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Abstract

Let {X(s,t) : s,t > 0} be a centered homogeneous Gaussian field with a.s. continuous
sample paths and correlation function r(s,t) = Cov(X(s,t), X(0,0)) such that

r(s,t) = 1—|s|™ = [¢[** +o(|s[™* + [t|%), s, =0,

with a1, a2 € (0,2], and r(s,t) < 1 for (s,t) # (0,0). In this contribution we derive an exact
asymptotic expansion (as u — oo) of

P sup X(s,t) <ul,
(sm1(u),tnz(u))€[0,2]x[0,y]

where n1 (u)na(u) = u?/*1+2/°2W (), which holds uniformly for (z,y) € [A, B> with A, B two
positive constants and ¥ the survival function of an N(0,1) random variable. We apply our
findings to the analysis of asymptotics of extremes of homogeneous Gaussian fields over more
complex parameter sets and a ball of random radius. Additionally we determine the extremal
index of the discretised random field determined by X (s, ).

Key words: Gaussian random fields; supremum; tail asymptoticy; extremal index; Berman
condition; strong dependence.
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1 Introduction

One of the seminal results in extreme value theory of Gaussian processes is the asymptotic
behaviour of the distribution of supremum of a centered stationary Gaussian process {X () :
t > 0} with correlation function satisfying

arxXiv

r(t) = Cov(X(t), X(0)) =1 — |t|* + o(|t|”) as t — 0 with a € (0, 2], (1)
over intervals of length proportional to
-1
w(u) =P < sup X(t) > u) (1+0(1)),
tef0,1]

see, e.g., Leadbetter et al. [8] Theorem 12.3.4], Arendarczyk and Debicki [I, Lemma 4.3], Tan
and Hashorva [I5, Lemma 3.3]. The following theorem gives a preliminary result concerning
the aforementioned asymptotics.
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Theorem 1. Let {X(t) : t > 0} be a centered stationary Gaussian process that satisfies (1),
and let 0 < Ag < A < 00 and x > 0 be arbitrary constants. If r(t)logt — r € [0,00) as
t — oo, then

0,zp(u)]

P <te[sup X(t) < u> —E (exp (—m exp(—r + @W))) € (0, 00),

as u — 0o, uniformly for x € [Ag, Ax], with W an N(0,1) random variable.

The main goal of this paper is to derive an analogue of the above result for Gaussian random
fields; see part (i) of Theorem [2 which constitutes a 2-dimensional counterpart of Theorem [l

As an application of our findings, in Section [B] we investigate asymptotics of the tail of
supremum of a homogeneous Gaussian field over a parameter sets that are approximable by
simple sets (part (ii) of Theorem []) and a ball of random radius. Additionally we analyze
the existence of the extremal index for discrete-parameter fields associated with homogeneous
Gaussian fields with covariance structure satisfying some regularity conditions; see Proposition

2 Preliminaries

Let {X(s,t) :s,t > 0} be a centered homogeneous Gaussian field with a.s. continuous sample
paths and correlation function r(s,t) = Cov(X(s,t), X (0,0)) such that

Al: r(s,t) =1—|s|* — [¢t|*? + o|s|*T + [¢|*?) as s,t — 0 with a1, a2 € (0,2];

A2: r(s,t) <1 for (s,t) # (0,0);

A3: sup( yes(o,q) I7(s:t) logd —r| = 0 as d — oo, with r € [0, c0),

where S(0, d) denotes the sphere of center (0,0) and radius d > 0 in R? with Euclidean metric.
We distinguish two separate families of Gaussian fields

o weakly dependent fields, satisfying A3 with » =0,
e strongly dependent fields, satisfying A3 with r € (0, c0).
Let Ho denote the Pickands constant (see [I1]), i.e.,

E
Ao — lim EEXP (maxo<e<r X(1))
T— o0 T

where x(t) = By 2(t) — [t|*, with {B4/2(t) : t > 0} being a fractional Brownian motion with
Hurst parameter /2 € (0,1]. We note in passing that H. appears for the first time in Pickands
theorem [11]; a correct proof of that theorem is first given in Piterbarg [12].

For a standard normal random variable W we write ®(u) = P(W < u), ¥(u) = P(W > u).

Recall that 1

V2w

Following Piterbarg [13] Theorem 7.1] we recall that for a centered stationary Gaussian field
{X(s,t)} satisfying A1, A2, for arbitrary g,h € (0, c0),

U(u) = exp(—u®/2)(1 +o(1)), asu — oco.

P ( max  X(s,t) > u) = Hoy Hao ghu® “ 0?20 (u) (1 4 o(1)), (2)
(s,t)€[0,9]x[0,h]

as u — oo.
Let m1(u) — oo and ma(u) — oo be functions such that

mi(u) = a1(u)/+/¥(u) and ma(u) = az(u)/+/¥(u)



for some positive functions a1 (u), az(u) satisfying a1 (u)az(u) = (Hay Hapu? “1u?*2)71 log a1 (u) =
o(u?) and log az(u) = o(u?). We note that then

-1
m(u) := my(u)ma(u) = P < max _ X(s,t) > u) (1+0(1)),
(s,)€[0,1]2
as u — 0o.
By B(0, z) we denote a ball in R? of center at (0,0) and radius z.

3 Main results

The aim of this section is to prove the following 2-dimensional counterpart of Theorem [Il
Recall that WV denotes an N(0,1) random variable. For a given Jordan-measurable set & C
R? with Lebesgue measure mes(£) > 0 let &, := {(z,9) : (z/mi(u),y/m2(u)) € £}. One
interesting example is £, = [0, zm1(u)] X [0, yma(u)] for z,y positive, hence & = [0, z] x [0, y]
and mes(£) = xy. For such &, we shall show below an approximation which holds uniformly
on compact intervals of (0, 00)2. If the structure of the set is not specified, considering thus
the supremum of a Gaussian field over some general measurable set T, C R? an e-net (Le,U:)
approximation of 7, will be assumed. Specifically, the e-net (Lc,U:) here means that for any
e > 0 there exist two sets L. and Y. which are simple sets (i.e., finite sums of disjoint rectangles
of the form [a1,b1) X [a2,bz2)) such that

lalf(r)l mes(L:) = 15111(()1 mes(U:) = c € (0, 00) (3)

and
Lo ={(z,y) : (x/ma(u),y/m2(u) € L} C T CUeu = {(z,y) : (w/ma(u),y/ma(u)) € U} C R

Next we formulate our main results for these two cases.

Theorem 2. Let {X(s,t): s,t > 0} be a centered homogeneous Gaussian field with covariance
function that satisfies A1, A2 and A3 with r € [0,00). Then,
(i) for each 0 < A < B < o0,

€[0,@my (w)]x[0,yma (u)]

P < sup X(s,t) < u) — E(exp(—zyexp(—2r + 2/TW))),
(s5t)

as u — oo, uniformly for (z,y) € [A, B]?.
(ii) for T C R% u > 0 such that there exists an e-net (L.,U.) satisfying @)

P < sup X (s,t) < u) — E(exp(—cexp(—2r + 2/TW))), as u — oc.
(s,t)ETu

The complete proof of Theorem Rlis given in Section [E.11

Remark 1. Following the same reasoning as given in the proof of Theorem [, assuming that
A1-A3 holds, for each 0 < A < B < 0o, we have

P sup X(s,t)<u| = E( exp(—mx” exp(—2r + 2vTW))), (4)

(S,t)EB(O,w1/7n('u))

as u — oo, uniformly for x € [A, B); B(0,z) is a ball in R? of center at (0,0) and radius x.



4 Applications

In this section we apply results of Section [B] to the analysis of the asymptotic properties of
supremum of a Gaussian field over a random parameter set and to the analysis of dependance
structure of homogeneous Gaussian fields.

4.1 Extremes of homogeneous (Gaussian fields over a random
parameter set

In this section we analyze asymptotic properties of the tail distribution of sup, ;ye5(0,7) X (s,t) >
u), where T is a nonnegative, independent of X random variable. One-dimensional counterpart
of this problem was recently analyzed in [I] and [I5].

Proposition 1. Let {X(s,t) : s,t > 0} be a centered homogeneous Gaussian field with co-
variance function that satisfies A1-A3 with r € [0,00), and let T be an independent of X
nonnegative random variable.

(i) If ET? < oo, then, as u — oo,

P sup X (s,t) > u | = TET* Moy Hapu® “Lu *2 W (u) (1 + o(1)).
(s,t)€B(0,T)

(i3) If T' has a regularly varying survival function at infinity with index A < 2, then as uw — oo,

P sup  X(s,t) >u | =27CP(T > /m(u))(1+ o(1)),
(s,t)€B(0,T)

where C = [° x' " E(exp(—ma® exp(Vr) + V;))dx and V» = 2/rW — 2r.

(i5i) If T is slowly varying at oo, then, as u — oo,

P <( sup  X(s,t) > u) = P(T > /m(u))(1 4+ o(1)).

s,t)eB(0,T)

The proof of Proposition [[lis given in Section

4.2 Extremal indices for homogeneous Gaussian fields

Following 5], we say that 6 € (0, 1] is the extremal index of a homogeneous discrete-parameter
stationary random field {Xj; : j,k =1,2,...}, if

P <,< max Xk < zn> — P(X11 < zn)a"’b"'e — 0, (5)
j<an, k<byn

as n — oo, for each sequence (z,) C R and all sequences (ay), (b,) C N such that a,, — co and
bn — 00, as n — 00, and 1/C < an/bn < C for some constant C' > 0. The notion of extremal
index 0 originated in investigations concerning relationship between the dependence structure
of discrete-parameter stationary sequences of random variables and their extremal behaviour
I7) 8 see also [0} [ @1 6 B, [16].

For a given centered homogeneous Gaussian field {X (s,t) : s,t > 0} that satisfies A1-A3
introduce a discrete-parameter random field {)?]k 25, k=1,2,...}, with

)?j’k = sup X (s,t).

(s,t)E[G—1,5]x [k—1,K]

The following proposition points out how the difference in the dependance structure between
weakly- and strongly-dependant Gaussian fields influences the existence of the extremal index
of the associated field {X 1}



Proposition 2. Assume that A1-A3 holds for a centered homogeneous Gaussian field {X (s, t) :
s,t > 0}.

(i) If r = 0, then the extremal index of { X,k : j,k =1,2,...} equals to 1.

(ii) If r > 0, then {X; 1 : j,k =1,2,...} does not have an extremal index.

The proof of Proposition lis deferred to Section

5 Proofs

Before we prove Theorem 2] we need some auxiliary results. The first one is a 2-dimensional
version of Lemma 12.2.11 in [§].

Lemma 1. Assume that A1, A2 hold and ¢1 = q1(u) = au™ /%1, o = q2(u) = au"2/*2 for
some a > 0. Then for any x,y >0, g,h > 0 and rectangle I = (z,y) + [0, g] x [0, h], as u — oo,

P (X kaa) < s G k) € 1) = P(X(5.0) < s (s,0) € 1) < 08 4o (),

where p(a) — 0 as a — 0.
PROOF. From the homogeneity of the field {X(s,t)} we conclude that
0< P(X(jqi, kg2) <u; (i, kg2) € 1) — P(X(s,t) <u; (s,t) €1)
< (l9/@n] + [h/ 2] + DP(X(0,0) > u) + P (X (jg1, kg2) < u; (g1, kgz) € [0, 9] x [0, h])
—P (X(s,t) <u; (s,t) €10,9] x [0,h]).
Then there exists a constant K such that

K (u?/*1 4+ u?/2) W (u)
X HQIHQ2U2/a1u2/a2qJ(U) )

N

(l9/@] + [h/g2] + 1)P(X(0,0) > u)m(u)

which implies that ([g/q1] + [h/g2] + 1)P(X(0,0) > u) = o (ﬁ), as u — oo.
Let T' > 0 be given. We divide the set [0, g] x [0, k] into small rectangles with the side-lengths
¢1T and @27 in the following way
A1,1 = [07 qlT] X [07 qQTL
Apm = (=T, (m—=1)¢2T) + Avy,

T a2T

forlzl,...,{J—J andmzl,...,{LJ. Then we have that

P(X(jq1,kq2) < u; (Jqr,kge2) € [0,g] x [0,h]) — P(X(s,t) < u; (s,t) €[0,g] x [0,h])

la'r] (@7 ]
<P < sup X(s,t) > u) - Z Vi ( max X(jqr, kgz) > u)
(s;t)e =1

[0,9] X [0,A] el (da1.kaz2) €A m

+ Y P< max  X(jgi,kg) >u,  max X(qu,qu)>u>- (6)

jq1,k €A iq1,k cA
(Lm) 2 m?) (Ja1,kaz2) €A m (Ga1,ka2) €A s

From [13] Lemma 7.1], as u — oo,

[0,9]x[0,h]

} < sup  X(s,) > “) = Hay Hao ght™ 0“2 0 (u) (1 + 0(1)). (7)
(s,t)e
Moreover, by homogeneity of X (-, ),

\JHLTJ \.QLTJ ghu2/a1u2/a2 <

S % p(, max,  Xiwke > u)~ O
=1 m=1

(4q1,ka2)EAY m

max X(Gqr, kq) > u) . (8)

(ja1,ka2) €A1 1



We focus on the asymptotics of P (maX(quyqu)eAl’l X(jq1,kq) > u). Following line-by-line
the idea of the proof of Lemma D.1 in [13] we have

P( max X(jag1,kq2) >u>

(Jq1,kg2)€A1 1
] =~ w—w?/(2u?) - _ w
~ U (u) e P max xu(ja, ka) > w) | X(0,0) = u — — | dw,
oo (ja,ka)€[0,aT]? u
~ ‘D(U)H‘ll (T7 a)Ha2 (T7 a)7
where Ha,(T,a) = Eexp (max;cpo,1] Ba,/2(ja) — ja|*), with By, /2(-) being a fractional
Brownian motion with Hurst parameter a;/2 for i = 1,2 (see also (12.2.6) in proof of [8]

Lemma 12.2.11]).
The above implies that, by (&),

e l@r )

; mzzl r ((qu,ffn@%’éAl,mX(jq”m) > “)
= ghu® 12 g () (Hal(Tva)> (ch(T,a)) (4 4 o(1)) "

aT aT
as u — 00.
In the next step we prove that the double sum that appears in (@) is negligible, i.e., it is
0 (;) Indeed, notice that

m(u)

> P< max  X(jq1,kqz) > u, max X(jqr, kgz) > U>

ja1,ka2) €A jq1,kq2)EA
(m,)#£(m/ 1) (da1,kq2) m,l (4a1,kaz) i1

< Z )P< sup  X(s,t) >wu, sup X(s’t)>u>:0<mzu)>’ (10)

(m,D)#£(m/ 1 (Sat)EAm,l (Sat)EAm’,L’

where ([I0) follows from the proof of [I3| Lemma 6.1].
Now, combining (7)), @) and ({I0), we conclude that for any 7' > 0 and a > 0 it holds that

P(X(jq1,kq2) < u; (jq1,kg2) €[0,9] % [0,h]) = P (X(s,t) < u; (s,t) € [0,g] x [0,R])
< ghu®/ 1?2 (u) <HMHQ2 - <H‘“(T’ a)) : <H°‘2(T’ a)>) (1+0(1))

al aTl

Ho, (Tya) Hao(T,a) _ _
1 (Hefred . Bea ) i) (1 )
h +o0 .
m(u)

- m(u)
Finally, using that
lim lim oL@
a—0T— o0 aTl

see e.g. |8, Lemmas 12.2.4(1),12.2.7(i)], the thesis of the lemma is satisfied with

:Hou

. Ha (1—77 CL) Ha (717 CL) —14,—1

pla) =1~ Th_l;réo < laT ’ laT Haoy Hasy -
This completes the proof. |

Let
1, 0 < max(js], ) < 1
s, t) = 11
pr(s:t) { Ir(s,8) = =7l 1 < max(js],|¢]) < T (11)
s+ (= (s, ) 0 < max(sl, |t < 1

or(s,t) = { o 1 < max(|s|, |¢) < T. (12)




The next lemma combines a 2-dimensional counterpart of Lemma 12.3.1 in [§], for weakly
dependent fields, and Lemma 3.1 in [I5] for strongly dependent fields.
Lemma 2. Let e > 0 be given. Let g1 = q1(u) = au”? " and g = ¢ (u) = au~?/%2 . Suppose
that T1 = Ti(u) ~ tmi(u) and To = Ta(u) ~ Tma(u) for some 7 > 0, as u — oco. Then,
providing that conditions A1, A2 and A8 with r € [0,00) are fulfilled,

2

1> Z . U
PTmax(141, kq2) €xp (— . : ) — 0,
D oy kg €= T DX [T, To] ~ (2,02 L max (Ir (a1, kaz)l, 07l 01, Ka2))

as u — 00, where Tymax = max(T1,T2).

PrOOF. Let T1(u) ~ 7m1(u) and Ta(u) ~ 7ma(u) for some 7 > 0, as u — oco. Then,

arHa 2 2 2
log(T1T>) + log <%) + <— + — - 1) log u — % — 2log 7.

V2 (031 (e%)]
Thus
u® ~ 2log(TiTs)
and ) 1
logu = 5 log2 + 3 log log(ThT2) + o(1).
Moreover

2 2 a1 Has o1/a1+1/a
u® = 2log(ThT:) + (a_1 +oo - 1) log log(T1T2) —4log 7+ 2log (%21/ 11/ 2) +o(1).

(13)
For T' > 0 put 01 = SUP, ¢ ypax (s, ¢y <r MaX(|7 (s, t)[, 07(s,t)). It is straightforward to see
that there exists § < 1 such that for sufficiently large T" we get

or = sup max(|r(s,t)|, QT(svt)) <0<,
e<max(|s|,|¢t)<T
since 07 is decreasing in 7T for large T'. Let 8 be such that 0 < 8 < %g. Divide Q := [~T1, Ti1] x [Tz, T»] — (—¢,¢)?

into two subsets:

S° {(s,0) € Q:|s| <TY, |t < T¥},
S = Q- S

Firstly, we show that

1>
q1q2

2
u
> PTinax (74, kq) exp (* . . ) -0, (14)
a1 kamyes® 1+ max(|r(jg, kq)|, 0Tmax (39 kq))

as u — oo. By (I3) there exists a constant K such that exp(—u?/2) < TlKTQ. Applying the fact

that u? ~ 2log(T1T>) and u2/a1q1 — g2/ q2 = a, for u large enough, we obtain

T , u?
=2 N pre(ig, kg) exp (* )

ez oo 1+ max(|r(jq, kq)|, 0Tmax (79, kq))

2
Ty (217 21y ( u? (TyT) 1 ( u2) ™+
< — | —+1 —= +1]ex — ~ 4 ex -
S e < a 2 PUT+s aia3 P2
BH1-125 2/a1+2/a2+2 o T _
< agc i (OT2) ~2 KT (og(TyT2)) > +2/°2 (1y 1) P~ 155

2.2 4
9192 a

£

Since we choose 8 < %, then (I4) holds.



To complete the proof it suffices to show that, as u — oo,

2

T . u

=2 . k - ~0. (15

Qg Pmas (T4, q2)exP< 1+maX(l?“(qu,qu)lmnmx(qu,qu))) (15)
(4q1,kq2)eS

In order to do it observe that there exist constants C' > 0 and K > 0 such that
max (|7(8,1)], 0Tmax (5, 1)) - log (\/52 + t2) <K

for all u sufficiently large and (s, t) satisfying C' < max(|s|, |t|) < Tmax. Put Tmin := min(77, T5).

Since T, > C for u large enough, then for (jgi,kqe) such that max(|jq], |kge|) > T2, we
have
max (|7(jq1, kq2) |, 0Tmax (J01, kg2)) < Lﬁ
log Ty i
Hence

2

2 K
exp<f 4 )gexp SR — <exp| —u® (1 - ————
1+ max (|r(jqu, kg2)|, 0T (G101, kg2)) 14— log T,

min

which implies the following chain of inequalities

T , u?
== 3" prew(ia, k) exp (f )

Qe o 4= 14 max (Ir(jq1, kg2)l, 0rmax (701, ka2))

T1T2 2 K
< — ex —U 1— —
Z P < < IOg Trﬁin

NG kayes

T K 1 log T,
442 exp [ —u? [ 1- 3 5 X 0192 298 ~ min Z
919> logT?. . log T Tz

in (jq1,ka2)€S
=: 11 X Ig.

r(jqi, kgz) —

_r
log Tm ax

r(jqu, kgz) —

"
log Trmax

/!
™
[¥]

Firstly, we show that factor I is bounded. Indeed, using that
u” = 2log(ThT2) + o~ + — 1) loglog(T1T2) + O(1),
1 2

there exists a constant K’ such that for u large enough

. K L, 2log(TiTs) + (a% + 2 1) log log(T1T2) + O(1)
i (1- —2 ) = 4K
log TBin log T8

m min

< —u2+K/A

log(T1T3)
—=5-1-2/ » 2/6. Moreover
log TB /ﬁ ’

min

The last inequality follows from the fact that

K
exp <u2 <1 _ 7>> < K" exp(7u2) < K"'(T1T2)72(log(Tng))kQ/al72/0‘2,

for some constants K", K"'. Using that u®> ~ 2log(T1T2) and urg = u¥2q = a, we
conclude that

TET? K 1
I < 412226Xp e . 3 3
4193 log T ) ) log T,
TTS _ /e — 1
S AT KY(IT) 7 (log(ThTp))' 2/ 7202
142 1Ogr‘rrnin
2/a14+2/as+3
_ 1" 2/a1+2/a2i 2/a1+2/as 1-2/a1—2/as 1 KW2
= 4K'"2 a4(10g(T1T2)) (log(Tng)) logTHBlin a4ﬂ s



which proves that I; is bounded.
In the next step we show that Iz tends to 0 as u — co. Observe that

B
q1q2 log T}, ' .,
L= kay) — —
’ T, > |rlake) -
(jq1,kq2)€S
q1q2 . :
< T Z ‘T(JQhk‘q2)log( (Jql)QJr(k‘qz)er‘
(4q1,kq2)€S
a9 10g Trnax
o N - = J1+ Jo.
i (J'fh,kzqz)es log(v/(jq1)? + (kq2)?

Combining A3 with the fact that a, — a implies the convergence (a1 + a2 + ...+ an)/n — a,
as n — oo (see [I4]), we conclude that J; tends to 0, as u — co. Additionally, see [8 p. 135],

Jo < _Or_ me Z ‘log V(3q1)? + (kgz2)? — log Tinax

6 T
log Ty 1142 (jq1,kq2)€S
- 2 k 2
log< (Jq1)T + (kg2) >'

max

= >
" log Tomin Th T
8 142 (ja1,kq2)€S

Suppose that Timax = T1. Then

9192 (@) + (kg2)* \| _ a1 ja\? | (ka2 (12
Tl T: Z log < Tmax N Tl T2 Z log Tl + T2 Tl

2 )
(ja1.kq2)€S (4a1,ka2)€S

N2 2 .
9192 jn kqe jn
< 1 e —= log | =
x| b
(Ja1,kq2)€S
Hence
, 1ol 1
Jo < ———O (/ / log(v/x? + y?) dxdy+/ |log|x||dx>
log Trin —1J-1 -1
and (I5) holds. The combination of ([I4) with (&) completes the proof.
[ |

Lemma 3. Let g1 = qi(u) = au" gy = ¢ (u) = au~?/*2 qnd suppose that T = T(u) — oo,
as u — oo. Then, providing that conditions A1 and A2 are fulfilled, there exists € > 0 such
that

o\ —1/2
miu ) T ) ) T
q1(q2) > (I —=r(a, kq2))m <1 - (T(JQL kg2) + (1 —r(jq, kq2))m >
0<max(ljq1l,|kqz])<e
2
xexp | — - v - — — 0,
L+r(ja, ka2) + (1 = (a1, ka2)) oz

as u — 0.

ProoOF. Firstly, note that for € > 0 small enough

1 [e3 [e3 [e3 [e3
SUsI™ +1872) <L —r(s,8) < 2(Is|™ +[¢%2), (16)



for 0 < max(|s], |t|) < e, due to A1. Thus for u large, € small enough and 0 < max (|jq1], |kgz|) <
€ we have

o\ —1/2
(1 - (T(qu,ktp) +(1 *T(M%@))@) )

< (1 — (r(qu,kfp) +(1- T(th’ﬂm))@>>m - <(1 U ka)) (1 - 10;T>>1/2

o (Lol + ka2 TP (max (g ke [*2) )TV (min (g5, q5*)\ T L
~X 4 ~ 4 X 4 — u7

for some constant K > 0. Combining the above inequality with (I6) and definitions of m(u),
q1 and g2 we obtain

m(u)
q1q2

o\ —1/2
[(1 - r(ftzl,kq?))@ (1 - <r(jq1’k@) T r(qu’k@))@) >

O<max (|jq1],|kq2|)<e

U2
« .
o ( L+r(q, kg2) + (1= r(ia, qu))@) }

2 U
< K’ u®/2 e kas|%?) (1 )
ue Z [(|Jq1| + |kga2[*?) (1 + )logT
O<max (|jq1|,/kq2|)<e
(- - )
2 — (| + [kaalo2) (1 — 6 — ZEE2)
2
T™Uu . le% «
= Kigr 2 [(uqu el ) (14 6)
g ‘
O0<max (|7q1|,/kq2|)<e
u? (|jqr [0 + ko] *2) (1 — 6 — St
Xexp | — : r(146)
4 —2([jgr|or + [kgoloz) (1 — & — 22Dy
2 2 2 . o o
o 8 W . u? (|qa |t + [kge|*?)
< K 148~ = 1 k 2 —
PSS el + el e .

0<max (|jq1[,|kg2|)<e

_ SrKI(1+9) T Jagl™: __ |ak|*?
= e 2 e A Gl G

0<max (|jq1],lkqz2])<e

K// oo oo o o _ xa o
_ O<10gT/ / (2|t + y|°2) e (lz|* L +]y] 2)dmdy)7

as u — oo. Since log T'(u) — 00, as u — oo, and an integral in the last statement is finite, the
proof is completed. ]

5.1 Proof of Theorem

Proof of (i). Let {X Uk (5,4)};.x be independent copies of X (s,t) and let (s, t) be such that
n(s,t) = XM (s,t) for (s,t) € [j—1,5) x [k—1, k). For a fixed T we define a Gaussian random
field Yr as follows

1/2 1/2
L _ T T 2
Yr(s,t) := <1 logT) n(s,t) + <logT) W, for (s,t) € [0,T], (17)
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where W is an N (0, 1) random variable independent of (s, ¢). Then the covariance of Y7 equals

r(s,t) + (1 —r(s,t))—=, when [so] = [so + s], [to] = [to + t];
COU(YT(SOJOLYT(80+87t0+t)):{ (r )+ 0 =7 D otherv&[lige]) okl o

log T

for all so,to,s,t > 0.
Let ng := |zm1(u)] and ny := [yma(u)]. Since

P sup X(s,t) <u
(5,6)€[0,nz+1]X[0,ny +1]

<P< sup X(s,t)<u><P< sup X(s,t)<u>,
(s;t) €l

0,zmy (w)]x[0,yma (u)] (s,1)€[0,m2] X [0,my]

we focus on the asymptotics of P (SUP(s,t)e[o,nI]x[o,ny] X(s,t) < u), as u — o0o. Let ¢ > 0.

Divide [0, ns] x [0, ny] into nzn, unit squares and then split them into subsets I}, and Ij m as
follows

I = [(-1)+e& ] x[(m—1)+em],
Il*,m = [l - 17” X [mf 17m] - Il,rru
where l =1,...,n,, m=1,...,ny.

Step 1. In the first step we prove that
lim |P sup X(s,t)<u| —-P sup X(s,t) <u || <pi(e), (18)
wee (5,8)€[0,nz]x[0,ny] (s,yeur=, UM, 1
uniformly for (z,y) € [Ao, Ac]?® with p1(g) — 0ase — 0. This is a consequence of the following

sequence of inequalities

o<P sup X(s,t) <u P< sup X(s,t)<u>

(s,t)eUrs, U:Ly:l Ijm (s,t)€[0,nz] X [0,ny]

< ngny P < sup X (s,t) > u) < AZm(u)P < sup X (s,t) > u) = (26 — %) AZ (1 +0(1)),

(s,t)elf,l (s,t)EIi"’1

as u — 00, since

P < sup  X(s,t) > u) = (1+0(1)),

(s,t)EIT 4

as u — oo, by [I3] Theorem 7.1 |].
Step 2. Let a > 0 and ¢1 = ¢1(u) := au" /2 g, = g2(u) := au~?/?. We show that

y
)

1m

lim
u—r o0

(@

n. Ny
P <X(s,t) <u(s,)elJ U Iz,m> - P <X(J’ql,qu) < (Jau, kgz) €

I=1m=1 l

< p2(a), (19)

uniformly for (x,y) € [Ao, Aso)?, With p2(a) — 0 as a — 0. Indeed, (@) follows from the fact

11



that

0 < P<X(st Lj U Im) < (Gar, kg2) < w; (qr, kgz) € Lj U )
< nany max | P (X (ja1, kg2) < s (Ja1,kqe) € Irm) = P <( sup X(s,t) < u))}
< namy(1=e)” (:;([ff) o (m%u))) 20
< Apla) + Am(uo i ) = ALp(a)

as u — oo with p(a) — 0 as a — 0. Inequality ([20)) is due to Lemma/[ll
Step 3. In this step we show that for T'= T'(u) := max(Accmi(u), Ascma(u)) we have

P<X(jq1,kq2) < u; (i, ka2) € U L m> (Yr(iar, ka2) < wi (an, kae) € | U Iim)| =0,
=1 m=1 =1 m=1

(21)
as u — oo, uniformly for (z,y) € [Ao, Acc]?.
Indeed, note that for sufficiently large T" we have
|Cov(X (jaq1, kq2), X (§'q1, k' q2)) — Cov(Yr (jqi, kae), Yr (5 a1, K q2))| <
|Cov(Yr(jar, ko), Yr(5'q1, K a2))| < or((G —5)ar, (k= K)gz),
for functions pr and gr defined by ([IIJ).

Moreover, for small € > 0 and (jgi, kq2), (j'q1, K q2) € U=, U, Ti,m satisfying max(|j —
J'lar, |k = K'|g2) < & we get

. . T
|Cov(X (jq1,kgz), X (§'q1, K q2))—Cov(Yr (jar, kq2), Yo (' q1, K q2))| = (1=r((G—5 )1, (k— k)qa))logT

and
max (|Cov(X (jq1, kg2), X (5'q1, k' q2))|, |Cov(Yr (jqr, kgz), Yr (§'q1, K'g2)])

= Cov(Yr(jqu,kq),Yr (' q1,k q2))
= (=3, (k= k)g2) + (1= r((G = )a1, (k — k' )g2))

-
logT"

Let 7 = sup{max(|r(s,t)|, or(s,t)); max(|s|,|t|) = €}. Observe that ér < § < 1 for suffi-
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ciently large T'. Applying [8] Theorem 4.2.1] we get

l=1m=1

P (X(jq17kq2) < u; (Jqu, ke2) € U U I m) - Yr(jai, ke2) < v; (ja1, kaz) € U[lm

1 nzn r
< = > [(1r(jq1,kq2))—
AT D2 G kazl) <e log T

2

o\ —1/2
X <1— <7‘(jQ17kQ2) (1—7“(](11716112))1 gT) > exp <_1+r(jq17kq2)+(1—r(jq17kq2))@>}

1 _1/2NgN .
+ —(1-8)Trt > [pT(Jql,qu)

47
D20 kan)el—namalx [—ny myl—(—2.6)2

u2
X ex —
P ( 1+ max(|r(jq1, kg2)|, or (jqu, k(p)))

1 AZ m(u) |:
S T oaam > (1= r(jar, kg2)) —
4 lo T
TOBE o max (gl Ikasl)<e o8
o\ —1/2 .
X [1— <r(jq1 qu) + (1 — T(qu k(p)) r ) exp | — u
) ) log T 1+r(jq1,kqQ)+(17r(jq1,kq2))@
1 1 AZm(u .
+ E(l — 62) 1/2 o;qu( ) X Z |:pT(]q17 kQQ)
(Ja1,ka2) €[=Acomi (u),Acomi (u)] X [~ Acoma (u),Acoma (u)] —(—¢€,e)2

u? )
xXexp | — - -
( 1+ max(|r(jqi, kg2)|, or (Jq1, kgz))
= 1 + Is.

Observe that, due to Lemma Bl I; tends to 0 as u — co. Analogously, by Lemma 2 I> tends
to 0 as u — oo. Hence we have shown (2I)).
Step 4. By definition of the random field Y7, we have

P Yr(jgi,kq2) < u;(jqu,kq2) € Ufzm

/2

1/2
.
i1, k T k Iim
logT n(jar, q2)+<10gT> W < u; (jar, kgo) U !

/2 r 1/2
sup n(jqr, kaz) + < ) W<u
< logT (da1,ka2) €Uy, It,m log T

u— (r/logT)"/?2
= /_ P < _ sup n(Jjar, kg2) < (1(7'//11—ogg:;))1/2> d®(z). (22)

(da1,ka2) €Uy T1,m

Then for any z € R

u— (r/logT)Y?z
(1 —r/logT)/2

= (u —(r/ logT)1/2z) (1 + %(7‘/ log T') + o(r/ logT)>

Uy =

= U"!‘W‘FOO/UL
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as u — oo, and thus

1 _exp(=2r+2y/rz) o

Hence, we get

P sup niiq, k) <u. | = [P sup X (jqr, kgz) < us
(da1,kaq2 i,m (

YEUL m T1,m 7q1,kq2) €I} m

= P( sup X(sﬂf)guz)wy(l—l—o(l))

(s,t)€[0,1]2
xzym(u)
()
= exp(—zyexp(—2r +2v72))(1 +o(1)), (23)

as u — oo, uniformly for (x,y) € [Ao, As]?. Combining (I¥), (@), @I), @2) and @3) and
passing with € — 0 and a — 0, we conclude that the proof of (i) is completed.

Proof of (ii). Let 7 C R? be Jordan-measurable with Lebesgue measure mes(7) > 0. For
given € > 0, let Lo,U: C R? be simple sets (i.e. finite sums of disjoint rectangles of the form
[a1,b1) X [az, b2)) such that L. C T C U. and mes(L:) > mes(T) — e, mes(U:) < mes(T) + €.
Then, following line-by-line the same argument as given in the proof of part (i) of Theorem [2]
for Tu = {(w,y) : (w/ma(u),y/ma(w)) € T} Lew = {(@,y) : (2/ma(u), y/ma()) € Lo}, Ueu =
{(2,) + (2/ma(u), y/ma(u)) € U} we have

P < sup  X(s,t) < u) — E(exp(—mes(L:) exp(—2r + 2y/TW)))
(s,t)ELe u

and

P ( sup  X(s,t) < u) — E(exp(—mes(Ue) exp(—2r + 2/7W))),
(s,t)EU

as u — oo. Thus,
P < sup X (s,t) < u) — E(exp(—mes(T) exp(—2r + 2v/TW))),
(s,t)ETu

as u — Oo0.

5.2 Proof of Proposition [

Since the proof of Proposition [I is analogous to proofs of Theorems 3.1-3.3 in [I], see also
Theorem A in [I5], we focus only on arguments for (ii).
Let 0 < Ag < Ase. We have

P ( sup X (s,t) > u) =

(s,t)€B(0,T)

/A[M /m(u)

0

Acor/m(u)
P sup  X(s,t) >u | dFr(x) +/ P sup  X(s,t) > u | dFr(x)
(s,t)eB(0,x) Agy/m(u) (s,t)eB(0,x)

+/ P sup  X(s,t) >u |dFr(z) =11+ I + Is.
Accy/m(u) (s,t)eB(0,x)
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Then, for each € > 0, due to Remark [I], for sufficiently large u, we get

L < (1+z—:)/ " (1 = E(exp(—nz® exp(Vy))) dFr (xy/m(u))

Ane
= (1+¢) /A 27racE(eXp(—7rac2 exp(Vp) + V2)) P(T > z/m(u))dz

~(1+¢) (1 — B(exp(—mAZ exp(Vr)))) P(T > Asor/m(u))

+(1+e)(1— E(exp(—ﬂ'A(Q) exp(Vr)))) P(T > Aoy/m(u)),
where V, = 2,/7W — 2r. Hence, using the fact that T is regularly varying,
Aco

< (1+ 6)27r/ xk)‘E( exp(—mz” exp(Vy) + Vr))da
Ao

lim sup

12
U— 00 P(T > \/m(u))
—(1+¢) (1 — E(exp(—ﬂ'Aio exp(VT)))) A
+(1+¢)(1— E(exp(fwA?) exp(Vr)))) Ay

In an analogous way we get that

L I /A“’ 1-A 2
liminf ——— > 1—¢)2m T E(exp(—mx”exp(Vr) + Vi))dz
u— 00 P(T > /m(u)) ( ) Ao ( ( ( ) ))
—(1—¢) (1 — B(exp(—mAZ, exp(V)))) A
+(1—¢)(1— E(exp(fwA?) exp(Vr)))) A
Then, following the same argument as in the proof of Theorem 3.2 in [I], we conclude that

I+ Is = o(P(T > y/m(u))) as u — oo.

Now, passing with Ag — 0, Asxc — 00 and € — 0, we conclude that

I, =2r /0OO :;t?lfAE(exp(fmt?2 exp(Vr) + V) daP(T > y/m(u))(1 + o(1)),

as u — 00.

5.3 Proof of Proposition

Proof of (i). Assume that A3 is satisfied with 7 = 0. Then, by definition of {X; +}, it suffices
to show that for the original Gaussian field {X(s,t) : s,t > 0}

F(u)g(u)

P < sup X(s,t) < z(u)) - P < sup  X(s,t) < z(u)) -0 (24)
(s,1)€[0,f (u)]x[0,9(w)] (s,t)€(0,1]2

as u — oo, for each function z : Ry — R and all pairs of functions f,g : R+ — R4 such that

f(u) = oo and g(u) — o0, as u — oo, and 1/C < f(u)/g(u) < C for some fixed C' > 0. Observe

that it suffices to consider two cases: continuous z(u) /' oo, as u — 00, and z(u) < Const. We

focus on the first case and suppose that z(u) increases to infinity. Then (24]) is equivalent to

fr(u)g™ (w)

P sup X(s,t)<u| —P sup  X(s,t) <u — 0, (25)
(s,t)€[0, f* (u)]x[0,9* ()] (s,t)€[0,1]2

as u — 0o, with 27! being the inverse function for z and f*(u) := f(z7 (u)), g* (u) := g(z™* (u)).

By (i) of Theorem [2]

P sup X(s,t) <u | —e ™, (26)

(s,t)e [O,x\/m(u)} X [O,y\/m(u)]
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as u — oo, uniformly for (z,y) € F(C) := {(s,t) € RL: 1/C < s/t <C}U{0,0}, for an
arbitrary constant C' > 0. Moreover the uniform convergence

zy-m(u)
P < sup  X(s,t) < u) —e (27)

(s,t)€[0,1]2

occurs on the set F(C).

Let f(u) := f (27" (uw)) /v/m(u) and g(u) := g (27" (u)) /v/m(u). The fundamental obser-
vation is that it is sufficient to prove (24)) for f(u) and g(u) satisfying the additional assumption:
f(u) = a € [0,00] and g(u) — b € [0, 0], as u — oco.

Note that 1/C < f(u)/g(u) < C implies 1/C < f(u)/g(u) < C. Since the convergence in

([6)) is uniform, we obtain

P < sup X(s,t) < u) =P sup X(s,t)<u| — e,
(5:1) €10, (w)] x[0:g7 (w)] (s,)€[0,F(u)y/m(w)] x[0,3(u)/m(w)]

as u — 0o. On the other hand, by (21,

(s,t)€[0,1]2 (s,t)€[0,1]2

F(u)g™ (u) F(w)g(u)-m(u)
P( sup X(sﬂf)éu) =P< sup X(sﬂf)éu)

as u — 0o, which gives ([24)).

Proof of (ii). Let us consider the case r > 0. Note that for V, = 2/7W — 2r it holds
that

Var (exp(—exp(Vy))) = B (exp (=2exp(V;))) — E(exp(—exp(V1)))”

= P max Xjk<u| —P max Xjr<u]| +o(1),

ng[x/m(u)J,kS [g/m(u)J j,kétg/m(u)J

due to Theorem[2l By contradiction, assume that the extremal index exists and equals 6 € (0, 1].
Then for any sequence (z,) C R we have

2

max Xjk<2n | —P max Xk € 2n

i<[2v/m(zn) | k<[ V/m(zn) | h Gk v/mlzn)|

~ ~ 2m(zpn)-0
= P max Xjp<2n | —P (X171 < zn) (=)
i<2|y/mGen) | k<] y/m(zn) |
2
~ ~ m(zn)-0 2
—| P max Xik<zn| — <P (X171 < zn) ) = o(1),
k< y/mzn) |

as n — oo, which implies that Var (exp(—exp(Vr))) = 0. Keeping in mind that » > 0 and W
is an N(0, 1) random variable, we obtain a contradiction.
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