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Viscoelastic substitute models for seismic attenuation caused by squirt

flow and fracture leak off

Ralf Janicke', Beatriz Quintal®, Fredrik Larsson', and Kenneth Runesson’

ABSTRACT

We have investigated viscoelastic substitute models for
seismic attenuation caused by fluid pressure diffusion in
fluid-saturated porous media. Fluid pressure diffusion may
locally occur associated with fracture leak off and/or squirt
flow. We use a homogenization scheme with numerical model
reduction (NMR), recently established in the literature, and
we derive the corresponding viscoelastic material properties
that are apparent at a larger scale (i.e., the observer scale).
Moreover, we find that the rheology of the resulting viscoelas-
tic model is of the Maxwell-Zener type. Based on a series
of numerical experiments, we find that this method is able
to accurately and efficiently predict the overall attenuation
and stiffness moduli dispersion for a range of scenarios with-
out resolving the substructure problem explicitly. Computa-
tional homogenization, together with NMR, can be useful
to simulate seismic wave propagation using a viscoelastic
substitute model that accurately reproduces the energy dissi-
pation and dispersion of a heterogeneous medium in which
squirt flow and/or fracture leak-off occurs.

INTRODUCTION

Computational technology has become an essential research and
interpretation tool in geophysics. Seismic modeling is frequently
used to characterize the seismic response of geologic formations.
A frequently neglected but very important aspect of the seismic re-
sponse from a fluid-saturated rock formation is the significant in-
trinsic attenuation and velocity dispersion in certain types of rocks
(Carcione et al., 2010). This response is usually caused by wave-
induced fluid flow at the mesoscopic and microscopic scales

(Miiller et al., 2010). At the mesoscopic scale, wave-induced fluid
flow is associated mainly with the presence of fractures or partial
fluid saturation, whereas, at the microscopic scale, wave-induced
fluid flow occurs as so-called squirt flow associated with the pore
structure.

In a microscopic scenario, attenuation caused by squirt flow in
the pores of a rock can be numerically modeled using the coupled
equations for compressible fluid flow in the pores and elastic de-
formation in the embedding solid (Zhang and Toksoz, 2012; Quintal
etal., 2016). Squirt flow occurs when compliant pores, connected to
stiff or other compliant pores, are strongly deformed by the passing
wave. Compliant pores have high aspect ratios and suffer maximal
deformation and volume change when they are favorably oriented
perpendicular to the wave-propagation direction. The strong defor-
mation of a compliant pore induces a larger change in fluid pressure
within this pore than that in the connected stiff pore or in the less
favorably oriented compliant pore. The resulting fluid pressure
gradient drives the dissipative squirt flow from one pore into the
other one (O’Connell and Budiansky, 1977; Murphy et al., 1986;
Gurevich et al., 2010).

In a mesoscopic scenario, similar phenomena can be observed in
interconnected fractures. A squirt-type exchange of fluid occurs if one
fracture is favorably oriented (e.g., nearly perpendicular to the P-wave
wave propagation) and another fracture is less favorably oriented. In
this case, seismic attenuation is associated with pressure diffusion due
to redistribution of pore fluid that equilibrates the strong pressure gra-
dients in the interconnected fractures (Rubino et al., 2013; Quintal
et al.,, 2014; Vinci et al., 2014). Moreover, a second attenuation
mechanism comes into play, often referred to as leak off. It is driven
by fluid pressure difference between a fracture and the much stiffer
embedding background and results in dissipative pressure diffusion in
the latter (White, 1975; Brajanovski et al., 2005).

Attenuation in fractured rock can be modeled at the mesoscopic
scale with Biot’s (1941, 1962) equations of poroelasticity, which im-
plies that the fractures are treated as a highly compressible, porous,
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and permeable poroelastic medium (Brajanovski et al., 2005; Gure-
vich et al., 2009; Quintal et al., 2011; Rubino et al., 2013). Attenu-
ation in fractured rock can also be modeled using coupled equations
for compressible fluid flow in the fractures and poroelasticity in the
embedding solid (Vinci et al., 2014).

The numerical upscaling procedures for microscopic and meso-
scopic scenarios mentioned above are based on the assumption that
the heterogeneous model behaves at a larger spatial scale as a homo-
geneous and apparently viscoelastic medium (Jdnicke et al., 2015).
The hydromechanical model is analyzed on the basis of its repre-
sentative volume element (RVE). The diffusion lengths associated
with the microscopic and mesoscopic processes are of the order of
magnitude of the size of the corresponding heterogeneity and are
usually much smaller than the wavelength of mechanical waves
at seismic frequencies.

The described microscopic and mesoscopic dissipation scenarios
are frequently encountered in subsurface geologic formations, as
suggested by a series of laboratory-based studies (Adelinet et al.,
2010; Tillotson et al., 2014; Pimienta et al., 2015; Subramaniyan
et al., 2015). The numerical upscaling procedures mentioned above
are useful to obtain the viscoelastic behavior of an RVE of a geo-
logic material. However, to understand well the seismic response
recorded on the surface, forward seismic wave wave-propagation
modeling, or seismic modeling is an appropriate tool able to predict
the seismic response for a certain assumed model describing the
spatial distribution and properties of different formations. In seismic
interpretation, iterative studies are conducted based on a range of
assumed models. Resolving the microscopic pores or even the
mesoscopic fractures in a macroscopic numerical model, having
a much larger spatial scale than the RVE, would, however, be com-
putationally extremely expensive, if feasible at all.

A reasonable solution is to substitute the heterogeneous hydro-
mechanical medium with a homogeneous viscoelastic medium ex-
hibiting an identical response in terms of attenuation and stiffness
modulus dispersion. The challenge in this case is to find a method
that allows for the identification of the viscoelastic substitute model
in a numerically efficient way. The first step toward this goal has been
accomplished with numerical upscaling procedures based on compu-
tational homogenization (Jinicke et al., 2015). This allows for
obtaining the viscoelastic material response in a heuristic fashion us-
ing a volume averaging technique. Based on this framework, Jinicke
etal. (2016) establish a numerical model reduction (NMR) procedure
that can be used to derive viscoelastic substitute models for poroe-
lastic media in a systematic and numerically highly efficient manner.
This computational framework was recently extended to poroelastic
media with embedded fluid-saturated fractures (Jénicke et al., 2019).

In the present contribution, our aim is, first, to use this novel
NMR procedure proposed and described by Janicke et al. (2019)
to derive viscoelastic substitute models for a range of scenarios
considering fluid pressure diffusion associated with the mesoscopic
fracture leak-off and the mesoscopic or microscopic squirt flow.
Second, we validate the results against reference computations
and show that the proposed procedure is able to predict the material
properties of the viscoelastic substitute model with high accuracy.
Thus, the method represents, for example, a suitable way to execute
forward simulation of seismic wave propagation with full access to
pressure diffusion processes and with low computational efforts.

This paper is organized as follows: We supply the general ideas
of how to identify viscoelastic substitute models for fluid pressure

diffusion associated with fracture leak off and/or squirt flow without
going into all technical details given in the precedent publications.
We then investigate viscoelastic substitute models for seismic at-
tenuation considering pressure diffusion in a range of 3D scenarios
with interconnected mesoscopic fractures or microcracks embedded
in a nonporous elastic background or with interconnected meso-
scopic fractures embedded in a poroelastic background. Validation
of the results is achieved by computational homogenization with
NMR against reference computations with full resolution of the po-
roelastic RVEs with fractures. Finally, we summarize the results.

IDENTIFICATION OF VISCOELASTIC
SUBSTITUTE MODELS BY COMPUTATIONAL
HOMOGENIZATION AND NMR

In this section, we give a general overview of the computational
homogenization and NMR concepts that are used for the simula-
tions and discussions in this paper. Because it is our major interest
to demonstrate the applicability and accuracy of the method to in-
vestigate seismic attenuation due to squirt flow and fracture leak off,
we skip the extensive technical derivations and refer to Janicke et al.
(2019) for more information.

Attenuation of seismic waves is a phenomenon that occurs on
multiple length scales. Our approach focuses on the length scales
in which fractures or microcracks are present in the rock. Thus, we
investigate mesoscopic and microscopic scales. Mesoscopic frac-
tures and microcracks are much smaller than the length scale in
which propagation of seismic waves occurs (the macroscopic scale).
We investigate the mesoscopic- or microscopic-scale problem by
defining volume elements that consist of fractures or microcracks
embedded in a background material, which might be permeable or
not. Because this volume element is considered to be representative
for the entire structure, it is called RVE. The fundamental idea of
computational homogenization is to establish a scale transition pro-
cedure that connects attenuation due to pressure diffusion within the
RVE with viscoelastic attenuation of seismic waves on the macro-
scopic level (Jdnicke et al., 2015). In other words, we propose a
procedure that enables us to derive the homogeneous viscoelastic
material properties of a macroscopic model that substitutes the
heterogeneous RVE problem. What makes the procedure numeri-
cally efficient is that all the RVE computations are carried out once
in advance as training computations. Once the model is trained, i.e.,
the viscoelastic properties are identified, the resulting viscoelastic
material model can be used to simulate propagation and attenuation
of seismic waves on the macrolevel without the need to resolve the
RVE problem again.

To define the RVE problem, we use either linear elasticity or
Biot’s quasistatic poroelasticity equations of linear consolidation
to describe the material properties of the embedding background
rock. It is important to remark that, by this choice, we restrict our
investigation to processes in the low-frequency limit, which is suit-
able for seismic attenuation. Hence, for the poroelastic background,
Darcy’s law is used to relate the seepage velocity of the saturating
fluid to the fluid pressure gradient. Note that the case of linear elas-
ticity is considered as a special case of poroelasticity when the
material becomes impermeable.

The fractures are modeled as interfaces with zero thickness;
however, we consider them to be mechanically and hydraulically
open. The fracture aperture is accounted for as a material parameter
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(Vinci et al., 2014). The Poiseuille flow assumption allows for the
modeling of seepage in the fractures via a Darcy-type constitutive
relation. The hydromechanical coupling between the embedding
background and fracture comprises momentum exchange as well
as leak off of saturating fluid from the fractures into the background.
Because we are interested in squirt-type processes driven by pore
pressure diffusion at seismic frequencies, we further presume that
the RVE is much smaller than the wavelength. Hence, we use un-
drained (here undrained refers to the fact that the amount of fluid
inside the RVE remains constant although there might be periodic
seepage across the boundary) periodic boundary conditions on the
RVE. Altogether, this procedure enables us to apply a macroscopic
strain or strain rate on the RVE, to solve a transient initial boundary
value problem, and to extract the time-dependent stress response of
the RVE by volume averaging.

In a second step, we make use of the problem’s linearity and
apply the superposition principle. More explicitly, we approximate
the fluid pressure field p(x, ) in the RVE as a linear combination of
a small number of N pressure basis modes p,, a =1,2,...,N,
such that

N
p(X.1) = Fa(t)pa(x), 1)
a=1

where the scalar parameter N defines the dimension of the reduced
basis and j,(7) is called mode activity parameters whose temporal
evolution needs to be evaluated. The set p,(x),a =1,2, ..., N, is
called a reduced basis of the true pressure field p(x, 7). Inserting this
approximation into the combined continuity equation for fluid pres-
sure diffusion in the fractures and the embedding background
allows us to derive the evolution equations that control the activity
Ja(f) of the pressure basis modes. As proved by Jinicke et al.
(2019), the advantage of this method lies in the outcome that the
resulting substitute model is of viscoelastic nature and, moreover,
that the obtained set of evolution equations corresponds to a Max-
well-Zener rheology model. Thus, the resulting equation system
defining the viscoelastic substitute model can be written as

N
6-V=0, 6=CM:8+) 7,6, 2

/?a+éa}?a:ba,ijéij’ /'_L/a(t:O):O, a:l,Z,...,N. (3)

Here, we introduce the macroscopic stress and stiffness tensors 6
and C*" as well as the stresses &, associated with the pressure
modes p,. The parameter C, represents the characteristic frequen-
cies of the involved Maxwell chains. The parameter D, ; ; defines
the sensitivity of the particular Maxwell chain a for the components
& ; of the macroscopic strain rate. The dimension N of the set of
reduced basis modes defines the number of Maxwell chains in-
volved in the model and, thereby, to the dimension of the vector-
valued evolution equation 3. It is important to remark that the con-
stitutive quantities C,, D, ;;, C*T, and &, result from training com-
putations on the RVE level as described by Jéanicke et al. (2019).
Once the viscoelastic model is identified, it can be used to execute,
for example, forward simulations of seismic wave-propagation
experiments without the need to go back to the RVE level.

NUMERICAL EXPERIMENTS

In this section, we validate and discuss the method for the iden-
tification of viscoelastic substitute models quantitatively. To this
end, we consider a pair of interconnected circular fractures, one
horizontal and the other one vertical, as illustrated in Figure 1.
The fractures are filled with a compressible fluid. We first consider
these fractures to be embedded in a nonporous and impermeable
linear-elastic solid background, and thus pressure diffusion occurs
only within the fractures. This scenario illustrates the case of inter-
connected mesoscopic fractures and interconnected microcracks.
In a second example, we consider mesoscopic fractures to be em-
bedded in a poroelastic background that is saturated with the same
compressible fluid as the fracture; pressure diffusion occurs within
the fractures as well as in the porous background.

We validate the attenuation behavior of the viscoelastic substitute
models, identified according to our computational homogenization
and NMR scheme, against reference computations. Reference com-
putations are carried out with the finite-element method as stress
relaxation experiments in the time domain on the basis of the fully
resolved linear (poro)elastic RVEs with fractures (Quintal et al.,
2011; Vinci et al., 2014). Hence, the respective strain components
g;; are increased in a short-time interval and kept constant after
reaching the plateau value. The results are transformed into the
frequency domain via fast Fourier transform (FFT) and used to com-
pute the frequency-dependent tangent stiffness operator:

\/
Qg

Figure 1. Cubic RVE in the domain Qn with side length / contain-
ing two perpendicular fractures with length a; and aperture 7, in the
X1-x,-plane (fracture 1) and x,-x3-plane (fracture 2).

Table 1. Example 1: Material parameters of the RVE
problem with impermeable embedding background.

Rock Fractures

Shear modulus background rock G  (GPa) 44 —
Bulk modulus background rock K  (GPa) 40 —

Bulk modulus saturating fluid K/ (GPa) — 2.4
Effective dynamic viscosity R (mPas) — 1
Ratio RVE over fracture length 1/a — 125 —
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In the case of the viscoelastic substitute model, the macroscopic stress
components 6;; are computed according to equation 2. For the refer-

N
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Figure 2. Example 1a: Snapshots of the evolving pressure field dur-
ing a stress relaxation experiment with the loading & (7).

Janicke et al.

ence computations of the RVE problem, the stress components 5;; are
computed as volume average of the RVE stresses due to the imposed
macroscopic strain £;.

Numerical experiment 1: Impermeable rock matrix

In the first numerical experiment, we consider the fluid-filled
interconnected fractures to be embedded in a linear-elastic solid
background. This is classically a microscopic scenario, but the cor-
responding physical pressure diffusion phenomenon is independent
of the absolute spatial dimensions and controlled by the aspect ratio
of the fractures (O’Connell and Budiansky, 1977). Thus, these frac-
tures can represent mesoscopic fractures and microcracks. Here, we
define the aspect ratio 7, and the fracture length a, in relation to the
side length [ of the cubic RVE. The material properties and the //a;
ratio are given in Table 1. In the two subcases given below, we will
consider, first, a scenario in which the aperture of the interconnected
fractures is constant over the fracture length (zy # 7¢(x)) and, sec-
ond, a scenario in which the aperture varies (zq = 7o(X)).

Numerical experiment la: Constant aperture

We first investigate the scaling of the viscoelastic attenuation
considering two different values for the aspect ratio of the fracture.
We choose the aspect ratios k; = a;/7p; = 1.333e +4 and
ky = ay /719, = 6.6667e + 3, ie., kK, = 2k;. All other quantities
are identically chosen and given in Table 1. Note that the fracture
aperture is constant over its length, i.e., 7g = T max-

The workflow to identify the viscoelastic substitute model is ac-
cording to Jénicke et al. (2019),

Step 1) Run training computations to identify the reduced basis
modes p, for k;. In this particular case, the reduced basis ob-
tained for x; can be used for x,. (Note that

this behavior is related to the particular scal-

1.0e+2 . . . .
a) ‘ b) ‘ ' ing laws in this scenario. In general, one can
le-1 1 expect a reduced basis to be sensitive for a
= change in the material parameters of the
A L RVE. This would impose the need to reiden-
U 9.0e+1 — . .
=~ ) tify the basis.)
g - | & 1e2 Step 2) Compute the system matrices for x; and
1¢) S K5, respectively.
E — k1 = 1.333+4 g — k1 = 1.333+4 ? P g
8.0e+1 | — K2 = 06.667+3 | A — kg = 6.667+3 The evolution of the fluid pressure field during
T ref + ref stress relaxation is illustrated in Figure 2 for
1 1 Il L 1 43 Il Il | | 3 3 M
ol 1or2 103 lovd e Terl 102 lo3  lovd the referepce case in whlch the RVE problem is
solved with full resolution of the structure. We
w (1/s) w (1/s)

Figure 3. Example la: Constant aperture 7y = 7( . but different aspect ratios: (a) real
part and (b) inverse quality factor of the P-wave coefficient C|;;; (w) using six internal
variables to compute the resulting generalized Maxwell model. The overall transition

frequencies are wy' = 8.1e + 11/s and ws> = 6.5¢ + 21/s.

Table 2. Example 1a: Characteristic frequencies for models with aspect ratios
k1 and x,. The branch a = 1 represents the stationary case with w, = 0.

observe that the vertical fracture is compressed
by the given loading &, which results in a high
pressure, whereas the horizontal fracture remains
uncompressed. Hence, pressure diffusion occurs
within the fractures until the fluid pressure gra-
dient is equilibrated.

In Figure 3, we show the real part and the in-
verse quality factor of the P-wave modulus

C, (1/s)

a=1 a=2 a=3 a=4 a=>5 a=6

Ci111(w) under the loading &,;; for the two men-
tioned aspect ratios after FFT. The viscoelastic

2.65e+3
2.09e+4

1.06e+3
8.36e+3

6.89e+3
5.43e+4

k) = 1.333e +4 0
Ky = 6.667e + 3 0

7.30e+2
5.79¢e+3

substitute models match well the reference com-
putations for both cases, and the predictive quality
of the viscoelastic models is very high for x; as

8.14e+1
6.48e+2

well as for «,.
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We also observe in Figure 3 that the dispersion and attenuation
curves are only shifted in frequency, but their amplitudes are the
same. We find that the transition frequencies of the two generalized
Maxwell-Zener models are scaled by a factor eight such that

o = 8we'. 5)

This is related to the ratio of aspect ratios, i.e.,

WA187

Hence, a reusage of basis modes as for the two cases in experiment
la is not possible.

Also in this case, we observe that the viscoelastic substitute
model approximates the reference computation with high fidelity.
Moreover, we find that the fracture aperture has an effect on the
attenuation behavior. More explicitly, we can see that the transition

(x,/x,)? =23 = 8. The same relation holds for
all characteristic frequencies C,, associated with
the individual chains of the resulting generalized -
Maxwell model, with values given in Table 2.
Interestingly, the transition frequencies, i.e.,
the frequencies at which the attenuation is maxi-
mal, w;' = 8.1e + 11/s and we® = 6.5¢ + 21 /s
observed in Figure 3, correspond approximately
to the lowest characteristic frequency Cq of
the viscoelastic substitute model (Table 2).
Hence, the faster characteristic frequencies C,, !

a) 1.0e+2

9.0e+1 |

Re (61111) (GPa)

8.0e+1

le-2 |

1/Q(Cr111) ()

T T0,1
— 70,2 1

+ ref

le-3

a=2,...,5, describe the transition toward the le-1
high-frequency limit. Moreover, we observe in the
low-frequency limit that 1/Q scales with @ and in
the high-frequency limit with 1//w, as predicted
by squirt flow analytical solutions considering sat-
uration with a liquid (Gurevich et al., 2010). If we,
in contrast, investigate the simplest case of a
Maxwell-Zener model consisting of one single
Maxwell chain in parallel with an elastic spring,
it is easy to show that the attenuation 1/Q scales

Il Il Il
le+0 le+l 1le+2 1le+3 le-1

le+0 le+l 1le+2 1le+3

w (1/s) w (1/s)

Figure 4. Example 1b: (a) Real part and (b) inverse quality factor of the P-wave
coefficient Cjy;,(®)
78! = 74, (1 = 2r/a,). For the variable aperture, nine internal variables are used to com-
pute the resulting generalized Maxwell model. The overall characteristic frequencies are
o =8.1le+ 11/s and w = 6.8¢ + 01/s.

for a constant aperture 7;; and the variable aperture

Table 3. Example 1b: Characteristic frequencies for models with different
fracture apertures 7, ; and 1(”,1.

with @ in the low-frequency limit and with 1/ in
the high-frequency limit. Thus, additional Max-

well chains with larger characteristic frequencies Ca (115) a=1 a=2 a=3 a=4 a=3 a=6
are required to recover the correct slope toward 0 6.89e+3  2.65e+3  1.06e+3  7.30e+2  8.14e+l
higher frequencies for simple squirt flow models, ol
such as the one illustrated in Figure 1, or to re- 74 0 1.82e+3 7.69e+2 3.48e+2 1.58e+2 8.83e+1
cover the broader frequency-dependent behavior a=17 a=38 a=9
of fracture networks having more complex spatial
distributions. %o.1 - - -
3! 4.37e+1 1.76e+1 6.79e+0
Numerical experiment 1b: Variable aperture
In the second subcase, we define the fracture
aperture variable a]ong the fracture ]ength as Table 4. Example 2: Material parameters of the RVE problem
with permeable background rock (1 mD ~ le — 15m?).
2r
) =1 1-—). 6
0 0.max ( a1> © Rock Fractures

Hence, the fracture aperture scales linearly with the radius r of the
circular fractures between 7{(r = 0) = 7,4 in the center and
74(r = a;/2) = 0 at the (circular) fracture tips. In this experiment,
we choose 7y n.x = 7o = a;/k; with k; = 1.333e 4 4. All other
material properties remain unchanged and correspond to Table 1.
In Figure 4, we show the real part and the inverse quality factor
of the P-wave modulus Cj,;; for fractures having such variable
apertures as well as the corresponding results for the constant aper-
tures already shown as the blue curves in Figure 3.

It is important to remark that, in contrast to experiment la, both
choices for the aperture require an individual identification of the
reduced basis and the corresponding viscoelastic substitute models.

Shear modulus rock matrix G (GPa) 31 —
Bulk modulus rock matrix K (GPa) 37 —
Bulk modulus solid grains K (GPa) 40 —
Intrinsic permeability rock matrix k°*  (mD) 1 —
Porosity rock matrix 1) — 0.05 —
Bulk modulus saturating fluid K/ (GPa) 24 2.4
Effective dynamic viscosity '  (mPas) 1 1

RVE length [ (m) 10 —
Fracture length a, (m) — 8

Fracture aperture Tomax (M) — 6e-4
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Figure 5. Example 2: Snapshots of the evolving pressure field
during stress relaxation experiment under &y (¢).

Table 5. Example 2: Characteristic frequencies for the
fracture model with leak off.

Janicke et al.

frequency in the subcase with variable aperture is shifted by approx-
imately one order of magnitude toward lower frequencies. This is
reasonable because we have chosen 7 < 7( ., Which reduces the
effective permeability of the fractures. Furthermore, the pressure
diffusion phenomenon for the case with variable fracture aperture
requires a more complex substitute model (nine Maxwell chains
instead of six) (see Table 3). This is a consequence of the wider
attenuation peak observed for the variable aperture (see Figure 4b).

Numerical experiment 2: Permeable rock matrix

Although using the RVE shown in Figure 1, we now increase the
complexity of the problem and include fluid pressure diffusion in
the embedding background due to leak off of fluid from the frac-
tures into the porous background. We use the variable aperture as
defined in equation 6. Note that, allowing for leak-off and pressure
diffusion in the background rock, the diffusion length is constrained
not only by the fracture length but also by the chosen length of the
RVE sides.

To prove the power of the proposed identification method, we
choose the material and geometric parameters given in Table 4 such
that the two attenuation processes, i.e., squirt-type pressure diffu-
sion within the fractures and pressure diffusion due to leak off
in the porous background, occur at significantly different transition
frequencies. The latter is strongly affected by (1) the permeability in
the background material and (2) the overall size of the used RVE,
i.e., the distance between parallel fractures in the periodic medium
composed of an assembly of such a unit cell.

The evolution in time of the fluid pressure field observed in the
fully resolved RVE under stress relaxation is depicted in Figure 5
for four exemplary chosen time steps. For the earlier times, we ob-
serve the onset of squirt-type fluid pressure diffusion in the frac-
tures. At later times, fluid pressure diffusion in the embedding
background becomes dominant and equilibrates the remaining pres-
sure gradients. We identify the viscoelastic substitute model for
this example and find a very good approximation of the reference
computations if we use a reduced basis consisting of 18 pressure
modes. Hence, the resulting viscoelastic model comprises 18 Max-
well chains. The characteristic frequencies are given in Table 5.

The resulting frequency-dependent attenuation and stiffness
modulus dispersion of the viscoelastic substitute model are given
in Figure 6. We observe a pronounced attenuation peak at approx-
imately the same transition frequency as observed in the previous

example (experiment 1b) with variable aperture
and impermeable background. The reason is that

this peak results from the (fast) squirt-type fluid
pressure diffusion within the fracture, the same
phenomenon as in the previous example. The fre-
quency interval with almost constant attenuation
1/Q between 0.05 and 11/s, on the other hand, is
dominated by fluid pressure diffusion in the em-
+ bedding background. Here, we again observe

that the viscoelastic substitute model approxi-

=18 .
" mates the fully resolved reference computation

ref +

with high accuracy. Note that this high number

C,(/8) a=1 a=2 a=3 a=4 a=5 a=6
0 3.71e+1 3.05e+1 1.16e+1 1.14e+1 4.96e-0
a=7 a=28 a=9 a=10 a=11 a=12
3.77e-0 1.83e-0 1.59e-0 7.43e-1 6.52e-1 3.32e-1
a=13 a=14 a=15 a=16 a=17 a=18
1.79¢-1 1.77e-1 9.43e-2 5.19e-2 3.95e-2 1.87e-2
a) b) le-1
8.0e+1f B
= L 1~
ol -
S 7.0e+1 4 =2
~ = le-2}f
. S
[¢) =
5 6.0e+1} R g
~ n =18
B ref + T
5.0e+1 ! ! - ! ! le-3 L L
le-2 le-1 1le+0 le+l le+2
w(1/s)

Figure 6. Example 2: (a) Real part and (b) inverse quality factor of the P-wave coef-

ficient C};y;(w) using 18 internal variables.

le-2 le-1 le+0 le+l le+2
w (1/s)

of Maxwell chains is required for two reasons.
First, the pressure diffusion patterns are highly
complex (diffusion in fractures + leak off + dif-
fusion in background rock), which is reflected by
the fact that attenuation and dispersion occur in a
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wide frequency range. Second, it is important to remark that, in par-
ticular, the background diffusion processes are strongly influenced
by the distinct anisotropy of the chosen structure.

CONCLUSION

In this contribution, we used a computational scheme comprising
homogenization and NMR that allows for the identification of vis-
coelastic substitute models for seismic attenuation in porous rock
in a numerically efficient way. We identified viscoelastic substitute
models for several scenarios. The apparently viscoelastic material
properties are associated with fluid pressure diffusion due to squirt
flow in interconnected mesoscopic fractures or microcracks as well as
due to leak off from mesoscopic fractures into the embedding back-
ground. We showed that, in all numerical experiments, the computa-
tional identification technique provides highly accurate predictions of
the seismic attenuation behavior of the underlying substructure. Fur-
thermore, we found that the width of the attenuation peak in the fre-
quency domain as well as the anisotropy of the chosen problems
influence the required number of viscoelastic variables.

The main advantage of the presented identification strategy is that
it enables us to execute forward simulations of seismic wave propa-
gation in complex scenarios by using homogeneous viscoelastic sub-
stitute models to replace the heterogeneous poroelastic subdomains
exhibiting pressure diffusion processes. The method is numerically
highly efficient, with the identification procedure only requiring tran-
sient training computations on the RVE level. These computations are
executed “offline™; i.e., they are executed once in advance. Once the
reduced basis modes are identified, the “online” computations on the
substructure do no longer burden the wave-propagation simulation.
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