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The elongational flow behavior of polyethylene, polypropylene, polystyrene, poly(methyl methacrylate), and polycarbonate,
temperatures from 70 to 290 ∘C and pressures up to 70MPa, is examined with the Yahsi-Dinc-Tav (YDT) model and its particular
case known as the Cross model. The viscosity data employed in the range of 3-405 s-1 elongational rates were acquired from the
literature at ambient and elevated pressures. The predictions and the fitting results of the proposed YDT model with the same
measurement data are compared with the Cross model. The average absolute deviations of the viscosities predicted by the YDT
model range from 0.54% to 9.44% at ambient and 1.95% to 6.28% at high pressures. Additionally, the linear formulations derived
from the YDTmodel are employed to relate the viscosity with temperature and hole fraction (“thermooccupancy” function) at zero
level of elongational rate and constant elongational rate along with constant elongational stress. The effects of the four viscosity
parameters (such as transmission and activation energy coefficients in these equations) on the elongational viscosity are analyzed
in detail and some conclusions on the structural differences for the polymers are discussed.

1. Introduction

In rheology, flow is mostly a mixture of elongation and
shear. Elongational dominated, shear dominated, in rare cases
pure shear, or purely elongational flow is the nature of this
phenomenon. Shear flow is typically used to characterize
flow behavior since it is easily produced under laboratory
conditions. Elongational viscositywhich is known to generate
strong stress responses also plays a crucial role for material
characterization [1]. In some polymer melt processing only
elongational properties can identify the polymeric materials
having the same shear viscosity properties. In various man-
ufacturing processes such as film blowing, fiber spinning,
film casting, etc., elongational viscosity gives more accurate
knowledge for polymer processibility as well [2]. The impor-
tant attempt to reveal the underlying mechanisms behind
these applications is modeling.

Several Newtonian and non-Newtonian models are
present in the literature. However, none of the existing New-
tonian equations is able to predict well the elongational flow.
Unlike Newtonian equations, non-Newtonian models have
a capability to more correctly represent nonlinear behavior
of the polymer melts. Those most frequently applied to
elongational viscosity is Sarkar-Gupta elongational viscosity
model [3] and a few-parametric modified White–Metzner
model (mWM) [4, 5]. Gupta et al. [3] fitted their shear
viscosity values in terms of the Carreau model for the shear-
rate dependence. For elongational data, they introduced an
equation which is a modificated form of the Carreau model
to capture the strain hardening effect as it is in LDPE polymer
[1, 3]. Several authors, however, have attempted to develop
composite models combining the shear and elongational
viscosities data fitting applications [4, 5]. Zatloukal employed
the proposed modified Leonov, the eXtended Pom-Pom and
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the modification of White–Metzner equations for both shear
and elongational flows of LDPE, mLLDPE, and PVB melts.
He tested a new modification of the Leonov model with a
proposed dissipation term and showed that the model results
are very good fitting for all flow situations. In his study,
while the XPP model accurately describes the elongational
viscosity up to elongational rate about 10 s-1, at higher
elongational rates, poor estimation is accomplished. In a
similar manner, the elongational flow, in this paper, has been
represented by the YDT (Yahsi-Dinc-Tav) model which has
been successfully employed for the shear viscosity previously
[6]. The model works successfully on both temperature- and
pressure-dependent zero level of viscosities and critical stress
parameter with a single fitting parameter. Analyses were
carried out on HDPE, LDPE, LLDPE, PP, PC, PMMA, and
PS melts at both low (3-50 s-1) and high (up to about 405 s-1)
elongational rates in a wide range of T and P data.

The aim of the present paper as the first part of the
work is to evaluate the suitability of the YDT equation in
modeling of elongational flow. The fitting/predicting per-
formance of the proposed YDT model is compared with
the Cross-like model and better results were obtained for
the former one. The viscosity data and the parameters
determined from elongational viscosity were analyzed and
correlated in terms of temperature and pressure by the YDT
model.

In recent years there has been a considerable interest in
free volume concept as a means to describe the mechanical
behavior of polymer materials, particularly viscosity [6–14].
The term “free volume”, which is expressed as an additional
space needed for the thermal motion, is first introduced
in Van der Waals’ thesis [15]. More than a century ago,
Batschinski [16] suggested the fact that the free volume is
more decisive than the temperature for determining the
viscosity of low-molecular weight liquids. This approach was
further elaborated on polymers in the 1950s by Doolittle
[17, 18]. In the late 1960s, Simha and Somcynsky derived
an equation of state in their lattice-hole theory of liquids
and introduced the hole fraction quantity as a measure of
free volume [19]. Utracki presented an inverse relation of the
logarithm of zero shear viscosity with hole fraction using
a modified functional form of Doolittle’s equation [7–10].
Sedlacek et al. [11] applied their modified Utracki’s hole
fractionmodel to linearize the zero shear and constant shear-
stress viscosities data. In recent articles, the YDT model
by Dinc et al. [6, 13, 14] offered a linear relation between
shear-rate/shear-stress viscosities and temperature- and hole
fraction-dependent thermooccupancy function for various
polymers. Although to date several derived models have been
developed to account for the relation of shear viscosity to the
free volume [6–14], almost no studies have been carried out
for the elongational viscosity.

In this work, as a second part, we focused on the effect
of hole fraction on elongational flow. The dependence of
elongational viscosity on hole fraction is analyzed in terms
of linear equations derived from the YDTmodel at zero level
of elongational rate, constant elongational rate, and constant
elongational stress. From these derivations we also obtained

the viscosity parameters, e.g., transmission coefficient and a
measure of activation energy coefficient, and related them
with constant elongational rate and constant elongational
stress.

2. Theories

2.1. The Simha–Somcynsky (SS) Lattice-Hole Theory. The
Simha and Somcynsky (SS) [19] lattice-hole theory developed
in 1969 describes the pressure, volume, and temperature
(PVT) behavior of polymer melts and particularly introduces
the termoccupied site fraction,𝑦(𝑃, 𝑇).The temperature- and
pressure-dependent occupied lattice site fraction parameter,
y, expressed as the ratio of the occupied sites on all of lattice
sites, and the complementary hole fraction, h, are given by the
following equation:

ℎ = 1 − 𝑦 = 𝑁ℎ
𝑠𝑁 + 𝑁ℎ (1)

where 𝑠 is the number of segments in a molecule and 𝑁 and
𝑁ℎ are the number of molecules and holes, respectively.

The model includes P, V, T variables in a scaled form (𝑃̃,
𝑉̃, and 𝑇̃), namely, 𝑉̃ = 𝑉/𝑉∗, 𝑇̃ = 𝑇/𝑇∗, and 𝑃̃ = 𝑃/𝑃∗ with
the characteristic scaling parameters, 𝑉∗, 𝑇∗, and 𝑃∗:

𝑉∗ = 𝑁𝐴𝜐∗
𝑚0 ,

𝑇∗ = 𝑞𝑧𝜀∗
𝑐𝑘 ,

and 𝑃∗ = 𝑞𝑧𝜀∗
𝑠𝜐∗

(2)

where𝑁𝐴 is the Avogadro’s number, 𝑚0 is the molar mass of
a segment, and k is the Boltzmann’s constant. 𝜐∗ and 𝜀∗ are,
respectively, the characteristic molar volume and attractive
energy parameter per segment. 𝑞𝑧 = 𝑠(𝑧−2)+2 is the number
of the first neighbor intermolecular pairs of the s-mer (chain
length of a polymer) in a lattice of the coordination number
𝑧. The theory incorporates a measure of chain flexibility
expressed as the ratio of the external degree of freedom of
the molecule, 3c, to the number of segments per molecule, s.

Using reduced variables 𝑃̃, 𝑉̃, 𝑇̃ and hole fraction param-
eter, h, the SS provides two coupled equations:

𝑃̃𝑉̃
𝑇̃
= (1 − 𝑄)−1

+ (2𝑦𝑇̃ ) (𝑦𝑉̃)−2 [1.011 (𝑦𝑉̃)−2 − 1.2045]
(3)
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( 𝑠
3𝑐) [

(𝑠 − 1)
𝑠 + 𝑦−1 ln (1 − 𝑦)]

= (𝑄 − 1/3)
(1 − 𝑄)
+ ( 𝑦

6𝑇̃) (𝑦𝑉̃)−2 [2.409 − 3.033 (𝑦𝑉̃)−2]

(4)

where𝑄 = 2−1/6𝑦(𝑦𝑉̃)−1/3.
The characteristic scaling parameters, 𝑉∗, 𝑇∗, 𝑃∗ as

well as temperature- and pressure-dependent hole fraction
h(P,T) parameter can be determined by superimposing
experimental PVT data on the theoretical 𝑃̃-𝑉̃-𝑇̃ surface with
the use of (3) and (4). The model is advantageous in that
it provides the complementary hole fraction, h, which has
been correlated with transport properties and explains the
mechanical behavior of polymers such as viscosity [6, 10],
ionic conductivity [20], etc.

2.2. The Yahsi-Dinc-Tav (YDT) Model. We have shown pre-
viously that the Yahsi-Dinc-Tav (YDT) non-Newtonian vis-
cosity model fitted well the shear viscosity data particularly
at high pressure [6]. For the bulk structured polymers
like PMMA, PC, and PS of which the viscosity values are
high comparing the remaining polymers, the outcomes were
found reasonable as well. This result led us to test the YDT
model for the high viscosity values as in elongational flow.
Hence, one of the aims in the present study is primarily
not to observe the results, but to prove our foresight about
the suitability of the YDT model for predicting elongational
viscosity.

Here, elongational behavior of the same polymers is going
to be modeled with the same equation which mathematically
relates Newtonian viscosity (zero level of elongational viscos-
ity), 𝜂0, and elongational rate, as ̇𝜀:
𝜂𝐸
= 𝜂0
1 + (𝜃1/Γ (𝑞 + 1)) (𝜂0 ̇𝜀/𝜏)𝑞 + (𝜃2/Γ (2𝑞 + 1)) (𝜂0 ̇𝜀/𝜏)2𝑞

(5)

Neglecting 2q power term in the denominator of (5), we
obtain the Cross-like model [6, 13, 14];

𝜂𝐸 = 𝜂0
1 + (𝜃1/Γ (𝑞 + 1)) (𝜂0 ̇𝜀/𝜏)𝑞 (6)

where the nonlinearity parameter 𝑞 is the order of the frac-
tional derivative of the exponential function in the Eyring’s
strain rate [6] and Γ(𝑞) denotes the gamma function. 𝜃𝑛 =
(2/𝜋)∑𝑖 cos𝑛𝑞+2𝜃𝑖, (𝑛 = 1, 2) is a measure of the characteristic
ratio, involved the angle, 𝜃𝑖, between the deformation stress
and the displacement vector of the segment jumping into
the neighboring 𝑖th lattice position. n denotes the sequential
order of the fractional derivative and the fractional integral in
the fractional Taylor series expansion of the first exponential
product in the Eyring’s rate of strain in (3) of [6]. 𝜏 =
4𝑅𝑇/√6𝜐 is the critical stress parameter in which 𝑅 and
𝜐 are gas constant and the molar volume of a segment,
respectively.

2.3. The Viscosity Model in Terms of Thermooccupancy Func-
tion. A linear relation between the viscosities and thermooc-
cupancy function, 𝑌ℎ, is [6, 12–14]

ln 𝜂𝐸 = ln 𝜂∗𝐸 + 𝛼𝑌ℎ; 𝑌ℎ = 1 − ℎ
ℎ

1
𝑇 (7)

where 𝜂𝐸 is zero level of elongational viscosity (Newtonian
viscosity) (𝜂𝐸 = 𝜂0), constant elongational rate viscosity
(𝜂𝐸 = 𝜂 ̇𝜀), or constant elongational stress viscosity (𝜂𝐸 =
𝜂𝜎). 𝑌ℎ depends on the structural occupancy-nonoccupancy
ratio ((1 − ℎ)/ℎ) and inversely related to the temperature.
Theviscosity-intercept ln 𝜂∗𝐸 (for the zero level of elongational
rate, constant elongational rate, and constant elongational
stress; ln 𝜂𝐸 = ln 𝜂∗𝐸 = ln 𝜂∗̇𝜀0 , ln 𝜂𝐸 = ln 𝜂∗𝐸 = ln 𝜂∗̇𝜀 ,
or ln 𝜂𝐸 = ln 𝜂∗𝐸 = ln 𝜂∗𝜎 , respectively) represents the
extrapolated viscosity values at zero 𝑌ℎ (i.e., when the system
is dominated by large hole fraction at high temperature and
low pressure). The slope 𝛼 refers to a measure of activation
energy at zero level of elongational rate (𝛼 = 𝛼 ̇𝜀0), constant
elongational rate (𝛼 = 𝛼 ̇𝜀), or constant elongational stress
(𝛼 = 𝛼𝜎). The parameters 𝜂∗ and 𝛼 are given by

𝜂∗𝐸 =
√2𝑁𝐴ℎ𝑝
𝜋𝜅𝜐

and 𝛼 = 𝑎󸀠 𝑞𝑧Φ2𝑘
(8)

where ℎ𝑝 and 𝑘 are Planck and Boltzmann’s constants,
respectively. 𝜅 is the transmission coefficient which is a
measure of possibility of a molecule to move from one site to
a vacant site. 𝑎󸀠 is the proportionality constant of activation
energy and Φ (assumed to be constant [6]) is the interaction
potential energy between a pair of segments of a polymer.

3. Calculations and Discussion

3.1. The SS Theory Parameters. We analyzed the PVT behav-
ior of some commercially available polymers of high-
density polyethylene (HDPE), low-density polyethylene
(LDPE60 and LDPE65), linear low-density polyethylene
(LLDPE), polypropylene (PP), polystyrene (PS), poly(methyl
methacrylate) (PMMA), and polycarbonate (PC). Their
experimental PVT data reported by Sedlacek et al. [11] were
accomplished on a fully automated PVT instrument (pvT 100
SWO, Germany) in the temperature range 70-290 ∘C and the
pressure range 15-70MPa with the increments of 5MPa.

In the present paper we used the values of the char-
acteristic scaling parameters 𝑃∗, 𝑉∗, 𝑇∗ and the structural
flexibility parameter 3c/s with 3𝑐 = 𝑠 + 3 computed from
the experimental data by the use of the coupled equations
(3) and (4) from our previous work [6] in which LDPE
65 was excluded (LDPE refers to LDPE 60 in ref [6]). For
the corresponding polymer the scaling parameters and the
segment number are computed as 𝑉∗ = 1.1723 cm3/g,
𝑇∗ = 10506.2 K, 𝑃∗ = 609 MPa, ⟨−Φ/𝑘⟩ = 503.02 K, and
𝑠 = 2007 with the same method explained before [6]. These
parameters are used for the determination of hole fraction
at each temperature and pressure and later used in viscosity
calculations.
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Figure 1: Logarithm of viscosity versus logarithm of elongational rate of HDPE at atmospheric pressure and various temperatures. Solid lines
represent data fitting through each data set [4] by (5).

3.2. The Elongational Viscosity Data Fit. The experimental
rheological data for the polymers studied were reported by
Sedlacek et al. [4] for three tested temperatures and six
pressures (0.1, 10, 20, 35, 50, and 70MPa). The elongational
rate dependent viscositywasmeasured in amodified capillary
rheometer (Göttfert 2001, Germany). A back-pressure device
in order to raise the pressure and two capillaries with length-
to-diameter ratio of 0.12 and 20were used.Themeasurements
were complemented by employing the Cogswell analysis
together with pressure-dependent entrance pressure drops.
The effect of viscous heating was omitted during the mea-
surements because the magnitudes of the Nahme number
were found to be less than 1. A closer description of the
experimental technique and instrumentation can be found in
the preceding article [4].

Now, these sets of data are fitted for each polymer using
(5) and (6) with the double and single nonvanishing term(s)
in the denominator, respectively, to obtain the zero level of
elongational viscosities, 𝜂0 , and the stress parameters, 𝜏, along
with the fraction 𝑞 as a nonlinearity parameter in the power
of elongational rate. Our motivation is to obtain 𝜂0 and 𝜏
for each temperature and pressure data set while 𝑞 is a sole
parameter for each polymer. To obtain 𝜂0 and 𝜏, we employ
nonlinear fit scheme assuming that 𝑞 is taken as a disposable
quantity. The best 𝑞 value is adjusted with the minimum
average absolute deviation in viscosity defined as (relative
mean absolute percentage error)

Δ𝜂𝐸 (%) = 100
𝑁 ∑
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 −
𝜂𝑖𝑐𝑎𝑙𝑐
𝜂𝑖exp

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (9)

The viscosity data are given in the range of 3 to 405 s-1
elongational rate. These datasets can be used to obtain 𝜂0
and 𝜏 as well as 𝑞 parameter explained above scheme. For
high pressures, we obtain all 𝜂0 and 𝜏 by fixing 𝑞 value at
ambient pressure. The 𝜂0 and 𝜏 values at ambient pressure
are presented in Table 1 alongside with mean percentage
relative errors in viscosity, Δ𝜂𝐸(%), and correlation coeffi-
cient squared, 𝑅2. The latter, also called the coefficient of
determination, is a measure of how much of the variance
in experimental value of 𝜂𝐸 is explained by the model. The
percentages relative errors are computed by using (9). The
values in parentheses are calculated using (6) while the rest
with (5). To reduce figure crowding, we demonstrated HDPE
at Figures 1, 2, and 4 aswell as PMMAat Figure 3. Logarithmic
elongational viscosity versus logarithmic elongational rate of
HDPE is plotted at various temperatures at ambient pressure
in Figure 1 and for various pressures only at 210 ∘C in
Figure 2. Similar plots are obtained for the other polymers.
The solid line is drawn by (5) with the best fit parameters.
These parameters at ambient pressure are collected in Table 1
with Δ𝜂𝐸(%) and 𝑅2. In a similar manner, the values of the
parameters in (6) are also tabulated in parenthesis. When
we compare the result we can say that Δ𝜂𝐸(%) does not
differ according to both models for HDPE. Only for PP
the Cross-like model has a better capability to describe the
viscosity values, while for the remaining polymers the values
are estimated better with the YDT model. Specifically, from
Table 1, it can be observed that, with the YDT model, good
estimation is achieved for the linear or nearly linear polymers
(HDPE; LLDPE) and PP with simple structure. The fitting is
reasonable for linear long chain branched (LDPEs) and large
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Table 1: Rheological parameters computed from (5) and (6) in parenthesis in terms of three different temperatures at ambient pressure.

Polymer T (∘C) q 𝜃1 Γ (𝑞 + 1) 𝜂0 (Pa.s) 𝜏 (Pa) Δ𝜂𝐸 (%) R2

LDPE60

150

170

190

0.655
(0.507)

0.238
(0.447)

0.901
(0.886)

17535.7
(25744.2)
17291.2
(24243.4)
8002.41
(9094.53)

9.9122×107
(1.999×106)
767495
(244722)

1.58501×106
(1.3827×106)

2.82
(6.14)
7.24
(4.49)
1.89
(1.95)

0.99898
(0.99234)
0.99429
(0.99793)
0.99977
(0.99961)

LDPE65

150

170

190

0.660
(0.820)

0.231
(0.068)

0.902
(0.937)

50800.3
(51657.7)
24061.8
(24089.5)
16430
(16364)

2.03715×106
(221494)

1.04557×109
(3.5902×107)
2.27597×107
(2.8256×106)

8.46
(9.38)
2.83
(2.83)
3.45
(3.44)

0.99155
(0.99002)
0.99887
(0.99893)
0.99860
(0.99860)

LLDPE

150

170

190

0.547
(0.649)

0.387
(0.245)

0.889
(0.900)

29500.4
(27429.7)
15524.9
(14189.6)
14798.2
(13531.6)

208213
(130950)
306655
(199260)
208924
(136025)

2.44
(2.71)
0.68
(0.68)
4.94
(5.00)

0.99903
(0.99893)
0.99994
(0.99994)
0.99748
(0.99755)

HDPE

170

190

210

0.499
(0.494)

0.459
(0.467)

0.886
(0.886)

396457
(464905)
174351
(187253)
115812
(120758)

18863.3
(15151.1)
43466.5
(38795.4)
51574.5
(47922.2)

0.54
(0.53)
2.70
(2.71)
3.01
(3.01)

0.99996
(0.99996)
0.99895
(0.99894)
0.99887
(0.99886)

PMMA

230

240

250

0.523
(0.630)

0.423
(0.270)

0.887
(0.897)

243538
(281487)
239972
(230746)
177553
(157033)

127536
(114841)
56457.2
(51143.9)
34318.5
(36123.8)

3.27
(7.17)
6.06
(7.13)
5.28
(4.95)

0.99886
(0.98958)
0.99688
(0.99513)
0.99750
(0.99780)

PC

280

290

300

0.832
(0.757)

0.059
(0.004)

0.940
(0.982)

3031.34
(4591.78)
3535.29
(4167.8)
3886.5

(7982.78)

553155
(39800.3)
698105
(95812.8)
480617
(26169.9)

6.51
(7.91)
5.06
(7.13)
7.34
(5.20)

0.99359
(0.99156)
0.99687
(0.99468)
0.99496
(0.99748)

PP

190

210

230

0.258
(0.486)

0.462
(0.479)

0.8861
(0.886)

146262
(52099.9)
115212
(50774)
108176

(44800.8)

10432.9
(17176.4)
10760.2
(13328.4)
6192.31
(8330.87)

3.08
(2.93)
3.83
(3.88)
0.55
(0.56)

0.99872
(0.99890)
0.99822
(0.99815)
0.99997
(0.99997)

PS

190

210

230

0.580
(0.552)

0.339
(0.380)

0.891
(0.889)

101383
(140943)
17697.6
(19396.4)
15978.4
(13049.7)

361180
(122334)
491802
(306492)
172216
(184296)

3.96
(4.05)
9.44
(8.91)
4.98
(9.76)

0.99837
(0.99844)
0.99014
(0.99107)
0.99671
(0.99006)

group attached polymers like PMMA, PC, and PS. The mean
percentage errors in viscosity for all the polymers considered
are less than 6.30% at ambient and 6.28% at higher pressures.
However, using (6), the mean percentage errors are less than
7.58% at ambient pressure and 6.59% at higher pressures.
Overall, Δ𝜂𝐸(%) according to (5) decreases almost 0.5% at
ambient and 0.8% at high pressures comparing to (6). Hence
(5) better fits the viscosity data than (6) both at ambient and

at high pressures. In the previous findings, the observed non-
Newtonian behavior is better described by the Cross model
only at ambient pressure (see [6]).

Moreover, in Figure 3, the zero level of elongational rate
viscosity (𝜂0) and the stress parameter (𝜏) are plotted as
a function of pressure at various temperatures for PMMA.
For the zero level of elongational rate viscosity the graph
includes the best fit line. The zero elongational viscosity
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Figure 2: Logarithm of viscosity versus logarithm of elongational rate of HDPE at 210 ∘C and various pressures. Solid lines represent data
fitting through each data set [4] by (5).
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Figure 3: Zero level of elongational viscosities, 𝜂0, and critical stress parameter, 𝜏, computed by (5), with respect to pressures for PMMA at
different temperatures. Solid lines represent linear fitting through the data [4].

increases linearly with increasing pressure, but the stress
parameter, depending on pressure in terms of 𝑇/𝜐, increases
but not consistently in temperature. On the other hand, the
zero elongational viscosity decreases steadily with increasing

temperature, but we may not draw an exact temperature
dependency on the stress parameter.The behavior of 𝜂0 and 𝜏
with respect to pressure at elongational flow is similar to the
one at shear flow (see [6]).
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Table 2: Values of parameters of (7) evaluated for 𝜂0 at zero level of elongational rate according to (5) and (6) in brackets.

Polymer ln 𝜂∗̇𝜀0 𝑞𝑧 𝛼 ̇𝜀0 𝑎󸀠 ̇𝜀0×(104) 𝜅 Δ𝜂𝐸 (%) R2

LDPE60 7.60
(8.02) 20372 65.35

(57.89)
0.13
(0.11)

0.0020
(0.0013)

1.41
(1.62)

0.99972
(0.99965)

LDPE65 7.53
(7.37) 20072 87.01

(92.81)
0.17
(0.18)

0.0021
(0.0024)

1.35
(1.58)

0.99966
(0.99953)

LLDPE 8.25
(8.39) 14672 55.33

(48.67)
0.15
(0.13)

0.0010
(0.00089)

1.45
(1.47)

0.99970
(0.99969)

HDPE 9.85
(9.66) 28772 126.93

(141.26)
0.21
(0.23)

0.00024
(0.00029)

1.81
(1.08)

0.99980
(0.99975)

PMMA 6.72
(6.82) 29072 358.19

(334.90)
0.53
(0.50)

0.0068
(0.0062)

1.81
(2.21)

0.99961
(0.99935)

PC 3.99
(4.52) 4022 560.31

(326.49)
3.83
(3.48)

0.0926
(0.0547)

1.62
(1.96)

0.99961
(0.99942)

PP 8.87
(8.39) 49112 95.51

(121.62)
0.090
(0.12)

0.00054
(0.00088)

2.08
(2.27)

0.99910
(0.99922)

PS 2.68
(2.35) 66572 390.21

(411.54)
-0.25
(-0.26)

0.306
(0.426)

3.32
(3.54)

0.99854
(0.99824)

3.3. Elongational Viscosity-Hole Fraction Dependence under
Constant Elongational Rate and Stress. The relationship
between hole fraction and viscosities at zero and constant
elongational rates and constant elongational stress given in
(7) is tested. The zero level of elongational viscosity values is
estimated from the experimental data by using both the YDT
and the Cross-like models (see (5) and (6), respectively), for
the studied polymers. With regard to the constant elonga-
tional viscosity, the data are evaluated properly through the
polynomial functionfitwithin themeasured elongational rate
and pressure ranges as follows: the viscosity data are fitted
with respect to elongational rate by a third-order (for LDPE
65, LLDPE, PMMA, PP, and PS), second-order (for LDPE 60
and HDPE), and first-order polynomial equations (for PC).
The interpolating 𝜂 ̇𝜀 values are calculated at constant elon-
gational rate values, ̇𝜀𝑐, in Table 3, at the three temperatures
and various pressure levels discussed earlier in explaining the
computation of elongational viscosity. Similarly, the constant
elongational stress viscosities, 𝜂𝜎, are calculated at certain
constant elongational stress, 𝜎𝑐, in Table 4, at the same tem-
perature and pressure levels. The obtained zero elongational,
constant elongational rates and constant elongational stress
viscosity data are fitted to (7), in which the hole fraction
is calculated by the SS theory. The regression parameters
derived from the equation, ln 𝜂∗̇𝜀0 , ln 𝜂∗̇𝜀 , ln 𝜂∗𝜎 and 𝛼 ̇𝜀0 , 𝛼 ̇𝜀, 𝛼𝜎,
are presented in Tables 2–4 with the correlation coefficient
and Δ𝜂𝐸(%) obtained from (9) for the polymers. Using the
best fit parameters, the values of Δ𝜂𝐸(%) in zero elongational,
constant elongational rates and constant elongational stress
are ranging from 1.35% to 3.32%, 0.23% to 2.44% and 0.47% to
4.97%, respectively. Δ𝜂𝐸(%) in average for zero elongational
viscosity is found to be 1.87% via the YDTmodel with a better
accuracy compared to the Cross model of which deviation is
1.97% according to the results listed in Table 2.

In Figure 4, the logarithms of zero elongational rate,
constant elongational rate, and constant elongational stress
viscosities are plotted with respect to 𝑌ℎ for HDPE in which

the solid lines are drawn through the data with the best fit
line. A good linearization, for all conditions above, is achieved
for the three tested temperatures and for all given pressures.
In the figure, the pressure increases from left (the lower
part) to right (the higher part) along each line and at each
temperature. As the hole fraction decreases, 𝑌ℎ increases for
each temperature, so the viscosity increases. Each line slope
gives the value of 𝛼, in Kelvin unit, evident from (7) and (8).
As expected, in Figure 4, the logarithm of viscosities, ln 𝜂𝐸,
decreases as the elongational rate and elongational stress
increase for HDPE.

For comparison, the special cases of Figure 4 at 90
s-1 elongational rate and certain elongation stresses are
delineated in Figures 5 and 6, respectively. Figure 5 shows
a plot of ln 𝜂𝐸 versus 𝑌ℎ at 90 s-1 and Figure 6 displays
ln 𝜂𝐸 versus 𝑌ℎ graph at certain elongational stresses (the
elongational stresses used in Figure 6 indicatedwith italic font
in Table 4). Overall, we conclude that, for the elongational
rate and all elongational stress values, polymers with simpler
structures, PEs and PP, show slowly varying viscous behavior
with respect to the thermooccupancy function, 𝑌ℎ, so their
slopes are smaller than PMMA, PC, and PS. PMMA has
the highest thermooccupancy functional dependency, which
seems to result from two pendant groups (CH3 andCO2CH3)
on each of its monomer units. Accordingly, the measure of
the activation energy coefficient, 𝛼, positively correlates with
activation energy; thus this indicates that PMMA, PC, and PS
polymers require more activation energy,𝐸𝑎, than polyolefins
(PP and PEs).The differences in 𝛼 ̇𝜀 and 𝛼𝜎 values fromTables
3 and 4 can relatively be attributed to the large benzene ring
on the former structures and related to the equilibrium shape
of the chain [21]. Figures 7 and 8 graphs𝛼 ̇𝜀 and𝛼𝜎 with respect
to elongational rate and stress and provide a clearer picture to
this pattern.

The computed 𝛼 ̇𝜀 and 𝛼𝜎 parameters are analyzed at
various constant elongational rate and constant elongational
stress values including those in non-Newtonian region. At
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Table 3: Values of parameters of (7) evaluated for 𝜂𝐸 at different elongational rates.
Polymer ̇𝜀𝑐 (s−1) ln 𝜂∗̇𝜀 𝛼 ̇𝜀 𝑎󸀠 ̇𝜀 × (104) 𝜅 Δ𝜂𝐸 (%) R2

LDPE60
60
90
120

7.14
7.08
7.12

72.63
72.01
68.95

0.142
0.141
0.135

0.0031
0.0033
0.0032

1.18
1.32
1.33

0.99981
0.99975
0.99977

LDPE65
30
60
90
107

8.05
8.61
8.97
9.10

67.69
46.81
31.02
24.13

0.134
0.0927
0.0615
0.048

0.0012
0.00070
0.00049
0.00043

1.23
1.07
0.43
0.55

0.99977
0.99986
0.99997
0.99995

LLDPE
60
90
120

9.13
9.01
8.89

8.47
7.44
7.06

0.0227
0.0199
0.0189

0.00042
0.00048
0.00054

0.64
0.64
0.60

0.99993
0.99993
0.99994

HDPE

60
90
107
120
148

9.26
9.06
8.98
8.92
8.83

35.23
35.15
34.86
34.58
33.89

0.0575
0.0574
0.0569
0.0564
0.0553

0.00043
0.00053
0.00057
0.00060
0.00067

0.34
0.25
0.23
0.24
0.31

0.99998
0.99999
0.99999
0.99999
0.99999

PMMA
60
90
120

3.33
3.31
3.44

452.45
440.95
423.15

0.6740
0.6569
0.6304

0.2028
0.2066
0.1804

0.81
0.91
1.00

0.99991
0.99988
0.99985

PC
60
90
120

3.97
3.71
3.53

359.15
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0.0954
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Figure 6: The logarithm of viscosity at certain elongational stress (the elongational stresses used in the figure indicated with italic font in
Table 4) versus 𝑌ℎ. The solid line is the best fit line through each data set by (7) and (8) with the parameters tabulated in Table 4.
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Table 4: Values of parameters of (7) evaluated for 𝜂𝐸 at different elongational stresses.
Polymer 𝜎c (kPa) ln 𝜂∗𝜎 𝛼𝜎 𝑎󸀠𝜎 × (104) 𝜅 Δ𝜂𝐸 (%) R2

LDPE60
500
800
1100
1400

7.27
6.74
6.57
6.54

69.62
83.59
87.59
87.68

0.136
0.163
0.1711
0.1713

0.0027
0.0046
0.0055
0.0057

1.31
1.56
1.57
1.45

0.99980
0.99969
0.99966
0.99971

LDPE65
350
500
800
1100

8.41
8.15
7.84
7.77

58.14
64.45
74.56
77.07

0.115
0.128
0.148
0.152

0.00086
0.0011
0.0015
0.0016

2.85
1.54
1.31
1.43

0.99846
0.99963
0.99975
0.99968

LLDPE
800
1100
1400

8.15
7.46
6.24

70.54
84.85
112.06

0.189
0.23
0.30

0.0011
0.0022
0.0076

4.56
3.57
4.97

0.99725
0.99797
0.99642

HDPE

500
800
1100
1400
1700
2000

9.89
9.25
8.83
8.53
8.30
8.11

33.07
53.52
62.72
67.19
69.22
69.84

0.0540
0.0874
0.102
0.110
0.113
0.12

0.00023
0.00044
0.00066
0.00089
0.0011
0.0014

1.15
0.59
0.70
0.61
0.47
0.59

0.99980
0.99992
0.99992
0.99994
0.99996
0.99995

PMMA
1100
1400
1700

-4.16
-2.89
-2.28

949.92
861.9
815.85

1.42
1.28
1.22

362.15
101.70
54.98

2.73
1.82
1.64

0.99840
0.99934
0.99960

PC

500
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1700
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1.93
1.49
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0.96
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510.04
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PP
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55.21
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0.052
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0.161

0.0013
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0.99885
0.99915
0.99940

PS
500
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2.93
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452.19
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Figure 7: The elongational rate dependency of computed parameters 𝛼 and 𝑎󸀠 calculated by (7) and (8).
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Figure 8: The elongational stress dependency of computed parameters 𝛼 and 𝑎󸀠 calculated by (7) and (8).

constant elongational rates of 0, 60, 90, and 120 s-1, the slopes
of the lines for HDPE are 126.93, 35.23, 35.15, and 34.58,
respectively. As can be seen the slopes of the lines are inversely
correlated to elongational rates. This can be explained by the
fact that, with the increasing ̇𝜀, the flowability increases, so 𝛼 ̇𝜀
decreases.The same pattern is observed for the other polymer
types except PC (𝛼 ̇𝜀 and 𝑎󸀠̇𝜀 directly related to elongational
rate) in Figure 7(a). A quite slight decrement is observed
since the values of the strain rates and strain rate ranges are
smaller in the elongational flow (3-405 s-1) than in the shear
flow (0.1-8500 s-1) [6]. The activation energy coefficient, 𝑎󸀠 ̇𝜀,
is calculated for each polymer given in Table 3 and plotted
in Figure 7(b). The behavior of 𝑎󸀠 ̇𝜀 is similar to 𝛼 ̇𝜀. Figure 8
shows the change of 𝛼𝜎 and 𝑎󸀠𝜎 parameters with elongational
stress for the polymers given in Table 4. These parameters
slightly increase with elongational stress. However, in our
previous work where the stress values are much lower than
the elongational stress values as expected, 𝛼𝜎 and 𝑎󸀠𝜎 stay
almost constant with shear stress. Figure 8 is drawn with
the exception of PMMA since 𝛼𝜎 and 𝑎󸀠𝜎 inversely related
to elongational stress. PC is also excluded in Figure 8(b)
because of its largest values. In comparison, PMMA, PC, and
PS have higher 𝛼 and 𝑎󸀠 values than polyolefins. As noticed
above, this can be arising from the fact that, bulky pendant
groups attached to the backbone of these polymers make
themmore elongated and increase the intermolecular friction
(viscosity). As the viscosity increases, the activation energy
also increases. Consequently, the more activation energy
requires the higher values of 𝛼 and 𝑎󸀠.

Further, the transmission coefficient, 𝜅, in (8) is
also calculated and plotted in Figures 9(a) and 10 with
respect to the elongational rate and the elongational stress,

respectively. It has been found that the transmission
coefficient, 𝜅, increases linearly along with the increasing
elongational rate and elongational stress. In Figure 9(a),
there is a slight increment because of the low and small range
of elongational rates. This rise enables the molecules to jump
into the holes much more easily. On the other hand, the
tendency of the molecules to the flowability decreases the
intercepts, ln 𝜂∗𝐸, at the viscosity axis as shown in Figures
9(b) and 11. ln 𝜂∗𝐸 represents the extrapolated viscosity values
when the system dominates sufficiently large hole fraction
expectedly at high temperature and low pressure in (7). In
other words, the thermooccupancy function, 𝑌ℎ, goes to zero.
This contrary behavior of 𝜅 to ln 𝜂∗𝐸 is obvious from Tables
3 and 4. Graphical results of this observation are depicted
in Figures 9–11. Increasing the constant elongational rate
given in Table 3 and the constant elongational stress given
in Table 4, the intercepts for HDPE decrease steadily as
9.26, 8.98, 8.83 Pa⋅s and 9.25, 8.53, 8.11 Pa⋅s, respectively. The
decrements for the elongational rate and the elongational
stress are also observed for the other polymers shown in
Figures 9(b) and 11. LDPE 65 in Figure 9 and PMMA in
Figure 11 are excluded, because of the increments with
elongational rate and stress, respectively. From Figures 9–11
we understand that the calculated values of 𝜅 of the constant
elongational rate and stress of PC, PS, and PMMA are
larger than of the polyolefins while they have smaller values
of ln 𝜂∗𝐸. This can be interpreted, such that the polymers,
PMMA, PC, and PS, have bulky and larger pendant groups
as allyl, methyl, and phenyl. Since the polymers with the
side groups are very sensitive to produce more free volume
and less viscous behavior as going to higher temperature
or lower pressure, they take the higher values of 𝜅 and the
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smaller values of ln 𝜂∗𝐸. The calculated values of ln 𝜂∗𝐸 of
the constant elongational stress order of the materials are
as follows: HDPE>LLDPE>LDPE>PP>PC>PS>PMMA.
The transmission coefficient, 𝜅, order for the constant
elongational stress is vice versa. This result is the same for
the shear viscosity we obtained before (see [6]).

4. Conclusions

The Yahsi-Dinc-Tav (YDT) non-Newtonian viscosity equa-
tion and the Cross-like model were employed to describe
the correlation among the elongational viscosity and elonga-
tional rate as well as the rheological parameters of polymer
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Figure 11: The elongational stress dependency of computed ln 𝜂∗𝐸 calculated by (7) and (8).

materials. The results from the YDT model showed that the
estimations were in good agreement with the experimental
data both at ambient and at high pressures. In contrast to
the findings for shear rate in our previous work (where the
Cross model better fitted the data at ambient pressure), in
this paper, the YDTmodel provides 0.5% less deviation than
the Crossmodel at ambient pressure.TheYDTequation gives
better results than the Cross-like model not only at ambient
pressure but also at elevated pressure. The mean percentage
error decreases almost 0.8% at higher pressure by the use of
the YDT model. Analyses also show that good estimation is
observed for the polymers with high elongational rates (up to
about 405 s-1 and 308 s-1 for PC and LLDPE, respectively).
Moreover, the viscosity parameters determined from shear
(from our earlier paper) and elongational flow maintained
the similar temperature and pressure dependence. In brief,
with this model, correct nonlinear behavior in both shear and
elongation was achieved for the linear, branched, and large
group attached polymers.

Regarding the dependence of viscosities on thermooc-
cupancy function (𝑌ℎ), the YDT-derived linear equations,
at zero level of elongational and constant elongational rates
as well as at constant elongational stress, provide a good
description of dependency of hole fraction on viscosity. It
was found that, for individual polymers, a linear relationship
exists between the logarithm of zero elongational, constant
elongational rate, and constant elongational stress viscosities
(at several temperatures and pressures) and 𝑌ℎ. Similar to the
results we obtained in our earlier study for the shear viscosity,
we show that an increase in thermooccupancy function
results in higher viscosity values at various elongational
rate and elongational stress conditions, since decrease in
hole fraction causes stronger interactions between molecules.
Polymerswith the simpler structures, (HDPE, LLDPE, LDPE,
and PP) appear to have the lower thermooccupancy function
dependence. Larger pendant groups linked to the backbone

chains of the remaining polymers (PC, PS, and PMMA)
result in a higher dependency on temperature- and pressure-
dependent thermooccupancy function.

Further, the accessibility of rheological data over a broad
range of pressures and temperatures and the hole fraction
computed from the SS theory allow the viscosity parameters
such as activation energy and transmission coefficients to
be computed from such linear formulations. The changes
in these viscosity parameters are discussed in terms of
constant elongation rate and constant elongational stress.
Estimates show that activation energy coefficient is nega-
tively correlated with elongational rate. With regard to the
elongational stress, it has a direct relationship contrary to
what we have found for shear viscosity. Confirming the
results, we have had for shear flow, transmission coefficient
is positively correlated with constant elongational rate and
constant elongational stress, while the viscosity-intercept has
an inverse relationship.

In summary, the model predictions for the nonlinear
behavior in both elongation and shear viscosities in this
and our preceding work have been revealed to be in very
good agreement with the reported experimental data. This
viscosity equation in experimental studies is reliable and
functional with only a fitting parameter as well as convenient
not only for linear polymers, but also for the polymers
with long chain branching and large attached groups. An
intriguing forthcoming study may be on predicting other
physical properties of different classes of neat polymers and
their compositions with a similar methodology followed in
the current work.

Nomenclature

𝑎󸀠: Proportionality constant of activation
energy

3𝑐: Total external degrees of freedom
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𝐸𝑎: Activation energy (J)
ℎ𝑝: Planck constant (6.626 × 10−34 J.s)
ℎ: Hole fraction
𝑘: Boltzmann’s constant (1.38 × 10−23 J/K)
𝑚0: Segmental molar mass of molecules (kg)
𝑁𝐴: Avogadro’s number
𝑃̃, 𝑉̃, 𝑇̃: Reduced pressure, volume, and

temperature
𝑃∗, 𝑉∗, 𝑇∗: Characteristic pressure, volume, and

temperature
𝑄: Hole fraction and reduced volume

dependent quantity in (3) and (4)
𝑞: Nonlinearity parameter in the power of

elongational rate
𝑞𝑧: Number of interchain nearest neighbor

pairs in a lattice of coordination number
𝑅: Gas constant (8.314 J/mol K)
𝑠: Number of segments of molecules
𝑇: Temperature (∘C or K)
𝜐: Molar segmental volume
𝜐∗: Characteristic molar volume of a segment
𝑦: Occupied site fraction
𝑌ℎ: “Thermooccupancy function”, in (7)
𝑧: Coordination number.

Greek Letters

𝛼: Slope of (7)
̇𝜀: Elongational rate (s-1)
̇𝜀𝑐: Constant elongational ratė𝜀0: Zero level of elongational rate

Δ𝜂𝐸(%): Average percentage error in viscosity
𝜀∗: Attractive interaction parameter of a

segment of the potential minimum
𝜂∗𝐸: Intercept of (7) and (8)
𝜂0, 𝜂 ̇𝜀: Zero level of elongational viscosity,

constant elongational rate viscosity (Pa⋅s)
𝜃𝑖: The angle between the deformation stress

and the displacement vector of 𝑖th
contiguity of a segment

𝜅: Transmission coefficient
Φ: Interaction potential energy between a

pair of segments (𝑘.K)
𝜎: Elongational stress (N/m2)2
𝜏: Critical stress parameter.

Data Availability

The non-Newtonian viscosity and the PVT data supporting
this theoretical analysis are from previously reported studies
and datasets which were published by the one of the authors
Sedlacek et al. The data have been cited in the text as [4, 11]
for the elongational non-Newtonian viscosity and the PVT
data, respectively. The processed data are available from the
corresponding author upon request.
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