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Abstract 

In this paper, we use a discrete time Phase-type process to model the health care cost of an 

insurance contract by considering all possible critical health states of an individual with 

constant interest rate. From the moment generating function of the NPV, we derive a recursive 

formula of this Markov Reward Model (MRM).  

Keywords: Health dependent costs, Health dependent costs, net present value, phase-type aging 

process, Markov reward model, recursive moments. 
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1. Introduction 

Many life insurance companies are exposed to long-term care risks. In contrast to classical 

health insurance where contracts are renewed every year and most lines of business are short-

tailed, management of long-term care contracts is complicated as it involves uncertainty about 

the life and health of an individual over a long-term horizon. It is not only the uncertainty about 

the remaining lifetime, which complicates the estimation of future health costs, but also the 

uncertainty related to the quality of this remaining lifetime, which is highly affected by the 

progress of medical science, economic factors, etc. 

Modelling health care costs is a problem of great interest in health insurance and health 

economics (Zhao and Zhou [2012]). The estimation of the costs plays a key role in pricing, 

reserving and risk assessment in health insurance, as well as performing cost-effectiveness and 

cost-utility analyses in health economics. 

In Castelli et al. [2007], Gardiner et al. [2006] and Zhao and Zhou [2012] the Markov chain 

has a fixed number of states, which is a subjectively chosen parameter, and does not depend 

on the age of an individual. The health care cost related quantities that are studied in Castelli 

et al. [2007], Gardiner et al. [2006] and Zhao and Zhou [2012] slightly differ from each other, 

but all are computed as expected values. In particular, Gardiner et al. [2006] work in continuous 

time and determine the expected net present value (abbreviated as “NPV’’) of health care costs 

over a fixed time horizon. 

In this paper, we use a multi-states Markovian model to estimate the health care costs over a 

fixed period of time, where the changes of individual health states are taken into account. 

Specifically, it is assumed that health care costs depend not only on an individual health state, 

but also on the random interest rate, which is modelled by a Markov chain. 

Our underlying assumption is that the lifetime and health of an individual are described by the 

phase-type distribution. Our motivation to use a phase-type representation for the lifetime of 

an individual comes from Lin and Liu [2007]. Define a finite-state continuous-time Markov 

process to represent the hypothetical aging process of an individual. They call it a phase-type 

aging model (”PH-aging model”). Aging is described as a process of consecutive transitions 

from one health state to another until death. One important property of this model is that the 

states have some physical interpretation, and their number are not chosen arbitrarily, they 

depend on mortality data through a well specified algorithmic procedure. Another important 

characteristic of the model, which makes it different from other phase-type models for health, 

and very relevant for actuarial applications at the same time, is that it provides a connection 

between the health state of an individual and his/her age. 

The first moment of the discounted aggregate claims or its mathematical expectation intuitively 

represents the central tendency of that random variable, as well as the average of its 

distribution. The justification for the popularity of the notion of mathematical expectation 

comes from the Law of Large Numbers which essentially says that the average of the 

successive realizations of a random variable tends towards the expectation of this random 

variable when the number of realisations tends to infinity. This result gives an almost 

experimental status to the mathematical notion of mathematical expectation. 
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The mathematical expectation plays an important role in determining the pure premium. The 

expectation of a random variable gives information on the central tendency of the distribution, 

but no information on the dispersion of values around their average value. A natural idea to 

quantify this dispersion would be to measure how far from the mean a realization of that 

random variable falls. We could thus consider the expectation of the square of the distance 

from its mean, which is the second central moment. 

The paper is organized as follows: in Section 2, we present the theoretical background of the 

study; in Section 3, we present the probability generating function and moment generating 

function of the net present value of the Markov reward process. The Recursive formula and 

examples for the moments of this process are derived in Sections 4, and 5. In Section 6, the 

conclusion follows. 

2. THE MODEL 

2.1   Aging process and Lifetime 

2.1.1 Definition 

Lin and Liu [2007] define a finite-state continuous-time Markov process to model the 

hypothetical aging process of an individual. Aging is described as a process of consecutive 

transitions from one health state to another until death, as shown on Figure 1. There, the system 

has n phases with the transition rates 
i  from state i to i + 1, for 1, , 1i n  , and the transition 

rates 
iq  to the absorbing phase, which is interpreted as the state of death of the individual: the 

time to reach the absorbing phase is interpreted as the lifetime of the individual. 
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                                  Fig. 1   Phase-type aging process 
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The generator is: 

 

0 0
T

q
Q

 
  
 
 

, 

 

    (1) 

where  1 2

T

nq q q q is the absorbing vector and  is the transition rate matrix: 

  

 

 

1 1 1

2 2 2

1 1 1

0 0

0 0

.

0 0 0

0 0 0 0

n n n

n

q

q

q

q

 

 

   

  
 

  
  
 

  
  

 

 

 

 

    (2) 

 

Newborns start from state 1, thus the initial probability vector is  ,0
T

  with 

 1 0 0
TT

  . The transition rates have a special structure, it suffices here to mention 

that they accommodate a developmental period for very young ages and a period of higher 

accident probability in the mid-range of childhood. Some of the rates are constant, thus 

although the model potentially consists of a large number of parameters, 9 to 13 different 

parameters are often enough to give a good approximation of mortality data. For a more 

detailed explanation of the parameters structure and fitting, we refer the reader to Lin and Liu 

[2007] and Govorun and Latouche [2014]. 

2.2    Health distribution 

The distribution of the Markov process at time t given by:  

  , 1 1 ,
T T TQt t te e e      

    (3) 

means the following: 

  T t

i
e 

is the probability to survive for t  years and to be in phase i  at time t . 

 1 1
T te   is the probability to have died before time t . 

One important feature of this model, which makes it different from other phase-type models 

for health, is that it provides a connection between the age of an individual and his/her health 

states.  

Specifically, if we denote the health distribution at age x  as x , we obtain from the model that: 

                                                            
1

1
T T Tx x

x e e  


  .                                        (4) 
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2.2.1 Lifetime distribution 

The time until death 
xT  of an individual of age x  follows the discrete phase-type distribution 

with parameters  ,x e   (see Latouche and Ramaswami [1999]) and the phase distribution of 

the individual after t units of time is 
T t

x e 
.  

The probability that such an individual ages x  survives for t  units of time is given by: 

     1 .
T t

xX XS t P T t e                            

    (5) 

2.2.2  Expectation 

 Denote by 
 i

L  the expected remaining life for an individual in physiological state i .  

It is given by: 

      
1

1
i i

L I e


  , 
 

    (6) 

where 
 i

  is a row vector of size n  with 
 

1
i

i    and 
 

0
i

j   for i j  . 

 Denote by XL  the expected remaining lifetime for an individual aged x . Then we 

have: 

  
1

1
T

X xL I e


   . 
  (7) 

2.2.3 Markov Reward Model for health costs 

This section summarizes the important result by Govorun- Latouche- Loisel (2014) that 

calculate the expected present value of health care costs when the impact of the transition from 

one health state to other until the death, and a constant interest rate are taken into account. Our 

contribution is in the detailed proofs and explanations that we provide that are otherwise 

omitted in their paper. 

The health care contract is represented by: 

 
1

1

L

t

t

t

S v X
  





 , 
 

(8) 

where L     is the integer number of remaining years of life, and 
tX  is the health care cost in 

year t. The coefficient v is allowed to take any positive value including greater than one, so as 

to include inflation, interest force, the increase of health care prices, etc. 

The health state of the individual ages x  at time t  is denoted by 
t  and its distribution is given 

by: 
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                                                  , 1,2,...,
T t

xt
i

p i e i n     .                                         (9) 

For annual costs 
tX  we define a Markov reward model (abbreviated as “MRM”). It is 

convenient to introduce the model as a triplet   , ,A D W P , where: 

1.  A D is the set of possible states: A  is the set of n  health states from the aging model, 

 D  is one absorbing state for death; 

2. W  is the set of 1n  variables representing annual cost in different health states. We assume 

that, for i A ,
iW , 1,...,i n  is a discrete random: it is defined on a given set  1 2, , , MC c c c  

of non-negative values with a distribution which may depend on i. For  i D , 
1nW   is zero 

with probability one. 

P  is the one-year transition probability matrix for the states, which is constructed as follows 

 

 

0 1
T

e y
P

 
  
 
 

, 

 

(10) 

 

where Y


 is the conditional probability to die in the first year, given the state at time 0 . It is a 

complement to the one year survival probability. So that 

 1 1y e  . (11) 

3. Probability Generating Function of S. 

Let  g   be the probability generation function of S . It is often easier to calculate the 

moments of a random variable S  than finding distribution. If the probability generation 

function of S or its moment generating function (mgf) S  exists, it is possible to obtain the 

corresponding distribution of S  by inversion of its mgf. In Govorun et al. (2014), the 

expressions obtained for the distribution of the Net Present Value of the Markov Reward Model 

are hardly simple. We could then think about another technique other than the one proposed by 

the above authors by studying the moments of S . 

Theorem 1 

The probability generation function of S  is given by: 

      T

xSg P      ,  

  (12) 

   

where  

         0 xp i    and           0

S vE i e Y             ,             (13) 
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with 

 

 

 

 

 

1

2

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

i

n

f

f

f

f





 




 
 
 
 

  
 
 
 
 
 

, 

and      1

0
iWX

if E i E      . 

Proof. 

     

     

     

       

     
 

   
   

   

1

1 1

1

0 0

0

0 0 0 0

0 1 0 1 0

0 1 0 1 0

,

:

1, 1 2, 2

1, ,

, ,

S

S

TS

x

S

i

S S

X vSS

i

s A

X X vS

i

s A i s

X

g P E

E i p i

E i

E L i p L i E L i p L i

E L i y E s i p s i

E i Y e E s i E s i

E

  

     

     

     

      

       











 

   

  

                       

         

      







   
   

   

     
   

 

1

1 1

0 0 1 0

,

0 0 1 0

,

,

, .

S
X v

i

s A i s

S
X X v

i

s A i s

i Y e E i E s i

E i Y E i e E s i

     

      









      
 

       
 





 

Then,  

       
   

 
,

v

i i i i s

s A i s

f Y f e     



   .  

In the matrix representation we obtain: 

            0

S vE i e Y              .   

Hence (13). 

4. Recursive formula for the moments of S . 

The mathematical expectation of total claims plays an important role in the determination of 

the pure premium, in addition to giving a measure of the central tendency of its distribution. 

The moments centered at the average of order 2, 3 and 4 are the other moments usually 
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considered because they usually give a good indication of the pace of distribution, and these 

give us respectively a measure of the dispersion of the distribution around its mean, a measure 

of the asymmetry and flattening of the distribution considered.  

Moments, whether simple, joined or conditional, may eventually be used to construct 

approximations of the distribution of the Markov Reward Model. 

Theorem 1: According to the hypotheses of Section 2, for any 0, 0t   , the thn  moment of 

S is given by 

                                             
   

11 2

! 1
1 ,

! !... ! !

jk
n

kn T

x

jn

n
E S

k k k j
 



   
      

   
                                      (14) 

where 

1 2 1 22 ... ; ... ,n nk k nk n k k k k        and where 
   1
k

  are solutions of the equations : 

                                      
          

     1

0

1 1 1
m n

m m n mv

n

m
e Y

n
  

 






 
    

 
 ,                      (15) 

with 

                           
     

   
1

11 2

1 ... 1!
1

! !... ! !

jk
v jnn

kv

jn

v v v jn

k k k j



  







   
  

 
  .          (16) 

Proof. Taking derivative of    T

S xM e   and using Faà di Bruno's (1855) rule’s yield 

                                         
      

( )

11 2

! ( )

! !... ! !

jk
jnn

k

jn

n g
e f g

k k k j

 
 



 
  

 
  ,               (17) 

where the sum is over all nonnegative integer solutions of the Diophantine equation 

1 2 1 22 ... ; ... ,n nk k nk n k k k k         and  g e  . 

Otherwise 

                                   
         k k

f g g   ,                 (18)                          

and 

                                      
   k

g e  ,                          (19)  

it follows that  

       
       1 1
k k

f  ,               (20) 
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 and 

                    
   0 1
k

g  .                                                (21) 

Substituting (20) and (21) into (17) with 0   yields 

  
     0

11 2

! 1
1

! !... ! !

jk
nn

k

jn

n
e

k k k j



 



 
  

 
  . 

Multiplying both sides of the above equation by T

x , yields 

  
     0

11 2

! 1
1 ,

! !... ! !

jk
nn

kT T

x x

jn

n
e

k k k j



   



   
   

   
   to finally have: 

   
11 2

! 1
1

! !... ! !

jk
n

kn T

x

jn

n
E S

k k k j
 



   
      

   
  . 

                                                                                                                                            (22) 

  We have:  

   T

S xM e   , 

Taking the (m) derivative on the right and left side of equation (13), yields : 

          
     

0

m n
m m n mv

n

m
e Y

n
     

 




 
    

 
 . 

5. Examples 

Since it is important to evaluate the mean, variance and skewness of the present value 

associated with our risk process, the following formulas will give us the basic tools to calculate 

the first three moments of S . 

Example 1 : First moment of S  

If  1v e   , the expectation of S in the Markov reward model   , ,A D W P  is 

 
 

 
   

1

1

T T

x A

g
E S I ve E W












  


, 

 

 (23) 

 

where x  is the initial health state distribution,   is the generator of the corresponding 

phase-type aging process and    1
' 1

T

x E S 


 . 
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Proof. 

If 1n  , then 
1 2 1k k   and from Theorem 1, we have: 

   ' 1 ,T

xE S    

                      

        
 

 

          

1
1

1

0

1

1
1 1 1

1 1 1 1 ,

n
n v

n

v

e Y
n

e e Y





  

  

 






 




 
     

 


      


                                              (24) 

with, 

                                                                    1 1v v  


 .                                                                (25) 

 

Substituting equation (25) in (24), we obtain:   1v e   , 

  

Solving the above equation in  1  , we get: 

                                                        1 1 1 1 1v e Y e  


      , 

with   1 1Y e 

  and  1 1  ,    1 AE W   , we finally obtain: 

     
1

1 1 1Ave E W


   , which gives the result in example 1. 

In the following example, we derive formulas to calculate the second moment of S . 

Example 2 : Second moment of S  

If  1v e    and  2 1v e    , the second moment of S  in the Markov reward model 

  , ,A D W P  is: 

                           
2

1 2 12 2

02
1 2

T T

x A A xS

d
E S M I v e E W vE W e E S

d
  



  


    
 

, (26) 

Where x  is the initial health state distribution,   is the generator of the corresponding 

phase-type aging process  and        
1

2 ' 1 '' 1
T

x E S  


    . 

Proof 

            .1 1 1 1 1 1e e v Y   


        
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If 2n  , we find that the nonnegative integer solutions of the equation 
1 22 2k k   are 

   1 2; 2; 0k k   or  0; 1 with corresponding values of k  being 2 or 1 respectively, we 

deduce: 

    2 ' 1 '' 1 ,T

xE S         

               

            
     

               

2
2 2 2

1

0

1 1

2
1 1 1 1

1 1 2 1 1 1 ,

n
n v

n

v v

e Y
n

e e e Y



 

   

    

 






  

 


 
      

 

 
         


   (27)                                                     

with,         

            
      

   

     

2

1

11 2

2

1 ... 12!
1

! ! !

1 1 1 .

jk
v j

kv

j

v v v j

k k j

v v v




  

 







   
  

 

   

 
                                    (28) 

Substituting equation (27) in (26), we obtain:   1v e   ,  2 1v e   ,  

          

          

                  

2

2

1 1 1 2 1 1

1 1 1 1 1

1 1 1 1 1 1 1 2 1 1 ,

e e v

e v v v Y

Y e v e v v e v e

  

 

   

 





   



      

       

             

 

with   1 1Y e 

  and  1 1  ,      2

1 1 AE W      , we have: 

             

               

                  

2

2 2

2

1 1 1 1 1 2 1 1

1 1 1 2 1 1 1 1 1

1 1 1 1 1 1 2 1 1 1 .

v e v v e v e

v e v e v e ve

ve v e v e

   

     

     

  

   

  

           

               

               

 

For,      1 1 1Ave E W   , solving the above equation, we have: 

            221 1 1 2 1 1Av e E W v e           , 

which gives the result in example 2. 

To study the skewness of S , we will need the following result. 

Example 3: Third moment of S  

If  1v e   ,  2 1v e    and  3 1v e   , the third moment  3E S  of S  in the 

Markov Reward Model   , ,A D W P   is: 
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             
1 3 2 1 13 3 2 21 3 3

T T T

x A A x A xE S I v e E W vE W e E S v E W e E S  
        
 

,    (29) 

where x  is the initial health state distribution,   is the generator of the corresponding 

phase-type aging process,    1
' 1

T

x E S 


  and      1 2 ' 1 '' 1
T

x E S  


  ,

       1 3 ' 1 3 '' 1 ''' 1
T

x E S   


      . 

Proof. 

If 3n  , we find that the nonnegative integer solutions of the equation 
1 2 32 3 3k k k    are 

   1 2 3; ; 0; 0; 1k k k   ,    1 2 3; ; 3; 0; 0k k k   or  1; 1; 0 with corresponding values of k  

being 1, 2 or 3 respectively, we deduce that: 

 

      3 1 3 '' 1 ' 1 ,T

xE S           

               

            
     

        

           

3
3 3 3

1

0

1

1 1

3
1 1 1 1

1 1 3 1

3 1 1 1 ,

n
n v

n

v

v v

e Y
n

e e

e e Y





 

   

  

   

 






 



 

 


 
      

 


    

 
      



   (30)                                                     

with,         

   
  

     
   

          

33

1

11 2 3

3 2

1 ... 13!
1

! ! ! !

1 3 1 1 1 2 1 .

jk
v j

kv

j

v v v j

k k k j

v v v v v v




  

  







   
  

 

       

 
               (31) 

Substituting equation (31) in (30), we obtain:   1v e   ,  2 1v e   ,  3 1v e    

          

          

             

2

3 2

1 1 1 3 1 1

3 1 1 1 1 1

1 1 3 1 1 1 2 1 ,

e e v

e v v v Y

e v v v v v v

  

 

  

 







      

        

        

 

then,  

                      

           

       

2 2 3

3 3

1 3 1 1 1 3 1 1 1 3 1 1 ' 1

3 1 ' 1 3 1 '' 1 1 ' 1

3 1 '' 1 1 ''' 1 .

y e v e

v e v e v e

v e v e

    

   

 

 

  

 

                   

     

   
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We also show that        3 2
1 3 2A A AE W E W E W      or      2

1 A AE W E W   , 

   1 AE W  and  1 1   then after simplification we obtain: 

                  

     

3 2 2

3 3 3

1 3 1 1 1 3 ' 1 3 ' 1 '' 1

' 1 3 '' 1 ''' 1 ,

T

x A A AE W vE W e v E W e

v e v e v e

      

  

 

  

       


   

 

and: 

                  

     

3 2 2

3 3 3

' 1 3 '' 1 ''' 1 1 3 ' 1 3 ' 1 '' 1

' 1 3 '' 1 ''' 1 .

A A AE W vE W e v E W e

v e v e v e

     

  

 

  

     

  
 

Then, 

                

       

3 23 2

3 3

''' 1 1 3 ' 1 3 ' 1 '' 1

' 1 3 '' 1 ,

A A AI v e E W vE W e v E W e

I v e I v e

   

 

  

 

    

   
 

                

   

1 3 23 2''' 1 1 3 ' 1 3 ' 1 '' 1

' 1 3 '' 1 .

A A AI v e E W vE W e v E W e   

 


       

 

 

 

But, 

         

              

3

0

1 3 23 2

''' ' 1 3 '' 1 ''' 1

1 3 ' 1 3 ' 1 '' 1 ,

T

xS

T

x A A A

E S M

I v e E W vE W e v E W e

    

   




  

     

     
 

                      

with    1
' 1

T

x E S 


   and      1 2 ' 1 '' 1
T

x E S  


  .To finally have the closed form 

expression of the third moment of the annual health care cost: 

             
1 3 2 1 13 3 2 21 3 3

T T T

x A A x A xE S I v e E W vE W e E S v E W e E S  
        
 

. 

Example: 

In this section, we will use the following tractable example, taken into account the interesting 

parametrization aspects of the MRM. 

We consider one insurance contract for age X  with two health’s states 2n  : {Good heath; 

Critical ill} and one absorbing phase (the death). This contract is modeled using the MRM by 

the following PH representation: 
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Fig. 2 Two states PH aging process 

                   Good Health        Critical Health 

 1                        2 

                            
1

q                                               
2

q  

 Death                Death 
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 The annual heath care cost depends on the insured health state  1;2i such as: 

Table1: Conditional annual health care cost 
 i                  j  i

jc  
   i

jf c  

 

 

 

 

iW  

 

1 

 

1 5 3

4
 

2 25 1

4
 

 

2 

 

1 50 2

3
 

2 100 1

3
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Consider three insureds aged 
1 30X  ,

2 40X   and 
3 50X  , we have the following results in 

this case 0.3  , 
1 1  ,

2 0  ,
1 0.15q   and

2 0.45q   for different values of 0.92v  : 

                                          Table2: Contract analysis1 

Insured 

age X  

Expected 

Lifetime 

XL  

Expected 

Health 

Cost 

Cost Standard 

Deviation 

30 2.905 154.429 107.902 

40 2.872 156.008 108.596 

50 2.851 156.995 109.015 
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Consider three insureds aged 
1 30X  ,

2 40X   and 
3 50X  , we have the following 

results in this case where  0.3  , 
1 1  ,

2 0  ,
1 0.15q   and

2 0.45q    for 1.02v  : 

     Table3: Contract analysis 2 

Insured 

age X  

Expected 

Lifetime 

XL  

Expected 

Health 

Cost 

Cost 

Standard 

Deviation 

30 13.007 243.918 309.258 

40 13.007 244.918 309.258 

50 13.007 246.918 309.258 
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6. CONCLUSION 

We have found recursive formulas for the moments of the Net Present Value of the Markov 

Reward Model, with a constant interest rate. These formulas have been obtained by giving first 

an integral expression for the moments generating function of our risk process and thereafter 

by taking the appropriate derivatives.  

The expressions for the distribution function of Markov Reward Model derived by Govorum 

et al. (2014) are not very simple and be may be difficult to implement. One could then think of 

approximating this distribution function by another one whose parameters would have to be 

estimated, for example, by the method of moments. The first four moments often give a good 

indication of the shape of the distribution of S . 

Possible extensions to this research include taking into account random interest rate of the Net 

Present Value of the Markov reward process. We also intend to collect data for the South 

African market and estimate not only the different transition probabilities but also the health 

Cost for a given health status. 
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