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Abstract: The 10-min average wind speed series recorded at 130 stations distributed rather
homogeneously in the territory of Switzerland are investigated. Fixing a percentile-based threshold of
the wind speed distribution, a wind extreme is defined as the duration of the sequence of consecutive
wind values above the threshold. This definition allows to analyze the sequence of extremes as
a temporal point process marked by their duration. Representing the sequence of wind extremes
by the inter-extreme interval series, the wavelet variance, a useful tool to investigate the variance of
a time series across scales, was applied in order to find a link between the wavelet scales and several
topographic parameters. Our findings suggest that the mean duration of wind extremes and mean
inter-extreme time are positively correlated and that such relationship depends on the threshold
of the wind speed. Furthermore, the threshold of the wind speed distribution correlates best with
a terrain parameter related to the Laplacian of terrain elevations; and, in particular, for wavelet scales
less than 3, the terrain exposure may explain the formation of extreme wind speeds.

Keywords: wind; extremes; wavelet

1. Introduction

Wind represents an important factor that not only studies the problems devoted to climate
dynamics but also to energy generation [1], air pollution control [2], civil engineering [3], aeolian
sediment transport [4], just to mention few of them. The fluctuations of wind speed that take place
in the near-surface are typically characterized by irregularity and complexity, due to the interaction
of several factors, like pressure gradient, turbulence phenomena, temperature, morpho-topographic
conditions [5]. Models, like wind tunnel simulations [6] or computational fluid dynamics methods [7]
that are traditionally used to perform simulations, were quite limited in disclosing the dynamical
complexity of wind field. Thus, to characterize the dynamics of wind speed series, robust methods have
been employed, like distributional analysis [8], chaotic time series analysis [9], wavelets [10], fractal
and multifractal analysis [11–17], multiscale entropy analysis [18], multiscale multifractal analysis [19].
Most of the studies on wind speed were based on hourly or daily averages; however, to detect inner
characteristics of the wind dynamics, like turbulence phenomena [20], and to understand complex
dynamical patterns at very low timescales, high-frequency wind records are necessary.

Recently, the analysis of extremes in environmental data, including wind fields, attracted
an important attention in renewable energy studies. Extremes are a natural part of the environmental
phenomena but difficult to model and analyze. Study of the extremes is interesting both from
fundamental scientific (stimulating developments of new methods and tools) and practical (power
generation management, risk assessments, climate change influence on renewable energy potential
estimation) points of view. An important issue, where the analysis of extremes can be useful as well,
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is a selection of the relevant sites for the power stations. Taking into account the above-mentioned
comments, a highly variable mountainous region like Switzerland can be a good example to study
wind speed patterns, especially extremes.

Extremes are generally defined as values beyond a threshold that depends on the distribution and
on how far into the tail of the distribution the threshold is located. Typically, values located in the far
tail of the distribution are considered in societal and natural systems much more than those occurring
more frequently because they are associated to a higher probability to cause large damage.

Extremes defined on the basis of percentiles of the distribution are frequently employed in
climate studies because they could lead to a sufficiently large sample of data for robust statistical
assessments [21]. In hydrology, for instance, Froidevaux et al. [22] showed that more than 20% of
all flood events in Swiss catchments with a 5-year return period are preceded by 2-day precipitation
sums between the 95th and the 99th percentile. Klawa and Ulbrich [23] investigated large-scale
windstorms that affected large areas and produced large losses. Due to the particular morphological
and topographic characteristics of each station, they proposed to normalize wind speed with a local
extreme wind speed to filter out the effect of differences in wind climate and permit to spatially
interpolate normalized station wind speeds. In their study, it was found that a 98th percentile of the
wind speed distribution could allow to take sufficiently into account the possible damages produced by
windstorms. Martius et al. [21] analyzed the co-occurrence of wind and rainfall extremes, both defined
as the values above the 98th percentile of the corresponding distributions.

In this study, we investigate extremes of high-frequency wind speed time series in Switzerland
using the wavelet variance analysis. We explored whether specific scales of the scale-dependent variance
decomposition of the interevent time series of the extremes are linked to topographic characteristics
with different grid resolutions ranging from fine- to coarse-scale.

The paper is organized as follows. Wind speed data and digital elevation model are introduced in
Section 2. The wind extreme definition and the wavelet variance analysis are described in Section 3.
Results and conclusion are drawn in the two last sections. Finally, in References, the main and the
most relevant bibliographic references are listed.

2. Data

The wind speed series were measured by the MeteoSwiss weather network at 130 stations almost
homogeneously distributed all over the territory of Switzerland from 2008 to 2017 (Figure 1 shows
a map of Switzerland with the stations). The wind stations are located in roughly three climatic zones
of Switzerland: Alps, Jura, and Plateau. The data were recorded with a sampling time of 10 min. Before
being available on line for users, quality controls were carried out on the data by MeteoSwiss [24].
The missing values represent 2.4% of the data set. They were replaced by a 24-spatiotemporal
neighbors local average, i.e., the mean of the eight closer stations in space and the two contiguous time
frames [25,26].

All fine-scale terrain characteristics were obtained from a digital elevation model (DEM) produced
by Swisstopo with a fine grid cell size ∆x = ∆y = 25 m. For the coarse-scale terrain characteristics,
we averaged the 25 m DEM to ∆x = ∆y = 250 m and 1000 m, respectively, and derived the terrain
characteristics at the corresponding resolutions. Subgrid terrain characteristics are derived from the
DEM with ∆x = 25 m and then spatially averaged to ∆x = 250 m and 1000 m.

For each grid cell, we derived a parameter related to the Laplacian of terrain height z (∇2z),
with regards to its immediate four neighbors. It is computed as ∇2z = ∇2z′∆x/4 with the discrete
Laplacian ∇2z′ = (z (x − ∆x,y) + z (x + ∆x,y) + z (x,y − ∆x) + z (x,y + ∆x) − 4z(x,y))/∆x2 and grid cell
size ∆x = ∆y. If a surface is exposed compared to its surroundings, ∇2z is negative, and if a surface is
sheltered, then, ∇2z is positive. A parameter related to the mean-squared slope (µ) is derived from first
partial derivatives of the terrain height z for each grid cell:
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µ =

{[
(∂xz)2 +

(
∂yz

)2
]}1/2

(1)
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Figure 1. Map of Switzerland and location of the meteorological stations. AIG station is marked in 
green. 
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Figure 1. Map of Switzerland and location of the meteorological stations. AIG station is marked
in green.

3. Methods

3.1. Definition of Wind Extremes and Their Statistical Features

Three thresholds were investigated—95th, 97.5th, and 99th percentiles of the wind speed
distribution at each station. On the basis of the run theory [27], a “run” is defined as a sequence of
contiguous values above a given percentile-based threshold. A run is characterized by its length, that is,
the period m (or duration of the extreme) in which the variable under study is above the selected
threshold. Hereafter, wind extreme is a run with a specific length m. This definition takes into account
not only the wind speed that should be above a certain threshold but also its persistence in time since,
supposedly, an extreme that lasts longer than another should very probably impact more intensively.

A sequence of runs or extremes can be viewed as a point process in time. Indicating with ti the
time at which the run starts or the extreme event occurs (hereafter, time of the run) and with mi its
length or duration of the extreme, the sequence of extremes can be described as a finite sum of Dirac’s
delta functions centered on the time ti and amplitude proportional to mi:

y(t) =
N∑

i=1

miδ(t− ti) (2)

where N is the length of the sequence of extremes.
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3.2. The Wavelet Variance

Multiresolution wavelet analysis makes possible a scale-dependent variance decomposition
of a signal [28]. First, the time series x = {xi} is projected on a wavelet basis, yielding wavelet
coefficients [29]. The wavelet basis is itself generated by translating and scaling a mother wavelet
function noted ψ(t). In practice, these coefficients are computed by a discrete wavelet transform [30].

Let’s note S the maximal scale of the analysis. For each scale s = 1, . . . , S one has Ns wavelet
coefficients available, given by

Ws,n = 2−
s
n

L−1∑
i=0

xiΨ(2−si− n) (3)

for n = 0, . . . , Ns − 1 and with L the length of the signal. If the length of the signal is a power of 2,
then the number of coefficients per scale is Ns = L/2s. Small scales correspond to high frequencies and
large scales to low frequencies of the signal.

After that, the corresponding wavelet coefficients are used to obtain the wavelet variance for
a given scale, and are defined as follows

σ2
wav(s) =

1
2sNs

Ns−1∑
n=0

Ws,n −

Ns−1∑
n=0

Ws,n


2

(4)

which is an estimate of the variance of the wavelet coefficients at scale s divided by 2s.
To see that, under some hypothesis, the wavelet variance is a scale decomposition of the signal

variance. Let us suppose that the averages of the coefficient are zero. Then, the wavelet variance becomes

σ2
wav(s) =

1
L

Ns−1∑
n=0

W2
s,n (5)

for all scales s.
Assuming the orthonormality of the wavelet basis, one can show [28,31] that

L−1∑
i=0

x2
i =

S∑
s=1

Ns−1∑
n=0

W2
s,n + L x2 (6)

where x stands for the average of the signal.
Thus, using the two last equations, one arrives at the following relationship

S∑
s=1

σ2
wav(s) =

1
L

S∑
s=1

Ns−1∑
n=0

W2
s,n =

1
L

L−1∑
i=0

x2
i − x2 (7)

i.e., the sum of the wavelet variance across the scales is equal to the sample variance of the original signal.
Therefore, the wavelet coefficients yield a natural decomposition of the signal variance by scale.

4. Results

Surface wind speed is considerably influenced by topography, leading to speed-up when a surface
is exposed and to drag when a surface is sheltered relative to its surrounding topography. Often, horizon
line related terrain parameters are used to describe this wind speed behavior in complex topography.
Recently, among different tested terrain parameters, the best correlation between near-surface wind
speed and fine-scale terrain parameters was found for the parameter related to the Laplacian of
terrain elevations [32]. Indeed, a similar non-dimensional version of the Laplacian on resolved terrain
elevations was used by Jimenez and Dudhia [33] to describe unresolved terrain exposure and sheltering
of simulated coarse-scale surface wind speed.
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Naturally, in the complex topography, the degree of immediate exposure of a surface contributes
to the formation of extreme wind speed. Therefore, we investigated correlations of the three percentile
thresholds of the measured wind speed distribution used to characterize extreme wind speed events
with various terrain parameters. Though terrain elevation was also significantly correlated with the
three percentile thresholds of wind speed for some scales, we again obtained the best correlation with
the parameter related to the Laplacian of terrain elevations ∇2z. For all three percentile thresholds
and the corresponding measured wind speed values, we obtained significant Spearman correlation
coefficients about 0.3 with ∇2z derived on a DEM with horizontal grid cell resolution of 25 m. Because
of the definition of ∇2z, the correlation is negative with increasing wind speed.

Figure 2a shows, as an example, the sequence of wind extremes (for the threshold of 95th percentile
of the distribution of the wind speed) for the station AIG at 381 m a.s.l., where the duration m is
indicated by amplitude of each extreme. The sequence of wind extremes can be represented by the
inter-extreme times Tk = tk+1 − tk, where tk indicates the time of the extreme numbered by the index k.
Figure 2b shows the inter-extreme time series of the wind extremes shown in Figure 2a.
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Figure 2. Sequence of wind extremes (for the threshold of 95th percentile of the distribution of the
wind speed) for the station AIG at 381 m a.s.l.: (a) durations m and (b) inter-extreme times.

Investigating the link between the mean inter-extreme time and the mean duration <m> of wind
extremes, a clear linear relationship was found for all the three thresholds (Figure 3). This suggests
that the longer the duration of the extremes, the larger the time between two successive extremes.
Furthermore, the mean inter-extreme time increases with the increase of the threshold, i.e., the rarer
the extreme wind events, the larger the time in-between such an event.
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Figure 3. Relationship between the mean inter-extreme time and the mean duration <m> of wind extremes.
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The relationship between the mean duration and the mean inter-extreme time of wind extremes
with the main morpho-topographic features of the Swiss territory seems to be dependent only on the
threshold; Figure 4 shows, as an example, <m> (Figure 4a) and the mean inter-extreme time (Figure 4b)
versus altitude.
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Figure 4. Relationship of (a) mean inter-extreme time and (b) mean duration with height across
the stations.

For each threshold we calculated the wavelet variance of the inter-extreme times of the wind
extremes at each station by using the mother wavelet db10. Figure 5 shows, as an example, the 3-D
plot of the wavelet coefficients for the station AIG (95th percentile threshold), while Figure 6 shows the
wavelet variance of the coefficients shown in Figure 5.

For each site characterized by the morpho-topographic features, hereafter generically indicated as
v, we calculated the wavelet variance σw(s) of the inter-extreme time series; s represents the wavelet
scale. Thus, fixing the scale s, we calculated the Spearman rank correlation coefficient and its p-value
between the σw

2(s) and v. Table 1 shows the correlation between the wavelet variance and the height.
Considering the significance level of 0.01 for the p-value, such correlation is not significant for 95%
threshold; it is significant only at scale 6 for 97.5% threshold and at lower scales, from 1 to 3, for 99%.
This could suggest that there are specific scales that are more sensitive to the influence of a particular
topographic parameter.
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At scales s from one to three, the most statistically significant behavior for all threshold percentiles
was found almost consistently for two topographic parameters, namely ∇2z and µ (Tables 2 and 3).
Among all spatial scales, subgrid (sbg) µ derived for ∆x of 250 m shows the most dominant influence
on the wavelet variance of the inter-extreme times for µ. The Spearman r is between 0.25 and 0.3 for
the 99% percentile threshold and scale s of one (Table 2). Regarding ∇2z, the greatest influence among
all spatial scales was achieved with ∇2z derived on ∆x of 1000 m for the 97.5% percentile threshold and
scale s of three, with a Spearman r of 0.32 (Table 3).
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Table 1. Spearman rank correlation r and its p-value between height and the wavelet variance of
the inter-extreme time series of the wind extremes for different thresholds. The results below the
significance level of 0.01 are in bold.

95% Threshold 97.5% Threshold 99% Threshold

Scale r p-Value r p-Value r p-Value

∆x = 25 m

1 0.19 0.039 0.19 0.033 0.27 0.002
2 0.19 0.032 0.21 0.019 0.24 0.007
3 0.17 0.059 0.19 0.034 0.26 0.003
4 0.17 0.067 0.17 0.061 0.21 0.018
5 0.15 0.109 0.21 0.016 0.17 0.059
6 0.22 0.015 0.24 0.006 −0.13 0.138
7 0.23 0.011 −0.13 0.147 - -
8 0.00 0.999 - - - -

Table 2. Spearman rank correlation r and its p-value between the slope-related parameter µ and
the wavelet variance of the inter-extreme time series of the wind extremes for different thresholds.
The results below the significance level of 0.01 are in bold.

95% Threshold 97.5% Threshold 99% Threshold

Scale r p-Value r p-Value r p-Value

∆x = 25 m
1 0.19 0.034 0.20 0.026 0.25 0.004
2 0.21 0.018 0.22 0.011 0.24 0.006
3 0.21 0.018 0.22 0.011 0.23 0.009

sbg 250 m
1 0.25 0.005 0.25 0.004 0.30 0.001
2 0.26 0.003 0.28 0.001 0.28 0.001
3 0.25 0.004 0.26 0.003 0.28 0.001

sbg 1000 m
1 0.23 0.008 0.22 0.011 0.28 0.001
2 0.23 0.007 0.24 0.006 0.24 0.006
3 0.21 0.016 0.23 0.009 0.26 0.003

Table 3. Spearman rank correlation r and its p-value parameter ∇2z related to the Laplacian of terrain
height z and the wavelet variance of the inter-extreme time series of the wind extremes for different
thresholds. The results below the significance level of 0.01 are in bold.

95% Threshold 97.5% Threshold 99% Threshold

Scale r p-Value r p-Value r p-Value

∆x = 25 m
1 0.18 0.037 0.17 0.055 0.15 0.089
2 0.20 0.022 0.18 0.043 0.15 0.082
3 0.22 0.012 0.20 0.023 0.11 0.206

∆x = 250 m
1 0.16 0.062 0.16 0.075 0.17 0.054
2 0.15 0.083 0.14 0.118 0.18 0.035
3 0.15 0.081 0.17 0.056 0.21 0.019

∆x = 1000 m
1 0.27 0.002 0.31 0.000 0.28 0.001
2 0.27 0.002 0.27 0.002 0.30 0.001
3 0.28 0.001 0.32 0.000 0.28 0.001

While for both topographic parameters at larger scales s even better correlations were sometimes
observed, at these scales there is less grouping among each percentile thresholds (not shown).

5. Conclusions

In this study, the sequences of extremes in wind speed measured by 130 stations of the MeteoSwiss
weather network in Switzerland were analyzed by using the wavelet variance. The main findings
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can be summarized as follows: (i) a clear relationship exists between mean duration of extremes and
mean inter-extreme times so that the longer the duration of the extremes, the larger the time between
two successive extremes; (ii) the mean inter-extreme time increases with the increase of the threshold
of the wind speed; (iii) the relationship between the mean duration of wind extremes and the mean
inter-extreme time depends on the threshold of wind speed; (iv) the three percentile-based thresholds of
the measured wind speed distribution correlates best with a terrain parameter related to the Laplacian
of terrain elevations ∇2z which is in agreement with previous findings for near-surface wind speed [32];
(v) the correlation between the wavelet variance σw(s) of the inter–extreme time series and terrain
parameters changes with the scale s, the threshold percentiles of the wind speed distribution, and the
horizontal grid cell size the terrain parameter were derived for. Thus, σw(s) provides some guidance for
identifying scales s where the effect of a particular topographic parameter is more dominant. For s ≤ 3
the best correlations were consistently obtained for all percentile thresholds for ∇2z computed on
a DEM with ∆x of 1000 m. Similar good correlations were consistently obtained for all percentile
thresholds for s ≤ 3 for subgrid (sbg) µ derived for ∆x of 250 m and 1000 m. For s ≤ 3 terrain elevation
z only showed significant (p-value < 0.01) correlations for a percentile threshold of 99%. In conclusion,
this suggests that at these scales s terrain exposure may indeed explain the formation of extreme
wind speeds.

In conclusion, the fundamental research carried out can be practically used for aeolian energy
issues: Estimation of wind energy potential assessment and production management taking into account
extreme events temporal variability at different scales and their relationship to complex topography.
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