluster on a 

condition that the value of nearest candidate cluster is as far from the maximum as a minimum 

of a definite variance 𝛿. This technique leads to 	𝑀R�8�a = 0 and 	𝑀�] ≥ 0 when 𝛿 > 0 and 

the value of 	𝑀�] correlates with the value 𝛿. DTP method mathematically expressed as in 

Equation 3.17. 
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 𝑏a,b∗ =
1										, 			𝑢a,b∗ − 𝑢",b∗ ≥ 	𝛿	,			𝐾 ≥ 	𝑘 ≥ 	1		𝑘 ≠ 𝑖	
0																										,																																							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.17) 

 

3.4.6: Unification of clustering results from multiple datasets using 

external specifications (UNCLES) 

Abu-Jamous, et al., [118] proposed a method to examine multiple gene expression datasets 

at once by unifying the clustering results in order to discover a subset of genes that are co-

expressed across all datasets while taking into account one of two types (type A and B) 

external specifications. Type A, is similar to that in Bi-CoPaM where the objective is to identify 

a subset of genes that are consistently co-expressed in all datasets. In contrast, type B allocate 

all datasets into two subsets of datasets, the negative subset,		𝑆s, and the positive subset, 

	𝑆�. The objective of type B is to identify a subset of genes that are poorly co-expressed in 

	𝑆s, while a consistent co-expression of the selected subset of genes can be observed in 	𝑆� 

(See Figure 3.7).  

 

Figure 3.7: UNCLES flowchart with type B of external specifications adapted from [118]  
 

Type B UNCLES is performed in several steps as follow. In the first step, Bi-CoPaM (type 

A) that utilises DTP binarisation with parameters 	𝛿� and 	𝛿s is performed on both subsets of 

datasets 𝑆� and 	𝑆s respectively. Afterwards, the selected genes that resulted from Bi-CoPaM 

on the 𝑆� subset are excluded from the result of 𝑆s. It can be noted that type B take 

advantages of two parameters (	𝛿� and 	𝛿s) compared to one parameter in type A. The 

parameter 	𝛿�	regulates the tightness of clusters in 𝑆� subsets so that the co-expressed genes 

in this subset can be included in the final results and 	𝛿s controls the how tight the clusters 

in	𝑆s subset can be so that its co-expressed genes could be excluded from the final results. 

For instance, at a pair of (𝛿� and 0) will result in creating empty clusters as 	𝛿s = 0 means all 

the genes will be excluded from the final results [120].  
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3.5: Supervised Classification  

In supervised classification, the objective is to design a class predictor to distinguish two 

or more classes of samples from each other (e.g. healthy vs cancerous). The class predictor 

is designed based on the currently available data from different diagnostic classes, which 

refers to training or learning samples. In this procedure, first the classifier is trained, and then 

the classifier is used to find the diagnostic class of new samples [7]. When designing a 

classifier, based on the available information within the training set of data, one needs to 

develop decision rules and mathematical formulas with a particular classifier design strategy, 

so that the classifier can make diagnostic or prognostic predictions. There exists several 

classifier design approaches that can be used for microarray gene expression classification, 

including Linear Discriminate Analysis (LDA) [7], k Nearest Neighbours (k-NN) [121], Support 

Vector Machines (SVM) [122], Multilayer perceptron (MLP) [123], and other types of Artificial 

Neural Networks [7]. 

LDA classification is based on the identification of linear combinations of features that are 

able to best distinguish between two classes of samples. This classification method is closely 

related to the analysis of variance method (ANOVA), and its objective is to maximise the ratio 

of between-class variance for datasets whereby a maximum separability between different 

diagnostic classes can be achieved [7]. k-NN classification is based on the concept of similarity 

measurement (e.g. Euclidian distance or Pearson’s correlation) in which the distances between 

unknown samples (test samples) and known samples is calculated. Subsequently, the class 

membership of unknown samples is assigned based on 𝑘, the closest known samples. One of 

the advantages of k-NN is low computational consumption compared to other classification 

methods [124]. In this thesis, two of the most widely used classifiers, SVM and the MLP neural 

network are investigated in detail. 

3.5.1: Support Vector Machine 

SVM is an efficient classification method typically used for a two-class classification 

problem. SVM chooses a hyperplane, which provides the maximum separation distance in two 

classes [125]. Given some training data, a set of 𝑁 points of the form (𝑋a, 𝑦a): 

 𝐷 = 𝑋a, 𝑦a |	𝑋a ∈ ℝ�, 𝑦a ∈ −1, 1 	 aU3�  (3.18) 

where 𝑦a is either 1 or −1, indicating the class to which the point 𝑋a belongs. Each 𝑋a is a p-

dimensional real vector. The objective is to find a maximum margin hyperplane that divides 

the points having 𝑦a = 1 from those having 𝑦a = −1. A hyperplane can be written by 
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expression 𝑊�𝑋a +𝑏 = 0, where 𝑊 is the normal vector to the hyperplane, 𝑋a is the input 

vector (𝑋a = 𝑋3, 𝑋V, … , 𝑋�), and 𝑏 is the bias. 

If the data is linearly separable, two hyperplanes can be selected, which provides the 

maximum separation distance for two classes (see Figure 3.8). The selection of the hyperplane 

is done in such a way that data is separated into two sections with a defined gap (margin) 

between separated data. The main objective is to maximise this gap to provide better 

classification results [126] .  

 
Figure 3.8: Support vector machine classifier. 

In Figure 3.8, the blue lines are margin lines, and can be mathematically presented by 

Equations 3.19 and 3.20. The red line is the maximum-margin hyperplane that is 

mathematically formulated by Equation 3.21, whose position is in the middle of both margin 

hyperplanes. By using geometry, the distance between margin hyperplanes can be calculated 

by Equation 3.22. 

 𝑊� 𝑋a + 𝑏 = −1 (3.19) 

 𝑊� 𝑋a + 𝑏 = +1 (3.20) 
 𝑊� 𝑋a + 𝑏 = 0 (3.21) 

 𝑑 =
2
𝑊 	V

 (3.22) 

 

As it was discussed earlier, the objective is to maximise the distance between two margin 

hyperplanes which mathematically can be illustrated as Equation 3.23.  
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 𝑚𝑎𝑥
2
𝑊 V 				𝑜𝑟				𝑚𝑎𝑥

1
𝑊

										𝑜𝑟								𝑚𝑖𝑛 𝑊 								𝑜𝑟									𝑚𝑖𝑛
𝑊 V

2
 (3.23) 

 

It is also crucial to prevent data points from falling into the margin. For this reason, the 

following constraint needs to be added: 

 

 
𝑊�𝑋a + 𝑏	 ≥ 1,												𝑦 = 1

	
	𝑊�𝑋a + 𝑏	 ≤ −1, 𝑦 = −1

 (3.24) 

 

Equation 3.25 can be obtained by rewriting the above constraint: 

 

 𝑦a	(𝑊�𝑋a + 𝑏) 	≥ 1, 1 ≤ 𝑖 ≤ 𝑛 (3.25) 
 

In order to solve this optimisation problem that has such a constraint, the Lagrange method 

is utilised so that the constrained become unconstrained [127]. To this end, the problem can 

be stated in the Lagrange format as follows: 

 

 𝐿(𝑊, 𝑎, 𝑏) =
𝑊 V

2
	− 		𝛼a 		𝑦a 𝑊�𝑋a + 𝑏 − 1	

�

aU3

 (3.26) 

 

Gradient with respect to 𝑊 and derivation with respect to 𝑏 will result in: 

 

 ∇¡𝐿(𝑊, 𝑎, 𝑏) = 0	 ⟹ 𝑊 = 		𝛼a	𝑦a𝑋a

�

aU3

 (3.27) 

 
𝜕𝐿(𝑊, 𝑎, 𝑏)

𝜕𝑏
= 0	 ⟹ 		𝛼a	𝑦a = 0

�

aU3

 (3.28) 

 

Afterwards, these are substituted in the Lagrange formula as shown by the following 

equation. 

 𝐿(𝑎) = 		𝛼a −
1
2
	 		𝛼a𝛼b	𝑦a	𝑦b𝑋a𝑋b		

�

bU3

�

aU3

�

aU3

 (3.29) 

Under the constraining conditions: 
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𝛼a > 0
	

		𝛼a	𝑦a = 0
�

aU3

 (3.30) 

 
In Equation 3.29, by using a quadratic program, vector 𝛼a = (𝛼3, 		𝛼V, … , 		𝛼�) is created. It 

is noted that the majority of the 𝛼a values are zero, and the value for 𝛼 is only positive for 

support vectors. This means that one only needs to sum the equation over the support vectors. 

It is important to note that when classifying with SVM, at the same time the dimension of data 

is significantly reduced. As can be seen in Figure 3.8, the data has 15 dimensions while after 

using SVM the data effectively has 3 dimensions (pointed out by filled circle and squares 

shapes). Once the alphas that meet the criteria for support vectors are defined, they can be 

used and plugged into Equation 3.27 to calculate 𝑊. Then, the value for 𝑏 can be calculated 

by the following expression:  

 𝑦]	(	𝑊	. 𝑋a 	+ 𝑏) = 1 (3.31) 
 

Finally, the classifier can be designed as shown below:   
 

 𝑓(𝑋]9¤) = 		𝛼a	𝑦a 𝑋a	 . 𝑋]9¤ + 𝑏
~¥

aU3

 (3.32) 

 
where	𝑠𝑣 is the number of support vectors, 𝑋a	. 𝑋]9¤ is the dot products of the input vector 

sample and the unknown vector.  

If the data is not linearly separable, then the nonlinear SVM is utilised by applying kernel 

trick [128]. In general, when kernel trick is applied on a pair of data, it can implicitly map this 

data to a higher dimensional space so that a linear classifier can be used to separate highly 

non-linear data. Training and classification process in nonlinear SVM is similar to that in linear 

SVM. The only difference between linear and nonlinear methods is that the nonlinear kernel 

function is used in nonlinear SVM. It is noted that when kernel trick is used the coordinates 

of the data in the higher dimensional space is not computed but rather the inner products of 

the data pairs is calculated which eliminates the computational power required for explicit 

computation of the coordinates [128,129]. In the case of non-linearly separable data the 

classifier can be designed as follows:  

 

 𝑓(𝑋]9¤) = 		𝛼a	𝑦a𝑘 𝑋a	. 𝑋]9¤ + 𝑏
~¥

aU3

 (3.33) 
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where 𝑘 𝑋a	. 𝑋]9¤  is a kernel function such as a polynomial, Gaussian or Hyperbolic tangent 

[130].    

3.5.2: Multilayer Perceptron (MLP) Artificial Neural Network 

• Single layer perceptron: 
 

Artificial neural networks mimic biological neural networks like that of the human brain 

[131]. In biology, the fundamental unit of a biological neural network is a neuron, and in 

artificial neural networks the fundamental unit is an artificial neuron. One of the widely used 

models for an artificial neuron is McCulloch-Pitts (MP) model [132]. The model is constructed 

in such a way that it has one input layer of MP neurons feeding forward one output layer of 

neurons, referred to as a perceptron (see Figure 3.9). Each input has a weight (𝑤). In a 

perceptron, an initially weighted sum of all its inputs is calculated and fed to a single variable 

function, which is also known as the activation function. The activation function then uses the 

information from the weighted sum to decide to fire or otherwise [133]. In other words, in its 

simplest form a perceptron is a network that can classify linearly separable patterns. To this 

end, initially the network should be trained in order to learn the values of the weights and 

biases to correctly respond to each input vector with the corresponding target classes.  

Figure 3.9 shows a perceptron with 𝑚 inputs (𝑥 3, 	𝑥 V, 	𝑥 §, … , 𝑥 R), and corresponding 

synaptic weight for each input (	𝑤3, 	𝑤V, 	𝑤§, … , 	𝑤R), a bias (𝑏), activation function (𝑓), and 𝑦 

is the output and can be mathematically presented by Equation 3.34.  

 

 𝑦 = 𝑓 𝑥a	𝑤a

R

aU3

+ 𝑏 = 𝑓(𝑥𝑤� + 𝑏) (3.34) 

 
Figure 3.9: A perceptron with m inputs and a bias. 
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Table 3.1 depicts some commonly used activation functions, as well as their formulations, 

and the illustrations of the signal shapes.  
Table 3.1 Activation functions 

Function 

name 

Formulation Signal shape 

 
 
Step 

 

 

𝑓 𝑥 = 0, 𝑥 < 0
1, 𝑥 ≥ 0 

 
 
 
Signum  

 

 

𝑓 𝑥 = −1, 𝑥 < 0
1, 𝑥 ≥ 0 

 
 
 
Sigmoid 

 

 

𝑓 𝑥 =
1

1 + 𝑒s©:
 

 

 
 
 
Hyperbolic 
tangent 

 

 

𝑓 𝑥 = tanh 𝑥 =
2

1 + 𝑒sV:
− 1 

 
 

For classification purposes, initially the network should be trained in order to learn the 

values of the weights and biases in order to minimise the error rate (error rate = desired 

output - actual output) [7]. A perceptron convergence algorithm can be used to train a single 

layer perceptron (SLP). In this algorithm the problem is solved in several steps that use the 

following parameters [134].   
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Input vector                    𝑥 𝑛 = [+1, 𝑥 3(𝑛), 	𝑥 V(𝑛), 	𝑥 §(𝑛), … , 𝑥 R(𝑛)]
� 

Weight vector                 	𝑤 𝑛 = [𝑏, (𝑤3 𝑛 , 	𝑤V 𝑛 , 	𝑤§ 𝑛 , … , 	𝑤R 𝑛 ]�       

Actual output                  𝑦(𝑛) = 𝑓 	𝑤a 𝑛 	𝑥a 𝑛R
aU4 = 𝑓(𝑤� 𝑛 𝑥(𝑛)) 

Desired output                 𝑑 𝑛 = +1, 𝑥 𝑛 ∈ 𝑐𝑙𝑎𝑠𝑠1
−1, 𝑥 𝑛 ∈ 𝑐𝑙𝑎𝑠𝑠2  

where 𝑛 denotes the epoch number for applying the algorithm. It is noted that the input for 

bias (𝑏) is equal to +1, and referred to as a synaptic weight of 𝑏 in the weight vector. In the 

output, the summation operator starts at zero and 	𝑤4 𝑛  represents the weight of bias. The 

task of learning is done through four or five steps as follow: 

 

1. Initialisation of weight vector in which 𝑤 𝑛 = 0. Define the number of epochs to be 

performed (𝑛 = 1,2, 3… , ℎ). 

2. Activation of perceptron using input vector 𝑥	(𝑛) 

3. For each instance in the input vector (with known class), the activation output of the 

signum function is computed using 𝑦	(𝑛) 

4. Updating the weight vector using 𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜂 𝑑 𝑛 − 𝑦 𝑛 𝑥 𝑛 , where 𝜂 is 

the learning rate parameter.  

5. If the epoch number is less than ℎ, increment epoch by one and go to step 2, otherwise 

stop.  

 

• Multilayer perceptron: 
 

The feedforward connection of at least two perceptrons leads to the formation of a 

multilayer perceptron (MLP) which can be used for classification of data even if the data is not 

linearly separable [135].  Each perceptron is fully connected to all perceptrons in the next 

layer, and a bias presents for each perceptron. In the MLP structure, the first and last layers 

are called input and output layers respectively, because they represent inputs and outputs of 

the overall network. The remaining layers are called hidden layers. Figure 3.10 illustrates a 

typical MLP configuration with two hidden layers. In this configuration, the input layer consists 

of 𝑁 input features. The first hidden layer consists of 2 perceptrons, and each receives 𝑁 

inputs from the input features. The second hidden layer consists of 3 perceptrons, and each 

perceptron is fed by 2 inputs which are the outputs from the first hidden layer. Finally, the 
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output layer consists of one perceptron that has 3 inputs from the second hidden layer’s 

outputs. All perceptrons have bias 𝑏. 

 
Figure 3.10: MLP Artificial neural network. 

An activation function should meet several criteria, including being differentiable, 

monotonic, and continuous in order to be used in MLP learning [136]. This criterion is 

important because in later stages of training, one can apply gradient descent to find an 

optimum solution. Therefore, it is important to remember that both step and sign activation 

functions cannot be used. Between the hyperbolic tangent and sigmoid functions, the latter 

one is most widely used [137].  

The training (learning) is usually done by error back propagation algorithms, which are 

based on error correcting learning rules [138]. Compared to SLP, where all inputs are directly 

connected to the neuron that produces the output, in MLP the inputs have indirect effects on 

the output. The main idea in MLP is to calculate the error rate at the output layer (layer L) 

and then back propagate them to the perceptron in the previous layer (L-1), after which the 

weight is updated accordingly to minimise the errors. The back propagation algorithm is 

performed through several steps. Initialisation of weight vectors is the first step, and the 

number of epochs to be performed (𝑛 = 1,2, 3… , ℎ) is also defined at this step. The second 

step is the forward computation step, where the output activation functions for each layer and 

the error for the output layer is calculated. In this respect, we denote 𝑙 for layer (1 ≤ 𝑙 ≤ 𝐿), 
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𝑖 for inputs (0 ≤ 𝑖 ≤ 𝑑8s3), and 𝑗 for outputs (0 ≤ 𝑗 ≤ 𝑑8). For the first step the objective is to 

determine the parameters of 𝑤ab
(8) as the synaptic weight of neuron	𝑖 in layer 𝑙 [134]. The 

function that is used to calculate the output signal for each layer (𝑥b
(8)) is shown by Equation 

3.35.  

 

 𝑦b
(8) 𝑛 = 𝜃(𝑠b

8 ) = 𝜃 𝑤ab
(8) 𝑛 𝑦a

(8s3) 𝑛
	±@²³

a

 (3.35) 

 

where 𝜃 is the activation function (sigmoid), 𝑛 is the epoch number and 𝑦a
(8s3) is the output 

activation function of neuron	𝑖 in the previous layer 𝑙 − 1. To solve the problem, the stochastic 

gradient decent (SGD) method can be applied. The error can be defined as a function of 

weight vector 𝑒(𝑤ab
(8)).  Therefore, to apply SGD we need the gradient of 𝑒(𝑤ab

(8)) as follows: 

 

 ∇𝑒 𝑤ab
8 = ∇𝑒 𝑊 =

𝜕𝑒 𝑊

𝜕𝑤ab
8  (3.36) 

 

In order to acquire the gradient of the error, we can rewrite ∇𝑒 𝑊  as follows: 

 

 
𝜕𝑒 𝑊

𝜕𝑤ab
8 =

𝜕𝑒 𝑊

𝜕𝑠b
8 ×

𝜕𝑠b
8

𝜕𝑤ab
8  (3.37) 

where  
´~µ

@

´¤¶µ
@ = 𝑦a

(8s3), the value of which is already calculated by Equation 3.35. Therefore, 

one only needs to calculate ´9 ¡

´~µ
@ = 𝛿b

(8). To calculate the 𝛿 for the final layer where 𝑙 = 𝐿 

and 𝑗 = 1 the following expression is used: 

 

 𝛿3
(·) =

𝜕𝑒 𝑊

𝜕𝑠3
·  (3.38) 

 

For the final layer, it is noted that using the mean squared error, 𝑒 𝑊 = (𝑥3
(·) − 𝑦")V, 

where 𝑦3
(·) = 𝜃(𝑠3

· ) and 𝑦" is a constant and presents the desired value. Therefore, 𝛿	for the 

output layer can be computed by the following expression: 
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 𝛿3
(·) = 𝜃¸(𝑠3

· ) (3.39) 
 

where 𝜃¸ is the derivative of the sigmoid activation function [134].  

The third step, backward computation, aims to calculate the error of previous layers 

through back propagation using the error from the output layer using the following 

equations: 

 

 𝛿3
8s3 =

𝜕𝑒 𝑊

𝜕𝑠a
8s3 =

𝜕𝑒 𝑊

𝜕𝑠b
8 ×

𝜕𝑠b
8

𝜕𝑥a
8s3 ×

𝜕𝑥a
8s3

𝜕𝑠a
8s3

	± @

bU3

 (3.40) 

 𝛿3
8s3 = 𝛿b

(8)×𝑤ab
8 ×𝜃¸(𝑠a

8s3 )
	± @

bU3

 (3.41) 

 

Finally, the weights are updated using equation 3.42: 

 

 𝑤ab
8 = 𝑤ab

8 − 𝜂𝑥a
(8s3)𝛿b

8  (3.42) 
 

This step terminates an epoch, so that if the number of epochs is less than ℎ, steps 2 and 

3 are repeated, otherwise the final value of 𝑤ab
8  is returned as the final weights.  

Although there are several training algorithms based on back-propagation, such as gradient 

descent [139] , conjugate gradient [140], Bayesian regularisation [141], resilient [142], scaled 

conjugate gradient [143], and Levenberg-Marquardt [144], the last one is the most widely 

used. 

3.6: Feature Selection  

During microarray analysis, the number of genes is significantly higher than the number of 

samples [12,13] and classification to a high level of accuracy is challenging, due to large 

number of genes and small sample size [14,15]. This concept refers to as the course of 

dimensionality which is a term that was introduced by Belham to explain the challenge initiated 

by the exponential expansion in volume related to adding extra dimension to Euclidian space 

[145]. In order to overcome this problem, gene selection mechanisms have been introduced, 

by which only the most important genes are selected and used for classification purposes [16–

19]. There are several advantages to this process of minimising the number of genes, and 

only selecting the meaningful genes which are more predictive during classification. By having 
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fewer genes, not only is the processing time for classification significantly decreased, but the 

chance of misclassification is also reduced. Furthermore, inputting a high number of genes 

into the classifier can cause the classifier to be over-fitted [146].  

Gene selection methods, based on their interaction with the classifier, can be categorised 

into three approaches: filter methods, wrapper methods, and embedded methods [146,147]. 

Filter methods assess the relevance of genes by only looking at the general characteristics of 

the data, and ignoring the impact of selected genes on the classification performance [148]. 

Wrapper gene selection initiates a search procedure in the space of possible gene subsets. 

The selected genes are then evaluated based on their power to improve classification accuracy 

[149–151]. In the embedded gene selection method, feature selection is linked to the 

classification stage, but this connection is much stronger than in the wrapper method. This is 

because gene selection in embedded methods is included in the classifier construction, and 

the classifier is used to provide a criterion for feature selection [152,153] (see Figure 3.11). 

More recently, evolutionary algorithms have been utilised for gene selection within the 

framework of wrapper methods [154,155].  

 
Figure 3.11: Feature selection methods. 

Each gene selection approach has advantages and disadvantages [146]. For instance, 

although the filter method is simple and computationally efficient, its performance lags behind 

other approaches. This is because the classifier performs independently, and is not involved 

in the selection of genes [156]. Conversely, while the wrapper and embedded methods, which 

incorporate the gene selection task into the classification task, can achieve higher classification 
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accuracy, they suffer from scalability problems due to their high computational cost and are 

not practical for large datasets [157,158]. 

3.7: Overfitting  

As discussed in Section 3.5, in a classification task there exist two main phases namely 

training and testing.  In the training phase, the classifier model is build using training data 

and in the second phase the model is evaluated using test data. It is important to note that 

the test data should not be used in the training phase, otherwise the result of validation would 

be optimistic. The main aim when building a classifier model is not only to perform well on 

the training data, but to be able to generalise this model to perform well on the test data and 

other unseen data [159]. Overfitting is a phenomenon that occurs when a model is too 

complex (too many parameters) that the model memorises the training data rather than learn 

to generalise from the data. In other word, overfitting happens when fitting the data in the 

model more than it is warranted [160].  

As illustrated in Figure 3.12, initially as the number of parameters in a model increases the 

error rate of classifier decreases for both training and test data. However, after the 5th 

parameter is included in the model, the error rate for test data starts to increase while the 

training data exhibits a low classification error. Therefore, if overfitting takes place the model 

performs very well on the training data, however this model would have a poor prediction 

power when applied to the test data due to the lack of generalisation [161].  The impact of 

overfitting could be in a higher magnitude on the classification performance for unseen data 

if the training data consists of stochastic noise.  

 
Figure 3.12: Train and test performance when changing the number of parameters in the classifier 

model adapted from [162]. 
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Overfitting can be prevented if methods such as hold out validation, k-fold cross validation, 

or leave one out cross validation (LOOCV) are implemented in the model. These methods 

basically determine the point where further training will not result in enhancing the 

generalisation power of the classifier.  In general, in a cross validation task the data is split 

into two parts where the training is done on one part and validation is performed on the other 

part. Therefore, the principle of cross validation emphasis on separating a part of data from 

the training stage to validate the performance of the model on this part of data which is not 

seen by the model before. Cross validation is widely accepted in machine learning society 

where it is being use for model selection [163].  

In holdout validation, the data is split into two parts (e.g. 70% - 30%). The training is 

usually performed on the higher chunk of data (70% of data), then the model is evaluated on 

the remaining part (30 % of data). Since splitting the data is a random process, one usually 

tend to repeat the splitting several times and consequently repeating training and evaluation 

several times. Then report the final accuracy as the average accuracies that obtained from all 

repetitions [164].   

K-fold cross validation is commonly used technique for assessing the prediction 

performance of a classifier model. In this method data is split into k equal chunks where the 

training is performed on k-1 chunks and the testing is carried out on the remaining chunk. 

This process is repeated k times, where each time a new chunk is chosen for test phase and 

the remaining k-1 chunks for training. Therefore, testing is performed on all chunks separately. 

The final accuracy of the model is determined by averaging the accuracies in each iteration. 

Similar to hold out validation, to acquire a robust estimate of the classification performance 

the k-fold cross validation should be ran multiple times while reshuffle the data each time. 

Then the final estimate is reported as the average accuracies obtained in each iteration. 

LOOCV is a special case of k-fold cross validation where k is equal to the number of samples 

[164]. 

The K-fold cross validation can be used for model selection. In the above, the cross 

validation using k-fold cross validation was discussed. In a model selection task using k-fold 

the task is somewhat similar to holdout method whilst here the splitting of data refers to a 

“three-way holdout”.  In this approach, the data initially is split into two parts namely test and 

training set. The test set is preserved for the final evaluation of the model. The training set is 

then used for k-fold cross validation. Once the training and validation is done, the performance 

is accessed based on the test data [163].  
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3.8: Summary 

In this chapter, the steps required for microarray analysis were described including: pre-

processing, clustering, and classification (see Figure 3.13). It was explained that the design 

step is a crucial step towards a successful analysis. Then the importance of pre-processing of 

microarray data was explored, and it was concluded that, first, systematic variation of 

microarray images should be removed; and the importance of transformation and 

normalisation of the data before starting the main analysis was pointed out. Furthermore, 

unsupervised and supervised classification methods were described. It was elaborated that 

unsupervised analysis can provide useful information for data visualisation and the 

interpretation of experimental results; several clustering methods such as K-means, C-means, 

hierarchical, SOM, Bi-CoPam and UNCLES clustering methods were investigated. Then the 

importance of supervised classification methods in class prediction was mentioned, and 

methods such as SVM and the MLP artificial neural network were briefly explained. Afterwards, 

the vital role of feature selection before classification was investigated. Finally, the pitfalls of 

overfitting and how to account for it were discussed  

 

 
Figure 3.13: Microarray data analysis. 
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Chapter 4: Effects of Data Clustering Prior to Gene 

Selection on Cancer Classification 

 

 

 

 

4.1: Introduction 

In order to enhance classification performance, two main areas including gene selection 

and classifier design are important to be investigated. Furthermore, it is referenced from the 

literature that grouping data (clustering) has also been implemented for microarray data 

analysis in a number of investigations [165]. The main characteristic of such approaches is 

that there is no prior information on the group structure of the data, and frequently used in 

microarray analysis to facilitate the visual display of experimental results.  

In this chapter, the effects of gene clustering prior to gene selection on classification 

accuracy is investigated. In this context, the aim of clustering applications is to partition	𝑛 

genes (total number of genes) with 𝑚 dimension (𝑚 sample) into a given number of clusters. 

Once the data is clustered, a set of genes is selected based on gene ranking across all clusters 

for classification purposes. In order to fully investigate the effects of clustering on classification 

accuracy, not only are conventional clustering methods such as K-means, fuzzy C-Means and 

hierarchical methods used, but some optimisation algorithms are also utilised including PSO, 

GA, and COA for clustering purposes. Furthermore, a novel optimisation algorithm called COA-

GA is proposed for clustering tasks.  
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4.2: Optimisation Based Clustering Techniques  

In order to investigate the effects of optimisation based clustering methods on classification 

performance, three optimisation algorithms, specifically GA [25], PSO [166], and COA [24] 

were used. A new hybrid optimisation algorithm, COA-GA, was also developed, merging the 

recently invented COA and the traditional GA algorithms for data clustering. In the following 

subsections, first the design of the cost function for clustering tasks will be given. Then, details 

of optimisation algorithms including GA, PSO, COA will be described. Finally, the newly 

proposed hybrid COA-GA algorithm are explained.  

4.2.1: Proposed Cost Function  

In an optimisation problem, the optimisation algorithm iterates until a fitness function (cost 

function) conforms to a threshold set beforehand. Therefore, in order to use the optimisation 

algorithm for the purpose of clustering microarray gene expression data, a cost function needs 

to be defined with the objective to minimise the distance between data within each cluster, 

while maximising the distance between clusters. The design of the cost function is depicted 

below. 

 

1. An evolutionary algorithm randomly creates an initial population from microarray data 

(POP). 

𝑃𝑂𝑃 =
𝑋3,3 ⋯ 𝑋3,�
⋮ ⋱ ⋮

𝑋R,3 ⋯ 𝑋R,�
 

where 𝑚 is the population size which is supplied by evolutionary algorithm, and 𝑝 is 

the product of number of samples (𝑠) in the data set and number of clusters (c). 

2. For each row of the POP matrix steps 3 to 9 are repeated. 

3. Candidate centres are acquired by reshaping a row of the POP matrix with dimension 

of 𝑐	×	𝑠 as follows:  

𝐶𝑎𝑛𝑑𝑖𝑡𝑎𝑡𝑒𝐶𝑒𝑛𝑡𝑒𝑟𝑠 =
𝑋3,3 ⋯ 𝑋3,~
⋮ ⋱ ⋮
𝑋¿,3 ⋯ 𝑋¿,~

 

4. Then the distances between each increment of data (gene) and candidate cluster 

centres are calculated: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑋3,3 ⋯ 𝑋3,¿
⋮ ⋱ ⋮
𝑋a,3 ⋯ 𝑋a,¿
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       where 𝑖 is the number of genes. 

5. “Minimum values” for each gene in the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 matrix is found, thereby a gene will 

be assigned to the cluster which has the minimum value for that gene. 

6. Distance between all clusters is calculated and assigned to variable B. 

7. Distance between all clusters is calculated as follow. First by using “dist” function of 

MATLAB the Euclidian distance between all clusters are calculated. This produce a 

distance matrix whose dimension is 𝑐	×	𝑐. Then the upper triangular part of this matrix 

is selected and the sum of columns is calculated which results in a vector that has 𝑐 

elements. Finally, the sum of this vector is computed which results in a single value. 

This value is assigned to variable 𝐵. 

8. In order to ensure each suggested cluster centre contains at least one gene, a term 

called “𝑝𝑒𝑛𝑎𝑙𝑡𝑦” is defined. If a cluster contains at least one gene, this term will 

become zero, otherwise it will be 10e4 (essentially to skip unsuitable cluster centres). 

9. Finally, the cost for the selected row is calculated as below: 

 𝐶𝑜𝑠𝑡 = 𝑠𝑢𝑚 𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑣𝑎𝑙𝑢𝑒𝑠 +
1
𝐵
+ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (4.1) 

10. Since steps 3-9 are repeated 𝑚 times, a matrix containing cost values whose dimension 

is 𝑚×1 will be acquired and return. 

 

The objective is to supply this cost function to an evolutionary algorithm whereby the 

chosen population by the algorithm can be examined in terms of their profit value. The cost 

function will be updated by each iteration of algorithm. Through some initial experiments, it 

was observed that the cost function could be minimised up to 100 iterations beyond which no 

further cost minimisation was observed. Therefore, in order to control the computational time, 

it was decided to run all optimisation algorithms 100 times in this research and compare their 

performances.  

4.2.2: Genetic Algorithm (GA) 

The genetic algorithm is an evolutionary computing method that was first introduced by 

John Holland in 1975 [25]. Since then, this algorithm has been used for solving many 

computational problems that require searching through a huge number of possibilities for 

solutions. By using a genetic algorithm, many different possibilities are explored 

simultaneously in an efficient way. The foundation for the method comes from the behaviour 

of living organisms in nature. In biology, an enormous set of possibilities lies in a set of possible 

genetic sequences, and the desired solutions are highly fit organisms that can survive and 



72 
 

reproduce in their environments. In a genetic algorithm, a potential solution to the problem is 

named as a chromosome. In the first step of this algorithm, an initial set of chromosomes, 

referred to as initial population is selected. From this population, some individuals are 

randomly opted to transfer to the next generation without any change occurring to them 

through a natural selection process [167]. 

In the selection method, a fitness function (cost function) is used for evaluating the quality 

of every chromosome. According to the principles of evolution, chromosomes with higher 

fitness scores tend to remain for producing offspring [168]. Therefore, the probability that an 

individual is transferred to the next generation is defined by how good its fitness function is. 

Each gene in the chromosome represents a specific characteristic. If all the chromosomes are 

transferred to the next generation, the next generation’s properties will be identical to the 

previous generation’s properties. However, in reality, this is not the case. In fact, two events 

take place in chromosomes. The first event is mutation, where the random substitution of 

some nucleotides within each chromosome occurs. The role of mutation is to increase the 

possibility of exploring untouched areas of the design space, preventing premature 

convergence. The number of genes that undergo mutation is very low (less than 10%). 

However, this random variation is really important. The second event is crossover, where the 

beginning of one chromosome sticks to the end of another chromosome (genetic 

recombination). The number of genes that undergo crossover is higher than that for mutation 

[169]. The cost minimisation plot is acquired to visualise how GA minimises the cost function 

over 100 iterations. The pseudo-code of GA is given below.  

 

1. Initialise population. 

2. Calculate fitness. 

3. Sort fitness value of the population. 

4. Choose the best fit solution to be the parental pair for reproduction. 

5. Crossover the chromosomes at a random position using single point crossover. 

6. Mutation. 

7. Evaluate cost for the new offspring’s chromosomes and mutated chromosomes. 

8. If the number of iterations is less than 100, go to step 2. 

9. Save the best profit so far as the ‘best answer’. 

4.2.3: Particle Swarm Optimisation (PSO) 

Particle Swarm Optimisation was first introduced by Eberhart in 1995, and was intended 

for simulating the social behaviour of the movement of organisms in a bird flock or fish school. 
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This kind of action is an automatic and interactively updated system [166]. PSO has already 

been implemented in many research areas, such as function optimisation, artificial neural 

networks, and fuzzy system control.  

Particle swarm optimisation (PSO) is a method that optimises an issue by iteration, which 

tries to achieve the best result for a given function. In PSO algorithms, a population (or swarm) 

consists of several particles or candidate solutions. These particles are moved around in the 

search space based on its own memory and information received from other particles in order 

to find the best solution [170]. Like genetic algorithm, a fitness function is used for 

determining the fitness value of each particle. The fitness value also needs to be optimised. 

In the progress of movement, the position of each particle is adjusted by the change of 

velocity, which is based on its own experience and particles around it. The velocity represents 

the rate at which a particle changes its position. This kind of movement can be represented 

as:  

 𝑣
	
𝑖 𝑘 + 1 = 𝑣

	
𝑖 𝑘 + 𝛾

	
1𝑖 𝑝

	
𝑖 − 𝑥

	
𝑖 𝑘 + 𝛾

	
2𝑖(𝐺 − 𝑥

	
𝑖 𝑘 ) (4.2) 

 𝑥
	
𝑖 𝑘 + 1 = 𝑥

	
𝑖 𝑘 + 𝑣

	
𝑖 𝑘 + 1  (4.3) 

 

where, 𝑣 and 𝑥	are the velocity and position of 𝑖𝑡ℎ particle; 𝑘 represents irritation level; 𝑝 is 
the best position found by 𝑖𝑡ℎ particle (personal best); 𝐺 accounts for the best position found 

by the swarm (global best); 𝛾
	
1𝑖	 and 𝛾

	
2𝑖 are random numbers on the interval [0,1] applied 

to 𝑖𝑡ℎ particle. The above movement iteration will stop after a set number of times [171]. The 

cost minimisation plot is acquired to visualise how PSO minimises the cost function over 100 

iterations. The pseudo-code of PSO is given below.  

 
1. Initialise population (n particles).  

2. Calculate the fitness of each particle. 

3. Position of the best-fit particle is chosen as the global best position.  

4. Move all of the particles towards the global best position.  

5. For each particle, if (fitness of current position < fitness of personal best) then personal 

best = current position.  

6. Update personal best position for each particle.  

7. Global best fitness value is retained.  

8. If number of iteration is less than 100, go to step 2. 

9. Save the global best from 100 iterations as the ‘best answer’. 
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4.2.4: Cuckoo Optimisation Algorithm (COA) 

COA is a population-based optimisation algorithm that was proposed by Rajabion in 2011 

[24] that was inspired by the life of the cuckoo bird. The cuckoo’s behaviour in laying eggs is 

unique in the sense that a cuckoo never builds its own nest when laying eggs, and instead 

uses other birds’ nests to lay its eggs. In doing so, if the cuckoo’s eggs are similar to the host’s 

eggs, it is likely that the cuckoo’s eggs will hatch and become mature cuckoos. If the cuckoo’s 

eggs are discovered by the host bird, the foreign eggs will be destroyed. In the COA algorithm, 

each egg in a nest represents a potential solution and each cuckoo represents a successful 

new solution. The objective of the COA is to find the nest with the highest probability of an 

egg’s survival. Therefore, the more eggs that survive after being placed in a host nest, the 

greater the level of profit assigned to that nest. When the time comes for the migration of the 

newly matured cuckoos, they will move towards the best nest with the highest survival rate, 

and lay eggs within a radius of it. This radius is known as the egg laying radius (ELR), and 

can be calculated by Equation 4.4. 

 

 ELR	 = α	×
Number	of	current	cuckoo¸s	eggs

total	number	of	eggs
×	 var

 
high − var

	
low  (4.4) 

 

where 𝛼 is an integer, intended to control the maximum value of ELR, 𝑣𝑎𝑟
	

𝑙𝑜𝑤 and 𝑣𝑎𝑟
 

ℎ𝑖𝑔ℎ 

are respectively the minimum and maximum values in the gene expression dataset.  

Around 10 % of the laid eggs are sufficiently dissimilar to the nest’s eggs and are killed by 

the host bird; the rest would remain until they turn into mature cuckoos and form societies. 

Each society has its own habitat area to live in [172]. When the time for egg laying approaches 

for newly matured cuckoos, they migrate towards the best habitat among all societies (goal 

point). As illustrated in Figure 4.1, when cuckoos move towards the goal point they can deviate 

by 𝜙, where 𝜙 is a number between Ð
	Ñ
	𝑎𝑛𝑑 -	Ð

	Ñ
, in which case they can only fly λ amount of 

the distance between the current habitat and the goal point (d) in that iteration, where 𝜆 is a 

random number between 0 and 1 [24].  
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Figure 4.1: Immigration of a cuckoo towards goal habitat. 

When all cuckoos have migrated toward the goal point and new habitats have been 

specified, each cuckoo is allocated some eggs. Then after the number of eggs dedicated to 

each bird is considered, an egg laying radius (ELR) is calculated for each cuckoo, and this step 

concludes one iteration in the algorithm. In the new iteration, the new egg laying process 

starts. Due to the fact that there is always equilibrium in any birds’ population, a number 

𝑁
	

𝑀𝑎𝑥	is provided in the COA algorithm to control and limit the maximum number of live 

cuckoos in the environment [173]. After some iterations, all the cuckoo populations move to 

the optimum habitat. This habitat will produce the maximum profit, and there will be the least 

egg losses in this best habitat [173]. The functional immigration formula in COA is defined as: 

 𝑋
	

𝑁𝑒𝑥𝑡ℎ𝑎𝑏𝑖𝑡𝑎𝑡 = 𝑋
	

𝐶𝑢𝑟𝑟𝑒𝑛𝑡ℎ𝑎𝑏𝑖𝑡𝑎𝑡 + 𝐹×(𝑋𝑔𝑜𝑎𝑙𝑝𝑜𝑖𝑛𝑡 − 𝑋
	

𝐶𝑢𝑟𝑟𝑒𝑛𝑡ℎ𝑎𝑏𝑖𝑡𝑎𝑡)  (4.5) 

 

where 𝐹 is a parameter that causes deviation. The cost minimisation plot is acquired to 

visualise how COA minimises the cost function over 100 iterations [174]. The COA algorithm 

follows the steps listed below [24].  

1. Initialise cuckoo habitats with some random points in the profit function.  

2. Dedicate some eggs to each cuckoo.  

3. Define ELR for each cuckoo.  

4. Allow cuckoos to lay eggs inside their corresponding ELR.  

5. Kill the eggs that are recognised by host birds (if two eggs are in the same position).  

6. Let eggs hatch and chicks grow.  

7. Evaluate the position of each newly grown cuckoo (profit value). 

8. Limit cuckoos' maximum number in the environment, and kill those who live in the 

worst habitats.  



76 
 

9. Assign the current maximum profit using the cuckoo with highest profit value. 

10. Cluster cuckoos (using k-mean), find the best group, and select goal habitat.  

11. Let new cuckoo population immigrate toward goal habit.  

12. Get the position of all cuckoos and their profit values and update maximum profit. 

13. If the number of iteration is less than 100, go to step 2. 

14. Save the positions of cuckoo with highest profit value as the ‘best answer’. 

 

In the COA algorithm like other optimisation algorithms there are few parameters that are 

important to set as follow. Default values are used.   

• Number of initial population. 

• Maximum number of cuckoos to control how many cuckoos can live at the same 

time in each iteration. 

• Minimum number of eggs for each cuckoo. 

• Maximum number of eggs for each cuckoo. 

• λ variable to controls distance between the current habitat and the goal point. 

• Radius coefficient to control the egg laying radius. 

• Number of k-means clusters. 

 

4.2.5: Proposed COA-GA Algorithm for Clustering  

A new algorithm is developed by hybridising COA and GA. Figure 4.2 shows the flowchart 

of the COA-GA algorithm. First, the COA chooses the best population (pop 1) as discussed in 

Section 4.2.4, and the profit value (fitness value) is calculated for this population. 50% of the 

chosen population undergoes the crossover operation, which is intended to prevent premature 

convergence as it creates more solutions in a given population [169]. After crossover, a 20% 

mutation is applied to the population, which increases the chance of discovering a better 

solution by maintaining diversity within the population. Crossover and mutation are important 

aspects of GA, increasing the possibility of exploring untouched areas of the solution space in 

each iteration of the algorithm, which COA alone could not reach. The output of these 

processes is termed population 2 (pop 2), and the profit value is determined for this 

population. 

Pop 2 and pop 1 profit values are compared, and the population with the higher profit value 

is retained (population with better positioning) and input into the next iteration of the 

algorithm. This process is repeated 100 times, refining the cost function with each iteration. 
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Figure 4.2: Flowchart of COA-GA. 

4.3: Gene Ranking and Selection  

As it was discussed in Section 3.6, gene selection is an essential task in microarray data 

analysis, due to the fact that only small numbers of genes are informative for each cancer 

type, and the presence of other genes reduces the classification accuracy. In this chapter, in 

order to facilitate a quick search and therefore reduce the computational time, the filter 

method of gene selection is used to score the genes. In this method, gene scoring is performed 
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by utilising a signal-to-noise ratio (SNR) criterion. The general expression for SNR is shown in 

Equation 4.6. 

 𝑆𝑁𝑅 = 	
𝑆𝑖𝑔𝑛𝑎𝑙
𝑁𝑜𝑖𝑠𝑒

= 	
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 (4.6) 

There are several SNR-based ranking methods such as the signed Fisher discriminant ratio 

(Signed.FDR), Fisher discriminant ratio (FDR), symmetric divergence (SD), and T-statistics 

that can be used for gene ranking [118, 188, 189]. A summary of these methods is provided 

below. 

Name Criterion   

 

Signed-FDR 
𝜇+𝑖 − 𝜇

−
𝑖

𝜎+𝑖 + 𝜎
−
𝑖
 

 

(4.7) 

 

FDR 
𝜇+𝑖 − 𝜇

−
𝑖
2
	

𝜎+𝑖
2
	 + 𝜎

−
𝑖
2
	

 
 

(4.8) 

 

SD 
𝜎+𝑖

2
	

𝜎
−
𝑖
2
	

+
𝜎
−
𝑖
2
	

𝜎+𝑖
2
	

− 1 +
1
2

𝜇+𝑖 − 𝜇
−
𝑖
2
	

𝜎+𝑖
2
	 + 𝜎

−
𝑖
2
	

 
 

(4.9) 

 

T-test 
𝜇+𝑖 − 𝜇

−
𝑖

𝑟+𝑖
2
	

𝑁� +
𝑟
−
𝑖
2
	

𝑁s

 
 

(4.10) 

 

where	𝜇+𝑖 and 𝜎+𝑖 are the mean and standard deviation respectively of the class (I) of gene 𝑖, 

and 𝜇
−
𝑖  and 𝜎

−
𝑖  are the mean and standard deviation of the class (II) of gene 𝑖 respectively. 

𝑁� and 𝑁s are the number of samples in class (I) and class (II) respectively. 𝑟+𝑖
2
	  and 

𝑟
−
𝑖
2
	  can be calculated based on following equations:  
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In this chapter, after clustering is performed the genes in each cluster were ranked using 

symmetric divergence method (See Equation 4.9) which is a filter based ranking technique. 

The total number of best genes to be selected from all clusters is set to be 𝑁
	
𝑔 = 25. The 

number of best genes to be selected from each cluster is calculated using Equation 4.13. 

 𝑁𝑘𝑔 = 𝑟𝑜𝑢𝑛𝑑 (𝑁
	
𝑔 − 𝑞)

𝐹
	

𝑠𝑐𝑜𝑟𝑒(𝑋
	
𝑖, 𝑡)

R
	
"

aU3
𝐹

	
𝑠𝑐𝑜𝑟𝑒(𝑋

	
𝑖, 𝑡)

R
aU3

+ 1 (4.13) 

where 𝑁𝑘𝑔	is the number of best genes selected from cluster 𝑘, 𝑁
	
𝑔 is the total number of best 

genes to be obtained from all clusters,	𝑞 is the number of clusters, 𝑚 is the total number of 

genes, 𝑚
	
𝑘	is the number of genes in cluster 𝑘 and 𝐹

	
𝑠𝑐𝑜𝑟𝑒 𝑋

	
𝑖, 𝑡  is the criterion used for gene 

ranking (Equation 4.9). In this study, at least one gene is selected from each cluster. In this 

respect, the number of clusters is subtracted from the total number of required genes and 

then the number of genes in each cluster is added by one [165]. 

4.4: Classification and Performance Evaluation  

In most cases, before classification the data is divided into two partitions: test and training 

sets. For both the training and test data, hold out validation is applied to get accurate 

classification result. After partitioning the data, the classifier trains itself by using the training 

data, and then tests its prediction power across the test data. Finally, the prediction outcome 

is compared to the testing target, and as a result the accuracy of the classifier is calculated. 

4.4.1: Classification Methods 

In this study, the SVM (see Section 3.5.1) and MLP (see Section 3.5.2) artificial neural 

networks are used as the classifiers. In the case of the SVM classifier, the build of the 

hyperplane is based on the structural risk minimisation principle. The error rate of the learning 

machine for the test data is bounded by the training error rate, as well as one term that 

depends on the Vapnik-Chervonenkis (VC) dimension [177,178]. The input data is first 

mapped in the feature space, in relevance to the kernel function. Then the system 

automatically searches for an optimised linear division [179].  
In the case of MLP, the classifier has 25 inputs that are fed by the 25 selected genes; one 

hidden layer consisting of 30 neurons, and one output. Sigmoid and pure linear activation 

functions are used for the hidden and output layers respectively as the activation functions. 

The Levenberg–Marquardt algorithm [180] is used for training purposes, and the maximum 
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number of iterations is set to be 100. 70% of the data is used for training and 30% is used 

for testing the classifier performance. In order to reduce the effects of random selection on 

the training and testing data, the neural network has been trained and tested 100 times, 

where in each iteration, different training and testing data sets were used. 

4.4.2: Performance Evaluation 

After the classification task, the performance of both classifiers is evaluated. The evaluation 

is carried out in the forms of sensitivity, accuracy, and specificity. There are 4 possible 

outcomes from the classifier. The first possibility is a true positive (TP), which refers to the 

case that a diseased sample is correctly diagnosed. The second possibility is a false positive 

(FP), in which a healthy sample is incorrectly identified as a diseased case. The third possibility 

is a true negative (TN), which indicates the case where a healthy sample is correctly spotted. 

The final possibility is a false negative (FN), which refers to the case that the diseased sample 

is incorrectly identified as healthy [165]. The percentage value for the evaluation criteria 

(sensitivity, specificity and accuracy) can be calculated using equations 4.14-4.16.  

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛�'

𝑛�' + 𝑛Ù'
×100 (4.14) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑛��

𝑛�� + 𝑛Ù�
×100  

(4.15) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛�' + 𝑛��

𝑛�' + 𝑛�� + 𝑛Ù' + 𝑛Ù�
×100 (4.16) 

 

where 𝑛�', 𝑛��, 𝑛Ù� and 𝑛Ù'  correspond to the number of 𝑇𝑃, 𝑇𝑁, 𝐹𝑁 and 𝐹𝑃 respectively 

as a result of the classifier test stage.  

 

4.5: Investigating the Effects of Conventional Clustering 

Methods on Classification Performance 

4.5.1: Methods  

The general methodology used in this section is illustrated in Figure 4.3. The gene 

expression data for prostate and leukaemia cancer was used for this investigation. First, the 

data was indexed by using the available information on the classes of data (e.g. healthy vs 

cancerous). The data was indexed in two groups and stored separately in two matrixes 
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referred to as IndexClass1 and IndexClass2. After the genes were indexed, 3 conventional 

clustering methods (K-means, fuzzy C-means, and hierarchical) were utilised to partition 

genes based on their similarity. The number of clusters was pre-defined.  

For each dataset, the following steps were performed six independent times, each time 

choosing a different number of clusters (𝑘 = 1, 2,3,4,5,6). If data is clustered into one, this 

means no clustering was performed.  

 

1. Data is clustered into k cluster. 

2. Symmetric divergence (see Equation 4.9) was used for gene ranking. 

3. The top 25 ranked genes were selected using Equation 4.13. 

4. The selected genes were then fed to the SVM (see Section 3.5.1) and MLP (see Section 

3.5.2) classifiers. 

5. Classification performances for both classifiers were evaluated in terms of sensitivity, 

accuracy, and specificity as explained in Section 4.4.2.  

 

Note that the performance of clustering is assessed based on their effect on the classification 

performance. Changing the number of clusters results in selection of different genes due to 

the method of gene selection (Equation 4.13) which is affected by the gene ranking within 

each cluster and the number of genes in each cluster. Therefore, each clustering method will 

result in deferent selected genes which subsequently will result in different classification 

performances. 

 

 
 

Figure 4.3: Proposed microarray data analysis procedure. 
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4.5.2: Results 

Basic information on the datasets used in this research is listed in Table 4.1, including the 

number of genes, samples, and the two classes.  
Table 4.1: Basic information of microarray data. 

Dataset Number of genes Samples Class1 Class2 
Leukaemia 7,129 72 48 (ALL) 25 (AML) 
Prostate 12,600 102 50 (Normal) 52 (Cancerous) 

 

At the first stage of microarray analysis, data was clustered in order to find any hidden 

connections throughout it without any annotations. In order to investigate how each clustering 

algorithm distributes genes into different clusters, the number of clusters was set to two. After 

running each clustering algorithm, the number of genes in each cluster was observed (see 

Table 4.2). It is noteworthy that genes are not equally partitioned, and each clustering method 

partitions genes differently. The differences between the numbers of genes across two 

clusters are more pronounced when the K-means and fuzzy C-means algorithms are used. In 

contrast, the information suggests that hierarchical clustering divides genes into clusters more 

equally.    
Table 4.2: Number of genes in each cluster when data is clustered into two groups 

 K-Means C-Means Hierarchical 

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 

Number of genes for 
Prostate 117 12483 184 12416 6189 6411 

Number of genes for 
Leukaemia 140 6989 135 6994 1603 5526 

 

In order to investigate the effects of clustering on classifier performance, different 

conventional clustering methods (K-means, fuzzy C-means, and hierarchical) were used. For 

each type of clustering, the classifier performance has been tested by partitioning data into 

different amounts of clusters (1, 2, 3, 4, 5, and 6 clusters), where 1 cluster means no clustering 

was used. After clustering, the top 25 genes were selected using the filter method of gene 

selection (Equation 4.13) and fed to the classifiers. 

To investigate the performance of the MLP classifier for the selected genes, the selected 

genes (25 genes) were fed to the MLP and mean sensitivity, specificity, and accuracy were 

calculated. Also, standard deviations for these terms were calculated. In the case of the 

leukaemia dataset, as can be seen from   
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Table 4.3, when no clustering (1 cluster) was used, sensitivity, specificity, and accuracy 

are found to be 81.1%, 83%, and 89.8% respectively. This yielded more accurate results 

compared to when clustering was used, apart from the case of K-means clustering when data 

was partitioned into 6 clusters, and 82.1%, 83.5%, and 90.1% were acquired for sensitivity, 

specificity and accuracy respectively. In respect to the prostate cancer dataset (See Table 

4.4), in some clustering cases such as using K-means with 3 clusters, C-means with 2 clusters, 

and hierarchical with 5 clusters, a slightly better classification performance for the MLP 

classifier was observed. This was compared to the case when no clustering was used, in which 

84.9%, 89.1%, and 87% were acquired for sensitivity, specificity, and accuracy respectively. 

The results from both datasets suggest that clustering may not necessarily enhance the MLP 

classifier performance.   

 
Table 4.3: MLP classifier performances including the mean sensitivity, specificity, accuracy, and 

standard deviation (SD) for leukaemia. 

 Number of clusters 
1 2 3 4 5 6 

Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD 

K-m
eans 

Sensitivity 81.1/15.2 80.3/16.4 80.9/16.2 79.1/17.3 81/15.0 82.1/13.3 

Specificity 83/12.9 82.7/13.5 82.6/13.7 82.8/14.0 82.5/13.6 83.5/12.2 

Accuracy 89.8/8.2 87.6/8.9 89.1/8.5 88.9/9.3 89.6/8.3 90.1/7.9 
C-m

eans 

Sensitivity 81.1/15.2 81/15.4 80.4/16.4 80.9/16.0 81.1/15.2 79.9/17.9 

Specificity 83/12.9 82.9/12.9 82.1/13.3 82.5/13.1 82.9/13.0 82.3/13.7 

Accuracy 89.8/8.2 89.3/8.4 89.1/8.9 88.4/9.4 88.9/9.1 88.4/9.4 

H
ierarchical 

Sensitivity 81.1/15.2 81/15.4 80.9/16.4 80.2/16.9 79.9/17.0 80.5/16.6 

Specificity 83/12.9 82.3/13.4 82.9/13.0 83/12.9 82.6/13.2 81.9/14.2 

Accuracy 89.8/8.2 88.2/9.4 89.4/8.0 89/8.6 88.8/9.1 89.5/7.9 
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Table 4.4: MLP classifier performances including the mean sensitivity, specificity, accuracy, and 

standard deviation (SD) for prostate cancer. 

 Number of clusters 
1 2 3 4 5 6 

Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD 

K-m
eans 

Sensitivity 84.9/12.1 84.7/12.5 85.1/11.6 84.7/12.5 84.2/12.8 83.6/13.1 

Specificity 89.1/9.1 88.6/10.4 89.8/8.7 88.5/10.5 88.9/10.1 88.3/10.9 

Accuracy 87/10.9 86.7/11.3 87.1/10.7 86.9/11.0 84.6/12.3 86.8/11.5 

C-m
eans 

Sensitivity 84.9/12.1 85.2/11.5 84.2/12.6 84.3/12.5 83.6/13.0 83.9/13.4 

Specificity 89.1/9.1 89.7/8.9 87/11.3 88.6/10.1 89.1/9.2 87/11.3 

Accuracy 87/10.4 87.1/10.3 85.2/11.5 86.5/11.0 85.1/11.6 85.9/11.1 

H
ierarchical 

Sensitivity 84.9/12.1 84.3/12.6 84.2/12.9 84.8/12.2 85/11.5 83/13.7 

Specificity 89.1/9.1 88.1/10.6 89/9.4 87.5/11.1 90.3/8.1 89/9.4 

Accuracy 87/10.4 86.9/10.5 86/11.0 86.5/10.7 87.8/9.9 86.4/10.6 

 

 

In the next step, in order to investigate the effects of clustering on the SVM classifier, the 

selected genes (25 genes) were fed to the SVM classifier, and mean sensitivity, specificity and 

accuracy were calculated. Table 4.5 gives information on the sensitivity, specificity, and 

accuracy of the SVM classifier when different clustering methods were used, and the data was 

partitioned in different amounts of clusters for the leukaemia dataset. It can be seen from 

Table 4.5 that when data clustering is not applied (1 cluster), sensitivity, specificity, and 

accuracy were calculated 95%, 97.7%, and 98.1% respectively. An improvement of 0.7% and 

0.8% in accuracy was observed when data was clustered into 4 partitions via K-means and C-

means respectively compared to the case when no clustering was used. Furthermore, in the 

case when data was clustered into 3 partitions using C-means, improvement in all performance 

criteria was achieved compared to when no clustering was utilised. In the case of the prostate 

cancer dataset, as can be seen from Table 4.6 when clustering was not applied (1 cluster), a 

higher classification performance was achieved excluding two cases where C-means clustering 

was used to cluster the data into 3 and 5 partitions.  
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Table 4.5: SVM classifier performances including the mean sensitivity, specificity, accuracy, and 

standard deviation (SD) for leukaemia.  

 Number of clusters 
1 2 3 4 5 6 

Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD 

K-m
eans 

Sensitivity 95/5.1 94.9/5.0 94.3/5.7 95/5.1 94.4/5.9 93.5/6.8 

Specificity 97.2/4.1 97/4.2 96.8/4.5 96.8/4.3 96.8/4.5 96.5/4.9 

Accuracy 98.1/3.4 98/3.6 97.1/4.3 98.8/3.1 97.5/4.1 97.7/3.9 

C-m
eans 

Sensitivity 95/5.1 94.6/5.4 95.5/4.6 95/5.4 94.9/5.1 94.6/5.5 

Specificity 97.2/4.1 97.1/4.1 97.8/3.8 96.7/4.6 96.5/4.8 96.9/4.1 

Accuracy 98.1/3.4 97.8/3.7 98.7/3.1 98.9/2.9 97.2/3.9 97.4/3.8 

H
ierarchical 

Sensitivity 95/5.1 95/5.3 94.8/5.6 94.5/5.9 94.9/5.0 94.6/5.4 

Specificity 97.2/4.1 97.1/4.2 97.2/4.1 96.9/4.3 96.3/4.9 96.8/4.5 

Accuracy 98.1/3.4 97.7/3.7 97.9/3.4 97.7/3.4 98.1/3.2 97.6/4.0 

 
Table 4.6: SVM classifier performances including the mean sensitivity, specificity, accuracy, and 

standard deviation (SD) for prostate cancer. 

 Number of clusters 
1 2 3 4 5 6 

Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD 
K-m

eans 

Sensitivity 89.4/8.3 88.6/9.1 88.8/9.1 89.1/9.2 89.1/9.2 89.3/8.4 

Specificity 93/6.8 92.8/6.9 92.9/6.9 92.1/7.3 90.5/8.8 92.7/7.2 

Accuracy 90.1/7.6 89.8/7.8 89.6/8.0 89.3/7.9 89.7/7.8 90/7.6 

C-m
eans 

Sensitivity 89.4/8.3 89/9.1 89.9/8.1 88.6/9.1 89.7/9.0 89.4/9.3 

Specificity 93/6.8 92.6/7.1 93.3/6.5 92.6/7.1 93.1/6.7 92.9/6.9 

Accuracy 90.1/7.6 89.2/8.2 91.4/7.1 89.6/7.9 91.2/7.2 89/8.4 

H
ierarchical 

Sensitivity 89.4/8.3 89.1/8.9 89/9.2 89.1/8.9 88.9/9.3 88.5/9.5 

Specificity 93/6.8 92.8/7.0 93/6.8 92.1/7.3 93/6.3 91.8/7.6 

Accuracy 90.1/7.6 89.8/ 89.5/7.8 90.1/7.6 89.7/8.0 88.9/9.2 
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Figure 4.4 illustrates a comparative performance between SVM and MLP for the leukaemia 

and prostate cancer datasets when no clustering was applied. It can be seen that the SVM 

classifier has a better sensitivity, specificity, and accuracy compared to that of the MLP 

classifier in both datasets.  

 

 
Figure 4.4: MLP vs SVM performance without clustering. 

4.6: Proposed Gene Selection Based on Shuffle Technique  

4.6.1: Methods  

In the previous section, the impact of conventional data clustering on classification 

performance was investigated, and it was determined that conventional clustering may not 

have any significant effect on classification performance. In order to fully investigate the effect 

of data clustering on classification performance, this section investigates the effect of 

optimisation based clustering methods on the performance of the SVM and MLP classifiers 

compared to conventional methods. A novel gene selection approach called shuffling is 

proposed to enhance the selection of the most informative genes 

 

• Novel shuffle technique to enhance gene selection 
 

 In cancer classification, using clustering based gene selection (grouping genes before gene 

selection) and changing the number of clusters, both result in selection of different sets of 

genes (see Equation 4.13). As such, different classification accuracies are obtained. The 
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differences in the selected genes could occur because the initial centroid protocol for clustering 

is not specified, but selected randomly [181]. Since the clustering outcome is highly dependent 

on the initial centroids, it often transpires that better results would have been achieved with 

other initial points. The standard solution is to try the algorithm a few times with different 

initial points [182]. As demonstrated in Section 4.5.2, differences in the selected genes can 

influence the classification performance, so by creating a method to reinforce the selected 

genes a more robust classification can be performed. 

To overcome this problem, a technique called shuffling is proposed in this study. This 

requires that the data is clustered 6 times, setting different numbers of clusters, ranging from 

1 to 6 in each case. As a result, the number of clusters in the first run is set to one, implying 

no clustering is used, hence the algorithm goes straight to the gene selection step and selects 

the top 20 genes. In the second run, data is partitioned in two clusters, while the clustering 

algorithm iterates 100 times to minimise the cost function to achieve clusters that are more 

accurate. After 100 iterations of the clustering algorithm, gene selection is carried out 

according to the number of clusters and the population in each cluster. Therefore, depending 

on the number of clusters, different sets of genes are selected. A similar procedure to the 

second run carries on until the final run, in which data is clustered into six partitions.  

The reason for merging the outputs of a clustering algorithm when the number of clustered 

varied from 1-6 was to assure reinforcement for the selected genes by the clustering 

algorithm. To shed light on this lets assume we choose 20 genes when K-mean clustering is 

used and the number of clustered is equal to two. If we run the K-mean again while the 

number of clusters are three, a slightly different set of 20 genes will be selected which is due 

to the nature of selection criteria across different clusters that depends both on the number 

of genes in the cluster and the ranking of genes in that cluster (see Equation 4.13).  If run 

the algorithm for four clusters, again a different set of 20 genes will be selected. It should be 

noted that although a different set of genes are selected each time, some genes could be 

repeatedly selected while changing the number of clusters. Since in the proposed shuffle 

technique the gene selection is done six times when changing the number of clusters from 1-

6, and each time 20 genes are selected, a total 120 genes are acquired. However, some of 

the 120 genes are similar and repeatedly selected while varying the number of clusters by the 

same clustering algorithm. These 120 genes are then ranked based on their repetitions of 

being selected by the clustering algorithm. Therefore, when choosing the 25 most repeated 

genes we reinforce the selected genes that are chosen by the algorithm and do not rely solely 

on one outcome of the algorithm. In another word, this introduces a more robust gene 

selection. The number of final selected genes were chosen 25 to correlate with the number 
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of selected genes in Section 4.5.1. Furthermore, as it was discussed in Section 4.4.1 the MLP 

classifier contains 25 input neurons and the 25 selected genes also correlate to this. This was 

done to ensure the same setup for classifiers in Sections 4.5 and this section (4.6). After 

selecting 25 most repeated genes, these genes were fed into the MLP and SVM classifiers. 

Finally, sensitivity, accuracy, and specificity for both SVM and MLP are calculated. 

The proposed methodology that incorporates the shuffle technique and the new 

optimisation algorithm, COA-GA, that was explained in Section 4.2.5, is illustrated in Figure 

4.5. 

 
Figure 4.5: Proposed shuffle method. 

4.6.2: Results 

Basic information relating to the datasets used in this study is listed in Table 4.7, including 

the number of genes, number of samples, and the two classes for each dataset. 
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Table 4.7: Basic information of the microarray data used in this study. 

Cancer  Genes Samples Class1 Class2 
Leukaemia 7,129 72 48 (ALL) 25 (AML) 
Lymphoma 
Prostate 

4,026 
12,600 

47 
102 

24(germinal centre B-DLCL) 
50 (Normal) 

23 (active B-DLCL) 
52 (Cancerous) 

 

 In order to investigate the effects of clustering on the classifier performance, different 

clustering methods have been used with the shuffle method. These were compared to 

classification accuracy when no clustering was used, in order to determine the factor providing 

the greatest increases in classification. In that case, the data was scored based on Equation 

4.9, and the 25 genes with the highest scores were extracted for the purpose of classification. 

Table 4.8, Table 4.9, and Table 4.10 compare how different clustering algorithms with the 

shuffle method affect the classification accuracy, sensitivity, and specificity of SVM and MLP 

classifiers for leukaemia, lymphoma, and prostate cancers respectively. 

 
Table 4.8: The mean sensitivity (SE), specificity (SP), accuracy (AC), and standard deviation (SD) 

of classification results for MLP and SVM classifiers when integrating different clustering algorithms in 

the shuffle technique for the leukaemia dataset.  

 MLP SVM 
Method SE/SD SP/SD AC/SD SE/SD SP/SD AC/SD 
K-means 80.1/16.3 81.0/14.9 86.2/10.8 97.2/3.6 99.8/1.9 98.7/3.2 
C-means 82.6/13.6 83.2/13.2 86.7/10.4 96.8/4.3 99.6/2.1 98.8/2.3 
Hierarchical 82.8/13.1 82.0/14.2 90.0/7.6 94.6/5.3 96.8/3.8 96.0/4.1 
GA 98.2/3.7 87.4/9.1 91.0/6.3 99.0/2.1 99.6/1.9 99.5/2.0 
PSO 91.0/7.1 84.2/10.9 90.5/7.8 99.6/1.9 99.4/2.1 99.3/2.2 
COA 95.2/5.7 85.8/10.1 93.9/6.2 99.5/1.9 99.5/1.9 99.5/1.9 
COA-GA 95.6/5.3 84.9/10.6 93.9/6.6 99.6/2.1 99.9/0.8 99.7/1.1 
No cluster 82.0/13.1 83.4/12.9 90.0/7.8 96.0/3.9 98.0/2.5 98.9/2.1 

 

 

It is noted that in all datasets, the SVM classifier has a higher accuracy, specificity, and 

sensitivity compared to the MPL classifier. In the case of leukaemia when using the SVM 

classifier when no clustering was used, sensitivity, specificity, and accuracy were 96%, 98%, 

and 98.9% respectively, which is comparable to the results when K-means, C-means and 

hierarchical clustering were used. However, K-means clustering slightly outperforms the C-

means and hierarchical clustering by reaching a sensitivity of 97.2% and specificity of 99.8%.  

Interestingly, in all cases in which optimisation algorithms were used, a higher classification 

accuracy, sensitivity, and specificity were reached. For both classifiers, COA-GA shows a better 

performance compared to other optimisation methods. For instance, in the case of SVM, by 

using COA-GA, sensitivity, specificity, and accuracy reach 99.6%, 99.9%, and 99.7% 
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respectively. 

 
Table 4.9: The mean sensitivity (SE), specificity (SP), accuracy (AC), and standard deviation (SD) 

of classification results for MLP and SVM classifiers when integrating different clustering algorithms in 

the shuffle technique for the lymphoma dataset cancer. 

 MLP SVM 
Method SE/SD SP/SD AC/SD SE/SD SP/SD AC/SD 
K-means 86.3/10.2 96.2/4.4 86.4/10.0 90.3/7.5 100/0.0 88.3/8.9 
C-means 88.3/8.8 96.7/4.2 87.5/9.1 89.3/7.8 100/0.0 88.5/8.8 
Hierarchical 85.9/10.9 97.1/3.9 87.8/8.8 89.6/7.6 100/0.0 88.8/8.7 
GA 89.4/7.6 98.7/2.5 90.9/7.3 91.2/6.8 100/0.0 92.4/5.2 
PSO 89.1/7.9 98.5/2.8 90.3/7.2 91.8/6.2 100/0.0 92.9/4.9 
COA 91.2/6.9 98.9/2.2 91.6/6.8 92.3/5.3 100/0.0 93.1/4.2 
COA-GA 92.1/6.1 99.5/1.8 92/5.9 93.2/4.9 100/0.0 93.9/3.8 
No cluster 87.4/9.2 96.6/3.9 87.7/9.1 90.1/7.9 100/0.0 88.9/8.6 

 

 

Similar trends appear across all three data sets, whereby optimisation based clustering 

yields a better classification accuracy, sensitivity, and specificity. For instance, in the case of 

lymphoma when SVM is used and COA-GA is applied for clustering data, an accuracy of 93.9% 

is achieved, compared to 88.9% when no clustering is used (see Table 4.9). For the same 

dataset, it can be seen that a specificity of 100% is achieved with all algorithms for the SVM 

classifier. For prostate cancer, as presented in Table 4.10, the classification accuracy, 

sensitivity, and specificity when utilising traditional clustering methods are comparable to the 

case in which no clustering is used. In contrast, an improvement of 5.1% is seen for SVM 

accuracy, and 5% for MLP accuracy when COA-GA is used compared to when no clustering is 

applied. 

 
Table 4.10: The mean sensitivity (SE), specificity (SP), accuracy (AC), and standard deviation (SD) 

of classification results for MLP and SVM classifiers when integrating different clustering algorithms in 

the shuffle technique for the prostate dataset cancer. 

 MLP SVM 
Method SE/SD SP/SD AC/SD SE/SD SP/SD AC/SD 
K-means 86.1/10.3 90.7/7.1 89.9/7.9 90.1/7.6 94.3/4.5 91.4/6.4 
C-means 84.2/11.1 90.9/6.9 89.6/8.1 90.9/7.1 94.6/4.3 91.2/6.8 
Hierarchical 86.0/10.3 90.3/7.4 89.0/8.8 91.0/6.8 93.3/4.9 90.4/7.3 
GA 90.8/7.1 92.1/5.9 92.1/5.9 95.9/4.2 96.0/3.8 94.3/4.6 
PSO 90.5/7.3 92.9/5.3 92.8/5.4 94.6/4.4 96.8/3.7 94.4/4.5 
COA 91.5/6.5 93.1/4.9 93.4/4.7 96.1/3.9 98.6/2.8 95.9/4.1 
COA-GA 92.4/5.9 94.6/4.1 94.2/4.3 96.9/3.6 99.5/2.1 96.6/3.8 
No cluster 86.0/10.4 90.7/7.2 89.2/8.4 90.4/7.5 94.5/4.4 91.5/6.3 
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Figure 4.6 and Figure 4.7 illustrate the differences in classification accuracy, sensitivity, and 

specificity when no clustering is used compared to COA-GA clustering for the MLP and SVM 

classifiers respectively. It can be seen that SVM outperforms the MLP classifier in all cases. 

Furthermore, the performance is enhanced for both classifiers when the shuffle method 

integrated with COA-GA is used, compared to that when no clustering is applied prior to gene 

selection. These results suggest that the shuffle technique with the proposed algorithm (COA-

GA) can improve cancer classification performance, and better results could be achieved if 

SVM is used compared to those if MLP was used as the classifier. 

 

 

 
Figure 4.6: Accuracy and sensitivity of MLP classifier results for three cancer datasets when no 

clustering is used, compared to using the shuffle technique with COA-GA for clustering. 
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Figure 4.7: Accuracy and sensitivity of SVM classifier results for three cancer datasets when no 

clustering is used, compared to using the shuffle technique with COA-GA for clustering. 

Figure 4.8, Figure 4.9, and Figure 4.10 show the cost function minimisation for COA-GA, 

COA, GA, and PSO over 100 iterations for leukaemia, lymphoma, and prostate cancer 

respectively. 

For the leukaemia dataset, GA has reached its minimum by the 91st iteration, and the best-

cost value reached is 1.500 ×106. By contrast, PSO has reached its minimum by the 85th 

iteration, and the best-cost value reached is 1.943×106, indicating that GA has outperformed 

PSO as it further minimises the cost function. However, the COA algorithm reaches its 

minimum 2.429×105 at 13 iterations, whilst COA-GA could minimise the cost value to 

2.400×105 at 13 iterations. It can be seen that all four methods reached their minimum after 

some itterations.  However, COA and COA-GA notably outperform GA and PSO, finding a 

better minimum for the cost function, as well as having faster convergence, whilst COA-GA 

performed the best among the four algorithms. 

A very similar trend in cost minimisation capabilities for all algorithms is observed for the 

cases of and lymphoma (Figure 4.9). It is notable that in the lymphoma dataset, the COA-GA 

algorithm significantly outperforms other algorithms, and when compared to COA 

performance, COA-GA continues to minimise the cost function after the 11th iteration, while 

COA reached its minimum at this iteration. In the case of prostate cancer (Figure 4.10), it can 

be seen that COA-GA and COA show the best performance, where COA-GA outperforms COA. 
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However, it is clear that in this case, PSO significantly outperforms GA opposite to the case of 

leukaemia and lymphoma where GA outperformed PSO. 

 
Figure 4.8: Cost minimisation for four algorithms over 100 iterations for leukaemia. 

 
Figure 4.9: Cost minimisation for four algorithms over 100 iterations for lymphoma. 
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Figure 4.10: Cost minimisation for four algorithms over 100 iterations for prostate cancer. 

4.7: Summary 

In this chapter, the effects of data clustering prior to gene selection on classification 

performance was investigated. To this end, first the effects of conventional data clustering 

methods on classification performance for cancer datasets were investigated. This approach 

included three steps (i) clustering, (ii) gene selection, and (iii) classification. Three different 

methods, K-means, fuzzy C-means, and hierarchical clustering; and two classification 

methods, support vector machine (SVM) and multi-layered perceptron (MLP) neural networks 

were studied. The results obtained suggest that conventional clustering methods may not 

impact the classifier performance. This has been observed in the case of both classifiers. The 

results also suggest that the performance of the SVM classifier is better than that of the MLP 

artificial neural networks.  

In the next step, in order to fully examine the effect of data clustering on classification 

performance, the effect of optimisation based clustering algorithms on the performance of the 

SVM and MLP classifiers were investigated and compared to conventional methods. A novel 

approach to enhance gene selection called the shuffle technique was proposed, in which a 

new hybrid algorithm, COA-GA, was implemented for clustering microarray data. The 

performance of the proposed algorithm was tested against other well-known optimisation 
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algorithms including PSO, GA, and COA. The results suggested that data clustering with 

optimisation based clustering methods prior to gene selection via the proposed method 

significantly enhance the performance of both classifiers.  However, clustering data via 

conventional clustering methods did not have any impact on any of the classifiers’ 

performances that were used in this investigation. It was also explained that when no 

clustering was used, the results were comparable with the cases where conventional clustering 

methods were used. Comparative analysis between the proposed hybrid algorithm, COA-GA, 

with other optimisation algorithms like PSO, GA, and COA, suggested that COA-GA significantly 

outperforms other algorithms at reaching a better minimum in fewer iterations. In the final 

part of this chapter, better classification performance was achieved when SVM was used 

compared to when the MLP classifier was used for all cancer datasets.  
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Chapter 5: Two Stage Gene Selection for Cancer 

Classification Using Microarray Data 

 

 

 

 

5.1: Introduction 

It is now well established that early diagnosis of tumours can greatly increase the rate of 

cancer survival by providing the right treatment at early stages. However, methods such as 

X-ray imaging and computed tomography (CT) usually detect such tumours in later stages of 

cancer formation. Nevertheless, invasive methods such as surgery could detect malignancies, 

with the downside of potential severe side effects, and therefore such methods are not 

recommended for benign cases [183]. In this respect, over the last few decades gene 

expression profiling using microarray technology has attracted many scientists towards the 

early detection and classification of cancer [184,185]. 

However, as discussed in Chapters 1 and 2, due to the so-called ‘curse of dimensionality’ 

problem, the prognosis and classification tasks remain challenging to date. High classification 

accuracy is of the utmost importance for personalised medicine. Since there are two important 

factors that can enhance the classification performance, gene selection and classifier method, 

computer scientists have proposed different methods to increase the efficiency of each factor.  

With regards to the gene selection factor, numerous studies have been carried out with 

the objective of increasing the classification accuracy [146,186]. For example, Golub et al., 
[26] proposed a signal-to-noise ratio method, which was also used later in different studies 

[187]. Cho et al. [188] investigated several methods such as Pearson’s correlation, Euclidean 

distance, information gain, and mutual information to select the most informative genes 
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among different cancer types including colon, lymphoma, and leukaemia. In the above 

methods, genes are first ranked based on the relevant criterion, and then the top 𝑛 genes are 

selected for classification purpose. Several classification methods have been proposed for such 

analysis, and LDA, k-NN, SVM, and MLP artificial neural networks were discussed in Section 

3.6. Most of these gene selection approaches, known as filter methods, have greatly 

contributed to early detection and classification of cancer by providing useful information for 

medical experts. Nevertheless, the downside of the filter methods, which is ignoring feature 

dependencies and interaction with classifiers, can lead to poor classification accuracy.  

To address this problem, evolutionary algorithms such as GA and PSO have been applied 

for the purpose of gene selection. These methods essentially are heuristic optimisation 

algorithms that find the optimum subset of features to achieve the best classification accuracy, 

which is feasible as these methods are combined with the classification step in the form of a 

hybrid setup. For instance, Lee et al. proposed a gene selection method using an adaptive 

genetic algorithm combined with a KNN classifier to achieve a good classification accuracy for 

colon cancer datasets [189]. Shen et al. proposed a method combining discrete PSO and SVM 

for the selection of the most informative genes. The result of this study suggested that the 

SVM performance was significantly enhanced when PSO is used (91.7%) compared to the 

case when no gene selection was applied (83%) for a colon cancer dataset[179]. Since finding 

the local optimum is challenging for most optimisation algorithms, some studies proposed 

hybrid optimisation methods to overcome this problem. For example, Li et al. proposed a 

hybrid method combining PSO and GA that used SVM as the classifier [154]. This method was 

applied to different cancer datasets, and the result suggested that their proposed method can 

select the most informative genes that enhance classification accuracy.   

The vast majority of these studies focus on increasing the classification accuracy rather 

than the number of selected genes. Biomarker identification is another area of ongoing 

research, where it is important to identify a small number of genes in order to spot patterns. 

For instance, choosing a few genes that are all differentially expressed across different 

samples [190,191]. Works of research argue that the ideal classification task should result in 

the highest classification accuracy with less genes [192]. Therefore, it is essential to create a 

model for cancer classification that meets both objectives for tumour classification. To date, 

it has been possible to achieve the highest classification for some cancer datasets. However, 

even in these cases, several genes are needed to be used to achieve the highest classification. 

Therefore, in this chapter, the main objectives are to select the optimum number of most 

informative genes that can best distinguish between two cancer types to achieve the highest 

classification accuracy. To accomplish these objectives, a new optimisation algorithm which 
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combines the cuckoo optimisation algorithm (COA) and harmony search (HS), is proposed 

(COA-HS), which will be used in a two-stage gene selection method. 

5.2: Proposed Method 

The general methodology used in this study is illustrated in Figure 5.1. First, the data was 

discretised into nine states. After this pre-processing stage, the top 100 genes which are the 

most relevant and least redundant were selected using the minimum redundancy and 

maximum relevance (MRMR) feature selection (a filter method [193]). The selected genes 

were fed to a wrapper setup that consisted of the COA-HS algorithm and SVM classifier, to 

choose the minimum number of genes that provide 100% accuracy. Using two-stage gene 

selection combines the advantages of both filter and wrapper methods of gene selection. 

Finally, the classification performance for the selected genes was measured in terms of 

accuracy via the leave-one-out cross validation method (LOOCV). In order to validate the 

performance of COA-HS, the results were compared to those established with other 

evolutionary algorithms, such as the genetic algorithm (GA), particle swarm optimisation 

algorithm (PSO), harmony search algorithm (HS), and cuckoo optimisation algorithm (COA).  

Microarray data for three cancer types (leukaemia, prostate, and lymphoma) was used in 

this study. Gene expression data for leukaemia [26] and prostate cancer [30] was obtained 

from the Broad Institute (www.broadinstitute.org); Gene expression data for lymphoma [28] 

was obtained from the Lymphoma/Leukaemia Molecular Profiling Project (llmpp.nih.gov). 

Basic information relating to the datasets used in this study is provided in Table 5.1, including 

the number of genes, the number of samples and the two classes for each dataset. 
 

 

Table 5.1: Basic information of the microarray data used in this study. 

Microarray 
dataset 

Number 
of genes 

Number 
of samples 

Class1 Class2 

Leukaemia 7,129 72 47 (ALL) 25 (AML) 

Prostate 

Lymphoma 

12,600 

4,026 

102 

47 

50 (Normal) 

24 (Germinal centre B-DLCL) 

52 (Cancerous) 

23 (Active B-DLCL) 
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Figure 5.1: Schematic of the general methodology for gene selection. 

 

5.3: Discretisation of Data 

Discretisation is the process of converting continuous values into discrete counterparts, and 

this technique is frequently used as a pre-processing step in the analysis of biological data for 

several reasons. For instance, some gene selection and classification methods only accept 

discrete values as their input. Although the representation of data is changed through this 

process, it is assumed that the biological information within the data is preserved. In fact, 

several studies suggest that using discrete values can lead to more efficient learning processes 

[194–196]. Furthermore, Peng et al. investigated the performance of continuous and discrete 

values of microarray data in classification performance, and suggested that discrete values 

lead to a better classification performance [193].  

In the context of microarray gene expression data, there are several discretisation methods 

that can be applied, which can be categorised into supervised and unsupervised methods. In 

the supervised method, gene expression data is discretised while taking into consideration the 

class information of each gene (healthy vs cancerous). In contrast, in unsupervised methods, 

gene expression values are discretised without any impact from their class label. In this 

chapter, the unsupervised approach is the focus. In unsupervised cases, there exists two 
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pathways. One method is discretising data based on absolute values of gene expression, and 

another is discretising based on variation between time points [197,198].   

In this chapter, data is discretised  using absolute values of gene expression in order to 

reduce the noise in the gene expression data, and to enhance the accuracy of classification 

results [199]. Gene expression values for each gene were categorised into a nine-state 

variable based on the mean value (μ) and standard deviation (σ) for that gene. For each gene, 

the nine states showed whether the gene was not expressed (state zero) or if expressed, how 

much it was over-expressed (states +1 to +4) or under-expressed (states -1 to -4). Table 5.2 

details the different states utilised in the discretisation of data.  

 
Table 5.2: Discretisation of gene expression data. 

Data States Data States 
μ <d< μ-1/2 σ 0 μ <d< μ+1/2 σ 0 

μ-1/2 σ <d< μ-σ -1 μ+1/2 σ <d< μ+σ 1 
μ-σ <d< μ-3/2 σ -2 μ+σ <d< μ+3/2 σ 2 
μ-3/2 σ<d< μ-2σ -3 μ+3/2 σ<d< μ+2σ 3 

d < μ-2σ -4 d > μ+2σ 4 
 

As mentioned earlier, Peng et al. (2005) concluded that discrete values lead to a better 

classification performance for microarray data. A study by Gallo et al., (2015) suggests that 

although the number of states in a discretisation task depends on the inference of the 

algorithm that the data is prepared for, there is a trade-off between computational complexity 

and the loss of information when choosing the number of states. On the one hand, by 

increasing the number of states one can better preserve the information. On the other hand, 

by increasing the number of states the computational complexity also significantly increases 

[198]. In this study data was discretised into nine states. To visualise the effects of 

discretisation, the frequency plots before and after discretisation for lymphoma (see Figure 

5.2), prostate (see Figure 5.3), and leukaemia (see Figure 5.4) cancer datasets are provided.  
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Figure 5.2: Frequency plots before (a) and after (b) discretisation for lymphoma dataset. 

 
Figure 5.3: Frequency plots before (a) and after (b) discretisation for prostate dataset. 

 
Figure 5.4: Frequency plots before (a) and after (b) discretisation for leukaemia dataset. 
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5.4: First Stage Gene Selection Using Minimum Redundancy 

Maximum Relevance (MRMR) 

The goal of feature selection in a classification task is to identify a subset of features that 

best characterise the statistical significance of the classification task [46]. Since utilising 

wrapper methods for gene selections are computationally expensive when dealing with gene 

expression data due to existence of thousands of genes, filter methods are usually used for 

gene selection or applied to reduce the dimension of the data before applying a wrapper 

technique. Feature entropy is an appropriate metric to identify such informative genes.  

Entropy refers to the initial uncertainty of the output class [200], and can be calculated using 

Equation 4.1.  

 

 H	 A = − 𝑃; 𝑎 log(𝑃; 𝑎 )
�C

;U3

 (4.1) 

 

where {𝑃; 𝑎 	|	𝑎 = 1, 2, … , 𝑁;}	  is the probability density for different classes. A conditional 

entropy is used to define the mean uncertainty with respect to the feature vector, which can 

be calculated via following expression: 

 
H A|B = 𝑃 𝑏 𝑃; 𝑎|𝑏 log(𝑃; 𝑎|𝑏 )

�C

;U3

�â

SU3

 

 

(4.2) 

where 𝑏 is the input feature vector with 𝑁S samples and 𝑃; 𝑎|𝑏  is the conditional probability 

of class 𝑎 from feature vector 𝑏. Initial entropy is usually larger than conditional entropy; 

however, in the case of total independence between the output class and feature, both 

entropies have equal values. Mutual information that quantifies the mutual dependencies of 

two variables 𝐴 and 𝐵 can be defined based on Equation 4.3. 

 

 I	 A; B = 	H A − H A|B  (4.3) 
 

This equation can be rewritten as: 

 

 	I	 A; B = p(a; b) log
p(a; b)
p(a)p(b)

æ∈çè∈é

 (4.4) 
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where 𝑝(𝑎)	and 𝑝(𝑏) are the probability density functions of variables 𝐴 and 𝐵 respectively, 

and 𝑝	(𝑎; 	𝑏)	is the combined probability density function of both variables. Mutual information 

between two variables 𝐴 and 𝐵 defines how much information about variable 𝐵 one can gain 

by only looking at variable 𝐴. 
Minimum redundancy maximum relevance feature selection (MRMR), which is a filter 

method, uses mutual information to select those genes that were mutually maximally 

dissimilar, but with the highest relevance to the target class [193]. First, in order to choose a 

subset of genes that best represents the entire dataset, the minimum redundancy was 

calculated using the following equation.  

 

 minW ,W =
1
|TV|

I(gì; gí)
	îï,îð∈ñ

 (4.5) 

 

where 𝑇 denotes the total number of important genes that were required to be extracted, and 

𝐼(𝑔a; 𝑔b) represents the mutual information of gene 𝑖 and gene 𝑗. Next, the mutual information 

between genes (𝑔a) and the corresponding classes (𝐶), 𝐼 𝑔a; 𝐶  were calculated to quantify 

the relevancy of each gene with regards to its class. Subsequently the maximum relevancy 

was acquired using Equation 4.6. Maximum relevancy selected the top 𝑇 genes in the 

descending order of 𝐼 𝑔a; 𝐶  [193]. 

 max V , V =
1
|T	|

I(gì; C)
	îï∈ñ

 (4.6) 

Since both conditions 𝑊 and 𝑉 were equally important, MRMR combines both. This 

combination could be carried out by two methods, namely MRMRMIQ and MRMRMID, which 

combine both conditions as Equation 4.7 and Equation 4.8 respectively. In this study, MRMRMIQ 

was used, which is formulated as Equation 4.9. 

 

 
max(V − W) 

 (4.7) 

 max(
V
W
) (4.8) 

 MRMR÷øù = maxì∈úû(
I gì; C

1
|T	| I(gì; gí)	îï∈ñ

) (4.9) 

 

In the proposed method for the first stage selection, by using Equation 4.9, the top 100 

genes which were mutually maximally dissimilar were extracted and fed to the second stage 
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of selection, which used an evolutionary algorithm to select the minimum number of genes 

that gives the maximum accuracy for the SVM classifier.  

5.5: Second Stage Selection Using Evolutionary Algorithms  

Fundamentally, optimisation is the process of finding the best solution among all possible 

solutions. Population based optimisation algorithms initially choose a random set of solutions 

(initial population), and this population is enhanced via an iterative process. For each iteration, 

a cost function is established to quantify the outcome of the optimisation task. Since the 

problem in this study is defined as classification of microarray data while achieving higher 

accuracy through the minimum number of selected genes, the cost function is designed as 

follows.  

 

 Cost	function =
a

Accuracy
+ NOG (4.10) 

 

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the accuracy of SVM classifier measured by the LOOCV method and ranges 

from 0 to 1, 𝑁𝑂𝐺 is the number of selected genes which ranges from 1 to 100, and 𝑎 is a 

coefficient. Since the accuracy was more important than the number of selected genes, 𝑎 was 

set to 1000 in order to give the accuracy more weight in the cost function. Therefore, by 

minimising the cost function, the number of selected genes is minimised while the accuracy 

is maximised.  

It should be noted that both terms in Equation 5.10 are important for the cost function. 

For instance, if an algorithm selects 20 genes and gives 0.98 for accuracy, this would result 

in a cost value of 1040.4. If in another case this algorithm chooses 8 genes and give 0.97 for 

accuracy, this would result in a cost value of 1038.99. In this scenario, the latter would be 

more preferable for the algorithm although the accuracy of the preferred case is less. 

However, if scenario changes such that 0.98 accuracy is acquired by 17 genes, which leads 

to a cost value of 1037.4, then the algorithm prefers this option than the case of 0.97 with 8 

genes. The value for 𝑎 was chosen 1000 as it was observed that this will result in better 

outcomes. For instance, if 𝑎 was chosen 100 and 35 genes were selected by an algorithm that 

resulted in 0.9 accuracy this would give a cost value of 146.1. If 3 genes were selected and 

the accuracy for the 3 genes was 0.7, this results in a cost value of 145. In this scenario, the 

algorithm would prefer the latter case although in the latter case the accuracy is only 0.7. as 

a result, the algorithm might select less number of genes, but it leads to a poor classification 

performance.  



105 
 

In respect to LOOCV method, one sample is treated as a test sample, whilst the remaining 

samples are used for training the SVM, and the accuracy is calculated. If there are 𝑁 samples, 

this procedure is repeated 𝑁 times, each time with a different sample, and the average 

accuracy is calculated for the selected genes. SVM was used for the classification of selected 

genes, as the SVM classifier is a powerful classification algorithm and has been demonstrated 

to exhibit excellent performance in a variety of biological classification tasks [201]. The LOOCV 

method was chosen as it can overcome data overfitting [202].  

A new hybrid optimisation algorithm, COA-HS, was developed by combining the recently 

invented COA [24] and HS algorithms. The results were compared with the GA, PSO, COA, 

and HS algorithms. Details of GA, PSO, and COA algorithm can be seen in Section 4.2.2, 

Section 4.2.3, and Section 4.2.4 respectively. Details of HS and the proposed COA-HS will be 

described in the following subsections.  

5.5.1: Harmony Search Algorithm (HS) 

The harmony search (HS) is a musically-inspired optimisation algorithm [203].  In jazz, 

musicians improvise their instruments’ pitch in order to find a perfect harmony, which can be 

achieved through three options. The first option is to play a pitch from memory. The second 

option is to play a random pitch within the acceptable range of available pitches. Finally, they 

can play a pitch adjacent to a pitch in their memory. In the HS algorithm, these options are 

respectively referred to as harmony memory (HM), pitch adjustment rate (PAR) and harmony 

memory consideration rate (HMCR). Figure 5.5 illustrates the analogy of the musical 

improvisation process and optimisation process. 

 
Figure 5.5: Analogy between musical improvisation process and optimisation process. 
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The HS algorithm has been successfully applied to various optimisation problems, such as 

feature selection [204], discrete design variables [205], and continuous optimisation problems 

[206]. 

The harmony search algorithm follows a number of steps as demonstrated below. The cost 

minimisation plot is acquired to visualise how HS minimises the cost function over 100 

iterations. 

 

1. Initialise HMCR and PAR. 

2. Initialise harmony memory (HM).  

3. Improvise a new harmony memory.  

4. Update harmony memory (HM). 

5. If the number of iterations is less than 100, go to step 3. 

6. Save the best harmony memory as the ‘best answer’. 

 

It is noted that HMCR and PAR values affect the performance of the HS algorithm. For 

instance, HMCR is important in the convergence of the algorithm as this parameter is used to 

warrant the best fitted solutions are considered as the features of new solutions. The value 

for this parameter ranges between 0 to 1. It is recommended to choose a value in a range of 

[0.70 - 0.9] to make ensure enough exploitation [207,208]. This parameter act as crossover 

rate in genetic algorithm. For instance, if its value is 0.8 this means there is 80 % probability 

that the value of variables in HM will be chosen for new solutions. PAR is also very important 

parameter in improvisation process and act like the mutation parameter in the genetic 

algorithm. This parameter defines whether the variables of the new solutions should be altered 

to the value of its neighbour variable. PAR value also ranges from 0 to 1, and determines the 

probability of changing the variable values. The recommended range of values for PAR is [0.1 

- 0.3] [208,209]. In order to ensure the optimum values for HMCR and PAR are selected for 

the cost function and related datasets, the recommended ranges for HMCR and PAR were 

investigated. To this end the HS algorithm was ran 100 iterations and the final cost value was 

obtained for leukaemia, prostate, and lymphoma datasets (See Table 5.3). It was observed 

that the optimum values for HMCR and PAR across all datasets were 0.9 and 0.3 respectively 

and therefore these values were used for this research.  
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Table 5.3: Results of using HS with different PAR and HMCR values. 

HMCR PAR Leukaemia  Prostate Lymphoma 
0.7 0.1 1031 1054 1028 
 0.2 1028 1053 1027 
 0.3 1030 1052 1027 
0.8 0.1 1029 1055 1032 
 0.2 1031 1057 1030 
 0.3 1032 1052 1029 
0.9 0.1 1027 1056 1027 
 0.2 1022 1050 1027 
 0.3 1021 1045 1023 

 

5.5.2: Proposed Algorithm COA-HS 

For this study, a new algorithm was developed by combining the COA and HS algorithms 

(see Figure 5.6). As discussed, in the COA algorithm (Section 4.5.3), each egg in a nest 

represents a solution, and each cuckoo represents a new solution. Therefore, in the analysis 

of gene expression data, a solution refers to a gene. The COA-HS algorithm starts with the 

initialisation of the cuckoos. After the initial population lay eggs, the profit values of the eggs 

are calculated by evaluating the cost function. These solutions (eggs) are then fed to the HS 

algorithm in order to explore more solutions. These can be provided by the improvisation 

process through HMCR and PAR, which were set to 0.9 and 0.3 respectively.  As a result, a 

better solution can be achieved by preventing premature convergence of the COA.  

After the HS algorithm stops, the profit value for the solutions suggested by the HR are 

calculated through the cost function. Then the profit values of the solutions suggested by the 

COA and HS are compared, and the solution (egg) with the higher profit value is chosen to 

survive. Afterwards, these eggs grow and become cuckoos and the survival rate of each 

cuckoo is calculated. Then all cuckoos move towards the nest with the highest survival rate 

and lay eggs within the ELR of the best nest (best position). This means that the space of 

solutions is refined towards the best solution, concluding one iteration of the COA-HS 

algorithm. This process is repeated 100 times, and each time the cuckoos lay eggs in a further 

improved position, which results in finding a better solution based on evaluating the cost 

function.  
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Figure 5.6: Flowchart of COA-HS. 
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5.6: Results 

To select the minimum number of genes that can best distinguish between two classes of 

cancer, first the number of candidate genes was reduced to 100 using MRMR. These 100 

genes were then fed to our proposed algorithm COA-HS to select the best genes while 

maintaining the highest accuracy. The SVM classifier was used for classification where the 

Gaussian kernel was employed. The accuracy of the SVM classifier was measured after cross 

validating using the LOOCV method.  

In order to account for possible overfitting, the gene expression samples in each dataset 

were split into two sets of 25% and 75%. In the splitting task the ratio of class I and class II 

data (each dataset had two classes) was considered to ensure in each set both classes are 

presented. The set with 75 % of data was used for training and cross validating the classifier 

model. Once an optimisation algorithm select the best genes based on the cost function in the 

second stage of gene selection, the trained model that was used to select the final genes was 

then used to classify unseen data where the set of 25% of data was used. 

Figure 5.7 illustrates the accuracy of the SVM classifier for the top 100 genes selected via 

MRMR. Initially, as the number of genes increases up to 5-6 genes, the accuracy increases. 

After initial increase, in some instances the classification accuracy was reduced as the number 

of genes increased. For example, in the case of the prostate cancer dataset, the classification 

accuracy for the first 8 genes is 97%, but the accuracy reduces as the number of genes 

increases, attaining values of 91-93% when 90-100 genes are used. 

 
Figure 5.7: Accuracy of SVM for selected genes by MRMR. 
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The selected 100 genes from MRMR were input to different optimisation algorithms which 

used the cost function defined in Section 5.5. Each optimisation algorithm was ran 20 times. 

In each run, the algorithm was iterated 100 times. So in each run after 100 iteration, the 

trained classifier’ model for the final selected genes was used to examine the performance of 

the SVM model on unseen data (on the set of 25%) and the performance was measured in 

terms of sensitivity, specificity, and accuracy. These values were recorded and after 20 run, 

the means and standard deviations for these values were computed. Tables 5.4, 5.5, and 5.6 

give information on the performance of each optimisation algorithms after 20 run (each run 

100 iteration) for prostate, leukaemia, and lymphoma cancer datasets respectively. 

Furthermore, in the following tables, the means and standard deviations of the selected genes 

by each algorithm are provided.  

 

Table 5.4: Means and standard deviations for the number of selected genes, sensitivity, 

specificity, and accuracy of SVM classifier for 20 runs of optimisation algorithms for prostate 

cancer dataset. 

 

Number of 

Genes 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Mean SD Mean SD Mean SD Mean SD 

GA 41.80 3.22 98.40 1.80 98.72 1.08 97.35 2.08 

PSO 35.90 5.03 97.57 2.43 98.96 1.45 97.40 2.61 

HS 28.20 4.53 98.73 1.99 98.72 1.36 98.09 2.63 

COA 16.70 4.83 98.85 1.79 99.06 1.29 98.70 2.68 

COA-HS 8.40 3.12 99.33 1.96 99.92 1.36 98.97 2.37 

 

Table 5.5: Means and standard deviations for the number of selected genes, sensitivity, 

specificity, and accuracy of SVM classifier for 20 runs of optimisation algorithms for 

leukaemia cancer dataset. 

 

Number of 

Genes 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Mean SD Mean SD Mean SD Mean SD 

GA 29.30 2.86 99.32 1.42 99.51 1.12 98.20 1.61 

PSO 14.50 3.40 99.17 1.87 99.33 1.24 98.85 1.92 

HS 31.10 3.73 99.64 1.57 99.54 1.19 98.41 1.67 

COA 8.00 2.93 99.31 1.34 99.87 1.04 99.29 1.54 

COA-HS 6.50 2.72 99.42 1.18 99.61 1.23 99.36 1.36 
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Table 5.6: Means and standard deviations for the number of selected genes, sensitivity, 

specificity, and accuracy of SVM classifier for 20 runs of optimisation algorithms for 

Lymphoma cancer dataset. 

 

Number of 

Genes 

 

Sensitivity 

 

Specificity 

 

Accuracy 

Mean SD Mean SD Mean SD Mean SD 

GA 28.80 2.81 99.40 0.87 99.51 0.78 98.70 1.12 

PSO 13.40 2.98 99.49 0.93 99.64 0.88 98.92 1.19 

HS 29.70 3.33 99.17 1.87 99.33 0.92 98.05 1.94 

COA 7.70 2.16 99.36 1.74 99.61 1.16 99.27 1.84 

COA-HS 5.10      1.99     99.91 0.90 99.87 0.71 99.45 1.04 

 

 

Overall, COA-HS and COA outperformed GA, PSO, and HS in that these two algorithm 

selected significantly less number of genes while achieving better means for accuracy, 

sensitivity and specificity. In respect to prostate cancer dataset, as can be seen if Table 5.4 

after 20 run of COA-HS a mean of 8.4 genes was selected to achieve a mean of 98.92 % for 

accuracy which is the highest accuracy acquired across different algorithms employed in this 

research. However, it is noted that in this dataset, GA had smaller standard deviations for 

accuracy and specificity when compared to other algorithms.  Regarding leukaemia dataset, 

COA-HS outperformed other algorithms in most cases apart from the mean specificity and its 

standard deviation, where COA had a better performance (See Table 5.5). Finally, in Table 

5.6 it can be seen that COA-HS achieved slightly better results when compared COA in all 

criteria and had significantly higher performance when compared to HS, GA, and PSO. It is 

noted that although GA had a mean of 28.8 for the selected genes, this algorithm had small 

standard deviations for all three classification performance measures when compared to PSO, 

GA and COA.  

It was observed that in each run of an optimisation algorithm different combination of 

genes were selected and each algorithm tend to select different number of genes. In respect 

to the proposed algorithm, COA-HS, the final selected genes after each run were recorded 

and after 20 run the genes were ranked based of how many times they were repeated for 

each dataset. In the following the genes which were selected at least 10 times after 20 run of 

the COA-HS algorithm for each dataset are investigated.   
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In respect to prostate cancer, 37639_at and 38087_s_at were selected. 37639_at was a 

probe-set for Hepsin gene, also known as HPN, is a gene that encodes a type II 

transmembrane serine protease. Expression of the encoded protein is associated with the 

growth and progression of prostate cancer [210]. Klezovitch et al., [211] demonstrated that 

hepsin was highly expressed by 10 fold in prostate cancer. 38087_s_at is a probe-set for S100 

calcium binding protein A4 gene. This gene is a protein coding gene and its gene ontology 

annotation associated with poly (A) RNA binding and identical protein binding. This gene has 

been selected as a signature for prostate cancer classification in many studies [212–214]. 

Regarding leukaemia dataset, Zyxin gene was found to be selected at least 10 times out 

of 20 runs of COA-HS algorithm. This gene is a focal-adhesion-associated phosphoprotein that 

involves in the control of actin assembly. Literature suggests that in the signal transduction 

pathway this gene could act as a messenger that control the adhesion-stimulated changes in 

gene expression [215]. Several studies have identified this gene as prominent in leukaemia 

cancer classification [26,216–218].  

For lymphoma dataset one gene was found that at least was selected 10 times out of 20 

runs namely GENE1296X gene. This gene is known as MCL1 gene which is a protein coding 

gene that encodes an anti-apoptotic protein that is a member of the Bcl-2 family. It is known 

that Bcl-2 plays an important role in some cancers such as leukaemia and lymphoma [219]. 

This gene has previously been selected for its discriminatory power in lymphoma cancer 

classification [220].  

5.7: Summary 

In this chapter, a two-stage gene selection process using MRMR and the COA-HS 

algorithm was proposed in order to minimise the number of genes that could provide high 

accuracy in cancer classification. To this end, first MRMR was used to reduce the number of 

genes to 100, so that the computational time could be reduced for an optimisation algorithm. 

The 100 candidate genes were then used as an input for the second stage of gene selection, 

during which COA-HS was combined with the SVM classifier and acted as a wrapper gene 

selection method. The LOOCV method was used to evaluate the performance of our proposed 

method, and the results were compared to other optimisation algorithms such as PSO, GA, 

HS, and COA. To account for overfitting, 75 % of data was used for training and cross-

validation and the remaining 25% was used to report the performance of the classifier model. 
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Each optimisation algorithm was ran 20 times and in each run the algorithm iterated 100 

times. The means and standard deviations fore sensitivity, specificity, and accuracy of SVM 

classifier for each algorithm were computed. The results suggested that the COA-HS 

outperforms other optimisation algorithms in reaching a higher classification performance 

whilst selecting the least number of genes among other optimisation algorithms.  
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Chapter 6: Gene Expression Analysis using RNA-

Seq Data  

 

 

In this chapter, first an overview of RNA-Seq data analysis will be explored in Section 6.1. 

Then in Section 6.2 a state-of-the-art pipeline for RNA-Seq analysis will be investigated.  

6.1: Overview of RNA-Seq Data Analysis 

As it was discussed in Chapter 1, RNA-Seq overcomes several limitations of microarray 

technology when measuring gene expression and more recently, has therefore become a 

popular choice for measuring gene expression. There are several steps towards a successful 

RNA-Seq data analysis, including experimental considerations in design, pre-processing and 

quality assessment, alignment, building a count table, normalisation, and downstream 

analysis.  

6.1.1: RNA-Seq Experimental Considerations 

In order to accurately answer a biological question, adequate information should be 

provided within a RNA-Seq experiment. For this reason, several experimental considerations 

need to be addressed, such as sequencing depth and the number of replicates. Sequencing 

depth for a sample refers to the number of reads that have been sequenced for the sample. 

Research suggests that there is a direct relation between the number of transcripts that can 

be discovered, and the depth of sequencing [75]. However, the biological question is the main 

factor in defining the adequate number of reads for a valid analysis. For instance, around five 

million mapped reads would be sufficient to identify the highly expressed genes, compared 
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with a range of 100 million reads that might be adequate if low expressed genes needed to 

be quantified [239]. Furthermore, for some studies, a few thousand reads is adequate, such 

as the 20 thousand reads that were used for splenic tissue to successfully differentiate the 

cell types [240].  

There are two types of replicates in RNA-Seq, technical and biological replicates. In general, 

the number of replicates depends on both biological and technical variability. Although some 

studies show that increasing the depth of sequencing can improve transcription identification 

[241] and quantification of gene expression [242], others suggest that by sequencing less 

reads and increasing the number of replicates in an experiment, a greater statistical power 

can be achieved [243].  

In order to design RNA-Seq experiment, an optimum number of replicates and sequencing 

depth should be calculated, where tools like Scotty fulfil this objective [244]. Scotty calculates 

the variability between replicates and the frequency at which new RNAs are quantified by 

utilising prototype data. T-test is used to estimate the power and sample size. Furthermore, 

empirical distributions can also be taken from publicly available datasets that are pre-loaded 

in Scotty [244]. To model the power first empirical observations are used to select theoretical 

distributions. These distributions are then used to fit the observed data. The software 

estimates the variance between different replicates from same condition which essentially is 

the determinant factor on deciding the number of replicates required. Busby et al., [244] 

argue that although there exists a substantial heterogeneity among different experiments such 

that biological variation is less that technical variations, the estimate for sample size is more 

accurate if users supply Scotty with their own data. 

6.1.2: Pre-Processing of RNA-Seq Data 

As discussed in Sections 2.3.4 once the RNA-Seq short reads are sequenced by an NGS 

platform, the output of such platform is usually in a FASTQ format. The first step upon 

receiving FASTQ files is pre-processing, which is vital for removing technical and biological 

contaminations from the data, so that one can investigate more interesting variations from 

the datasets. Technical contaminations include low quality reads and technical sequences, 

such as adaptors. Concerning the read quality, the PHRED score is used as a standard 

measurement, and ranges between 0-40. In general, read quality increases towards the 5’ 

end of the reads, and bad quality reads are observed towards the 3’ ends. For a valid analysis, 

reads with a Phred score of less than 20 should be removed, as these reads introduce errors 

and lead to noise in read counts. Three popular tools to aid in the visualisation of read quality 

and other important metrics for NGS data are the FASTQC [245], NGSQC [73], and HTQC 
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[246] software. In order to remove bad quality reads, one can use software such as FASTX 

[247], Cutadapt [248], or Trimmomatics [249] to trim out the bad quality reads based on a 

given threshold. 

With regards to technical sequences like adaptors, it is also essential to remove these 

sequences before the mapping step, especially if the reads are mapped to a reference 

genome. This is due to the fact that adaptors contain sequences from similar nucleotides to 

that of the organism sequences that are introduced artificially, which therefore could hinder 

the ratio of mappability and consequently create artefacts in the downstream analysis. 

Mappability refers to the state of being mappable for the reads that can be mapped to a 

reference genome. It is important to note that in the case of RNA-Seq data, duplicate reads 

are often observed. This is normal, as they can be the results of highly expressed genes, and 

not due to a PCR amplification step. Therefore, it is safe to ignore the duplication level in the 

RNA-Seq quality control step. Biological contaminations include the presence of polyA tails, 

rRNA, and mtDNA. Since up to 95% of RNA is rRNA, it is essential to carefully remove rRNA 

and concentrate on the remaining 5% of mRNA, which can result in a meaningful downstream 

analysis.  A popular tool to remove rRNA content is the SortMeRNA toolkit [250]. 

6.1.3: RNA-Seq Alignment 

In RNA-Seq, in order to find the locations of short reads, the sequenced reads must be 

aligned to a reference genome or a transcriptome assembly [251]. Mapping RNA-Seq reads is 

particularly challenging, as in most cases the reads are formed from mRNA and not DNA, 

which means some reads might overlap an exon-exon junction, at which the location’s intron 

has been removed [89]. If RNA-Seq reads are aligned to a reference genome, it provides more 

information to discover novel transcripts and isoforms. However, in this method, reads should 

be able to be split, as some reads might be mapped to two exons (see Figure 6.1). This 

method is done by spliced-aware aligner software, either by using prior information of 

exon/intron boundary annotations, which are usually available to download in a GTF format 

from the Ensembl website, or without this information which is known as de novo spliced 

alignment [252]. It is noted that by supplying the GTF file, the quality of alignments could be 

improved significantly. 
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Figure 6.1: Junction reads [253].  

If transcription discovery is not the objective of RNA-Seq, the sequenced reads can be 

aligned to a reference transcriptome, which is fast and useful for transcript quantification and 

is limited to identifying known exons and junctions. This method is done by unspliced aligner 

software, which aligns the reads to a reference transcriptome without allowing any large gaps. 

Finally, if a reference genome or transcriptome are not available, the alignment can be done 

by de novo assembly of the transcript sequences using de Bruijn graphs [254].  Figure 6.2 

summarises different methods for RNA-Seq alignment.  

 

 
Figure 6.2: RNA-Seq alignment methods. 
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6.1.4: Creating a Count Table  

After reads are successfully mapped to a reference, the read alignment information is 

usually presented in a SAM format, which stands for sequence alignment/map. However, this 

information is then converted into BAM format, which is the binary version of the SAM format, 

in order to reduce the file size and index its content better. Since a BAM file only contains the 

genomic locations of the reads, in order to count how many reads are mapped to unique 

regions, a list of genomic features (e.g. genes or exons) containing the start and end positions 

of such regions are required. 

One simple method is to count the number of reads for every exon of each gene [21,75]. 

However, this method can ignore the reads that are mapped to other places than annotated 

exons [251]. Another method to quantify the reads is to count the reads along the total length 

of the gene, so that all reads from the coding sequences will be counted [255]. A number of 

R/Bioconductor packages, such as GenomicAlignments [256], Rsubread [257], and 

EasyRNASeq [258] can be utilised to obtain the count table. Furthermore, a popular python 

based software called HTSeq [259] can be used to achieve this objective. As a result, a matrix 

is formed in which each column corresponds to a sample, and each row corresponds to a 

genomic feature and its corresponding counts. The first column specifies a list of genomic 

features, and the rest of the columns specify the number of counts for genomic features (see 

Figure 6.3). 

 
Figure 6.3: Count table for RNA-Seq. 

As the number of reads that overlap a gene is directly related to the length of transcripts, 

all of these methods can encounter the same problem due to initial random RNA 

fragmentation. Therefore, a normalisation step based on transcript length and sequencing 

depth is essential, which will be discussed in the next section.  

6.1.5: Normalisation  

In order to remove biases and artefacts that can affect the downstream analysis the 

normalisation step is an essential task to be carried out on the RNA-Seq count table. Gene 
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length bias is the first issue that should be accounted for in the normalisation task. For 

example, if the number of counts for gene 𝑛 is 30 reads, and for gene 𝑚 is 60, at first it can 

be inferred that gene 𝑚 is expressed more than gene 𝑛. However, if genes 𝑛 and 𝑚 have 

lengths of 30 and 60 bp respectively, it should be noted that both genes actually have the 

same level of expression.  

The next bias is the library size, which corresponds to the total number of reads for each 

sample. As illustrated in Table 6.1, if the total number of reads for replicate two is double 

those of replicate one, although each gene in replicate 2 might appear to have an expression 

twice those of gene 1, in fact none of these genes are differentially expressed.  

 
Table 6.1: Library size affect. 

   Replicate 1 Replicate 2 
Gene 1 10 20 

Gene 2 20 40 

… … … 

Gene n 30 60 

Total Reads 1000 2000 

 

A simple method to correct such a bias is to plot both replicates against each other and 

calculate the slope. Ideally the slope of such a plot should be 1, however if it deviates from 

1, one can normalise such biases by using the obtained slope number. Other biases such as 

GC content and batch effect are also important to take into consideration. 

In order to overcome these biases, several normalisation methods have been proposed, 

including reads per kilobase per one million mapped reads (RPKM) [75], DESeq [260], quantile 

(Q) [261], total count (TC), upper quantile (UQ) [262], trimmed mean of M-value (TMM) 

[263], and median normalisation methods. The most commonly used method for single-end 

reads is RPKM. In the case of paired-end reads, a similar approach called FPKM (fragments 

per kilobase per one million mapped fragments) is used, so that the two reads that come from 

one fragment are counted as one [264].  RPKM simply normalises the reads for each gene 

through the following expression: 

 

 𝑅𝑃𝐾𝑀 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑔𝑒𝑛𝑒

𝐺𝑒𝑛𝑒	𝑙𝑒𝑛𝑔𝑡ℎ	 𝑖𝑛	𝑏𝑝	𝑢𝑛𝑖𝑡 	×	𝐿𝑖𝑏𝑟𝑎𝑟𝑦	𝑠𝑖𝑧𝑒	(𝑖𝑛	𝑚𝑖𝑙𝑙𝑖𝑜𝑛	𝑟𝑒𝑎𝑑𝑠	𝑢𝑛𝑖𝑡)	
×10ÿ (6.1) 
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Dillies et al., performed a comparative analysis between different normalisation methods 

[265] in terms of their power in intra-variance (group variance), count distribution, clustering, 

and false positive rate. In their study the performance of different methods was reported in 

terms of not satisfactory, satisfactory, and very satisfactory (see Table 6.2). The results 

suggest that the RPKM and TC methods are not very suitable if large differences exist in library 

size (count distribution). In contrast, DESeq and TMM methods provided very satisfactory 

results. These two methods are used in two popular R/Bioconductor packages called DESeq 

[260] and EdgeR [266] respectively.   

 
Table 6.2: Summary of results for seven normalisation methods; 0 indicates not satisfactory, 1 

indicates satisfactory, and 2 denotes very satisfactory (modified from [265]). 

Method Distribution Intra-
Variance 

Housekeeping Clustering False 
Positive Rate 

TC 0 1 1 0 0 

UQ 2 2 1 2 0 

MED 2 2 0 2 0 

DESeq 2 2 2 2 2 
TMM 2 2 2 2 2 
Q 2 0 1 2 0 

RPKM 0 1 1 0 0 

 

Overall, if one wishes to find differentially expressed genes within the same sample, RPKM 

can provide satisfactory results and is more simple. However, if the objective is to find 

differentially expressed genes across different samples, the DESeq and TMM methods can 

provide very satisfactory results.  

6.1.6: Modelling Raw Counts, Dispersion and Differential Gene Expression 

From a biological view point, a very interesting question is ‘which genes are differentially 

expressed across different conditions?’ One way to investigate this question is to look at the 

number of counts for each genomic location, for example genes, isoforms, or transcripts. 

Research suggests that the number of counts for a gene is a good indication of the abundance 

of that gene. However, when comparing this between different conditions (healthy vs 

cancerous), the observed counts are done separately. In this respect, statistical tests should 

be performed to see if the differences in read counts between two conditions are actually 

significant, or observed due to natural random variation. It is noted that if reads are sampled 
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independently, the number of observed reads would follow a multinomial distribution that is 

known to be well approximated by Poisson distribution. Several studies have used this model 

to identify differentially expressed genes [267,268] 

The Poisson model provides a useful tool for estimating the probability that a read from 

condition one could map to a given gene, as well as estimating the probability that a read in 

condition two could map to the same gene. Consequently, one can tell in which condition the 

probability of observing more reads for a given gene is higher, which leads to the concept of 

differential gene expression. In the Poisson distribution model, the variance is equal to the 

mean, and this makes this model very simple as there is no need to estimate the variance 

[267]. However, it is important to investigate whether this distribution is feasible for RNA-Seq 

datasets or not, due to the fact that several sources of noise exist in such datasets. One source 

of noise is referred to as shot noise, and denotes the existence of variance in counts [260]. It 

is known that this follows a Poisson distribution. Standard deviation (𝜎) of such noises is equal 

to the square root of the mean count (𝜇). Another source of noise is the sample noise that 

includes biological and technical noises. Research suggests that the Poisson model performs 

well for technical replicates, as the variance is equal to the mean [21]. However, this research 

suggests that in the case of biological replicates, actual variance could be predicted 

inaccurately by the Poisson distribution model, since genes with higher mean counts have a 

higher variance than the mean, which can lead to an increase in false discovery rates (type1 

errors). This phenomenon is referred to as an overdispersion problem in the literature 

[269,270].  

Negative binomial distribution has more recently been used in order to overcome the 

overdispersion problems that the previous model encountered [260,266]. This model includes 

an extra parameter that accounts for dispersion, and can be seen below. 

 

𝑦 = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑎𝑏, 1/𝑎	)	 (6.2) 

 

where 𝑎𝑏 is the mean (𝜇), and (1/𝑎) is the dispersion parameter (∅). In this distribution, 

variance can be calculated by the following expression: 

 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑦 = 𝑣 + 𝑣V∅ (6.3) 

  

In the above expression, 𝑣 accounts for shot noise, which is related to Poisson sampling 

noise, and 𝑣V∅ accounts for technical and biological noise. Usually the first step towards 

differential expression analysis when dealing with biological replicates is to estimate these 
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parameters. In order to have a good estimation for these parameters, all methods that are 

proposed for identifying differentially expressed genes make some assumptions about the 

form of underlying distribution. This is due to the fact that the number of samples are small, 

and without assumptions, the correct estimation would be impossible [271].   

Two of the well-known R/Bioconductor packages that use the negative binomial approach 

are edgeR [266] and DESeq [260]. However, these methods differ by which the dispersion 

parameters are estimated, as well as using different hypothesis testing approaches to find 

differentially expressed genes.  

In DESeq, the number of reads for gene 𝑖 in sample 𝑗 (𝑅ab) is modelled via negative binomial 

distribution as shown by following expression:  

 

𝑅ab = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜇ab, 𝜎abV 	)	 (6.4) 

 
where 𝜇ab is the mean and 𝜎abV  is the variance. Initially, 𝜇ab is calculated, which is proportional 

to a size factor (𝑆b) that accounts for the sequencing depth, multiplied by a variable that 

accounts for the gene expression number for gene 𝑖 in sample 𝑗 (𝑄ab). Next, the variance is 

calculated by the following expression: 

 
𝜎abV = 𝜇ab + 𝑆bV𝑣a,�(b) (6.5) 

  

where 𝑣a,�(b) is the per gene raw variance and is the smooth function of 𝑄ab. As the general 

form of a negative binomial, the above expression also accounts for shot noise and biological 

variations.  

In the edgeR Bioconductor package [266], data is also modelled via negative binomial 

distribution, as shown by the following expression:  

 
 

𝑌�a = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀a𝑃�b,∅�	)	 (6.6) 

 
 

where 𝑀a is the read counts, 𝑃�b is the relative abundance of gene 𝑔 in condition 𝑗 to which 

sample 𝑖 belongs, and ∅� is the dispersion. 𝑀a𝑃�b is equal to the mean (𝜇�a), and the variance 

can be calculated as follows: 

 
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑌�a) = 𝜇�a + 𝜇�a∅� (6.7) 
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Once the parameters of mean and variance are modelled, a generalised linear model (GLM) 

is fitted into the data to get the variance-mean dependence. Figure 6.4 illustrates the fitted 

line for mean and variance by the Poisson (purple line) model, DESeq (orange line), and edgeR 

(dashed orange). Generally, in all fitted lines in Figure 6.4 as the mean count increases, the 

variance also increases. However, the fitted line from Poisson model is linear which fits well 

only for the lower mean counts and poorly estimates mean and variance for the higher mean 

counts. In contrast, the fitted lines by edgeR and DESeq are nonlinear and fit well for all 

ranges of mean and variance [260]. 

 
Figure 6.4: Variance-mean dependence adapted from [260]. 

In order to identify differentially expressed genes, the null hypothesis of 𝜇3 = 𝜇V is 

investigated, where 𝜇3 and 𝜇V	are the mean expression values for conditions 1 and 2 

respectively. For both conditions 1 and 2, the summation of reads across all replicates (𝑘a3	and 

𝑘aV) for each gene is calculated. The overall sum is equal to 𝑘a3 + 𝑘aV. Finally, the probability 

of observing the actual sum is calculated using a Wald test. The Wald test provides p-values 

for each gene, and based on a threshold, one can determine differentially expressed genes. 

Most packages now implement the Benjamini-Hochberg procedure to control the FDR.  
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6.1.7: Alternative Splicing Analysis  

So far, the statistical methods for differential gene expression were investigated. However, 

RNA-Seq data provides information that sheds light on differential analysis at the transcript 

level and alternative splicing. Each gene contains several transcripts, and each transcript from 

a gene can differ from other transcripts from the same gene in its starting and ending sites, 

as well as differing from the inclusion of exons. The translation of different transcripts results 

in different protein structures and functions, which leads to the importance of the transcript’s 

expression for the phenotype of cells and investigating diseases. The advances in informatics 

approaches have paved the way to look into differential exon usage and differential isoform 

expression. 

A pioneering approach to identify differential exon usage is the DEXSeq [272] method, 

which is implemented in a R/Bioconductor package. Simply put, the differential exon usage 

approach identifies the exons that are expressed differently across different conditions within 

each gene. In this method, the relative usage of each exon is used in order to identify the 

conditionally specific usage of exons, which can be calculated by the following expression: 

 

𝑈𝑠𝑎𝑔𝑒	𝑜𝑓	𝑒𝑥𝑜𝑛𝑠 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑚𝑎𝑝𝑝𝑖𝑛𝑔	𝑡𝑜	𝑡ℎ𝑒	𝑒𝑥𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑚𝑎𝑝𝑝𝑖𝑛𝑔	𝑡𝑜	𝑜𝑡ℎ𝑒𝑟	𝑒𝑥𝑜𝑛	𝑓𝑜𝑟	𝑠𝑎𝑚𝑒	𝑔𝑒𝑛𝑒
 (6.8) 

 

DEXSeq has a similar approach to the DESeq package in finding differential exon usage, 

where the main steps are count normalisation, dispersion estimation, and differential testing 

that returns a p-value. However, one of the major differences is preparing annotations that 

can allow counting reads that overlap exons. For this reason, after the reads are mapped to 

a genome reference, an annotation file with exon coordinates is used to count the number of 

reads in each exonic location. Since some exons can be seen more than once in an annotation 

file due to their inclusion in multiple transcripts, they can overlap each other. In such cases, 

in order to make sure each exon is counted only once, DEXSeq uses a flattened form of 

annotation file in which exons from the same coordinates are flattened into counting bins 

[272] (See Figure 6.5).  



125 
 

 
Figure 6.5: Flattened exons’ locations. 

In contrast to differential exon usage, where the focus is at the exon level, in differential 

isoform expression, the unit of study is the isoform and the objective is to identify isoforms 

that are expressed differently across conditions for the same gene. Zheng and Chen [273] 

proposed a method based on the hierarchical Bayesian model called BASIS to provide a 

platform for differential expression at the isoform level across two conditions. A more popular 

tool that allows differential analysis at the transcript level for more than two samples is Cuffdiff 

[274].  Similar to DESeq and DEXSeq, Cuffdiff also hypothesises that the number of reads that 

are mapped to a transcript is propositional to its abundance, and uses a negative binomial 

model for read counts. Furthermore, in the Cuffdiff method, a scaling factor is used to correct 

the sequencing depths across different samples, and the Benjamini-Hochberg method is used 

to control for FDR. This method produces very accurate results, as both biological and 

technical variations are taken into consideration in its statistical model to look for differential 

isoform expression [274,275]. More recently, a new approach has been proposed that allows 

the identification of differential gene expression and differential isoform expression at the 

same time using a hierarchical likelihood ratio test [276].  

 

 

 
Figure 6.6: RNA-Seq data analysis.  
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6.2: Pipeline for Analysis of RNA-Seq: a Case Study 

In this Section, a state-of-the-art pipeline for RNA-Seq analysis will be investigated. Figure 

6.7 illustrates the steps in this pipeline. Whilst there have been numerous studies to improve 

RNA-Seq data manipulation, quality control, and downstream analysis, the analysis of RNA-

Seq when examining gene expression remains challenging compared to microarray data. Since 

the methods to analyse NGS data in general are essentially statistical approaches, 

R/Bioconductor, a free source software, has become a popular tool to implement such 

analysis. There are several reasons for the popularity of performing NGS analysis in 

R/Bioconductor. For example, this software is easily accessible due to its affordability. 

Furthermore, it is a platform assisting with the statistical challenges of NGS data, and can be 

used for annotation and handling large datasets.  

There are numerous Bioconductor packages to use for RNA-Seq analysis. This has led to 

the suggestion of several pipelines for this kind of analysis. However, due to the  rapidly 

developing nature of statistical approaches for RNA-Seq, the proposed pipelines have also 

undergone several changes to improve their results. In this chapter, we investigate a state-

of-the-art pipeline for pre-processing and analysis of RNA-Seq that can pave the way to extract 

biologically relevant results from large datasets. Figure 6.7 illustrates the steps required for 

this pipeline. Usually RNA-Seq data is in the format of FASTQ, and the first step towards a 

successful downstream analysis is the pre-processing step. The pre-processing step is divided 

into four processes that are shown in orange in Figure 6.7. Once the qualities of reads are 

satisfactory, the alignment step follows. Finally, different downstream analysis, such as 

differential gene expression, differential exon usage, GO and pathway analysis, and 

classification approach are performed.  
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Figure 6.7: RNA-Seq analysis workflow.  

6.2.1: Utilised RNA-Seq Data 

It is observed that a mutation in the aryl hydrocarbon receptor interacting protein (AIP) 

gene occurs in familial isolated pituitary adenoma (FIPA). This leads to early onset acromegaly 

in patients, and in most cases, invasive pituitary adenoma forms as a result. It is established 

that patients with positive for AIP have bigger body sizes than normal. Ascertaining 

pathogenicity of missense mutations is an abstruse task and to date around 70 AIP variants 

have been identified. However, it is still unclear how pituitary tumorigenesis can be caused by 

AIP inactivation. In this study, we used RNA-Seq data produced by Aflorei [277] at the 

Genome Centre of Queen Mary University of London.  

Drosophila was investigated as a subject of interest by Aflorei [277]. The Drosophila AIP 

orthologue (CG1847) gene encodes a protein that resembles the human AIP. In brief, CG1847 

defective flies were generated through in vivo RNAi knockdown to get a putative null allele of 

CG1847. In order to investigate the differentially expressed genes and underlying molecular 
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mechanisms as a result of the loss of AIP, RNA-Seq data was produced from mutant (3 

samples) versus control (3 samples) male larvae.  

To produce this RNA-Seq data, Aflorei first isolated total RNA using Qiagen RNeasy 

MicroKits and the samples were purified by the DNase I. Nanodrop was used to measure the 

RNA samples and Agilent 2100 bioanalyzer was used to examine the quality of the extracted 

RNA. Then, the RNA samples were normalized to 500 ng/μl and the normalised samples from 

both mutant and control were used to produce the cDNA libraries for the Illumina HiSeq 1500 

platform. In this platform one lane was used to sequence all libraries and as a result around 

30 million reads for each sample was acquired [277]. Each sample contained two files which 

corresponded to forward and reverse strands of short RNA-Seq reads. 

6.2.2: Pre-processing 

All analyses shown below are performed in Mac OS X with 16 GB of ram and an 8 core 

processor. The first step after receiving the RNA-Seq data (usually in FASTQ format) is to 

perform quality control assessments like examining the overall sequence quality, 

overrepresented reads, and the GC content of the data. A popular software to illustrate this 

information is FASTQC. To run FASTQC, all FASTQ files should be saved in one folder, and 

then the directory of the terminal is changed to that folder. Afterwards, FASTQC can be run 

for FASTQ files by using terminal. For the purpose of demonstration, the pre-processing steps 

are only shown for one sample here, and the same procedure can be repeated for all samples. 

fastqc -t 8 ForwardRead.fastq ReverseRead.fastq 
-t 8 option takes advantage of multicore processor capability to speed up the time for analysis. 

Two files (a zip and an HTML file) are created for each FASTQ file as a result of this command. 

By opening the HTML files, different analysis metrics such as basic statistics, per base 

sequencing quality, per base sequence content, per base GC content, per sequence GC 

content, sequence duplication level, overrepresented sequences, and Kmer content can be 

observed. Details for each metric are well-explained on the developer’s website [245]. Four 

of the important metrics for one of the mutated samples acquired from FASTQC are shown 

below. 
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Figure 6.8: Initial FASTQC output.  

First, one should consider quality trimming and adaptor removal if required based on 

FASTQC results. From the per base sequencing quality graph (Figure 6.8 B), it can be 

discerned that all reads have a quality higher than 20 based on the Phred score, therefore 

there is no need for removing any reads. However, if bad quality reads are observed, one can 

use software such as FASTX [247], Cutadapt [248], or Trimmomatic [249] to trim out the bad 

quality reads based on a given threshold. Since in the data that we received, adaptors had 

already been removed by the Genome Centre, the FASTQC metric on adaptor contamination 

indicates no contamination. In the presence of adaptors, the graph related to the adaptor 

contamination would identify the sequence of adaptor. By using software like FASTX and 

supplying the relevant sequence of the adaptor, one could remove them.  

From Figure 6.8 C, it can be seen that there is a presence of noise in the first 10-12 

nucleotides, which is in fact a universal bias from the Illumina RNA-Seq data. Since we are 

interested in differential gene expression and these biases are universal, these biases would 

cancel each other, and therefore one can safely ignore them. However, if the objective was 

to quantify gene expression, it would be essential to trim these nucleotides.  

Figure 6.8 D shows the distribution of GC content per read. In this figure, the blue line 

presents the theoretical distribution of GC content by FASTQC, and the red line indicates the 

actual distribution of GC content. Ideally, the actual distribution should follow the theoretical 

distribution. However, as shown in this figure, the actual distribution presents a shoulder on 
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the left side of the graph. Practical observations suggest that if a shoulder is presented on the 

left side of the actual distribution, it is more likely to be due to the enrichment of A/T content. 

However, a shoulder on the right side is more likely caused by the presence of rRNA. 

Nevertheless, due to the nature of RNA-Seq data generation, rRNA will often be present. 

Therefore, in the next step, a software called SortMeRna [250] is used to account for rRNA 

molecules. SortMeRna performs the removal of rRNA in three steps. First, the forward and 

reverse reads of a given sample should be merged together as shown below: 

 
merge-paired-reads.sh ForwardRead.fastq ReverseRead.fastq MergedReads.fastq 

 

Then the resulting MergedReads.fastq can be used in the main command of SortMeRna as 

follows: 
sortmerna --ref $SORTMERNA_DB --reads MergedReads.fastq --aligned MergedReadsWithrRNA --

other MergedReadsWithoutrRNA --paired_in --fastx 
 

where SORTMERNA_DB is the environmental variable for the SortMeRna database, and should 

be saved prior to the command. Argument “--reads” indicates the merged reads, “--aligned” 

indicates the reads which contain rRNA, “--other” represents those reads which are rRNA free, 

the “--paired_in” argument makes both paired reads goes to a single file, and “--fastx” 

indicates that the output file should be in the FASTQ format. In the next step, the merged 

reads (MergedReadsWithoutrRNA) that are rRNA free should be unmerged using the following 

command.  

 
unmerge-paired-reads.sh MergedReadsWithoutrRNA.fastq ForwardRead.fastq ReverseRead.fastq 

 

After this step, another assessment on the read quality should be made by the FASTQC 

software, in order to make sure satisfactory results are acquired through the following 

command:  

 
fastqc -t 8 ForwardRead.fastq ReverseRead.fastq 
 

It is noted that by using SortMeRna, the shoulder on the left side of figure 7.2 D has been 

reduced to less than 400,000 from 460,000 before using SortMeRna (see Figure 6.9). 

However, other metrics remained the same as expected. In this step, the initial total reads 

before applying SortMeRna was 31,497,483; and after SortMeRna the total number of reads 

was 30,797,917; resulting in a reduction of 699,566 reads.  
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Figure 6.9: Per GC content for mutated sample after SortMeRna  

Although the rRNA content has been removed, there is still a shoulder on the left side of 

the GC for the distribution. In this situation, it is advisable to check the overrepresented 

sequences in “Blast”, which is an NCBI utility [278] in order to reveal the nature of these 

sequences. By blasting these sequences, it becomes clear that these overrepresented 

sequences are mostly related to mitochondrial sequences. Since we will be mapping the reads 

to the Drosophila genome, the reads originated from mitochondria will not be mapped. 

Therefore, this step should be satisfactory for the pre-processing step.  

6.2.3: Alignment of the Reads to a Reference Genome 

After the pre-processing step is completed, and the quality of reads has been assessed to 

be satisfactory, the reads can be aligned to either a reference genome or transcripts. In this 

demonstration, the goal is to map the reads to a reference genome. Although several aligner 

software have been developed so far, there are two approaches that can be used to do the 

alignment task, which are the Burrows-Wheeler transformation (BWT) [279] and maximum 

exact matches (MEM) [280]. Since the objective is to align RNA-Seq to a reference genome, 

it is essential to use a spliced-aware aligner like TopHat [255] or STAR [281].  

In this research, STAR, which is an ultrafast universal RNA-Seq aligner based on MEM 

protocol, is chosen to aid in the alignment process. First, a genome index should be generated 

so that the STAR software is aware of exon-exon junctions when doing the alignment. In 

order to generate the indexed genome, a reference genome in FASTA format, and a genome 

annotation file in a GTF format are required. The corresponding files for Drosophila are 
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downloaded from the Ensemble website [282]. The command to generate the indexed 

genome is shown below.  

 
STAR \ 
--runMode genomeGenerate \ 
--genomeDir StarGenome \ 
--genomeFastaFiles Drosophila_melanogaster.BDGP5.dna.toplevel.fa \ 
--sjdbGTFfile Drosophila_melanogaster.BDGP5.dna.toplevel.gtf \ 
--sjdbOverhang 100 
 
The first parameter (--runMode) specifies the mode in which STAR should be run. The 

second parameter (--genomeDir) defines the output directory. The third and fourth 

parameters point STAR to the FASTA file and GTF file respectively. The last parameter 

(sjdbOverhang) denotes the sequencing read length, and a default value of 100 is used. Once 

this step is done, the genome index is saved in the directory specified by the second parameter 

(--genomeDir). This folder is used in the next step to align the reads to it as shown below.  

 
STAR \ 
--runMode alignReads \ 
--genomeDir StarGenome \ 
--readFilesIn ForwardRead.fastq ReverseRead.fastq \ 
--sjdbGTFfile Drosophila_melanogaster.BDGP5.dna.toplevel.gtf \ 
--outSAMtype BAM  
 

where the third parameter (--readFilesIn) directs STAR to do forward and reverse reads of 

the sample, and the last parameter (--outSAMtype) specifies the output should be in the 

format of BAM. Once this command is successfully finished, several files will be created, 

including a file whose name ends with Aligned.out.bam that contains the alignment in BAM 

format. It is essential to sort this file by sequencing position and then index it for further 

analysis by using a tool called samtools [283] as shown below. 

samtools sort -n Aligned.out.bam 

samtools index Aligned.out.bam 

This step concludes the alignment phase. The steps required for differential analysis at the 

gene, exon, and isoform levels differ from the point of counting the number of reads for each 

genomic location. This is due to the fact that different models are required to count the reads 

for different downstream analysis. Therefore, the analysis of differential expressions is divided 

into the three separate sections described in the next section.   
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6.2.4: Differential Gene Expression  

Differential gene expression is divided into four subsections, which are counting reads over 

genes, normalisation, dispersion estimation, and testing for differential gene expression. The 

R/Bioconductor code written for this analysis can be found in appendix 1.  

 

6.2.4.1: Counting Reads Over Genes  

In order to count the number of reads over each gene, in addition to the aligned reads, a 

gene model is required and can be accessed in the GTF or GFF3 format on Ensembl website 

[282].  The latest release of the GTF file for Drosophila was acquired from the Ensembl website 

for this analysis (Drosophila_melanogaster.BDGP5.76.gtf). A transcript database (TxDb 

format) called TxDbFromGFF was then created from this GTF file using the GenomicFeatures 

package (makeTxDbFromGFF command). This database can be utilised to create a separate 

file for the genomic locations of interest that is ranged-based and includes genes, exons, and 

transcripts. Since we are dealing with exons in RNA-Seq, a list of exons for each gene 

(GRangesList format) is then created using exons with a command from the GenomicFeatures 

package, and saved as an ExonByGenes object. Each gene in the GRangesList is stored in the 

Granges format. The length of the observed GRangesList for Drosophila is 15682; and a 

snapshot of the list acquired via R/Bioconductor is shown below.  

 

 
Figure 6.10: Exons grouped by gene in GRangesList format. 
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Once the previous step is done, a count table was created by using the summarizeOverlaps 

function from the GenomicAlignments package and saved as a RangedSummarizedExperiment 

object. This function can count the reads for each gene for all samples simultaneously, as this 

function accepts a file path to all of the BAM files that need to be processed. As a result, this 

function creates a file (RangedSummarizedExperiment format) containing three main 

components (see Figure 6.11), including samples’ information, actual count matrix, and 

genomic ranges, which can be accessed using the colData, assay, and rowRanges commands 

respectively. The resulting count matrix has a dimension of 6 (samples) by 15682 (genes) for 

Drosophila datasets. Samples’ information is primarily an empty component, and can be 

supplied using samples’ information, such as samples’ names and corresponding conditions in 

a character vector format.  

 
Figure 6.11: RangedSummarizedExperiment format. 

Analysis of the literature suggests that the DESeq2 package is mostly used for differential 

gene analysis, and therefore this package is chosen as the preferred method for this analysis 

[284]. In order to use DESeq2, the RangedSummarizedExperiment format should be 

converted into a DESeqDataSet class object that provides extra manoeuvrability in datasets, 

as the DESeqDataSet class has an argument called design formula that accounts for the group 

condition of a sample for further analysis.  

6.2.4.2: Sample Normalisation and Visualisation  

In order to make a valid conclusion about data through visualisation methods like PCA 

plots, the variations due to gene length and sequencing depth should be taken into account, 

which is done during the normalisation step. Based on the comparative analysis from Section 

6.6, DESeq normalisation provides very satisfactory results, and therefore will be used for this 

purpose. As discussed in Section 6.1.5, a size factor that is directly related to the ratio of 

library sizes is utilised in the DESeq package to normalise the data. This means if all samples 
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are sequenced at the same level, a size factor equal to one will be allocated to all of the 

samples.  

In order to calculate the size factors for all samples, the estimateSizeFactors function from 

the DESeq2 package was used on the DESeqDataSet object. Table 6.3 shows the information 

on the estimated size factor for each sample.  

 
Table 6.3: Estimated size factor for each sample using DESeq. 

 Control5 Control7 Control8 Mutated5 Mutated6 Mutated7 

Size factor 1.09 1.06 0.97 1.00 0.87 1.03 

  

In order to check whether the normalisation method is satisfactory, the density of mean 

counts for each sample was plotted, and if it is observed that the densities from all samples 

almost overlap each other, that is a good indicator for a successful normalisation outcome 

(see Figure 6.12).  

 
Figure 6.12: Density of mean counts for each sample. 
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Another way to validate a proper normalisation is to investigate the probability of observing 

a given number of counts from the datasets, which can be identified using an empirical 

cumulative distribution function (ECDF).  Similar to density graphs, in ECDF graph samples 

should almost overlap each other in order to conclude that samples are normalised to provide 

satisfactory results.  Figure 6.13 shows the observed probabilities for different mean counts 

from the ECDF function. It can be seen from Figure 6.13 that the observed probability for a 

given number of counts is almost similar for all samples, which provides evidence for a 

successful normalisation.  

 
Figure 6.13: Probability of observing a given number of counts for all samples. 

In order to see the similarities and differences between samples at this stage, a principal 

component analysis (PCA) can be very informative. However, PCA and other statistical 

approaches such as clustering are applied to homoscedastic data, which refers to a group of 

datasets in which the variance is the same for different ranges of mean values within a sample 

[285]. Due to the nature of RNA-Seq data, the variance increases with the mean value. In 

order to illustrate the difference in variance for different numbers of counts, two samples 

(control7 and control8) were plotted against each other (see Figure 6.14). In Figure 6.14, 
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each dot refers to a gene and it can be seen that genes with a higher number of counts have 

higher variances.  

 

 
Figure 6.14: Natural scale for sample-sample visualisation. 

One method to overcome this issue is to use a logarithmic scale instead of the normalised 

counts. As illustrated in Figure 6.15, this method provides a more constant variance across 

different ranges. However, by using this method, higher variation can be observed in the 

lower counts region. The variation in lower counts can be the result of Poisson noise for genes 

with lower counts, it can also be accounted for by the fact that the differences for genes with 

lower counts are maximised when a logarithm is applied. 

 
Figure 6.15: Log2 normalised counts scale for sample-sample visualisation. 
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The regularised logarithm transformation (rlog) and variance stabilising normalisation (vst) 

methods are useful approaches to correct for the variation in the lower counts region [284]. 

For genes with higher counts, rlog and vst act like a normal logarithm, however for lower 

counts of genes the values shrink. Figure 6.16 shows the effect of an rlog transformation on 

the counts. It can be seen that the rlog method stabilises the variance at different levels of 

the mean, and provides a satisfactory data format that prevents biases from affecting further 

analysis.   

 
Figure 6.16: rlog scale for sample-sample visualisation. 

Now that the datasets adhere to the characteristics for homoscedastic data, PCA can be 

applied to visualise the samples relations to each other. It can be seen from Figure 6.17 that 

a clear separation of two group conditions (control and mutated) is presented by using a PCA 

plot, which validates the experimental design for two conditions. In this plot, each dot 

represents a sample.  

 
Figure 6.17: PCA plot for all samples. 
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6.2.4.3: Dispersion Estimation for Differential Gene Expression 

As previously discussed in Section 6.6, DESeq uses negative binomial distribution to 

calculate the dispersion parameter with results from biological variations in order to test for 

differential expression. Figure 6.18 illustrates the dispersion acquired by the 

estimateDispersions function from DESeq2 package. The black dots are the estimated 

dispersion for each gene, the red line presents the fitted line which is derived from a 

generalised linear model. The black dots are then shrunken towards the fitted line to form the 

blue dots, which are the final estimates of dispersion for each gene. The black dots that are 

surrounded by blue circles present the dispersion outliers that refer to genes which have very 

high dispersion estimates. The final estimates that are shown in blue are then used for 

hypothesis testing [284]. 

 

 
Figure 6.18: Dispersion estimates versus the mean normalised count from DESeq2. 
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6.2.4.4: Differential Gene Expression Test  

A Wald test is used in order to check for differentially expressed genes. A function called 

nbinomWaldTest in the DESeq2 package uses the dispersion estimates and the calculated size 

factors to test for the significance of the coefficient in a negative binomial generalised linear 

model. Then the results of this test can be extracted by the results function, in which the 

Benjamini-Hochberg method is used to return the adjusted p-value. Using the above functions, 

and filtering out those genes with an adjusted p-value grater that 0.1, 4591 genes were 

identified as being differentially expressed across two conditions. A snapshot of the results is 

shown in Figure 6.19.  

 

 
Figure 6.19: Results of DESeq2. 

One of the useful methods for visualising the results is an MA plot [286]. The X-axis of an 

MA plot shows the mean normalised counts, and the Y-axis represents the log2 fold changes 

in normal vs mutated samples (see Figure 6.20). Each dot in the MA plot represents a gene, 

and those shown in red are identified as differentially expressed genes using an adjusted p-

value of 0.1 as the threshold. It shows that genes with lower mean normalised counts that 

present high variability are accounted for using a shrinkage method to prevent those genes 

from dominating the results.  
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Figure 6.20: MA plot of results using adjusted p-value > 0.1.  

In order to take a more conservative approach to testing for differentially expressed genes, 

we select those genes that have log2 fold changes of at least double or half of that between 

two conditions, and then filter the results based on an adjusted p-value of 0.1. Using this 

approach, 186 genes were identified as differentially expressed genes and are depicted in the 

MA plot in Figure 6.21. 

 

 
Figure 6.21: MA plot of results using adjusted p-value > 0.1 and log2 fold changes of at least 

double or half. 
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Another useful way to visualise differentially expressed genes is a heat map. To this end, 

first differentially expressed genes from the previous step (186 genes) should be sorted based 

on their adjusted p-value. Since homoscedastic data should be used in order to have a valid 

statistical approach to calculate the distance between the genes, the data from the rlog 

transformation step should be utilised. By having the gene names form the sorted genes, the 

relevant dataset is extracted from the rlog matrix. Using an R/Bioconductor package called 

pheatmap for the top 25 differentially expressed genes, the heat map in Figure 6.22 is 

acquired. A clear trend can be seen from the heat map, in which the genes on the upper part 

of the heat map are highly expressed in control samples, while those genes in the lower part 

are highly expressed in the mutated samples. 

 
Figure 6.22: Heat map of top 25 differentially expressed genes. 
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The information on the used packages and their versions is listed in Figure 6.23: 

R/Bioconductor session information for differential gene expression. 

 

 
Figure 6.23: R/Bioconductor session information for differential gene expression. 

6.2.5: Differential Exon Usage Analysis 

After aligning the RNA-Seq short reads similar to those in Section 6.1.3, one can investigate 

which exons are expressed differently across two conditions (normal vs mutated). As 

discussed in Section 6.1.7, to create a valid exon model in which an exon is only counted 

once, it is required to work with a flattened annotation file (GTF file). However, after creating 

this file, similar steps to differential gene expression are followed, including counting reads 

over genes, normalisation, dispersion estimation, and testing for differential exon usage. The 

R/Bioconductor code written for this analysis can be found in appendix 2.  

6.2.5.1: Preparing the Flattened Annotation File  

In order to create a flattened file (GFF format) from the annotated file (GTF file), first the 

relevant GTF file for Drosophila (the same version that was used for aligning reads using 
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STAR) is downloaded from the Ensembl website (Drosophila_melanogaster.BDGP5.76.gtf). 

Then using Unix terminal and a python file provided by the DEXSeq package 

(dexseq_prepare_annotation.py), one can easily create the flattened file as shown below: 

 
Python DEXSeq/python_scripts/dexseq_prepare_annotation.py --aggregate=no Drosophila_melanogaster.BDGP5.76.gtf 

Drosophila_melanogaster.BDGP5.76.gff 

 

where the argument --aggregate specifies if an exon cannot be assigned to a unique gene, it 

should be ignored.  

6.2.5.2: Counting Reads Over Exon Bins and Creating a DEXSeq Object 

The DEXSeq package provides a python file (dexseq_count.py) that uses a HT-Seq 

functionality (htseq-count) that has been modified to count the number of reads over exons. 

Using Unix terminal, a .txt formatted file can be created that contains these counts as shown 

below: 

 
DEXSeq/python_scripts/dexseq_count.py --format=bam --paired=yes --stranded=no Drosophila_melanogaster.BDGP5.76.gff 

control7.bam control7.txt 

 

   The above command should be run for each alignment file, separately changing the last 

two arguments’ names to correspond to the sample name under process. Since the aligned 

files are in BAM format, paired end, and not strand specific, this information is supplied by 

argument --format, --paired, and --strand respectively. After running the above command six 

times, each time for different samples, six .txt formatted files are acquired that are used for 

further analysis after being imported into R/Bioconductor.   

By using the DEXSeqDataSetFromHTSeq function from DEXSeq package, the required data 

frame for DEXSeq is then created. This function includes four arguments that need to be 

provided. The first argument accepts a character formatted file containing the directory path 

to count files (.txt files). The second argument is the sample information, which includes 6 

rows and 2 columns. Each row corresponds to a sample, the first column is the sample names 

and the second column contains information on sample conditions, which is similar to the 

sample information provided in Section 6.2.4.1. The third argument is the design formula that 

specifies we are looking for exon expression differences based on different conditions. Finally, 

the last argument is a character formatted file that contains the directory to the GFF files that 

was created using the python command.  
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The resulting file from the DEXSeqDataSetFromHTSeq function is saved as 

DEXSeqDataFrame which is in the DEXSeqDataSet format, and its information can be accessed 

similarly to that of the DESeqDataSet format explained in Section 6.2.4.1. The resulting 

DEXSeqDataFrame file for the six Drosophila samples has a dimension of 77026 by 12. The 

rows of the matrix correspond to the exon IDs, and several rows can be related to a given 

gene depending on the number of exons for that gene. The first six columns correspond to 

six samples, each column contains the number of reads assigned to the respective exon ID in 

a given gene, and we refer to them as the group 𝐴 columns. The next six rows provide 

information on the sum of reads that are assigned to other exons within the same gene, and 

we refer to them as the group 𝐵 columns. The DEXSeq package compares these two groups 

in order to identify an exon as being differentially expressed or not. Figure 6.24 illustrates the 

first 5 rows of this matrix for five exons that originate from two genes.  

 

 
Figure 6.24: Count table in DEXSeqDataFrame. 

6.2.5.3: Normalisation of Counts  

Similarly to differential gene expression analysis, it is also essential to account for the 

variation in the sequencing depths across different samples in differential exon usage. Using 

the estimateSizeFactors function of DEXSeq on DEXSeqDataFrame, the corresponding 

normalisation factors for samples can be calculated (12 columns as above). The table below 

gives the information on the estimated size factors for each sample.  

 
Table 6.4: Estimated size factors for each sample using DEXSeq. 

 Control5 Control7 Control8 Mutated5 Mutated6 Mutated7 

Size factors 
for Group A 

column 

1.07 1.05 0.94 1.01 0.87 1.10 

Size factors 
for Group B 

column 

1.07 1.05 0.94 1.01 0.87 1.10 
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To find out if the calculated size factors are satisfactory for further analysis, two plots were 

investigated, including the density of mean counts plot (see Figure 6.25) and the ECDF plot 

(see Figure 6.26). Two clear distributions can be seen from Figure 6.25 that correspond to 

both the group A and B columns, and since the line graphs for samples in each group almost 

overlap, it can be concluded that a satisfactory normalisation was performed. A similar trend 

is observed in the ECDF plot that provide further evidence to support this conclusion. 

 
Figure 6.25: Density of mean counts for all samples including group A (1-6) and B (7-12). 
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Figure 6.26: Probability of observing a given number of counts for all samples including group A 

(1-6) and B (7-12). 

6.2.5.4: Dispersion Estimation for Differential Exon Usage 

For differential exon usage, it is also essential to account for biological variations across 

samples, so that more interesting variations can be addressed. Figure 6.27 depicts dispersions 

obtained by the estimateDispersions function from the DEXSeq package, which is actually the 

same function as that of DESeq2, and the resulting figure can be interpreted as such.  
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Figure 6.27: Dispersion estimates versus the mean normalised count from DEXSeq. 

6.2.5.5: Testing for Differential Usage of Exons 

A likelihood ratio test (chi-squared distribution) is then used to test for differential exon 

usage [272]. This test is performed using the testForDEU function from the DEXSeq package, 

which uses the calculated dispersions and size factors and returns a p-value. Adjusted p-

values are also provided using the Benjamini-Hochberg method that can be used for multiple 

testing. Then the log2 fold changes and the exon usage coefficient are calculated using the 

estimateExonFoldChanges function. The results of these steps are saved as meta data for the 

DEXSeqDataFrame object, and can be accessed using the DEXSeqResults function. By filtering 

the data using an adjusted p-value of 0.1, 1053 exons were identified as being differently 

used across the control and mutated samples that correspond to 622 genes. A snapshot of 

the results is shown in Figure 6.28. 
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Figure 6.28: Results of DEXSeq. 

 The figure below shows an MA plot in which the red dots represent the exons that are 

differently used across two conditions and identified as significant using an adjusted p-value 

of 0.1. It is shown that most of the exons that are identified as significant have a higher 

number of counts.  

 
Figure 6.29: MA plot for differential exon usage.  
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The results of DEXSeq can be visualised using the plotDEXSeq function. Figure 6.30 

illustrates the mean expression level for the exons of the FBgn0000382 gene that has the 

lowest adjusted p-value from the result of the analysis. The transcript models that can be 

used to visualise isoform expression of this gene are also included.  

 

 
Figure 6.30: Mean expression level for exons of the FBgn0000382 gene. 
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The information on the used packages and their versions is listed in Figure 6.31. 

 

 
Figure 6.31: R/Bioconductor session information for differential exon usage. 

6.2.6: Gene Annotation and Biological Relevance of Selected Genes 

It is essential to annotate the differentially expressed genes by adding the Entrez ID or 

gene symbol, which can be done using the AnnotationDbi package. A list of all of the 

differentially expressed genes (186 genes) including their symbol names can be seen in 

Appendix 3. First, the biological relevancies of the differentially expressed genes were 

investigated using the Web tool DAVID (database for annotation, visualisation, and integration 

discovery) [287]. Three gene ontology (GO) terms including biological process, molecular 

function, and cellular component were selected.  

Table 6.5 gives information on GO terms and the corresponding gene names within each 

term. With regards to terms for biological processes, ten genes (see Figure 6.32) contribute 

to the metabolic process of chitin.  One of the main substances in the exoskeletons of insects 
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is chitin [288], and all of the genes that contributed to the metabolic process of chitin are 

highly expressed, which results in the production of more chitin. Since it is known that AIP 

positive leads to a bigger body size, enrichment of this term as a result of these 10 genes 

would suggest that these genes contribute to body size and are linked to CG1847. Another 

main substance that contributes to the exoskeletons of insects is cuticle [288], which is also 

shown as an enriched term in the biological process of GO analysis. Ten genes (see Figure 

6.33) that are all highly expressed lead to the enrichment of this term in the biological process. 

In a previous study, it was shown that a mutation of TwdlD that is in the same family of 

proteins as TwdlG, TwdlV, and TwdlZ changes body shape in Drosophila [289]. These two 

biological process terms (chitin and cuticle) also appeared in the molecular function of GO 

analysis with the lowest p-value observed. Proteolysis and the lipid catabolic process are both 

known to contribute to the breakdown of protein and lipids respectively. 

 
Table 6.5: GO analysis.  

GO Term genes P-value 

 

 

Biological process 

metabolic process of chitin 

chitin based cuticle development 

proteolysis 

lipid catabolic process 

Phagocytosis 

10 

10 

15 

4 

5 

9.8E-5 

2.6E-4 

1.8E-3 

9.4E-2 

9.4E-1 

 

Cellular 

component 

extracellular region 

extracellular matrix 

integral component of plasma membrane 

extracellular space 

17 

6 

7 

9 

2.3E-6 

4.7E-3 

7.8E-3 

1.5E-2 

 

 

Molecular 

function 

chitin binding 

structural constituent of chitin-based cuticle 

serine-type endopeptidase activity 

transferase activity, transferring acyl groups 

lipase activity 

structural constituent of chitin-based larval cuticle 

carbohydrate binding 

11 

11 

10 

4 

4 

6 

5 

1.5E-7 

6.4E-7 

2.0E-3 

2.1E-3 

3.5E-3 

4.1E-3 

4.8E-3 
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Figure 6.32: Log2 fold change of genes contributing to metabolic process of chitin. 

 

 

 
 

Figure 6.33: Log 2 fold change of genes contributing to chitin-based cuticle development. 
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the enrichment of the folate biosynthesis pathway. Folate is known to be important in the 

formation of new cells and their maintenances [292].     

 

6.2.7: Classification  

In order to apply a similar methodology to that of microarray for classification purpose of 

RNA-Seq data, it is essential to normalise RNA-Seq data as explained in Section 6.2.4.2. Since 

it was observed that the rlog transformation performed better compared to other methods 

like vst, in this pipeline the rlog of the count is used for classification purposes. Once the 

transformed count matrix is acquired, those features that have zero counts are removed. The 

resulting matrix can then be treated like microarray gene expression, and the standard 

procedure for classification analysis such as feature selection, designing a classifier, and 

classifier validation can be followed.  

Our proposed method for feature selection and classification in Chapter 5 (MRMR-COA-HS) 

was utilised for RNA-Seq classification. Figure 6.34 illustrates the steps to be performed for 

the proposed method. In brief, RNA-Seq data is first discretised into nine states (see Section 

5.3). Then, the top 100 features were selected using the MRMR filter method of feature 

selection (see Section 5.4) in the first stage of selection. This was done in order to reduce the 

computational time for the second stage of selection. In the second stage, the proposed COA-

HS was utilised in a wrapper setup with the SVM classifier to minimise the number of selected 

features, while maintaining a high accuracy for classification. A cost function similar to that in 

Section 5.5 was used for COA-HS, and the LOOCV model of validation was used to assess the 

performance of the SVM classifier.  

 
Figure 6.34: Schematic of the general methodology for RNA-Seq classification.  
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Following the proposed method (See Figure 6.34), 100 features were selected in the first 

stage of gene selection. In the second stage of gene selection these 100 features were used 

as input for COA-HS algorithm that is wrapper method and uses SVM to evaluate the features 

in terms of their power to discriminate between two experimental conditions. After 100 

iterations of COA-HS, six genes were selected which led to 100% classification accuracy. The 

selected genes include CG9021, CG14960, TwdlG, Osi24, CG6741, and CG9154. Figure 6.35 

illustrates comparative performance assessments of the SVM classifier for the selected six 

features, and those 100 features that were selected after the first stage of selection using 

MRMR. It can be seen that when 100 genes were used for classification purposes, an accuracy 

of 95.8% was achieved compared to 100% SVM classifier accuracy using the selected six 

genes as its input.  

 

 
Figure 6.35: Accuracy of SVM classifier. 

 

As mention in Section 6.2.4.4, when DESeq Bioconductor package was used to determine 

differentially expressed genes, 186 genes were selected based on an adjusted p-value of 0.1 

and log2 fold changes of at least double or half of that between two conditions. In the 

classification analysis using MRMR-COA-HS when normalised counts were used, in fact four 

genes (CG9021, CG14960, TwdlG, and Osi24) out of the six selected genes by the classification 

method were also among the 186 genes selected by DESeq Bioconductor package. CG6741 

and CG9154 genes that were selected by the classification method and were not found to be 

differentially expressed by DESeq, were then investigated to determine whether they have 

biological relevance for the dataset under investigation. It was found that the CG9154 gene 

is a protein coding gene, and its biological process is the positive regulation of transcription 
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from the RNA polymerase II promoter. The CG6741 gene is also a protein coding gene, and 

its biological process is involved with compound eye development. To date, there is limited 

amount of information available in the literature in regard to the selected genes. However, 

further exploration in the roles of these genes could shed more light on the function of these 

genes. 

6.2.8: Summary 

In this chapter, first an overview of RNA-Seq data analysis was given. Then a state-of-the-

art pipeline for RNA-Seq analysis was investigated.  

In respect to the overview of RNA-Seq data analysis, different steps required for successful 

RNA-Seq analysis were explored (see Figure 6.6). First, the importance of experimental 

consideration in the design of RNA-Seq was pointed out with regards to sequencing depth and 

number of replicates. Then the sources of possible contaminations in such experiments were 

explored, including technical and biological contaminations, and how one can eliminate such 

contaminations as a pre-processing step towards a successful RNA-Seq downstream analysis. 

It was discussed that the first step after pre-processing is aligning the short reads, either to 

reference transcripts or a reference genome. The aligner software should be spliced-aware if 

short reads are mapped to a reference genome, to account for exon-exon junctions. Examples 

of such aligners are STAR and TopHat. The aligner software usually creates a BAM file, which 

contains the genomic coordinates that reads are mapped to, and from this file a count matrix 

is then formed that summarises the number of reads for each genomic feature depending on 

the objective of the study. Several software was introduced to create the count table. Then 

different normalisation methods including RPKM were explored that aid in accounting for gene 

length and library size biases. In Section 6.1.6, statistical methods for modelling raw counts 

and estimating overdispersion that present in RNA-Seq data due to biological variation were 

investigated including the negative binomial model.  Finally, the concept of differential 

expression at gene and transcript levels were examined, and some of the well-known software 

for such analysis were identified. 

In respect to the state-of-the-art RNA-Seq analysis pipeline, details of this pipeline were 

outlined (see Figure 6.7). To perform the analysis, RNA-Seq data from Drosophila, including 

three normal and three AIP positive samples were used. Since there are many different 

R/Bioconductor packages, a state-of-the-art pipeline was implemented to perform the RNA-

Seq analysis for differential gene expression, differential exon usage, sample classification, 

annotation, and pathway analysis. Initially all samples were quality checked, and when 

required, pre-processing steps were performed to eliminate noise and low quality RNA-Seq 
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reads. Then the data was mapped to the Drosophila genome using the STAR aligner. These 

steps were carried out using OSX terminal. Afterwards, the data was imported into the 

R/Bioconductor software, and the initial differential gene expression analysis was carried out. 

Several steps were required for this analysis, including counting reads, normalisation, 

dispersion estimation, and differential gene expression tests, all of which were explored in 

detail. As a result, 186 genes were identified as differentially expressed. Furthermore, the 

relevancies of these genes were investigated using gene annotation and tools like DAVID. It 

was observed that the selected genes play an active role in biological processes, such as chitin 

and cuticle development. It is noted that both of these substances are related to the main 

structure for Drosophila body size. It is also known that cases that are AIP positive usually 

lead to bigger body sizes. Therefore, the selected genes could be used as a biomarker for 

such cases. Furthermore, a differential exon usage analysis was performed to identify any 

exon that is expressed differently across two conditions. Similar steps to that for differential 

gene expression were performed. It was observed that 1053 exons were differently used 

across control and mutated samples that correspond to 622 genes, with gene CG3954 

(FBgn0000382) having the smallest p-value. Finally, the use of machine learning for RNA-Seq 

data was investigated. To this end, the proposed method for microarray data in Chapter 4 

was implemented for RNA-Seq data classification. Initially, the count matrix was normalised 

and transformed using the rlog method, so that the data could have the characteristics of 

those in homoscedastic data. The transformed count matrix then underwent a two-stage 

feature selection in order to select the most informative features. As a result of classification, 

six genes were identified that achieve 100% classification accuracy for the SVM classifier. Four 

out of six genes were previously identified as differentially expressed. However, features 

including CG6741 and CG9154 were not observed in the previous analysis.  
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Chapter 7: Conclusions and Future Research 

 

 

 

 

Recent advances in gene expression have paved the way for investigating it on a genome-

wide scale. This has been possible with the help of technologies such as microarray and next 

generation sequencing, which in principle are very different one from another. This is because 

the resulting datasets from each technology require different approaches for a successful 

analysis. This thesis presented an investigation into the analysis of gene expression from both 

technologies, and provided new methods towards a more successful analysis for multi-

category diseases. 

7.1: Analysis of Microarray Data 

With regards to microarray technology, cancer classification is of the utmost importance. 

It improves personalised medicine by providing information for better treatment decisions by 

doctors. However, highly accurate disease classification remains challenging due to the curse 

of dimensionality in these datasets. Therefore, one of the main objectives of this study was 

to design solutions to enhance the classification accuracy of microarray data.  

Different steps were required to achieve a high classification accuracy, such as gene 

selection, clustering, and different classifiers, which were explored. It was noted in Chapter 3 

that in order to have a successful analysis, several aspects should be considered prior to the 

analysis such as the design of the microarray experiment and pre-processing, in order to 

remove systematic errors that present in microarray data. A detailed investigation into 

unsupervised methods such as K-mean, C-mean, hierarchical clustering, SOM, Bi-CoPaM, and 

UNCLES were carried out, and the importance of these methods in the visualisation and 

interpretation of experimental results was pointed out. With regards to the gene selection 

step, different methods such as filter and wrapper approaches were examined, and two 

classifiers, SVM and the MLP artificial neural network were studied. Several cancer datasets 
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including leukaemia, prostate cancer, and lymphoma were used to test the proposed methods 

for enhancing classification performances.  

Several original contributions have been made to this thesis that enhanced the accuracy of 

cancer classification. For example, a novel gene selection method, in which optimisation based 

clustering algorithms were utilised in order to cluster microarray data prior to gene selection 

was developed. This method incorporated a shuffling technique to choose the most 

informative genes and consequently led to a better classification performance. In this method, 

a new optimisation algorithm, COA-GA, was also proposed, for which a comparative 

performance assessment with other optimisation algorithms suggested that the proposed 

algorithm outperforms other optimisation algorithms such as PSO, GA, and COA in reaching a 

better minimum in fewer iterations. This ultimately resulted in better classification. However, 

it was noted that traditional clustering methods such as K-means, C-means, and hierarchical 

may not have any effects on the classification performance. Furthermore, from a comparative 

analysis between SVM and MLP, it was observed that the SVM classifier performs better than 

MLP for microarray cancer classification.  

Another method with regard to microarray technology was developed that is called MRMR-

COA-HS, which selects the most informative genes in two stages and provides high 

classification accuracy for cancer datasets under investigation. In the proposed method, 

initially the most relevant genes were selected using MRMR, which is a filter method, to reduce 

the computational time for the second stage of the selection process. In the second stage, a 

novel optimisation algorithm called COA-HS was proposed, and the cost function was designed 

so that the number of selected genes would be minimised while maximising the accuracy of 

the SVM classifier. The LOOCV method was used to examine the performance of the proposed 

method, and the results were compared to other algorithms such as PSO, GA, HS, and COA. 

Overall, this approach resulted in a high classification accuracy for all optimisation algorithms 

mentioned above. However, it was observed that COA-HS outperformed other methods, by 

both achieving a higher classification accuracy for all datasets, and selecting a lower number 

of genes to achieve its accuracy compared to other optimisation methods. Since each 

algorithm was ran 20 times, those gene that were selected at least 10 times out of 20 runs 

where then further investigated and found to be biologically relevant to each cancer dataset.  

This part of the thesis provides new approaches that enhance prognosis and classification 

of cancer using microarray data that provides reliable classification results, which can lead to 

more informed decisions by doctors.   
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7.2: Analysis of RNA-Seq Data 

With regards to next generation sequencing (RNA-Seq), the required primary analysis for 

successful downstream analysis includes several steps such as pre-processing, alignment of 

short reads to a reference genome, creation of a count table, and normalisation. However, 

depending on the downstream analysis, the statistical modelling of the count table and 

normalisation can differ. Since the introduction of RNA-Seq, the preferred platform for the 

analysis of such a dataset has been R/Bioconductor, and therefore numerous packages have 

been proposed to aid in a successful analysis. This has led to an overwhelming number of 

choices that one can opt for, and many studies have proposed pipelines to use specific 

software to perform such analyses from start to downstream analysis of choice. However, due 

to advances in statistical methods that applied to RNA-Seq, these pipelines have undergone 

several changes. This thesis investigated a state-of-the-art pipeline that uses more cited, 

recently developed software, and can be used for different steps towards downstream 

analysis, such as differential gene expression and differential exon usage. Nevertheless, there 

has not been enough research to apply classification for RNA-Seq thus far, as the focal point 

for this dataset is finding the features, including genes, exons, and isoforms that are being 

used differently across different conditions. Therefore, as a part of the proposed pipeline, the 

classification approach that was used for two-stage gene selection with microarray was utilised 

to pave the way for using statistical methods from microarray in next generation sequencing 

for classification purposes. 

To investigate this pipeline, RNA-Seq data from AIP deficient Drosophila that was produced 

in house at Queen Mary University of London was used. Initially, a differential gene expression 

analysis was performed, and important steps including counting reads, normalisation, 

dispersion estimation, and differential gene expression tests were investigated, and the 

required packages for these steps were pointed out. As a result of the differential gene 

expression analysis, 186 genes were identified as differentially expressed. By examining the 

functions of the differentially expressed genes, it was discovered that these genes are 

essential in biological processes such as chitin and cuticle development, both of which are 

important factors for Drosophila’s body size. Since AIP-deficient cases can lead to a bigger 

body size, the selected differentially expressed genes were deemed to play a direct role in the 

case study under investigation, and can be used as biomarkers. 

Differential exon usage was then investigated to provide information for alternative 

splicing, in which similar steps to that for differential gene expression were identified to be 

important for a successful analysis, while the differences in modelling count were also pointed 
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out. As a result of this analysis, 622 genes were identified to have exons that are differently 

expressed across control and mutated samples (1053 exons). 

Finally, the classification was successfully performed for RNA-Seq data. The count table 

was normalised and then treated as a microarray matrix for classification. For classification 

purposes, the MRMR-COA-HS method that was proposed in Chapter 4 for microarray data was 

used. As a result, six genes were selected that led to 100% classification accuracy for SVM. 

Two out of six of the selected genes by MRMR-COA-HS were not found to be differentially 

expressed when performing differential gene analysis.  

7.3: Suggestions for Future Work 

Future work for this research can be divided into two parts. The first part concerns 

microarray data analysis, and the limitations of the proposed methods being that they are 

designed for a two-class classification task. However, this can be expanded on for multi-class 

classifications in number of ways. For instance, a library for SVM is proposed to achieve this 

objective that is known as LIBSVM [293], and can be used instead of simple SVM. The 

proposed methods for classification in Chapter 4 and Chapter 5 can be used for extra 

microarray datasets to further validate these methods, and upon successful validation, these 

methods could be used as a benchmark for cancer classification. The proposed optimisation 

algorithms can be used for other optimisation-based problems too, as they outperform other 

algorithms such as GA, PSO, HS, and COA at achieving a better minimum in fewer iterations. 

This can reduce the computational time significantly, while providing better results at the 

same time. Finally, gene selection also plays an important role in achieving high classification 

accuracy. Therefore, it is worth investigating new feature selection methods that have recently 

been proposed for other scientific fields like text classification, for the purpose of cancer 

classification.  

The second part relates to RNA-Seq data. As mentioned in Section 6.2.7, once the count 

table is normalised appropriately, statistical approaches that used for microarray data can be 

applied in a similar fashion. Therefore, as a future study, one could investigate different 

clustering methods to identify hidden patterns within RNA-Seq data that could not be observed 

with other analyses. Furthermore, differential isoform analysis has recently attracted many 

researchers, and the objective is to observe which isoforms are expressed differently across 

different experimental conditions.  The most cited tool for differential isoform analysis to date 

is cufflink [264], which would be a good starting point for such analysis. 
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Appendix 1: R-code for diffrential gene expression 

analysis  
 

 

#TO USE PARALLEL COMPUTING 

library("BiocParallel") 

register(MulticoreParam(5)) 

#***********************1. READING DATA INTO R**************************************************** 

#==============================dir to datasets 

dir="/Users/Main-Data" 

#==============================dirs to bam files 

AlignedFiles <- list.files(dir, ".bam$", full.names = TRUE) 

#==============================dir to gtf file 

GTFfile <- file.path(dir, "Drosophila_melanogaster.BDGP5.76.gtf") 

#==============================read in bamfiles by Rsamtools 

library(Rsamtools) 

BAMFileList <- BamFileList(AlignedFiles,yieldSize=10^5) 

#============================== create sample table 

     SampleInfo = data.frame( 

      row.names =       c("Control5","Control7","Control8","Mutated5","Mutated6","Mutated7"), 

  condition = c("Control","Control","Control","Mutated", "Mutated","Mutated")) 

      

#**************************2. COUNT THE READS ***************************************************** 

library(GenomicFeatures) 

TxDbFromGFF <- makeTxDbFromGFF(GTFfile, format="gtf") 

ExonByGenes <- exonsBy(TxDbFromGFF, by="gene") 

length(ExonByGenes) 

summary(elementNROWS(ExonByGenes)) 

setSessionTimeLimit(cpu = Inf, elapsed = Inf) 

library(GenomicAlignments) 

     RangedSummarizedExperiment <- summarizeOverlaps(ExonByGenes, BAMFileList, 

mode="Union", 

singleEnd=FALSE, 

ignore.strand=TRUE, 

fragments=TRUE) 

###add column data 

colData(RangedSummarizedExperiment ) <- DataFrame(SampleInfo) 

## Visualizing sample-sample distances 

plot(assay(RangedSummarizedExperiment)[,2:3]) 

********************3 CREATE OBJECT FOR DESEQ2 ************************************************* 

### Creating a DESeqDataSet object 

library(DESeq2) 

      DESeqDataFrame <- DESeqDataSet(RangedSummarizedExperiment , design= ~ condition) 
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#**********************4 NORMALIZATION****************************************************** 

 

DESeqDataFrame <- estimateSizeFactors(DESeqDataFrame) 

sizeFactors(DESeqDataFrame) 

colSums(counts(DESeqDataFrame)) 

library(geneplotter) 

multidensity( counts(DESeqDataFrame, normalized = T), 

              xlab="mean counts", xlim=c(0, 1000)) 

 

multiecdf( counts(DESeqDataFrame, normalized = T), 

           xlab="Mean counts", xlim=c(0, 1000)) 

#============exploratory data analysis 

loggeomeans <- rowMeans(log(counts(DESeqDataFrame))) 

hist(log(counts(DESeqDataFrame)[,1]) - loggeomeans,  

     col="grey", main="", xlab="", breaks=40) 

log.norm.counts <- log2(counts(DESeqDataFrame, normalized=TRUE) + 1) 

log.norm <- normTransform(DESeqDataFrame) 

rs <- rowSums(counts(DESeqDataFrame)) 

mypar(1,1) 

# not normalised 

boxplot(log2(counts(DESeqDataFrame)[rs > 0,] + 1))  

# normalised 

boxplot(log.norm.counts[rs > 0,]) 

plot(log.norm.counts[,2:3]) 

### rld transformation  

rld <- rlog(DESeqDataFrame) 

plot(assay(rld)[,2:3]) 

### vsd transformation  

vsd <- varianceStabilizingTransformation(DESeqDataFrame) 

plot(assay(vsd)[,2:3]) 

#The principal components (PCA) plot  

plotPCA(rld, intgroup="condition") 

 

#**************** 5 Differential gene expression****************************************************** 

DESeqDataFrame <- estimateDispersions(DESeqDataFrame) 

plotDispEsts(DESeqDataFrame) 

#test for differential analysis 

DESeqDataFrame <-  nbinomWaldTest(DESeqDataFrame) 

DESeq2Results <- results(DESeqDataFrame, pAdjustMethod = "BH") 

summary(DESeq2Results) 

table(DESeq2Results$padj < 0.1) 

DESeq2ResultsFoldChange <- results(DESeqDataFrame, lfcThreshold=1) 

table(DESeq2ResultsFoldChange$padj < 0.1) 

#####FIND DIFFERENTIALLY EXPRESSED GENES####### 

#The top "n" high and low expressed genes by adjpval: 

n = 5 

#Differential-Expressed-Genes with adjusted p-value <0.1 
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     DiffExprGenes <- DESeq2ResultsFoldChange[ which(DESeq2ResultsFoldChange$padj < 0.1 ), ] 

dim(DiffExprGenes) 

#all differentially expressed genes 

DiffExprGenesbyPadj<- DiffExprGenes[ order( DiffExprGenes$padj ),] 

      write.csv( as.data.frame(DiffExprGenesbyPadj), file="Diff-Exp-Genes.csv" ) 

#sort it by the log2 fold change estimate 

      DiffExprGenesSortedByfoldChange <- DiffExprGenes[ order( DiffExprGenes$log2FoldChange ), ] 

#TOP UP and DOWN:   

      DiffExprGenesbyPadjFold <- rbind(head(DiffExprGenesSortedByfoldChange,n),tail(DiffExprGenesSortedByfoldChange,n)) 

DiffExprGenesbyPadjFold 

      write.csv( as.data.frame(DiffExprGenesbyPadjFold), file="Diff-Exp-Genes-TOP30.csv" ) 

DiffExprGenesbyPadjFold[c(1:5,(2*n-4):(2*n)), c('baseMean','log2FoldChange','padj')] 

 

#****************6 VISUALISING THE RESULTS *************************************************** 

 

#============================== Dispersion plot 

plotDispEsts(DESeqDataFrame) 

dev.off() 

#============================== MA-plot 

      plotMA(DESeq2ResultsFoldChange, main='Control vs. Mutated', ylim=c(-4,4)) 

#============================== Plot top gene 

# Examine the counts for the top gene 

mypar(1,2) 

      plotCounts(DESeqDataFrame, gene=which.min(DESeq2ResultsFoldChange$padj), intgroup="condition") 

#the gene which had lowest expression log-fold0change 

      plotCounts(DESeqDataFrame, gene=which.min(DESeq2ResultsFoldChange$log2FoldChange), intgroup="condition") 

#the gene which had which had highest expression log-fold0change 

      plotCounts(DESeqDataFrame, gene=which.max(DESeq2ResultsFoldChange$log2FoldChange), intgroup="condition") 

 

#============================== Heatmap 

library(pheatmap) 

DiffExprGenesbyPadj<- DiffExprGenes[ order( DiffExprGenes$padj),] 

SortedGenes <- DiffExprGenesbyPadj 

      topgenes <- head(rownames(SortedGenes),25) 

topgenes <- rownames(SortedGenes) 

#topgenes <- head(rownames(DiffExprGenesDoubleOrHalf),) 

# matrix from rld for the selected genes  

mat <- assay(rld)[topgenes,] 

 

#Fourth, we subtract the rowMeans from this matrix to have a uniform plot 

mat <- mat - rowMeans(mat) 

pheatmap(mat) 
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#********************6 RESULTS *********************************** 

#============================== Export results into CSV 

write.csv( as.data.frame(resSort), file="results.csv" ) 

#============================== Annotation 

#simply add symbol to the genes 

DiffExprGenes$SYMBOL <- mapIds(org.Dm.eg.db, 

                               keys=row.names(DiffExprGenes), 

                               column="SYMBOL", 

                               keytype="FLYBASE", 

                               multiVals="first") 

#simply add entrez to the genes 

DiffExprGenes$ENTREZID <- mapIds(org.Dm.eg.db, 

                                 keys=row.names(DiffExprGenes), 

                                 column="ENTREZID", 

                                 keytype="FLYBASE", 

                                 multiVals="first") 

dim(DiffExprGenes) 

write.csv( as.data.frame(DiffExprGenes), file="Annotation.csv" ) 

getwd() 

#============================== Session Information  

Packages_used_in_this_analysis= session_info() 
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Appendix 2: R-code for diffrential exon usage 
  

 

#TO USE PARALLEL COMPUTING 

multicoreWorkers() 

BPPARAM = MulticoreParam(workers=5) 

 

#**********************1. PREPERATION ************************************* 

######Done in TERMINAL  

#######1.1 Preparing the annotation 

#following should be run once to create flattened gff from gtf file. 

 

python/Library/Frameworks/R.framework/Versions/3.3/Resources/library/DEXSeq/python_scripts/dexseq_prepare_annot    

ation.py --aggregate=no Drosophila_melanogaster.BDGP5.76.gtf Drosophila_melanogaster.BDGP5.76.gff 

# 

######1.2.  counting reads 

#following should be run for all samples 

# gff_file is the output file from perevious command 

gff_file=Drosophila_melanogaster.BDGP5.76.gff   

#change "bam_file" in sequence with desired bam file for all samples (note that the samples should be sorted by name         

using samtools) #"samtools sort -n sample.bam sample_SortedByName" 

bam_file=Mut_4_sortmerna_STAR_SortedByName.bam 

out=$bam_file.dexseq_noaggregate.txt 

 

python/Library/Frameworks/R.framework/Versions/3.3/Resources/library/DEXSeq/python_scripts/dexseq_count.py – 

format=bam --paired=yes --stranded=no $gff_file $bam_file $out 

 

 

#**********************2. READING DATA INTO**************************************************** 

 

dir="/Users/Main-Data" 

CountFilePaths = list.files(dir, pattern="txt$", full.names=TRUE) 

basename(CountFilePaths) 

class(CountFilePaths) 

flattenedFilePath = list.files(dir, pattern="gff$", full.names=TRUE) 

basename(flattenedFilePath) 

#sample table 

SampleInfo = data.frame( 

row.names = c("Control5","Control7","Control8","Mutated5","Mutated6","Mutated7"),condition =          

c("Control","Control","Control","Mutated", "Mutated","Mutated")) 
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#**********************3. CREATE OBJECT************************************************* 

 

library("DEXSeq") 

DEXSeqDataFrame = DEXSeqDataSetFromHTSeq( 

  CountFilePaths, 

  sampleData=SampleInfo, 

  design= ~ sample + exon + condition:exon, 

  flattenedfile=flattenedFilePath ) 

 

#**********************3. NORMALIZATION ************************************************** 

 

#measure relative sequencing depth using SizeFactor 

DEXSeqDataFrame = estimateSizeFactors( DEXSeqDataFrame ) 

sizeFactors(DEXSeqDataFrame) 

library(geneplotter) 

mypar(1,1) 

multidensity( counts(DEXSeqDataFrame, normalized = T), 

              xlab="mean counts", xlim=c(0, 1000)) 

multiecdf( counts(DEXSeqDataFrame, normalized = T), 

           xlab="Mean counts", xlim=c(0, 1000)) 

dev.off() 

 

#Dispersion estimation (second line to parallel so quick) 

DEXSeqDataFrame = estimateDispersions( DEXSeqDataFrame, BPPARAM=BPPARAM) 

plotDispEsts( DEXSeqDataFrame ) 

 

DEXSeqDataFrame = testForDEU( DEXSeqDataFrame, BPPARAM=BPPARAM) 

DEXSeqDataFrame = estimateExonFoldChanges(DEXSeqDataFrame, fitExpToVar="condition", BPPARAM=BPPARAM) 

# results table 

DEXSeq_Results = DEXSeqResults( DEXSeqDataFrame ) 

plotMA(DEXSeq_Results, cex=0.8) 

 

table (DEXSeq_Results$padj < 0.1 ) 

table(tapply(DEXSeq_Results$padj<0.1,DEXSeq_Results$groupID,any)) 

 

DifferntialExons <- DEXSeq_Results[ which(DEXSeq_Results$padj < 0.1 ), ] 

dim(DifferntialExons) 

 

#you added next 3 line for extra... 

TopGenesSorted <- DifferntialExons[ order( DifferntialExons$padj ), ] 

dim(TopGenesSorted) 

 

TopGeneSortedNames <- rownames(TopGenesSorted) 

TopGeneSortedNames 

 

write.csv( as.data.frame(TopGenesSorted), file="different-exon-usage-ordered.csv" ) 
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#=====================4 VISUALIZATION================================ 

head(TopGeneSortedNames) 

mypar(1,1) 

#draw the fitted expression levels of each of the exons of gene FBgn0010909 for each condotion 

plotDEXSeq( DEXSeq_Results, "FBgn0000382", legend=TRUE, cex.axis=1.2, cex=1.3, lwd=2 ) 

 

# visualize the transcript models, which can be useful for putting differential exon usage results into the context of  

isoform expression. 

plotDEXSeq( DEXSeq_Results, "FBgn0000382", displayTranscripts=TRUE, legend=TRUE, cex.axis=1.2, cex=1.3, lwd=2 ) 

 

#the count values from the individual samples. The counts are normalized by dividing them by the size factors 

plotDEXSeq( DEXSeq_Results, "FBgn0000382", expression=FALSE, norCounts=TRUE, legend=TRUE, cex.axis=1.2,  

cex=1.3, lwd=2 ) 

 

#create browsable, detailed overview over all analysis results, allowing a more detailed exploration of the results. 

#saved in getwd() 

setwd("~/Desktop") 

DEXSeqHTML( DEXSeq_Results, FDR=0.1, color=c("#FF000080", "#0000FF80"),BPPARAM=BPPARAM) 

 

#conclude by adding the session information: 

sessionInfo() 
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Appendix 3: Diffrentially expressed genes 
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